# A Users' Guide for the Computer Program ISDMAP: Analysis and Mapping of In-Situ Gamma-Ray Spectrometry and Soil Sample Data 

Marcel Reginatto, Paul Bailey, and Peter Shebell<br>Environmental Measurements Laboratory<br>U.S. Department of Energy<br>201 Varick Street, 5th Floor<br>New York, NY 10014-4811

November 2000

## DISCLAIMER

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

This report has been reproduced directly from the best available copy.
Available to DOE and DOE Contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401.

Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650.

## Abstract

The computer program ISDMAP was written to analyze data from a set of in situ gammaray spectrometry measurements on a grid. It can also do a combined analysis of this type of data and data from soil samples. One well-known difficulty with attempting this type of analysis is that such sets of data can never provide enough information to determine a unique solution. This can be understood intuitively since a finite number of measurements can not be sufficient to determine a continuous distribution (this observation is not restricted to data collected with the in situ technique, but holds for any set of discrete measurements, such as a series of soil samples). One can, however, restrict to particular types of solutions by requiring that they satisfy other conditions in addition to the measurements, and this is the approach taken by ISDMAP. In ISDMAP, the data are analyzed in a different manner depending on whether the data is from a characterization survey or from a post-remediation survey. The "characterization" option creates a map of contamination in surface soil that is smooth and fits the data. The "post-remediation" option creates a map with a summary of potential hot spots over a constant background level, providing a map of hot spots that might be "hidden" in the data. This report describes the operation of ISDMAP in sufficient detail to allow a user to prepare the necessary input files and run the program. The program requires a PC with DOS or a DOS emulator (most Windows machines have this).
Introduction ..... 1
Running ISDMAP ..... 2
ISDMAP Operating Modes ..... 4
Characterization Mode ..... 5
Post-Remediation Mode ..... 5
File Specifications of ISDMAP ..... 6
The Detector Response Function (RF) Input File ..... 6
The Data Input File ..... 7
The Default Distribution (DD) Input File ..... 9
The Attenuation Input File ..... 10
Viewing and Interpreting the Results ..... 11
Example A ..... 12
Example B ..... 13
Acknowledgments ..... 13
References ..... 14
Figures 1-10 ..... 16
Appendix ..... 28

## TnTRODUCTION

In the in situ gamma-ray spectrometry technique, a detector is positioned above the ground facing downwards to measure the spectral distribution of the photon fluence due to gamma emitting radionuclides in the soil (Beck et al. 1972; ICRU 53 1994; Miller and Shebell 1995). Due to the relative ease of data collection, the technique is particularly well suited for quickly determining levels of contamination over large areas. Data analysis requires some care, however, as each in situ measurement provides a weighted average over the detector's field of view, which typically measures on the order of a hundred square meters at a detector height of 1 m . For example, in the case of uniformly depth-distributed ${ }^{137} \mathrm{Cs}$ about $30 \%$ of the measured fluence rate originates beyond a 3 m radius with a detector positioned 1 m above the soil surface. In the case of a surface source distribution, about half the fluence comes from the area beyond 10 m from the detector (ICRU 53 1994). A series of measurements performed on the order of meters apart will, therefore, provide overlapping coverage of the ground area, which will ensure that any areas of elevated activity (hot spots) between grid points are not missed. A grid spacing of 5 m and a detector height of 1 m is adequate for most radionuclides and depth profiles of interest.

A set of measurements performed on a grid will provide valuable information on the spatial distribution of radionuclides in soil, but it can never provide enough information to determine a unique distribution of the contaminant. In general, a large number of distributions will fit the same data equally well. This can be understood intuitively, since a finite number of measurements can not be sufficient to determine a continuous distribution. (This observation is not restricted to the data collected with the in situ technique but holds for any set of discrete measurements, such as a series of soil samples.) Analysis of this type of data is therefore best viewed as a problem of inference, in which we make use of the set of measurements together with some additional assumptions to choose our best estimate of the distribution. There are several approaches to dealing with the issue of inferring a distribution from a set of in situ measurements performed over a grid, and we discuss two of them here.

One approach that is often used is to plot the measurements on a map and then draw a contour plot. The assumption that is made here is that the activity levels of deposition on the ground follow the pattern of the contour plot of the count rates. This approach is very easy to implement. One can calculate conversion factors from count rate to deposition the ground (by using the assumption of spatial uniformity or constant levels of activity), and then "plug in" those conversion factors to obtain activity levels of deposition on the ground. However, there are two problems that can arise when using this method. The first, and most troubling problem,
is that the distribution of activity on the ground constructed in this way usually will not fit the measured data. This is because the assumption of spatial uniformity does not hold when the contamination is non-uniform. The second problem is that contour plots will not allow for any result that exceeds the highest value measured at a grid point, and therefore cannot be used to single out potential hot spots that might be present between grid points. These hot spots, as will be shown later, can occur at places where one might not at first expect them to occur when just looking at the contour plot.

Another approach to the analysis of in situ gamma-ray spectrometry data is to do a deconvolution (or unfolding) of the data. This is the method used in ISDMAP (in situ deconvolution and mapping program). Using ISDMAP's method of data deconvolution results in distributions of activity on the ground that always fit the data to within experimental error.

## Running isdmap

Prior to running the program, the user will need to create the response function file, the input file and (if required) the default distribution file, which must be in the same directory as the executable file (file specifications are detailed in the next section of this report). Enter into a DOS prompt and go to the directory that contains the ISDMAP program.

While most of the information needed to run the code is read from input data files, some information is provided by the user at run time. Generally, after the user has entered their response to the question, he or she should type an "Enter". After starting the program the user will be prompted as follows:

The user chooses the mode to run the program in:
"ENTER YOUR CHOICE OF DECONVOLUTION,
"1 FOR CHARACTERIZATION (TO ESTIMATE THE DISTRIBUTION) " 2 FOR POST-REMEDIATION (TO SEARCH FOR HOT SPOTS):"
For help with this, see discussion in the section titled ISDMAP Operating Modes.

The user is prompted for the name of the input file:
"NAME OF FILE WITH INPUT DATA?"

The user should type a response followed by a return. The file name can be any legal DOS file name (up to 32 characters for the file name, followed by a period, followed by up to 3 characters for the extension).

The user is prompted for the name of the output files:
"NAME OF OUTPUT FILE? (USE 8 CHARACTERS)"
The user should type in no more than eight characters and no extension. Warning: ISDMAP will not overwrite an existing file. If ISDMAP output files with this name already exist in this directory, the program will quit after execution, without saving the output files.

The user is given a choice for modeling the depth profile of the activity on the ground:
"ENTER YOUR CHOICE OF SOURCE DEPTH PROFILE,
"1 FOR UNIFORM DISTRIBUTION
"2 FOR PLANE DISTRIBUTION"
These are the two extreme cases. In the uniform distribution, the contaminant is assumed to be distributed uniformly in depth, while in the surface distribution it is assumed to be only on the surface. The assumption of uniform distribution is more conservative, and its use is normally recommended. Note: if you included data from soil samples, you must choose a uniform source distribution.

If the user chooses a uniform distribution, the following options are available:
"ENTER YOUR CHOICE OF UNITS FOR THE ACTIVITY PER MASS,
"1 FOR Bq/kg
"2 FOR pCi/g :"

If the user chooses a plane distribution, the following options are available:
"ENTER YOUR CHOICE OF UNITS FOR THE ACTIVITY PER AREA,
"1 FOR Bq/m**2
" 2 FOR $\mathrm{pCi} / \mathrm{m}^{* *}{ }^{2}$ "

The user chooses a method of determining the background distribution:
"ENTER YOUR CHOICE OF METHOD TO DETERMINE THE BACKGROUND," the options depend on whether the user is in post-remediation mode or characterization mode.
For post-remediation mode the options are:
"1 TO DETERMINE THE BACKGROUND FROM THE MEASURED DATA "2 TO ENTER A BACKGROUND COUNT RATE"
and for characterization mode they are:
"1 TO USE THE DATA TO ESTIMATE A SMOOTH BACKGROUND "2 TO READ IN BACKGROUND DATA FROM A FILE :"

If the user chooses to enter a background count rate, they are prompted to enter it in:
"ENTER COUNT RATE ( $>0$ ) IN counts per minute (cpm)"
Note that this must appear in cpm.

If the user chooses to read in the background data from a file, the name of the file must be entered:
"NAME OF FILE WITH BACKGROUND DATA?"

If the user has chosen to do a "POST-REMEDIATION" deconvolution, the area of the hot spot (in meters) must be entered:

## "AREA OF HOT SPOT? (IN SQUARE METERS, e.g.: 1.0)"

The hot spot is modeled as a square. Note that this is an area, so when searching for a hot spot that is 2 m by 2 m the user should enter 4.0. If the area specified by the user does not match the size of a square that can be constructed out of the cells used to model the ground, the program will approximate it by a smaller square, and will print to screen the size chosen.

## TSDMAP Operating Modes

Each run of ISDMAP operates the program in one of two modes: the characterization mode or the post-remediation (hot spot detection) mode.

When ISDMAP operates in the characterization mode, the program produces a map that provides a smooth, "best estimate" of the distribution of the contaminant. The characterization mode is useful, for example, during characterization surveys.

When ISDMAP operates in the post-remediation mode, the program produces a map that, given a background level, shows potential hot spots that might be "hidden" in the data. The postremediation mode is useful, for example, for final status surveys after remediation.

## Characterization Mode

In this mode, ISDMAP will create a map of the contamination in surface soil that fits the experimental data within error. The user is given the option of having ISDMAP produce a solution without using a priori information, or of allowing the user to introduce a priori information into the analysis process. In maximum entropy data deconvolution, such a priori information can be included in the deconvolution through what is known as a default distribution. In the first case, ISDMAP uses the data to make an initial estimate of the average concentration of the contaminant at the measurement points, and then creates a smooth distribution using radial basis functions interpolation. If this initial distribution does not fit the data (i.e., if the chi-square per degree of freedom is different from 1), it uses an iterative process to improve upon the previous estimate to create a new smooth distribution using radial basis functions that fits the data better. [For a review of radial basis functions as well as several other interpolation methods, see Franke (1982)]. The distribution that results from this process is used as the initial estimate for the maximum entropy deconvolution. In the second case, the user prepares a file with a default distribution that takes into account a priori information that is specific to the site.

## Post-Remediation Mode

In this mode, ISDMAP will create a Hot Spot Map (with extension $\square H S M$ ) showing potential hot spots that might be "hidden" in the data.

The default distribution is always set to a constant background level. The user is given the option of having ISDMAP produce a solution without using a priori information, in which case the default is set to the concentration that minimizes the chi-squared, or of allowing the user to introduce a priori information into the analysis process, in which case the user enters a background level.

The post-remediation option makes use of an algorithm that is almost identical to the one developed for the computer program ISD97, described in detail in Reginatto et al. (1997) [see also Reginatto et al, (1998)]. A complete description of the algorithm is beyond the scope of this report, and we provide here only a brief summary of the approach used by ISDMAP. To generate a Hot Spot Map, the program uses a two-step process. In the first step, a maximum entropy deconvolution of the data is carried out assuming a constant default distribution. In the second step, this initial maximum entropy solution is analyzed, and the information is used to find the locations and magnitudes of potential hot spots. New deconvolutions are then done for each
potential hot spot. This second series of deconvolutions is carried out using default distributions that are constant everywhere, except at the location of the potential hot spot, where it is assumed that there is an area of elevated activity. The results of this second series of deconvolutions are all plotted on the Hot Spot Map.

## $F_{\text {ile Specifications of isdmap }}$

In order to perform a deconvolution of a data set, the user needs to provide ISDMAP information about the detector's response and the readings that were taken with the detector. To do this, the user needs to prepare at least two comma delimited data files-these files can be created with a spread sheet and exported as comma delimited files (*.CSV files), or with a simple text editor, separating datum with commas (do not attempt to use a word processor, as it will insert extraneous characters, causing the program to crash).

The numbers in these files are in either integer or real numbers format, which will be noted in parentheses for each entry. Real numbers can be written in standard notation (e.g., 638.5) or in exponential notation (e.g., $6.385 \mathrm{E}+02$ ).

## The Detector Response Function (RF) Input File

Note: We use the same terminology used in Miller and Shebell (1995). The parameters are organized onto lines as follows:

## 1. Number of Response Functions

Form: NR
$\mathrm{NR}=$ the number of response functions in the file (an integer).

## 2. Individual Response Functions

Form: ID, E, GPD, CR, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$,
ID $=$ The detector number is a number used to identify the detector (an integer).
$\mathrm{E}=$ The photon energy is a number used to identify the gamma line being measured (an integer).
GPD $=$ The gamma-per-disintegration-the fraction of photons, emitted per disintegration of the radionuclide (a real number).
$\mathrm{CR}=$ The full absorption peak count rate per unit incident fluence rate (a real number).
$A_{i}=$ Coefficients to a third order polynomial fit of the relative angular response as a function of the angle incidence, in degrees (three real numbers).

Note: there should be as many lines of response function parameters as the number of measurements specified in the first line of the ID file (NR).

Use: E should be set equal to the photon energy, in keV , rounded to the nearest integer. CR is a measure of the efficiency of the detector for flux perpendicular to the face of the detector, in units of $\mathrm{cpm} /\left(\mathrm{gamma} \mathrm{cm}^{-2} \mathrm{sec}^{-1}\right)$. The subscript of the coefficients, A, corresponds to the power of the variable. For example $\mathrm{A}_{1}$ is the coefficient of the linear term, $\mathrm{A}_{2}$ is the coefficient of the quadratic term. For a description of the relative angular response see EML Procedures Manual (1997).

Figure 1 shows an example of a RF file, with the response function data for the examples discussed in Examples A and B.

## The Data Input File

Figures 2 and 3 show the input files used for the examples in Examples A and B respectively. These figures can be used as examples of typical data input files. The first five lines contain general information about the measurements, and the other lines contain information specific to each measurement. The file is organized as follows:

## 1. Number of Measurements

Form: N

$$
\mathrm{N}=\text { total number of measurements in the file (an integer). }
$$

2. The Grid

Form: NX, NY, $\mathrm{X}_{0}, \mathrm{Y}_{0}$
$\mathrm{NX}=$ number of cells in the X direction (an integer).
$\mathrm{NY}=$ number of cells in the Y direction (an integer).
$\mathrm{X}_{0}=\mathrm{X}$ coordinate of the origin for the area to modeled (a real number).
$\mathrm{Y}_{0}=\mathrm{Y}$ coordinate of the origin for the area to modeled (a real number).
Use: When choosing the size of an area to be modeled, one should choose an area that is larger than the area covered by the measurements. This is because more than half of the field of view of a detector located at the perimeter of the measurement area can lay outside of the measurement area and the contributions to the count rate from background activity that is outside of the measurement area can not be neglected. An example is shown in Figure 3. The parameters $X_{0}$ and $Y_{0}$ can be used to shift the cells to correspond with a user-defined
or standard coordinate system, such as State Plane Coordinates. Figure 4 also illustrates use of this option-notice how the lower right hand corner of the modeled area is shifted.

## 3. Cell Size and Grid Spacing

Form: CS, D
$\mathrm{CS}=$ The size, in meters, of the cells used to model the ground (a real number).
$\mathrm{D}=$ The distance between two detectors on the grid, in meters (a real number).
Use: The optimal cell size is determined from the following considerations: the cells must be small enough to ensure that the approximation of modeling the ground by discrete cells does not introduce a substantial error in the calculation, but large enough to reduce the total number of cells needed to model the ground-to reduce the computational burden. Cells with sides measuring 0.5 m have proven adequate to balance these two conflicting needs for a detector that is 1 m above the ground and on a 5 m grid. For other choices of detector height, the cell size and grid spacing should be scaled according to the detector height.

## 4. Detector ID, File Name

Form: ID, AF, RF
ID $=$ the detector I.D. number (an integer).
$\mathrm{AF}=$ the name, with path (if necessary), of the attenuation file (text).
$\mathrm{RF}=$ the name, with path (if necessary), of the response function file (text).
Use: The ID must correspond to the detector I.D. in the RF file.

## 5. Gamma-Ray Energy

Form: E
$\mathrm{E}=$ the gamma-ray energy of the nuclide of interest, in keV (an integer).
Use: This number must be the same as the number that appears in the Response File.
6. Measurement Parameters (In Situ Data)

Form: $\mathrm{n}_{\mathrm{i}}, \mathrm{H}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{I}}, \mathrm{CR}_{\mathrm{i}}, \mathrm{U}_{\mathrm{i}}$
$n_{i}=$ The I.D. number of the $\mathrm{i}^{\text {th }}$ measurement (an integer) $(1<\mathrm{i}<\mathrm{N})$.
$\mathrm{H}=$ The detector height, in meters (a real number).
$X_{i}=X$ coordinates of the $i^{\text {th }}$ measurement, in meters (a real number).
$\mathrm{Y}_{\mathrm{i}}=\mathrm{Y}$ coordinates of the $\mathrm{i}^{\text {th }}$ measurement, in meters (a real number).
$\mathrm{CR}_{\mathrm{i}}=$ The measured count rate, in counts per minute (a real number).
$\mathrm{U}_{\mathrm{i}}=$ The error associated with the $\mathrm{i}^{\text {th }}$ measurement, in counts per minute (a real number).
Note: 6 and 7 combined should contain as many lines as the number of measurements specified in the first line of the ID file ( N ).

Use: Format corresponds to in situ data. These lines contain information specific to each measurement. Data from in situ data as well as soil samples must be contained in the same file if they are both going to be used in the deconvolution.

## 7. Measurement Parameters (Soil Data)

Form: $\mathrm{n}_{\mathrm{i}}, 0, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{I}}, \mathrm{A}_{\mathrm{i}}, \mathrm{U}_{\mathrm{i}}$
$\mathrm{n}_{\mathrm{i}}=$ The I.D. number of the $\mathrm{i}^{\text {th }}$ measurement (an integer) $(1<\mathrm{i}<\mathrm{N})$.
$0=$ The number 0 , signaling no detector height, i.e., a soil sample (an integer).
$\mathrm{x}_{\mathrm{i}}=\mathrm{X}$ coordinates of the $\mathrm{i}^{\text {th }}$ measurement, in meters (a real number).
$y_{i}=Y$ coordinates of the $i^{\text {th }}$ measurement, in meters (a real number).
$\mathrm{A}_{\mathrm{i}}=$ the measured activity (a real number).
$U_{i}=$ The error associated with the $i^{\text {th }}$ activity measurement (a real number).
Note: 6 and 7 combined should contain as many lines as the number of measurements specified in the first line of the ID file (N).

Use: Format corresponds to soil data. For activity measurements, the same units (e.g., pCi/g, $\mathrm{Bq} / \mathrm{g}$ ) must be chosen at run time for reporting the results of the deconvolution Warning: once units are chosen for soil samples, the same units must be chosen at run time to avoid erroneous results.

## The Default Distribution (DD) Input File

Figure 5 shows the first 10 lines of a DD file.

## 1. Minimum Acceptable Value

Form: minV
$\min V=$ The lowest acceptable value, in the chosen units of concentration (a positive, non-zero real number).

Use: Any concentration in the rest of the file that is below this value is reset to this value by the program. This can be useful for making sure that small or negative values generated by an interpolation program do not make their way into the deconvolution process.

## 2. Cell Coordinates and Activity

Form: X, Y, $A$
$\mathrm{X}=\mathrm{X}$ coordinates of the cell, in meters (a real number).
$\mathrm{Y}=\mathrm{Y}$ coordinates of the cell, in meters (a real number).
$A=$ the activity assigned to the cell at the coordinates specified above (a real number).
Note: there should be as many activities assigned to cells listed in the file DD as there are cells used to model the ground (for example, if the ground is modeled by a rectangle made out of $40 \times 60$ cells, the DD file must have 1 (lowest acceptable value) +40 x $60(x, y, z$ triplets $)=2401$ lines $).$

Use: The coordinates ( $\mathrm{X}, \mathrm{Y}$ ) must line up exactly with those used to model the ground. Note that the first value must be (X-offset, Y -offset), which are the x and y coordinates (in meters) assigned to the lower left corner of the first cell. For example, if there is no offset, the first value must be $(0.0,0.0)$. $A$ must be in the same units that are chosen for the deconvolution. It is suggested that a DD file be produced by estimating the concentrations at several points, using all data available, and then filling in the rest of the grid with an interpolation method. For a review of interpolation methods see Franke (1982).

## The Attenuation Input File

A file with mass attenuation coefficients for air and soil is included with the program, and need not be edited before running the program. There are, however, some variables that, while reasonably accurate for most cases, may need to be adjusted to achieve higher levels of accuracy (refer to IRCU report 53 for more details). For soil surfaces that are not excessively wet and for sites below 1.6 km ( 1 mile ) above sea level, the attenuation data should be within $10 \%$ of the actual value without correction.

The attenuation file has two sections. The first has data related to the mass attenuation coefficients for air, and the second section has data related to the mass attenuation coefficients for soil. The data for air is taken from Table 4 (air, dry, near sea level) of Hubell and Seltzer (1995), and the data for soil is taken from Table 2 (soil, $10 \% \mathrm{H}_{2} \mathrm{O}$ ) of Beck et al. (1972). The lines of this file are as follows:

## 1. Number of Air Attenuation Values and Density of Air

Form: NAA, $\rho$
NAA $=$ The number of air attenuation values listed (an integer).
$\rho=$ The density of the air measured in $\mathrm{g} / \mathrm{cm}^{3}$ (a real number).

## 2. Air Attenuation Values

Form: E, $\mu_{\mathrm{a}}$
$\mathrm{E}=$ The photon energy in keV (a real number).
$\mu_{\mathrm{a}}=$ The mass attenuation coefficient, at the photon energy E, of the air measured in $\mathrm{cm}^{2} / \mathrm{g}$ (a real number).

Note: there should be as many lines as the number specified in the first line of the ID file (NAA).

## 3. Number of Soil Attenuation Values and Density of Soil

Form: NSA, $\rho$
NSA = The number of soil attenuation values listed (an integer).
$\rho=$ The density of the soil measured in $\mathrm{g} / \mathrm{cm}^{3}$ (a real number).

## 4. Soil Attenuation Values

Form: E, $\mu_{\mathrm{s}}$
$\mathrm{E}=$ The photon energy in keV (a real number).
$\mu_{\mathrm{s}}=$ The mass attenuation coefficient, at the given photon energy E, of the soil measured in $\mathrm{cm}^{2} \mathrm{~g}^{-1}$ (a real number).

Note: there should be as many lines as the number specified in item 3 (NSA).
Use: The photon energies not specifically listed in this file will be determined by log-log interpolation from the two nearest data values. To set the value for a given run, simply add the value you want used to the file at the appropriate energy, updating the NAA or NSA to reflect your changes.

## $W_{\text {iewing and Interpreting the Results }}$

The output consists of some or all of the following files:
(1) OUTPUT.TBL
(2) OUTPUT.SCS
(3) OUTPUT.DEF
(4) OUTPUT.HSM

Here, "OUTPUT" is the output file name set by the user. The first two files are always created. The third file is created only if the program is run in "CHARACTERIZATION" mode. The fourth file is created only if the program is run in "POST-REMEDIATION" mode.

