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Abstract
A rationally based procedure has long been needed for
assigning design adjustments to Southern Pine lumber
treated with waterborne preservative. This paper
attempts to develop such a procedure by evaluating a
series of models to predict the short-term effects of
waterborne preservative treatments on the strength of
U.S. Southern Pine lumber. Input data consisted of
non-parametric treated to untreated strength ratios
normalized from data of seven recent reports. Input
variables included material quality factors, such as grade
and size, and treatment processing factors, such as
preservative retention and redrying temperature. For the
best models evaluated, the loss in bending strength
from preservative treatment was significantly related to
the differential between the pH of the treating solution
and that of the untreated wood, post-treatment redrying
temperature, and initial material quality. Mechanistic-
based models were found to fit the compiled data set as
well as or better than the best empirical models. Both
mechanistic and empirical models provided a reasonable
level of predictive capability, but neither was flawless.
When used with the recently developed short-term load–
duration adjustment model for waterborne-preservative-
treated lumber, this accumulated treatment-processing
effects model can result in a rationally based procedure
for assigning design adjustments to waterborne-
preservative-treated Southern Pine lumber.
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Introduction
Recognizing that waterborne preservative (WBP)
treatments can sometimes reduce mechanical properties,
a number of studies were conducted over the last 15
years to quantify WBP-treatment effects. As a result,
U.S. Treating Standards were revised in 1987 to include
process limitations for a maximum dry-bulb
temperature in the redrying process of 88°C (190°F),
then further limited to 74°C (165°F) in 1990 (AWPA
1995). However, there is a practical need for a rational
basis for assigning adjustments to allowable stress
design values based on a systematic analysis of these
recently developed data

Most of the treatment effects data for lumber are for
Southern Pine (Pinus spp.). As such, the treatment
effects models developed herein pertain only to WBP-
treated Southern Pine lumber. In addition, the vast
majority of the Southern Pine data pertains to
chromated copper arsenate (CCA) preservatives, so the
application of this model to ammoniacal preservative
systems such as ammoniacal copper quats (ACQ),
ammoniacal copper zinc arsenate (ACZA), and
ammoniacal copper arsenate (ACA) should be done
judiciously.

A rational basis is needed to compare candidate
predictive models of strength loss induced by
preservative treatment. The models developed herein
use data from several independent studies that reported
mechanical tests of full-size dimension lumber. Two
criteria were used to select the lumber studies for this
systematic analysis: (1) each study had a representative
sampling plan and (2) the experimental design provided
enough replicates per experimental cell to yield
sufficient statistical power to reliably estimate the
effect of treatment variables throughout the lower tails
of the strength distribution for treated lumber. These
criteria were critical because using experimental groups
with less than 60 specimens inhibits both the accuracy
and the reliability of ensuing models developed to

3-125 INTERNATIONAL WOOD ENGINEERING CONFERENCE ‘96



predict lower tail strength properties (Green and Evans
1988). (Note: Accuracy is defined here as the ability to
predict strength loss precisely, without over- or
underpredicting. Reliability is defined as the ability to
be accurate or at least conservative in predicting
strength loss without underpredicting.)

Background
The two basic modeling approaches are empirical
approaches and mechanistic or theoretical approaches.
The purely empirical approach establishes a statistical/
mathematical fit to the data, which provides optimum
fit with respect to the available input parameters.
Mechanistic modeling assumes that some inherent
physical characteristic or characteristics control the
modeled relationship. Use of mechanistic-based models
requires basic knowledge of the physical properties or
principles controlling the process. Mechanistic models
provide good fit, but they often do not quite approach
the level of fit of the empirical approach. Nevertheless,
mechanistic models generally have a wider range of
application because the predicted outcome is dictated by
the physical characteristics of the modeled material or
process.

The literature on treatments effects was recently
reviewed (Winandy 1995a). Many of these studies were
evaluated as potential candidates for the modeling
program described in this report. After careful
evaluation, only seven studies contained sufficiently
comprehensive and accessible data: work on the effects
of WBP treatment and post-treatment redrying (Barnes
and Mitchell 1984, Barnes and others 1993, Winandy
and Boone 1988, Winandy 1989), the relationship
between duration of load and effects of CCA treatment
(Soltis and Winandy 1989), the impact of initial kiln
drying temperature on subsequent CCA effects on
bending (Barnes and others 1990), and the relationship
between rate of load application (e.g., time to failure)
and moisture content at time of test on CCA effects
(Winandy 1995b). For complete details, the reader is
referred to the original publications.

