
The Scalable Modeling System:
Directive-based code parallelization for

distributed and shared memory computers

M. Govett1, L. Hart, T. Henderson, J. Middlecoff* and D. Schaffer*
National Oceanic and Atmospheric Administration

Forecast Systems Laboratory
Boulder, Colorado 80305, USA

Submitted to the Journal of Parallel Computing (July 2002)

Abstract

A directive-based parallelization tool called the Scalable Modeling System (SMS) is described. The user inserts directives in the form
of comments into existing Fortran code. SMS translates the code and directives into a parallel version that runs efficiently on shared
and distributed memory high-performance computing platforms including the SGI Origin, IBM SP2, Cray T3E, Sun, and Alpha and
Intel clusters. Twenty directives are available to support operations including array re-declarations, inter-process communications,
loop translations, and parallel I/O operations. SMS also provides tools to support incremental parallelization and debugging that
significantly reduces code parallelization time from months to weeks of effort. SMS is intended for applications using regular
structured grids that are solved using finite difference approximation (FDA) or spectral methods. It has been used to parallelize ten
atmospheric and oceanic models but the tool is sufficiently general that it can be applied to other structured grids codes. Recent
performance comparisons demonstrate that the Eta, HYCOM and ROMS models, parallelized using SMS, perform as well or better
than their OpenMP or MPI counterparts.

Keywords: Directive-based parallelization tool; Weather and ocean models; Automatic parallel code generation; Fortran source code
translator; Distributed memory computers

1. Introduction

Both hardware and software of high-performance computers (HPCs) have evolved
significantly in the last decade. Computers quickly become obsolete; typically a new generation
is introduced every two to four years. HPCs now comprise a wide range and class of systems
including shared memory systems called Symmetric Multi-Processors (SMPs), fully distributed
memory systems and hybrid systems that connect multiple SMPs using some form of high speed
network. To scale to large numbers of processors, these systems are either distributed or hybrid
systems, a classification referred to in this paper as distributed memory computers (DMCs).
Typically DMC systems are proprietary vendor-based solutions, but commodity-based DMCs
have emerged as an attractive alternative due to their superior price / performance and to the
increasing adoption of hardware and software standards by the industry.

While DMC systems offer the possibility of scalable high-performance, the additional work
required to port codes to these systems and to make them run efficiently can be significant.
DMCs are generally more difficult to program because they require the user to break up the
problem domain into smaller sub-domains that are then solved in parallel. If memory is
physically distributed, messages must be passed between systems when data sharing is required.
These considerations often require significant changes to the serial code, and in some cases, the
code may need to be completely rewritten. Additional considerations arise when codes are

1 E-mail address: govett@fsl.noaa.gov (M. Govett)
* Cooperative Institute for Research in the Atmosphere, Colorado State University Fort Collins, CO 80523 USA

 2

moved between different computing platforms for operational and developmental use. If the
codes rely on a specific computer architecture or vendor specific routines, diverging versions of
the code become increasingly difficult to maintain.

Despite these issues, operational weather centers and research groups are increasingly
selecting large DMCs to meet their computational needs. For example, in 1996 the United
Kingdom Meteorological Office purchased a 696-node Cray T3E, and in 1997 the National
Centers for Environmental Prediction (NCEP) purchased a 768-node IBM-SP system that was
recently upgraded to over 2700 processors. During the procurement of these systems,
operational centers typically request that vendors provide software support staff as part of their
budget. These people are tasked with porting the operational codes to the vendor’s DMCs – a
task that often takes multiple man-years to complete. Research laboratories do not typically have
the luxury of paying vendors to parallelize their models; instead they must expend a great deal of
time and effort to learn the complexities of parallel programming. In either case however,
porting codes to new systems can represent a significant commitment of time and resources.

The primary mission of the National Oceanic and Atmospheric Administration's (NOAAs)
Forecast Systems Laboratory (FSL) is to transfer atmospheric science technologies to operational
agencies within NOAA, such as the National Weather Service, and to others outside the agency.
In the last decade, FSL has parallelized a variety of weather and ocean models that run on DMCs
in operational centers and at research institutions around the world.

Central to FSL’s success with model parallelization and the use of DMCs has been the
development of the Scalable Modeling System (SMS). SMS is high-level directive-based tool
that was designed to reduce the time and effort required to parallelize codes targeted for DMCs.
Further, a single source code can be maintained for both serial and parallel execution that can
easily be ported between DMCs. SMS also provides debugging tools that enable code
parallelization to be measured in weeks rather than months of effort.

SMS is intended for applications using regular structured grids that are solved using finite
difference approximation (FDA) or spectral methods. SMS provides support for mesh
refinement of nested models, and can transform data between grids that have been decomposed
differently. Models parallelized using SMS include the Global Forecast System (GFS) [23] and
the Typhoon Forecast System (TFS) [9] for the Central Weather Bureau in Taiwan, the Regional
Ocean Modeling System (ROMS) [17], the Hybrid Coordinate Ocean Model (HYCOM) [5], the
National Centers for Environmental Prediction (NCEP) Eta model [26], the high resolution
limited area Quasi Non-hydrostatic model (QNH) [24], the Princeton Ocean Model (POM) [8],
and the 20 km Rapid Update Cycle (RUC) model running operationally at NCEP [4]. These
models have demonstrated good performance and scaling on most high-performance distributed
memory computing platforms including the IBM SP, Cray T3E, SGI-Origin, Alpha-Linux
Clusters, and Intel-Linux Clusters.

The rest of this paper describes SMS in more detail. Section 2 surveys common approaches
to code parallelization and is followed by a description of SMS in Section 3. This section
describes the code parallelization process using SMS and highlights some advanced and unique
features of the software that are not available in other parallelization tools. In Section 4, case
studies are presented that describe the SMS parallelization of three models: the operational Eta
model used by the National Weather Service, the HYCOM ocean model, and the ROMS ocean
model. In these case studies, the performance of the SMS parallelized models are compared to

 3

OpenMP and MPI versions of these codes. Finally, Section 5 concludes and highlights some
additional work that is planned.

2. Approaches to parallelization

In the past decade, several distinct approaches have been used to parallelize Fortran codes.

2.1 Message passing libraries

Message-passing libraries, such as Message Passing Interface (MPI) [16], represent an
approach suitable for shared or distributed memory architectures. Message passing typically
requires the sender and receiver to be involved in the communication: the source process makes
a call to send data and the destination process makes a call to receive it. To reduce
communications overhead, the Shared Memory Access Library (SHMEM) developed by Cray,
does one-sided get/put operations between the source and receiver processes. This optimization,
also used in some MPI implementations, significantly speeds communications but typically
requires explicit handling of inter-process synchronization. Although the scalability of parallel
codes using message-passing libraries can be quite good, they are relatively low-level and can
require the programmer to expend a significant amount of effort to parallelize their code.
Further, the resulting code may differ substantially from the original serial version and code
restructuring is often desirable or necessary.

2.2 Parallelizing compilers

These solutions offer the ability to automatically produce a parallel code that is portable to
shared and distributed memory machines. The compiler does the dependence analysis and offers
the user directives and/or language extensions that reduce the development time and the impact
on the serial code. The most notable example of a parallelizing compiler is High-performance
Fortran (HPF) [21]. In some cases the resulting parallel code is quite efficient (Portland Group,
1999), but there are also deficiencies in this approach. Compilers are often forced to make
conservative assumptions about data dependence relationships, which impact performance
[12][20]. In addition, weak compiler implementations by some vendors result in widely varying
performance across systems [30].