The file OUTPUT.TBL provides a summary of the results of the deconvolution. The average count rate and average activity are calculated by averaging over the measurements. Since the background average count rate and background average activity will depend on the choice of method used to determine the background, they will not be equal to the average count rate and average activity in most cases. A successful deconvolution will result in a distribution that fits the data, that is, one for which the chi-square per degree of freedom is equal to 1 . The user should always check the chi square of the distributions, because in some instances the algorithm used to maximize the entropy might not converge. In this case, the final distribution calculated by the code will not fit the data. OUTPUT.TBL files for examples A and B are shown in Figures 6 and 8. Note that the column labeled "deviation" provides this value for each measurement, expressed in terms of the number of standard deviations from the mean.

The OUTPUT.SCS and OUTPUT.HSM contain the result of the deconvolution. All lines contain three numbers, the $\{\mathrm{x}, \mathrm{y}\}$ coordinates of the cells used to model the ground, in meters, and the activity assigned to that cell by the deconvolution, separated by spaces.

To view these files, the user needs to import them into a graphing package. The files are comma delimited and need to be parsed as such by importing them as comma delimited files. Each individual program has its own parsing package that should be detailed in the documentation.

## Example

Details of this field measurement can be found in Shebell et al. (1999). Here, we will take the data as given, and consider the analysis of the data only. A total of 18 measurements were taken on a 5 m triangular grid and eight soil samples were taken at arbitrary points in that grid. The data was run using the characterization option, with a default distribution estimated by the program. The input file (the file INPUT_A.CSV) is shown in Figure 2 and the table summarizing the output (the file OUT_A.TBL) is shown in Figure 6. The resulting contamination levels in soil are represented graphically in Figure 7.

## Example b

Details of this field measurement can be found in Reginatto et al. (1998). Here, we will take the data as given, and consider the analysis of the data only. A total of 18 measurements were made on a 5 m triangular grid, and the data was run using the post-remediation option. The input file (the file INPUT_B.CSV) is shown in Figure 3, and the table summarizing the output (the file OUT_B.TBL) is shown in Figure 8.

The distribution of activity in the soil that results from the maximum entropy deconvolution is shown in Figure 9. This distribution tends to be constant and equal to the background activity, except in the neighborhood of each measurement point where there is a localized peak or valley depending on whether the measured peak count rate at that point is higher or lower than the background peak count rate. Figure 10 shows on one map all the potential hot spots identified by the code. They are modeled as squares, of $4 \mathrm{~m}^{2}$ of area ( 2 m on each side). Nine potential hot spots were identified. Note that the largest hot spot does not coincide with the highest peak of the maximum entropy deconvolution. Instead, it falls in between smaller contiguous peaks of similar size, since in this case the data allows for a large peak between measurement points. The position and magnitude of this peak would not have been singled out by a contour plot.

## AcKNOWLEDGMENTS

The authors wish to acknowledge the contributions made by Kevin Miller to the development of the methodology presented here, and would like to thank Matt Monetti for data used in this paper. Funding for this work was supported initially by the Office of Energy Research within the Department of Energy, and most recently by the Office of Environmental Management, including the Fernald Soils Accelerated Site Technology Deployment Project under the EM Office of Science and Technology. Additional funding was also provided by the Division of Regulatory Research within the Nuclear Regulatory Commission under contract W-6147.

## References

Beck, H. L., J. De Campo, and C. V. Gogolak
In Situ $\mathrm{Ge}(\mathrm{Li})$ and $\mathrm{NaI}(\mathrm{Tl})$ Gamma-Ray Spectrometry.
U. S. Atomic Energy Commission Report HASL-258, New York, NY (1972)

EML Procedures Manual
U. S. Department of Energy Report HASL-300, $28^{\text {th }}$ Edition, Vol. I, Section 3, February (1997) [available at www.eml.doe.gov/publications/procman/]

Franke, R.
Scattered Data Interpolation: Tests of Some Methods.
Mathematics of Computation 38:181-200 (1982)

Hubell, J. H. and S. M. Seltzer
Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements $\mathrm{Z}=1$ to 92 and 48 Additional Substances of Dosimetric Interest
National Institute of Standards and Technology, NISTIR 5632, Gaithersburg, MD (1995)

International Commission on Radiation Units and Measurements (ICRU)
Gamma-ray Spectrometry in the Environment
ICRU Publication 53, Bethesda, Maryland (1994)

Kansa, E. J. and R. E. Carlson,
Radial Basis Functions: A Class of Grid-Free, Scattered Data Approximations
Lawrence Livermore National Laboratory, UCRL-JC-110061 (1992)

Miller, K. M. and P. Shebell
In Situ Gamma-Ray Spectrometry - a Tutorial for Environmental Radiation Scientists
USDOE Report EML-557 (1995)

Miller, K. M., M. Reginatto, P. Shebell, G. A. Klemic, and C. V. Gogolak Spectrometric Techniques for the Measurement of Radioactive Contamination in Buildings
Proceedings of Air and Waste Management Association's $90^{\text {th }}$ Annual Meeting, Pittsburgh, PA (1997)

Reginatto, M. and P. Goldhagen
MAXED, A Computer Code for the Deconvolution of Multisphere Neutron Spectrometer Data Using the Maximum Entropy Method
USDOE Report EML-595 (1998)

Reginatto, M., P. Shebell, and K. M. Miller
ISD97, a Computer Program to Analyze Data from a Series of In Situ Measurements on a Grid and Identify Potential Localized Areas of Elevated Activity
USDOE Report EML-590 (1997)

Reginatto, M., P. Shebell, and K. M. Miller
An Alternative Approach to Hot Spot Identification Using In Situ Gamma Spectrometry
Measurements on a Grid
Health Physics 74:481-485 (1998)

Shebell, P., M. Reginatto, M. Monetti, S. Faller and L. Davis
Mapping of Depleted Uranium with In Situ Spectrometry and Soil Samples
Proceedings of the International Symposium on Restoration of Environments with Radioactive Residues, November 29 - December 3, 1999, IAEA-SM-359, Arlington, VA (1999)

Figure 1. Response Function File RF.CSV for Examples A and B. Note the additional commas, these are included by some spread sheet programs and do not interfere with the operation of ISDMAP. Note also that in this example we have set the coefficients of the third order polynomial fit of the relative angular response equal to zero, which would be adequate if such information was not available and the response of the detector was not strongly dependent on the angle of incidence.

```
8,,,,,,,
2670,63,0.0392,307.67,-1.55E-02,3.89E-04,-1.80E-06,,
2670,583,0.858,515,16,0,0,0,,
2670,609,0.461,500.42,0,0,0,,
2670,662,0.852,473.92,0,0,0,,
2670,911,0.29,383.58,0,0,0,,
2670,967,0.2295,369.01,0,0,0,,
2670,1001,0.00845,360.44,0,0,0,,
2670,2615,0.998,191.08,0,0,0,.
```

Figure 2. Input File INPUT_A.CSV for Example A. Note that there are no measurements numbered $4,21,24,26,27,30,31$. Although the measurements are numbered 1-33, there are only 26 measurements, which agrees with the number on the first line. Also note that soil samples are included (measurements numbered 20-33, though they need not be at the end), and that they are listed with a height of 0 m .

```
26
120,120,0,0
0.5,5
2670,C:\jdk\decon\macoeff.csv,C:\jdk\decon\rf.csv
6 3
1,1,19.25,20.73,509.2,21.2
2,1,19.25,25.73,640.6,22.8
3,1,19.25,30.73,746.2,25
5,1,19.25,35.73,699,27.4
6,1,23.58,18.23,206.6,14.6
7,1,23.58,23.23,419.2,20
8,1,23.58,28.23,369,20
9,1,23.58,33.23,191.2,12.6
10,1,23.58,38.23,62,14.6
11,1,23.58,43.23,55.6,13.8
12,1,27.91,20.73,102,13.4
13,1,27.91,25.73,76,11.4
14,1,27.91,30.73,63.5,7.6
15,1,27.91,35.73,44.8,9.1
16,1,27.91,40.73,39.4,7.5
17,1,32.24,33.23,35.1,7.1
18,1,32.24,38.23,31,7.1
19,1,36.57,35.73,12.866667,4.733333
20,0,21.4,23.2,809.72,404.858044
22,0,21.4,28.2,336.02,168.007519
23,0,21.4,40.7,7.69,3.846638
25,0,25.8,23.2,13.98,6.98818
28,0,25.8,28.2,5.56,2.778442
29,0,25.8,35.7,7.81,3.905673
32,0,30.1,30.7,2.33,1.16377
33,0,30.1,35.7,1.94,0.969302
```


## Figure 3. Input File INPUT_B.CSV for Example B.

```
18
160,160,30.0000,50.0000
0.5,5
2670, C:\windows\isdmap\macoeff.csv, C:\windows\isdmap\rf.csv
1001
1,1.00,65.6667,80.0000,6.3330,1.4000
2,1.00,65.6667,85.0000,8.9330,1.2000
3,1.00,65.6667,90.0000,6.4000,1.0000
4,1.00,65.6667,95.0000,5.4670,1.1330
5,1.00,65.6667,100.0000,4.6670,1.0670
6,1.00,65.6667,105.0000,5.8000,1.0000
7,1.00,70.0000,77.5000,7.9330,1.5330
8,1.00,70.0000,82.5000,9.4000,1.3330
9,1.00,70.0000,87.5000,5.2000,1.2000
10,1.00,70.0000,92.5000,7.2670,1.333
11,1.00,70.0000,97.5000,5.4670,1.2670
12,1.00,70.0000,102.5000,4.8000,1.6000
13,1.00,74.3333,80.0000,7.6000,1.1330
14,1.00,74.3333,85.0000,9.5330,1.4000
15,1.00,74.3333,90.0000,10.2670,1.2670
16,1.00,74.3333,95.0000,9.4000,1.3330
17,1.00,74.3333,100.0000,10.3890,0.6640
18,1.00,74.3333,105.0000,8.0670,1.2000
```



Figure 4. Grid map for Example B.

Figure 5. The first 10 lines of a Default Distribution File. Notice the negative number at location (1.0,0.0). This number, along with all others that are less than 37.05 (the value on the first line of the file) will be set to 37.05 by ISDMAP.
37.05
0.0,0.0,28.04523425
$0.5,0.0,37.03777778$
1.0,0.0,-11.9377037
1.5,0.0,50.63444444
$2.0,0.0,80.56666667$
2.5,0.0,103.7388889
3.0,0.0,122.2040741
3.5,0.0,137.7848148
4.0,0.0,151.9644444
4.5,0.0,165.8888889

Figure 6. Output File OUT_A.TBL for Example A.
NAME OF FILE WITH INPUT DATA: input_a.csv
NAME OF OUTPUT FILE : out_a
NAME OF FILE WITH DETECTOR RESPONSE DATA: C:\windows\isdmap\rf.csv
NAME OF FILE WITH ATTENUATION COEFFICIENTS DATA: C:\windows\isdmap\macoeff.csv
SMOOTH BACKGROUND WAS ESTIMATED FROM THE DATA
DETECTOR NUMBER : 2670
PHOTON ENERGY (KeV) $=63$
AVERAGE COUNT RATE $(c p m)=2.3907 E+02$
AVERAGE ACTIVITY ( $\mathrm{pCi} / \mathrm{g} \quad$ ) $=2.7075 \mathrm{E}+02$
BACKGROUND AVERAGE COUNT RATE (cpm) : 2.1233E+02
BACKGROUND AVERAGE ACTIVITY (pCi/g ) : 1.4703E+02
CHI SQUARE PER DEGREE OF FREEDOM / BACKGROUND $=9.7322 \mathrm{E}-01$
CHI SQUARE PER DEGREE OF FREEDOM / MAXIMUM ENTROPY = 0.9732
RESULTS FOR MAXIMUM ENTROPY DECONVOLUTION :
MEASURMENT MEASURED CALCULATED DEVIATION
NUMBER COUNT RATE COUNT RATE (C.-M.)/S.
$\begin{array}{llll}1 & 5.0920 \mathrm{E}+02 & 5.1438 \mathrm{E}+02 & 0.24415\end{array}$
$\begin{array}{llll}2 & 6.4060 E+02 & 6.6967 E+02 & 1.27494\end{array}$
$\begin{array}{llll}3 & 7.4620 \mathrm{E}+02 & 7.8264 \mathrm{E}+02 & 1.45777\end{array}$
$\begin{array}{llll}5 & 6.9900 \mathrm{E}+02 & 7.2867 \mathrm{E}+02 & 1.08268\end{array}$
$\begin{array}{llll}6 & 2.0660 \mathrm{E}+02 & 1.7586 \mathrm{E}+02 & -2.10559\end{array}$
$\begin{array}{llll}7 & 4.1920 \mathrm{E}+02 & 4.2258 \mathrm{E}+02 & 0.16910\end{array}$
$8 \quad 3.6900 \mathrm{E}+02 \quad 3.4734 \mathrm{E}+02 \quad-1.08304$
$\begin{array}{llll}9 & 1.9120 \mathrm{E}+02 & 1.9296 \mathrm{E}+02 & 0.13950\end{array}$
$\begin{array}{llll}10 & 6.2000 \mathrm{E}+01 & 9.8264 \mathrm{E}+01 & 2.48380\end{array}$
$11 \quad 5.5600 \mathrm{E}+01 \quad 5.3458 \mathrm{E}+01 \quad-0.15519$
$\begin{array}{llll}12 & 1.0200 \mathrm{E}+02 & 8.8083 \mathrm{E}+01 & -1.03862\end{array}$
$\begin{array}{llll}13 & 7.6000 \mathrm{E}+01 & 7.7888 \mathrm{E}+01 & 0.16560\end{array}$
$\begin{array}{llll}14 & 6.3500 \mathrm{E}+01 & 5.8754 \mathrm{E}+01 & -0.62447\end{array}$
$\begin{array}{llll}15 & 4.4800 \mathrm{E}+01 & 3.7181 \mathrm{E}+01 & -0.83722\end{array}$
$\begin{array}{llll}16 & 3.9400 \mathrm{E}+01 & 3.0327 \mathrm{E}+01 & -1.20978\end{array}$
$17 \quad 3.5100 \mathrm{E}+01 \quad 2.5062 \mathrm{E}+01 \quad-1.41376$
$18 \quad 3.1000 \mathrm{E}+01 \quad 1.9240 \mathrm{E}+01 \quad-1.65637$
$19 \quad 1.2867 \mathrm{E}+01 \quad 1.2916 \mathrm{E}+01 \quad 0.01053$
$20 \quad 8.0972 \mathrm{E}+028.0972 \mathrm{E}+02 \quad 0.00000$
$22 \quad 3.3602 \mathrm{E}+02 \quad 3.3602 \mathrm{E}+02 \quad 0.00000$
$\begin{array}{llll}23 & 7.6900 E+00 & 7.6900 E+00 & 0.00000\end{array}$
$25 \quad 1.3980 \mathrm{E}+01 \quad 1.3980 \mathrm{E}+01 \quad 0.00000$
28 5.5600E+00 5.5600E+00 0.00000
$29 \quad 7.8100 \mathrm{E}+00 \quad 7.8100 \mathrm{E}+00 \quad 0.00000$
$32 \quad 2.3300 \mathrm{E}+00 \quad 2.3300 \mathrm{E}+00 \quad 0.00000$
$33 \quad 1.9400 \mathrm{E}+00 \quad 2.1971 \mathrm{E}+00 \quad 0.26525$

| RESULTS FOR DEFAULT DISTRIBUTION: |  |  |  |
| :---: | :---: | :---: | :---: |
| MEASURMENT | MEASURED | CALCULATED | DEVIATION |
| NUMBER | COUNT RATE | COUNT RATE | (C.-M.)/S. |
| 1 | $5.0920 \mathrm{E}+02$ | $5.1438 \mathrm{E}+02$ | 0.24415 |
| 2 | $6.4060 E+02$ | $6.6967 \mathrm{E}+02$ | 1.27494 |
| 3 | 7.4620E+02 | $7.8264 \mathrm{E}+02$ | 1.45777 |
| 5 | $6.9900 E+02$ | $7.2867 E+02$ | 1.08268 |
| 6 | $2.0660 E+02$ | $1.7586 \mathrm{E}+02$ | -2.10559 |
| 7 | 4.1920E+02 | $4.2258 \mathrm{E}+02$ | 0.16910 |
| 8 | $3.6900 E+02$ | $3.4734 \mathrm{E}+02$ | -1.08304 |
| 9 | $1.9120 E+02$ | $1.9296 \mathrm{E}+02$ | 0.13950 |
| 10 | $6.2000 E+01$ | $9.8264 \mathrm{E}+01$ | 2.48380 |
| 11 | $5.5600 E+01$ | $5.3458 \mathrm{E}+01$ | -0.15519 |
| 12 | 1.0200E+02 | 8.8083E+01 | -1.03862 |
| 13 | 7.6000E+01 | $7.7888 \mathrm{E}+01$ | 0.16560 |
| 14 | $6.3500 E+01$ | $5.8754 \mathrm{E}+01$ | -0.62447 |
| 15 | $4.4800 E+01$ | $3.7181 \mathrm{E}+01$ | -0.83722 |
| 16 | $3.9400 E+01$ | $3.0327 \mathrm{E}+01$ | -1.20978 |
| 17 | $3.5100 E+01$ | $2.5062 \mathrm{E}+01$ | -1.41376 |
| 18 | $3.1000 E+01$ | 1.9240E+01 | -1.65637 |
| 19 | $1.2867 E+01$ | 1.2916E+01 | 0.01053 |
| 20 | $8.0972 \mathrm{E}+02$ | 8.0972E+02 | 0.00000 |
| 22 | $3.3602 \mathrm{E}+02$ | $3.3602 \mathrm{E}+02$ | 0.00000 |
| 23 | $7.6900 E+00$ | $7.6900 \mathrm{E}+00$ | 0.00000 |
| 25 | 1.3980E+01 | 1.3980E+01 | 0.00000 |
| 28 | $5.5600 E+00$ | $5.5600 \mathrm{E}+00$ | 0.00000 |
| 29 | $7.8100 E+00$ | $7.8100 E+00$ | 0.00000 |
| 32 | $2.3300 E+00$ | $2.3300 E+00$ | 0.00000 |
| 33 | $1.9400 \mathrm{E}+00$ | $2.1971 \mathrm{E}+00$ | 0.26525 |

TIME TO RUN THE PROGRAM (MINUTES) $=0.3000$


Figure 7. SCS deconvolution (file: OUT_A.SCS) from the run of Example A.

Figure 8. Output File OUT_B.TBL for Example B.

```
NAME OF FILE WITH INPUT DATA : input b.csv
NAME OF OUTPUT FILE : out b
NAME OF FILE WITH DETECTOR RESPONSE DATA : rf.csv
NAME OF FILE WITH ATTENUATION COEFFICIENTS DATA : MACOEFF.CSV
BACKGROUND DISTRIBUTION WAS CALCULATED FROM THE DATA
DETECTOR NUMBER : 2670
PHOTON ENERGY (keV) = 1001
AVERAGE COUNT RATE (cpm) = 7.3846E+00
AVERAGE ACTIVITY ( Bq/kg ) = 3.5653E+02
BACKGROUND AVERAGE COUNT RATE (cpm): 7.6175E+00
BACKGROUND AVERAGE ACTIVITY ( Bq/kg ) : 3.6777E+02
CHI SQUARE PER DEGREE OF FREEDOM / BACKGROUND = 3.0886E+00
CHI SQUARE PER DEGREE OF FREEDOM / MaxEnt DIST. = 1.0000
LARGEST POTENTIAL ELEVATED AREA NEAR MEASUREMENT : }
AREA (m^2) = 4.0000
MAGNITUDE (x BACKGROUND) = 8.7138
MAGNITUDE ( Bq/kg ) = 3.2047E+03
CHI SQUARE PER DEGREE OF FREEDOM OF THE
DISTRIBUTION WITH THE LARGEST HOT SPOT = 18.5195
RESULTS FOR MaxEnt DECONVOLUTION, SMALL CELL SIZE:
MEASURMENT MEASURED CALCULATED DEVIATION
NUMBER COUNT RATE COUNT RATE (C.-M.)/S.
1 6.3330E+00 7.3019E+00 0.69205
2 8.9330E+00 8.0592E+00 -0.72815
\(3 \quad 6.4000 \mathrm{E}+00 \quad 7.0745 \mathrm{E}+00 \quad 0.67454\)
\(4 \quad 5.4670 \mathrm{E}+00 \quad 6.7864 \mathrm{E}+00 \quad 1.16455\)
\(5 \quad 4.6670 \mathrm{E}+00 \quad 6.4580 \mathrm{E}+00 \quad 1.67855\)
\(6 \quad 5.8000 \mathrm{E}+00 \quad 6.8097 \mathrm{E}+00 \quad 1.00965\)
7 7.9330E+00 7.7030E+00 -0.15002
\(8 \quad 9.4000 \mathrm{E}+00\) 8.1844E+00 -0.91191
\(9 \quad 5.2000 \mathrm{E}+00 \quad 6.8992 \mathrm{E}+00 \quad 1.41601\)
10 7.2670E+00 7.4678E+00 0.15067
11 5.4670E+00 6.9430E+00 1.16499
12 4.8000E+00 6.9674E+00 1.35463
\(13 \quad 7.6000 \mathrm{E}+00 \quad 7.6456 \mathrm{E}+00 \quad 0.04021\)
\(14 \quad 9.5330 \mathrm{E}+00 \quad 8.2133 \mathrm{E}+00 \quad-0.94265\)
\(15 \quad 1.0267 \mathrm{E}+01 \quad 8.5584 \mathrm{E}+00 \quad-1.34854\)
\(16 \quad 9.4000 \mathrm{E}+00 \quad 8.2341 \mathrm{E}+00 \quad-0.87464\)
17 1.0389E+01 9.5129E+00 -1.31950
18 8.0670E \(+00 \quad 7.7899 E+00 \quad-0.23091\)
```

| RESULTS FOR <br> MEASURMENT NUMBER | DEFAULT DIS | RI |  |
| :---: | :---: | :---: | :---: |
|  | MEASURED | CALCULATED | DEVIATION |
|  | COUNT RATE | COUNT RATE | (C. -M.)/S. |
| 1 | $6.3330 E+00$ | $7.6163 \mathrm{E}+00$ | 0.91666 |
| 2 | 8.9330E+00 | $7.6212 \mathrm{E}+00$ | -1.09319 |
| 3 | $6.4000 E+00$ | $7.6226 \mathrm{E}+00$ | 1.22256 |
| 4 | $5.4670 E+00$ | $7.6209 E+00$ | 1.90102 |
| 5 | 4.6670E+00 | $7.6156 \mathrm{E}+00$ | 2.76346 |
| 6 | $5.8000 \mathrm{E}+00$ | $7.6054 \mathrm{E}+00$ | 1.80539 |
| 7 | $7.9330 E+00$ | $7.6133 \mathrm{E}+00$ | -0.20854 |
| 8 | 9.4000E+00 | 7.6203E+00 | -1.33510 |
| 9 | $5.2000 E+00$ | $7.6234 \mathrm{E}+00$ | 2.01946 |
| 10 | 7.2670E+00 | $7.6232 \mathrm{E}+00$ | 0.26721 |
| 11 | $5.4670 E+00$ | $7.6198 \mathrm{E}+00$ | 1.69914 |
| 12 | 4.8000E+00 | $7.6123 \mathrm{E}+00$ | 1.75771 |
| 13 | 7.6000E+00 | 7.6161E+00 | 0.01418 |
| 14 | 9.5330E+00 | $7.6209 \mathrm{E}+00$ | -1.36578 |
| 15 | $1.0267 \mathrm{E}+01$ | $7.6223 \mathrm{E}+00$ | -2.08738 |
| 16 | 9.4000E+00 | $7.6206 \mathrm{E}+00$ | -1.33489 |
| 17 | $1.0389 E+01$ | $7.6154 \mathrm{E}+00$ | -4.17718 |
| 18 | $8.0670 \mathrm{E}+00$ | $7.6051 \mathrm{E}+00$ | -0.38489 |

POTENTIAL HOT SPOTS FOUND:
MEAS. N. X COORD. Y COORD. MAG(xBKG) CHI SQR.
$2 \quad 6.85 \mathrm{E}+01 \quad 8.40 \mathrm{E}+01 \quad 8.71 \mathrm{E}+00 \quad 1.03 \mathrm{E}+00$
$7 \quad 7.10 \mathrm{E}+01 \quad 8.20 \mathrm{E}+01 \quad 1.83 \mathrm{E}+00 \quad 9.86 \mathrm{E}-01$
$8 \quad 7.10 \mathrm{E}+01 \quad 8.45 \mathrm{E}+01 \quad 2.11 \mathrm{E}+00 \quad$ 9.93E-01
$13 \quad 7.25 \mathrm{E}+01 \quad 8.40 \mathrm{E}+01 \quad 6.02 \mathrm{E}+00 \quad 9.79 \mathrm{E}-01$
$14 \quad 7.35 \mathrm{E}+01 \quad 8.70 \mathrm{E}+01 \quad 3.23 \mathrm{E}+00 \quad 9.89 \mathrm{E}-01$
$15 \quad 7.50 \mathrm{E}+01 \quad 9.05 \mathrm{E}+01 \quad 1.24 \mathrm{E}+00 \quad 1.00 \mathrm{E}+00$
$16 \quad 7.50 \mathrm{E}+01 \quad 9.65 \mathrm{E}+01 \quad 1.46 \mathrm{E}+00 \quad 9.93 \mathrm{E}-01$
$17 \quad 7.50 \mathrm{E}+01 \quad 9.95 \mathrm{E}+01 \quad 1.96 \mathrm{E}+00 \quad 9.72 \mathrm{E}-01$
$18 \quad 7.50 \mathrm{E}+01 \quad 1.01 \mathrm{E}+02 \quad 1.41 \mathrm{E}+00 \quad 1.00 \mathrm{E}+00$

TIME TO RUN THE PROGRAM (MINUTES) $=21.6500$


Figure 9. SCS deconvolution (file: OUT_B.SCS) for Example B.