Data on individual bending strength (modulus of
rupture, MOR) properties for each study-group
combination of the seven selected studies were obtained
from the authors. These data were then used to
nonparametrically estimate the treatment effect on
MOR between the 5th through 95th percentiles in 5-
percentile increments. Because the predictive treatment
effects model or models will be primarily used to adjust
design values, primary emphasis was placed at
predicting treatment effects at the median value and

below. Accordingly, only treated-to-untreated (t/u)
ratios below the 60th percentile were used. Selection of
the < 55th percentile was arbitrary; however. using
truncated t/u ratios at or below the 55th percentile was
desirable because it generated more powerful confidence
bounds in the lower tails of the nonparametrically
predicted strength distributions.

Development and Description of Models
In practice, a design engineer uses a short-term design
modification factor (Cp) to adjust allowable bending
stress design values for the effect (t/u) of WBP
treatments on strength where Cp  t/u. Based on an
understanding of the physical principles driving the
strength loss potential of treatment processing and
material quality factors, four candidate model forms
were developed for intensive evaluation. Each model
initially contained terms for either pH or relative
change in pH, initial kiln-drying temperature, either
redrying temperature or phase-change potential (tx),
grade, and size (width, section modulus, moment of
inertia, or some combination thereof). Whereas one
model used a pre-model in a sequential two-step
approach, the other models used a single-step approach.
Throughout the development of the four candidate
models, terms that did not significantly (α < 0.10)
improve the fit of the model were systematically
removed. The resulting descriptions of each model will
include only terms found to enhance fit significantly.

Material quality factors have a major role in
determining both anticipated strength and the
magnitude of the strength effect. The one set of input
variables for the developed models included quality-
related variables that relate to strength. The effect of
WBP treatments on strength also appears to be dated
to specimen size. As width, thickness, volume, section
modulus, or moment of inertia increase, t/u and Cp

decrease. To explore these size-related effects, width,
volume and moment of inertia were evaluated as model
components.

The effect of CCA retention is related to the pH of the
treating solution. Thus, two possible input parameters
were evaluated, pH and the relative change in wood pH
(dpH), which was defined as absolute value 15.0 - pHl
where 4.7-5.2 is the average pH for Southern Pine.
Although merely using pH would work well for
strictly acidic solutions, the use of the relative change
in pH factor would be more appropriate for modeling
both acidic solutions, such as CCA, or basic solutions,
such as ACQ, ACA, or ACZA. Thus, because of its
more mechanistic character, the latter input form was
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selected for further evaluation. Each candidate model
had a characteristic set of assumptions, problems, and
advantages associated with its use as a predictive tool.
One major practice used for all models (which is
henceforth not discussed) was that the predicted value
(Cpi) is unitless, so the units of each fitted parameter
estimate are merely the inverse of that of its
appropriate variable. Effectively, this practice
immediately canceled any units in the model building
process.

Model B/A
The first two-stage model (Model B/A) is empirical in
nature. While Model B/A attempts to account for
mechanistic relationships, final model components
were solely selected to achieve maximum fit. The
general form of Model A of Model B/A is

2Loading rate (ROL) where ASTM D 198 rate of
5 mm/min is defined as lx and other evaluated rates are
10x = 50 mm/min and 100x = 500 mm/min.
3The ASTM D 2915 moisture content (MC) factor was
selected over the Green and Evans’ Quadratic Surface
(Green and Evans 1989) and the ASTM D 1990
(ASTM 1995) MC adjustment models because Model
B/A assumes independence between Cp1 and equilibrium
moisture content (EMC), which would be violated if
either of the latter two MC adjustment models were

Model B/A is a sequential two-step method because it
uses a pre-model (Model A) to develop fitted-input
parameters for the second-step model (Model B). In this
pre-model approach, a least-squares fit was used to
predict the magnitude (ε) and rate of change (β) in the
distribution of t/u ratios. These ε and β criteria could
then be used to predict actual strength loss as a
function of expected untreated strength. Six fitted-input
model forms were considered: constant, linear,
quadratic, square root, reduced exponential, and full
exponential. The constant and linear procedures were
selected as yielding the best fits (Winandy 1993). When
the slope (β) of the linear form was significant (α <
0.10), both the linear y-intercept (ε) and β -term were
chosen. When the β -term was not significant, it was
set equal to zero and the ε -term from the constant-
model form was chosen for use as the fitted-input
variable.

Material quality factors, such as grade and width, and
treatment processing factors, such as dpH and redrying
temperature, are the variables that drive Model B/A. In
a simpler form without material quality factors, Models
A and B are each extensions of a quadratic response–
surface model based on a chemical preservative
retention and redrying temperature model developed
previously (Winandy and others 1985).

