Worldwide Deposition of Strontium-90 through 1990

Matthew A. Monetti

Environmental Measurements Laboratory U.S. Department of Energy New York, NY 10014-3621

March 1996

DISCLAIMER

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

A

Strontium-90 results from the Environmental Measurements Laboratory's (EML) Global Fallout Program (GFP) are presented for the years 1987 through 1990. Quarterly ⁹⁰Sr deposition results for the 66 sampling locations of EML's GFP were generally low, indicating that there was no significant release of fission products into the atmosphere during this period. The global ⁹⁰Sr deposition during these 4 years was lower than it has been for any similar period since this program began in 1958. Since there was no major atmospheric source of ⁹⁰Sr during this period, the global cumulative deposit of ⁹⁰Sr continued to decrease by radioactive decay to a 27 year low of 311.4 Pbq.

able of Contents

Page No.

Introduction	1
Methods	2
Data Quality and Validation	3
Results	5
Discussion	6
Acknowledgements	8
References	9
Tables 1-18 12 -	53
Figure 1-3	56

ntroduction

As a result of increased atmospheric testing of nuclear weapons, concerns over the fate of radioactivity released from these detonations and related implications to national security during the "arms race", the Environmental Measurements Laboratory (EML) initiated a program known as the Global Fallout Program (GFP) in 1958. This program has been operated via one of the largest global sampling networks ever assembled in the world. The GFP had over 140 sampling stations during the 1960s (Hardy, 1977). From 1987 to 1990, the network consisted of the 66 sites shown in Figure 1, and listed in Table 1 along with other site characteristics. The intent of the GFP was to obtain radionuclide deposition information which could be used to address factors related to the global transport and fate of radionuclides following an atmospheric release. Around the same time that this program was being developed several other global studies on fission-produced radioactivity were being pursued. These studies included investi-gations of atmospheric transport and residence times in both the stratosphere and the troposphere, soil burdens, and the subsequent assimilation into food and the human body. An essentially complete understanding of the processes affecting the fate of released radioactivity resulted, which helped to identify the significance of this material to human health.

Since it is considered important to maintain a record of the global deposition, distribution and inventory of fallout radioactivity, the GFP has remained an active program. Initially, GFP data included several of the radionuclides produced during weapons testing. Strontium-90 was chosen as the primary radionuclide of interest due to its unique properties. To begin with, ⁹⁰Sr is produced with a relatively high fission yield (3.7 PBq MCi per Megaton) during the detonation of nuclear weapons. Strontium-90 is also an beta-emitting radionuclide with a fairly long half-life (28 years). Finally, ⁹⁰Sr is readily incorporated into the biosphere as a result of chemical properties it shares with calcium, an essential element for most organisms including human. Together these properties have important implications on the effect that nuclear weapons fallout ⁹⁰Sr can have on human health. Strontium-90 was considered the most important radionuclide released during the atmospheric weapons testing based on worldwide health hazards (UNSCEAR, 1982). EML's ⁹⁰Sr deposition database is the most extensive of its kind in the world.

This report has been prepared to present additional new data that has been added to EML's database. Numerous documents similar to this one have been published regularly since the GFP began to provide the scientific community, policy-makers and the general public with information on radioactive fallout. Three compilation reports have been published to date (Hardy 1977; Larsen, 1984a; Larsen, 1985). The database now serves as a direct source of fallout records for contemporary investigations addressing radiological concerns. These records have also proven extremely useful for studies in several other fields that have utilized the unique and well-defined source of radioactivity as tracers of different processes.

There have been very few changes in the procedures for the operation of the GFP since the years when the 90 Sr database was first generated. The same sampling devices are being used since the beginning of the program. These include two different open containers, a stainless-steel pot and a polyethylene bucket, and an ion-exchange unit (see Table 1). The open containers are simple devices that collect all the material which is deposited in them. The ion-exchange sampling unit performs a first-order extraction of the bulk deposition at the sampling site. It consist of a funnel connected in series to a column packed with Dowex-50 ion-exchange resin. The ion-exchange column removes the 90 Sr from the precipitation as it passes through the column. The sampling devices are exposed to collect a sample each calendar month, except for at the Australian stations where the samplers are exposed for a 3-month (quarterly) period. The area exposed to bulk deposition ranges from 640 to 760 cm² depending on which device is used. The samplers and their operation are described in more detail in EML's Procedure Manual, Section 2 (Chieco *et al.*, 1992).

The samples are sent to EML and prepared for analysis. The samples collected in pots and buckets are passed through ion-exchange columns in the laboratory. One column is used for each 3-month quarter of samples. The samples collected with the ion-exchange units are composted into quarterly samples by combining three months of samples. The ⁹⁰Sr analyses are then performed on quarterly samples (prior to 1976 the monthly samples were analyzed) by either EML or contractor laboratories. The radiochemical methods used to process, separate and count the samples for ⁹⁰Sr analysis are similar to those described in

EML's Procedures Manual, Section 4 (Chieco *et al.*, 1992). Blind quality control blanks and spiked reference samples are included with each set of samples and represent about 10% of the total samples analyzed. The contractors are required to meet specified criteria regarding agreement with quality control samples and counting errors for all samples.

Once the data is obtained it is evaluated for adherence to the contract specifications, converted to obtain values of ⁹⁰Sr deposition per unit area (Bq m⁻²), and added to the ⁹⁰Sr deposition database. The database is then used to update estimates of the total annual deposition and global burden of ⁹⁰Sr. The method used to determine these values has been described by Volchok (1965). Representative ⁹⁰Sr deposition values (Bq m⁻²) are derived for each 10-degree latitude band based on the site data averages. Deposition values are obtained for the unsampled regions (north of 70 ⁰N and south of 70⁰S) by extrapolating to a deposition of zero at the poles. The total ⁹⁰Sr deposition (TBq) is calculated for each latitude band and then summed for a global total.

D ata Quality and Validation

As already mentioned, the contractors must meet established criteria to ensure that EML's database represents the best quality possible. Table 2 shows the results of blank samples submitted to four laboratories that performed analysis of samples collected from 1987 through 1990. The laboratories are identified by letters to maintain anonymity. The number of results reported in Table 2 is proportional to the total number of samples analyzed by that particular laboratory. The mean blank values for each of the laboratories was below the established criteria set at 17 Bq. One result reported by laboratory A and two results reported by laboratory C were above this limit, but the remainder of the results were generally well below this value. The blank result of 48.3 ± 10.8 Bq was obtained due to difficulties encountered in processing a batch of samples. There is no apparent explanation for the other two high blank values.