Figure 10. HSM deconvolution (file: OUT_B.HSM) for Example B. Shown with enlargement of the maximum entropy deconvolution for comparison. Notice the different scales on the vertical axis of the two figures.

## Appendix

## FORTRAN Source Code

C Last change: ES 29 Aug 2000 10:58 am PROGRAM ISDMAP
C
C "LF95 ISDMAP -FIX -DBL"
C
INTEGER M,NX,NY,NXY,MNXY,ISP,DETNUM,PE,IG,NSD,IQ,HSS,IX INTEGER IC1,ICR1,ICM1
INTEGER MNUM(1000)
REAL A,HSA,DBKG,GPD,AA,AS,NOP,ANG1,ANG2,ANG3,RHO,X0,Y0
REAL D(1000),S(1000),HH(1000),X(1000),Y(1000)
CHARACTER DH*60, RH*60, EH*8, UNITS*10, FBKGD*60,MH*60
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
CALL SYSTEM_CLOCK(IC1,ICR1,ICM1)
C
CALL INPUT(DH,EH,UNITS,HSA,HSS,HH,X,Y,D,S,DETNUM,PE,MNUM,IG,NSD, 1IQ,GPD,AA,AS,NOP,ANG1,ANG2,ANG3,DBKG,RH,RHO,X0,Y0,IX,FBKGD,MH)
C
CALL ISD00(DH,EH,UNITS,HSA,HSS,HH,X,Y,D,S,DETNUM,PE,MNUM,IG,NSD, 1IQ,GPD,AA,AS,NOP,ANG1,ANG2,ANG3,DBKG,RH,RHO,IC1,X0,Y0,IX,FBKGD,MH)
C END

SUBROUTINE ISD00(DH,EH,UNITS,HSA,HSS,HH,X,Y,D,S,DETNUM,PE,MNUM,IG 1,NSD,IQ,GPD,AA,AS,NOP,ANG1,ANG2,ANG3,DBKG,RH,RHO,IC1,X0,Y0,IX, 1FBKGD,MH)
C
INTEGER M,NX,NY,NXY,MNXY,ISP,DETNUM,PE,IG,NSD,IQ,I,IHP,HSS,IX INTEGER IC1
INTEGER MNUM(M)
REAL A,HSA,DBKG,GPD,AA,AS,NOP,ANG1,ANG2,ANG3,RHO,X0,Y0
REAL FBKG,DAVG,FAVG,HSMAX,CSQBKG,CSQMENXY
REAL RCSQBKG,RCSQMENXY,RCSQHSI
REAL CSQ,RKP,RLP,HHP
REAL B(MNXY),D(M),S(M),HH(M),X(M),Y(M),EBKG(M),EMENXY(M)
REAL FDEF(NXY),FMENXY(NXY),LAMBDANXY(M)
REAL PFE(M),RKHS(M),RLHS(M),MHS(M),CSQHS(M)
REAL HSFDEF(NXY),HSF(NXY),LAMBDAHS(M),HSE(M),HSFMAP(NXY)
REAL XHS(M),YHS(M),XHSABS(M),YHSABS(M)
CHARACTER DH*60, RH*60, EH*8, UNITS*10, FBKGD*60, MH*60
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C Calculate the detector response matrix B
PRINT*,' CALCULATING THE DETECTOR RESPONSE MATRIX PRINT*,''

CALL DETRESP(B,A,X,Y,NSD,IQ,AA,NOP,GPD,AS,ANG1,ANG2,ANG3, 1HH,RHO,M,NXY,MNXY,NX,NY)

C
C Calculate the background activity
C
PRINT*,' CALCULATING THE BACKGROUND DISTRIBUTION ${ }^{\prime}$
PRINT*,'
CALL
BACKGROUND(D,S,B,FDEF,IG,DBKG,FBKG,DAVG,FAVG,HH,FBKGD,X,Y,X0,
1Y0)
CALL CHISSQ(D,EBKG,S,FDEF,B,CSQBKG)
PRINT*,' AVERAGE COUNT RATE (cpm) = ',DAVG
PRINT*,' '
PRINT*,' AVERAGE ACTIVITY (', UNITS, ') = ', FAVG
PRINT*,' '
PRINT*,' BACKGROUND AVERAGE COUNT RATE (cpm) = ',DBKG
PRINT*,' '
PRINT*,' BACKGROUND AVERAGE ACTIVITY (', UNITS, ') = ', FBKG
PRINT*,' '
RCSQBKG $=$ CSQBKG/REAL $(\mathrm{M})$
PRINT*,' CHI SQUARE PER DEGREE OF FREEDOM/ BACKGROUND = ',RCSQBKG PRINT*,'

C
C Do a MaxEnt deconvolution with NXY>>M number of cells
C
PRINT*,' CALCULATING THE MAXIMUM ENTROPY DISTRIBUTION ' PRINT*,'
CALL LAMBDAZERO(LAMBDANXY,M)
CALL MAXENTNXY(LAMBDANXY,D,S,B,FDEF,FMENXY,CSQBKG)
CALL CHISSQ(D,EMENXY,S,FMENXY,B,CSQMENXY)
C
C If the first choice of initial lambdas did not lead to a
C succesful deconvolutions, choose a new set of labdas and
C try again. Note: lambdas have units of 1/B
C
IF (CSQMENXY .GT. (M+SQRT(REAL(M))) ) THEN
IF (CSQMENXY .EQ. CSQBKG) THEN
DO $5 \mathrm{I}=1, \mathrm{M}$
LAMBDANXY $(\mathrm{I})=10.0 *(\mathrm{FAVG} / \mathrm{DAVG}) *(\operatorname{EMENXY}(\mathrm{I})-\mathrm{D}(\mathrm{I})) / \mathrm{S}(\mathrm{I})$
5 CONTINUE
CALL MAXENTNXY(LAMBDANXY,D,S,B,FDEF,FMENXY,CSQBKG)
CALL CHISSQ(D,EMENXY,S,FMENXY,B,CSQMENXY)
END IF
END IF
IF (CSQMENXY .GT. (M+SQRT(REAL(M))) ) THEN
PRINT*,' MAXIMUM ENTROPY DECONVOLUTION DID NOT CONVERGE '
PRINT*,''
END IF
RCSQMENXY = CSQMENXY/M
PRINT*,' CHI SQUARE PER DEGREE OF FREEDOM / MaxEnt = ',RCSQMENXY

PRINT*,''
C
IF (IX .EQ. 1) THEN
CALL
OUTPUTLCS(PE,MNUM,DETNUM,DAVG,FAVG,DBKG,FBKG,EBKG,RCSQBKG, 1RCSQMENXY,D,S,X,Y,FMENXY,EH,UNITS,DH,RH,IC1,IG,FBKGD,EMENXY,X0 IY0,FDEF,MH)
GO TO 999
END IF
C
C Look for hot spots
C
PRINT*,' CALCULATING THE EXCESS OR DEFICIT OF ACTIVITY ASSOCIATED PRINT*,' WITH EACH MEASUREMENT
PRINT*,''
CALL PEAKXELS(FBKG,FMENXY,PFE,X,Y)
CALL
SETHOTSPOTPARAM(RKHS,RLHS,MHS,CSQHS,M,HSMAX,XHS,YHS,HSFMAP, 1NXY,FBKG,XHSABS,YHSABS)
DO $10 \mathrm{I}=1, \mathrm{M}$
IF (PFE(I).GT. 0.0) THEN
IF (HH(I) .GT. 0.0) THEN
PRINT*,' SEARCHING FOR HOT SPOT NEAR MEASUREMENT : ',MNUM(I)
PRINT*,' '
CALL HOTSPOTDEF(I,HSS,FBKG,D,S,B,X,Y,PFE,HSFDEF,FDEF,RKP,RLP,HH)
CALL LAMBDASET(LAMBDANXY,LAMBDAHS,M)
CALL MAXENTNXYHS(LAMBDAHS,D,S,B,HSFDEF,HSF)
CALL CHISSQ(D,HSE,S,HSF,B,CSQ)
CALL HOTSPOTPARAM(HSF,RKP,RLP,HHP,CSQ,RKHS,RLHS,MHS,CSQHS,
1HSMAX,IHP,FBKG,HSS,I,XHS,YHS,X0,Y0,XHSABS,YHSABS)
RCSQHSI = CSQHS(I)/M
PRINT*,' POTENTIAL HOT SPOT/MEASUREMENT NUMBER = ',MNUM(I)
PRINT*,' POTENTIAL HOT SPOT/X COORDINATE = ',XHSABS(I)
PRINT*,' POTENTIAL HOT SPOT/Y COORDINATE = ',YHSABS(I)
PRINT*,' POTENTIAL HOT SPOT/MAGNITUDE (x BKG) = ',MHS(I)
PRINT*,' POTENTIAL HOT SPOT/CHI SQUARE PER DEGREE OF FREEDOM = '
1,RCSQHSI
PRINT*,' '
CALL MAKEHSMAP(RKP,RLP,HSFMAP,HHP,X,Y,HSS,FBKG)
END IF
END IF
10 CONTINUE
C
RCSQHSI = CSQHS (IHP)/M
PRINT*,' PARAMETERS OF THE LARGEST POTENTIAL HOT SPOT FOUND: '
PRINT*,''
PRINT*,' MEASUREMENT NUMBER = ',MNUM(IHP)
PRINT*,' X COORDINATE $=$ ', XHSABS(IHP)
PRINT*,' Y COORDINATE = ',YHSABS(IHP)
PRINT*,' MAGNITUDE (x BKG) = ',MHS(IHP)

PRINT*,' CHI SQUARE PER DEGREE OF FREEDOM = ',RCSQHSI PRINT*,'
C
CALL
OUTPUT(PE,IHP,MNUM,DETNUM,DAVG,FAVG,DBKG,FBKG,EBKG,RCSQBKG, 1RCSQMENXY,HSA,D,S,X,Y,MHS,CSQHS,FMENXY,HSFMAP,EH,UNITS, 1DH,RH,PFE,XHSABS,YHSABS,IC1,IG,FBKGD,EMENXY,X0,Y0,MH)
C
999 PRINT*,' NAME OF OUTPUT FILE: ',EH
PRINT*,'
C
RETURN
END
C
C
SUBROUTINE CHISSQ(D,E,S,F,B,CSQ)
C
INTEGER I,L,M,NXY,MNXY
REAL CSQ
REAL D(M),E(M),S(M),F(NXY),B(MNXY)
COMMON/MN/M,NX,NY,MNXY,NXY
C
$\mathrm{CSQ}=0.0$
DO $2 \mathrm{I}=1, \mathrm{M}$
$\mathrm{E}(\mathrm{I})=0.0$
DO $1 \mathrm{~L}=1, \mathrm{NXY}$
$\mathrm{E}(\mathrm{I})=\mathrm{E}(\mathrm{I})+\mathrm{B}(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{L}) * \mathrm{~F}(\mathrm{~L})$
1 $\mathrm{CSQ}=\mathrm{CSQ}+\left((\mathrm{D}(\mathrm{I})-\mathrm{E}(\mathrm{I}))^{* *} 2\right) /\left(\mathrm{S}(\mathrm{I})^{* *} 2\right)$
2 CONTINUE
C

## RETURN

END
C
C
SUBROUTINE
InPUT(DH,EH,UNITS,HSA,HSS,HH,X,Y,D,S,DETNUM,PE,MNUM,IG
1NSD,IQ,GPD,AA,AS,NOP,ANG1,ANG2,ANG3,DBKG,RH,RHO,X0,Y0,IX,FBKGD,MH)
C
INTEGER M,NX,NY,NXY,MNXY,ISP,DETNUM,PE,IG,NSD,IQ,IX
INTEGER MVB,NXVB,NYVB,IDETNUM,IPE,NLINES,INT1,INT2,HSS
NTEGER MNUM(1000)
REAL A,HSA,AVB,DBKG,RHO,X0,Y0,AGRID
REAL RE1,RE2,RE3,RE4,RE5,GPD,AA,AS,NOP,ANG1,ANG2,ANG3
REAL D(1000),S(1000),HH(1000),X(1000),Y(1000)
REAL EA(100),ES(100),AMAC(100),SMAC(100),NAMAC,NSMAC,RHOAIR

CHARACTER DH*60, RH*60, EH*8, UNITS*10, FBKGD*60, MH*60
CHARACTER INPUTFILE*40
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C next approx. 15 lines added 8/3/2000
C
C
C
C
123456789012345678901234567890123456789012345678901234567890
DH $=$ '
C
C DETERMINE NAME OF INPUT FILE (COMMAND LINE ARGUMENT OR CON)
C $\quad$ I5 $=7$ FOR READING OF A INPUT FILE
C I5=5 FOR READING TERMINAL INPUT
C
CALL NAMEOF(INPUTFILE,I5)
C
IF(I5.EQ.7)
1OPEN(i5,FILE=INPUTFILE,STATUS='OLD',FORM='FORMATTED')
C
C Enter data about the source distribution
C
PRINT*,''
PRINT*,' ENTER YOUR CHOICE OF DECONVOLUTION, '
PRINT*,' 1 FOR "CHARACTERIZATION" (TO ESTIMATE THE DISTRIBUTION)' PRINT*,' 2 FOR "POST-REMEDIATION" (TO SEARCH FOR HOT SPOTS) : '
$\operatorname{READ}(15, *)$ IX
IF (I5 .EQ. 7) THEN
PRINT*,",IX
END IF
PRINT*,''
C
C Enter data about the names of the input/output files
C
PRINT*,' NAME OF FILE WITH INPUT DATA? : '
READ(I5,'(A60)') DH
IF (I5 .EQ. 7) THEN
PRINT*,' ',DH
END IF
PRINT*,' NAME OF OUTPUT FILE? (USE 8 CHARACTERS) :
READ(I5,'(A8)') EH
IF (I5 .EQ. 7) THEN
PRINT*,' ',EH
END IF
PRINT*,''
C
PRINT*,' ENTER YOUR CHOICE OF SOURCE DEPTH PROFILE, '
PRINT*', 1 FOR UNIFORM DISTRIBUTION '
PRINT*,' 2 FOR PLANE DISTRIBUTION '
READ(I5,*) NSD

IF (I5 .EQ. 7) THEN
PRINT*,",NSD
END IF
PRINT*,'
C
IF (NSD .EQ. 1 ) THEN
PRINT*,' ENTER YOUR CHOICE OF UNITS FOR THE ACTIVITY PER MASS,' PRINT*,' (NOTE: IF YOU INCLUDED DATA FROM SOIL SAMPLES, YOU MUST PRINT*,' CHOOSE THE SAME UNITS THAT YOU USED FOR THIS DATA)
PRINT*,' 1 FOR Bq/kg
PRINT*,' 2 FOR pCi/g :'
READ(I5,*) IQ
IF (I5 .EQ. 7) THEN
PRINT*,",LQ
END IF
PRINT*,''
$\mathrm{IQ}=\mathrm{IQ}-1$
UNITS = ' Bq/kg'
IF (IQ .EQ. 1) THEN
UNITS = 'pCi/g'
END IF
ELSE IF (NSD .EQ. 2) THEN
PRINT*,' ENTER YOUR CHOICE OF UNITS FOR THE ACTIVITY PER AREA,' PRINT*,' (NOTE: IF YOU INCLUDED DATA FROM SOIL SAMPLES, YOU MUST' PRINT*,' CHOOSE THE SAME UNITS THAT YOU USED FOR THIS DATA) ' PRINT*,' 1 FOR Bq/m**2 '
PRINT*,' 2 FOR pCi/m**2 :
READ(I5,*) IQ
IF (I5 .EQ. 7) THEN
PRINT*,",IQ
END IF
PRINT*,' ${ }^{\prime}$
$\mathrm{IQ}=\mathrm{IQ}-1$
UNITS $=$ ' Bq/m**2'
IF (IQ .EQ. 1) THEN
UNITS = 'pCi/m**2'
END IF
END IF
C
PRINT*, ENTER YOUR CHOICE OF METHOD TO DETERMINE THE
BACKGROUND,'
IF (IX .EQ. 1) THEN
PRINT*,' 1 TO USE THE DATA TO ESTIMATE A SMOOTH BACKGROUND ' PRINT*,' 2 TO READ IN BACKGROUND DATA FROM A FILE :'
READ(I5,*) IG
IF (I5 .EQ. 7) THEN
PRINT*,",IG
END IF
IF (IG .EQ. 1) THEN
$\mathrm{IG}=4$

ELSE IF (IG .EQ. 2) THEN
$\mathrm{IG}=3$
END IF
ELSE IF (IX .EQ. 2) THEN
PRINT*,' 1 TO USE THE DATA TO ESTIMATE A CONSTANT BACKGROUND
PRINT*,' 2 TO ENTER A BACKGROUND COUNT RATE : '
READ(I5,*) IG
IF (I5 .EQ. 7) THEN
PRINT*,' ',IG
END IF
END IF
PRINT*,' '
IF (IG .EQ. 2) THEN
PRINT*,' ENTER COUNT RATE (>0) IN cpm :
READ(I5,*) DBKG
IF (I5 .EQ. 7) THEN
PRINT*,",DBKG
END IF
PRINT*,'
END IF
IF (IG .EQ. 3) THEN
PRINT*, NAME OF FILE WITH BACKGROUND DATA? :
READ(I5,*) FBKGD
IF (I5 .EQ. 7) THEN
PRINT*,",FBKGD
END IF
PRINT*,'
END IF
C The measurement data is read in from the file DH :
C (1) $M$ is the number of measurements.
C (2) NX and NY are the number of cells used to model the ground, in (2) NX and NY are the $n$
(3) A is the size of each cell (in meters).
(4) ISP is a parameter that is set up equal to one half the number of cells between measurements (or slightly more if the number of cells between is odd.
(5) DETNUM is the detector number.
(6) PE is an INTEGER, the photon energy.
(7) MNUM is the measurement number. MUST HAVE MNUM(I) $>0$.
(8) $\mathrm{HH}(\mathrm{I})$ is the detector height (in meters).
(8) The $\mathrm{X}(\mathrm{I}), \mathrm{Y}(\mathrm{I})$ are the coordinates of the measurements (in
meters).
(10) The $\mathrm{D}(\mathrm{I})$ are the measurements (in cpm).
(11) The S (I) are the corresponding sigmas (in cpm)for each measurement.