Another compiler approach, called Co-Array Fortran [31], provides a language extension to
Fortran 95, in the form of square bracket syntax, to provide limited message passing
functionality. While the syntax is simple, extensible and flexible, the programming model is
similar to MPI and is therefore sufficiently low level that significant modifications to the serial
code are required during code parallelization. Portability is also an issue since Co-Array Fortran
is only available on the Cray T3E.

2.3 Interactive parallelization tools

This classification combines the automatic analysis capabilities of a parallelization tool with
user knowledge of the code in order to produce a parallel version. One interactive tool, called
the Parallelization Agent, automates the tedious and time consuming tasks while requiring the
user to provide the high-level algorithmic details [22]. Another tool, called the Computer-Aided
Parallelization Tool (CAPTools), attempts a comprehensive dependence analysis [20]. This

 4

commercially available tool is highly interactive, querying the user for both high level
information (decomposition strategy) and lower level details such as loop dependencies and
ranges that variables can take. While interactive tools offers the possibility of a quality parallel
solution in a fraction of the time required to analyze dependencies and generate code by hand,
limitations exist in their ability to offer efficient code parallelization of scientific codes
containing more advanced functionality such as nesting, multiple decompositions, and Fortran 90
constructs. In addition, some hand rewriting may be required to obtain good parallel
performance [13].

2.4 High-level library-based tools

Library-based tools, such as the Runtime System Library (RSL) [27] and the Nearest
Neighbor Tool (NNT) [35], are built on top of the lower level libraries, such as MPI, and serve to
relieve the programmer of handling many of the details of message passing programming.
Performance optimizations can be added to these libraries that target specific machine
architectures. While a number of models were successfully parallelized using NNT [2][11][18],
the serial and parallel versions of the code were distinctly different and had to be maintained
separately. Further, parallelization is time-consuming and invasive, since code must be inserted
by hand and the user is still required to do dependence analysis themselves.

Source translation tools have been developed to help modify these codes automatically. One
such tool, the Fortran Loop and Index Converter (FLIC), generates calls to the RSL library using
command line arguments to identify decomposed arrays and loops needing transformations [28].
While useful, this tool has limited capabilities. For example, it was not designed to handle
multiple data decompositions, inter-process communications, or nested models.

2.5 Modeling frameworks

This classification loosely describes a software engineering approach whose aim is to
minimize the impact of parallelization on serial codes using techniques such as code
restructuring, abstraction, and modular code design. One example of this approach is the
Weather Research and Forecast (WRF) model. This model was designed to limit the impact of
parallelization and parallel code maintenance by confining MPI-based communications calls into
a minimal set of model routines called the mediation layer [29]. Another approach, called the
Flexible Modeling System [3], uses an object oriented design to encapsulate data structures used
in the application as objects in a class library. These objects are manipulated using operators,
defined in the library, in order to perform arithmetic, rotational and differential operations
required by the application. Lower layer class libraries are provided to support domain
decomposition, communication and parallel I/O. Both of these approaches provide a good way
to separate the needs of the application from the complexities of parallel programming, but
significant code restructuring may be required.

Two additional efforts, the Earth System Modeling Framework (ESMF) [10] and the
Program for Integrated Earth System Modeling [32] projects, have begun recently with a goal of
standardizing the interfaces between the framework and the applications that use them. Standard
interfaces allow scientific codes to be more easily moved between models when they are built
using the same framework. In addition to providing traditional library-based low-level
communications routines, these approaches plan to support coupling of models and the robust
handling of model grids that are required by climate applications. These tools are slated to be

 5

available in 2005, but at this time, it is unclear the extent to which source code changes will be
required in order to conform to the frameworks.

2.6 Directive-based parallelization

Companies such as Cray and SGI historically used this approach to support loop level
shared memory parallelization. More recently, a standard a set of directives called OpenMP was
developed and has become widely used in the scientific community. OpenMP can be used to
quickly produce parallel code, with minimal impact on the serial version. However, OpenMP is
not available on many distributed memory architectures. To get around this restriction, software
developers have obtained limited success combining OpenMP (shared memory parallelism) with
MPI (distributed memory parallelism) on hybrid DMCs. In either case, however, obtaining good
scalable performance often requires as much effort as when MPI is used.

Another approach, and the topic of this paper, is a directive-based tool called SMS that can
be used on distributed or shared memory machines.

3. Overview of SMS

SMS is a layered set of software and directives built on top of low level communications
libraries such as MPI or SHMEM. User access to code parallelization is provided through the
highest layer component of SMS called the Parallel Pre-Processor (PPP). PPP is a Fortran code
analysis and translation tool built using the Eli compiler construction system [15]. PPP analyzes
the serial code and user-inserted SMS directives to determine how the code should be modified.

Translation of Fortran 77 codes is fully supported; however, handling of Fortran 90
language constructs is currently limited to modules, full array assignments, and other commonly
used statements. Further details of the supported Fortran 90 language constructs are provided on
the SMS web site (http://www-ad.fsl.noaa.gov/ac/sms.html).

The code parallelization process is illustrated in Figure 1. The programmer inserts the
directives, which appear as comments, directly into the serial code. PPP translates the directives
and serial code into a parallel version. Code modifications include loop translations, array re-
declarations, inter-process communications, and the transformation of I/O statements to handle
decomposed and non-decomposed variables. Since the programmer adds only comments to the
code, there is no impact to the serial version. Once the parallel code is running it can be
debugged and optimized for high performance using tools provided by SMS. Further, no code
changes are required when porting the SMS serial version to other shared and distributed
memory machines.

 6

Code Parallelization with SMS

Parallel
Executable

Code
Analysis

Add
Directives

Debugging

Optimization

SMS Serial
Code

Original
Serial Code

SMS
Parallel

Code

SMS Code
Translator

Serial
Executable

Figure 1: SMS directives are added to the original serial code during code parallelization. The SMS serial code can
then be run serially as before, or translated by SMS to generate parallel code. Once the code is running, SMS
provides tools to debug the parallel code and to optimize it for high performance.

To ensure the translated code is recognizable to the author, SMS changes only those lines of

code that must be modified; the rest of the serial code including comments and white space
remain untouched. While this feature makes it easy to look at the generated code, experience has
shown that most users never do.

SMS has been designed to handle most aspects of parallel programming including code
transformation, debugging and optimization operations. The breadth of SMS support for these
operations is illustrated in Figure 2. Access to these functions is primarily through twenty SMS
directives that are inserted into the application code. Key SMS directives used to support these
operations will be briefly described. All directive names are preceded by “CSMS$” or “!SMS$”
which, for brevity, will be omitted when referring to them in this paper. Further information
about these directives is available in the SMS User’s Guide [19] and the SMS Reference Guide
[14].

 7

Spectral
Models

FDA
Models

SMS
Data

Decomposition

Adjacent
Dependencies

Reductions

Optimization

Debugging

Static & Dynamic
Memory

Inter-grid
Interpolation

Incremental
Parallelization

Boundary
Conditions

Parallel I/O

Figure 2: A functional diagram of SMS. SMS support is provided for the transformation of the serial code, and for
debugging and optimization of the parallel code.