Results of spiked reference samples are shown in Table 3. The contract specifies that the reported values must be within 20% of the known quantity added to the sample as suggested by Harley (1961) and Hardy (1973). All four of the laboratories had mean percent recovery values within this range, but again

some individual analyses did not meet this criteria. Three, nine and three of the reported values analyzed by laboratory A, C and D, respectively, were outside the contract limit. One of the values reported by laboratory C was in the same problem batch mentioned above. The apparent difficulty encountered with the analyses of four samples by laboratory C and the three by laboratory D involved ashing of the samples prior to transfer to the contractor. There is no obvious explanation for the remaining seven results that did not meet the established criteria.

Another set of criteria that was established to help ensure the high quality of ⁹⁰Sr data was limits for relative counting errors. The relative counting error limits set in the analytical contracts are as follows: 30% for results greater than 17 up through 34 Bq; 15% for results greater than 34 up through 83 Bq; 8% for results greater than 83 up through 167 Bq; and 4% for results greater than 167 Bq. No limit is defined for reported results of 17 Bq and lower since these values are anticipated to be at or below the detection limits. The superscript letters following the data in Table 4 indicate the relative counting errors. Few of the reported results exceeded the limits described above.

In addition to the criteria established to ensure the quality of the data, the database has been evaluated by direct comparisons with other programs. The United Kingdom Atomic Energy Authority (UKAEA) also had a global program to investigate the deposition of radioactivity. This program was also based on a global network similar in size to EML's GFP. The primary radionuclide of interest in the UKAEA program was ¹³⁷Cs, but estimates of ⁹⁰Sr deposition were typically estimated by using a mean ¹³⁷Cs to ⁹⁰Sr ratio. Table 5 presents the UKAEA global ⁹⁰Sr deposition data from 1958 through 1990 (Playford *et al.*, 1993), along with EML's GFP data. The largest difference between the annual ⁹⁰Sr deposition databases is 58% in 1970, but overall the data are in good agreement. EML's annual ⁹⁰Sr deposition values are generally higher than the UKAEA values during the early period (1958 through 1992) of these programs, and the opposite is true during the later years. This comparison also indicates that EML's methodology is more sensitive than the UKAEA's for determining the global ⁹⁰Sr deposition since the UKAEA program could only report upper limit values from 1982 through 1990. The cumulative ⁹⁰Sr deposit data shows even better agreement than the annual deposition. The largest coefficient of variation in the cumulative ⁹⁰Sr deposit is 6%. It is likely that the differences between the two annual ⁹⁰Sr deposition databases can be accounted for as a result of varying meteorological conditions at the sampling locations between the networks (Hardy et al., 1968). Both programs calculate global averages values based on a few individual

locations. Such an approach, although theoretically practical (Volchok, 1965), is certain to have some unknown error associated with it. The comparison between these two independent programs would indicate that this error is not great.

Since the release of radionuclides during atmospheric weapons testing was well studied, other data is also available for comparison. Feely (1977) matched the GFP-derived estimates of ⁹⁰Sr deposition with ⁹⁰Sr deposition expected as a result of the net loss of ⁹⁰Sr in the stratosphere during 1974 to 1976. The GFP estimate was 18% higher than the stratospheric loss. This is a good agreement since both estimates are subject to uncertainties. Larsen (1984b) made a similar comparison with stratospheric ⁹⁰Sr data from 1976 through 1982. Again, the results indicate that there is good agreement between the loss of ⁹⁰Sr from the stratosphere and the global deposition values estimated by the GFP. These results indicate that the overall uncertainty of the annual estimates of global ⁹⁰Sr deposition may be as high as 20%. This level of uncertainty would not significantly affect the interpretation or use of the GFP data.

Quarterly ⁹⁰Sr deposition (Bq m⁻²) and precipitation (cm) data from 1987 through 1990 are reported for the individual sampling locations shown in Table 4. The sites are listed in order of increasing distance from 90°N latitude. Annual totals of the quarterly results are provided in the last column of Table 4.

Tables 6 to 9 list the average ⁹⁰Sr deposited (Bq m⁻²) in each 10-degree latitude band and the entire world for the years 1987, 1988, 1989 and 1990, respectively. Averages are provided for each quarter along with an annual average. The number of sites used to calculate the average deposition are given next to the values. The letter "E" indicates that no results were available to determine an average for the latitude band, so the average was calculated by extrapolation as mentioned in the Methods Section. The average deposition data is used to calculate the total ⁹⁰Sr deposits (TBq) in the latitude bands and the world shown in Tables 10 to 13 for the years 1987, 1988, 1989 and 1990, respectively. These tables present total deposition values for each quarter and a summation for the year. In Tables to 17, the total annual ⁹⁰Sr deposition is added to the previous global data to obtain the cumulative (decayed) burden of ⁹⁰Sr (PBq) in

each latitude band and the world for the years 1987, 1988, 1989 and 1990, respectively. The data shows the cumulative deposit at the end of each quarter. Figure 2 is a histogram showing the latitudinal distribution of the global ⁹⁰Sr burden at the end of 1990. The percent of the total global burden present in each 10-degree latitude band is also provided in this figure.

The total annual ⁹⁰Sr deposition (PBq) and fission yields of atmospheric weapons testing (MT) for the Northern and Southern Hemispheres are reported in Table 18. This table lists data from the inception of the GFP (1958) to the end of 1990. Figure 3 also displays some of the historical data available in the GFP. Figure 3A is a plot of the annual global ⁹⁰Sr deposition (PBq) from 1958 to 1990. A graph of the annual fission yields from atmospheric weapons testing from 1945 to 1990 is shown in Figure 3B, and a graph of the cumulative global deposit of ⁹⁰Sr (PBq) from 1958 to 1990 is shown in Figure 3C. The value (85.1 PBq) indicated in Figure 3C as the pre-1958 ⁹⁰Sr deposit was estimated from the fission yields of tests conducted prior to 1957 by assuming that each Megaton of nuclear explosive power generates 3.7 PBq of ⁹⁰Sr.