OPEN (11, FILE=DH, STATUS='OLD')
C
READ (11,FMT=*) MVB

READ (11,FMT=*) NXVB,NYVB,X0,Y0
READ (11,FMT=*) AVB,AGRID
READ (11,FMT=*) DETNUM,MH,RH
READ (11,FMT=*) PE
DO $10 \mathrm{I}=1, \mathrm{MVB}$
READ (11,FMT=*) MNUM(I),HH(I),X(I),Y(I),D(I),S(I)
10 CONTINUE
CLOSE (11)
C
C Convert the $\mathrm{X}(\mathrm{I}), \mathrm{Y}(\mathrm{I})$ to relative distance
C
DO $15 \mathrm{I}=1, \mathrm{MVB}$
$X(I)=X(I)-X 0+A V B$
$\mathrm{Y}(\mathrm{I})=\mathrm{Y}(\mathrm{I})-\mathrm{Y} 0+\mathrm{AVB}$
15 CONTINUE
C
A = AVB
ISP = CEILING( $0.5^{*}$ AGRID/AVB)
M = MVB
$\mathrm{NX}=\mathrm{NXVB}$
$\mathrm{NY}=\mathrm{NYVB}$
$\mathrm{MNXY}=\mathrm{M} * \mathrm{NX}^{*} \mathrm{NY}$
NXY = NX*NY
C
C Enter data about the elevated area
C
HSA $=0.0$
IF (IX .EQ. 2) THEN
PRINT*,' AREA OF HOT SPOT? (IN SQUARE METERS, e.g.: 1.0) : '
READ(I5,*) HSA
IF (I5 .EQ. 7) THEN
PRINT*,",HSA
END IF
IF (HSA .LE. (A**2)) THEN
HSA $=$ A $^{* *} 2$
PRINT*,' NOTE: AREA OF HOT SPOT CAN NOT BE LESS THAN : ',HSA
PRINT*,' '
END IF
HSS $=\operatorname{FLOOR}((\operatorname{SQRT}(\mathrm{HSA})) / \mathrm{A})$
HSA $=\left(\mathrm{A}^{*} \mathrm{HSS}\right) * * 2$
PRINT*,' AREA OF HOT SPOT (IN SQUARE METERS) SET TO : ',HSA
PRINT*,''
END IF
C
C Look up information needed to calculate the detector response
C
C GPD are gamma per disintegration
C NOP is in cpm/(gamma/cm**2.second)
c ANG2, ANG3 are parameters for the angular response function,
C which is of the form

C 1.0+ANG1*(THETA)+ANG2*(THETA)^2+ANG3*(THETA) ${ }^{\wedge} 3$,
C where THETA is measured in degrees.
C AA is the mass attenuation coefficient for air, in $\mathrm{cm}^{* *} 2 / \mathrm{g}$
C AS is the mass attenuation coefficient for soil, in $\mathrm{cm} * * 2 / \mathrm{g}$
C RHO is the soil density, in $\mathrm{g} / \mathrm{cm}^{* *} 3$
C
IDETNUM $=0$
IPE = 0
OPEN (12, FILE=RH, STATUS='OLD')
C
READ (12,FMT=*) NLINES
DO 20 I = 1,NLINES
READ (12,FMT=*) INT1,INT2,RE1,RE2,RE3,RE4,RE5
IF (INT1 .EQ. DETNUM) THEN
IDETNUM = 1
IF (INT2 .EQ. PE) THEN
GPD $=$ RE1
$\mathrm{NOP}=\mathrm{RE} 2$
ANG1 $=$ RE3
ANG2 $=$ RE4
ANG3 $=$ RE5
IPE = 1
END IF
END IF
20 CONTINUE
CLOSE (12)
C
IF (IDETNUM .EQ. 0) THEN
PRINT*,'
PRINT*,' THE NUMBER OF THE DETECTOR DOES NOT MATCH ANY OF THE
PRINT*,' DETECTOR NUMBERS LISTED IN THE SUBROUTINE RESPONSE.
PRINT*,'
PRINT*,' PLEASE CHECK YOUR INPUT FILE. '
STOP
END IF
IF (IPE .EQ. 0) THEN
PRINT*,'
PRINT*,' THE PHOTON ENERGY DOES NOT MATCH ANY OF THE ENERGIES'
PRINT*', LISTED FOR THIS DETECTOR IN THE SUBROUTINE RESPONSE .
PRINT*,' '
PRINT*,' PLEASE CHECK YOUR INPUT FILE. '
STOP
END IF
C
C Read in table of mass attenuation coefficient for air and soil
C
OPEN (13, FILE=MH, STATUS='OLD')
READ (13,FMT=*) NAMAC,RHOAIR
DO 22 I = 1,NAMAC
READ (13,FMT=*) EA(I),AMAC(I)

22 CONTINUE
READ (13,FMT=*) NSMAC,RHO
DO 24 I = 1, NSMAC
READ (13,FMT=*) ES(I),SMAC(I)
24 CONTINUE
C
C Interpolate the mass attenuation coefficients linearly in log-log
DO 26 I=2,NAMAC
IF (PE .GE. EA(I-1)) THEN
IF (PE .LT. EA(I)) THEN
AA $=$ LOG(AMAC(I-1))
$\mathrm{AA}=\mathrm{AA}+\mathrm{LOG}(\mathrm{PE} / \mathrm{EA}(\mathrm{I}-1)) * \mathrm{LOG}(\mathrm{AMAC}(\mathrm{I}) / \mathrm{AMAC}(\mathrm{I}-1)) / \mathrm{LOG}(\mathrm{EA}(\mathrm{I}) / \mathrm{EA}(\mathrm{I}-1))$
$\mathrm{AA}=\mathrm{EXP}(\mathrm{AA})$
END IF
END IF
26
DO 28 I=2,NSMAC
IF (PE .GE. ES(I-1)) THEN
IF (PE .LT. ES(I)) THEN
AS $=\operatorname{LOG}(\operatorname{SMAC}(\mathrm{I}-1))$
$\mathrm{AS}=\mathrm{AS}+\mathrm{LOG}(\mathrm{PE} / \mathrm{ES}(\mathrm{I}-1))^{*} \mathrm{LOG}(\mathrm{SMAC}(\mathrm{I}) / \mathrm{SMAC}(\mathrm{I}-1)) / \mathrm{LOG}(\mathrm{ES}(\mathrm{I}) / \mathrm{ES}(\mathrm{I}-1))$
$\mathrm{AS}=\operatorname{EXP}(\mathrm{AS})$
END IF
END IF
28 CONTINUE
c
C Multiply the mass attenuation coefficients by the density
$\mathrm{AA}=\mathrm{AA} *$ RHOAIR
$\mathrm{AS}=\mathrm{AS} * \mathrm{RHO}$
C
PRINT*,' VALUES OF MASS ATTENUATION COEFFICIENTS OBTAINED BY' PRINT*,' INTERPOLATION USING DATA FROM THE FILE macoeff.csv: '
PRINT*,' attenuation coefficient for air ( $1 / \mathrm{cm}$ ) = ',AA
PRINT*,' attenuation coefficient for soil $(1 / \mathrm{cm})=$ ',AS
PRINT*,'
RETURN
END
C
C
C
C
SUBROUTINE
BACKGROUND(D,S,B,FDEF,IG,DBKG,FBKG,DAVG,FAVG,HH,FBKGD,
$1 \mathrm{X}, \mathrm{Y}, \mathrm{X} 0, \mathrm{Y} 0)$
C
C FILE: BACKGR01.FOR
C Modified 5/10/99

C
INTEGER I,K,L,M,NX,NY,NXY,MNXY,IG,KK,LL,ISP,MD
REAL SD,DAVG,SB,FAVG,SUM1,SUM2,DBKG,FBKG,MIS,XFILE,YFILE,ZFILE REAL ZMIN,MR,A,X0,Y0
REAL D(M),S(M),B(MNXY),BI(M),FDEF(NXY),HH(M),EBKG(M),X(M),Y(M)
CHARACTER FBKGD*60
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
$\mathrm{MR}=\operatorname{REAL}(\mathrm{M})$
C
MIS $=0.0$
$\mathrm{SD}=0.0$
DO $5 \mathrm{I}=1, \mathrm{M}$
IF (HH(I) .GT. 0.0) THEN
MIS $=$ MIS +1
$\mathrm{SD}=\mathrm{SD}+\mathrm{D}(\mathrm{I})$
END IF
5 CONTINUE
DAVG = SD/MIS
C
$\mathrm{SB}=0.0$
DO $10 \mathrm{I}=1, \mathrm{M}$
IF (HH(I) .GT. 0.0) THEN
DO $8 \mathrm{~K}=1$,NX
DO $7 \mathrm{~L}=1$,NY
$\mathrm{SB}=\mathrm{SB}+\mathrm{B}\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}\right)$
CONTINUE
CONTINUE
END IF
10 CONTINUE
FAVG $=$ SD $/$ SB
C
$\mathrm{FBKG}=\mathrm{FAVG}$
C
IF (IG .EQ. 1) THEN
DO $16 \mathrm{I}=1, \mathrm{M}$
IF (HH(I) .GT. 0.0) THEN
$\mathrm{BI}(\mathrm{I})=0.0$
DO $14 \mathrm{~K}=1$,NX
DO $12 \mathrm{~L}=1, \mathrm{NY}$
$\mathrm{BI}(\mathrm{I})=\mathrm{BI}(\mathrm{I})+\mathrm{B}\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right)$
CONTINUE
CONTINUE
END IF
16
CONTINUE
SUM1 $=0.0$
SUM2 $=0.0$
DO 18 I=1,M

IF (HH(I) .GT. 0.0) THEN
SUM1 $=$ SUM $1+\mathrm{D}(\mathrm{I}) * \mathrm{BI}(\mathrm{I}) /(\mathrm{S}(\mathrm{I}) * * 2)$
SUM $2=\mathrm{SUM} 2+(\mathrm{BI}(\mathrm{I}) / \mathrm{S}(\mathrm{I}))^{* * 2}$
END IF
18 CONTINUE
FBKG = SUM1/SUM2
DBKG $=$ DAVG* $($ FBKG $/$ FAVG $)$
ELSE IF (IG .EQ. 2) THEN
$\mathrm{FBKG}=\mathrm{FAVG}^{*}(\mathrm{DBKG} / \mathrm{DAVG})$
END IF
DO $20 \mathrm{~K}=1$, NXY
$\operatorname{FDEF}(\mathrm{K})=\mathrm{FBKG}$
20
C
IF (IG .EQ. 3) THEN
FBKG $=0.0$
OPEN (11, FILE=FBKGD, STATUS='OLD')
READ (11,FMT=*) ZMIN
DO $22 \mathrm{~K}=1$, NXY
READ (11,FMT=*) XFILE,YFILE,ZFILE
$\mathrm{KK}=\mathrm{INT}(($ XFILE-X0)/A) +1
LL $=\operatorname{INT}(($ YFILE-Y0)/A) +1
IF (ZFILE .LT. ZMIN) THEN
ZFILE $=$ ZMIN
END IF
$\operatorname{FDEF}\left(\mathrm{NY}^{*}(\mathrm{KK}-1)+\right.$ LL $)=$ ZFILE
FBKG $=\mathrm{FBKG}+$ ZFILE/NXY
22
CLOSE (11)
DBKG $=0.0$
DO $26 \mathrm{I}=1, \mathrm{M}$
DO $26 \mathrm{I}=1, \mathrm{M}$
EBKG(I) $=0.0$
$\mathrm{EBKG}(\mathrm{I})=0.0$
$\mathrm{DO} 25 \mathrm{~K}=1, \mathrm{NX}$
DO $25 \mathrm{~K}=1$,NX
DO $24 \mathrm{~L}=1$,NY
$\operatorname{EBKG}(\mathrm{I})=\mathrm{EBKG}(\mathrm{I})+\mathrm{B}\left(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right) * \operatorname{FDEF}\left(\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right)$
CONTINUE
25 CONTINUE
$\mathrm{DBKG}=\mathrm{DBKG}+\mathrm{EBKG}(\mathrm{I}) / \mathrm{MR}$
26 CONTINUE
END IF
C
IF (IG .EQ. 4) THEN
$\mathrm{MD}=\mathrm{M}+16$
CALL RBFINTER(MD,HH,X,Y,D,FDEF,DAVG,FAVG,B,S)
FBKG $=0.0$
DO $33 \mathrm{~K}=1$, NX
DO $32 \mathrm{~L}=1, \mathrm{NY}$
FBKG $=$ FBKG $+\operatorname{FDEF}\left(\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right) / \mathrm{NXY}$
32
33 CONTINUE

## DBKG $=0.0$

DO $36 \mathrm{I}=1, \mathrm{M}$
$\operatorname{EBKG}(\mathrm{I})=0.0$
DO $35 \mathrm{~K}=1$, NX
DO $34 \mathrm{~L}=1, \mathrm{NY}$
$\operatorname{EBKG}(\mathrm{I})=\mathrm{EBKG}(\mathrm{I})+\mathrm{B}\left(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right) * \operatorname{FDEF}(\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L})$
CONTINUE
$\mathrm{DBKG}=\mathrm{DBKG}+\mathrm{EBKG}(\mathrm{I}) / \mathrm{MR}$
36 CONTINUE
END IF
C
RETURN
END
C
C
C
SUBROUTINE
OUTPUT(PE,IHP,MNUM,DETNUM,DAVG,FAVG,DBKG,FBKG,EBKG,
1RCSQBKG,RCSQMENXY,HSA,D,S,X,Y,MHS,CSQHS,FMENXY,HSFMAP,EH,UNITS, 1DH,RH,PFE,XHS,YHS,IC1,IG,FBKGD,EMENXY,X0,Y0,MH)
C
INTEGER M,NX,NY,MNXY,NXY,KU,KL,LU,LL,ISP,PE,IHP,DETNUM,IG INTEGER IC1,IC2,ICR2,ICM2
INTEGER MNUM(M)
REAL A,DAVG,FAVG,DBKG,FBKG
REAL RCSQBKG,RCSQMENXY,HSA,EAM
REAL DTIME,XK,YL,X0,Y0,RCSQHSI
REAL RERR(M),D(M),S(M),X(M),Y(M),MHS(M),CSQHS(M),EBKG(M)
REAL PFE(M),EMENXY(M)
REAL FMENXY(NXY),HSFMAP(NXY),XHS(M),YHS(M)
CHARACTER EH*8,TH*12,WH*12,ZH*12,UNITS*10,DH*60,RH*60,MH*60
CHARACTER FBKGD*60
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C Convert the $\mathrm{X}(\mathrm{I}), \mathrm{Y}(\mathrm{I})$ back to absolute distance
C
DO $5 \mathrm{I}=1, \mathrm{M}$
$X(I)=X(I)+X 0-A$
$\mathrm{Y}(\mathrm{I})=\mathrm{Y}(\mathrm{I})+\mathrm{Y} 0-\mathrm{A}$
5
C
C
C Prepare the activity maps
C
$\mathrm{KU}=\mathrm{NX}$
$\mathrm{KL}=1$
$\mathrm{KL}=1$
$\mathrm{LU}=\mathrm{NY}$
$\mathrm{LL}=1$

C
$\mathrm{EH}=\operatorname{ADJUSTR}(\mathrm{EH})$
C
$\mathrm{ZH}=\mathrm{EH} / /^{\prime} . \mathrm{SCS}^{\prime}$
$\mathrm{TH}=\mathrm{EH} / /{ }^{\prime} . \mathrm{HSM}^{\prime}$
C
TH = ADJUSTL(TH)
ZH = ADJUSTL(ZH)
C
OPEN (12, FILE=ZH, STATUS='NEW') OPEN (14, FILE=TH, STATUS='NEW')
C
103 FORMAT(2X,A10)
C
DO $25 \mathrm{~K}=\mathrm{KL}, \mathrm{KU}$
DO 23 L=LL,LU
$\mathrm{XK}=(\mathrm{K}-1)^{*} \mathrm{~A}+\mathrm{X} 0$
$\mathrm{YL}=(\mathrm{L}-1)^{*} \mathrm{~A}+\mathrm{Y} 0$
WRITE $(12,106)$ XK,YL,FMENXY(NY*(K-1)+L)
WRITE $(14,106)$ XK,YL,HSFMAP(NY*(K-1)+L)
23 CONTINUE
25 CONTINUE
106 FORMAT( 3 (2X,F10.4) )
C
C
CLOSE (12, STATUS='KEEP')
CLOSE (14, STATUS='KEEP')
C
C Prepare the output table
C $\mathrm{WH}=\mathrm{EH} / /^{\prime} . \mathrm{TBL}^{\prime}$
$\mathrm{WH}=\operatorname{ADJUSTL}(\mathrm{WH})$
C
OPEN (16, FILE=WH, STATUS='NEW')
C
WRITE $(16,110)$ DH
110 FORMAT(/2X,'NAME OF FILE WITH INPUT DATA : ',A)
WRITE $(16,111)$ EH
111 FORMAT(2X,'NAME OF OUTPUT FILE : ',A)
WRITE $(16,112)$ RH
112 FORMAT(2X,'NAME OF FILE WITH DETECTOR RESPONSE DATA : ',A) WRITE $(16,117)$ MH
117 FORMAT(2X,'NAME OF FILE WITH ATTENUATION COEFFICIENTS DATA : ',A) IF (IG .EQ. 1) THEN
WRITE $(16,113)$
ELSE IF (IG .EQ. 2) THEN WRITE $(16,114)$
ELSE IF (IG .EQ. 3) THEN
WRITE $(16,115)$ FBKGD
END IF

113 FORMAT(/2X,'BACKGROUND DISTRIBUTION WAS CALCULATED FROM THE DATA')
114 FORMAT(/2X,'BACKGROUND DISTRIBUTION WAS SET BY THE USER')
115 FORMAT(/2X,'NAME OF FILE WITH BACKGROUND DATA : ',A)
C
WRITE $(16,119)$ DETNUM
119 FORMAT(/2X,'DETECTOR NUMBER : ',I10)
WRITE $(16,120)$ PE
120 FORMAT(2X,'PHOTON ENERGY $(\mathrm{KeV})=$ ', 15
${ }^{120}$
WRITE $(16,125)$ DAVG
125 FORMAT(/2X,'AVERAGE COUNT RATE $(\mathrm{cpm})=$ ',1P,E10.4 WRITE $(16,130)$ UNITS, FAVG
130 FORMAT(2X,'AVERAGE ACTIVITY (', A10, ') = ',1P,E10.4)
WRITE $(16,135)$ DBKG
135 FORMAT(2X,'BACKGROUND AVERAGE COUNT RATE (cpm) : ',1P,E10.4) WRITE $(16,140)$ UNITS, FBKG
140 FORMAT(2X,'BACKGROUND AVERAGE ACTIVITY (', A10, ') : ',1P,E10.4)
C
WRITE $(16,150)$ RCSQBKG
150 FORMAT(/2X,'CHI SQUARE PER DEGREE OF FREEDOM / BACKGROUND = ',1P,E
110.4)

WRITE $(16,156)$ RCSQMENXY
156 FORMAT(2X,'CHI SQUARE PER DEGREE OF FREEDOM / MaxEnt DIST. = ',F10 1.4)

C
WRITE $(16,160)$ MNUM (IHP
160 FORMAT(/2X,'LARGEST POTENTIAL ELEVATED AREA NEAR MEASUREMENT 1,I3)
WRITE $(16,165)$ HSA
165 FORMAT 2 X,'AREA $\left(\mathrm{m}^{\wedge} 2\right)=$ ',F10.4) WRITE $(16,175)$ MHS(IHP)
175 FORMAT(2X,'MAGNITUDE (x BACKGROUND) = ',F10.4) $\mathrm{EAM}=\mathrm{MHS}(\mathrm{IHP})^{*} \mathrm{FBKG}$ WRITE $(16,180)$ UNITS,EAM
180 FORMAT(2X,'MAGNITUDE (', A10, ') = ',1P,E10.4) WRITE $(16,182)$
182 FORMAT(2X,'CHI SQUARE PER DEGREE OF FREEDOM OF THE' WRITE $(16,183)$ CSQHS(IHP)
183 FORMAT(2X,'DISTRIBUTION WITH THE LARGEST HOT SPOT = ',F10.4
C
DO 330 I=1, M
$\operatorname{RERR}(\mathrm{I})=(\operatorname{EMENXY}(\mathrm{I})-\mathrm{D}(\mathrm{I})) / \mathrm{S}(\mathrm{I})$
330 CONTINUE
WRITE $(16,385)$
WRITE $(16,386)$

WRITE $(16,387)$
385 FORMAT(/2X,'RESULTS FOR MaxEnt DECONVOLUTION, SMALL CELL SIZE:')
386 FORMAT(2X,'MEASURMENT MEASURED CALCULATED DEVIATION ')
387 FORMAT(2X,'NUMBER COUNT RATE COUNT RATE (C.-M.)/S.')
DO $340 \mathrm{I}=1, \mathrm{M}$
WRITE (16, 390) MNUM(I),D(I),EMENXY(I),RERR(I)
340 CONTINUE
390 FORMAT(2X,I10,2X,1P,E10.4,2X,E10.4,2X,0P,F10.5)
C
DO 430 I=1,M
$\operatorname{RERR}(\mathrm{I})=(\operatorname{EBKG}(\mathrm{I})-\mathrm{D}(\mathrm{I})) / \mathrm{S}(\mathrm{I})$
430 CONTINUE
WRITE $(16,485)$
WRITE $(16,486)$
WRITE $(16,487)$
485 FORMAT(/2X,'RESULTS FOR DEFAULT DISTRIBUTION:')
486 FORMAT(2X,'MEASURMENT MEASURED CALCULATED DEVIATION ')
487 FORMAT(2X,'NUMBER COUNT RATE COUNT RATE (C.-M.)/S.')
DO $440 \mathrm{I}=1, \mathrm{M}$
WRITE $(16,490)$ MNUM(I), D(I), EBKG(I),RERR(I)
440 CONTINUE
490 FORMAT(2X,I10,2X,1P,E10.4,2X,E10.4,2X,0P,F10.5)
C
WRITE $(16,195)$
WRITE $(16,196)$
195 FORMAT(/2X,'POTENTIAL HOT SPOTS FOUND:')
196 FORMAT(2X,'MEAS. N. X COORD. Y COORD. MAG(xBKG) CHI SQR.')
C
DO $50 \mathrm{I}=1, \mathrm{M}$
IF (PFE(I) .GT. 0.0) THEN
RCSQHSI = CSQHS(I)/M
WRITE $(16,200)$ MNUM(I),XHS(I),YHS(I),MHS(I),RCSQHSI
END IF
50 CONTINUE
200 FORMAT(2X,I8,2X,1P,E8.2,2X,E8.2,2X,E8.2,2X,E8.2)
C
CALL SYSTEM CLOCK(IC2,ICR2,ICM2)
IF (ICR2 .GT. 0) THEN
DTIME $=(($ IC2 - IC1 $) /$ ICR2 $) / 60.0$
WRITE $(16,205)$ DTIME
205 FORMAT(//2X,'TIME TO RUN THE PROGRAM (MINUTES) = ',F10.4)
END IF
CLOSE (16, STATUS='KEEP')
C
RETURN
END
C
C

