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ABSTRACT

In this study, we develop models for predicting loss in bending strength of clear, straight-grained
pine from changes in chemical composition. Although significant work needs to be done before truly
universal predictive models are developed, a quantitative fundamental relationship between changes
in chemical composition and strength loss for pine was demonstrated. In particular, this study explored
a linear independent-component modeling approach. The models were evaluated across a range of
environmental exposure conditions known to cause strength loss and with several chemical treatments
capable of causing hydrolytic chemical degradation in wood. Simple linear models developed reason-
ably accurate predictions of strength loss of clear, straight-grained southern pine wood based on
changes in its chemical composition. Side-chain sugars of hemicellulose were the most susceptible to
acid hydrolysis. The extent of their degradation was a sensitive predictor of early strength loss. Those
sugars associated with the hemicellulose backbone were the next most susceptible, but they were
strongly correlated between themselves. This is known as collinearity and, as such, data from either
mannose or xylose, or from Klason lignin or glucose, often precluded the need for the other in the
models. A linear three-parameter model using changes in a side-chain hemicellulose (arabinose), a
main-chain hemicellulose (mannose), and glucose as an indicator of the extent of cellulose degradation
reasonably predicted bending strength loss. We believe that with further work, residual strength or
serviceability models based on a linear accumulation of the changes in chemical composition of wood
during microbiological attack, thermochemical treatments, or severe environmental exposures can be
developed to provide sensitive predictors of post-treatment or in-service strength loss.
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INTRODUCTION graded. This study is the first in a series that

For all their differences, most softwoods will explore the development of predictive

and hardwoods share many basic similarities
models that exploit these commonalties in

in gross structure, general chemical composi-
structure, chemistry, and degradation mecha-

tion, and mechanisms by which they are de-
nism. Our modeling approach relates propor-
tional changes in wood strength, hereafter
termed residual strength (R-ratio), to a line-
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exposures and/or treatments. An R-ratio of 1.0
is equal to 100% of the average strength of 30
untreated, unexposed controls. An R-ratio of
0.6 means 60% of the strength is remaining
(i.e., 40% strength loss). This study is part of
a larger program to develop an integrated,
multidisciplinary approach to understanding
and preventing wood degradation.

BACKGROUND

The physical and mechanical properties of
wood are a complex function of cellular and
polymeric structure and chemistry (Winandy
and Rowell 1984). The chemical composition
of the softwood tracheid and the hardwood fi-
ber cell wall depends on which cellular layer
is being considered. Each layer contains vary-
ing amounts of cellulose, hemicellulose, and
lignin (Fig. 1). At the polymeric level, cellu-
lose microfibrils are thought to be encrusted
in a lignin-hemicellulose matrix. It is believed
that lignin, a large irregular polymer with a
complex three-dimensional structure, is cova-
lently bonded to hemicellulose (Whistler and
Chen 1991). They also stated that although the
hemicelluloses are not covalently associated
with the cellulose microfibrils, they are closely
associated by either intermixing (i.e., physical
entanglement at molecular level), hydrogen
bonding, or both.

Anthis (1956) showed that glucose and
mannose were covalently linked as the back-
bone of galactoglucomannan and glucoman-
nan hemicelluloses. Timell (1964) discovered
that the structure of hemicelluloses was mostly
linear with short side chains and that galac-
toglucomannans were the major hemicellulose
in softwoods with lesser amounts of arbino-
glucouronoxylans. Timell (1965) later showed
that minute amounts of arbinogalactans in
pines were also associated with galactoglu-
comannans and that in softwoods, the pentos-
es, such as xylans and arabinans, were more
sensitive to degradation during isolation than
were the hexoses. Timell (1965) also found
that furan-ringed arabinans were extremely
sensitive to acid hydrolysis.

FIG. 1. Distribution of chemical components in coni-
fers (adopted from Winandy and Rowell 1984). (a) Per-
centage of cell wall by layer, and (b) percentage of cell
wall on total weight basis.

Hemicelluloses are generally more readily
hydrolyzed by acids than cellulose because of
their branched structures and their lower mo-
lecular weights (Goldstein 1991). Kolin and
Danon (1998) reported that changes in physi-
cal properties, such as shrinkage and swelling
coefficients, in softwoods and hardwoods were
related to losses in acetyl, holocellulose, and
lignin contents when these woods were ex-
posed to increasingly more severe tempera-
tures (20°C to 90°C).

In regards to mechanical properties, hemi-
celluloses are most susceptible to thermo-
chemical degradation (Kollman and Fengel
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1965). Loss of toughness in wood has been
especially linked to changes in hemicellulose
content (Davis and Thompson 1964). Decreas-
es in hemicellulose content and composition
of both untreated and fire retardant (FR) treat-
ed pine were directly related to early strength
loss (LeVan et al. 1990). Similarly for hard-
woods, subtle changes in the extractive, ho-
locellulose, and cellulose contents of maple
caused decreased impact bending strength,
static bending strength, and stiffness (Rein-
precht et al. 1999).

We believe that at its earliest stages,
strength loss in wood might be quantitatively
modeled as a function of sequential degrada-
tion of hemicellulose side-chain sugars (arab-
inose, galactose) and thereafter, the main-chain
hemicellulose sugars (mannose, glucose, xy-
lose). Advanced strength loss is a function of
further degradation of residual hemicellulose
and initial degradation of cellulose and lignin.