Discussion

The bulk of the data in the GFP database has already been presented and interpreted in numerous reports over the years (e.g., Monetti and Larsen, 1991). As more data becomes available it is compared and appended to the historic database.

The site specific ⁹⁰Sr deposition data in Table 4 shows that the majority of the 1987 through 1990 values were low and indicate that there was no significant atmospheric source of ⁹⁰Sr on a global scale. This is in agreement with the fact that there were no announced atmospheric detonations or large-scale nuclear accidents. Also the presence of fission products in the surface air samples collected around the world was generally below the detection limit as noted in EML's Surface Air Sampling Program (Larsen and Sanderson, 1991). Thirty-seven percent of the quarterly ⁹⁰Sr deposition results reported in Table 4 had a value of zero, and another 37% of the data had a value below 0.1 Bq m ⁻². The remaining 26% of the

results generally were low values with high uncertainties. The ⁹⁰Sr deposition reported at these locations may simply have been due to the resuspension of previously deposited material. Some of the higher results are more interesting and require other explanations. Although the highest quarterly ⁹⁰Sr deposition, 7.4 Bq m⁻², was observed in the sample collected in Peru during the third quarter of 1989, this data is subject to high errors due to analytical difficulties. The next few locations in a series of decreasing quarterly ⁹⁰Sr deposition are all in Australia (Darwin during the fourth quarter of 1987, Townsville during the third quarter of 1989 and Perth during the fourth quarter of 1987, with 6.2, 2.1 and 1.8 Bq m ⁻², respectively). The counting errors for these results were all low, but there were some unresolved problems with the quality control samples analyzed with several of the Australian samples. If there has been any atmospheric source of ⁹⁰Sr other than resuspension at any of the sampling stations during this period it would have been of limited quantity and extent. More detailed studies would be necessary to verify and identify potential radionuclide sources at specific locations of concern.

The averaged ⁹⁰Sr deposition data reported in Tables 6 through 9 reflect the individual site data. The few elevated values resulted from the increased deposition at the individual locations noted above. There is no apparent temporal or spatial pattern to suggest that any event resulted in a global atmospheric release of radioactivity. The total ⁹⁰Sr deposited (Tables 10 to 13) during this period of time was insignificant relative to the burden of ⁹⁰Sr present at the time (Tables 14 to 17). The quantity of ⁹⁰Sr deposited from 1987 to 1990 was the lowest it is has been over any other 4-year period since the GFP began. Since the total ⁹⁰Sr deposition was less than the decay of the ⁹⁰Sr burden, the cumulative ⁹⁰Sr deposit decreased from 1987 to 1990. At the end of 1990, the global burden of ⁹⁰Sr (311.4 PBq) was lower than it has been in 27 years.

The bimodal latitudinal distribution of the global ⁹⁰Sr burden shown in Figure 2 is a result of factors controlling the transport of radioactivity released into the atmosphere. Atmospheric weapons tests injected most of the radioactivity into the stratosphere (Bennett, 1978). This material tended to remain in the stratosphere until the spring of the following year when it passed through the disruptions in the tropopause at midlatitudes in the Northern and Southern Hemispheres (UNSCEAR, 1982). Once in the troposphere, the material was carried around the world within Hadley cells. The fallout radionuclides were then deposited onto the earth's surface by both wet and dry deposition. This circulation pattern maintained latitudinal bands of peak radioactivity at the midlatitudes.

- 7 -

Nuclear weapons testing began in 1945, but the total fission yields produced were low until the early 1950's (Figure 2B). Over 90% of the weapons testing occurred in the Northern Hemisphere since 1958, but only 76% of the ⁹⁰Sr was deposited in the Northern Hemisphere (Table 18). Most of the ⁹⁰Sr deposited in the Southern Hemisphere was from Northern Hemisphere tests and was transported across the equator while it was in the stratosphere (Juzdan, 1988). Additionally, many of the tests conducted in the Northern Hemisphere were performed near the equator (Carter and Moghissi, 1977). The peak of weapons testing in 1962 resulted in the peak annual ⁹⁰Sr deposition in 1963 (Figure 2A). Another minor peak in the annual ⁹⁰Sr deposition database during 1959 followed the increased testing the year before. The cumulative ⁹⁰Sr deposit increased sharply during the early 1960s because of the extensive testing conducted during this period. A moratorium on atmospheric weapons testing was observed since 1963 by all the countries involved except for China. Since this time, the fission yields have been low compared to the earlier testing yields. The annual global ⁹⁰Sr deposition sharply decreased as a result of the 1963 moratorium. The cumulative global ⁹⁰Sr deposit reached a maximum value (451.4 PBq) in 1966 and was maintained at this level for 6 years. Since 1972 the cumulative 90Sr deposit has been decreasing since the radioactive decay of the global ⁹⁰Sr burden has been greater than the amount released into the atmosphere. The last atmospheric weapons test was performed by China at the Lop Nor test site on October 16, 1980. Most of the ⁹⁰Sr associated with this test was deposited in 1981. The ⁹⁰Sr deposited during 1986 was due to the Chernobyl accident in the Ukraine Republic of the former Soviet Union. Strontium-90 was distributed throughout the Northern Hemisphere, but the event was primarily of regional importance with greatest effects in Europe. The GFP was able to provide some interesting information on the transport and fate of this release (Monetti and Larsen, 1991). There was no significant global ⁹⁰Sr deposit from 1987 through 1990, and the cumulative deposit continued to decrease.

A cknowledgments

EML is extremely grateful for the support of the site operators who maintain the deposition sampling stations around the world. Their efforts are greatly appreciated but often not formally recognized. We would also like to thank all of those who aided us in establishing and maintaining the network. This includes those individuals or groups who served as contacts to ensure that supplies and information was

relayed to the appropriate locations. This program could not have been accomplished without the assistance of all these people.

