The Scalable M odeling System:
Directive-based code parallelization for
distributed and shared memory computers

M. Govett?, L. Hart, T. Henderson, J. Middlecoff* and D. Schaffer”
National Oceanic and Atmospheric Administration
Forecast Systems Laboratory
Boulder, Colorado 80305, USA

Submitted to the Journal of Parallel Computing (July 2002)

Abstract

A directive-based parall€lization tool called the Scalable Modeling System (SMS) is described. The user insertsdirectivesintheform
of commentsinto existing Fortran code. SMStrandates the code and directivesinto a parallel version that runs efficiently on shared
and distributed memory high-performance computing platforms including the SGI Origin, IBM SP2, Cray T3E, Sun, and Alphaand
Intel clusters. Twenty directives are available to support operations including array re-declarations, i nter-processcommunicaions
loop translations, and parallel 1/0 operations. SMS also provides tools to support incrementa paral€lization and debugging that
significantly reduces code parallelization time from months to weeks of effort. SMSisintended for applications using regular
structured grids that are solved using finite difference approximation (FDA) or spectral methods. It has been used to pardldize ten
atmospheric and oceanic models but the tool is sufficiently general that it can be applied to other structured grids codes. Recent
performance comparisons demonstrate that the Eta, HY COM and ROM S models, paralldized usng SMS, peform aswell or better
than their OpenM P or MPI counterparts.

Keywords: Directive-based parall€elization tool; Weather and ocean models; Automeatic parallel code generation; Fortran source code
translator; Distributed memory computers

1. Introduction

Both hardware and software of high-performance computers (HPCs) have evolved
ggnificantly in the last decade. Computers quickly become obsolete; typicadly a new generation
is introduced every two to four years. HPCs now comprise a wide iange and class of systems
incduding shared memory systems cdled Symmetric Multi-Processors (SMPs), fully distributed
memory systems and hybrid systems that connect multiple SMIPs using some form of high speed
network. To scade to large numbers of processors, these systems are ether distributed or hybrid
gystems, a classfication referred to in this paper as distributed memory computers (DMCs).
Typicdly DMC sysems are proprietary vendor-based solutions, but commodity-based DMCs
have emerged as an atractive dternative due to their superior price / performance and to the
increasing adoption of hardware and software standards by the industry.

While DMC sysems offer the posshility of scalable high-performance, the additional work
required to port codes to these systems and to make them run efficiently can be dgnificant.
DMCs are generdly more difficult to program because they require the user to bresk up the
problem doman into smdler sub-domans that ae then solved in padld. If memory is
physicaly distributed, messages must be passed between systems when data sharing is required.
These condderations often require significant changes to the seria code, and in some cases, the
code may need to be completely rewritten. Additional consderations arise when codes are

! E-mail address: govett@fsl.noaa.gov (M. Govett)
" Cooperative Institute for Research in the Atmosphere, Colorado State University Fort Collins, CO 80523 USA

moved between different computing platforms for operationd and devdopmental use. If the
codes rey on a specific computer architecture or vendor specific routines, diverging versons of
the code become increasingly difficult to maintain.

Despite these issues, operational weather centers and research groups are increasingly
sdecting large DMCs to meet their computationd needs. For example, in 1996 the United
Kingdom Meteorologicd Office purchased a 696-node Cray T3E, and in 1997 the Nationd
Centers for Environmental Prediction (NCEP) purchased a 768-node IBM-SP system that was
recently upgraded to over 2700 processors. During the procurement of these systems,
operationa centers typicaly request that vendors provide software support staff as part of ther
budget. These people are tasked with porting the operational codes to the vendor's DMCs — a
task that often takes multiple man-years to complete. Research laboratories do not typicaly have
the luxury of paying vendors to pardldize thar modds, ingead they must expend a great ded of
time and effort to learn the complexities of pardld programming. In ether case however,
porting codes to new systems can represent a significant commitment of time and resources.

The primay misson of the Nationd Oceanic and Atmospheric Adminigtration's (NOAAS)
Forecast Systems Laboratory (FSL) is to transfer atmospheric science technologies to operationa
agencies within NOAA, such as the Nationa Westher Service, and to others outside the agency.
In the last decade, FSL has paralldized a variety of weather and ocean models that run on DMCs
in operationa centers and at research ingtitutions around the world.

Centrd to FSL’'s success with modd pardléization and the use of DMCs has been the
devedopment of the Scdable Modding Sysem (SMS). SMS is high-leve directive-based tool
that was designed to reduce the time and effort required to pardlelize codes targeted for DMCs.
Further, a single source code can be mantained for both serid and parald execution that can
eadly be ported between DMCs. SMS aso provides debugging tools that enable code
pardlelization to be measured in weeks rather than months of effort.

SMS is intended for agpplications using regular structured grids that are solved using finite
difference gpproximation (FDA) or spectrd methods. SMS provides support for mesh
refinement of nested modes, and can transform data between grids that have been decomposed
differently. Modeds pardldized usng SMS include the Globa Forecast System (GFS) [23] and
the Typhoon Forecast System (TFS) [9] for the Centrd Wesather Bureau in Taiwan, the Regiond
Ocean Modeling System (ROMS) [17], the Hybrid Coordinate Ocean Modd (HYCOM) [5], the
Nationd Centers for Environmentd Prediction (NCEP) Eta mode [26], the high resolution
limited area Quas Non-hydrostatic model (QNH) [24], the Princeton Ocean Mode (POM) [8],
and the 20 km Rapid Update Cycle (RUC) mode running operationdly a NCEP [4]. These
models have demondrated good performance and scding on most high-performance distributed
memory computing plaforms including the IBM SP, Cray T3E, SGI-Origin, Alpha-Linux
Clugters, and Intel-Linux Clugters,

The rest of this paper describes SMIS in more detall. Section 2 surveys cmmon approaches
to code padleization and is followed by a description of SMS in Section 3. This section
decribes the code pardlélization process usng SMS and highlights some advanced and unique
features of the software that are not avalable in other pardleization tools. In Section 4, case
dudies are presented that describe the SMS padldization of three models the operationd Eta
model used by the National Westher Service, the HYCOM ocean mode, and the ROMS ocean
modd. In these case dtudies, the performance of the SMS pardlelized modds are compared to

OpenMP and MPI versions of these codes. Findly, Section 5 concludes and highlights some
additiona work that is planned.

2. Approachesto parallelization
In the past decade, severd distinct approaches have been used to paralelize Fortran codes.

2.1 Message passing libraries

Message-passing libraries, such as Message Passing Interface (MP1) [16], represent an
goproach suitable for shared or distributed memory architectures. Message passng typicdly
requires the sender and recelver to be involved in the communication: the source process makes
a cdl to send data and the dedtination process makes a cdl to receive it. To reduce
communications overhead, the Shared Memory Access Library (SHMEM) developed by Cray,
does one-sded get/put operations between the source and receiver processes. This optimization,
dso used in some MP implementations, dgnificantly speeds communications but typicaly
requires explict handling of inter-process synchronization. Although the scaability of pardld
codes usng message-passing libraries can be quite good, they are rdatively low-levd and can
require the programmer to expend a ggnificant amount of effort to pardldize their code.
Further, the reaulting code may differ subgantidly from the origind serid verson and code
restructuring is often desirable or necessary.

2.2 Parallelizng compilers

These solutions offer the ability to automaticaly produce a pardle code that is portable to
shared and digtributed memory machines. The compiler does the dependence andysis and offers
the user directives and/or language extensons that reduce the development time and the impact
on the srid code. The mog notable example of a pardldizing compiler is High-performance
Fortran (HPF) [21]. In some cases the resulting pardld code is quite efficient (Portland Group,
1999), but there are dso deficiencies in this gpproach. Compilers are often forced to make
conservative assumptions about data dependence relationships, which impact performance
[12][20]. In addition, wesk compiler implementations by some vendors result in widely varying
performance across systems [30].