This qualitative relationship between hemi-
celluloses and treatment-induced or thermal-
induced degradation of wood strength was re-
cently defined in a comprehensive series of
studies. The effects of six different FR treat-
ments on the bending properties of more than
3,500 density-matched southern pine (Pinus
spp.) specimens exposed to ambient and to el-
evated steady-state temperatures for up to 4
years were examined by LeVan et al. (1990),
Winandy (1995), and Lebow and Winandy
(1999). Increasing exposure to higher temper-
atures with time produced a progressive re-
duction in hemicellulosic sugar content, and
these reductions appeared to be directly relat-
ed to a corresponding loss in strength (Fig. 2).
Arabinose showed the earliest direct relation-
ship to strength loss, followed by galactose
and then by mannose and xylose (LeVan et al.
1990; Winandy 1995). Generally, cellulose
and lignin were not measurably affected until
strength losses exceeded 30% to 40%.

This was unexpected because a commonly
accepted theory suggests that the acids in
wood hydrolyzed the cellulose chains, espe-
cially when accelerated by acidic chemical
treatments and/or exposures to high tempera-

tures. Since cellulose is often thought to be
primarily responsible for the wood fiber’s
strength, reducing the length of the cellulose
molecules, known as degree of polymeriza-
tion, should cause a reduction in macro-
strength properties. This theory of hydrolytic
cellulose depolymerization has been advanced
by Ifju (1964) and has widely been accepted
(Mark 1967; Kass et al. 1970).

Leopold and McIntosh (1961) measured the
tensile strength of individual fibers, which
may or may not extrapolate, to indicate the
strength behavior of solid wood, and they
found no relationship between degree of po-
lymerization and strength. Ifju (1964), on the
other hand, examined larger specimens (thin
microtomed sections) cut into 2.5- by 100-mm
rectangles. Random cellulose depolymeriza-
tion was induced by gamma irradiation, fol-
lowed by strength tests. Ifju postulated that the
lignin should have been unaffected by the ir-
radiation due to its aromatic structure. How-
ever, hemicellulose, which should have been
at least as susceptible to radiation-induced de-
polymerization as cellulose, was not mea-
sured. After irradiation, the cellulose was ni-
trated, and isolated from the lignin and hemi-
cellulose. While it is certainly true that a re-
duction in the degree of polymerization of
cellulose was observed along with a reduction
in tensile strength, it was unclear whether the
reduction in degree of cellulose polymeriza-
tion was causative or merely incidental to the
strength loss. Another explanation, although
unmeasured, could be that the observed
strength loss was primarily caused by reduc-
tions in the degree of hemicellulose polymer-
ization. Such an interpretation agrees with the
findings of Davis and Thompson (1964) who
showed that heat treatments primarily affected
hemicelluloses as toughness decreased.

The next question from our previous anal-
ysis of the data (LeVan et al. 1990; Winandy
1995; and Lebow and Winandy 1999) was
whether or not degree of cellulose polymeri-
zation could be reduced without measurable
compositional loss in glucose. Sweet and Win-
andy (1999) showed that reductions in degree
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of cellulose polymerization (i.e., cellulose
chain length) were not occurring and thus
were not related to this initial 30% to 40%
strength loss, while degradation of hemicel-
lulose was highly correlated with it. The over-
riding conclusion of these studies was that
hemicellulose degradation alone, independent
of any measurable degrade in cellulose or lig-
nin contents or loss in degree of cellulose po-
lymerization, accounted for initial strength
losses of up to 40% for thermally degraded
wood, regardless of whether it was untreated
or FR-treated wood (LeVan et al. 1990; Win-
andy 1995; Lebow and Winandy 1999; Sweet
and Winandy 1999).

It appears that interpolymeric load sharing
is reduced between hemicellulose chains as
side-chain constituents (arabinose and galac-
tose) of the hemicelluloses and thereafter as
main-chain hemicellulose constituents (xylose
and mannose) are degraded. On further deg-
radation, load sharing between hemicellulose
and ligneous and/or cellulosic polymers is sys-
tematically reduced and overall product
strength diminishes. The orderly and progres-
sive nature of these results clearly showed that
the degradation of individual hemicelluloses
was qualitative. More importantly, this rela-
tionship was correlated to the degree that it
might quantitatively predict incipient strength
loss, especially the increased brittleness of
chemically treated or thermally degraded
wood.

However, it is not just thermal or hygro-
thermal processes that result in strength loss
via hemicellulose degradation in untreated and
FR-treated wood. Winandy (1994) found that
thermochemical degradation of hemicelluloses
was highly correlated to initial strength loss
for preservative-treated wood. Winandy and

Morrell (1993) showed that arabinose fol-
lowed by galactose both preferentially re-
moved prior to measurable degradation of
mannose, glucose, or xylose during the first
stages of incipient brown-rot decay of Doug-
las-fir heartwood. This later work suggested
that microbiological processes caused hydro-
lytic degradation patterns that were similar to
thermal and/or hygrothermal hydrolytic pro-
cesses with respect to the hemicellulose-
strength relationship.

These studies support the qualitative con-
cept of a universal strength degradation mech-
anism and hence a universal strength degrade
model that might apply to both hardwoods and
softwoods. At the same time, it shows a mech-
anistic relationship exists that can be used to
model strength loss, especially during its early
stages, as a function of changes in chemical
composition of wood.

TWO PROPOSED CHEMICAL COMPOSITION-
STRENGTH MODELS

From a modeling standpoint, several com-
peting methodologies exist to predict the re-
lationship between changes in chemical com-
position and wood strength. Two of these
competing modeling approaches are the inde-
pendent-component method and the grouped-
component method. Both methods represent
theoretical models based on the varying hy-
drolytic sensitivity of each component and the
known compositional arrangements of those
components within the wood cell wall.