SUBROUTINE
OUTPUTLCS(PE,MNUM,DETNUM,DAVG,FAVG,DBKG,FBKG,EBKG
1RCSQBKG,RCSQMENXY,D,S,X,Y,FMENXY,EH,UNITS,DH,RH,IC $1, I G, F B K G D$, 1EMENXY,X0,Y0,FDEF,MH)
C
INTEGER M,NX,NY,MNXY,NXY,KU,KL,LU,LL,ISP,PE,DETNUM,IG
INTEGER IC1,IC2,ICR2,ICM2
INTEGER MNUM(M)
REAL A,DAVG,FAVG,DBKG,FBKG
REAL RCSQBKG,RCSQMENXY
REAL DTIME,XK,YL,X0,Y0
REAL RERR(M), $\mathrm{D}(\mathrm{M}), \mathrm{S}(\mathrm{M}), \mathrm{X}(\mathrm{M}), \mathrm{Y}(\mathrm{M}), \mathrm{EBKG}(\mathrm{M})$
REAL EMENXY(M)
REAL FMENXY(NXY)
REAL FDEF(NXY)
CHARACTER EH*8,WH*12,ZH*12,UNITS*10,DH*60,RH*60,QH*12,MH*60
CHARACTER FBKGD*60
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C
C
C
C
DO $5 \mathrm{I}=1, \mathrm{M}$
$X(\mathrm{I})=\mathrm{X}(\mathrm{I})+\mathrm{X} 0-\mathrm{A}$
$\mathrm{Y}(\mathrm{I})=\mathrm{Y}(\mathrm{I})+\mathrm{Y} 0-\mathrm{A}$
5
$K U=N X$
$K L=1$
$\mathrm{LU}=\mathrm{NY}$
LL $=1$
C
C
$\mathrm{ZH}=\mathrm{EH} / / \mathrm{I}^{\prime} . \mathrm{SCS}$
$\mathrm{QH}=\mathrm{EH} / /^{\prime} \cdot \mathrm{DEF}{ }^{\prime}$
C
ZH = ADJUSTL (ZH)
QH = ADJUSTL(QH)
C
OPEN (12, FILE=ZH, STATUS='NEW')
OPEN (14, FILE=QH, STATUS='NEW')
C
103 FORMAT(2X,A10)
C
DO $25 \mathrm{~K}=\mathrm{KL}, \mathrm{KU}$
DO 23 L=LL,LU
$\mathrm{XK}=(\mathrm{K}-1)^{*} \mathrm{~A}+\mathrm{X} 0$
$\mathrm{YL}=(\mathrm{L}-1) * \mathrm{~A}+\mathrm{Y} 0$
WRITE $(12,106)$ XK,YL,FMENXY(NY*(K-1)+L)
WRITE $(14,106)$ XK, YL, FDEF(NY* $(\mathrm{K}-1)+\mathrm{L})$
23 CONTINUE
25 CONTINUE
106 FORMAT( 3 (2X,F10.4) )
C
CLOSE (12, STATUS='KEEP')
CLOSE (14, STATUS='KEEP')
C
C Prepare the output table
C
$\mathrm{WH}=\mathrm{EH} / /^{\prime} . \mathrm{TBL}^{\prime}$
$\mathrm{WH}=\mathrm{ADJUSTL}(\mathrm{WH})$
C
OPEN (16, FILE=WH, STATUS='NEW')
C
WRITE $(16,110) \mathrm{DH}$
110 FORMAT(/2X,'NAME OF FILE WITH INPUT DATA : ',A) WRITE $(16,111)$ EH
111 FORMAT(2X,'NAME OF OUTPUT FILE : ',A) WRITE $(16,112)$ RH
112 FORMAT(2X,'NAME OF FILE WITH DETECTOR RESPONSE DATA : ',A)
WRITE $(16,117) \mathrm{MH}$
117 FORMAT(2X,'NAME OF FILE WITH ATTENUATION COEFFICIENTS DATA : ',A)
IF (IG .EQ. 1) THEN
WRITE $(16,113)$
ELSE IF (IG .EQ. 2) THEN
WRITE $(16,114)$
ELSE IF (IG .EQ. 3) THEN
WRITE $(16,115)$ FBKGD
ELSE IF (IG .EQ. 4) THEN
WRITE $(16,116)$
END IF
113 FORMAT(/2X,'CONSTANT BACKGROUND WAS ESTIMATED FROM THE
DATA')
114 FORMAT(/2X,'BACKGROUND DISTRIBUTION WAS SET BY THE USER')
115 FORMAT(/2X,'NAME OF FILE WITH BACKGROUND DATA : ',A)
116 FORMAT(/2X,'SMOOTH BACKGROUND WAS ESTIMATED FROM THE DATA')
${ }^{116}$
WRITE $(16,119)$ DETNUM
119 FORMAT(/2X,'DETECTOR NUMBER : ',I10)
WRITE $(16,120)$ PE
120 FORMAT(2X,'PHOTON ENERGY $(\mathrm{KeV})=$ ',I5)
C
WRITE $(16,125)$ DAVG
125 FORMAT(/2X,'AVERAGE COUNT RATE $(\mathrm{cpm})=$ ',1P,E10.4)
WRITE $(16,130)$ UNITS, FAVG
130 FORMAT(2X,'AVERAGE ACTIVITY (', A10, ') = ',1P,E10.4)

WRITE $(16,135)$ DBKG
35 FORMAT(2X,'BACKGROUND AVERAGE COUNT RATE (cpm) : ',1P,E10.4) WRITE $(16,140)$ UNITS, FBKG
140 FORMAT(2X,'BACKGROUND AVERAGE ACTIVITY (', A10, ') : ',1P,E10.4) C

## WRITE $(16,150)$ RCSQBKG

150 FORMAT(/2X,'CHI SQUARE PER DEGREE OF FREEDOM / BACKGROUND = ',1P,E
110.4)

WRITE $(16,156)$ RCSQMENXY
156 FORMAT(2X,'CHI SQUARE PER DEGREE OF FREEDOM / MAXIMUM ENTROPY $=$ ',
1F10.4)
C
DO 330 I=1,M
RERR $(\mathrm{I})=(\operatorname{EMENXY}(\mathrm{I})-\mathrm{D}(\mathrm{I})) / \mathrm{S}(\mathrm{I})$
330 CONTINUE
WRITE $(16,385)$
WRITE $(16,386)$
WRITE $(16,387)$
385 FORMAT(/2X,'RESULTS FOR MAXIMUM ENTROPY DECONVOLUTION :')
386 FORMAT(2X,'MEASURMENT MEASURED CALCULATED DEVIATION ')
87 FORMAT(2X,'NUMBER COUNT RATE COUNT RATE (C.-M.)/S.')
DO $340 \mathrm{I}=1, \mathrm{M}$
WRITE (16, 390) MNUM(I),D(I),EMENXY(I),RERR(I)
340 CONTINUE
390 FORMAT(2X,I10,2X,1P,E10.4,2X,E10.4,2X,0P,F10.5)
C
DO 430 I=1, M
$\operatorname{RERR}(\mathrm{I})=(\operatorname{EBKG}(\mathrm{I})-\mathrm{D}(\mathrm{I})) / \mathrm{S}(\mathrm{I})$
430 CONTINUE
WRITE $(16,485)$
WRITE $(16,486)$
WRITE $(16,487)$
485 FORMAT(/2X,'RESULTS FOR DEFAULT DISTRIBUTION:')
486 FORMAT(2X,'MEASURMENT MEASURED CALCULATED DEVIATION ')
487 FORMAT(2X,'NUMBER COUNT RATE COUNT RATE (C.-M.)/S.')
DO $440 \mathrm{I}=1, \mathrm{M}$
WRITE $(16,490)$ MNUM(I),D(I),EBKG(I),RERR(I)
440 CONTINUE
490 FORMAT(2X,I10,2X,1P,E10.4,2X,E10.4,2X,0P,F10.5)
C
CALL SYSTEM_CLOCK(IC2,ICR2,ICM2)
IF (ICR2 .GT. 0) THEN
DTIME $=(($ IC2 - IC1 $) /$ ICR2 $) / 60.0$
WRITE $(16,205)$ DTIME
205 FORMAT(//2X,'TIME TO RUN THE PROGRAM (MINUTES) = ',F10.4) END IF

CLOSE (16, STATUS='KEEP')
C
RETURN
END
C
C
SUBROUTINE DETRESP(B,A,X,Y,NSD,IQ,AA,NOP,GPD,AS,ANG1,ANG2,ANG3, 1HH,RHO,M,NXY,MNXY,NX,NY)
C
C FILE: RFFLAT01.FOR
C LAST MODIFIED: 5/6/99
C
C
C INTEG
AA,RR,XK,XL,R,ASR,NOP,GPD,TH,ANGC,RHO,AS,PHIOA,ANG1,ANG2,ANG3 REAL A,RMIN
REAL B(MNXY),X(M),Y(M),HH(M)
C
C NOTE: $\mathrm{X}(\mathrm{I}), \mathrm{Y}(\mathrm{I}), \mathrm{A}$ are measured in meters.
C GPD are gamma per disintegration
C NOP is in cpm/(gamma/cm**2.second)
c ANG2, ANG3 are parameters for the angular response function,
C which is of the form
C $\quad 1.0$ + ANG1*(THETA) + ANG2*(THETA) ${ }^{\wedge} 2+$ ANG3 $*(\text { THETA })^{\wedge} 3$
C where THETA is measured in degrees.
C AA is the attenuation coefficient for air, in units of $1 / \mathrm{cm}$
C AS is the attenuation coefficient for soil, in units of $1 / \mathrm{cm}$
C RHO is the soil density, in $\mathrm{g} / \mathrm{cm}^{* * 3}$
C Note: IF $\mathrm{HH}(\mathrm{I})=0.0$, THEN DATA IS FROM A SOIL SAMPLE.
C SOIL SAMPLE DATA MUST BE IN THE CONCENTRATION UNITS USED
C FOR THE DECONVOLUTION.
C
IF (NSD .EQ. 1) THEN
IF (IQ .EQ. 1) THEN
NOP $=$ NOP/0.02703
END IF
DO $15 \mathrm{I}=1, \mathrm{M}$
RMIN $=10 *$ A
DO $10 \mathrm{~K}=1$,NX
DO 5 L=1,NY
XK $=$ A* $(\operatorname{REAL}(\mathrm{K}))$
$\mathrm{XL}=\mathrm{A}^{*}(\operatorname{REAL}(\mathrm{~L}))$
$\mathrm{RR}=\left((\mathrm{X}(\mathrm{I})-\mathrm{XK})^{* * 2}\right)+((\mathrm{Y}(\mathrm{I})-\mathrm{XL}) * * 2)+\left((\mathrm{HH}(\mathrm{I}))^{* *} 2\right)$
$\mathrm{R}=\mathrm{SQRT}(\mathrm{RR})$
IF (HH(I) .GT. 0.0) THEN
ASR $=A S^{*}\left(\right.$ R $\left.^{*} 100.0\right)$

TH $=57.30 *$ ACOS(HH(I)/R)
$\mathrm{ANGC}=1.0+\mathrm{ANG} 1 * \mathrm{TH}+\mathrm{ANG} 2 *\left(\mathrm{TH}^{*} * 2\right)+\mathrm{ANG} 3 * \mathrm{TH}^{*}\left(\mathrm{TH}^{*} * 2\right)$
PHIOA $=\left(\left(\mathrm{A}^{*} 100.0\right) * * 2\right) *(\mathrm{RHO} / 1000.0) *(\mathrm{HH}(\mathrm{I}) / \mathrm{R}) / 12.566$
IF (ASR .GT. 10.0) THEN
PHIOA $=\left(\right.$ PHIOA $\left./\left(\mathrm{R}^{*} 100.0\right)\right) *($ EXPZE2Z(ASR) $)$
ELSE
PHIOA $=\left(\mathrm{PHIOA} /\left(\mathrm{R}^{*} 100.0\right)\right)^{*} \mathrm{EXP}(\mathrm{ASR}) *(E X P I N T(2, A S R))$
END IF
$\mathrm{B}\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}\right)=\mathrm{EXP}(-\mathrm{AA} * \mathrm{R} * 100.0) * \mathrm{PHIOA}^{2} \mathrm{NOP} * \mathrm{GPD} * \mathrm{ANGC}$ END IF
IF (HH(I) .EQ. 0.0) THEN
$\mathrm{B}\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right)=0.0$
IF (R .LT. RMIN) THEN
$\mathrm{KMIN}=\mathrm{K}$
LMIN $=\mathrm{L}$
RMIN $=$ R
END IF
END IF
5 CONTINUE
10 CONTINUE
IF (HH(I) .EQ. 0.0) THEN
B $\left.\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{KMIN}-1)+\mathrm{LMIN}\right)=1.0$
END IF
15 CONTINUE
ELSE IF (NSD .EQ. 2) THEN
IF (IQ .EQ. 1) THEN
$\mathrm{NOP}=\mathrm{NOP} / 27.03$

## END IF

DO $35 \mathrm{I}=1, \mathrm{M}$
DO $30 \mathrm{~K}=1$, NX
DO $25 \mathrm{~L}=1$,NY
$\mathrm{XK}=\mathrm{A} *(\operatorname{REAL}(\mathrm{~K}))$
$\mathrm{XL}=\mathrm{A} *(\operatorname{REAL}(\mathrm{~L}))$
$\mathrm{RR}=((\mathrm{X}(\mathrm{I})-\mathrm{XK}) * * 2)+((\mathrm{Y}(\mathrm{I})-\mathrm{XL}) * * 2)+(\mathrm{HH}(\mathrm{I}) * * 2)$
$\mathrm{R}=\mathrm{SQRT}(\mathrm{RR})$
$\mathrm{TH}=57.30^{*} \mathrm{ACOS}(\mathrm{HH}(\mathrm{I}) / \mathrm{R})$
ANGC $=1.0+$ ANG1*TH + ANG2*(TH**2) + ANG3*TH*(TH**2
PHIOA $=\left(\mathrm{A}^{* *} 2\right) /\left(12.566 * \mathrm{RR}^{*} 10000.0\right)$
$\mathrm{B}\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}\right)=\mathrm{EXP}\left(-\mathrm{AA}^{*} \mathrm{R}^{*} 100.0\right) * \mathrm{PHIOA}^{*} \mathrm{NOP}^{*} \mathrm{GPD} * \mathrm{ANGC}$ CONTINUE

## CONTINUE

35 CONTINUE
END IF
C

## RETURN

END
C
C Note: To calculate B use (see tutorial) the formula
C $\quad \mathrm{N}(\mathrm{cpm})=($ air atten.)*(N0/PHI)*(gamma/dis)*(ang. correction)*PH
C For a uniform distribution use the following formula for PHI :

C $\quad \mathrm{PHI}=\left\{(\text { area) })^{*}(\text { rho-soil })^{*} \cos (\right.$ theta $\left.) / 4^{*} \mathrm{PI}\right\}$

* $\{\exp \{\mathrm{SA} * \mathrm{R}\} * \operatorname{ExpInt} 2(\mathrm{SA} * \mathrm{R}) / \mathrm{R}\}$
* \{activity/mass
where $\mathrm{SA}=$ soil attenuation, $\mathrm{AA}=$ air attenuation, $\mathrm{R}=$ distance
C from source to detector, $\cos ($ theta $)=H H / S Q R T(R R)$
C

C
FUNCTION expint(n,x)
INTEGER n,MAXIT
REAL expint,x,EPS,FPMIN,EULER
PARAMETER (MAXIT=100,EPS=1.e-7,FPMIN=1.e-30,EULER=.5772156649)
INTEGER i,ii,nm1
REAL a,b,c,d,del,fact,h,psi
$\mathrm{nml}=\mathrm{n}$-1
if(n.lt.0.or.x.lt.0..or.(x.eq.0..and.(n.eq.0.or.n.eq.1)))then
pause 'bad arguments in expint'
else if(n.eq.0)then
expint=exp(-x)/x
else if(x.eq.0.)then
expint=1./nm1
else if(x.gt.1.)then
$\mathrm{b}=\mathrm{x}+\mathrm{n}$
$\mathrm{c}=1 . /$ FPMIN
$\mathrm{d}=1 . / \mathrm{b}$
$\mathrm{h}=\mathrm{d}$
do $11 \mathrm{i}=1$,MAXIT
$\mathrm{a}=-\mathrm{i}^{*}(\mathrm{~nm} 1+\mathrm{i})$
$\mathrm{b}=\mathrm{b}+2$.
$\mathrm{d}=1 . /(\mathrm{a} * \mathrm{~d}+\mathrm{b})$
$\mathrm{c}=\mathrm{b}+\mathrm{a} / \mathrm{c}$
del=c*d
$\mathrm{h}=\mathrm{h} * \mathrm{del}$
if(abs(del-1.).lt.EPS)then
expint=h*exp(-x)
return
endif
11 continue
pause 'continued fraction failed in expint'
else
if(nm1.ne.0)then
expint=1./nm1
else
expint=-log(x)-EULER
endif
fact $=1$.
do $13 \mathrm{i}=1$,MAXIT
fact=-fact*x/i
if(i.ne.nm1)then
del=-fact/(i-nm1)


## else

$$
\begin{gathered}
\text { psi=-EULER } \\
\text { do } 12 \mathrm{ii}=1, \mathrm{~nm} 1 \\
\mathrm{psi}=\mathrm{psi}+1 . / \mathrm{ii}
\end{gathered}
$$

continue
del $=$ fact $*(-\log (\mathrm{x})+\mathrm{psi})$
endif
expint=expint+del
if(abs(del).lt.abs(expint)*EPS) return
13 continue
pause 'series failed in expint'
endif
return
END
C (C) Copr. 1986-92 Numerical Recipes Software \%-,
$\mathrm{C}(\mathrm{C}$
C
C
C

## FUNCTION EXPZE2Z(X)

C Function to calculate $\exp (\mathrm{x})^{*} \mathrm{E} 2(\mathrm{x})$, where $\mathrm{E} 2(\mathrm{x})$ is an exponential
C integral. Uses the rational approximation by Paul Verbeeck,
C "Rational approximations for exponential integrals En(x)", in
$\pm$ C Bulletin de l'Academie royale de Belgique (Classe de Sciences), C page 1064, 5e Serie - Tome LVI, 1970.
C
C $\quad \exp (x) * E 2(x)=(1 / x)^{*}(v 1(z) / v 2(z))$ where $\mathrm{v} 1, \mathrm{v} 2$ are third order
C polynomials, $\mathrm{z}=1 / \mathrm{x}, \mathrm{x}>1$, and stated maximum error $<9$.E-06.
REAL X,A2,A3,B2,B3
C
$\mathrm{A} 2=2.6731571$
$\mathrm{A} 3=0.1212641$
$\mathrm{B} 2=4.6660820$
$\mathrm{B} 3=3.7340708$
C
EXPZE2Z $=\left(1.0+(\mathrm{A} 2 / \mathrm{X})+\left(\mathrm{A} 3 /\left(\mathrm{X}^{* *} 2\right)\right)\right) /\left(\mathrm{X}^{*}\left(1.0+(\mathrm{B} 2 / \mathrm{X})+\left(\mathrm{B} 3 /\left(\mathrm{X}^{* *} 2\right)\right)\right)\right)$
C
RETURN
END
C
C
C
SUBROUTINE LAMBDAZERO(LAMBDA,M)
INTEGER I,M
REAL LAMBDA(M)
DO $10 \mathrm{I}=1, \mathrm{M}$
LAMBDA(I) $=0.0$

10 CONTINUE
RETURN
END
C
C
C
C
SUBROUTINE LAMBDASET(LAMBDAIN,LAMBDAOUT,M)
INTEGER I,M
REAL LAMBDAIN(M),LAMBDAOUT(M)
DO $10 \mathrm{I}=1, \mathrm{M}$
LAMBDAOUT(I) = LAMBDAIN(I)
10 CONTINUE
RETURN
END
C
C
C
C
SUBROUTINE MAXENTNXY(LAMBDANXY,D,S,B,FDEF,FMENXY,CSQBKG)

## NTEGER M,NXY,MNXY

INTEGER ITER
REAL FTOL,FRET,CSQBKG,REALM
REAL D(M),S(M)
REAL LAMBDANXY(M),FMENXY(NXY),FDEF(NXY),B(MNXY) COMMON/MN/M,NX,NY,MNXY,NXY
C
$\mathrm{FTOL}=1.0 \mathrm{E}-20$
C
REALM $=$ REAL $(\mathrm{M})$
IF (CSQBKG .LE. REALM) THEN
DO $10 \mathrm{~K}=1$, NXY
$\operatorname{FMENXY}(\mathrm{K})=\operatorname{FDEF}(\mathrm{K})$
10 CONTINUE

## ELSE IF (CSQBKG .GT. REALM) THEN

CALL FRPRMN(LAMBDANXY,M,FTOL,ITER,FRET,FDEF,D,S,B,M,NXY,MNXY)
CALL LMBDAS(FTOL,LAMBDANXY,ITER,FDEF,D,S,B)
CALL FRPRMN(LAMBDANXY,M,FTOL,ITER,FRET,FDEF,D,S,B,M,NXY,MNXY) CALL FMAXENTNXY(LAMBDANXY,FDEF,FMENXY,B)

## END IF

C
RETURN
END
C
C
C
SUBROUTINE MAXENTNXYHS(LAMBDAHS,D,S,B,FDEF,FMENXY)

INTEGER M,NXY,MNXY
INTEGER ITER
REAL FTOL
C REAL FRET
REAL D(M),S(M)
REAL LAMBDAHS(M),FMENXY(NXY),FDEF(NXY),B(MNXY)
COMMON/MN/M,NX,NY,MNXY,NXY
C
$\mathrm{FTOL}=1.0 \mathrm{E}-20$
C
CALL FRPRMN(LAMBDAHS,M,FTOL,ITER,FRET,FDEF,D,S,B,M,NXY,MNXY) CALL LMBDAS(FTOL,LAMBDAHS,ITER,FDEF,D,S,B) CALL FMAXENTNXY(LAMBDAHS,FDEF,FMENXY,B)
C
RETURN
END
C
C
C
SUBROUTINE FMAXENTNXY(LAMBDANXY,FDEF,FMENXY,B)
C
INTEGER I,L,M,NXY,MNXY
REAL LAMBDANXY(M),FDEF(NXY),FMENXY(NXY),B(MNXY)
REAL SUM(NXY)
COMMON/MN/M,NX,NY,MNXY,NXY
C
DO 20 L=1,NXY
$\operatorname{SUM}(\mathrm{L})=0.0$
DO $10 \mathrm{I}=1, \mathrm{M}$
$\operatorname{SUM}(\mathrm{L})=\operatorname{SUM}(\mathrm{L})+\operatorname{LAMBDANXY}(\mathrm{I}) * \mathrm{~B}(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{L})$
10 CONTINUE
20 CONTINUE
C
DO 30 L=1,NXY
FMENXY(L) $=\operatorname{FDEF}(\mathrm{L}) * E X P(-S U M(\mathrm{~L}))$
30 CONTINUE
C
RETURN
END
C
C
C
C
C

## 2/19/98

C
C
INTEGER L,M,NXY,MNXY
REAL OMEGA,SUM1,SUM2,SUM3,SUM4,SUM5

C
OMEGA $=$ REAL $(\mathrm{M})$
C
SUM1 $=0.0$
SUM5 $=0.0$
DO 12 L=1,NXY
SUM2 $=0.0$
DO $10 \mathrm{I}=1, \mathrm{M}$
SUM2 $=$ SUM2 + LAMBDA $(I) *$ B $\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{L}\right)$
10 CONTINUE
IF (SUM2 .GT. 174.0) THEN
SUM2 $=174.0$
END IF
IF (SUM2 .LT. -180.0) THEN
SUM2 $=-180.0$
END IF
SUM1 $=$ SUM $1+\operatorname{FDEF}(\mathrm{L}) * E X P(-S U M 2)$
SUM5 = SUM5 + FDEF(L)
12
C
SUM3 $=0.0$
SUM4 $=0.0$
DO $16 \mathrm{I}=1, \mathrm{M}$
SUM3 $=$ SUM3 $+(\mathrm{S}(\mathrm{I}) * \text { LAMBDA }(\mathrm{I}))^{* *}$
SUM4 $=$ SUM $4+$ D $(\mathrm{I}) *$ LAMBDA $(\mathrm{I})$
16
C
FUNC $=$-SUM1-SQRT(OMEGA*SUM3)-SUM4+SUM5
$F U N C=-F U N C$
C
RETURN
END
C
C
SUBROUTINE DFUNC(LAMBDA,GRADZ,FDEF,D,S,B,M,NXY,MNXY)
INTEGER L,M,NXY,MNXY
REAL OMEGA,A1,A2,SUM1,SUM2(NXY),SUM3
REAL LAMBDA(M),GRADZ(M),FDEF(NXY),D(M),S(M),B(MNXY)
C
OMEGA $=$ REAL $(\mathrm{M})$
C
$\mathrm{A} 1=0.0$
$\mathrm{A} 2=0.0$
DO $8 \mathrm{I}=1, \mathrm{M}$
$\mathrm{A} 1=\mathrm{A} 1+(\mathrm{S}(\mathrm{I}) * \operatorname{LAMBDA}(\mathrm{I}))^{*} 2$
$\mathrm{A} 2=\mathrm{A} 2+(\mathrm{S}(\mathrm{I}))^{* *} 2$
8 CONTINUE

```
DO \(12 \mathrm{~L}=1\),NXY
    SUM2 \((\mathrm{L})=0.0\)
    DO \(10 \mathrm{I}=1, \mathrm{M}\)
    SUM2 (L) \(=\) SUM2 \((\mathrm{L})+\operatorname{LAMBDA}(\mathrm{I}) * \mathrm{~B}(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{L})\)
    10 CONTINUE
    12 CONTINUE
C
    DO \(30 \mathrm{I}=1, \mathrm{M}\)
    SUM1 \(=0.0\)
    DO \(16 \mathrm{~L}=1\),NXY
    IF (SUM2(L) .GT. 174.0) THEN
        SUM2 \((\mathrm{L})=174.0\)
    END IF
    IF (SUM2(L) .LT. -180.0) THEN
    SUM2 (L) \(=-180.0\)
    END IF
    SUM \(1=\operatorname{SUM} 1+\operatorname{FDEF}(\mathrm{L}) * \operatorname{EXP}(-\operatorname{SUM} 2(\mathrm{~L})) * \mathrm{~B}\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{L}\right)\)
    16
    C
    SUM3 \(=\left((\mathrm{S}(\mathrm{I}))^{* *} 2\right) *(S Q R T(O M E G A / A 2))\)
    IF (A1 .GT. 1.0E-20) THEN
    SUM3 \(=\left((\mathrm{S}(\mathrm{I}))^{* *} 2\right)^{*} \mathrm{LAMBDA}(\mathrm{I}) *(\mathrm{SQRT}(\mathrm{OMEGA} / \mathrm{A} 1))\)
    GRADZ(I) \(=\) SUM1 - SUM3 - D(I)
    GRADZ \((\mathrm{I})=-\mathrm{GRADZ}(\mathrm{I})\)
    30 CONTINUE
```