Another compiler approach, caled Co-Array Fortran [31], provides a language extension to
Fortran 95, in the form of sguare bracket syntax, to provide limited message passing
functiondity. While the syntax is Imple, extensble and flexible, the programming modd is
gmilar to MP and is therefore sufficently low leve that dgnificant modifications to the serid
code are required during code pardldization. Portability is dso an issue since Co-Array Fortran
isonly avalable on the Cray T3E.

2.3 Interactive parallelization tools

This classfication combines the automatic anadlyss cgpabilities of a pardldizaion tool with
user knowledge of the code in order to produce a pardld verson. One interactive tool, cdled
the Padldization Agent, automates the tedious and time consuming tasks while requiring the
user to provide the high-levd dgorithmic details [22]. Ancther tool, caled the Computer-Aided
Padldization Tool (CAPTodls), atempts a comprehensve dependence andyss [20]. This

3

commercidly avalable tool is highly interactive, querying the user for both high leve
information (decomposition strategy) and lower level details such as loop dependencies and
ranges that variables can teake. While interactive tools offers the posshility of a qudity pardld
solution in a fraction of the time required to andyze dependencies and generate code by hand,
limitations exig in ther aoility to offer efficent code padldizaion of scentific codes
containing more advanced functiondity such as nesting, multiple decompositions, and Fortran 90
condructs. In addition, some hand rewriting may be required to obtan good padld
performance [13].

2.4 High-level library-based tools

Library-based tools, such as the Runtime System Library (RSL) [27] and the Nearest
Neighbor Tool (NNT) [35], are built on top of the lower levd libraries, such as MPI, and serve to
relieve the programmer of handling many of the detals of message passng programming.
Performance optimizations can be added to these libraries that target specific machine
architectures. While a number of modds were successfully pardldized usng NNT [2][11][18],
the serid and padld versons of the code were diginctly different and had to be maintained
sepaately. Further, pardldization is time-consuming and invasve, snce code must be inserted
by hand and the user is dill required to do dependence andysis themselves.

Source trandation tools have been developed to help modify these codes automaticadly. One
such tool, the Fortran Loop and Index Converter (FLIC), generates calls to the RSL library using
command line arguments to identify decomposed arrays and loops needing transformations [28].
While usgful, this tool has limited capabilities. For example, it was not desgned to handle
multiple data decompositions, inter-process communications, or nested models.

2.5 Modeling framewor ks

This classfication loosdy describes a software enginegring approach whose am is to
minimize the impact of padldizaion on said codes usng techniques such as code
restructuring, abstraction, and modular code desgn. One example of this gpproach is the
Wesather Research and Forecast (WRF) modd. This model was designed to limit the impact of
pardldization and padld code mantenance by confining MPI-based communications cdls into
a minima st of modd routines cdled the mediation layer [29]. Another approach, caled the
Flexible Modding System [3], uses an object oriented design to encapsulate data structures used
in the gpplication as objects in a class library. These objects are manipulated using operators,
defined in the library, in order to perform arithmetic, rotationd and differentid operations
required by the application. Lower layer class libraries are provided to support doman
decomposition, communication and pardld 1/0. Both of these approaches provide a good way
to separate the needs of the gpplication from the complexities of pardld programming, but
sgnificant code restructuring may be required.

Two additiond efforts, the Eath Sysem Modding Framework (ESMF) [10] and the
Program for Integrated Eath System Modding [32] projects, have begun recently with a goa of
dandardizing the interfaces between the framework and the applications that use them. Standard
interfaces dlow scientific codes to be more easly moved between modes when they are built
usng the same framework. In addition to providing traditiona library-based low-levd
communications routines, these approaches plan to support coupling of modes and the robust
handling of modd grids that are required by climate gpplications. These tools are dated to be

4

available in 2005, but at this time, it is unclear the extent to which source code changes will be
required in order to conform to the frameworks.

2.6 Directive-based parall€elization

Companies such as Cray and SGI higtorically used this gpproach to support loop leve
shared memory pardldization. More recently, a sandard a set of directives cdled OpenMP was
developed and has become widdly used in the scientific community. OpenMP can be used to
quickly produce pardld code, with minima impact on the seria verson. However, OpenMP is
not avalable on many didributed memory architectures. To get around this redtriction, software
developers have obtained limited success combining OpenMP (shared memory paraldism) with
MPI (digtributed memory pardlelism) on hybrid DMCs. In ether case, however, obtaining good
scaable performance often requires as much effort as when MPI is used.

Another approach, and the topic of this paper, is a directive-based tool caled SMS that can
be used on distributed or shared memory machines.

3. Overview of SMS

SMS is a layered st of software and directives built on top of low level communications
libraries such as MPl or SHMEM. User access to code pardldization is provided through the
highest layer component of SMS caled the Pardld Pre-Processor (PPP). PPP is a Fortran code
andyss and trandation tool built usng the Eli compiler condruction sysem [15]. PPP andlyzes
the serid code and user-inserted SM S directives to determine how the code should be modified.

Trandation of Fortran 77 codes is fully supported; however, handling of Fortran 90
language condtructs is currently limited to modules, full aray assgnments, and other commonly
used datements. Further detalls of the supported Fortran 90 language congtructs are provided on
the SM S web site (http://mww-ad.fd.nosagov/ac/snshtml).

The code padldizaion process is illudrated in Figure 1. The programmer inserts the
directives, which appear as comments, directly into the ®rial code. PPP trandates the directives
and serid code into a pardld verson. Code modifications include loop trandations, array re-
declarations, inter-process communications, and the transformation of I/O gatements to handle
decomposed and non-decomposed variables. Since the programmer adds only comments to the
code, there is no impact to the serid verson. Once the pardld code is running it can be
debugged and optimized for high performance using tools provided by SMS. Further, no code
changes are required when porting the SMS serid verson to other shared and distributed
memory machines.

Code Pardldization with SMS

Serial
Executable

Origina SM'S Serial
Serial Code Code 4—.4—

SMS Code Mo Paralle
Trandator Parallel Ly
Code Executable

Figure 1: SMS directives are added to the original serial code during code parallelization. The SMS serial code can

then be run serially as before, or translated by SMS to generate parallel code. Once the code is running, SMS
providestools to debug the parallel code and to optimize it for high performance.

To ensure the trandated code is recognizable to the author, SM'S changes only those lines of
code tha must be modified; the rest of the serid code including comments and white space
remain untouched. While this festure makes it easy to look at the generated code, experience has
shown that most users never do.

SMS has been desgned to handle most agpects of pardld programming including code
transformation, debugging and optimization operations. The breadth of SMS support for these
operations is illugrated in Figure 2. Access to these functions is primarily through twenty SMS
directives that are inserted into the application code. Key SMS directives used to support these
operations will be briefly described. All directive names are preceded by “CSMS$’ or “!ISMS$’
which, for brevity, will be omitted when refering to them in this pgper. Further information
about these directives is available in the SMS User's Guide [19] and the SMS Reference Guide
[14].

Spectral FDA
Models Models

Data e
Decomposition Optimization
Adjacent .
Debugging
. I ncremental
Sediaie Parallelization
Boundary Inter -gr i_d
Conditions I nterpolation
Static & Dynamic Parallel 1/0
M emor

Figure 2: A functional diagram of SMS. SMS support is provided for the transformation of the serial code, and for
debugging and optimization of the parallel code.