Independent-component method

This modeling method relates the residual
wood strength (R-ratio), defined as a fraction
ranging from 0 to 1, to a linearized function

FIG. 2. Changes in chemical composition of matched southern pine specimens, untreated or treated with one of six
fire-retardant chemicals, then exposed for various durations to one of four temperatures scenarios. Exposure durations
were 3, 7, 21, 60, and 160 days at 23°C, 54°C, or 82°C or 7, 21, 60, 160, 290, 560, 1095, and 1460 days at 66°C. (a)
untreated, (b) phosphoric acid (PA), (c) monoammonium phosphate (MAP), (d) guanylurea phosphate-boric acid (GUP/
B), (e) dicyandiamide-phosphoric acid-formaldehyde (DPF), (f) organophosphonate ester (OPE), (g) borax-boric acid
(BBA).
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of each chemical component’s fractional con-
tribution to total weight. Each chemical com-
ponent is estimated as a fractional factor of its
contribution to total weight (ranging from 0 to
1). Models were analyzed both with and with-
out selected first-order interactions. The four
selected first-order interactions were selected
based on known hemicellulose associations
such as arabinan-xylan, glucan (in hemicellu-
lose)-mannan, galactan-mannan, and galactan-
glucan (in hemicellulose). This relationship
can now broadly be defined as either

groupings of carbohydrates and lignin, then
this relationship can broadly be defined as

R-ratio = f (δ AGUX, δGGM, δgGM,

δLig, δCel) (3)

where R-ratio = residual strength; δ = change
in; AGUX = arabinoglucouronoxylan (1:3:13
ratio); GGM = galactose-rich galactoglucom-
annan (1:1:3 ratio); gGM = galactose-poor
galactoglucomannan (0.1:1:4 ratio); Lig = lig-
nin; Cel = cellulose.

R-ratio = b0 + b1Arb + b2Gal + b3Xyl

or

+ b4Man + b5Glu + b6Klig (1)

R-ratio = b0 + b1Arb + b2Gal + b3Xyl

+ b4Man + b5Glu + b6Klig

+ b13Arb × Xyl + b24Gal × Man

Each of these subcomponents is assumed to
contribute some quantity towards residual
strength in direct relationship to its molar
mass, spatial function, and relative accessibil-
ity. Because lignin and crystalline cellulose
are less affected in the early stages of hydro-
lytic chemical degradation, their importance to
incipient changes in strength appears minimal.
Thus, because we are concerned with model-
ing incipient strength loss, then Eq. (3) can be
rewritten as

+ b25Gal × Glu + b45Man × Glu

(2)

@R-ratio) = δf ( δAGUX, δGGM, δgGM)

where R-ratio = residual strength; bi = least-
squares fitted parameter(s); Arb = arabinose;
Gal = galactose; Xyl = xylose; Man = man-
nose; Glu = glucose; Klig = Klason lignin.

for R-ratio > 0.6 (4)

In this form, low molecular weight carbohy-
drates are critical predictors for early strength
loss.

OBJECTIVE

Grouped-component method

The grouped-component method relates re-
sidual strength (R-ratio) to known groupings of
the individual chemical components, especially
as this pertains to various hemicellulose ag-
glomerations or types. The construction and
composition of each individual carbohydrate
macromolecule are assumed as described by
Sjostrom (1981) and Pettersen (1984). Each es-
timated that softwood hemicellulose consists of
arabinoglucouronoxylans (AGUX at 7% to
10% total wood weight (tww)), galactose-rich
galactoglucomannan (GGM at 5% to 8% tww),
and galactose-poor galactoglucomannan (gGM
at 10% to 15% tww).

In this report, we explored the independent-
component modeling approach. The objective
was to develop independent-component mod-
els and to predict strength loss from chemical
compositional data. These models were eval-
uated across a range of environmental expo-
sure conditions known to cause strength loss
and hydrolytic chemical degradation in wood.
Subsequent reports will address our long-term
objectives by exploring the grouped-compo-
nent method and offer comparisons to the in-
dependent-component modeling approach pre-
sented in this study.

METHODS

If we limited our consideration to the rela- In this study, highly matched mechanical
tionship of strength to recognized polymeric properties and chemical data from the three
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prior studies were merged and quantitatively
analyzed (LeVan et al. 1990; Winandy 1995;
Lebow and Winandy 1999) (Fig. 2). In these
three studies on defect-free, straight-grained,
FR-treated southern pine (Pinus spp.) wood,
about 4,600 specimens (9.5 by 25 by 255 mm)
were sorted into 154 density-matched groups
of 30 specimens. Seven FR treatments and
four long-term exposure temperatures (27°C
54°C 66°C and 82°C) with durations from 3
to 160 days at 54°C and 82°C up to 4 years
at 66°C and up to 6 years at 27°C were stud-
ied. The seven treatments were phosphoric-
acid (PA), monoammonium-phosphate (MAP),
guanylurea-phosphate/boric-acid (GUP/B), di-
cyandiamide/phosphoric acid/formaldehyde
(DPF), organo-phosphate-ester (OPE), borax/
boric acid (BBA), and untreated (UNT). After
its allotted treatment and thermal exposure,
each specimen was equilibrated to constant
weight at 23°C and 65% relative humidity and
then destructively tested in flat-wise bending
across a span of 22.9 mm using center-point
loading applied at a loading rate of 4.8 mm/
min. Load-deflection data were continuously
recorded and used to calculate static modulus
of elasticity (MOE), bending strength, which
is commonly called modulus of rupture
(MOR), and work to maximum load (WML).
After mechanical testing, specimen moisture
content and density were measured for each
piece.