Bennett, B. G. "Environmental Aspects of Americium" USERDA Report EML-348, December (1978)

Carter, M. and A. Moghissi "Three Decades of Nuclear Testing" Health Physics, <u>33</u>, 55-71, July (1977)

Chieco, N. A., D. C. Bogen and E. O. Knutson "EML Procedures Manual" HASL-300, 27th Edition, Vol. 1, November (1992)

Feely, H. W. "Worldwide Deposition of ⁹⁰Sr through 1976" USERDA Report HASL-328, pp. 1-85-I-103, October (1977)

Hardy, E. P., Jr. "Analysis of Quality Control Samples at HASL and a Contractor Laboratory - during 1972" USERDA Report HASL-268, January (1973)

Hardy, E. P., Jr. "Final Tabulation of Monthly ⁹⁰Sr Fallout Data, 1954-1976" USERDA Report HASL-329, October (1977)

Hardy, E. P., Jr., M. W. Meyer, J. S. Allen and L. T. Alexander "90-Sr on the Earth's Surface" Nature, <u>219</u>, 584-587 (1968) Harley, J. H. "Errors in Measurement" USAEC Report HASL-105, January (1961)

Juzdan, Z. R. "Worldwide Deposition of ⁹⁰Sr through 1985" USDOE Report EML-515, July (1988)

Larsen, R. J. "Graphic Presentation of Quarterly⁹⁰Sr Fallout Data, 1954-1982" USDOE Report EML-424, January (1984a)

Larsen, R. J. "Worldwide Deposition of ⁹⁰Sr through 1982" USDOE Report EML-430, June (1984b)

Larsen, R. J. "Worldwide Deposition of ⁹⁰Sr through 1983" USDOE Report EML-444, July (1985)

Larsen, R. J. and C. G. Sanderson "EML Surface Air Sampling Program, 1989 Data" USDOE Report EML-541, August (1991)

Monetti, M. A. and R. J. Larsen "Worldwide Deposition of ⁹⁰Sr through 1986" USDOE Report EML-533, April (1991)

Playford, K., J. Toole and I. Adsley"Radioactive Fallout in Air and Rain: Results to the end of 1991"U. K. Atomic Energy Authority Report AEA-EE-0498, May (1993)

UNSCEAR

"U.N. Scientific Committee on the Effects of Atomic Radiation - 1982 Report to the General Assembly, with Annexes. Ionizing Radiation: Sources and Biological Effects" United Nations, New York (1982)

Volchok, H. L. "Worldwide Deposition of ⁹⁰Sr through 1964" USAEC Report HASL-245, pp. 268-284, July (1965)

			Elevation	
Sampling Site	Latitude	Longitude	(m)	Sampling Unit
Faibanks, Alaska	64:49°N	147:52°W	143	Ion-Column Exchange
Nome, Alaska	64:30°N	165:30°W	7	.,
Keflavik, Iceland	63:58°N	22:36°W	56	22
Anchorage, Alaska	61:10°N	149:59°W	27	22
Cold Bay, Alaska	55:12°N	162:43°W	31	22
Moosonee, Canada	51:16°N	80:89°W	10	22
Vienna, Austria	48:15°N	16:22°E	203	22
Munich, Germany	48:08°N	11:35°E	1000	22
Klagenfurt, Austria	46:39°N	14:20°E	448	22
Vermillion, South Dakota	42:47°N	96:56°W	372	On an Dat
Argonne, Illinois	41:42°N	$88:00^{\circ}W$	192	Open Pot
Chester, New Jersey	40:48°N	$74:40^{\circ}W$	268	Open Bucket
Wooster, Ohio	40:47°N	81:50°W	367	On an Dat
New York, New York	40:40°N	$74:00^{\circ}W$	56	Open Pot
Lajes Field, Azores	38:44°N	27:04°W	112	Open Bucket
Seoul, Korea	37:30°N	127:00°E	50	ion-Exchange Column
Hiroshima, Japan	34:23°N	132:27°E	23	On an Dat
West Los Angeles, California	34:04°N	118:27°W	125	Open Pot
Birmingham, Alabama	33:30°N	86:55°W	183	"
Nagasaki, Japan	32:45°N	129:52°E	61	>>
Kindley AFB, Bermuda	32:22°N	64:31°W	8	Ion Evolution Column
Houston, Texas	29:45°N	95:17°W	22	ion-Exchange Column
Miami, Florida	25:49°N	80:17°W	4	"
Taipei, Taiwan	25:05°N	121:31°E	50	Open Bet
Lihue, Hawaii	21:59°N	159:21°W	35	Ion Exchange Column
Mauna Loa, Hawaii	19:32°N	155:31°W	3401	Open Pot
Wake Island	19:17°N	166:39°E	3	Ion Exchange Column
San Juan, Puerto Rico	18:26°N	$66:00^{\circ}W$	10	"
Johnston Island	16:45°N	169:32°W	0	,,
Clark AFB, Philippines	15:11°N	120:33°E	10	"
Bangkok, Thailand	13:44°N	100:30°E	23	Open Pot
Anderson AFB, Guam	13:35°N	144:55°E	185	Ion Exchange Column
Yap Island	9:31°N	138:08°E	18	ion-Exchange Column
Panama Canal Zone	8:55°N	79:36°W	10	"
Truk Island	7:28°N	151:51°E	2	"
Koror Island	7:21°N	134:31°E	31	"

SAMPLING LOCATIONS OF THE GFP FROM 1987 TO 1990

TABLE 1 (Cont'd)

			Elevation	
Sampling Site	Latitude	Longitude	(m)	Sampling Unit
Majoro Island	07:05°N	171:23°E	3	Ion-Exchange Column
Ponape Island	06:58°N	158:13°E	38	**
Karawa, Zaire	03:14°N	020:17°E	750	**
Mbandaka, Zaire	00:03°N	018:28°E	350	**
Kikuyu, Kenya	01:13°S	036:38°E	2074	Open Pot
Belem, Brazil	01:27°S	048:29°E	8	Ion-Exchange Column
Guayaquil, Ecuador	02:10°S	079:52°E	7	**
Lima, Peru	12:01°S	077:07°E	30	**
Darwin, Australia	12:28°S	130:51°E	30	**
Tutuila, American Samoa	14:16°S	170:43°W	77	Open Bucket
Chacaltaya, Bolivia	16:21°S	$068:08^{\circ}W$	5222	Ion-Exchange Column
Harare, Zimbabwe	17:48°S	031:03°E	1495	Open Pot
Suva, Fiji	18:09°S	178:25°W	11	Ion-Exchange Column
Townsville, Australia	19:18°S	146:48°E	4	**
Rio de Janeiro, Brazil	22:54°S	043:13°W	9	Open Pot
Antofagasta, Chile	23:37°S	070:25°W	30	Ion-Exchange Column
Pretoria, South Africa	25:45°S	028:14°E	1369	Open Pot
Easter Island, Chile	27:10°S	109:26°W	41	Ion-Exchange Column
Brisbane, Australia	27:28°S	153:02°W	42	**
Durban, South Africa	29:52°S	030:59°E	156	Open Pot
Perth, Australia	31:57°S	115:51°E	64	Ion-Exchange Column
Santiago, Chile	33:27°S	070:42°W	520	**
Sydney, Australia	33:52°S	151:12°E	42	**
Buenos Aires, Argentina	34:37°S	058:26°W	20	**
Adelaide, Australia	34:56°S	138:35°E	43	**
Melbourne, Australia	37:49°S	144:58°E	47	**
Wellington, New Zealand	41:17°S	174:46°E	34	**
Puerto Montt, Chile	41:26°S	073:07°W	110	**
Hobart, Australia	42:53°S	147:20°E	54	"
Punta Arenas, Chile	53:00°S	070:50°W	74	**
Antarticia, Chile	62:56°S	060:36°W	16	"