3.1 Data decomposition

The most important step in code transformation is for the user to define one or nore data
decompositions and to identify the varidbles that will be associated with them. Fve SMS
directives are avalable to support data decompostion. The directives DECLARE_DECOMP,
CREATE DECOMP, and DISTRIBUTE, in combination, enable the programmer to decompose
the data among the processes. DECLARE DECOMP names a decompostion and
CREATE_DECOMP initidizes it a run-time. The DISTRIBUTE directive is used to specify if
and how dimensions of individud arays are decomposed based on the decompositions defined
by DECLARE DECOMP. During code trandation decomposed arrays will be re-declared into
the locdly defined sub-portions of the globd aray. Do-loops that operate on these decomposed
arays will be modified to the gppropriate locd <art and stop vaues usng the PARALLEL
directive.

In the event multiple decompostions ae required, such as in neted modds, the
TRANSFER directive handles the communication necessary to move data between coarse and
fine nests. Multiple decompositions are aso useful in spectrd models where computations occur
in dternating phases. For example, a decompostion in latitudes may be optima for the physics
and Fast Fourier Transform code, while a decompostion in longitudes or in the verticd may be
ided for the Legendre transforms.

For example, Figure 3 shows an SMS program in which the decomposgtion nmy_dh is

declared (DECLARE_DECOMP: line 3) and then referenced by the DISTRIBUTE directive
7

(lines 5, 9) to asxociae the decomposed aray dimensons of x and y with the daa
decomposition my_dh. Once SMS understands how arrays are decomposed, paralldization
becomes primarily an issue of where in the code the user wishes to perform communications and
not how data will be moved to accomplish these operations. SMS retains dl of the information
necessary to access, communicate, and input and output decomposed and non-decomposed
arrays through the use of the user-named decomposition.

Code with SMS Directives

1: progr am Sanpl e_SM5_Code

2: paraneter (1M = 15)

3: CSMS$DECLARE_DECOVP(ny_dh, 1)

4:

5: CSMB$DI STRI BUTE(ny_dh, 1) BEG N

6: real, allocatable :: x(:)

7 real, allocatable :: y(:)

8: real xsum

9: CSVB$DI STRI BUTE END

10: CSMB$CREATE_DECOWP (ny_dh, <I M, <2>)
11: al | ocate(x(im)

12: al l ocate(y(im)

13: open (10, file = "'x_in.dat', form unformatted')
14: read (10) x

15: CSMB$PARALLEL(ny_dh, <i>) BEG N
16: do 100 i =3, 13

17: y(i) = x(i) - x(i-1) - x(i+1) - x(i-2) - x(i+2)
18: 100 conti nue

19: CSVB$HALO UPDATE(y)

20: do 200 i = 3, 13

21: x(1) =y(i) +y(i-1) +y(i+l) +y(i-2) + y(i+2)
22: 200 conti nue

23: CSMB$COVPARE_VAR(X)

24: xsum = 0.0

25: do 300 i =1, 15

26: xsum = xsum + x(i)

27: 300 continue

28: CSMB$REDUCE(xsum SUM

29: CSMB$PARALLEL END

30: print *,'xsum=",xsum
31: end

Figure 3: An example of a program using SMS directives. The DISTRIBUTE directive is used to map sub-sections
of the arrays x and y to the decomposition named by "my_dh". Each process executes on its portion of these
decomposed arrays in the parallel region bounded by PARALLEL BEGIN / END (lines 15-29). Using the
decomposed arrays, each process computes a local sum (lines 25-27). A global sum is then calculated using the
REDUCE directive (line 28) and then output.

3.2 Adjacent dependencies

Once a data decomposition is chosen, the code must be andyzed to determine where data
dependencies occur. For example, the computation of y(i,j) in the statement:

y(i,j) =x(i+l,j) + x(i-1,j) + x(i,j+1) + x(i,j-1)

depends on the (i+1), (-1,), (i,j+1), and (i,j-1) points of the “x” aray. This is cdled an
adjacent dependence. When these data points are not loca to the processor, they will need to be
obtained from another processor. The most common gpproach is to define a hao region so that
off process data values can be communicated efficiently. This type of operation is caled a hdo

update or exchange and is illugrated in Figure 4. The SMS directive tha provides this
capability iscaled HALO UPDATE.

Halo Region Update:
Non-periodic

Halo Thickness = 1

[\Pl

L 1]
Not 5 SN Not
Used m] Used

I 0| |

i I

B REm

i REm

I RN

i REm

N RN
Global Index 1 2 3456 5 6 7 8 91011 10 11 12 13 14 15

A A 1|

Figure 4: Anillustration of how the HALO_UPDATE directive is used to update hal o regions (checkerboard areas)
on processes P1, P2 and P3. For example, the first column of P2 is sent to P1 where it is stored in the halo region

just to theright of P1’sdata. The last column of P1 is stored in the left halo region of P2. The other communication
works analogously.

For example, the HALO_UPDATE directive in Figure 3 is used to update the hao points of
aray y to handle an adjacent data dependency that exists between loops 100 and 200. The user
is only required to specify the name of the varidble requiring a hdo update. Using information
from the directive and obtained via code andysis, SMS determines how much of the hao region
esch process must communicate, where the information must go, and where it should be stored.
Process synchronization is aso handled by SMS for communications operations where
appropriate.

3.3 Reductions

The SMS directive, REDUCE, is used to compute reductions involving globd sums,
maximums and minimums. Since summétion is not asodidive, the computation of globa sums
may not lead to exactly the same results on different numbers of processors. To dleviate this
inconsdsency, SMS provides a bit-wise exact reduction capability which performs exactly the
same order of arithmetic operations that are executed in the seria program.

3.4 Boundary conditions

Handling of globa boundaries requires specid trestment to ensure that anly the process that
owns a data point will perform the given operation. For example, the initidization of boundary
points on three processes (P1, P2 and P3) is illustrated in Figure 5. Only process P1 should do

9

the assgnment br x(1) and process P3 for x(15). The SMS directive GLOBAL_INDEX is
provided to do this operation.

CSM S$GLOBAL _INDEX

csnms$gl obal _i ndex(1) begin
x(1) = 0.0
declaration: x(15) = 0.0
real x (15) csns$gl obal _i ndex end

GlobalIndex: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LocalIndex: 1 2 3 4 5 1 2 3 45 1 2 3 4 5
Process Number: P71 P2 P3

Figure 5. Anillustration of SMS handling of global boundaries using GLOBAL_INDEX on the array “x” that is
decomposed over three processes: P1, P2 and P3.

Periodic boundary conditions are dso handled by SMS. The user can specify periodic
boundary conditions using the PERIODIC keyword when creating the data decompostion using
the CREATE_DECOMP directive. This option causes SMS to fill the hao points representing
the modd’s globa boundaries during initidization, and to update the hado region boundaries
when HALO UPDATE is used. For example in Figure 4, process P1's boundary points, tagged
“not used”, will be updated with P3's data (global index 15).

3.5 Satic & dynamic memory

SMS provides support for both datic and dynamic memory dlocation. For modes using
dynamic memory dlocation, SMS retains the concept of a globd address space, so trandations
between the serid and process locd index vaues are not required. For modds using datic
memory dlocation, additiond arguments in DECLARE DECOMP ae used to declae the
process locad sizes of the decomposed arays. Globd arrays are referenced using process loca
indices (Figure 5). Two SMS directives, TO LOCAL and TO GLOBAL, are provided to
convert between globa and process local addressing when required.