」 C
C
RETURN
END
C
C
SUBROUTINE frprmn(p,n,ftol,iter,fret,FDEF,D,S,B,M,NXY,MNXY)
INTEGER iter,n,NMAX,ITMAX
REAL fret,ftol,p(n),EPS,func
EXTERNAL func
PARAMETER $($ NMAX $=500$, ITMAX $=200, E P S=1 . e-10)$
CU USES dfunc,func,linmin
INTEGER its, j
REAL dgg,fp,gam,gg,g(NMAX),h(NMAX),xi(NMAX)
REAL FDEF(NXY),D(M),S(M),B(MNXY)
fp=func(p,FDEF,D,S,B,M,NXY,MNXY)
call dfunc(p,xi,FDEF,D,S,B,M,NXY,MNXY)
do $11 \mathrm{j}=1$, n
$g(j)=-x i(j)$
$h(j)=g(j)$
$x i(j)=h(j)$
11 continue

## do 14 its=1,ITMAX

iter=its
C PRINT*,' SUBROUTINE FRPRMN/NUMBER OF ITERATIONS : ',ITER
C PRINT*',
call linmin(p,xi,n,fret,FDEF,D,S,B,M,NXY,MNXY)
if(2.*abs(fret-fp).le.ftol*(abs(fret) + abs(fp)+EPS))return
fp=func(p,FDEF,D,S,B,M,NXY,MNXY)
call dfunc(p,xi,FDEF,D,S,B,M,NXY,MNXY)
$\mathrm{gg}=0$.
dgg $=0$.
do $12 \mathrm{j}=1, \mathrm{n}$
$\mathrm{gg}=\mathrm{gg}+\mathrm{g}(\mathrm{j}) * * 2$
$\mathrm{dgg}=\mathrm{dgg}+\mathrm{xi}(\mathrm{j}) *{ }^{*}$
$\mathrm{dgg}=\mathrm{dgg}+(\mathrm{xi}(\mathrm{j})+\mathrm{g}(\mathrm{j}))^{*} \mathrm{xi}(\mathrm{j})$
12 continue
if(gg.eq.0.)return
gam $=\mathrm{dgg} / \mathrm{gg}$
do $13 \mathrm{j}=1, \mathrm{n}$
$g(\mathrm{j})=-\mathrm{xi}(\mathrm{j})$
$\mathrm{h}(\mathrm{j})=\mathrm{g}(\mathrm{j})+\mathrm{gam} * \mathrm{~h}(\mathrm{j})$
$x i(\mathrm{j})=\mathrm{h}(\mathrm{j})$
13 continue
14 continue
C pause 'frprmn maximum iterations exceeded'
c PRINT*,' frprmn maximum iterations exceeded'
c PRINT*,','
return
END
C (C) Copr. 1986-92 Numerical Recipes Software \%-,.
C
C
SUBROUTINE linmin(p,xi,n,fret,FDEF,D,S,B,M,NXY,MNXY) INTEGER n,NMAX
REAL fret, $\mathrm{p}(\mathrm{n}), \mathrm{xi}(\mathrm{n})$, TOL
PARAMETER (NMAX=500,TOL=1.e-6)
CU USES brent,fldim,mnbrak
INTEGER j,ncom
REAL ax,bx,fa,fb,fx,xmin,xx,pcom(NMAX),xicom(NMAX), brent
REAL FDEF(NXY),D(M),S(M),B(MNXY)
COMMON/flcom/pcom,xicom,ncom
EXTERNAL fldim
ncom=n
do $11 \mathrm{j}=1, \mathrm{n}$
$\operatorname{pcom}(\mathrm{j})=\mathrm{p}(\mathrm{j})$
xicom $(\mathrm{j})=x i(\mathrm{j})$
11 continue
$\mathrm{ax}=0$.
$\mathrm{xx}=1$.
call mnbrak(ax,xx,bx,fa,fx,fb,fldim,FDEF,D,S,B,M,NXY,MNXY)
fret=brent(ax,xx,bx,fldim,TOL,xmin,FDEF,D,S,B,M,NXY,MNXY)
do $12 \mathrm{j}=1$, n
$x i(j)=x \min * x i(j)$
$p(j)=p(j)+x i(j)$
12 continue
return
END
C (C) Copr. 1986-92 Numerical Recipes Software \%-,.
C
C
SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func,FDEF,D,S,B,M,NXY,MNXY)
REAL ax,bx,cx,fa,fb,fc,func,GOLD,GLIMIT,TINY
EXTERNAL func
PARAMETER (GOLD=1.618034, GLIMIT=100., TINY=1.e-20)
REAL dum, fu,q,r,u,ulim
REAL FDEF(NXY),D(M),S(M),B(MNXY)
fa=func(ax,FDEF,D,S,B,M,NXY,MNXY)
fb=func(bx,FDEF,D,S,B,M,NXY,MNXY)
if(fb.gt.fa)then
dum=ax
$a x=b x$
bx=dum
dum $=\mathrm{fb}$
$\mathrm{fb}=\mathrm{fa}$
$\mathrm{fa}=$ dum
endif
cx=bx+GOLD*(bx-ax)
fc=func(cx,FDEF,D,S,B,M,NXY,MNXY)
1 if(fb.ge.fc)then
$\mathrm{r}=(\mathrm{bx}-\mathrm{ax}) *(\mathrm{fb}-\mathrm{fc})$
$q=(b x-c x) *(f b-f a)$
$\mathrm{u}=\mathrm{bx}-\left((\mathrm{bx}-\mathrm{cx}) * \mathrm{q}-(\mathrm{bx}-\mathrm{ax})^{*} \mathrm{r}\right) /(2 . * \operatorname{sign}(\max (\operatorname{abs}(\mathrm{q}-\mathrm{r}), \mathrm{TINY}), \mathrm{q}-\mathrm{r}))$
ulim=bx+GLIMIT* (cx-bx)
if((bx-u)*(u-cx).gt.0.)then
fu=func(u,FDEF,D,S,B,M,NXY,MNXY)
if(fu.lt.fc)then
$a x=b x$
$\mathrm{a}=\mathrm{fb}$
$b x=u$
$\mathrm{b}=\mathrm{fu}$
return
else if(fu.gt.fb)then
$\mathrm{cx}=\mathrm{u}$
$\mathrm{fc}=\mathrm{fu}$
return
endif
$\mathrm{u}=\mathrm{cx}+\mathrm{GOLD}$ *(cx-bx)
fu=func(u,FDEF,D,S,B,M,NXY,MNXY)
else if((cx-u)*(u-ulim).gt.0.)then
fu=func(u,FDEF,D,S,B,M,NXY,MNXY)
if(fu.lt.fc)then
bx=cx
$\mathrm{cx}=\mathrm{u}$
$\mathrm{u}=\mathrm{cx}+\mathrm{GOLD}$ *(cx-bx)
$\mathrm{fb}=\mathrm{fc}$
$\mathrm{fc}=\mathrm{fu}$
fu=func(u,FDEF,D,S,B,M,NXY,MNXY)
endif
else if((u-ulim)*(ulim-cx).ge.0.)then
$\mathrm{u}=\mathrm{ulim}$
fu=func(u,FDEF,D,S,B,M,NXY,MNXY)
else
u=cx+GOLD*(cx-bx)
fu=func(u,FDEF,D,S,B,M,NXY,MNXY)
endif
$a x=b x$
$b x=c x$
$\mathrm{cx}=\mathrm{u}$
$\mathrm{fa}=\mathrm{fb}$
$\mathrm{fb}=\mathrm{fc}$
$\mathrm{fc}=\mathrm{fu}$
goto 1
endif
eturn
END
C (C) Copr. 1986-92 Numerical Recipes Software \%-,.
C
C
C
FUNCTION brent(ax,bx,cx,f,tol,xmin,FDEF,DD,S,BB,M,NXY,MNXY)
INTEGER ITMAX
REAL brent,ax,bx,cx,tol,xmin,f,CGOLD,ZEPS
EXTERNALf
PARAMETER (ITMAX $=100$, CGOLD $=.3819660$, ZEPS $=1.0 \mathrm{e}-10$ )
INTEGER iter
REAL a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
REAL FDEF(NXY),DD(M),S(M),BB(MNXY)
$a=\min (a x, c x)$
$b=\max (a x, c x)$
$\mathrm{v}=\mathrm{bx}$
$\mathrm{w}=\mathrm{v}$
$\mathrm{e}=0$.
$\mathrm{fx}=\mathrm{f}(\mathrm{x}, \mathrm{FDEF}, \mathrm{DD}, \mathrm{S}, \mathrm{BB}, \mathrm{M}, \mathrm{NXY}, \mathrm{MNXY})$
$\mathrm{fv}=\mathrm{fx}$
$\mathrm{w}=\mathrm{fx}$
do 11 iter=1,ITMAX
$\mathrm{xm}=0.5^{*}(\mathrm{a}+\mathrm{b})$
tol1=tol*abs(x)+ZEPS
tol2 $=2$. ${ }^{\text {toll }}$
if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3
if(abs(e).gt.tol1) then
$r=(x-w) *(f x-f v)$
$\mathrm{q}=(\mathrm{x}-\mathrm{v}) *(\mathrm{fx}-\mathrm{fw})$
$\mathrm{p}=(\mathrm{x}-\mathrm{v})^{*} \mathrm{q}-(\mathrm{x}-\mathrm{w})^{*} \mathrm{r}$
$\mathrm{q}=2 .{ }^{*}(\mathrm{q}-\mathrm{r})$
if(q.gt.0.) $p=-p$
$\mathrm{q}=\mathrm{abs}(\mathrm{q})$
etemp=e
$\mathrm{e}=\mathrm{d}$
if(abs(p).ge.abs(.5*q*etemp).or.p.le.q*(a-x).or.p.ge.q*(b-x))
*goto 1
$d=p / q$
$\mathrm{u}=\mathrm{x}+\mathrm{d}$
if $(\mathrm{u}-\mathrm{a}$ lt.tol2 2 .or. b-u.lt.tol2) $\mathrm{d}=\operatorname{sign}($ tol1, $\mathrm{xm}-\mathrm{x}) ~$
goto 2
endif
1 if(x.ge.xm) then
$\mathrm{e}=\mathrm{a}-\mathrm{x}$
else
$e=b-x$
endif
d=CGOLD*e
$2 \mathrm{if}(\mathrm{abs}(\mathrm{d}) . \mathrm{ge} . \mathrm{tol1})$ then
$\mathrm{u}=\mathrm{x}+\mathrm{d}$
else
$\mathrm{u}=\mathrm{x}+\operatorname{sign}(\mathrm{tol} 1, \mathrm{~d})$
endif
u=f(u,FDEF,DD,S,BB,M,NXY,MNXY)
if(fu.le.fx) then
if(u.ge.x) then
$a=x$
else
$\mathrm{b}=\mathrm{x}$
endif
$\mathrm{v}=\mathrm{w}$
$\mathrm{fv}=\mathrm{fw}$
$\mathrm{w}=\mathrm{x}$
$\mathrm{fw}=\mathrm{fx}$
$\mathrm{x}=\mathrm{u}$
$\mathrm{fx}=\mathrm{fu}$
else
if(u.lt.x) then
$a=u$
else
$\mathrm{b}=\mathrm{u}$
endif
if(fu.le.fw .or. w.eq.x) then
$\mathrm{v}=\mathrm{w}$
$\mathrm{fv}=\mathrm{fw}$
$\mathrm{w}=\mathrm{u}$
$\mathrm{fw}=\mathrm{fu}$
else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
$\mathrm{fv}=\mathrm{fu}$
endif
endif
11 continue
C pause 'brent exceed maximum iterations'
c PRINT*,' brent exceed maximum iterations'
c PRINT*,'
$3 \begin{array}{r}\mathrm{xmin}=\mathrm{x} \\ \text { brent }\end{array}$
return
END
C (C) Copr. 1986-92 Numerical Recipes Software \%-,.
C
C
C
FUNCTION fldim(x,FDEF,D,S,B,M,NXY,MNXY)
NTEGER NMAX
REAL fldim,func, x
PARAMETER (NMAX=500)
CU USES func
INTEGER j,ncom
REAL pcom(NMAX),xicom(NMAX),xt(NMAX)
REAL FDEF(NXY),D(M),S(M),B(MNXY)
COMMON/flcom/pcom,xicom,ncom
do $11 \mathrm{j}=1$, ncom
$\mathrm{xt}(\mathrm{j})=\operatorname{pcom}(\mathrm{j})+\mathrm{x} *$ xicom $(\mathrm{j})$
11 continue
fldim=func(xt,FDEF,D,S,B,M,NXY,MNXY)
return
END
C (C) Copr. 1986-92 Numerical Recipes Software \%-,
C
C
C
C
SUBROUTINE LMBDAS(FTOL,LAMBDA,ITER,FDEF,D,S,B)
C
C FILE: MEITER01.FOR
C 2/19/98
C
NTEGER K,L,M,NX,NY NXY,ITER,ITERMAX,MNXY
REAL OMEGA,LB(NX,NY),EPS
REAL TWOMU,Z,ZOLD,FTOL,P,C
REAL LAMBDA(M),LAMBDAOLD(M),DL,DLMIN
REAL FDEF(NXY),D(M),E(M),S(M),B(MNXY)
COMMON/MN/M,NX,NY,MNXY,NXY

C
OMEGA $=$ REAL $(\mathrm{M})$
ITER $=1$
ITERMAX $=250$
EPS $=1.0 \mathrm{E}-10$
DLMIN $=0.1$
$\mathrm{P}=0.01$
DO $2 \mathrm{I}=1, \mathrm{M}$
$\operatorname{LAMBDAOLD}(\mathrm{I})=\operatorname{LAMBDA}(\mathrm{I})$
2 CONTINUE
ZOLD = FUNC(LAMBDA,FDEF,D,S,B,M,NXY,MNXY)
C
DO 8 K=1,NX
DO 6 L=1,NY
$\mathrm{LB}(\mathrm{K}, \mathrm{L})=0.0$
DO $4 \mathrm{I}=1, \mathrm{M}$
$\mathrm{LB}(\mathrm{K}, \mathrm{L})=\mathrm{LB}(\mathrm{K}, \mathrm{L})+\mathrm{LAMBDA}(\mathrm{I}) * \mathrm{~B}(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L})$
CONTINUE
CONTINUE
8 CONTINUE
$\mathrm{C}=0.0$
DO $14 \mathrm{I}=1, \mathrm{M}$
$\mathrm{E}(\mathrm{I})=0.0$

- DO $12 \mathrm{~K}=1$, NX

DO $10 \mathrm{~L}=1, \mathrm{NY}$
$\mathrm{E}(\mathrm{I})=\mathrm{E}(\mathrm{I})+\mathrm{FDEF}(\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}) * \operatorname{EXP}(-\mathrm{LB}(\mathrm{K}, \mathrm{L})) * \mathrm{~B}(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L})$
10 CONTINUE
12 CONTINUE
$\mathrm{C}=\mathrm{C}+((\mathrm{E}(\mathrm{I})-\mathrm{D}(\mathrm{I})) / \mathrm{S}(\mathrm{I}))^{* *} 2$
14
C
C Use the integral equation to modify the lambdas.
C
5 TWOMU $=0.0$
DO $16 \mathrm{I}=1, \mathrm{M}$
TWOMU $=$ TWOMU $+(\mathrm{S}(\mathrm{I}) *$ LAMBDA(I))**2
16 CONTINUE
TWOMU $=$ SQRT(TWOMU/OMEGA)
C

## DO $18 \mathrm{I}=1, \mathrm{M}$

LAMBDA $(\mathrm{I})=(1.0-\mathrm{P}) * \operatorname{LAMBDA}(\mathrm{I})+\mathrm{P} *(\mathrm{E}(\mathrm{I})-\mathrm{D}(\mathrm{I})) * \mathrm{TWOMU} /(\mathrm{S}(\mathrm{I}) * * 2)$
18 CONTINUE
Z = FUNC(LAMBDA,FDEF,D,S,B,M,NXY,MNXY)
C
IF (Z .GT. ZOLD) THEN
DO $24 \mathrm{I}=1, \mathrm{M}$
$\operatorname{LAMBDA}(\mathrm{I})=\operatorname{LAMBDAOLD}(\mathrm{I})$
24 CONTINUE
IF (ABS(C-OMEGA) .LT. 1.0) THEN
RETURN

## END IF

CALL FRPRMN(LAMBDA,M,FTOL,ITER,FRET,FDEF,D,S,B,M,NXY,MNXY) RETURN
END IF
C
IF (ITER .GT. ITERMAX) THEN
DO 26 I=1,M
LAMBDA $(\mathrm{I})=\operatorname{LAMBDAOLD}(\mathrm{I})$
26 CONTINUE
IF (ABS(C-OMEGA) .LT. 1.0) THEN
RETURN
END IF
CALL FRPRMN(LAMBDA,M,FTOL,ITER,FRET,FDEF,D,S,B,M,NXY,MNXY)
RETURN
END IF
C
IF (2.0*ABS(Z-ZOLD) .LE. FTOL*(ABS(Z)+ABS(ZOLD)+EPS)) THEN RETURN
END IF
C
DO $34 \mathrm{~K}=1$, NX
DO $32 \mathrm{~L}=1$,NY
$\mathrm{LB}(\mathrm{K}, \mathrm{L})=0.0$
DO $30 \mathrm{I}=1, \mathrm{M}$
$\mathrm{LB}(\mathrm{K}, \mathrm{L})=\mathrm{LB}(\mathrm{K}, \mathrm{L})+\mathrm{LAMBDA}(\mathrm{I}) * \mathrm{~B}(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L})$
CONTINUE
32 CONTINUE
34 CONTINUE
$\mathrm{C}=0.0$
DO $44 \mathrm{I}=1, \mathrm{M}$
$\mathrm{E}(\mathrm{I})=0.0$
DO $42 \mathrm{~K}=1$,NX
DO $40 \mathrm{~L}=1, \mathrm{NY}$
$\left.\mathrm{E}(\mathrm{I})=\mathrm{E}(\mathrm{I})+\mathrm{B}\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}\right) * \mathrm{FDEF}_{(\mathrm{NY}}{ }^{*}(\mathrm{~K}-1)+\mathrm{L}\right) * \operatorname{EXP}(-\mathrm{LB}(\mathrm{K}, \mathrm{L}))$
40 CONTINUE
42 CONTINUE
$\mathrm{C}=\mathrm{C}+((\mathrm{E}(\mathrm{I})-\mathrm{D}(\mathrm{I})) / \mathrm{S}(\mathrm{I}))^{* *} 2$
44 CONTINUE
C
IF (P .LT. 0.1) THEN
DL $=0.0$
DO 46 I=1,M
$\mathrm{DL}=\mathrm{DL}+(\mathrm{LAMBDA}(\mathrm{I})-\mathrm{LAMBDAOLD}(\mathrm{I}))^{* *} 2$
46 CONTINUE
$\mathrm{DL}=\mathrm{SQRT}(\mathrm{DL})+\mathrm{EPS}$
IF (DL .LT. DLMIN) THEN
$\mathrm{P}=\mathrm{P} *(\mathrm{DLMIN} / \mathrm{DL})$
IF (P .GT. 0.1) THEN
$\mathrm{P}=0.1$
END IF

## END IF

END IF
C
DO $48 \mathrm{I}=1, \mathrm{M}$
LAMBDAOLD $(\mathrm{I})=\operatorname{LAMBDA}(\mathrm{I})$
48 CONTINUE
ZOLD = Z
ITER $=$ ITER +1
GO TO 15
C

C
C
C
SUBROUTINE
SETHOTSPOTPARAM(RKHS,RLHS,MHS,CSQHS,M,HSMAX,XHS,YHS, 1HSFMAP,NXY,FBKG,XHSABS,YHSABS)
C
INTEGER M,NXY
REAL HSMAX,FBKG
REAL RKHS(M),RLHS(M),MHS(M),CSQHS(M),XHS(M),YHS(M),HSFMAP(NXY) REAL XHSABS(M),YHSABS(M)

DO $10 \mathrm{I}=1, \mathrm{M}$
RKHS $(\mathrm{I})=0.0$
RLHS(I) $=0.0$
XHS(I) $=0.0$
YHS(I) $=0.0$
$\operatorname{MHS}(\mathrm{I})=0.0$
CSQHS(I) $=0.0$
XHSABS(I) $=0.0$
$\operatorname{YHSABS}(\mathrm{I})=0.0$
10 CONTINUE
HSMAX $=0.0$
C
DO 20 I=1,NXY
HSFMAP(I) = FBKG
20
RETURN
END

C
C
SUBROUTINE PEAKXELS(Z,F,PFE,X,Y
C
C The subroutine PEAKXELS evaluates PFE(I) $=$ total (counts -bkg )
C under each peak at each measurement position.
C
C $\quad X(I), Y(I)$ are the $x, y$ coordinates of the measurement in meters.

