

3

REVITALIZING THE SOFTWARE ASPECTS OF SYSTEMS ENGINEERING

DISTRIBUTION LIST

AFPEO/AC
AFPEO/C2&CS
AFPEO/WP
AFPEO/F/A-22
AFPEO/CM
AFPEO/SP
SAF/AQX
SAF/AQC
SAF/AQI
SAF/AQL
SAF/AQP
SAF/AQQ
SAF/USA

cc:
HQ AFMC/CC
HQ AFSPC/CC
AF-CIO
AFPEO/JSF
SAF/ACE
SAF/AQR
SAF/ILC
HQ SSG/ED
HQ MSG/CD
AFOTEC

4

Enclosure - Guidance for Core Software Management Metrics

Program offices and developers should mutually agree on and implement selected software
metrics to provide management visibility into the software development process. The metrics
should clearly portray variances between planned and actual performance, should provide early
detection or prediction of situations that require management attention, and should support the
assessment of the impact of proposed changes on the program. The following core metrics are
required:

- Software Size
- Software Development Effort
- Software Development Schedule
- Software Defects
- Software Requirements Definition and Stability
- Software Development Staffing
- Software Progress (Design, Coding, and Testing)
- Computer Resources Utilization

These indicators should be tailored and implemented consistent with the developer’s internal
tools and processes. Program offices and developers should agree upon and establish additional
metrics or means of insight to address software issues deemed critical or unique to the program.
All software metrics information should be available to the program office, ideally through on-
line, electronic means. Additional information is provided below for each required metric.

Software Size

The size of the software to be developed/integrated is the most critical factor in estimating the
software development effort and schedule. Software size should be estimated and recorded prior
to the start of the program, and tracked until the completion of development by all programs
involving software development or sustainment. Software size should be estimated and tracked
at least to the function or Computer Software Configuration Item (CSCI) level for each spiral,
increment, or block. It should be re-evaluated at major program milestones or whenever
requirements are changed. The actual size should be recorded at the time a capability (spiral,
increment, or block) is delivered. The reasons for changes in software size should also be
captured over the development period.

Software size is typically measured in source lines of code (SLOC). For weapon system
software development, SLOC is likely the most readily available and the best understood
measure. Size should be tracked for new, modified, and reused code. For programs where
relatively small changes are being applied to large existing software products, or for
development efforts that primarily involve the integration of existing software products, some
type of “equivalent lines of code” or some other measure may be appropriate to identify and
track the volume of effort required. Whatever measure is used must be clearly defined such that
it is easily understandable and can be consistently applied.

Changes in software size may indicate an unrealistic original estimate; instability in
requirements, design, or coding; or lack of understanding of requirements. Any of these
situations can lead to increases in the cost and schedule required to complete the software.
Variations in software size when tracked by spiral, increment, or block, may indicate migration
of capability from earlier to later increments. Software size data collected over time will provide
a historical basis for improved software estimating processes.

5

Software Development Effort

Software development effort is measured in staff hours or staff months, and directly relates to
software development cost. Estimated software development effort is derived primarily from
software size, but also depends on other factors such as developer team capability, tool
capability, requirements stability, complexity, and required reliability.

When combined with earned value data and other management information, variances in planned
and actual effort expended may indicate potential overruns, lack of adequate staff or the proper
mix of skills, underestimated software size, unstable or misunderstood requirements, failure to
achieve planned reuse, or unplanned rework as a result of software defects.

Software Development Schedule

Software schedules should be planned to at least the function or CSCI level for each spiral,
increment, or block, and should be re-evaluated at major program milestones or whenever
requirements are changed. Planned and actual schedules should be tracked continuously from
the start through the completion of development. Software schedules should provide insight into
the start and completion dates as well as progress on detailed activities associated with
requirements, design, coding, integration, testing, and delivery of software products.

Software development schedule durations are measured in months. Like effort, estimated
software development schedules are determined primarily from software size, but also depend on
other factors such as developer team capability, tool capability, requirements stability,
complexity, required reliability, and software testing methods and tools.

Late or poor quality deliveries of low level software products are indicators of overall program
schedule risk. Schedules should be examined for excessive parallel activities that are not
realistic when available resources such as staff or integration labs are considered, excessive
overlap of activities where dependencies exist, or inconsistent detail or duration for similar tasks.

Software Defects

Software defects should be tracked by individual software products as part of the system defect
tracking process from the time the products are baselined. Software defects should be tracked at
the function or CSCI level or lower, by spiral, increment, or block.

Defects are measured by tracking problem reports. Problem reports should account for missing
or poorly defined requirements that result in software rework or unplanned effort. Problem
reports may be tracked by category or criticality, including total number of problem reports
written, open, closed, etc. These could be further broken down by additional categories,
including development phase (requirements definition and analysis, design, code, developer test,
and system test) in which the problem was inserted, development phase in which the problem
was discovered, or by severity.

Software defect metrics provide insight into the readiness of the software to proceed to the next
phase, its fitness for intended use, and the likelihood/level of future rework. Analysis of
software defects may also indicate weaknesses in parts of the development process, or may
identify certain software components that are particularly troublesome and thus contribute
greater program risk.

6

Software Requirements Definition and Stability

The number of software requirements should be tracked by spiral, increment, or block, over time.
The number of changes to software requirements (additions, deletions, or modifications) should
be tracked in the same manner. The reasons for requirements changes (new capability or
improved understanding derived during development) should also be tracked.

The number of requirements relates to software size and provides an indicator of how the
requirements are maturing and stabilizing. Software requirements changes can be an early
indicator of rework or unplanned additional software development effort.

Software Development Staffing

Software staffing is tracked using two separate measures. The first tracks the status of the
developer's actual staffing level versus the planned staffing profile over time. A separate
measure tracks developer turnover (unplanned losses of development personnel that must be
replaced). Staffing can also be tracked by personnel type, such as management, engineering,
qualification/testing, and quality assurance.

It is common for developers to plan for a rapid buildup of developers at the start of a program,
and it is also common for programs to have difficulty ramping up their staff at the planned rate.
Late arrival of staff indicates planned up-front work is not being completed on schedule, and will
likely lead to delays in delivery, reduced functionality, or both. Turnover adversely impacts
productivity through the direct loss of developers, replacement staff learning curve, and the
impact on existing staff to support replacement staff familiarization.

Software Progress (Design, Coding, and Testing)

Software progress is used to track over time, down to the lowest level of software components,
the actual completion of development phase activities compared to the program plan. A typical
approach to progress tracking involves measuring the actual number of software components or
units designed, coded, or tested compared to the planned rate of completion.

Failure to complete these lower level development activities according to schedule is an
indication that there will likely be impact to program-level schedules.

Computer Resources Utilization

Computer resources utilization is a measure of the percentage of computing resources consumed
by the planned or actual software operating in a worst case processing load. Engineering
analysis is required to define realistic worst case scenarios the system is expected to encounter.
Utilization is measured as a percentage of capacity used for processing, memory, input/output,
and communication links. This measure should be tracked as an estimate in the early phases of
system development, and actuals as the system continues through development/integration.
Monitoring computer resources utilization helps ensure the planned software design and
expected capabilities will fit within the planned computer resources, and that adequate reserve
capacity is available to permit some level of enhancement in the post deployment support phase.
Overloaded computer resources can lead to system instability or other unacceptable performance.