3.6 Paralld I/O

SMS supports standard Fortran input and output of decomposed and non-decomposed arrays
without requiring SMS directives. SMS acquires the information it needs to handle 1/0 though
the decompostion directives described in Section 3.1. Usng this information, SMS
automaticaly generates the communication cals needed to read or write data from dik. An
SMS server process, shown in Figure 6, is desgnated, by default, to handle al 1/O operations.
On input, data are read by the server and then scattered to the appropriate compute processes.

10

Similarly, decomposed output data are gathered by the server and then written to disk in the
proper order. This server process can adso be optionaly omitted a run-time for runs made on
smdl numbers of processes.

Computational Server
Processes

Figure 6: Anillustration of SMS output when a server processis used. SMS output operations pass data from the

computational domain to the server process. The data are re-ordered on the server process before being written to
disk.

3.7 Inter-grid interpolation

For nested modds tha use mesh refinement to improve grid resolution in critical aress,
interpolation between nests may be required. Interpolated data from the coarse “parert” grid
may be usad to compute boundary information for the fine “child” grid or visa versa. Inter-grid
interpolation is aso used to couple modes that are based on different grids. One example is the
coupling of ocean and amospheric models. SMS supports this functiondity through a user-
gpecified interpolation scheme. Once an interpolation scheme has been defined, the TRANSFER
directive is used to move data between grids using this scheme.

3.8 Incremental parallelization

SMS provides support for smplifying code pardldization with a directive cdled SERIAL
that permits seria execution of sdected portions of the user's code. This directive has severd
important uses. Fird, it dlows usars to pardleize their code incrementdly rather than being
forced into an dl-or-nothing approach. Once assured of correct results, the user can remove
these serid regions and further pardldize their code. Second, this directive can be used to avoid
the pardldization of some sections of code that are either executed infrequently (eg. modd
initidization) or cannot be pardldlized by SMS, such as NetCDF /O [34]. Third, users may
samply choose to not pardl€dize some sections of code if adequate performance is attained.

Serid regions ae implemented by gathering al decomposed arrays, executing the code
segment on a sngle process, then scattering decomposed or broadcasting non-decomposed
results back to each processor as illustrated in Figure 7. In this figure, the routine
not parall el executes on a single process and references globa arrays that have been
gathered by the appropriate SMS routines. While the extra communications required to do

11

gather or scatter operations will dow performance, this directive's versatility has proven to be
very useful during code pardldization.

CSM S$SERIAL

gather {

CALL NOT_PARALLEL(...)

Scatter
“global” “local”
broadcast

Figure 7: An illustration of how SMS supports incremental parallelization. Prior to execution of the serial region
of code, decomposed arrays are gathered into global arrays, referenced by the serial section of code, and then results
are scattered or broadcast back to the processors at the end of the serial region.

“local” “global”

3.9 Debugging

Finding runtime bugs during the initid code pardldization or ensuing code mantenance
phase can be the mogt difficult and time consuming task required in running codes on a DMC
sydem. SMS provides a number of advanced features that sgnificantly smplify debugging and
dreamline code pardldizatiion. The best way to verify the accuracy of any pardldization effort
is to compare the output files of different pardld runs (eg. 1, 2, 4 processors) to a serid
“control” run. This requires that the dower but more accurate bit-wise exact reductions,
described in Section 3.3, k& turned on during the control runs. Once the mode is producing the
correct results, bit-wise exact reductions can be turned off for the production runs when high-
performance is required.

In addition, two SMS directives have been developed to support debugging. As illusrated
in Figure 8, the COMPARE_VAR directive is used to verify interior region data points are
correct, and CHECK_HALO is used smilarly for the halo points.

12

SM S Debugging Directives

Insert directives in the code to verify
array values are correct

portion of a decomposed array
owned by a single process

Halo Region

Interior Region

com pare var ==

Figure 8: An illustration of two debugging directives that are available to verify decomposed array values are

correct. Scalars and non-decomposed arrays can also be compared. These directives have greatly simplified
debugging and parallel code development.

Figure 9 illugrates how the CHECK_HALO directive works hao region vaues from each
user-gpecified array are compared with ther corresponding interior points on the neighboring
process. When data vaues differ, SMS outputs an error message containing the array name, and
the location where the problem occurred, and then terminates execution.

13

CSMS$CHECK HALO

|:| interior region data

|:| halo region data

VTN

Global Indices 1 2 3 4 3 45 6 7 6 7 8 9

1

P1 P2 P3

Figure 9: This SMS directive is used to verify that each processor’'s halo region is up to date. In this example,
process P2 compares data one step into its left halo (global index 3) with the corresponding interior points on

process pl. Similarly, the right halo region points (global index 7) are compared to the interior points on p3.
Similar comparisons are made on processors P1 and P3 where appropriate.

The COMPARE_VAR directive, patterned after work by O’ Keefe [6], provides the ability
to compare array or scalar values between a correctly working code and another run that ses
different numbers of processors. For example, the programmer can specify a comparison of the
aray “x”, for asingle processor run and for amultiple process run by inserting the directive:

csnms$conpare_var (X)

in the code and then entering appropriate command line arguments to request concurrent
execution of the code. Wherever COMPARE_VAR directives gppear in the code, user-pecified
arays will be compared as shown in Figure 10. If differences are detected, SMS will display
the name of the varidble, the array location (eg., the i, |, k index) and vaues from each run, the
location in the code, and then terminate execution. Conversdly, if no differences are found, SMS
will continue executing the code.

14

CSM S$COMPARE_VAR

One Process Exec | | SM5 Runtinme Environnent | | Four Process Exec

program mai n program mai n

Compare A,B csmssconpar e var (A B |

Compare C cm$°°rmare var (O

end program end program

Figure 10: Anillustration of how COMPARE_VAR is implemented in SMS. In this example, two executables are
launched concurrently from the command line. When a COMPARE_VAR directive is encountered, the executables

synchronize, and then compare the specified arrays. If any elements of the arrays differ, SMS will print the location
and values of the data point and then terminate the execution of the runs.

The ability to compare intermediate model values anywhere in the code has proven to be a
powerful debugging tool during code pardldization. For example, the time required to debug a
recent code paraldization was reduced from an estimated eight weeks down to two Smply
because the programmer did not have to spend hordinate amounts of time determining where the
paraldization mistakes were made.

These directives have aso proven to be a useful way to ensure that modd upgrades continue
to produce the correct results. For example, a scientist can verify source code changes by
smply comparing the output files of the serid “control” run and subsequent pardld runs. In the
event results differ, they can turn on SMS debugging (a run-time option) which compares the
intermediate results of the arays specified by COMPARE_VAR. In the event differences
appear, they can quickly locate the problem and determine the best solution. In this way, SMS
users have found the debugging directives very useful because they dlow the code author to
control the maintenance and upgrades of their pardle codes rather than requiring the help of a

computer speciaist.

3.10 Optimization
SMSS performance optimizations can be divided into two areas. automatic, and user asssted.

3.10.1 Automatic optimizations

SMS provides severd optimizations that require no action by the user. These optimizations
are designed to take advantage of the software and hardware on the target system. For example,
on some machines, the more generd MPI communications library is replaced by the faster but

15

less portable SHMEM library. Another optimization provided by SMS are two srategies to
minimize the communications time required when TRANSFER operations ae done. One
drategy minimizes the amount of data that must be moved between processes to reduce
communications bandwidth. The other Strategy reduces the number of communications that are
done in order to minimize communications laency. Findly, the most efficient combination of
the variants of MPI send and receive routines are used when SMS is configured and built on the
target sydsem. For example, on some machines the mpi_isend/mpi_recv is fagster than
mpi_isend/mpi_irecv due to how message passng is implemented. Since these optimizations are
automatically sdected when SMSiis built, no changes to the gpplication codes are necessary.