3.1 Data decomposition

The most important step in code transformation is for the user to define one or more data
decompositions and to identify the variables that will be associated with them. Five SMS
directives are available to support data decomposition. The directives DECLARE_DECOMP,
CREATE_DECOMP, and DISTRIBUTE, in combination, enable the programmer to decompose
the data among the processes. DECLARE_DECOMP names a decomposition and
CREATE_DECOMP initializes it at run-time. The DISTRIBUTE directive is used to specify if
and how dimensions of individual arrays are decomposed based on the decompositions defined
by DECLARE_DECOMP. During code translation decomposed arrays will be re-declared into
the locally defined sub-portions of the global array. Do-loops that operate on these decomposed
arrays will be modified to the appropriate local start and stop values using the PARALLEL
directive.

In the event multiple decompositions are required, such as in nested models, the
TRANSFER directive handles the communication necessary to move data between coarse and
fine nests. Multiple decompositions are also useful in spectral models where computations occur
in alternating phases. For example, a decomposition in latitudes may be optimal for the physics
and Fast Fourier Transform code, while a decomposition in longitudes or in the vertical may be
ideal for the Legendre transforms.

For example, Figure 3 shows an SMS program in which the decomposition my_dh is
declared (DECLARE_DECOMP: line 3) and then referenced by the DISTRIBUTE directive

 8

(lines 5, 9) to associate the decomposed array dimensions of x and y with the data
decomposition my_dh. Once SMS understands how arrays are decomposed, parallelization
becomes primarily an issue of where in the code the user wishes to perform communications and
not how data will be moved to accomplish these operations. SMS retains all of the information
necessary to access, communicate, and input and output decomposed and non-decomposed
arrays through the use of the user-named decomposition.

Code with SMS Directives
1: program Sample_SMS_Code
2: parameter(IM = 15)
3: CSMS$DECLARE_DECOMP(my_dh,1)
4:
5: CSMS$DISTRIBUTE(my_dh, 1) BEGIN
6: real, allocatable :: x(:)
7: real, allocatable :: y(:)
8: real xsum
9: CSMS$DISTRIBUTE END

10: CSMS$CREATE_DECOMP (my_dh, <IM>, <2>)

11: allocate(x(im))
12: allocate(y(im))
13: open (10, file = 'x_in.dat', form='unformatted')
14: read (10) x

15: CSMS$PARALLEL(my_dh, <i>) BEGIN
16: do 100 i = 3, 13
17: y(i) = x(i) - x(i-1) - x(i+1) - x(i-2) - x(i+2)
18: 100 continue
19: CSMS$HALO_UPDATE(y)
20: do 200 i = 3, 13
21: x(i) = y(i) + y(i-1) + y(i+1) + y(i-2) + y(i+2)
22: 200 continue
23: CSMS$COMPARE_VAR(x)
24: xsum = 0.0
25: do 300 i = 1, 15
26: xsum = xsum + x(i)
27: 300 continue
28: CSMS$REDUCE(xsum, SUM)
29: CSMS$PARALLEL END
30: print *,'xsum = ',xsum
31: end

Figure 3: An example of a program using SMS directives. The DISTRIBUTE directive is used to map sub-sections
of the arrays x and y to the decomposition named by "my_dh". Each process executes on its portion of these
decomposed arrays in the parallel region bounded by PARALLEL BEGIN / END (lines 15-29). Using the
decomposed arrays, each process computes a local sum (lines 25-27). A global sum is then calculated using the
REDUCE directive (line 28) and then output.

3.2 Adjacent dependencies

Once a data decomposition is chosen, the code must be analyzed to determine where data
dependencies occur. For example, the computation of y(i,j) in the statement:

 y(i,j) = x(i+1,j) + x(i-1,j) + x(i,j+1) + x(i,j-1)

depends on the (i+1,j), (i-1,j), (i,j+1), and (i,j-1) points of the “x” array. This is called an
adjacent dependence. When these data points are not local to the processor, they will need to be
obtained from another processor. The most common approach is to define a halo region so that
off process data values can be communicated efficiently. This type of operation is called a halo

 9

update or exchange and is illustrated in Figure 4. The SMS directive that provides this
capability is called HALO_UPDATE.

Halo Region Update:
Non-periodic

Global Index

Not
Used

Not
Used

P1

4 5321 6

P2

6 7 8 9 105 11

P3

11 12 15141310

Halo Thickness = 1

Figure 4: An illustration of how the HALO_UPDATE directive is used to update halo regions (checkerboard areas)
on processes P1, P2 and P3. For example, the first column of P2 is sent to P1 where it is stored in the halo region
just to the right of P1’s data. The last column of P1 is stored in the left halo region of P2. The other communication
works analogously.

For example, the HALO_UPDATE directive in Figure 3 is used to update the halo points of

array y to handle an adjacent data dependency that exists between loops 100 and 200. The user
is only required to specify the name of the variable requiring a halo update. Using information
from the directive and obtained via code analysis, SMS determines how much of the halo region
each process must communicate, where the information must go, and where it should be stored.
Process synchronization is also handled by SMS for communications operations where
appropriate.

3.3 Reductions

The SMS directive, REDUCE, is used to compute reductions involving global sums,
maximums and minimums. Since summation is not associative, the computation of global sums
may not lead to exactly the same results on different numbers of processors. To alleviate this
inconsistency, SMS provides a bit-wise exact reduction capability which performs exactly the
same order of arithmetic operations that are executed in the serial program.

3.4 Boundary conditions

Handling of global boundaries requires special treatment to ensure that only the process that
owns a data point will perform the given operation. For example, the initialization of boundary
points on three processes (P1, P2 and P3) is illustrated in Figure 5. Only process P1 should do

 10

the assignment for x(1) and process P3 for x(15). The SMS directive GLOBAL_INDEX is
provided to do this operation.

csms$global_index(1) begin
x(1) = 0.0
x(15) = 0.0

csms$global_index end

11 151413126 7 8 9 101 3 4 52

P1 P2 P3

Global Index:

declaration:
real x (15)

Process Number:

CSMS$GLOBAL_INDEX

1 3 4 52 1 3 4 52 1 3 4 52Local Index:

Figure 5: An illustration of SMS handling of global boundaries using GLOBAL_INDEX on the array “x” that is
decomposed over three processes: P1, P2 and P3.

Periodic boundary conditions are also handled by SMS. The user can specify periodic

boundary conditions using the PERIODIC keyword when creating the data decomposition using
the CREATE_DECOMP directive. This option causes SMS to fill the halo points representing
the model’s global boundaries during initialization, and to update the halo region boundaries
when HALO_UPDATE is used. For example in Figure 4, process P1’s boundary points, tagged
“not used”, will be updated with P3’s data (global index 15).

3.5 Static & dynamic memory

SMS provides support for both static and dynamic memory allocation. For models using
dynamic memory allocation, SMS retains the concept of a global address space, so translations
between the serial and process local index values are not required. For models using static
memory allocation, additional arguments in DECLARE_DECOMP are used to declare the
process local sizes of the decomposed arrays. Global arrays are referenced using process local
indices (Figure 5). Two SMS directives, TO_LOCAL and TO_GLOBAL, are provided to
convert between global and process local addressing when required.

3.6 Parallel I/O

SMS supports standard Fortran input and output of decomposed and non-decomposed arrays
without requiring SMS directives. SMS acquires the information it needs to handle I/O though
the decomposition directives described in Section 3.1. Using this information, SMS
automatically generates the communication calls needed to read or write data from disk. An
SMS server process, shown in Figure 6, is designated, by default, to handle all I/O operations.
On input, data are read by the server and then scattered to the appropriate compute processes.