C A is the size of a "pixel" in meters. MHD=ISP is usually one half
C the number of "pixels" between measurements.
C
INTEGER M,NX,NY,NXY,I,K,L,KL,KU,LL,LU,MHD,MHDSQ,RR INTEGER ISP
REAL XX,YY,Z
REAL A
REAL F(NXY),PFE(M)
REAL X(M),Y(M)
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
DO $20 \mathrm{I}=1, \mathrm{M}$
MHD = ISP
MHDSQ = MHD**2
$X X=X(I) / A$
$Y Y=Y(I) / A$
$\mathrm{KL}=\mathrm{INT}(\mathrm{XX})-\mathrm{MHD}$
$\mathrm{KU}=\mathrm{INT}(\mathrm{XX})+\mathrm{MHD}$
$L L=I N T(Y Y)-M H D$
$\mathrm{LU}=\mathrm{INT}(\mathrm{YY})+\mathrm{MHD}$
C
IF (KL .LT. 1) THEN
$\mathrm{KL}=1$
END IF
IF (KU .GT. NX) THEN
$K U=N X$
END IF
IF (LL .LT. 1) THEN
LL $=1$
END IF
IF (LU .GT. NY) THEN
LU = NY

C
$\operatorname{PFE}(\mathrm{I})=0.0$
DO $10 \mathrm{~K}=\mathrm{KL}, \mathrm{KU}$
DO 8 L=LL,LU
RR $=\left((\operatorname{INT}(\mathrm{XX})-\mathrm{K})^{* *} 2\right)+((\mathrm{INT}(\mathrm{YY})-\mathrm{L}) * * 2)$
IF (RR .LE. MHDSQ) THEN
$\operatorname{PFE}(\mathrm{I})=\operatorname{PFE}(\mathrm{I})+\mathrm{F}(\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L})-\mathrm{Z}$
END IF
8 CONTINUE
10 CONTINUE
20 CONTINUE
C
RETURN
END
C

C
SUBROUTINE HOTSPOTDEF(I,HSS,FBKG,D,S,B,X,Y,PFE,HSFDEF,FDEF,RKP, 1RLP,HH)
C
INTEGER I,HSS,M,MNXY,NXY
REAL RKP,RLP,FBKG,HHP,HHPNN
REAL D(M),S(M),B(MNXY),X(M),Y(M),PFE(M),HSFDEF(NXY),FDEF(NXY) REAL HH(M)
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
DO $10 \mathrm{~K}=1$,NXY
$\operatorname{HSFDEF}(\mathrm{K})=\operatorname{FDEF}(\mathrm{K})$
10 CONTINUE
C
CALL FINDHS(X,Y,I,HSS,PFE,RKP,RLP,FBKG)
CALL MAGPS(D,S,RKP,RLP,I,HHP,B,X,Y,FDEF,HSS)
CALL MAGPSNN(D,S,RKP,RLP,HHPNN,B,A,X,Y,FDEF,HSS,HH)
IF (HHPNN .GT. HHP) THEN
HHP = HHPNN
END IF
IF (HHP .LT. 1.0) THEN
HHP = 1.0
$\pm \quad$ c
C
C
C
C
C The ELEVATED AREA is added to the FP and to the ZKLP (which are
C set to background activity). These will be used in a final MaxEnt
C deconvolution with background + ELEVATED AREA.
CALL MAKEHS(RKP,RLP,FDEF,HSFDEF,HHP,X,Y,HSS)
C
RETURN
END
C

| C |
| :--- |
| C |

SUBROUTINE
HOTSPOTPARAM(HSF,RKP,RLP,HHP,CSQ,RKHS,RLHS,MHS,CSQHS,
1HSMAX,IHP,FBKG,HSS,I,XHS,YHS,X0,Y0,XHSABS,YHSABS)
C
INTEGER G1,G2,RK,RL,KL,KU,LL,LU,I,IHP,HSS
REAL RKP,RLP,HHP,HSMAX,FBKG,CSQ,X0,Y0
REAL HSF(NXY),RKHS(M),RLHS(M),MHS(M),CSQHS(M),XHS(M),YHS(M)
REAL XHSABS(M),YHSABS(M)
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C
C

G2 $=\operatorname{CEILING}\left(0.5^{*}\right.$ HSS $)$
$\mathrm{RK}=\operatorname{NINT}(\mathrm{RKP})$
RL $=$ NINT(RLP)
$\mathrm{KL}=\mathrm{RK}-\mathrm{G} 1$
$\mathrm{KU}=\mathrm{RK}+\mathrm{Gl}$
$\mathrm{LL}=\mathrm{RL}-\mathrm{Gl}$
$\mathrm{LU}=\mathrm{RL}+\mathrm{G} 1$
IF (G1 .EQ. G2) THEN
RK $=$ FLOOR (RKP)
RL $=$ FLOOR (RLP)
$\mathrm{KL}=\mathrm{RK}-(\mathrm{G} 1-1)$
$\mathrm{KU}=\mathrm{RK}+\mathrm{G} 1$
LL $=$ RL $-($ G1-1)
$\mathrm{LU}=\mathrm{RL}+\mathrm{G} 1$
END IF
C
HHP $=0.0$
DO $20 \mathrm{~K}=\mathrm{KL}, \mathrm{KU}$
DO $10 \mathrm{~L}=\mathrm{LL}, \mathrm{LU}$
HHP $=\mathrm{HHP}+\mathrm{HSF}(\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}) /\left(\mathrm{FBKG}^{*} \mathrm{HSS}^{*} \mathrm{HSS}\right)$
10 CONTINUE
20 CONTINUE
C
RKHS $(\mathrm{I})=$ RKP
$\operatorname{RLHS}(\mathrm{I})=$ RLP
XHS $(\mathrm{I})=$ RKP*A
$\mathrm{YHS}(\mathrm{I})=$ RLP $* \mathrm{~A}$
MHS(I) $=$ HHP
CSQHS(I) = CSQ
$\operatorname{XHSABS}(\mathrm{I})=\mathrm{XHS}(\mathrm{I})+\mathrm{X0}$
$\operatorname{YHSABS}(\mathrm{I})=\mathrm{YHS}(\mathrm{I})+\mathrm{Y} 0$
IF (HHP .GT. HSMAX) THEN
HSMAX = HHP
IHP = I
END IF
C
RETURN
END
C
C
SUBROUTINE FINDHS(X,Y,IHP,HSS,PFE,RKP,RLP,Z)
C
C FINDHS calculates the optimal coordinates (RKP,RLP) of the hot
C spot.
C
INTEGER M,NX,NY,NXY,MNXY,ISP,IHP,HSS,IHPK,IHPL,K INTEGER I,J,KK,LL,KKL,KKU,LLL,LLU
REAL DSQ,R2,RR,K0,XH,YH
REAL A,EPSSQMIN,RKP,RLP,Z

REAL X(M),XX(M), $\mathrm{Y}(\mathrm{M}), \mathrm{YY}(\mathrm{M}), \operatorname{PFE}(\mathrm{M}), \operatorname{PPFE}(\mathrm{M})$
REAL RRIJ(M,M),RRHI(M),PHS(NX,NY),EPS(M),EPSSQ(NX,NY)
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C R2 is defined in such a way that for a square grid it includes
C the eight closest measurement points (DSQ is the square of the
C distance from the center of the square to any of the corners;
C R2 is the square of [ $1.5^{*}$ the distance to closest measurement]).
C (For a triangular grid same but includes six closest meas.).
C
DSQ $=2.0 *(2.0 * \mathrm{~A} * \operatorname{REAL}(\mathrm{ISP})) * * 2$
$\mathrm{R} 2=1.125^{*} \mathrm{DSQ}$
C
C Calculate (XX,YY), the x and y coordinates for measurement points
C with $\mathrm{PFE}>0$. Evaluate K , the number of such measurement points.
C
$K=0$
DO $10 \mathrm{I}=1, \mathrm{M}$
$\mathrm{RR}=(\mathrm{X}(\mathrm{IHP})-\mathrm{X}(\mathrm{I}))^{* * 2}+(\mathrm{Y}(\mathrm{IHP})-\mathrm{Y}(\mathrm{I}))^{* *} 2$
IF (RR .LE. R2) THEN
IF (PFE(I) .GE. 0.0) THE
$\mathrm{K}=\mathrm{K}+1$
$X X(K)=X(I)$
$\mathrm{YY}(\mathrm{K})=\mathrm{Y}(\mathrm{I})$
$\operatorname{PPFE}(\mathrm{K})=\operatorname{PFE}(\mathrm{I})$
END IF
END IF
10 CONTINUE
$\mathrm{K} 0=\operatorname{REAL}(\mathrm{K})$
C
C Calculate the square of the distance between detectors 100 cm
C above the ground and points on the ground directly under the
C detectors. Call it $\operatorname{RRIJ}(I, J)$.
C
DO $14 \mathrm{I}=1, \mathrm{~K}$
DO $12 \mathrm{~J}=1, \mathrm{~K}$
$\operatorname{RRIJ}(\mathrm{I}, \mathrm{J})=(\mathrm{XX}(\mathrm{I})-\mathrm{XX}(\mathrm{J}))^{* *} 2+(\mathrm{YY}(\mathrm{I})-\mathrm{YY}(\mathrm{J}))^{* *} 2+10000.0$
12 CONTINUE
14 CONTINUE
C
IHPK $=\operatorname{NINT}(\mathrm{X}(\mathrm{IHP}) / \mathrm{A})$
IHPL $=$ NINT(Y(IHP)/A)
$\mathrm{KKL}=\mathrm{IHPK}-3 *$ ISP
$\mathrm{KKU}=\mathrm{IHPK}+3 * \mathrm{ISP}$
LLL $=$ IHPL $-3 *$ ISP
LLU $=\mathrm{IHPL}+3^{*} \mathrm{ISP}$
C
IF (KKL .LT. 1) THEN
$\mathrm{KKL}=1$

END IF
IF (KKU .GT. NX) THEN
$K K U=N X$
END IF
IF (LLL .LT. 1) THEN
LLL = 1
END IF
IF (LLU .GT. NY) THEN
LLU $=\mathrm{NY}$
END IF
C
DO $28 \mathrm{KK}=\mathrm{KKL}, \mathrm{KKU}$
DO 26 LL=LLL,LLU
XH = A*(REAL(KK)
$\mathrm{YH}=\mathrm{A} *(\operatorname{REAL}(L L))$
$\mathrm{RR}=(\mathrm{X}(\mathrm{IHP})-\mathrm{XH})^{* *} 2+(\mathrm{Y}(\mathrm{IHP})-\mathrm{YH})^{* *} 2$
IF (RR .LE. R2) THEN
C
C Calculate the optimal activity PHS for a ELEVATED AREA (point source)
C at "pixel" coordinates (KK,LL).
L) $=0.0$

DO 18 I=1,K
RRHI $(\mathrm{I})=(\mathrm{XH}-\mathrm{XX}(\mathrm{I}))^{* * 2}+(\mathrm{YH}-\mathrm{YY}(\mathrm{I}))^{*} 2+10000.0$
DO $16 \mathrm{~J}=1, \mathrm{~K}$
$\operatorname{PHS}(\mathrm{KK}, \mathrm{LL})=\operatorname{PHS}(\mathrm{KK}, \mathrm{LL})+(\operatorname{RRHI}(\mathrm{I}) * \operatorname{PPFE}(\mathrm{~J}) / \operatorname{RRIJ}(\mathrm{I}, \mathrm{J})) / \mathrm{K} 0$
CONTINUE
CONTINUE
C
C
C point to keep the number of counts invariant in the
C presence of the ELEVATED AREA.
DO $22 \mathrm{I}=1, \mathrm{~K}$
$\operatorname{EPS}(\mathrm{I})=0.0$
DO $20 \mathrm{~J}=1$, K
$\operatorname{EPS}(\mathrm{I})=\mathrm{EPS}(\mathrm{I})+\operatorname{RRHI}(\mathrm{I}) * \operatorname{PPFE}(\mathrm{I}) / \operatorname{RRIJ}(\mathrm{I}, \mathrm{J})$
CONTINUE
$\operatorname{EPS}(\mathrm{I})=\operatorname{EPS}(\mathrm{I})+\operatorname{PHS}(\mathrm{KK}, \mathrm{LL})$
CONTINUE
$\operatorname{EPSSQ}(\mathrm{KK}, \mathrm{LL})=0.0$
DO 24 I=1,K
$\operatorname{EPSSQ}(\mathrm{KK}, \mathrm{LL})=\operatorname{EPSSQ}(\mathrm{KK}, \mathrm{LL})+(\operatorname{EPS}(\mathrm{I}))^{* * 2}$
CONTINUE
END IF
CONTINUE

C Place the ELEVATED AREA at the "pixel" coordinates (KK,LL) that
C minimize EPSSQ(KK,LL). Set (RKP,RLP) $=(\mathrm{XH} / \mathrm{A}, \mathrm{YH} / \mathrm{A})$.
C
EPSSQMIN $=$ EPSSQ $($ IHPK, IHPL $)$
DO $38 \mathrm{KK}=\mathrm{KKL}, \mathrm{KKU}$
DO 36 LL=LLL,LLU
$\mathrm{XH}=\mathrm{A} * \mathrm{REAL}(\mathrm{KK})$
$\mathrm{YH}=\mathrm{A} *$ REAL(LL)
$\mathrm{RR}=(\mathrm{X}(\mathrm{IHP})-\mathrm{XH}) * * 2+(\mathrm{Y}(\mathrm{IHP})-\mathrm{YH})^{* *} 2$
IF (RR .LE. R2) THEN
IF (EPSSQ(KK,LL) .LE. EPSSQMIN) THEN
EPSSQMIN = EPSSQ(KK,LL)
RKP = XH/A
$\mathrm{RLP}=\mathrm{YH} / \mathrm{A}$
END IF
END IF
36 CONTINUE
38 CONTINUE
C
RETURN
END
C
C

SUBROUTINE MAGPS(D,S,RKP,RLP,IHP,HHP,B,X,Y,ZKL,HSS)
C
INTEGER M,NX,NY,NXY,MNXY,I,K,L,KP,LP,IHP
INTEGER ISP,HSS
REAL DSQ,RR,R2,RKP,RLP,SUM1,SUM2,HHP,HPS
REAL A
REAL D(M),S(M),E(M),DE(M),FD(NXY)
REAL B(MNXY), X(M),Y(M)
REAL ZKL(NXY)
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C MAGPS scales the point source at (RKP,RLP) to the optimal height
C which is given by the multiplicative factor HPS. It does not
C modify the FP.
C
HPS is calculated by minimizing the chi square FOR THE
C MEASUREMENTS NEAR THE ELEVATED AREA under the assumption that the
C surface activity is given by the ZKL with a point source
C added at (RKP,RLP)
C
Set the FD = ZKL
C
DO $110 \mathrm{~K}=1, \mathrm{NXY}$

## $\mathrm{FD}(\mathrm{K})=\mathrm{ZKL}(\mathrm{K})$

110 CONTINUE
C
C Calculate the $\mathrm{E}(\mathrm{I})$ due to the background.
DO 6 I=1,M
$\mathrm{E}(\mathrm{I})=0.0$
DO $4 \mathrm{~K}=1$, NX
DO 2 L=1,NY
$\mathrm{E}(\mathrm{I})=\mathrm{E}(\mathrm{I})+\mathrm{B}(\mathrm{NXY} *(\mathrm{I}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}) * \mathrm{FD}(\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L})$ CONTINUE
4 CONTINUE
6 CONTINUE
C
C Calculate the $\mathrm{DE}(\mathrm{I})$ due to activity at the point source.
C
$K P=I N T(R K P)$
$\mathrm{LP}=\mathrm{INT}(\mathrm{RLP})$
C
DO $10 \mathrm{I}=1, \mathrm{M}$
$\left.\mathrm{DE}(\mathrm{I})=\mathrm{B}\left(\mathrm{NXY}^{*}(\mathrm{I}-1)+\mathrm{NY}^{*}(\mathrm{KP}-1)+\mathrm{LP}\right) * \mathrm{FD}^{(\mathrm{NY}}{ }^{*}(\mathrm{KP}-1)+\mathrm{LP}\right)$
10 CONTINUE
C
C Calculate the optimal activity of the point source.
C
DSQ $=2.0^{*}\left(2.0^{*} \mathrm{~A} *\right.$ REAL(ISP) $){ }^{* *} 2$
$\mathrm{R} 2=1.125 * \mathrm{DSQ}$
SUM1 $=0.0$
SUM2 $=0.0$
C
DO 20 I=1,M
$\mathrm{RR}=(\mathrm{X}(\mathrm{IHP})-\mathrm{X}(\mathrm{I}))^{* * 2}+(\mathrm{Y}(\mathrm{IHP})-\mathrm{Y}(\mathrm{I}))^{* * 2}$
IF (RR .LE. R2) THEN
SUM $1=\mathrm{SUM} 1+\mathrm{DE}(\mathrm{I})^{*}(\mathrm{D}(\mathrm{I})-\mathrm{E}(\mathrm{I})) /\left(\mathrm{S}(\mathrm{I})^{* *} 2\right)$
SUM2 $=$ SUM $2+\mathrm{DE}(\mathrm{I}) * \mathrm{DE}(\mathrm{I}) /(\mathrm{S}(\mathrm{I}) * * 2)$
END IF
20 CONTINUE
HPS $=1.0+$ SUM1/SUM2
C

| C |
| :--- |
| C |

$\mathrm{FD}\left(\mathrm{NY}^{*}(\mathrm{KP}-1)+\mathrm{LP}\right)=\mathrm{FD}\left(\mathrm{NY}^{*}(\mathrm{KP}-1)+\mathrm{LP}\right)+(\mathrm{HHP}-1.0) * \mathrm{FD}(\mathrm{NY} *(\mathrm{KP}-1)+\mathrm{LP})$
C
C Set HPP $=\mathrm{HPS} /($ area ELEVATED AREA in "pixels").
C
$\mathrm{HHP}=\mathrm{HPS} /\left(\mathrm{HSS}^{*} * 2\right)$
C
RETURN
END

C

| C |
| :--- |
| C |

SUBROUTINE MAGPSNN(D,S,RKP,RLP,HHP,B,A,X,Y,ZKL,HSS,HH)
C
INTEGER M,NX,NY,NXY,MNXY,I,K,L,RK,RL,NHS,HSS
REAL RR,RKP,RLP,HHP,HPS,A
REAL XX,YY,RRN,EBKG,DE
REAL D(M),S(M),FD(NXY)
REAL B(MNXY), X(M),Y(M)
REAL ZKL(NXY),HH(M)
COMMON/MN/M,NX,NY,MNXY,NXY
C

| C |
| :--- |
| C |

C
HHP is calculated by fitting the point source's magnitude to the
C total counts at the nearest's measurement point - under the
C assumption that the surface activity is given by the ZKL
C with a point source added at (RKP,RLP).
C
C
Set the $\mathrm{FD}=\mathrm{ZKL}$
DO $10 \mathrm{~K}=1$ NXY
$\mathrm{FD}(\mathrm{K})=\mathrm{ZKL}(\mathrm{K})$

10
C
Find the measurement point that is nearest to the ELEVATED AREA.
$X X=X(1) / A$
$Y Y=Y(1) / A$
$\mathrm{NHS}=1$
RRN $=(\mathrm{XX}-\mathrm{RKP})^{* *} 2+(\mathrm{YY}-\mathrm{RLP})^{* * 2}$
DO $12 \mathrm{I}=2, \mathrm{M}$
$\mathrm{XX}=\mathrm{X}(\mathrm{I}) / \mathrm{A}$
$Y Y=Y(I) / A$
$\mathrm{RR}=(\mathrm{XX}-\mathrm{RKP})^{* *} 2+(\mathrm{YY}-\mathrm{RLP})^{* *}{ }_{2}$
IF (RR .LT. RRN) THEN
IF (HH(I) .GT. 0.0) THEN
NHS = I
RRN $=R R$
END IF
END IF
12 CONTINUE
C
C Calculate the EBacKGground for the NHS due to the background.
C
EBKG $=0.0$
DO $24 \mathrm{~K}=1, \mathrm{NX}$
DO $22 \mathrm{~L}=1$,NY
$\mathrm{EBKG}=\mathrm{EBKG}+\mathrm{B}(\mathrm{NXY} *(\mathrm{NHS}-1)+\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}) * \mathrm{FD}(\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L})$

C Calculate the (largest) optimal activity of the point source
C assuming $\mathrm{E}(\mathrm{NHS})=\mathrm{EBKG}+(\mathrm{HPS}-1) * \mathrm{DE}=\mathrm{D}(\mathrm{NHS})+\mathrm{S}(\mathrm{NHS})$.
C
HPS $=1.0+(\mathrm{D}(\mathrm{NHS})+\mathrm{S}(\mathrm{NHS})-\mathrm{EBKG}) / \mathrm{DE}$
C
C
$\mathrm{FD}\left(\mathrm{NY}^{*}(\mathrm{RK}-1)+\mathrm{RL}\right)=\mathrm{FD}(\mathrm{NY} *(\mathrm{RK}-1)+\mathrm{RL})+(\mathrm{HHP}-1.0) * \mathrm{FD}(\mathrm{NY} *(\mathrm{RK}-1)+\mathrm{RL})$
C
C
$\mathrm{HHP}=\mathrm{HPS} /\left(\mathrm{HSS}^{* *} 2\right)$
C
RETURN
END
C
C
SUBROUTINE MAKEHS(RKP,RLP,FDEF,FP,HHP,X,Y,HSS)
C
INTEGER K,L,KL,KU,LL,LU,NX,NY,NXY
NTEGER ISP,M,HSS,G1,G2
REAL RKP,RLP,RK,RL,HHP
REAL A
REAL FDEF(NXY),FP(NXY)
REAL X(M),Y(M)
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C Model the ELEVATED AREA with a (HSS**2)-"pixel" area. MAKEHS scales
C the ELEVATED AREA to the optimal height, which is given by the
C multiplicative factor HHP, and calculates the final FP.
C
C
C HHP was calculated in MAGPS or MAGPSNN.
C
$\mathrm{G} 1=\operatorname{FLOOR}\left(0.5^{*} \mathrm{HSS}\right)$
$\mathrm{G} 2=\operatorname{CEILING}(0.5 * \mathrm{HSS})$
RK $=$ NINT(RKP)
RL $=$ NINT (RLP)
$\mathrm{KL}=\mathrm{RK}-\mathrm{G} 1$

```
    KU = RK + G1
    LL}=\textrm{RL}-\textrm{G
    LU = RL +G1
    IF (G1 .EQ. G2) THEN
    RK = FLOOR(RKP)
    RL = FLOOR(RLP
    KL = RK - (Gl-1)
    KU = RK + G
    LL = RL - (G1-1)
    LU = RL +G1
    END IF
C
    DO 20 L=1,NXY
    FP(L) = FDEF(L)
20 CONTINUE
    DO 34 K=KL,KU
    DO 32 L=LL,LU
        FP(NY*(K-1)+L) = FP(NY*(K-1)+L) + (HHP-1.0)*FP(NY*(K-1)+L)
    32 CONTINUE
34 CONTINUE
C
RETURN
END
    SUBROUTINE MAKEHSMAP(RKP,RLP,FP,HHP,X,Y,HSS,Z)
C
INTEGER K,L,KL,KU,LL,LU,NX,NY,NXY
INTEGER ISP,M,HSS,G1,G2
REAL RKP RLP RK, RL, HHP
REAL A,DUMMY,Z
REAL FP(NXY)
REAL X(M),Y(M)
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C Model the ELEVATED AREA with a (HSS**2)-"pixel" area. MAKEHS scales
C the ELEVATED AREA to the optimal height, which is given by the
C multiplicative factor HHP, and calculates the final FP.
C
C HHP was calculated in MAGPS or MAGPSNN.
C
\(\mathrm{G} 1=\mathrm{FLOOR}(0.5 * \mathrm{HSS})\)
\(\mathrm{G} 2=\operatorname{CEILING}(0.5 * \mathrm{HSS})\)
\(\mathrm{RK}=\mathrm{NINT}(\mathrm{RKP})\)
RL \(=\) NINT(RLP)
\(\mathrm{KL}=\mathrm{RK}-\mathrm{G} 1\)
\(\mathrm{KU}=\mathrm{RK}+\mathrm{G} 1\)
```