3.10.2 User-assisted optimizations

Severd communications optimizetions are provided by SMS that permit tuning of the
goplication by the user. These optimizations, controlled via directive, are limited thickness
exchanges, aggregation, and redundant computations. Limited thickness exchanges dlow the
user to minimize the amount of data transferred between neighboring processes. Ingead of
communicting the entire halo dl of the time (the default), communicaion can be limited to only
the portion required. To further reduce communications bandwidth, SMS adso dlows aray
sections to be specified. For example:

csms$hal o_updat e(x<1: 1>, y(:,:,1))

will exchange one point of the hao in the firsd decomposed dimenson of the aray x and will
update the entire hao region, but only for the surface layer (1 in the 3" dimenson) of .
Combinations of limited thickness and array section control may aso be specified.

A scond communications optimization, cdled aggregation, permits multiple modd
variables to be combined into a single communications cal in order to reduce message passng
latency. For example, to update the haos of the variablesa and b together:

csnms$hal o_updat e(a, b)
requires haf the communications latency needed to exchange them individudly:

csns$hal o_updat e(a)
csns$hal o_updat e(b)

A third optimization provides the &bility to diminae communicaions by peforming
redundant computations in the hao region usng the HALO COMP directive. Figure 11 and
Figure 12 show how this works. In Figure 11, halo updates are required before and after loops
150 and 250. However, in Figure 12, HALO COMP is used to modify the do-loop bounds so
computations will be executed one point into the hao region in each direction, as indicated by
<1, 1>. This action eiminates the need for a HALO UPDATE after loop 150 reducing
communications latency. Further, by increasng the hdo update on a (before loop 150) to two
points, HALO_COMP €diminates the update of varigbles y and z. This reduces communications
bandwidth requirements by 50 percent (from sx hdo points a<1, 1>, y<1, 1>, z<1,1>
tofour: a<2, 2>).

16

CSMS$HALO UPDATE(a<1, 1>)
do 150 i= 2, IM1
y(i) a(i) - a(i+1) - a(i-1)
z(i) a(i) — (a(i+1) - a(i-1)) * 0.5
150 conti nue
CSMS$HALO UPDATE(y<1, 1>, z<1,1>)

do 250 i= 2, IM1
x(i) =y(i)*z(i) + y(i+1)*z(i-1)
+y(i-1)*z(i+1)

250 conti nue

Figure 11: Sample code where no redundant computations are performed. An exchange of arrays “y” and “z" are
required for loop 250 to produce the correct answer on each processor.

CSMS$HALO_UPDATE(a<2, 2>)
CSMS$HALO COWP(<1, 1>) BEG N

do 150 i= 2, IM1
y(i) = a(i) - a(i+1) - a(i-1)
z(i) =a(i) — (a(i+1) - a(i-1)) * 0.5

150 conti nue
CSMS$HALO COWP END
do 250 i= 2, IM1
x(i) =y(i)*z(i) + y(i+1)*z(i-1)
y(i-1)*z(i+1)
250 conti nue

+ 1l

Figure 12: A version of the same code that uses redundant computation. Since“y” and “z” are computed one step
into the halo region, their halo regions are up to date after loop 150. Consequently, the exchanges of “y” and “Z”
after loop 150 can be eliminated.

This drategy is a technique that can yidd dgnificant performance benefits. In recent tests
on an Alpha clugter, this technique boosted performance by 38 percent in one routine of the RUC
modd that contained communications within dependent cascading loops. A sudy detailing the
performance benefits of this optimization will be presented in a forthcoming performance paper
on SMS

Performance optimizations have aso been built into SMS /O operations. Since scientific
modeds typicdly output results severd times during a modd run, these operations can
sggnificantly affect the overdl performance. By default, SMS uses a server process to overlap
output with computations. Output is normdly a two step process. the compute processes send
their data to the sarver, and then the server re-assembles these data into the origind serid
ordering and writes the output data to disk. While the server is working on the output operations,
the compute processes resume execution of the code effectively hiding the cost of output
operations during the course of a modd run. If output files are large, additionad server processes
can be added a run-time. Conversdy, for runs on smal numbers of processes where output
performance is not an issue, gpplications can be run without a server process.

17

Finaly, the user can configure the layout of processors to the problem domain in order, for
example, to handle a satic load imbadance in the code. By default, SMS uses a pre-determined
st of rules to determine how many data points are assigned to each process and how many
processes are alocated to each decomposed dimension. To optimize performance, SMS aso
alows the user to choose the number of data points assigned to each process a run-time.

4. Casestudies.

The three modds pardldized usng SMS in these cae dudies have severd dmilar
properties. they were finite difference modds, they used datic memory dlocation and they were
coded usng a mix of Fortran 77 and Fortran 90 language features. In describing the codes,
references for the number of source code lines will exclude comments and blank lines.
Additiondly, the number of directives added to the code during pardldizaion will exclude
debug directives, and count begin/end pairs as one directive.

Each code runs in pardld and produces the correct results on the Cray T3E, SGI Origin
2000, SGI Origin 3000, IBM SP2, Compag Alpha and Intd Linux Clusters and SUN
workgtations. Once an SMS pardldized code runs correctly on one system, it can be quickly
ported and run on another computing platform. For example, it took two hours to port the
ROMS modd, pardldized for Alpha-Linux, to an SGI Origin.

Findly, in lieu of dedicated machine time, dl peformance tets were run repeatedly to
ensure accurate timings. Further invegtigation of the performance results and benefits of SMS
optimizations will be given in a performance related paper that is planned.

4.1 Eta model parallelization

As a high-level software tool, some overhead exigts within the support layer of SMS. To
show that SMS does not add sgnificant overhead, a comparison was done between the hand-
coded MPI based verson of the Eta mode running operationaly at NCEP, and the same Eta
model pardldized usng SMS. The MPI Eta model was consdered a good candidate for fair
comparison snce it is an operationd modd optimized, by IBM, for high-performance on the
IBM SP2.

The Eta moded [26] is a mesoscae weather prediction model run by NCEP to produce daily
forecasts for the Nationa Weether Service. The horizontal structure of the dynamics package is
a semi-staggered grid known as the Arakawa Egrid [1]. The modd is organized into two mgor
packages. dynamics and physcs. The dynamics package includes the solution of the momentum
and thermodynamics equations (advection, diffuson, coriolis, and pressure tendencies) and
management of mode boundaries. The physcs package includes parameterizations for
convection, turbulence, and radiation.

The verson of the Eta modd FSL used for this peformance study has a 32km horizonta
resolution (223 by 365) with 45 verticd layers [25]. In January 2000, an MPI verson of this
mode began running operationaly on NCEP's IBM SP2 four times per day. Each run produced
forecasts out to 48 hours and output files were written every hour. Production runs of this code
were discontinued in October 2000 when the modd resolution was increased to 22 km; however,
the modd remains fundamentally unchanged.

18

To accomplish pardldization, the MPI Eta code was reverse engineered to return the code
to its origind serid form. Code changes included restoring the origind serid loop bounds,
removing MPI-based communications routines, and restoring array declarations. This code was
then pardldized usng SMS. Two-hundred and seventy-nine directives were added to the
19,000 line Etamode during code pardldization.

To improve performance, both codes did redundant computations in the hao, described in
Section 3.10. This optimization was used extensvely in the codes, 51 HALO COMP directives
were used in the SMS padldization. Also, both codes took advantage of IBM’s pardld 1/0
capability and therefore did not gather decomposed data before being written to disk. Instead,
each processor outputs its section of the decomposed data to separate files.