After static bending tests, a small section
from each specimen was cut near the failure
point. These sections were ground to 30 mesh
(0.595-mm openings), and chemical analyses
for sugars, acid soluble lignin, and Klason lig-
nin-were done generally following the proce-
dures of Pettersen and Schwandt (1991), TAP-
PI Method 250 (TAPPI 1982), and Effland
(1977), respectively. Individual chemical com-
ponents were determined as a percentage of
total wood weight.

We then used the independent-component
modeling method to predict residual strength
(i.e., strength loss) in southern pine wood as a
function of fractional changes in chemical
composition based on the individual contri-

butions of each lignocellulosic component to
total weight.

MODELING

We evaluated the independent-component
method using ordinary least-squares (OLS) re-
gression techniques, both with and without
previously obtained kinetic rate constant (Ea )
information for untreated wood and for wood
treated with each of the six FR chemicals (Le-
bow and Winandy 1999). We also evaluated
the benefits of transforming the data to facil-
itate model fitting using basic transformations,
additions of quadratic terms, and segmenta-
tions.

Determining common relationships among
groups with simple regression models involves
fitting a sequence of models and then exam-
ining reductions in error-terms associated with
the various models. Modeling error is often
evaluated by comparing terms such as residual
sum of squares, root mean square error
(RMSE), and standard error of prediction
(SEpred) (Draper and Smith 1998). However, as
the number of predictors and the number of
groups increase, the evaluation of “error” in
the model-building process can become less
clear. We chose to use a hierarchical approach
as suggested by Draper and Smith (1998).

Initially, individual regressions were fit
within each FR treatment group and examined
for commonalties. Next, in our model building
and analytical exercise, we used two fit-test
techniques. The first technique identified
which treatments could be assumed to be sim-
ilar and thus analyzed together. The second
technique then merged similar groups and
concentrated on defining optimum model form
and the importance of individual model fac-
tors.

In the first technique, we separated the ob-
servations by treatment groups. We systemat-
ically selected a training set with five or six
of the seven treatment groups. Then, in a re-
peated series of fit-test analyses, a model, as
given in either Eq. (1) or (2) was “fit” to the
observations in a training set. This fitted mod-
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el was then tested against a test set of the one
or two groups of observations that were not
included in the training set. This procedure
was repeated until all combinations of fit and
test groups were evaluated.

This procedure helped determine common-
ality between groups as well as simple model
selection. To do this, subjective visual com-
parisons of residual plots were used to check
for randomness of residual values and to check
for systematic sources of bias between and
within groups. Subjective comparisons of
RMSE and SEpred were also made. Prediction
error for these models was based on an itera-
tive “leave one observation out at a time” ex-
clusion technique using only observations
from the five or six groups included in the
training set.

The second technique was intended to fi-
nalize the best form of the model, identify the
appropriateness of specific factors, and param-
eterize those factors. We used a more formal
“sample-reuse” method known as cross-vali-
dation (Davison and Hinckley 1997). Cross-
validation ignored the original groupings and
analyzed the data as a single universal set, en-
abling us to develop a more robust model al-
lowing more universal applicability.

In our cross-validation procedure, we ran-
domly removed about 15% to 20% of the data
and evaluated fit by comparing the predicted
strength values to the actual strength results of
unused data to validate the models. We would
then add that data back into the model, ran-
domly remove another 15% to 20% of the
data, and repeat the evaluation until each data
value had been removed once and only once.
This process has been used primarily for mod-
el selection with some group determination
based on comparisons of prediction error
(Davison and Hinckley 1997).

RESULTS AND DISCUSSION

The primary model (Eq. (1)) evaluated was
an independent-component method using only
data on Klason lignin (Klig), glucose (Glu),
mannose (Man), xylose (Xyl), arabinose

(Arb), and galactose (Gal) without first-order
interactions between the main factors.

Pair-wise correlations (i.e., scatterplots) pro-
vide an effective way to show the basic rela-
tionships between each of the variables. Pair-
wise correlation plots, also known as scatter-
plots, have long been used in statistical disci-
plines to quickly compare the bivariate
relationships between each of a large number
of variables (Cleveland 1994). In Fig. 3, pair-
wise correlation plots are given for all poten-
tial first-order combinations in the individual-
component model. The value in the upper
right and lower left corner of each column or
row label represents the upper limit and lower
limit, respectively, of the range for that
weight-percent variable when used as either
the x or the y axis depending on the individual
correlation being examined. For example, the
data range for Arb goes from 0 to 0.02 when
used as the x axis of the Man-Arb correlation.
Likewise, the range of Arb goes from 0 to 0.02
when used as the y axis of the Xyl-Arb cor-
relation. A thorough study of all 21 correla-
tions shown in Fig. 3 allows the reader to
comprehend the interdependence between
many of the variables, and these correlations
will be the basis for many of the assessments
made in the following discussions.

The pair-wise comparisons in Fig. 3 clearly
show that Arb, Gal, Man, and Xyl are posi-
tively correlated with residual strength. As any
one of these hemicellulose building blocks is
degraded, that wood material’s bending
strength is reduced. With the exception of the
PA (the most acidic group) and BBA (the only
basic group) treatment groups, visual inspec-
tion of the pair-wise correlation graphs indi-
cated similar rate relationships between resid-
ual strength and the individual chemical com-
ponents for untreated and the remaining four
FR treatment groups (Fig. 3).