 11

Similarly, decomposed output data are gathered by the server and then written to disk in the
proper order. This server process can also be optionally omitted at run-time for runs made on
small numbers of processes.

Server

Process

Disk
P1 P2

P4

P3

P5 P6

Computational
Processes

P7 P8

P10

P9

P11 P12

Figure 6: An illustration of SMS output when a server process is used. SMS output operations pass data from the
computational domain to the server process. The data are re-ordered on the server process before being written to
disk.

3.7 Inter-grid interpolation

For nested models that use mesh refinement to improve grid resolution in critical areas,
interpolation between nests may be required. Interpolated data from the coarse “parent” grid
may be used to compute boundary information for the fine “child” grid or visa versa. Inter-grid
interpolation is also used to couple models that are based on different grids. One example is the
coupling of ocean and atmospheric models. SMS supports this functionality through a user-
specified interpolation scheme. Once an interpolation scheme has been defined, the TRANSFER
directive is used to move data between grids using this scheme.

3.8 Incremental parallelization

SMS provides support for simplifying code parallelization with a directive called SERIAL
that permits serial execution of selected portions of the user’s code. This directive has several
important uses. First, it allows users to parallelize their code incrementally rather than being
forced into an all-or-nothing approach. Once assured of correct results, the user can remove
these serial regions and further parallelize their code. Second, this directive can be used to avoid
the parallelization of some sections of code that are either executed infrequently (e.g. model
initialization) or cannot be parallellized by SMS, such as NetCDF I/O [34]. Third, users may
simply choose to not parallelize some sections of code if adequate performance is attained.

Serial regions are implemented by gathering all decomposed arrays, executing the code
segment on a single process, then scattering decomposed or broadcasting non-decomposed
results back to each processor as illustrated in Figure 7. In this figure, the routine
not_parallel executes on a single process and references global arrays that have been
gathered by the appropriate SMS routines. While the extra communications required to do

 12

gather or scatter operations will slow performance, this directive’s versatility has proven to be
very useful during code parallelization.

CSMS$SERIAL

“global” “local”

“local” “global”

CALL NOT_PARALLEL(...)

gather

scatter

broadcast

Figure 7: An illustration of how SMS supports incremental parallelization. Prior to execution of the serial region
of code, decomposed arrays are gathered into global arrays, referenced by the serial section of code, and then results
are scattered or broadcast back to the processors at the end of the serial region.

3.9 Debugging

Finding run-time bugs during the initial code parallelization or ensuing code maintenance
phase can be the most difficult and time consuming task required in running codes on a DMC
system. SMS provides a number of advanced features that significantly simplify debugging and
streamline code parallelization. The best way to verify the accuracy of any parallelization effort
is to compare the output files of different parallel runs (e.g. 1, 2, 4 processors) to a serial
“control” run. This requires that the slower but more accurate bit-wise exact reductions,
described in Section 3.3, be turned on during the control runs. Once the model is producing the
correct results, bit-wise exact reductions can be turned off for the production runs when high-
performance is required.

In addition, two SMS directives have been developed to support debugging. As illustrated
in Figure 8, the COMPARE_VAR directive is used to verify interior region data points are
correct, and CHECK_HALO is used similarly for the halo points.

 13

SMS Debugging Directives
Insert directives in the code to verify

array values are correct

Interior Region

Halo Region

portion of a decomposed array
owned by a single process

check_halo

compare_var

Figure 8: An illustration of two debugging directives that are available to verify decomposed array values are
correct. Scalars and non-decomposed arrays can also be compared. These directives have greatly simplified
debugging and parallel code development.

Figure 9 illustrates how the CHECK_HALO directive works: halo region values from each

user-specified array are compared with their corresponding interior points on the neighboring
process. When data values differ, SMS outputs an error message containing the array name, and
the location where the problem occurred, and then terminates execution.

 14

Global Indices 6 7543 8 9761 32 4

1

2

3

P3P1
P2

interior region data

halo region data

CSMS$CHECK_HALO

P2 P3

Figure 9: This SMS directive is used to verify that each processor’s halo region is up to date. In this example,
process P2 compares data one step into its left halo (global index 3) with the corresponding interior points on
process p1. Similarly, the right halo region points (global index 7) are compared to the interior points on p3.
Similar comparisons are made on processors P1 and P3 where appropriate.

The COMPARE_VAR directive, patterned after work by O’Keefe [6], provides the ability

to compare array or scalar values between a correctly working code and another run that uses
different numbers of processors. For example, the programmer can specify a comparison of the
array “x”, for a single processor run and for a multiple process run by inserting the directive:

csms$compare_var (x)

in the code and then entering appropriate command line arguments to request concurrent
execution of the code. Wherever COMPARE_VAR directives appear in the code, user-specified
arrays will be compared as shown in Figure 10. If differences are detected, SMS will display
the name of the variable, the array location (e.g., the i, j, k index) and values from each run, the
location in the code, and then terminate execution. Conversely, if no differences are found, SMS
will continue executing the code.

 15

CSMS$COMPARE_VAR

One Process Exec Four Process ExecSMS Runtime Environment

csms$compare_var(A,B)

csms$compare_var(C)

csms$compare_var(A,B)

csms$compare_var(C)

executable

code

program main program main

executable

code

executable

code

executable

code

end program end program

Compare C

Compare A,B

Figure 10: An illustration of how COMPARE_VAR is implemented in SMS. In this example, two executables are
launched concurrently from the command line. When a COMPARE_VAR directive is encountered, the executables
synchronize, and then compare the specified arrays. If any elements of the arrays differ, SMS will print the location
and values of the data point and then terminate the execution of the runs.

The ability to compare intermediate model values anywhere in the code has proven to be a

powerful debugging tool during code parallelization. For example, the time required to debug a
recent code parallelization was reduced from an estimated eight weeks down to two simply
because the programmer did not have to spend inordinate amounts of time determining where the
parallelization mistakes were made.

These directives have also proven to be a useful way to ensure that model upgrades continue
to produce the correct results. For example, a scientist can verify source code changes by
simply comparing the output files of the serial “control” run and subsequent parallel runs. In the
event results differ, they can turn on SMS debugging (a run-time option) which compares the
intermediate results of the arrays specified by COMPARE_VAR. In the event differences
appear, they can quickly locate the problem and determine the best solution. In this way, SMS
users have found the debugging directives very useful because they allow the code author to
control the maintenance and upgrades of their parallel codes rather than requiring the help of a
computer specialist.

3.10 Optimization

SMS performance optimizations can be divided into two areas: automatic, and user assisted.

3.10.1 Automatic optimizations

SMS provides several optimizations that require no action by the user. These optimizations
are designed to take advantage of the software and hardware on the target system. For example,
on some machines, the more general MPI communications library is replaced by the faster but

 16

less portable SHMEM library. Another optimization provided by SMS are two strategies to
minimize the communications time required when TRANSFER operations are done. One
strategy minimizes the amount of data that must be moved between processes to reduce
communications bandwidth. The other strategy reduces the number of communications that are
done in order to minimize communications latency. Finally, the most efficient combination of
the variants of MPI send and receive routines are used when SMS is configured and built on the
target system. For example, on some machines the mpi_isend/mpi_recv is faster than
mpi_isend/mpi_irecv due to how message passing is implemented. Since these optimizations are
automatically selected when SMS is built, no changes to the application codes are necessary.