Number of MPI-Eta SMS-Eta | SMSfaster | SMS-Eta

Processors Time Time Efficiency
4 11197 10781 4% 1.00
8 5317 5258 1% 1.03
16 2878 2774 4% 0.97
32 1471 1446 2% 0.93
64 872 820 6 % 0.82
88 694 643 7% 0.76

Table 1: Eta model performance for MPI-Eta and SMSEta run on NCEP's IBM SP-2. Run times are given in
seconds for afull 48 hour model run including model initialization and the generation of hourly output files.

Table 1 shows the performance of the Eta modd on NCEPs IBM SP2 (375 MHz
processor). The results indicate SMS-Eta was faster than MPI-Eta in dl cases In addition,
super-linear speedup is noted at 8 processors for both codes, due to better cache utilization since
the decomposed arrays fit better in memory. Further andyss of these results indicate that most
of the performance gains in SMS-Eta were due to more efficient communications. In particular,
the differences were primarily due to the generadlized communication aggregation capabilities
avalable in SMS. MP-Eta only aggregates communication when the arrays are contiguous in
memory; SMS has no such redriction. While the amount of data to be communicated per model
time gep is the same in both modes, 87 percent more hdo updates are in the MPI-Eta code per
moded time gep than the SMS-Eta (28 vs. 15). On 88 processors of the IBM SP2, the model
achieved 11.27 GFLOPS.

Resuts on FSL’s Alpha Linux cluster are shown in Table 2. Once again, the more efficient
communications routines in SMS account for the bulk of the fagter run times. In a one hour run,
the modd ran at 277 MFLOPS on a single processor (833 MHz) of FSL’s Alpha Cluster or 16.6
percent of the peak performance. On 88 Alpha processors, the modd ran at 16.58 GFLOPS.

19

Number of MPI-Eta SMS-Eta % SMS SMS-Eta
Processors Time Time faster Efficiency
2 16547 16435 1% 1.00
4 7757 7706 1% 1.07
8 3633 3575 2% 1.15
16 1961 1911 3% 1.08
32 978 951 3% 1.08
64 589 562 5% 0.91
88 470 437 7% 0.85

Table 2: Eta model performance for MPI-Eta and SMS-Eta run on FSL’s Linux Cluster. Run times are given in
seconds for afull 48 hour model run including model initialization and the generation of hourly output files.

4.2 HYCOM modé parallelization

The Hybrid Coordinate Ocean Mode [5] is a generd circulation ocean modd that evolved
from the widdy used Miami Isopycnic-Coordinate Ocean Mode (MICOM) [7]. HYCOM'’s
vertical coordinate dructure was upgraded to include terrain following sigma coordinates in
shdlow water regions, and z coordinates in a weskly dratified upper ocean mixing layer, while
retaining MICOM's isopycnic coordinates in the open and dratified ocean areas. HYCOM, like
MICOM, is a primitive-equation model containing 5 prognogtic equations, two for the horizonta
velocity components, a layer thickness tendency, and two conservation equations for a par of
thermodynamic variables such as sdt and temperature. HYCOM s the result of collaborative
work between the University of Miami, the Los Alamos National Laboratory (LANL), and the
Nava Research Laboratory. The modd grid sizeis 135 by 256 with 14 verticd levels.

Two padld versons of the HYCOM modd currently exist: the officid verson, and the
Bleck development version. The development version has been used to test new ideas, such as
fully globd modd grids, which are not supported in the officid verson. The development
verson, used in this sudy, had been pardldized by LANL for shared memory usng 115
OpenMP directives. The decomposition strategy was in one dimension (latitude).

For comparison and simplicity, the SMS pardldization of the 4300 line HYCOM modd
was aso done in one dimenson. Pardldization of HYCOM took nine days to complete this
included the time required for dependence andyss, insetion of 120 SMS directives,
performance tuning and veification of modd results SMS padldization was smplified
because the code contained no gpparent serid bugs and it was well structured. In addition, SMS
debugging directives were used extensively to find the paraldization errors.

In these tests the model was un for 20 time steps and the serid code achieved 97 MFLOPS
or 20 percent of the Origin 2000's 233 MHz processor's pesk performance. Initidization and
input times were not induded in these timings because they would become rdaivey
inggnificant for full-length runs. For example, ocean scientists typicdly run the mode for
hundreds of thousands of time steps, which correspond to decades or centuries of Smulated time.
Output times were aso ignored since they are dso done infrequently.

20

Number of | OpenMP | SMS SMS | % SMS
Processors Time Time | Efficiency | faster
1 135.0 127.0 1.00 6%
8 21.1 14.2 1.12 48%
16 11.9 7.5 1.06 59%
32 9.0 4.7 0.84 91%

Table 3: Performance of the HY COM model on the SGI Origin 2000 system. Run-times for 20 model time steps
are given; these results do not include initialization, or I/O. The original serial code ranin 134 seconds.

Severd observations can be made about the pardld results shown in Table 3 First, SMS
model performance super-scales out to 16 processors. Beyond that, performance fals off rapidly
due to the smdl globa modd domain (135 by 256). At 32 processors, for example, there are just
gght interior points in the j (latitude) dimenson. Inter-process communication of the four (two
in each direction) hao points becomes the dominant factor affecting performance. Second, SMS
performance is consderably better than the OpenMP performance. This may be due to a less
than optimad OpenMP padldizatiion of the code the fine-grained agpproach causes many
gynchronization points and limits run-time performance. Third, the performance of the serid
modd is dower than SMS single processor run (134 vs. 127). This may be due to a difference in
the way the model handles the periodic boundaries. The OpenMP code accesses the modd’s
periodic boundaries usng “mod’ function, while the SMS code does not require these
computations since these data are replicated in the aray’s halo region. Findly, a datic load
imbalance exiged in HYCOM due to the presence of land masses in the modd domain.
Reconfiguring the layout of data to processors, discussed in Section 3, improved SMS modd run
times by 10 percent.

Number of Alpha AlphaCluster | Cray T3E Cray T3E
Processors | Cluster Time | Efficiency Time Efficiency
1 37.49 1.00 152 1.00
2 18.65 1.05 80 0.95
4 9.92 0.94 42 0.90
8 557 0.84 23 0.82
16 348 0.67 13 0.73

Table 4: Performance of the SMS HYCOM maodel on FSL’s AlphaLinux cluster and Cray T3E. Run-times are for
20 time steps and do not include model initialization or 1/0. The serial code ran in 38.0 seconds on the Alpha
Cluster and 161 seconds on the T3E.

The SMS performance of HYCOM on the Alpha cluster and Cray T3E is shown in Table 4.
The run-times for the Alpha were sgnificantly faster (37 vs. 135 seconds) than the Origin 2000
due to the faster processor (833 MHz vs. 233 MHz). While the processor speeds are much
higher, the inter-processor bandwidth of the Alpha cuder is only dightly faster than the Origin
and the Alpha laency is higher. This accounts for the decreased scding since, redive to
processor speed, the inter-process communication time becomes a larger factor in overdl run

21

times. Cray T3E run times (600 MHz processor) do not see super-scaling demondrated on the
Origin and Alpha sysems, which is likely due to the use of Cray “streams’, a hardware data pre-
fetch mechaniam.

4.3 ROMSmodel parall€elization

The Regiond Ocean Modding Sysem (ROMS) [17] is a hydrodtatic, primitive equation
model, developed jointly by the Rutgers Universty and UCLA, tha is used by modeding groups
aound the world. The modd uses terrain following coordinates in the verticad and curvilinear
coordinates in the horizonta. The hydrodatic primitive eguations for momentum ae solved
usng a split-expliat time-stepping scheme that requires a coupling between the barotropic (fast)
modes and the baroclinic (dow) modes.