C
C
$\mathrm{LL}=\mathrm{RL}-\mathrm{G} 1$
$\mathrm{LU}=\mathrm{RL}+\mathrm{G} 1$
IF (G1 .EQ. G2) THEN
RK = FLOOR (RKP)
RL $=$ FLOOR (RLP)
$\mathrm{KL}=\mathrm{RK}-(\mathrm{G} 1-1)$
$\mathrm{KU}=\mathrm{RK}+\mathrm{G} 1$
$\mathrm{LL}=\mathrm{RL}-(\mathrm{G} 1-1)$
$\mathrm{LU}=\mathrm{RL}+\mathrm{G} 1$
END IF
C
DO $34 \mathrm{~K}=\mathrm{KL}$, KU
DO 32 L=LL,LU
DUMMY $=\mathrm{FP}(\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L}) / \mathrm{Z}$
IF (DUMMY .LT. HHP) THEN
FP(NY* $(\mathrm{K}-1)+\mathrm{L})=\mathrm{HHP} * \mathrm{Z}$
END IF
32 CONTINUE
34 CONTINUE
C
RETURN
END
C
C
SUBROUTINE RBFINTER(MD,HH,X,Y,D,FRBFI,DAVG,FAVG,B,S)
C
C Subroutine to calculate an initial estimate of the distribution
C using the data, Paul Bailey's recipe, and radial basis functions
C
(RBF) interpolation using Hardy's multiquadratic method.
C
INTEGER M,NX,NY,ISP,MD,NP,NI
INTEGER INDX(MD)
REAL A,R2,MINF,BFI,DNR,FOD,CSQ,CSQNEW,DUMMY,REALM,LOG2
REAL RFCTR,RFCTR0,LMBDZ,LMBDZ0,LMBDZO50
REAL HH(M),X(M),Y(M),D(M),E(M),XRBF(MD),YRBF(MD),BF(MD,MD),B(MNXY) REAL Z(MD),ZOLD(MD),FRBFI(NXY),FRBFINEW(NXY)

COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C Given the data $D$ (in cpm), calculate the values of activity that
C will be used for the interpolation.
C
$\mathrm{NI}=1$
LOG2 $=\operatorname{LOG}(2.0)$
C
RFCTR $=0.67$
RFCTR $0=$ RFCTR
LMBDZ $=0.67$

LMBDZ0 $=$ LMBDZ
LMBDZO50 $=$ LMBDZ/50.0
$\mathrm{FOD}=\mathrm{FAVG} / \mathrm{DAVG}$
1
C
DO 6 I=1,MD
ZOLD $(\mathrm{I})=\mathrm{Z}(\mathrm{I})$
6
DO $12 \mathrm{I}=1, \mathrm{MD}$
DO $10 \mathrm{~J}=1$, MD
$\mathrm{BF}(\mathrm{I}, \mathrm{J})=\operatorname{SQRT}\left((\operatorname{XRBF}(\mathrm{I})-\operatorname{XRBF}(\mathrm{J})) * * 2+(\mathrm{YRBF}(\mathrm{I})-\mathrm{YRBF}(\mathrm{J}))^{*} * 2+\mathrm{R} 2\right)$
10 CONTINUE
12 CONTINUE
C
C The subroutines LUDCMP and LUBKSB solve the matrix equation
C
C
NP = MD
CALL LUDCMP(BF,MD,NP,INDX,DNR)
CALL LUBKSB(BF,MD,NP,INDX,Z)
C
Calculate the RBF activity for all cells.
DO $24 \mathrm{~K}=1$,NX
DO $22 \mathrm{~L}=1, \mathrm{NY}$
$\mathrm{XK}=\mathrm{K} * \mathrm{~A}$
$\mathrm{YL}=\mathrm{L} * \mathrm{~A}$
FRBFINEW $\left(\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right)=0.0$
DO 20 I=1,MD
$\mathrm{BFI}=\mathrm{SQRT}((\mathrm{XRBF}(\mathrm{I})-\mathrm{XK}) * * 2+(\mathrm{YRBF}(\mathrm{I})-\mathrm{YL}) * * 2+\mathrm{R} 2)$
FRBFINEW $\left(\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right)=\operatorname{FRBFINEW}(\mathrm{NY} *(\mathrm{~K}-1)+\mathrm{L})+\mathrm{Z}(\mathrm{I}) *$ BFI
CONTINUE
IF (FRBFINEW(NY*(K-1)+L) .LT. MINF) THEN
FRBFINEW $\left(\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right)=\mathrm{MINF}$
END IF
2 CONTINUE
24
C
C Check the chi-square, adjust the Zs , and interpolate again if it
C
is too large
CALL CHISSQ(D,E,S,FRBFINEW,B,CSQ)
C
REALM $=$ REAL $(M)$
IF (CSQ .LT. REALM) THEN
IF (LMBDZ .GE. LMBDZO50) THEN
LMBDZ $=$ LMBDZ - LMBDZO50
RFCTR $=$ RFCTR $+0.02 *$ RFCTR 0
DO $25 \mathrm{I}=1$, NXY

FRBFI(I) = FRBFINEW(I)
CONTINUE
$\operatorname{IIDUMMY}=\mathrm{MOD}(\mathrm{NI}, 5)$
IF (IIDUMMY .EQ. 0) THEN
PRINT*,' NUMBER OF ITERATIONS / BACKGROUND CALCULATION = ',NI
CSQPDF = CSQ/REAL(M)
C PRINT*,' CHI SQUARE PER DEGREE OF FREEDOM = ',CSQPDF
PRINT *,''
END IF
$\mathrm{NI}=\mathrm{NI}+1$
GOTO 1
END IF
END IF
C
CALL CHISSQ(D,E,S,FRBFI,B,CSQ)
C
IF (CSQ .LE. REALM) THEN
PRINT*,' NUMBER OF ITERATIONS / BACKGROUND CALCULATION = ',NI
C
PRINT*,' CSQ = ',CSQ
PRINT*,''
RETURN
END IF
C
26
C
DO 28 I=1,MD
$\mathrm{Z}(\mathrm{I})=\mathrm{ZOLD}(\mathrm{I})$
IF (I .LE. M) THEN
IF (HH(I) .GT. 0.0) THEN
$\mathrm{Z}(\mathrm{I})=\mathrm{ZOLD}(\mathrm{I}) * \operatorname{SQRT}(\mathrm{D}(\mathrm{I}) / \mathrm{E}(\mathrm{I}))$
$\mathrm{Z}(\mathrm{I})=\mathrm{ZOLD}(\mathrm{I}) * \mathrm{LOG}(1.0+(\mathrm{D}(\mathrm{I}) / \mathrm{E}(\mathrm{I}))) / \mathrm{LOG} 2$
ZOLD $(\mathrm{I})=\mathrm{Z}(\mathrm{I})$
END IF
END IF
28
C
CALL LUBKSB(BF,MD,NP,INDX,Z)
C
C
C
DO $34 \mathrm{~K}=1$, NX
DO $32 \mathrm{~L}=1$,NY
$\mathrm{XK}=\mathrm{K}^{*} \mathrm{~A}$
$\mathrm{YL}=\mathrm{L}^{*} \mathrm{~A}$
FRBFINEW(NY* $(\mathrm{K}-1)+\mathrm{L})=0.0$
DO $30 \mathrm{I}=1$, MD
$\mathrm{BFI}=\mathrm{SQRT}\left((\mathrm{XRBF}(\mathrm{I})-\mathrm{XK})^{* *} 2+(\mathrm{YRBF}(\mathrm{I})-\mathrm{YL})^{* *} 2+\mathrm{R} 2\right)$
FRBFINEW(NY*(K-1)+L) $=$ FRBFINEW $(N Y *(\mathrm{~K}-1)+\mathrm{L})+\mathrm{Z}(\mathrm{I}) *$ BFI
CONTINUE
IF (FRBFINEW(NY*(K-1)+L) .LT. MINF) THEN

IF (CSQNEW .LE. REALM) THEN
DO $36 \mathrm{I}=1$,NXY
$\operatorname{FRBFI}(\mathrm{I})=\operatorname{FRBFINEW}(\mathrm{I})$
CONTINUE
RCSQNEW = CSQNEW/REALM
PRINT*,' (RCSQNEW .LE. 1), RCSQNEW = ', RCSQNEW
PRINT*,' NUMBER OF ITERATIONS / BACKGROUND CALCULATION = ',NI
PRINT*,' '
RETURN
END IF
C
IF (CSQNEW .GE. CSQ) THEN
RCSQNEW = CSQNEW/REALM

C
DUMMY $=$ ABS(CSQNEW-CSQ)/CSQNEW
IF (DUMMY .LT. 0.0001) THEN
DO 38 I=1,NXY
FRBFI(I) = FRBFINEW(I)
CONTINUE
RCSQNEW $=$ CSQNEW/REALM
PRINT*,' (DUMMY .LT. 0.0001), RCSQNEW = ', RCSQNEW
PRINT*,' NUMBER OF ITERATIONS / BACKGROUND CALCULATION = ',NI PRINT *,' '
RETURN
END IF
C
CSQ = CSQNEW
DO $40 \mathrm{I}=1$, NXY
FRBFI(I) $=$ FRBFINEW $(I)$
40
C
IIDUMMY $=$ MOD(NI,5)
IF (IIDUMMY .EQ. 0) THEN
PRINT*,' NUMBER OF ITERATIONS / BACKGROUND CALCULATION = ',NI CSQPDF $=$ CSQ/REAL $(M)$
C
PRINT*,' CHI SQUARE PER DEGREE OF FREEDOM = ',CSQPDF PRINT *,'
END IF

C
IF (NI .LT. 1000) THEN
GOTO 26
END IF
C
RETURN
END
C
C
SUBROUTINE
DTOZ(X,Y,D,XRBF,YRBF,Z,MD,R2,FOD,MINF,HH,B,RFCTR,LMBDZ)
C
NEGER M,MD,NX,NY,ISP,IDUMMY
REAL A,R2,MINF,LMBDZ,RR,RRMAX,FOD,RFCTR
REAL X(M), $\mathrm{Y}(\mathrm{M}), \mathrm{D}(\mathrm{M}), \mathrm{XRBF}(\mathrm{MD}), \mathrm{YRBF}(\mathrm{MD}), \mathrm{Z}(\mathrm{MD}), \mathrm{ZMEAS}(\mathrm{M}), \mathrm{HH}(\mathrm{M}), \mathrm{B}(\mathrm{MNXY})$
COMMON/AISP/A,ISP
COMMON/MN/M,NX,NY,MNXY,NXY
C
C Find the minimum of the in-situ measured data points. Multiply
C by the ratio FAVG over DAVG to change to units of activity.
C
$\mathrm{MINF}=\mathrm{D}(1)$
DO $5 \mathrm{I}=1, \mathrm{M}$
c IF (HH(I) .GT. 0.0) THEN
IF (D(I) .LT. MINF) THEN
$\mathrm{MINF}=\mathrm{D}(\mathrm{I})$
END IF
c END IF
5 CONTINUE
MINF $=$ MINF $*$ FOD
C
C Fix boundry conditions: set the activity at the boundry equal to
C the minimum activity MINF
C
$\operatorname{XRBF}(\mathrm{M}+1)=\mathrm{A}$
$\operatorname{YRBF}(\mathrm{M}+1)=\mathrm{A}$
$\mathrm{Z}(\mathrm{M}+1)=0.0$
$\operatorname{XRBF}(\mathrm{M}+2)=\mathrm{A}$
$\operatorname{YRBF}(\mathrm{M}+2)=\mathrm{NY} * \mathrm{~A}$
$Z(M+2)=0.0$
$\operatorname{XRBF}(\mathrm{M}+3)=\mathrm{NX} * \mathrm{~A}$
YRBF(M+3) $=\mathrm{NY}^{*} \mathrm{~A}$
$\mathrm{Z}(\mathrm{M}+3)=0.0$
$\operatorname{XRBF}(\mathrm{M}+4)=\mathrm{NX}^{*} \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+4)=\mathrm{A}$
$\mathrm{Z}(\mathrm{M}+4)=0.0$
C
$\operatorname{XRBF}(\mathrm{M}+5)=\mathrm{A}$

YRBF $(\mathrm{M}+5)=\operatorname{INT}(\mathrm{NY} / 4) * \mathrm{~A}$
$Z(M+5)=0.0$
$\operatorname{XRBF}(\mathrm{M}+6)=\operatorname{INT}(\mathrm{NX} / 4) * \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+6)=\mathrm{NY} * \mathrm{~A}$
$\mathrm{Z}(\mathrm{M}+6)=0.0$
$\operatorname{XRBF}(\mathrm{M}+7)=\mathrm{NX} * \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+7)=\mathrm{INT}(\mathrm{NY} / 4) * \mathrm{~A}$
$\mathrm{Z}(\mathrm{M}+7)=0.0$
$\operatorname{XRBF}(\mathrm{M}+8)=\mathrm{INT}(\mathrm{NX} / 4)^{*} \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+8)=\mathrm{A}$
$\mathrm{Z}(\mathrm{M}+8)=0.0$
C
$\operatorname{XRBF}(\mathrm{M}+9)=\mathrm{A}$
$\operatorname{YRBF}(\mathrm{M}+9)=\operatorname{INT}(2 * \mathrm{NY} / 4)^{*} \mathrm{~A}$
$Z(M+9)=0.0$
$\operatorname{XRBF}(\mathrm{M}+10)=\operatorname{INT}(2 * \mathrm{NX} / 4)^{*} \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+10)=\mathrm{NY}^{*} \mathrm{~A}$
$\mathrm{Z}(\mathrm{M}+10)=0.0$
$\operatorname{XRBF}(\mathrm{M}+11)=\mathrm{NX} * \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+11)=\operatorname{INT}(2 * \mathrm{NY} / 4) * \mathrm{~A}$
$Z(M+11)=0.0$
$\operatorname{XRBF}(\mathrm{M}+12)=\operatorname{INT}(2 * \mathrm{NX} / 4)^{*} \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+12)=\mathrm{A}$
$\mathrm{Z}(\mathrm{M}+12)=0.0$
C
$\operatorname{XRBF}(\mathrm{M}+13)=\mathrm{A}$
$\operatorname{YRBF}(\mathrm{M}+13)=\operatorname{INT}(3 * \mathrm{NY} / 4)^{*} \mathrm{~A}$
$\mathrm{Z}(\mathrm{M}+13)=0.0$
$\operatorname{XRBF}(\mathrm{M}+14)=\operatorname{INT}(3 * N X / 4)^{*} \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+14)=\mathrm{NY}^{*} \mathrm{~A}$
$\mathrm{Z}(\mathrm{M}+14)=0.0$
$\operatorname{XRBF}(\mathrm{M}+15)=\mathrm{NX} * \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+15)=\operatorname{INT}(3 * \mathrm{NY} / 4) * \mathrm{~A}$
$Z(M+15)=0.0$
$\operatorname{XRBF}(\mathrm{M}+16)=\operatorname{INT}\left(3^{*} \mathrm{NX} / 4\right)^{*} \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{M}+16)=\mathrm{A}$
$Z(M+16)=0.0$
C
C Estimate activity at a point given the measured in-situ data.
C
C First, if it's a soil sample (that is, if $\mathrm{HH}(\mathrm{I})$ equals zero) then set ZMEAS equal to the data point. If it's an in-situ
C measurement, convert to activity and subtract MINF.
C
DO $10 \mathrm{I}=1, \mathrm{M}$
ZMEAS $(\mathrm{I})=\mathrm{D}(\mathrm{I})$
IF (HH(I) .GT. 0.0) THEN
ZMEAS(I) = D(I)*FOD
END IF
XRBF(I) $=\mathrm{X}(\mathrm{I})$

YRBF(I) $=\mathrm{Y}(\mathrm{I})$
IF (HH(I) .EQ. 0.0) THEN
DO $8 \mathrm{~K}=1$, NX
DO $6 \mathrm{~L}=1, \mathrm{NY}$
IF (B(NXY* $\left.(\mathrm{I}-1)+\mathrm{NY}^{*}(\mathrm{~K}-1)+\mathrm{L}\right)$.EQ. 1.0) THEN
$\operatorname{XRBF}(\mathrm{I})=\mathrm{K} * \mathrm{~A}$
$\operatorname{YRBF}(\mathrm{I})=\mathrm{L} * \mathrm{~A}$
END IF
6
8
CONTINUE

## END IF

C If it's a soil sample, set Z equal to ZMEAS. If it's an in-situ
C measurement, use Paul Bailey's recipe: compare to other in-situ
C
RRMAX $=\left(\left(2.0^{*}\right.\right.$ ISP*A $\left.)+\mathrm{A}\right) * * 2$
DO $20 \mathrm{I}=1, \mathrm{M}$
$\mathrm{Z}(\mathrm{I})=\mathrm{ZMEAS}(\mathrm{I})$
IF (HH(I) .GT. 0.0) THEN
$Z(\mathrm{I})=0.0$
IDUMMY $=0$
DO $18 \mathrm{~J}=1, \mathrm{M}$
$\operatorname{RR}=(\operatorname{XRBF}(\mathrm{I})-\operatorname{XRBF}(\mathrm{J}))^{* *} 2+(\operatorname{YRBF}(\mathrm{I})-\mathrm{YRBF}(\mathrm{J}))^{* *} 2$
IF (RR .LE. RRMAX) THEN
IF (HH(J) .GT. 0.0) THEN
Z(I) $=\mathrm{Z}(\mathrm{I})+$ ZMEAS $(\mathrm{J})$
IDUMMY = IDUMMY +
END IF
END IF
18 CONTINUE
$Z(I)=Z(I) / I D U M M Y$
$\mathrm{Z}(\mathrm{I})=\mathrm{ZMEAS}(\mathrm{I}) * \operatorname{EXP}\left(\operatorname{LMBDZ}^{*}(1.0-\mathrm{Z}(\mathrm{I}) / \mathrm{ZMEAS}(\mathrm{I}))\right)$
END IF
20 CONTINUE
C
C Set the parameter used in Hardy's multiquadratic method equal to
C RFCTR*d, where d is the mean distance from each data point to its
C nearest neighbour (this distance d is equal or approximately equal to $2.0 *$ ISP*A)
$\mathrm{R} 2=(\mathrm{RFCTR} * 2.0 * \operatorname{REAL}(\mathrm{ISP}) * \mathrm{~A}) * * 2$
C
RETURN
END
C
C
C
SUBROUTINE ludcmp(a,n,np,indx,d)

INTEGER n,np,indx(n),NMAX
REAL d,a(np,np),TINY
PARAMETER (NMAX $=500$, TINY $=1.0 \mathrm{e}-20$ )
INTEGER $\mathrm{i}, \mathrm{imax}, \mathrm{j}, \mathrm{k}$
REAL aamax,dum,sum,vv(NMAX)
$\mathrm{d}=1$.
do $12 \mathrm{i}=1, \mathrm{n}$
aamax $=0$.
do $11 \mathrm{j}=1, \mathrm{n}$
if $(\mathrm{abs}(\mathrm{a}(\mathrm{i}, \mathrm{j}))$ ).gt.aamax) aamax $=\mathrm{abs}(\mathrm{a}(\mathrm{i}, \mathrm{j}))$
11 continue
if (aamax.eq.0.) pause 'singular matrix in ludemp'
$\mathrm{vv}(\mathrm{i})=1 . /$ aamax
12 continue
do $19 \mathrm{j}=1, \mathrm{n}$
do $14 \mathrm{i}=1, \mathrm{j}-1$
sum=a(i,j)
do $13 \mathrm{k}=1, \mathrm{i}-1$
sum $=\operatorname{sum}-\mathrm{a}(\mathrm{i}, \mathrm{k}) * \mathrm{a}(\mathrm{k}, \mathrm{j})$
13 continue
$a(1, \mathrm{j})=$ sum
14 continue
aamax=0.
ú
do $16 \mathrm{i}=\mathrm{j}, \mathrm{n}$
sum $=\mathrm{a}(\mathrm{i}, \mathrm{j})$
do $15 \mathrm{k}=1, \mathrm{j}-1$
sum=sum- $\mathrm{a}(\mathrm{i}, \mathrm{k}) * \mathrm{a}(\mathrm{k}, \mathrm{j})$
15 continue
$a(1, j)=$ sum
$\operatorname{dum}=\mathrm{vv}(\mathrm{i}) * \mathrm{abs}($ sum $)$
if (dum.ge.aamax) then
imax=i
aamax $=$ dum
endif
16 continue
if (j.ne.imax)then
do $17 \mathrm{k}=1$, n
dum=a(imax,k)
$\mathrm{a}(\mathrm{imax}, \mathrm{k})=\mathrm{a}(\mathrm{j}, \mathrm{k})$
$a(j, k)=d u m$
continue
$\mathrm{d}=-\mathrm{d}$
$\mathrm{vv}(\mathrm{imax})=\mathrm{vv}(\mathrm{j})$
endif
indx $(\mathrm{j})=$ imax
$\mathrm{f}(\mathrm{a}(\mathrm{j}, \mathrm{j})$.eq.0. $) \mathrm{a}(\mathrm{j}, \mathrm{j})=\mathrm{TINY}$
f(j.ne.n)then
dum $=1 . / \mathrm{a}(\mathrm{j}, \mathrm{j})$
do $18 \mathrm{i}=\mathrm{j}+1, \mathrm{n}$
$a(i, j)=a(i, j) * d u m$

18 continue
endif
19 continue return
END
C (C) Copr. 1986-92 Numerical Recipes Software \%-,,
C
C $\quad$ C*********************************************************************)
C
SUBROUTINE lubksb(a,n,np,indx,b)
INTEGER $n, n p, \operatorname{indx}(n)$
REAL a(np,np),b(n)
INTEGER i,ii,j,ll
REAL sum
ii=0
do $12 \mathrm{i}=1, \mathrm{n}$
$11=$ ind $x(i)$
sum=b(ll)
$\mathrm{b}(11)=\mathrm{b}(\mathrm{i})$
if (ii.ne.0)then
do $11 \mathrm{j}=\mathrm{i}, \mathrm{i}-1$
sum=sum-a(i,j)*b(j)
11 continue
else if (sum.ne.0.) then
$\mathrm{i}=\mathrm{i}$
endif
$b(i)=$ sum
12 continue
do $14 \mathrm{i}=\mathrm{n}, 1,-1$
sum=b(i)
do $13 \mathrm{j}=\mathrm{i}+1, \mathrm{n}$
sum=sum-a(i,j)*b(j)
13 continue
$b(i)=\operatorname{sum} / a(i, i)$
14 continue return
END
C (C) Copr. 1986-92 Numerical Recipes Software \%-,.
C
C
C

```
(INPFILE,NUMMER)
```

C
C Added 8/3/2000-DETERMINE NAME OF INPUTFILE
C
C for use with Lahey compiler
C

## CHARACTER*40 INPFILE

CHARACTER*40 BLANKNAME
NUMMER=7

DO I=1,40
INPFILE(I:I)=' '
BLANKNAME ( $\mathrm{I}: \mathrm{I})=$
END DO
CALL GETCL(INPFILE)
PRINT*,'INPFILE = ', INPFILE
IF (INPFILE.EQ.BLANKNAME) THEN
NUMMER $=5$
END IF
RETURN
END
C
C
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~+~$