3.10.2 User-assisted optimizations

Several communications optimizations are provided by SMS that permit tuning of the
application by the user. These optimizations, controlled via directive, are limited thickness
exchanges, aggregation, and redundant computations. Limited thickness exchanges allow the
user to minimize the amount of data transferred between neighboring processes. Instead of
communicating the entire halo all of the time (the default), communication can be limited to only
the portion required. To further reduce communications bandwidth, SMS also allows array
sections to be specified. For example:

csms$halo_update(x<1:1>, y(:,:,1))

will exchange one point of the halo in the first decomposed dimension of the array x and will
update the entire halo region, but only for the surface layer (1 in the 3rd dimension) of y.
Combinations of limited thickness and array section control may also be specified.

A second communications optimization, called aggregation, permits multiple model
variables to be combined into a single communications call in order to reduce message passing
latency. For example, to update the halos of the variables a and b together:

 csms$halo_update(a,b)

requires half the communications latency needed to exchange them individually:

csms$halo_update(a)
csms$halo_update(b)

A third optimization provides the ability to eliminate communications by performing

redundant computations in the halo region using the HALO_COMP directive. Figure 11 and
Figure 12 show how this works. In Figure 11, halo updates are required before and after loops
150 and 250. However, in Figure 12, HALO_COMP is used to modify the do-loop bounds so
computations will be executed one point into the halo region in each direction, as indicated by
<1,1>. This action eliminates the need for a HALO_UPDATE after loop 150 reducing
communications latency. Further, by increasing the halo update on a (before loop 150) to two
points, HALO_COMP eliminates the update of variables y and z. This reduces communications
bandwidth requirements by 50 percent (from six halo points: a<1,1>, y<1,1>, z<1,1>
to four: a<2,2>).

 17

CSMS$HALO_UPDATE(a<1,1>)
 do 150 i= 2, IM-1
 y(i) = a(i) - a(i+1) - a(i-1)
 z(i) = a(i) – (a(i+1) - a(i-1)) * 0.5
 150 continue
CSMS$HALO_UPDATE(y<1,1>,z<1,1>)
 do 250 i= 2, IM-1
 x(i) = y(i)*z(i) + y(i+1)*z(i-1)
 + y(i-1)*z(i+1)
 250 continue

Figure 11: Sample code where no redundant computations are performed. An exchange of arrays “y” and “z” are
required for loop 250 to produce the correct answer on each processor.

CSMS$HALO_UPDATE(a<2,2>)
CSMS$HALO_COMP(<1,1>) BEGIN
 do 150 i= 2, IM-1
 y(i) = a(i) - a(i+1) - a(i-1)
 z(i) = a(i) – (a(i+1) - a(i-1)) * 0.5
 150 continue
CSMS$HALO_COMP END
 do 250 i= 2, IM-1
 x(i) = y(i)*z(i) + y(i+1)*z(i-1)
 + y(i-1)*z(i+1)
 250 continue

Figure 12: A version of the same code that uses redundant computation. Since “y” and “z” are computed one step
into the halo region, their halo regions are up to date after loop 150. Consequently, the exchanges of “y” and “z”
after loop 150 can be eliminated.

This strategy is a technique that can yield significant performance benefits. In recent tests

on an Alpha cluster, this technique boosted performance by 38 percent in one routine of the RUC
model that contained communications within dependent cascading loops. A study detailing the
performance benefits of this optimization will be presented in a forthcoming performance paper
on SMS.

Performance optimizations have also been built into SMS I/O operations. Since scientific
models typically output results several times during a model run, these operations can
significantly affect the overall performance. By default, SMS uses a server process to overlap
output with computations. Output is normally a two step process: the compute processes send
their data to the server, and then the server re-assembles these data into the original serial
ordering and writes the output data to disk. While the server is working on the output operations,
the compute processes resume execution of the code, effectively hiding the cost of output
operations during the course of a model run. If output files are large, additional server processes
can be added at run-time. Conversely, for runs on small numbers of processes where output
performance is not an issue, applications can be run without a server process.

 18

Finally, the user can configure the layout of processors to the problem domain in order, for
example, to handle a static load imbalance in the code. By default, SMS uses a pre-determined
set of rules to determine how many data points are assigned to each process and how many
processes are allocated to each decomposed dimension. To optimize performance, SMS also
allows the user to choose the number of data points assigned to each process at run-time.

4. Case studies.

The three models parallelized using SMS in these case studies have several similar
properties: they were finite difference models, they used static memory allocation and they were
coded using a mix of Fortran 77 and Fortran 90 language features. In describing the codes,
references for the number of source code lines will exclude comments and blank lines.
Additionally, the number of directives added to the code during parallelization will exclude
debug directives, and count begin/end pairs as one directive.

Each code runs in parallel and produces the correct results on the Cray T3E, SGI Origin
2000, SGI Origin 3000, IBM SP2, Compaq Alpha and Intel Linux Clusters and SUN
workstations. Once an SMS parallelized code runs correctly on one system, it can be quickly
ported and run on another computing platform. For example, it took two hours to port the
ROMS model, parallelized for Alpha-Linux, to an SGI Origin.

Finally, in lieu of dedicated machine time, all performance tests were run repeatedly to
ensure accurate timings. Further investigation of the performance results and benefits of SMS
optimizations will be given in a performance related paper that is planned.

4.1 Eta model parallelization

As a high-level software tool, some overhead exists within the support layer of SMS. To
show that SMS does not add significant overhead, a comparison was done between the hand-
coded MPI based version of the Eta model running operationally at NCEP, and the same Eta
model parallelized using SMS. The MPI Eta model was considered a good candidate for fair
comparison since it is an operational model optimized, by IBM, for high-performance on the
IBM SP2.

The Eta model [26] is a mesoscale weather prediction model run by NCEP to produce daily
forecasts for the National Weather Service. The horizontal structure of the dynamics package is
a semi-staggered grid known as the Arakawa E-grid [1]. The model is organized into two major
packages: dynamics and physics. The dynamics package includes the solution of the momentum
and thermodynamics equations (advection, diffusion, coriolis, and pressure tendencies) and
management of model boundaries. The physics package includes parameterizations for
convection, turbulence, and radiation.

The version of the Eta model FSL used for this performance study has a 32km horizontal
resolution (223 by 365) with 45 vertical layers [25]. In January 2000, an MPI version of this
model began running operationally on NCEP’s IBM SP2 four times per day. Each run produced
forecasts out to 48 hours and output files were written every hour. Production runs of this code
were discontinued in October 2000 when the model resolution was increased to 22 km; however,
the model remains fundamentally unchanged.

 19

To accomplish parallelization, the MPI Eta code was reverse engineered to return the code
to its original serial form. Code changes included restoring the original serial loop bounds,
removing MPI-based communications routines, and restoring array declarations. This code was
then parallelized using SMS. Two-hundred and seventy-nine directives were added to the
19,000 line Eta model during code parallelization.

To improve performance, both codes did redundant computations in the halo, described in
Section 3.10. This optimization was used extensively in the codes; 51 HALO_COMP directives
were used in the SMS parallelization. Also, both codes took advantage of IBM’s parallel I/O
capability and therefore did not gather decomposed data before being written to disk. Instead,
each processor outputs its section of the decomposed data to separate files.