The modd was previoudy padldized for shared-memory architectures usng a coarse
graned padldization paradigm via horizontd data doman decompostion. The decomposed
pieces (tiles) are assgned to pardld threads usng 191 SGI directives, or optiondly OpenMP
directives. Redundant computations are done to reduce the synchronization points in the code.
An MPlI verson of the code exists a UCLA; however, it has diverged from the community
verson maintained by Rutgers and therefore not suitable for a direct performance comparison.

To leverage the exiding shared memory padldism, the ROMS code was converted to
dynamic memory. One-hundred twenty directives were added to the 13,000 line ROMS code.
For example, PARALLEL directives were not necessary snce the loop bounds are aready
specified in terms of tile garts and ends. The model dso used redundant computations to reduce
the number of HALO_UPDATE directives required, which improved performance.

The OpenMP and SMS performance results, shown in Table 5, are for a coastd Gulf of
Alaska scenario usng a model resolution of 128x128x30. The mode was run for 20 time seps
on the SGI Origin 3000 and a serid run achieved 159 MFLOPS or 20 percent of the 400 MHz
processor's pesk peformance. Timings are for the main modd loop exduding 1/0. These
results indicate SMS was dower when small numbers of processors were used, but faster when
the number of processors increased. Both one and two dimensiond data decompositions were
used and the fastest run times are shown for each case. In generd, the fastest SMS run times
were observed when data were decomposed in two dimensions, since communications scale
better; whereas OpenMP did better when a one dimensiona decomposition was used. This
observation is currently being investigated. In addition, the SMS one processor run was dower
than the serid code because the SM S verson used dynamic memory.

22

Number of OpenMP SMS SMS % SMS
Processors Time Time Efficiency Faster
1 143.9 148.5 1.00 3.1
2 70.0 74.4 1.00 -5.9
4 36.8 394 0.9 -6.5
8 19.6 20.7 0.90 -5.6
16 10.9 111 0.84 -1.8
32 6.9 6.5 0.71 5.8

Table 5: A comparison of OpenMP and SMS runs of the ROMS model on the SGI Origin 3000. The serial code
ranin 144.7 seconds.

5. Concluson and futurework

5.1 Conclusion

A hightlevd directive-based tool caled SMS has been developed that smplifies and speeds
the pardldization of Fortran codes While the tool has been talored toward finite difference
gpproximation and spectra weether and ocean modes, the gpproach is sufficiently generd to be
gpplied to other sructured grid codes. SMS directives, which gppear as comments, alow for
complete retention of the origind serid code. When a pardld verson of the code is required, a
component of SMS called PPP is usad to trandate the directives and seria code into portable
pardld code. Directives encgpsulate most of the low leve pardldization detalls required to
accomplish complicated operaions such as inter-process communication, process
synchronization, gather and scatter operations, and work re-digtribution.

SMS provides a smple, flexible user interface with a variety of code generation and run-
time options available to the user. In addition, a number of advanced capabilities were described
that permit incrementa padldization, and amplify the debugging and mantenance of pardld
codes. These advanced capabilities have led to dramatically decreased code pardldization times
which can now be measured in days or weeks rather than months of effort. For example, in
Section 4, we presented a case study of the HYCOM modd which took an SMS programmer
only nine daysto pardldize.

We believe SMS provides flexible high-performance portable solutions that are competitive
with hand-coded vendor specific solutions. We compared the SMS performance of the HY COM
and ROMS models to their OpenMP and native SGI counterparts. In these tests, SMS HY COM
performed sgnificantly better than the OpenMP verson, convincing LANL to use the SMS
verson for ther future work. The SMS verson of the ROMS modd offered equivaent
performance to the SGI pardld verson on the Origin sysem but dso runs on other distributed
memory machines.

We adso demondrated in the pardldization of NCEP's Eta modd that the SMS solution
peforms as wdl as the MPI-based operationd verson of the code. Since both modds are
fundamentadly MP-based codes, the MPI-Eta could, with sufficient effort, be made as or more
efficent than SMSEta However, we bedieve SMS makes it easer to achieve good
performance.

23

5.2 Future work

SMS has been used to pardldize many amospheric and oceanic codes, but some limitations
exid. Fird, the trandation tool does not support al of the Fortran 90 language congtructs, work
is continuing to remove this shortcoming. Second, the application area where SMS provides
good support and performance is farly narrow. Additional work to enhance SMS support for a
wider range of gpplications is ongoing. For example, we plan to provide the capability to
support gpplications with nortuniform grids. We dso plan to demondrate support for the
coupling of atmaospheric and oceanic models.

To support modern Fortran 90 codes that utilize object-oriented design concepts, we plan to
provide the capability to associate data decompositions with user-defined types. This will dlow
decompositions to be defined with limited scope, and used in the context of the objects that
require them. For example, this would permit different grid objects and their corresponding data
decompositions to be passed into dynamical core routines.

Another enhancement would be to have the SMS trandator generate OpenMP code.
Further, for date-the-of-at machines that consst of clusers of SMPs, a pardld code that
implements tasking "within the box" usng OpenMP and message passng "between the boxes'
usng MPI may be optima. The SMS trandator could be designed to generate both message
passng and micro tasking pardlel code. Recent tests have demondrated thet SMS directives can
be used in conjunction with OpenMP but more work needs to be done to verify the
appropriateness and performance benefits of a hybrid programming approach.

We adso plan to further reduce the dependence analysis time and to decrease the number of
modifications required to paraleize applications. Recent tests have shown that we can reduce
the number of directives required by 30 to 50 percent. For example, the use of directives such as
PARALLEL, GLOBAL_INDEX, and TO GLOBAL could be reduced or diminaed in many
codes by increasing the anadlyss capabilities of the trandator.

To gmplify dependence andyss, devdopment has begun on a tool cdled autogen, to
andyze the serid code and automaticaly inset some SMS directives. For example, the
CHECK_HALO directive could be inserted into the code to document adjacent dependencies
and smplify code andyss Autogen could aso be used to automaticaly insert DISTRIBUTE
directives to identify decomposed arays and add COMPARE VAR directives for debugging.
However, one limitation of autogen is that it does not provide inter-procedurd anayss of the
code. Therefore, we would like to combine SMS code trandation capabilities with a semi-
automatic dependence andysis tool. This tool would be used to analyze the code and insert SMS
directives into the serid code, from which a pardld verson of the code could be generated and
run usng SMS.

6. References

[1] A.Arakawa and V.Lamb, Computationd Design of the Basic Dynamicd Processes of the
UCLA Generd Circulation Modd., Methods Comput Phys 17 (1977) 173-265.

[2] CBallliee A.EMacDondd and JL.Lee, QNH: A Numericd Weather Prediction Mode
developed for MPPs. Internationd Conference HPCN Challenges in Telecomp and Telecom:
Padld Smulation of Complex Sysems and Lage Scde Applications. Déft, The
Netherlands (1996).

24

[3] V.Bdgi, Paald Numericd Kernds for Climate Models, Proceeds of the 9" ECMWF
Workshop on the Use of High-performance Computing in Meteorology, (2001) 277-295.

[4] SBenjamin, JBrown , K.Brundage, D.Dévényi, G.Grel, D.Kim, B.Schwartz, T.Smirnova,
T.Smith, SWeygandt and G.Manikin, RUC 20 — The 20-km verson of the Rapid Update
Cycle, Nationd Weather Service Technicad Procedures Bulletin No. 490 (2002),
http://ruc.fd.noaa.gov/ppp pres’RUC20-tpb.pdf .