Transformations of the predictors and resid-
ual strength to improve the models were sug-
gested by visual analysis of the pair-wise
plots. However, these transformations did not
produce substantial gains in prediction or un-
derstanding, and the primary compositional
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FIG. 3. Pair-wise correlation plots, also known as scatterplots, for all potential first-order combinations in the
individual-component model. The value in the upper right and lower left corner of each column or row label represents
the upper and lower limit, respectively, of the range for that variable for either the x or y axis depending on the
individual correlation being examined. For example, the data range for arabinose (Arb) goes from 0 to 0.02 when used
as the x axis of the mannose (Man)-Arb correlation or when used as the y axis of the xylose (Xyl)-Arb correlation.

data were not transformed. In fact, Arb acted
as a naturally segmented predictor. A naturally
segmented predictor is highly correlated to
only a limited segment of the entire range of
another variable. For example, in reviewing
the R-ratio vs. Arb relationship (Fig. 3), it was
evident that Arb was only related across a lim-
ited range of R-ratios in that Arb went from
100% to 0% composition when residual
strength had not yet approached 50% (Fig. 3).
Our data indicated that all the Arb had been
degraded before R-ratios decreased below 0.5.

No simple correlation exists between Glu
content and early strength loss (Fig. 3). Recall
that most of the Glu in pine is associated pri-
marily with cellulose. Because of cellulose’s

unbranched, linear structure and its crystalline
nature, its critical β-1-4 glucosidic linkages
are inherently less accessible and accordingly
more resilient than are those of the hemicel-
luloses (Sjostrom 1981). Thus, Glu is not eas-
ily or initially degraded.

Klig content is negatively correlated with
residual strength. One reason for this is that
Klig is not as susceptible to acid hydrolysis as
are the carbohydrates. As the carbohydrates
are selectively removed, the percentage of
Klig in the residual material appears to in-
crease, resulting in a negative correlation with
residual strength (Fig. 3).

Hemicellulose carbohydrates were highly
correlated with residual strength (Fig. 3). In
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general terms, the R-ratio can be thought of as
the ratio between a specimen’s actual strength
and the average strength of the untreated, un-
exposed controls. In Fig. 3, the R-ratio-Gal
and R-ratio-Arb relationships appear linear
right from the start, but the R-ratio-Xyl, R-
ratio-Man, and R-ratio-Klig relationships seem
unaffected during the first 10% to 20%
strength loss. Arb was found to be strongly
related to, and a good predictor of, early
strength loss in the R-ratio range of 1.0 → 0.5.
Gal content was strongly related to strength
across the whole specimen (R-ratio range 1.0
→ 0.0), but it did not predict initial strength
loss nearly as well as Arb. Also, after an initial
40% strength loss, the R-ratio-Xyl and R-ra-
tio-Man relationships each appeared to be-
come strongly correlated to strength loss as
residual strength dropped from 0.6 to 0. This
was another example of naturally segmented
predictors. This implies that strength loss in
pine appears to have a sequential relationship
with hemicellulose degradation. First Arb is
affected, then Man and Xyl, which provide in-
ference on the condition of the hemicellulose
main chain. The R-ratio-Glu relationship does
not appear to be as strongly related as other
components. Cellulose, which is composed
entirely of glucose, ‘does not appear to be in-
volved in the earliest stages of strength loss.
This is further confirmed by recent work of
Sweet and Winandy (1999), which indicated
that degree of cellulose polymerization was
not strongly related to the first 30% to 40%
loss in strength. Lignin also appears to be less
involved in early strength loss. These results
led us to speculate that at its earliest stages,
wood strength is reduced by decomposition of
the branched side chains and later on by de-
composition of the backbone components of
hemicelluloses.

Some segregation between the treatment
groups (six FR treatments and the untreated
pine group) is apparent in several plots (Fig.
3). Individual regression analyses by treatment
group did not select a consistent set of regres-
sion variables. However, it was felt that these
differences were not significant enough to sup-

port independent models for each group when
they appear visually similar. Although each in-
dividual regression had high R2 values (0.63
to 0.96), several of the independent variables
(Klig, Glu, Man, and Xyl) were found to be
moderately collinear. Collinearity occurs when
one variable is a linear function of one or more
of the others (Draper and Smith 1998). In gen-
eral terms, this means that if variables A and
B are collinear, they are linear functions of one
another. By entering variable A into a model,
this effectively also adds information from
variable B into that model. In severe cases,
this may completely preclude the need to add
B into the model. The variables associated
with the higher condition indices, a measure
of collinearity, included the intercept, Klig,
Glu, Xyl, and Man. These later factors are
each associated with lignin, cellulose, or the
backbone of the hemicelluloses and not the
branched side chains of hemicellulose.

Several predictors repeatedly had high var-
iance inflation factors. Variance inflation fac-
tors are statistical comparisons that provide a
measure of the linear relationship between any
one predictor and other predictor variables, ex-
cluding the intercept (Draper and Smith 1998).
High variance inflation factors were noted for
Klig, Gal, Xyl, and Man. The high variance
inflation factor also suggests collinearity and
results from the high pair-wise correlation be-
tween these four factors (Fig. 3). This may
explain why Gal was not found to be a critical
model parameter because using either Man or
Xyl partially accounted for Gal-related mod-
eling information.