Number of
Processors

MPI-Eta
Time

SMS-Eta
Time

SMS faster SMS-Eta
Efficiency

4 11197 10781 4 % 1.00
8 5317 5258 1 % 1.03
16 2878 2774 4 % 0.97
32 1471 1446 2 % 0.93
64 872 820 6 % 0.82
88 694 643 7 % 0.76

Table 1: Eta model performance for MPI-Eta and SMS-Eta run on NCEP’s IBM SP-2. Run times are given in
seconds for a full 48 hour model run including model initialization and the generation of hourly output files.

Table 1 shows the performance of the Eta model on NCEP’s IBM SP2 (375 MHz

processor). The results indicate SMS-Eta was faster than MPI-Eta in all cases. In addition,
super-linear speedup is noted at 8 processors for both codes, due to better cache utilization since
the decomposed arrays fit better in memory. Further analysis of these results indicate that most
of the performance gains in SMS-Eta were due to more efficient communications. In particular,
the differences were primarily due to the generalized communication aggregation capabilities
available in SMS. MPI-Eta only aggregates communication when the arrays are contiguous in
memory; SMS has no such restriction. While the amount of data to be communicated per model
time step is the same in both models, 87 percent more halo updates are in the MPI-Eta code per
model time step than the SMS-Eta (28 vs. 15). On 88 processors of the IBM SP2, the model
achieved 11.27 GFLOPS.

Results on FSL’s Alpha Linux cluster are shown in Table 2. Once again, the more efficient
communications routines in SMS account for the bulk of the faster run times. In a one hour run,
the model ran at 277 MFLOPS on a single processor (833 MHz) of FSL’s Alpha Cluster or 16.6
percent of the peak performance. On 88 Alpha processors, the model ran at 16.58 GFLOPS.

 20

Number of
Processors

MPI-Eta
Time

SMS-Eta
Time

% SMS
faster

SMS-Eta
Efficiency

2 16547 16435 1 % 1.00
4 7757 7706 1 % 1.07
8 3633 3575 2 % 1.15
16 1961 1911 3 % 1.08
32 978 951 3 % 1.08
64 589 562 5 % 0.91
88 470 437 7 % 0.85

Table 2: Eta model performance for MPI-Eta and SMS-Eta run on FSL’s Linux Cluster. Run times are given in
seconds for a full 48 hour model run including model initialization and the generation of hourly output files.

4.2 HYCOM model parallelization

The Hybrid Coordinate Ocean Model [5] is a general circulation ocean model that evolved
from the widely used Miami Isopycnic-Coordinate Ocean Model (MICOM) [7]. HYCOM’s
vertical coordinate structure was upgraded to include terrain following sigma coordinates in
shallow water regions, and z coordinates in a weakly stratified upper ocean mixing layer, while
retaining MICOM's isopycnic coordinates in the open and stratified ocean areas. HYCOM, like
MICOM, is a primitive-equation model containing 5 prognostic equations, two for the horizontal
velocity components, a layer thickness tendency, and two conservation equations for a pair of
thermodynamic variables such as salt and temperature. HYCOM is the result of collaborative
work between the University of Miami, the Los Alamos National Laboratory (LANL), and the
Naval Research Laboratory. The model grid size is 135 by 256 with 14 vertical levels.

Two parallel versions of the HYCOM model currently exist: the official version, and the
Bleck development version. The development version has been used to test new ideas, such as
fully global model grids, which are not supported in the official version. The development
version, used in this study, had been parallelized by LANL for shared memory using 115
OpenMP directives. The decomposition strategy was in one dimension (latitude).

For comparison and simplicity, the SMS parallelization of the 4300 line HYCOM model
was also done in one dimension. Parallelization of HYCOM took nine days to complete; this
included the time required for dependence analysis, insertion of 120 SMS directives,
performance tuning and verification of model results. SMS parallelization was simplified
because the code contained no apparent serial bugs and it was well structured. In addition, SMS
debugging directives were used extensively to find the parallelization errors.

In these tests the model was run for 20 time steps and the serial code achieved 97 MFLOPS
or 20 percent of the Origin 2000’s 233 MHz processor’s peak performance. Initialization and
input times were not included in these timings because they would become relatively
insignificant for full-length runs. For example, ocean scientists typically run the model for
hundreds of thousands of time steps, which correspond to decades or centuries of simulated time.
Output times were also ignored since they are also done infrequently.

 21

Number of
Processors

OpenMP
Time

SMS
Time

SMS
Efficiency

% SMS
faster

1 135.0 127.0 1.00 6%
8 21.1 14.2 1.12 48%

16 11.9 7.5 1.06 59%
32 9.0 4.7 0.84 91%

Table 3: Performance of the HYCOM model on the SGI Origin 2000 system. Run-times for 20 model time steps
are given; these results do not include initialization, or I/O. The original serial code ran in 134 seconds.

Several observations can be made about the parallel results shown in Table 3 First, SMS

model performance super-scales out to 16 processors. Beyond that, performance falls off rapidly
due to the small global model domain (135 by 256). At 32 processors, for example, there are just
eight interior points in the j (latitude) dimension. Inter-process communication of the four (two
in each direction) halo points becomes the dominant factor affecting performance. Second, SMS
performance is considerably better than the OpenMP performance. This may be due to a less
than optimal OpenMP parallelization of the code; the fine-grained approach causes many
synchronization points and limits run-time performance. Third, the performance of the serial
model is slower than SMS single processor run (134 vs. 127). This may be due to a difference in
the way the model handles the periodic boundaries. The OpenMP code accesses the model’s
periodic boundaries using “mod” function, while the SMS code does not require these
computations since these data are replicated in the array’s halo region. Finally, a static load
imbalance existed in HYCOM due to the presence of land masses in the model domain.
Reconfiguring the layout of data to processors, discussed in Section 3, improved SMS model run
times by 10 percent.

Number of
Processors

Alpha
Cluster Time

Alpha Cluster
Efficiency

Cray T3E
Time

Cray T3E
Efficiency

1 37.49 1.00 152 1.00
2 18.65 1.05 80 0.95
4 9.92 0.94 42 0.90
8 5.57 0.84 23 0.82
16 3.48 0.67 13 0.73

Table 4: Performance of the SMS HYCOM model on FSL’s Alpha-Linux cluster and Cray T3E. Run-times are for
20 time steps and do not include model initialization or I/O. The serial code ran in 38.0 seconds on the Alpha
Cluster and 161 seconds on the T3E.

The SMS performance of HYCOM on the Alpha cluster and Cray T3E is shown in Table 4.

The run-times for the Alpha were significantly faster (37 vs. 135 seconds) than the Origin 2000
due to the faster processor (833 MHz vs. 233 MHz). While the processor speeds are much
higher, the inter-processor bandwidth of the Alpha cluster is only slightly faster than the Origin
and the Alpha latency is higher. This accounts for the decreased scaling since, relative to
processor speed, the inter-process communication time becomes a larger factor in overall run

 22

times. Cray T3E run times (600 MHz processor) do not see super-scaling demonstrated on the
Origin and Alpha systems, which is likely due to the use of Cray “streams”, a hardware data pre-
fetch mechanism.

4.3 ROMS model parallelization

The Regional Ocean Modeling System (ROMS) [17] is a hydrostatic, primitive equation
model, developed jointly by the Rutgers University and UCLA, that is used by modeling groups
around the world. The model uses terrain following coordinates in the vertical and curvilinear
coordinates in the horizontal. The hydrostatic primitive equations for momentum are solved
using a split-explicit time-stepping scheme that requires a coupling between the barotropic (fast)
modes and the baroclinic (slow) modes.