[5] RBleck, An Oceanic Generd Circulaion Mode Framed in Hybrid Isopycnic-Cartesan
Coordinates. Submitted to J. Ocean Modeling (2001).

[6] R.Bleck, SDean, M.O'Keefe and A.Sawdey, A comparison of data-pardld and message
passng versons of the Miami Isopycnic Coordinate Ocean Modd (MICOM), Padld
Computing, 21 (1995).

[7] RBleck, C.Rooth, D.Hu, and L.Smith, Sdinity-driven thermocline trandents in a wind and
thermohaline-forced isopycnic coordinate model of the North Atlantic., J Phys. Oceanogr.
22 (1992) 1486-1505.

[8] A.FBlumberg and G. L. Mdlor, A description of a three-dimensond coastd ocean
circulation modd, Three-Dimensonal Coastal ocean Modds, edited by N. Heaps, 208 pp.,
American Geophysical Union (1987).

[9] D.SChen, K.N.Huang, T.C.Yeh, M.SPeng , and SW.Chang, Recent improvements of the
typhoon forecast sysem in Tawan. 23th Conference on Hurricanes and Tropica
Meterology. Ddllas, TX., (2000) 823-825.

[10] Earth Systerm Modding Framework Development Team, http://www.esmf.ucar.edu/ .

[11] JEdwards, J.Snook, and Z.Chrigtidis, Forecasting for the 1996 Summer Olympic Games
with the NNT-RAMS Pardlel Modd, 13" International Information and Interactive Systems
for Meteorology, Oceanography and Hydrology, Long Beach, CA., American Meteorological
Society, (1997) 19-21.

[12] M.Frumkin, H.Jn, and JYan, Implementation of NAS Padld Benchmarks in High-
performance FORTRAN, NAS Technicd Report NAS-98-009, NASA Ames Research
Center, Moffett Field, CA (1999) http://ipdps.eece.unm.edu/1999/papers/114.pdf.

[13] M.Frumkin, H.Jn, A.Waheed, JYan, A Comparison of Automatic Pardldization Tools /
Compilers on the SGI Origin 2000. Proceedings of Super Computing 98, Orlando, Florida,
(1998) http://www.supercomp.org/sc98/TechPapers/sc98 Full Abstracts/Hribar1140/.

[14] M.Govett, J.Edwards, L.Hart, T.Henderson, and D.Schaffer, SMS Reference Manual, (2001)
http:/Amww-ad.fd.noaa.qgov/ac/SMS ReferenceGuide.pdf.

[15] R.Gray, V.Heuring, SlLevi, A.Soane, and W.Waite, Eli, A FHexible Compiler Congruction
System, Communications of the ACM 35 (1992) 121-131.

[16] W.Gropp, E.Lusk, and A.Skjdlum, Usng MPI, Portable Pardld Programming with the
Message Passing Interface. MIT Press (1994).

[17] D.B.Hadvogd, H.G.Arango, K.Hedstrom, A.Beckman, P.Mdanotte-Rizzoli, and A.F
Shchepetking Modd Evduation Experiments in the North Atlantic Basn: Smulations in
Nonlinear Terrain-Following Coordinates, Dyn. Atmos. Oceans 32 (2000) 239-281.

[18] T.Henderson, C.Balllie, SBenjamin, T.Black, RBleck, G.Car, L.Hat, M.Govett,
A.Marroquin, JMiddlecoff and B.Rodriguez, Progress Toward Demondgrating Operationd
Capability of Massvely Pardld Processors at Forecast Systems Laboratory, Proceedings of
the Sxth ECMWF Workshop on the Use of Parallel Processors in Meteorology, European
Centre for Medium Range Weather Forecasts Reading, England (1994).

25

[19] T.Henderson, D.Schaffer, M.Govett, and L.Hat, SMS Usa's Guide, http:/Aww-
ad.fd.noaa.gov/ac/SMS UsersGuide.pdf (2002).

[20] C.Slerotheou, S.P.Johnson, M.Cross, and P.F. Leggett, 1996: Computer aided paralelization
tools (CAPTools) - Conceptud Overview and Peformance on the Pardldization of
Structured Mesh Codes, Parallel Computing 22 (1996) 163-195.

[21] CKodbd, D.Loverman, R.Shreiber, G.Stede JF.,, and M.Zosd, The High-peformance
Fortran Handbook. MIT Press (1994).

[22] SKothari and Y.Kim, Padld Agent for Atmospheric Modds, Proceedings of the
Symposum on Regiond Wesather Prediction on Pardld Computing Environments (1997)
287-294.

[23] C.SLiou, JChen, C.Terng, F.Wang, C.Fong, T.Rosmond, H.Kuo, C.Shiao, and M. Cheng,
The Second-Generation Globd Forecast System at the Centra Weather Bureau in Taiwan,
Westher and Forecasting 12 (1997) 653-663.

[24] A.EMacDonald, JL.Lee, and Y.Xie, QNH: Design and Test of a Quas Non-hydrostatic
Mode for Mesoscae Wesather Prediction. Monthly Weather Review 128 (2000) 1016-1036.

[25] G.Manikin, M.Badwin, W.Collins, JGerrity, D.Keyser, Y.Lin, K.Mitchdl, and E.Rodgers
Changes to the NCEP Eta Runs Extended Range, added Input, added Output, Convective
Changes, Naiond Centers for Environmentd Prediction Technicd Procedures Bulletin
(2000) http:/Avww.nws.noaa.gov/om/tpb/465.htm.

[26] F.Mesinger, The Eta Regiond Modd and its Performance a the U.S. Nationa Centers for
Environmenta Prediction. Internationd Workshop on Limited-area and Variable Resolution
Modds. Beijing, China, WMO/TD 699 (1995) 42-51.

[27] IMichdakes, RSL: A Padld Runtime Sysem Library for Regular Grid Finite Difference
Modds usng Multiple Nests, Tech. Rep. ANL/MCS-TM-197, Argonne National Laboratory,
(1994).

[28] IMichdakes, FLIC: A Trandator for Same-Source Pardld Implementation of Regular Grid
Applications, Tech. Rep. ANL/MCS-TM-223, Argonne Nationa Laboratory, (1997).

[29] IMichdakes, JDudhia, D.Gill, JKlemp and W.Shamarock, Desgn of a Next Generation
Regional Weather Research and Forecast Moddl. Proceedings of the Eignth ECMWF
Workshop on the Use of Pardld Processors in Meteorology, European Centre for Medium
Range Wesather Forecasts (1998), Reading, England.

[30] T.Ngo, L.Snyder, and B.Chamberlain, Portable Performance of Data Padld Languages.
Supercomputing 97 Conference, San Jose, CA (1997).

[31] R.Numrich, and K.Reid, Co-Array Fortran for Pardle Programming. ACM Fortran Forum,
17, no 2, (1998) 1-31.

[32] Program for Integrated Earth System Moddling (PRISM) Web Page: http:/prism.hnesorg/ .

[33] Portland Group, Pardle Fortran for HP Systems, (1999)
http://Amww.npac.syr.edwhpfalbibl.html.

[34 RK.Rew and G.P.Davis, Unidata's netCDF Interface for Scientific Data Access, Sixth
International Conference on Interactive Information and Processng Sysems for
Meteorology, Oceanography, and Hydrology, Anaheim, CA (1990).

[35] B.Rodriguez, L.Hat and T.Henderson, Pardlelizing Operational Weeather Forecast Modes
for Portable and Fast Execution, Journal of Pardld and Didributed Computing, 37 (1996)
159-170.

26