SAMPLING LOCATIONS OF THE GFP FROM 1987 TO 1990

Laboratory A ^a	Laboratory B ^b	Laboratory C ^c	Laboratory D ^d
0.0 ± 1.7	2.2 ± 6.0	$0.0\pm~6.7$	0.0 ± 1.7
0.0 ± 1.7	8.7 ± 2.8	16.7 ± 3.3	3.3 ± 3.3
0.0 ± 1.7	3.7 ± 3.0	1.7 ± 8.3	0.0 ± 1.7
0.0 ± 3.3	7.8 ± 2.9	1.7 ± 16.7	0.0 ± 1.7
3.3 ± 1.7		5.0 ± 4.2	1.7 ± 1.7
143.3 ± 1.7		$0.0\pm~5.8$	0.0 ± 1.7
3.3 ± 1.7		$0.0\pm~5.0$	1.7 ± 1.7
6.7 ± 1.7		0.3 ± 4.2	0.0 ± 1.7
11.7 ± 1.7		$0.0\pm~3.3$	0.0 ± 1.7
0.0 ± 1.7		$3.3\pm~2.5$	1.7 ± 3.3
0.0 ± 1.7		$6.7\pm~3.3$	6.7 ± 3.3
0.0 ± 1.7		$0.0\pm~9.2$	
		$10.0\pm~3.3$	
		$8.3\pm~3.3$	
		16.7 ± 2.5	
		$0.0\pm~5.8$	
		1.7 ± 1.7	
		0.0 ± 4.2	
		$0.0\pm~7.5$	
		0.0 ± 10.8	
		$0.0\pm~2.5$	
		0.0 ± 1.7	
		5.0 ± 1.7	
		1.7 ± 5.8	
		$0.0\pm~6.7$	
		48.3 ± 10.8	
		3.3 ± 1.7	
		3.3 ± 8.3	
		1.7 ± 3.3	
		1.7 ± 5.0	
		5.0 ± 1.7	
		1.7 ± 1.7	
		0.0 ± 5.8	
		25.0 ± 2.5	
		$0.0\pm~0.8$	

RESULTS OF QUALITY CONTROL BLANK SAMPLES SUBMITTED WITH SAMPLES COLLECTED FROM 1987 TO 1990 (mBq 90 Sr per Sample ± Standard Deviation)

- ^a Mean Blank Value = 12.5 ± 40.7
- ^b Mean Blank Value = 5.6 ± 3.1
- ^c Mean Blank Value = 4.9 ± 9.4 ^d Mean Blank Value = 1.3 ± 2.0

(Ind Si per Sample - Standard Deviation)									
Added	Reported	% Recovered	Added	Reported	% Recovered				
Laboratory - A									
55.0	53.3 ± 1.7	95	106.7	88.3 ± 1.7	84				
60.0	56.7 ± 5.0	95	108.3	161.7 ± 1.7	149				
53.3	43.3 ± 5.0	81	80.0	193.3 ± 1.7	242				
98.3	75.0 ± 1.7	76							
Mean % Recover	$ry = 117 \pm 60$								
Laboratory - B									
60.5	55.0 ± 5.0	91	85.7	76.5 ± 3.9	89				
82.7	78.3 ± 5.4	95	58.5	54.2 ± 3.7	93				
Mean % Recover	$ry = 92 \pm 3$								
Laboratory - C									
41.7	45.0 ± 12.5	108	25.0	23.3 ± 5.0	93				
75.0	80.0 ± 5.0	107	46.7	45.0 ± 5.0	96				
46.7	45.0 ± 5.0	90	60.0	51.7 ± 2.5	86				
68.3	65.0 ± 6.7	91	78.3	78.3 ± 4.2	100				
51.7	61.7 ± 5.0	116	35.0	45.0 ± 5.0	129				
20.0	23.3 ± 5.0	116	53.3	63.3 ± 5.8	119				
83.3	88.3 ± 8.3	106	75.0	73.3 ± 10.0	98				
33.3	36.7 ± 5.0	110	23.3	45.0 ± 12.5	197				
70.0	61.7 ± 4.2	88	70.0	76.7 ± 5.0	110				
60.0	63.3 ± 8.3	106	43.3	50.0 ± 3.3	115				
61.7	76.7 ± 5.8	124	21.7	30.0 ± 3.3	138				
23.3	30.0 ± 4.2	129	66.7	56.7 ± 3.3	85				
120.0	131.7 ± 12.5	110	25.0	20.0 ± 6.7	80				
61.7	60.0 ± 4.2	97	28.3	11.7 ± 1.7	41				
51.7	58.3 ± 5.8	113	41.7	13.3 ± 3.3	32				
90.0	81.7 ± 3.3	91	51.7	21.7 ± 1.7	42				
25.0	20.0 ± 4.2	80	55.0	23.3 ± 1.7	42				

RESULTS OF QUALITY CONTROL REFERENCE SAMPLES SUBMITED WITH SAMPLES COLLECTED FROM 1987 TO 1990 (mBa ⁹⁰Sr per Sample + Standard Deviation)

Mean % Recovery = 100 ± 31

Added	Reported	% Recovered	Added	Reported	% Recovered
Laboratory - D					
70.0	60.0 ± 3.3	86	30.0	31.7 ± 1.7	113
40.0	$36.7\pm~3.3$	92	43.3	40.0 ± 3.3	93
40.0	$28.3\pm~3.3$	73	58.3	60.0 ± 3.3	101
41.7	26.7 ± 3.3	63	76.7	71.7 ± 3.3	94
51.7	51.7 ± 6.7	100	120.0	126.7 ± 5.0	107
103.3	95.0 ± 10.0	91	45.0	35.0 ± 3.3	75
75.0	$65.0\pm\ 6.7$	87			
Mean % Recovery	= 90 ± 14				

TABLE 3 (Cont'd.)