Model A was developed using data from five studies:
Barnes and Mitchell (1984), Barnes and others (1990),
Soltis and Winandy (1989), Winandy and Boone
(1988), and Winandy (1989). In each study, data were
obtained at nearly equal loading rates and tested under
similar 12-percent equilibrium moisture content (EMC)
conditions. These studies permitted evaluation of a
fairly comprehensive set of complex second-order
interactions. Model B was an expansion of Model A to
account for loading rate (ROL) and EMC, using data of
Winandy (1995b), and differential characteristics
between ammoniacal treatments and acidic solutions,
using data of Barnes and others (1993).

Model B/A requires the most complex set of input
variables to predict t/u. It also has several explicit
assumptions. The user assumes that the ROL and
EMC effects on t/u are applicable to all other studies.
Thus, the implicit assumption is that no interaction
exists between ROL and EMC with respect to pH,
redrying, grade, and size effects. Another implicit
assumption is that the redrying temperature, retention,
and grade effects are the same for all studies, so that no
interaction exists between ammoniacal copper and pH,
redrying, grade, and size effects.

3-127



The primary advantage of Model B/A is that despite its
cumbersome nature, it works well. Because not all data
are used, the user tends to have less than complete
confidence in the predicted results. Finally, by its rather
complex nature, Model B/A is prone to excessive over-
fitting, which might be a serious potential error in a
composite modeling technique such as employed here.

Model C
Model C is a simplified linear model that is considered
empirical. It is very similar in form to Model A except
that it is a single-step model that relates to and was fit
using all seven available data sets. Like both the earlier
models, Model C generates separate estimates of the
magnitude (b0) and rate of change (b1) in t/u ratios, then
combines them in a simple first-order linear format.
The general form of Model C is

The primary input variables that drive Model C are the
material variables of grade and width and the grade-
width interaction along with anticipated untreated
strength (MORK) and the mechanistic variables dpH
and redrying temperature thermal potential ratio (tx).
Use of the thermal potential ratio recognizes that the
potential for strength loss is related more to the relative
temperature change from ambient than to the
temperature itself. In the respect that Model C is driven
by temperature and retention, it is even more closely
related to the quadratic response-surface model
(Winandy and others 1985) than is Model B/A. In that
Model C involves the global data set, it implicitly
assumes that ROL and EMC are not differentially
affected and that they are accounted for by other means.

Model C requires the same complex set of input
variables to predict t/u as does Model B/A. However,
because Model C analyzes the global data set, it has a
different set of explicit assumptions. The primary
advantage of Model C is that its global one-step

approach makes it slightly less complex to use and
comprehend. Model C excelled when compared to any
model using both the global data set and the fitted-
input variables for predicting the effect of both main
factors and second-order interactions.

Model D
Model D is a mechanistic model transformed to a linear
mode using natural logarithms. The general form of
Model D is

In a general sense, Model D is a transformed linear
hybrid of Winandy and others (1985). The primary
input variables that drive Model D are the material
quality variable of anticipated untreated strength
(MORK) and the mechanistic treatment variables dpH
and tx. Model D implicitly assumes that ROL and
EMC are not interactive with dpH and tx. It also
assumes that any effects of ROL and EMC are
accounted for by other means in the design process.

Model D assumes that no interaction exists between
pH and redrying temperature and that grade-related
effects can be ignored when using MORK as a de facto
material quality input variable. Model D initially
contained terms for both grade and width. Both added to
the fit of the model, but to a lesser degree than did
differential wood solution pH, strength level, or
redrying temperature-related thermal potential ratio (tx)
in that neither were significant (α < 0.10) parameters
in the mechanistic Model D. The primary advantages of
Model D are its mechanistic nature and simplicity,
which enhance the user’s ability to comprehend how
and why the model predicts as it does. Accordingly,
Model D is easy to use although Model E also has
some advantages in that regard.

Model E
Model E is another mechanistic model without log
transformation. The general form is

Model E is quite similar to Model D except that it
assumes a multiplicative relationship between the
primary input variables of anticipated untreated strength
(MORK) and treatment variables dpH and tx rather than
the additive relationship of Model D. Like Models C
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and D, Model E explicitly assumes that ROL and EMC
are accounted for elsewhere in the design process.

Model E assumes that no interaction exists between pH
and redrying temperature. It also assumes that grade-
related effects are accounted for by expected strength and
that the width effect for treated material is similar to
that exhibited by untreated material. The primary
advantage of Model E is its simplified mechanistic
nature. Of the four candidate models, Model E is the
easiest to use because it requires the use of only one
least-squares fit term.