Grouped analysis

To further our understanding, we grouped
all the treatments to evaluate an aggregated
relationship between the chemical components
and strength. From our first analysis, we rec-
ognized that while the degradation of individ-
ual carbohydrate components of hemicellulose
was related to strength loss, the specific rela-
tionships were complex. The inclusion of a
covariate to standardize the influence of the
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T ABLE 1. Ordinary  leas t -squares  regress ion f i t  s ta t i s t ics  for  adjus ted  coef f ic ient  o f  de terminat ion  (R2) .  root  mean
square error (RMSE), and predictive error (SEpred) based on only the six “main factor” chemical components of pine,

both with and without Ea .

Excluded
groups

Residual MOR Adjusted R2 Relative RMSE (%) Relative SEpred (%)a

n (R-ratio) Without Ea With Ea Without Ea With Ea Without Ea With Ea

N o n e 151 0.765 0 .75 0.81 16.8 14.7 17.2 15.2
B B A 129 0.731 0 .74 0 .85 17.7 13.8 18.6 14.3
P A 132 0 .823 0 .85 0 .86 10.1 9.7 10.3 10.0
B B A , P A 110 0 .795 0 .88 0 .88 9 .5 9 .2 9 .9 9 .6

a Relative SEpred is determined using an iterative “leave one observation out” withdrawal technique performed n times.

various FR treatments was considered to en-

An analysis using the six main factors (Eq.

hance the universality of the model. Previous

(1)) found that Ea was sometimes a significant

work had shown that the various FR treatment
chemicals affected strength loss differently.

parameter that improved model fit as shown

Figures 2a through 2g suggest that individual
FR treatments, or more precisely the hydro-

by adjusted R2 and standard error of prediction

lytic potential of each FR treatment to reduce
strength, might act as covariates. The kinetic

(Table 1). However, the inclusion of Ea pri-

activation energy (Ea) values for each FR
treatment as derived by Lebow and Winandy

marily improved the fit of the tested models

(1999) were used to normalize the rate of
strength loss data. Accordingly, Ea values for

that included the PA data, evaluated with a

each FR treatment or for untreated wood were
then added to the models (Eq. (1) and (2)).
However, the Ea values were not independent
of the current data set and could, as a result,
yield positive results.

graphical analysis of predicted vs. residual
plots (not shown).

Concerns about the effects of collinearity

The combined data set provided us with

and inherent differences between treatment

more observations to better explore a main-
effects model that included selected first-order

groups led us to evaluate the inclusion of Ea

interactions (Eq. (2)). We evaluated this type
of model with and without Ea. The addition of

and specified interactions using the systematic

first-order interactions into the model did little
to improve fit and appreciably increased con-

fit-test scheme by group(s). This allowed us to

dition indices. As with the previous main-ef-
fects model, including Ea provided substantial

examine the influence of the different treat-

improvements in fit for the PA group (Table
2). However, including Ea into an analysis of

ment groups by pair-wise exclusion. Differ-

main factors and first-order interactions did
not substantially improve model fit for the oth-
er FR treatments or untreated wood especially
when evaluated by residual plots.

T A B L E  2 . Ordinary least-squares regression fit statistics for adjusted coefficient of determination (R2), root mean
square error (RMSE), and predictive error (SEpred) based on only the six “main factor” chemical components of pine,
selected first-order interactions, both with and without Ea .

Excluded
groups

Residual MOR
Adjusted R2

Relative RMSE (%) Relative SE pred (%)a

n (R-ratio) Without Ea With Ea Without Ea With Ea Without Ea With Ea

None 151 0.765 0.75 0.81 16.7 14.5 18.0 15.7
BBA 129 0.731 0.74 0.84 18.0 13.9 19.9 14.9
PA 132 0.822 0.87 0.88 9.5 9.0 10.7 10.3
BBA, PA 110 0.795 0.89 0.89 9.0 8.9 10.5 10.2

a Relative SEpred is determined using an iterative “leave one observation out” withdrawal technique performed n times.
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ences were noted between the strongly acidic
PA group and the weakly basic BBA group
with the untreated and other four slightly acid-
ic remaining groups (Fig. 3). The PA group
did not exhibit a similar relationship to the
other treatments in the R-ratio-Arb and R-ra-
tio-Gal relationships. More strikingly, BBA
differed from all others in all Man relation-
ships (Fig. 3). BBA was included in the orig-
inal FR-degrade experiments because the
chemical behavior associated with weakly ba-
sic BBA differs from acid-based systems that
use phosphates for fire retardancy. Thus, while
BBA differences are not striking like the PA
differences in terms of prediction, they were
different enough to cause concern.

The grouped analysis primarily helped us to
identify which treatment groups could be
modeled together (Tables 1 and 2). The results
of the grouped analysis can be summarized as
follows:

1) BBA should not be included in cross-val-
idation analyses in order to remove the un-
certain influence it might have in the model
building process because its basic chemis-
try is dissimilar to the acidic chemistry of
the phosphate groups.

2) Ea should not be included in subsequent
cross-validation analyses because, except
for PA treatments, it did not seem to sub-
stantially improve the fit of the model of
the other weakly acid FRs or untreated
wood when judged by residual plots.

3) First-order interactions should not be in-
cluded in our subsequent cross-validation
analyses because they did little to improve
the fit of our models and appreciably in-
creased our condition indices.

The grouped analysis provided a data set for
the cross-validation analysis, which was used
to identify the preferred model form and the
modeling factors and to parameterize those
factors.