Veen	Annual (PB	Deposition q ⁹⁰ Sr)	Cumulative Deposit (PBq ⁹⁰ Sr)	
Year	EML	UKAEA	EML	UKAEA
1958	32.6	31	115	110
1959	45.9	54	159	158
1960	15.9	15	170	170
1961	19.2	21	185	190
1962	63.3	75	244	260
1963	108.4	107	344	360
1964	77.0	81	411	430
1965	41.8	38	444	460
1966	20.0	19	451	460
1967	10.4	10	451	460
1968	11.1	11	448	460
1969	10.7	10	451	460
1970	12.6	8	451	460
1971	12.6	9	451	460
1972	6.7	6	448	450
1973	2.3	5	440	440
1974	5.9	6	433	440
1975	3.4	6	426	430
1976	1.8	2.5	418	430
1977	3.8	4	411	420
1978	4.4	4.5	407	410
1979	1.5	2.5	400	400
1980	0.9	2	392	400
1981	1.9	~3	381	390
1982	0.7	<2.5	374	380
1983	0.5	<3	366	370
1984	0.4	<2	357	360
1985	0.2	<2	349	350
1986	1.7	<3	343	340
1987	0.3	<2	336	335
1988	0.2	<2	326	325
1989	0.2	<2	319	319
1990	0.1	<2	311	312

COMPARISON OF ESTIMATES OF ⁹⁰Sr DEPOSITION MADE BY EML AND UKAEA

AVERAGE ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1988 (Bq m⁻²)

	First (Quarter	Second	Quarter	Third	Quarter	Fourth	Quarter	1088
Latitude Band	Average Deposit	Number of Sites*	Annual Average						
80-90°N	0.0	E	0.0	Е	0.0	E	0.0	Е	0.0
70-80°N	0.1	E	0.0	E	0.1	E	0.0	Е	0.1
60-70°N	0.2	3	0.0	3	0.1	3	0.0	3	0.1
50-60°N	0.1	2	0.1	2	0.1	2	0.1	2	0.1
40-50°N	0.2	8	0.1	8	0.1	8	0.1	8	0.1
30-40°N	0.1	7	0.0	6	0.1	6	0.1	6	0.1
20-30°N	0.1	5	0.0	5	0.0	5	0.1	5	0.1
10-20°N	0.0	7	0.0	7	0.0	7	0.1	7	0.0
0-10°N	0.0	6	0.1	6	0.0	6	0.1	6	0.1
0-10°S	0.0	3	0.1	3	0.1	3	0.2	3	0.1
10-20°S	0.3	7	0.2	7	0.1	4	0.1	4	0.2
20-30°S	0.2	6	0.2	6	0.1	4	0.1	4	0.1
30-40°S	0.2	5	0.1	6	0.1	2	0.3	2	0.2
40-50°S	0.2	3	0.1	3	0.3	2	0.1	2	0.2
50-60°S	0.0	1	0.1	1	0.1	1	0.1	1	0.1
60-70°S	0.0	1	0.1	1	0.1	1	0.1	1	0.1
70-80°S	0.0	E	0.0	E	0.0	E	0.1	E	0.0
80-90°S	0.0	E	0.0	Е	0.0	E	0.0	E	0.0
Global Average	0.1		0.1		0.1		0.1		0.1

*E indicates that no sampling sites are in the latitude band, and the data was obtained by extrapolating the results to a value of zero at the poles.

	First (Quarter	Second	Quarter	Third	Quarter	Fourth	Quarter	1080
Latitude Band	Average Deposit	Number of Sites*	Annual Average						
80-90°N	0.0	Е	0.0	Е	0.0	Е	0.0	Е	0.0
70-80°N	0.1	E	0.0	E	0.1	Е	0.0	Е	0.0
60-70°N	0.1	2	0.0	3	0.1	3	0.0	3	0.1
50-60°N	0.1	2	0.0	2	0.2	2	0.0	2	0.1
40-50°N	0.1	7	0.1	7	0.1	7	0.1	7	0.1
30-40°N	0.1	6	0.0	7	0.0	6	0.0	6	0.0
20-30°N	0.1	5	0.0	5	0.0	4	0.1	4	0.1
10-20°N	0.0	6	0.0	6	0.2	6	0.0	7	0.1
0-10°N	0.0	7	0.1	7	0.1	7	0.0	8	0.1
0-10°S	0.0	3	0.0	3	0.0	3	0.3	2	0.1
10-20°S	0.0	5	0.0	7	1.4	7	0.2	6	0.4
20-30°S	0.0	5	0.0	5	0.0	6	0.0	6	0.0
30-40°S	0.0	2	0.0	2	0.1	6	0.0	6	0.1
40-50°S	0.0	2	0.0	2	0.1	3	0.1	3	0.1
50-60°S	0.0	1	0.0	1	1.6	1	0.0	1	0.4
60-70°S	0.0	1	0.0	1	0.2	1	0.1	1	0.1
70-80°S	0.0	Е	0.0	E	0.1	E	0.1	Е	0.0
80-90°S	0.0	Е	0.0	E	0.0	E	0.0	Е	0.0
Global Average	0.0		0.0		0.2		0.1		0.1

AVERAGE ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1989 (Bq m⁻²)

*E indicates that no sampling sites are in the latitude band, and the data was obtained by extrapolating the results to a value of zero at the poles.

