## **CHAPTER 6**

### SPILL PREDICTION

#### 6.1. INTRODUCTION

To insure that adequate spill prevention, control, and countermeasures are in place, 40 CFR 112.7(b) states that a spill prevention, control, and countermeasures (SPCC) plan should include a prediction of the quantity of oil that could be spilled from an area and the behavior, direction, and rate of the spill. Area related guidance is a general SPCC guidance which addresses multiple regulations, not just 40 CFR 112. Regulations do not require that SPCC plans be prepared for stored hazardous substances (HS); however, spill prediction for HS should also be done as a best engineering practice. Chapter 3 discussed some of the typical causes of an oil or HS spill.

#### 6.2. PREDICTING QUANTITY AND SPILL BEHAVIOR

The SPCC plan should identify the largest spill expected at each area. The maximum possible spill quantity at an area is the total capacity of the largest holding unit at the area: it is not the largest volume typically stored. Examples include the largest tank in a tank farm or the largest compartment of a tanker car or truck.

The behavior of spilled oil or HS is influenced by the type of material spilled, the cause of the spill, the features of the area, and the area surrounding the area. Table 6-1 identifies the various types of oils used by the Navy and various properties that affect spill behavior.

The direction in which a spill will spread is determined by natural and man-made drainage patterns that surround the area. Table 6-2 lists some of the items which can influence drainage patterns. During the preparation of the SPCC plan, these items should be noted as to the influence they will have on a spill leaving the area. By drawing an area site plot and depicting all the drainage influences, the path of a potential spill can be illustrated as in Figure 6-1.

112.7(b)

|                                    |                                                                 |                                                      |                 |                       |                 | FUEL QUIS       |                  |                 |                         |                |                |                                         |                     |
|------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|-----------------|-----------------------|-----------------|-----------------|------------------|-----------------|-------------------------|----------------|----------------|-----------------------------------------|---------------------|
| PERFORMANCE<br>CRITICAL            | DESCRIPTIVE<br>PROPERTY                                         | MOGAS                                                | AVGAS           | JP-4                  | JP-5            | Auto            | Marino           | Navy            | Navy                    |                | Burner Fuel    | s                                       | LU                  |
| PROPERTY                           |                                                                 |                                                      |                 |                       |                 | Diesel          | Diesel           | Distillate      | Special                 | No. 2          | No. 5          | No. 6                                   | 0                   |
| Viscosity<br>(centistoke) at 100°F | Resistance to flow                                              | LOW                                                  | LOW             | LOW                   | LOW             | LOW<br>(~1.4)   | LOW<br>(~3.0)    | LOW<br>(~10)    | HIGH                    | LOW<br>(~2.0)  | HIGH<br>(>75)  | HIGH<br>(>75)                           | MOE<br>HIGI         |
| Surface Tension                    | Resistance to<br>spread over another<br>liquid                  | LOW                                                  | LOW             | LOW                   | LOW             | MOD             | MOD              | MOD             | MOD                     | MOD            | MOD            | MOD                                     | MOE                 |
| Volatility                         | Tendency to evaporate                                           | HIGH                                                 | HIGH            | HIGH                  | LOW             | LOW             | LOW              | LOW             | LOW                     | LOW            | VERY<br>LOW    | VERY<br>LOW                             | VER<br>LOW          |
| Relative Solubility                | Tendency for all or<br>portion of spill to<br>dissolve in water | VERY<br>LOW                                          | VERY<br>LOW     | VERY<br>LOW           | VERY<br>LOW     | VERY<br>LOW     | VERY<br>LOW      | VERY<br>LOW     | VERY<br>LOW             | VERY<br>LOW    | VERY<br>LOW    | VERY<br>LOW                             | Emu<br>s            |
| Density (specific gravity) approx. | Mass per unit<br>volume - tendency to<br>sink in water          | LOW<br>(~.73)                                        | LOW             | LOW                   | LOW<br>(~.80)   | LOW<br>(~.85)   | LOW              | LOW             | MOD<br>(~.95)           | LOW<br>(~.82)  | MOD<br>(.96)   | HIGH (.9<br>- 1.0)                      | MOE<br>(.85)        |
| Emulsibility                       | Tendency to form<br>stable suspension<br>with water             | VERY<br>LOW                                          | VERY<br>LOW     | VERY<br>LOW           | VERY<br>LOW     | LOW             | LOW              | LOW             | HIGH                    | LOW            | HIGH           | HIGH                                    | HIGł                |
| Pour Point (max)                   | Lowest temperature<br>at which oil will pour                    | LOW                                                  | LOW             | LOW                   | LOW             | LOW             | LOW<br>(20°F)    | -               | LOW<br>(15°F)           | LOW<br>(20°F)  | LOW            | HIGH<br>(60°F)                          | LOW<br>(~10         |
| Flash Point (min)                  | Tendency to ignite                                              | VERY<br>LOW<br>(~40°F)                               | VERY<br>LOW     | VERY<br>LOW<br>(~20F) | MOD<br>(~140°F) | LOW<br>(~104°F) | MOD<br>(~140°F)  | MOD<br>(~150°F) | MOD<br>(~150°F)         | LOW<br>(100°F) | MOD<br>(130°F) | MOD<br>(150°F)                          | VER<br>HIGH<br>(350 |
| Applicable<br>Specification(s)     |                                                                 | VV-G-<br>001690A<br>MIL-G-<br>3056C<br>VV-G-<br>76 P | MIL-G-<br>5572E | MIL-T-526             | 54J             | VV-<br>800(B)   | MIL-F-<br>16884G | MIL-F-<br>23497 | MIL-F- VV-F- VV-F-815-C |                |                | MIL-I<br>1733<br>MIL-I<br>9000<br>MIL-I |                     |

# Table 6-1Properties of Petroleum Products Which Affect Their Spill Behavior

SECTION6

| • | Ground Slope or Grade        | Ground Condition: |  |
|---|------------------------------|-------------------|--|
| • | Streams, Creeks and Rivers   | Loose Soil        |  |
| • | Dry Creek Beds               | Hard Soil         |  |
| • | Hills                        | Asphalt           |  |
| • | Spill Containment Structures | Concrete          |  |
| • | Curbs                        | Grass             |  |
| • | Ditches                      | Thick Weeds       |  |
| • | Sanitary Sewers              | Sand              |  |
| • | Storm Sewers                 | Rocks             |  |
| • | Floor Drains                 |                   |  |

## Table 6-2 Items Which Influence Drainage Patterns

#### 6.3. OIL SPILL MODEL SYSTEM

When oil is spilled in the marine environment, a concern is where the oil will migrate. There are several computer-based oil spill model systems suitable for use in spill response and contingency planning.

Oil spill modeling systems provide rapid predictions of the movement of spilled oil. The systems include simple graphical procedures for entering data specifying the spill scenario. The oil spill model predicts the surface trajectory of spilled oil for either instantaneous or continuous release spills.

Additional model features include estimating the spill paths on a monthly, seasonal, or annual basis. Output includes maps showing probabilities of oiling the water surface and nearby shorelines. Results are used to determine the probability of oiling biological, industrial, or archaeological resources.

Software available for performing oil spill modeling includes OSIS<sup>™</sup>, the trade name for an oil spill model now marketed by BMT<sup>®</sup>, OILMAP<sup>®</sup>, and SIMAP<sup>®</sup>.



Figure 6-1 Spill Path Prediction