Cross-validation analysis
The six-fold cross-validation scheme, which

randomly removed 1/6 of the data at a time,

TABLE 3. Model selection and fit statistics for six-fold
cross-validation procedure based on six components with-
out BBA observations using a “remove 1/6 of the data at
a time” iterative technique.

Number of Adjusted Relative
predictors Predictors R2 SEpred (%)

1 Xyl 0.69 19.4
1 Man 0.65 20.8
1 Arb 0.53 24.2
1 Gal 0.49 25.1
1 Klig 0.39 27.3
1 Glu 0.12 32.8
2 Arb, Xyl 0.72 18.5
2 Glu, Xyl 0.70 19.3
2 Arb, Man 0.70 19.3
3 Arb, Xyl, Gal 0.74 18.3
3 Arb, Xyl, Glu 0.73 18.2
4 Arb, Xyl, Glu, Gal 0.74 18.2
4 Arb, Xyl, Glu, Klig 0.72 18.4
5 Arb, Xyl, Glu, Gal, Klig 0.74 18.3
5 Arb, Xyl, Man, Gal, Glu 0.74 18.4
6 All 0.74 19.0

showed minor variability on component selec-
tion but generally produced fairly consistent
coefficients of determination and standard er-
ror of predictions (Eq. (1) without Ea, without
interactions, without BBA, but with PA). Ta-
ble 3 shows the results of such a model, the
significance of various factors, and the error
associated with variously factored models.
The overall six-fold cross-validation scheme
would choose the four-component model
based on Arb-Xyl-Glu-Gal based on its having
the lowest SE,,, (Table 3). The top two-,
three-, and five-component models would be
Arb-Xyl, Arb-Xyl-Gal, and Arb-Xyl-Glu-Gal-
Klig, respectively.

Recall that the PA treatment had severe ef-
fects on strength. Those strength losses ap-
proached 50% initially after treatment (Fig.
2b). The other treatments also had substantial
strength loss (Fig. 2a, 2c-g), but those losses
were closer to 20% to 25%, which was only
half as much as the strength loss from the PA.
These differences imposed much higher error
for any model that included PA (compare
SEpred of about 18% in Table 3 (with PA) to
the ≈ 10% in Table 4 (without PA)).

Excluding PA from further cross-validation
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TABLE 4. Model selection and fit statistics for five-fold
cross-validation procedure based on six components with-
out BBA and PA observations using a “remove 1/5 of the
data at a time” iterative withdrawal technique.

Number of
predictors Predictors

Relative
Adjusted R2 SEpred (%)

1 Xyl 0.75 13.5
1 Man 0.75 13.5
1 Gal 0.72 14.8
1 Arb 0.68 15.6
1 Klig 0.46 20.0
1 Glu 0.05 26.5
2 Arb, Man 0.86 10.4
2 Arb, Xyl 0.84 11.2
3 Arb, Man, Glu 0.87 9.8
3 Arb, Man, Klig 0.87 10.0
4 Arb, Man, Glu, Klig 0.87 9.7
4 Arb, Man, Glu, Xyl 0.88 9.8
4 Arb, Man, Glu, Gal 0.87 9.8
5 Arb, Man, Glu, Xyl, Klig 0.88 9.7
5 Arb, Man, Glu, Gal, Klig 0.88 9.7
6 All 0.88 9.7

FIG. 4. Accuracy of six-parameter individual-compo-
nent model as judged by predicted vs. residual plot of R-
ratio for model including Klason lignin (Klig), glucose
(Glu), xylose (Xyl), galactose (Gal), arabinose (Arb), and
mannose (Man).

modeling provided fewer specimens and ne-
cessitated using a five-fold cross-validation
scheme (removed 1/5 of the data at a time)
instead of the six-fold scheme (Eq. (1) without
Ea, without interactions, without BBA, and
without PA). As would be expected after re-
moving the outlying group, the five-fold cross-
validation results had lower variability and ex-
hibited less variation in component selection.
Table 4 shows the results of several multiple-
factor models. The significance of various fac-
tors and the error associated with variously
factored models, including the fully parame-

terized six-factor model, are shown. The over-
all five-fold cross-validation scheme, when
used for model selection, would select Arb-
Man, Arb-Man-Glu, Arb-Man-Glu-Klig, and
Arb-Man-Glu-Xyl-Klig as the best two- to
five-parameter models, respectively.

Excluding both the highly buffered BBA
observations and the highly acidic PA obser-
vations simplifies the model building process
and interpretation of the results. The resulting
six-factor model (Klig, Glu, Man, Xyl, Gal,
Arb) appeared to have very good predictive
abilities with truly random-looking residuals
whether judged collectively or by treatment
group (Fig. 4; Table 5). However, the collin-

TABLE 5. Parameter estimates and standard errors (in parentheses) for the full (six-factor) model and the two selected
three-factor models without BBA and PA observations using a “remove 1/5 of the data at a time” iterative withdrawal
technique.

Klig
Glu
Xyl
Man
Gal
Arb
Intercept
Adiusted R2

All components
(six factors)

-0.74 (0.45)
-0.85 (0.35)

3.09 (2.52)
4.93 (1.49)
2.35 (3.34)

20.51 (2.79)
0.48 (0.17)

0.88

Three components

-1.11 (0.30)

8.19 (0.65)

22.58 (2.51)
0.24 (0.11)

0.87

Three components

-1.18 (0.38)

5.89 (0.74)

23.67 (2.54)
0.34 (0.16)

0.87
SEpred (%) 9.7 9.8 10.0
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earity diagnostics for this six-factor model still
indicated moderate collinearity between aver-
age strength, Klig, and Man. There also ap-
pears to be weaker dependency between Xyl,
Man, and Gal. The individual pair-wise cor-
relations among Xyl, Man, and Gal were high
(Fig. 3). The Pearson’s correlation coefficients
were 0.94 for Xyl-Man, 0.87 for Man-Gal, and
0.92 for Xyl-Gal. Most importantly, Arb was
strongly associated with the low order condi-
tion indices, suggesting that its importance in
explaining early strength loss was not depen-
dent upon the other factors.