AVERAGE ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1990 (Bq m⁻²)

	First (Quarter	Second	Quarter	Third	Quarter	Fourth	Quarter	1000
Latitude Band	Average Deposit	Number of Sites*	Annual Average						
80-90°N	0.0	Е	0.0	Е	0.0	Е	0.0	Е	0.0
70-80°N	0.0	E	0.0	Е	0.1	E	0.0	Е	0.0
60-70°N	0.0	3	0.0	3	0.1	2	0.1	2	0.1
50-60°N	0.0	2	0.0	2	0.1	2	0.0	2	0.0
40-50°N	0.0	7	0.1	8	0.1	8	0.1	8	0.1
30-40°N	0.0	7	0.0	7	0.0	7	0.1	7	0.0
20-30°N	0.1	4	0.0	4	0.0	3	0.1	4	0.0
10-20°N	0.0	7	0.1	7	0.1	7	0.1	7	0.1
0-10°N	0.0	6	0.0	6	0.0	5	0.1	6	0.0
0-10°S	0.4	3	0.0	3	0.3	3	0.0	3	0.2
10-20°S	0.3	6	0.1	6	0.1	6	0.1	7	0.1
20-30°S	0.0	5	0.0	6	0.1	6	0.1	5	0.0
30-40°S	0.3	6	0.1	6	0.0	6	0.1	6	0.1
40-50°S	0.0	3	0.0	3	0.1	3	0.1	3	0.0
50-60°S	0.0	1	0.0	1	0.1	1	0.1	1	0.0
60-70°S	0.0	1	0.0	1	0.0	1	0.1	1	0.0
70-80°S	0.0	E	0.0	E	0.0	E	0.0	E	0.0
80-90°S	0.0	E	0.0	E	0.0	E	0.0	E	0.0
Global Average	0.1		0.0		0.1		0.1		0.1

*E indicates that no sampling sites are in the latitude band, and the data was obtained by extrapolating the results to a value of zero at the poles.

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	1007
Latitude Band	Total Deposit	Total Deposit	Total Deposit	Total Deposit	Annual Total
80-90°N	0.0	0.0	0.0	0.1	0.1
70-80°N	0.2	0.5	0.0	0.8	1.5
60-70°N	0.5	1.4	0.0	2.2	4.1
50-60°N	0.2	0.0	2.4	6.6	9.2
40-50°N	3.5	5.4	2.7	5.0	16.6
30-40°N	0.8	0.7	1.7	1.9	5.1
20-30°N	6.6	1.9	2.9	4.4	15.8
10-20°N	0.4	1.0	3.5	3.4	8.4
0-10°N	0.0	1.0	2.2	5.4	8.6
0-10°S	4.0	8.6	0.8	20.4	33.9
10-20°S	8.8	8.2	4.8	40.0	61.9
20-30°S	6.1	10.2	6.6	6.5	29.4
30-40°S	0.9	1.7	3.1	16.6	22.3
40-50°S	12.3	0.0	2.8	3.6	18.7
50-60°S	0.0	0.0	1.4	6.3	7.7
60-70°S	1.1	0.0	4.1	1.5	6.7
70-80°S	0.4	0.0	1.5	0.6	2.5
80-90°S	0.0	0.0	0.1	0.1	0.2
Global Total	45.9	40.6	40.8	125.4	252.7

TOTAL ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1987 (TBq)

	First Quarter		Third Quarter	Fourth Quarter	1988
Latitude Total Band Deposit		Total Deposit	Total Deposit	Total Deposit	Annual Total
80-90°N	0.0	0.0	0.0	0.0	0.0
70-80°N	1.3	0.1	1.0	0.0	2.5
60-70°N	3.6	0.3	2.7	0.0	6.7
50-60°N	2.8	2.4	3.1	1.7	10.1
40-50°N	5.6	2.6	3.1	3.0	14.3
30-40°N	4.0	0.6	2.7	2.9	10.2
20-30°N	4.4	1.9	1.6	3.8	11.7
10-20°N	2.0	0.7	1.0	4.6	8.2
0-10°N	1.4	2.8	2.2	4.2	10.6
0-10°S	2.0	5.1	3.0	9.9	20.0
10-20°S	11.1	6.7	3.1	5.8	26.7
20-30°S	6.4	6.3	2.9	2.7	18.3
30-40°S	8.6	4.0	2.0	11.9	26.6
40-50°S	4.9	2.4	8.6	4.3	20.2
50-60°S	0.0	2.1	3.5	2.8	8.4
60-70°S	0.0	1.5	1.5	2.6	5.7
70-80°S	0.0	0.6	0.6	0.9	2.1
80-90°S	0.0	0.1	0.1	0.1	0.2
Global Total	58.0	40.2	42.9	61.3	202.5

TOTAL ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1988 (TBq)

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	1989
Latitude Band	Total Deposit	Total Deposit	Total Deposit	Total Deposit	Annual Total
80-90°N	0.0	0.0	0.0	0.0	0.0
70-80°N	1.0	0.3	0.7	0.2	2.3
60-70°N	2.8	0.7	2.0	0.6	6.2
50-60°N	1.7	0.0	4.4	0.9	7.1
40-50°N	2.3	2.2	4.4	2.8	11.7
30-40°N	2.0	0.9	0.4	1.0	4.3
20-30°N	5.2	1.0	0.2	2.3	8.7
10-20°N	1.6	0.9	8.0	1.1	11.6
0-10°N	0.4	4.7	5.9	0.0	10.9
0-10°S	1.9	1.7	1.5	11.8	16.9
10-20°S	1.1	0.7	59.8	8.7	70.4
20-30°S	0.2	0.7	1.8	0.4	3.1
30-40°S	1.5	0.4	4.3	1.5	7.7
40-50°S	1.4	0.0	2.5	2.4	6.3
50-60°S	0.0	0.0	41.1	0.0	41.1
60-70°S	0.0	0.0	4.0	1.9	5.9
70-80°S	0.0	0.0	1.5	0.7	2.2
80-90°S	0.0	0.0	0.1	0.1	0.2
Global Total	23.2	14.2	142.5	36.6	216.5

TOTAL ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1989 (TBq)