The model was previously parallelized for shared-memory architectures using a coarse-
grained parallelization paradigm via horizontal data domain decomposition. The decomposed
pieces (tiles) are assigned to parallel threads using 191 SGI directives, or optionally OpenMP
directives. Redundant computations are done to reduce the synchronization points in the code.
An MPI version of the code exists at UCLA; however, it has diverged from the community
version maintained by Rutgers and therefore not suitable for a direct performance comparison.

To leverage the existing shared memory parallelism, the ROMS code was converted to
dynamic memory. One-hundred twenty directives were added to the 13,000 line ROMS code.
For example, PARALLEL directives were not necessary since the loop bounds are already
specified in terms of tile starts and ends. The model also used redundant computations to reduce
the number of HALO_UPDATE directives required, which improved performance.

The OpenMP and SMS performance results, shown in Table 5, are for a coastal Gulf of
Alaska scenario using a model resolution of 128x128x30. The model was run for 20 time steps
on the SGI Origin 3000 and a serial run achieved 159 MFLOPS or 20 percent of the 400 MHz
processor’s peak performance. Timings are for the main model loop excluding I/O. These
results indicate SMS was slower when small numbers of processors were used, but faster when
the number of processors increased. Both one and two dimensional data decompositions were
used and the fastest run times are shown for each case. In general, the fastest SMS run times
were observed when data were decomposed in two dimensions, since communications scale
better; whereas OpenMP did better when a one dimensional decomposition was used. This
observation is currently being investigated. In addition, the SMS one processor run was slower
than the serial code because the SMS version used dynamic memory.

 23

Number of
Processors

OpenMP
Time

SMS
Time

SMS
Efficiency

% SMS
Faster

1 143.9 148.5 1.00 -3.1
2 70.0 74.4 1.00 -5.9
4 36.8 39.4 0.94 -6.5
8 19.6 20.7 0.90 -5.6
16 10.9 11.1 0.84 -1.8
32 6.9 6.5 0.71 5.8

Table 5: A comparison of OpenMP and SMS runs of the ROMS model on the SGI Origin 3000. The serial code
ran in 144.7 seconds.

5. Conclusion and future work

5.1 Conclusion

A high-level directive-based tool called SMS has been developed that simplifies and speeds
the parallelization of Fortran codes. While the tool has been tailored toward finite difference
approximation and spectral weather and ocean models, the approach is sufficiently general to be
applied to other structured grid codes. SMS directives, which appear as comments, allow for
complete retention of the original serial code. When a parallel version of the code is required, a
component of SMS called PPP is used to translate the directives and serial code into portable
parallel code. Directives encapsulate most of the low level parallelization details required to
accomplish complicated operations such as inter-process communication, process
synchronization, gather and scatter operations, and work re-distribution.

SMS provides a simple, flexible user interface with a variety of code generation and run-
time options available to the user. In addition, a number of advanced capabilities were described
that permit incremental parallelization, and simplify the debugging and maintenance of parallel
codes. These advanced capabilities have led to dramatically decreased code parallelization times
which can now be measured in days or weeks rather than months of effort. For example, in
Section 4, we presented a case study of the HYCOM model which took an SMS programmer
only nine days to parallelize.

We believe SMS provides flexible high-performance portable solutions that are competitive
with hand-coded vendor specific solutions. We compared the SMS performance of the HYCOM
and ROMS models to their OpenMP and native SGI counterparts. In these tests, SMS HYCOM
performed significantly better than the OpenMP version, convincing LANL to use the SMS
version for their future work. The SMS version of the ROMS model offered equivalent
performance to the SGI parallel version on the Origin system but also runs on other distributed
memory machines.

We also demonstrated in the parallelization of NCEP’s Eta model that the SMS solution
performs as well as the MPI-based operational version of the code. Since both models are
fundamentally MPI-based codes, the MPI-Eta could, with sufficient effort, be made as or more
efficient than SMS-Eta. However, we believe SMS makes it easier to achieve good
performance.

 24

5.2 Future work

SMS has been used to parallelize many atmospheric and oceanic codes, but some limitations
exist. First, the translation tool does not support all of the Fortran 90 language constructs; work
is continuing to remove this shortcoming. Second, the application area where SMS provides
good support and performance is fairly narrow. Additional work to enhance SMS support for a
wider range of applications is ongoing. For example, we plan to provide the capability to
support applications with non-uniform grids. We also plan to demonstrate support for the
coupling of atmospheric and oceanic models.

To support modern Fortran 90 codes that utilize object-oriented design concepts, we plan to
provide the capability to associate data decompositions with user-defined types. This will allow
decompositions to be defined with limited scope, and used in the context of the objects that
require them. For example, this would permit different grid objects and their corresponding data
decompositions to be passed into dynamical core routines.

Another enhancement would be to have the SMS translator generate OpenMP code.
Further, for state-the-of-art machines that consist of clusters of SMPs, a parallel code that
implements tasking "within the box" using OpenMP and message passing "between the boxes"
using MPI may be optimal. The SMS translator could be designed to generate both message
passing and micro tasking parallel code. Recent tests have demonstrated that SMS directives can
be used in conjunction with OpenMP but more work needs to be done to verify the
appropriateness and performance benefits of a hybrid programming approach.

We also plan to further reduce the dependence analysis time and to decrease the number of
modifications required to parallelize applications. Recent tests have shown that we can reduce
the number of directives required by 30 to 50 percent. For example, the use of directives such as
PARALLEL, GLOBAL_INDEX, and TO_GLOBAL could be reduced or eliminated in many
codes by increasing the analysis capabilities of the translator.

To simplify dependence analysis, development has begun on a tool called autogen, to
analyze the serial code and automatically insert some SMS directives. For example, the
CHECK_HALO directive could be inserted into the code to document adjacent dependencies
and simplify code analysis. Autogen could also be used to automatically insert DISTRIBUTE
directives to identify decomposed arrays and add COMPARE_VAR directives for debugging.
However, one limitation of autogen is that it does not provide inter-procedural analysis of the
code. Therefore, we would like to combine SMS code translation capabilities with a semi-
automatic dependence analysis tool. This tool would be used to analyze the code and insert SMS
directives into the serial code, from which a parallel version of the code could be generated and
run using SMS.

6. References

[1] A.Arakawa and V.Lamb, Computational Design of the Basic Dynamical Processes of the
UCLA General Circulation Model., Methods Comput Phys 17 (1977) 173-265.

[2] C.Baillie, A.E.MacDonald and J.L.Lee, QNH: A Numerical Weather Prediction Model
developed for MPPs. International Conference HPCN Challenges in Telecomp and Telecom:
Parallel Simulation of Complex Systems and Large Scale Applications. Delft, The
Netherlands (1996).

 25

[3] V.Balaji, Parallel Numerical Kernels for Climate Models, Proceeds of the 9th ECMWF
Workshop on the Use of High-performance Computing in Meteorology, (2001) 277-295.

[4] S.Benjamin, J.Brown , K.Brundage, D.Dévényi, G.Grell, D.Kim, B.Schwartz, T.Smirnova,
T.Smith, S.Weygandt and G.Manikin, RUC 20 – The 20-km version of the Rapid Update
Cycle, National Weather Service Technical Procedures Bulletin No. 490 (2002),
http://ruc.fsl.noaa.gov/ppp_pres/RUC20-tpb.pdf .