In summary, several two-factor models
were strong contenders compared with the
larger five- and six-factor models (Table 4).
However, real improvements in fit and reduced
error were evident with several three-factor
models. In particular, two of the three-factor
models had virtually equivalent performance
to the larger six-factor model. Average
strength (i.e., the intercept term), Arb, either
Man or Xyl (not both), and either Glu or Klig
(not both) resulted in a fairly stable model
with similar accuracy to the six-factor models
discussed earlier (Table 4). Two of the three-
parameter models were indicated by adjusted
R2 and SEpred as the best choices when all as-
pects of maximized fit and minimized predic-
tion error were considered. Parameter esti-
mates for the Arb-Man-Glu and Arb-Man-Klig
models are given in Table 5. The residuals of
the Arb-Man-Klig model were less random
than those of the Arb-Man-Glu model and
thus the Arb-Man-Glu model was selected as
our best three-parameter model and our pre-
ferred overall model.

Theoretical mechanism

Our initial hypothetical model proposed that
microbial or thermochemical degradation of
solid wood occurred initially at side-chain
structures, then at hemicellulose main-chain
locations, and finally with cellulose and lignin.
Limiting our empirical analysis of the data to
the first 50% loss in original strength (i.e.,
from 100% to 50% residual strength) showed

that a direct relationship clearly existed be-
tween strength and mannose, galactose, xy-
lose, and arabinose contents. From a qualita-
tive viewpoint, Arb content, or change thereof,
was the single most important predictive pa-
rameter at the earliest stages of strength loss
in pine. This clearly supports our claim that
degradation of hemicellulose side-chains is a
primary event in early strength loss. Entering
Man as the second model parameter seemed
to add more than entering either Xyl or Gal
separately. Because Man was highly correlated
with both Xyl and Gal (Fig. 3), adding Man
into the model appeared to implicitly add in-
formation from all three components (Man,
Xyl, Gal). Mechanistically, it implies that the
extent of degradation of the hemicellulose
main chains is the next determinative event.
Finally, Tables 3, 4, and 5 show that the final
sequential piece of information involves the
integrity of the cellulose or lignin matrix. En-
tering either Glu or Klig provided inference
on the chemical matrix of wood. Our analysis
supports using Glu as the third parameter, al-
though Klig can also function in this role. This
qualitative approach of choosing Arb-Man-
Glu as the three most appropriate parameters
to use in a three-parameter model also agreed
with the quantitative analyses using stepwise
(i.e., forward) (α < 0.05) and backward re-
gressions (α < 0.05). An evaluation of se-
quential residual plots, which are qualitatively
similar to a forward selection procedure, also
supported this three-parameter Arb-Man-Glu
model. When Glu and Klig were compared as
the third parameter added to a two-parameter
model, two outlying observations appeared to
heavily influence the Klig relationship, where-
as Glu appeared more consistent across the
range of observations (Fig. 5).

In summary, a fundamental relationship ex-
ists between changes in chemical composition
and strength loss for pine. Significant work
still needs to be done to verify the exact re-
lationships for other wood species, material
quality levels, and degradation pathways (i.e.,
mechanisms) before truly robust predictive
models can be developed. Robust models are
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FIG. 5. Accuracy of the two best three-parameter in-
dividual-component models as judged by a plot of pre-
dicted vs. residual strengths for (a) a model including glu-
cose (Glu), arabinose (Arb), and mannose (Man) and (b)
a model including Klason lignin (Klig), arabinose (Arb),
and mannose (Man).

defined as models that are reasonably reliable
and accurate when applied in cases that may
violate some of the original modeling assump-
tions. The preliminary models discussed in
this report were reasonably predictive for
clear, straight-grained pine with adjusted R2

values exceeding 0.75. For comparative pur-
poses, the strength-stiffness relationship for
clear, straight-grained loblolly pine from the
USDA Forest Service, Forest Products Labo-
ratory clear wood database (Forest Products
Laboratory 1999) is 0.65. This strength-stiff-
ness relationship, when applied to dimension
lumber, has only an R2 value of about 0.60,
but it forms the basis for a majority of the

machine-stress grading of dimension lumber
in North America. Thus, the reported relation-
ship between strength and chemical composi-
tion may have potential as a nondestructive
measure of the residual strength of clear wood
and possibly lumber upon further study and
modeling. We are working to understand these
mechanisms and develop a robust predictive
model for predicting strength loss from chang-
es in the chemical composition of wood and
lumber.

CONCLUSIONS

The empirical analysis clearly supported the
purposed theoretical model, which assumed
that strength loss starts with chemical degrade
at side-chain hemicellulose structures, then in
the main-chain structure of hemicellulose, and
finally in cellulose and lignin. A linear three-
parameter model, using changes in arabinose
as an indicator of degradation in side-chain
hemicellulose, changes in mannose to indicate
main-chain hemicellulose degradation, and
changes in glucose content to indicate cellu-
lose degradation, was found to reasonably pre-
dict bending strength loss with an R2 > 0.75.
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