Comparison of Models
A systematic comparison of predictive capability of the
four candidate models indicated that Models B/A and D
did a slightly better job than did Models C and E
(Winandy 1993). While Model B/A did a better job of
accurately predicting strength loss more often than did
Model D, Model B/A also tended to underpredict
strength loss more often than did Model D. The
number of times this occurred was computed by
comparing relative positions of the predictions of
Model B/A to those of Model D at the 25th percentile
or below. The results show that Model D was more
conservative 12 of 31 times, Model B/A was more
conservative 8 of 31 times, and the models were
roughly equivalent 12 of 31 times. Thus, Model D was
50 percent more conservative than Model B/A
throughout the lower 25th percentile of the bending
strength distribution.

The accuracy and reliability of the predictive capability
of the four candidate models could not be evaluated by
comparing common statistics like root mean square
error (RMSE) or correlation coefficient (r2) because
these comparative criteria are of limited application
when comparing dissimilar model forms. To overcome
this problem, a comparable factor that judges “fit”
through an empirically derived estimate was needed.
This factor could then be used to test the hypothesis
that the predicted values from each candidate model
could accurately predict the observed values. To
accomplish this, the differential predictive value (dpv)
statistic was developed where

The dvp statistic is simply a nonparametric estimate of
the standard error associated with the relation between
each predicted value and the actual observed value it
predicts. It is quite analogous to standard deviation,
which assumes normality. The reader is again referred
to Winandy (1993) for complete details on the
calculated dvp statistic and calculated standard error
associated with each prediction.

A comparative evaluation based on a graphical analysis
of predicted versus observed values indicated that in
many cases the four models were very conservative in
that they overpredicted strength loss. A comparison of
the reliability of the calculated dvp statistic to
conservatively predict strength loss for each study–
group-model combination is given in Table 1 using a
t-test with a < 0.05 and in Table 2 using an arbitrarily
selected practical limit of + 2.5 percent. Models B/A
and D were shown to accurately predict strength loss at
nearly equivalent rates (Winandy 1993). However, if
additional points were awarded for being conservative
(i.e., overpredicting the t/u ratio) and points were
subtracted for underpredicting the actual t/u ratio, then
Model D did a slightly better job overall compared to
Models B/A, C, and E (Table 1). Further, note that in
this comparison, both mechanistic-type models—
Models D and E-did best. When a much more
restrictive limit of + 2.5 percent was used to compare
accuracy and reliability, Model B/A did best with no
difference between Models D or E, which, in turn, both
did better than Model C (Table 2). If this practical limit
were to be further opened to + 5 percent, the relative
performance in accuracy and reliability would be closer
to that shown in Table 1 because the nonparametrically
calculated standard error derived from the dvp statistic
averaged from 0.04 to 0.06.

When comparing the observed Cp values of the
individual global data sets to the predicted values of the
two best models, Model D seems more realistic. This
conclusion is based on the excessively low treated-to-
untreated ratios predicted by Model B/A for lower
strength material in the No. 1 and Better grade and for
the higher strength material in the No. 2 grade. These
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unrealistic results for Cp when using Model B/A relate
to an excessive grade–strength interaction exhibited by
Model B/A (Winandy 1993). Although several earlier
researchers had noted a grade-related effect (Winandy and
Boone 1988, Winandy 1989), the magnitude of the
grade-related interaction with Cp in Model B/A seems
unreasonable because grade is an arbitrary value defined
through Standards and Code authorities and not a
physical characteristic.

In summary, given the relative performance of the four
candidate models, the empirically derived Model B/A
and the mechanistic Model D appear to better predict
strength loss when compared to Models C and E. When
individually compared to Model B/A, Model D appears
to better predict treatment-induced strength loss based
on its more conservative predictive nature and its
enhanced ease of use. The predicted least-squares fit
parameters for Model D are given in Table 3. Figure 1

shows a hypothetical set of predictions of Cp for
various combinations of treatment, redrying, and grade
for Model D.

Conclusions
The best mechanistic-based model did as well as or
better than the best empirical model. Both mechanistic
and empirical models provided an acceptable level of
predictive capability, but neither was flawless. In some
cases, the models fit poorly. However, these cases
seemed to be characterized by extremely variable t/u
ratios, which might indicate lack of uniformity or
matching in the data rather than a direct lack of fit for
the models.

A mechanistic transformed-additive effects model
(Model D) was selected as best:

The decision to select Model D was based on the nearly
equivalent accuracy and slightly better reliability of
Model D when compared to the best empirical Model
B/A. It was also based on Model D’s generally
conservative predictive nature, ease of use, and ease in
conceptualizing predictive results.
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