[5] R.Bleck, An Oceanic General Circulation Model Framed in Hybrid Isopycnic-Cartesian
Coordinates. Submitted to J. Ocean Modeling (2001).

[6] R.Bleck, S.Dean, M.O’Keefe and A.Sawdey, A comparison of data-parallel and message
passing versions of the Miami Isopycnic Coordinate Ocean Model (MICOM), Parallel
Computing, 21 (1995).

[7] R.Bleck, C.Rooth, D.Hu, and L.Smith, Salinity-driven thermocline transients in a wind and
thermohaline-forced isopycnic coordinate model of the North Atlantic., J. Phys. Oceanogr.
22 (1992) 1486-1505.

[8] A.F.Blumberg and G. L. Mellor, A description of a three-dimensional coastal ocean
circulation model, Three-Dimensional Coastal ocean Models, edited by N. Heaps, 208 pp.,
American Geophysical Union (1987).

[9] D.S.Chen, K.N.Huang, T.C.Yeh, M.S.Peng , and S.W.Chang, Recent improvements of the
typhoon forecast system in Taiwan. 23th Conference on Hurricanes and Tropical
Meterology. Dallas, TX., (2000) 823-825.

[10] Earth System Modeling Framework Development Team, http://www.esmf.ucar.edu/ .
[11] J.Edwards, J.Snook, and Z.Christidis, Forecasting for the 1996 Summer Olympic Games

with the NNT-RAMS Parallel Model, 13th International Information and Interactive Systems
for Meteorology, Oceanography and Hydrology, Long Beach, CA., American Meteorological
Society, (1997) 19-21.

[12] M.Frumkin, H.Jin, and J.Yan, Implementation of NAS Parallel Benchmarks in High-
performance FORTRAN, NAS Technical Report NAS-98-009, NASA Ames Research
Center, Moffett Field, CA (1999) http://ipdps.eece.unm.edu/1999/papers/114.pdf.

[13] M.Frumkin, H.Jin, A.Waheed, J.Yan, A Comparison of Automatic Parallelization Tools /
Compilers on the SGI Origin 2000. Proceedings of Super Computing ’98, Orlando, Florida,
(1998) http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Hribar1140/.

[14] M.Govett, J.Edwards, L.Hart, T.Henderson, and D.Schaffer, SMS Reference Manual, (2001)
http://www-ad.fsl.noaa.gov/ac/SMS_ReferenceGuide.pdf.

[15] R.Gray, V.Heuring, S.Levi, A.Sloane, and W.Waite, Eli, A Flexible Compiler Construction
System, Communications of the ACM 35 (1992) 121-131.

[16] W.Gropp, E.Lusk, and A.Skjellum, Using MPI, Portable Parallel Programming with the
Message Passing Interface. MIT Press (1994).

[17] D.B.Haidvogel, H.G.Arango, K.Hedstrom, A.Beckman, P.Malanotte-Rizzoli, and A.F
Shchepetkin, Model Evaluation Experiments in the North Atlantic Basin: Simulations in
Nonlinear Terrain-Following Coordinates, Dyn. Atmos. Oceans 32 (2000) 239-281.

[18] T.Henderson, C.Baillie, S.Benjamin, T.Black, R.Bleck, G.Carr, L.Hart, M.Govett,
A.Marroquin, J.Middlecoff and B.Rodriguez, Progress Toward Demonstrating Operational
Capability of Massively Parallel Processors at Forecast Systems Laboratory, Proceedings of
the Sixth ECMWF Workshop on the Use of Parallel Processors in Meteorology, European
Centre for Medium Range Weather Forecasts, Reading, England (1994).

 26

[19] T.Henderson, D.Schaffer, M.Govett, and L.Hart, SMS User's Guide, http://www-
ad.fsl.noaa.gov/ac/SMS_UsersGuide.pdf (2002).

[20] C.S.Ierotheou, S.P.Johnson, M.Cross, and P.F. Leggett, 1996: Computer aided parallelization
tools (CAPTools) - Conceptual Overview and Performance on the Parallelization of
Structured Mesh Codes, Parallel Computing 22 (1996) 163-195.

[21] C.Koelbel, D.Loverman, R.Shreiber, G.Steele Jr., and M.Zosel, The High-performance
Fortran Handbook. MIT Press (1994).

[22] S.Kothari and Y.Kim, Parallel Agent for Atmospheric Models, Proceedings of the
Symposium on Regional Weather Prediction on Parallel Computing Environments (1997)
287-294.

[23] C.S.Liou, J.Chen, C.Terng, F.Wang, C.Fong, T.Rosmond, H.Kuo, C.Shiao, and M. Cheng,
The Second-Generation Global Forecast System at the Central Weather Bureau in Taiwan,
Weather and Forecasting 12 (1997) 653-663.

[24] A.E.MacDonald, J.L.Lee, and Y.Xie, QNH: Design and Test of a Quasi Non-hydrostatic
Model for Mesoscale Weather Prediction. Monthly Weather Review 128 (2000) 1016-1036.

[25] G.Manikin, M.Baldwin, W.Collins, J.Gerrity, D.Keyser, Y.Lin, K.Mitchell, and E.Rodgers:
Changes to the NCEP Eta Runs: Extended Range, added Input, added Output, Convective
Changes, National Centers for Environmental Prediction Technical Procedures Bulletin
(2000) http://www.nws.noaa.gov/om/tpb/465.htm.

[26] F.Mesinger, The Eta Regional Model and its Performance at the U.S. National Centers for
Environmental Prediction. International Workshop on Limited-area and Variable Resolution
Models. Beijing, China, WMO/TD 699 (1995) 42-51.

[27] J.Michalakes, RSL: A Parallel Runtime System Library for Regular Grid Finite Difference
Models using Multiple Nests, Tech. Rep. ANL/MCS-TM-197, Argonne National Laboratory,
(1994).

[28] J.Michalakes, FLIC: A Translator for Same-Source Parallel Implementation of Regular Grid
Applications, Tech. Rep. ANL/MCS-TM-223, Argonne National Laboratory, (1997).

[29] J.Michalakes, J.Dudhia, D.Gill, J.Klemp and W.Shamarock, Design of a Next Generation
Regional Weather Research and Forecast Model. Proceedings of the Eighth ECMWF
Workshop on the Use of Parallel Processors in Meteorology, European Centre for Medium
Range Weather Forecasts (1998), Reading, England.

[30] T.Ngo, L.Snyder, and B.Chamberlain, Portable Performance of Data Parallel Languages.
Supercomputing 97 Conference, San Jose, CA (1997).

[31] R.Numrich, and K.Reid, Co-Array Fortran for Parallel Programming. ACM Fortran Forum,
17, no 2, (1998) 1-31.

[32] Program for Integrated Earth System Modeling (PRISM) Web Page: http://prism.hnes.org/ .
[33] Portland Group, Parallel Fortran for HP Systems, (1999)

http://www.npac.syr.edu/hpfa/bibl.html.
[34] R.K.Rew and G.P.Davis, Unidata’s netCDF Interface for Scientific Data Access, Sixth

International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology, Anaheim, CA (1990).

[35] B.Rodriguez, L.Hart and T.Henderson, Parallelizing Operational Weather Forecast Models
for Portable and Fast Execution, Journal of Parallel and Distributed Computing, 37 (1996)
159-170.