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	1990
Latitude Band	Total Deposit	Total Deposit	Total Deposit	Total Deposit	Annual Total
80-90°N	0.0	0.0	0.0	0.0	0.0
70-80°N	0.2	0.2	0.9	0.5	1.8
60-70°N	0.5	0.5	2.6	1.3	4.9
50-60°N	0.2	0.3	1.7	1.0	3.3
40-50°N	1.0	2.2	2.2	2.2	7.5
30-40°N	1.2	1.2	0.9	2.9	6.1
20-30°N	3.2	0.5	0.5	2.8	7.0
10-20°N	1.1	2.6	3.3	2.9	9.8
0-10°N	1.1	1.1	1.9	2.4	6.5
0-10°S	18.3	1.5	11.6	2.0	33.3
10-20°S	12.7	3.8	4.5	2.6	23.6
20-30°S	0.6	0.7	2.1	2.8	6.3
30-40°S	10.5	4.9	1.0	4.1	20.5
40-50°S	0.6	0.5	2.0	1.7	4.9
50-60°S	0.3	1.0	2.1	1.4	4.8
60-70°S	0.0	0.7	0.4	1.5	2.6
70-80°S	0.0	0.3	0.1	0.6	1.0
80-90°S	0.0	0.0	0.0	0.1	0.1
Global Total	51.5	21.8	38.0	32.7	144.0

TOTAL ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1990 (TBq)

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
Latitude Band	Total Deposit	Total Deposit	Total Deposit	Total Deposit
80-90°N	0.7	0.7	0.7	0.7
70-80°N	4.8	4.7	4.7	4.7
60-70°N	18.2	18.1	18.0	17.9
50-60°N	42.4	42.2	41.9	41.7
40-50°N	57.8	57.4	57.1	56.7
30-40°N	48.2	47.9	47.6	47.4
20-30°N	38.6	38.3	38.1	37.9
10-20°N	27.1	27.0	26.8	26.7
0-10°N	19.5	19.4	19.3	19.1
0-10°S	10.7	10.7	10.6	10.6
10-20°S	9.9	9.8	9.7	9.7
20-30°S	15.7	15.6	15.5	15.5
30-40°S	16.4	16.3	16.2	16.1
40-50°S	16.4	16.3	16.2	16.1
50-60°S	8.0	7.9	7.9	7.8
60-70°S	4.0	4.0	3.9	3.9
70-80°S	1.5	1.5	1.5	1.5
80-90°S	0.2	0.2	0.2	0.2
Global Total	340.0	338.0	336.0	334.1

CUMMULATIVE ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1987 (PBq)

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
Latitude Band	Total Deposit	Total Deposit	Total Deposit	Total Deposit
80-90°N	0.7	0.7	0.7	0.7
70-80°N	4.7	4.6	4.6	4.6
60-70°N	17.8	17.7	17.6	17.4
50-60°N	41.4	41.2	41.0	40.7
40-50°N	56.4	56.1	55.7	55.4
30-40°N	47.1	46.8	46.5	46.2
20-30°N	37.7	37.4	37.2	37.0
10-20°N	26.5	26.3	26.2	26.0
0-10°N	19.0	18.9	18.8	18.7
0-10°S	10.5	10.5	10.4	10.3
10-20°S	9.7	9.6	9.6	9.5
20-30°S	15.4	15.3	15.2	15.1
30-40°S	16.0	16.0	15.9	15.8
40-50°S	16.0	15.9	15.9	15.8
50-60°S	7.8	7.7	7.7	7.6
60-70°S	3.9	3.9	3.8	3.8
70-80°S	1.5	1.4	1.4	1.4
80-90°S	0.2	0.2	0.2	0.2
Global Total	332.2	330.2	328.3	326.4

CUMMULATIVE ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1988 (PBq)

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
Latitude Band	Total Deposit	Total Deposit	Total Deposit	Total Deposit
80-90°N	0.7	0.7	0.7	0.7
70-80°N	4.6	4.5	4.5	4.5
60-70°N	17.3	17.2	17.1	17.0
50-60°N	40.5	40.2	40.0	39.8
40-50°N	55.1	54.7	54.4	54.1
30-40°N	46.0	45.7	45.4	45.1
20-30°N	36.8	36.6	36.3	36.1
10-20°N	25.9	25.7	25.6	25.4
0-10°N	18.6	18.5	18.4	18.3
0-10°S	10.3	10.2	10.2	10.1
10-20°S	9.5	9.4	9.4	9.4
20-30°S	15.0	14.9	14.8	14.7
30-40°S	15.7	15.6	15.5	15.4
40-50°S	15.7	15.6	15.5	15.4
50-60°S	7.6	7.5	7.5	7.5
60-70°S	3.8	3.8	3.8	3.7
70-80°S	1.4	1.4	1.4	1.4
80-90°S	0.2	0.2	0.2	0.2
Global Total	324.4	322.5	320.7	318.8

CUMMULATIVE ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1989 (PBq)

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
Latitude Band	Total Deposit	Total Deposit	Total Deposit	Total Deposit
80-90°N	0.6	0.6	0.7	0.6
70-80°N	4.4	4.4	4.4	4.4
60-70°N	16.9	16.8	16.7	16.6
50-60°N	39.5	39.3	39.0	38.8
40-50°N	53.8	53.5	53.1	52.8
30-40°N	44.9	44.6	44.3	44.1
20-30°N	35.9	35.7	35.5	35.3
10-20°N	25.3	25.1	25.0	24.8
0-10°N	18.2	18.1	17.9	17.8
0-10°S	10.1	10.0	10.0	9.9
10-20°S	9.3	9.3	9.2	9.2
20-30°S	14.7	14.6	14.5	14.4
30-40°S	15.3	15.2	15.1	15.1
40-50°S	15.3	15.2	15.1	15.0
50-60°S	7.5	7.4	7.4	7.3
60-70°S	3.7	3.7	3.7	3.7
70-80°S	1.4	1.4	1.4	1.4
80-90°S	0.2	0.2	0.2	0.2
Global Total	317.0	315.1	313.3	311.4

CUMMULATIVE ⁹⁰Sr DEPOSITS IN 10° LATITUDE BANDS DURING 1990 (PBq)

	Northern Hemisphere		Southern Hemisphere	
Year	Fission Yields (MT)	⁹⁰ Sr Deposition (PBq)	Fission Yields (MT)	⁹⁰ Sr Deposition (PBq)
1958	29.0	23.3	0.0	9.6
1959	0.0	38.9	0.0	6.7
1960	0.1	9.6	0.0	6.3
1961	25.0	13.0	0.0	6.3
1962	77.0	53.3	0.0	9.6
1963	0.0	96.9	0.0	11.5
1964	0.0	61.4	0.0	15.5
1965	0.0	28.5	0.0	13.3
1966	0.6	12.2	0.7	7.8
1967	1.7	6.3	0.2	4.1
1968	1.2	7.4	4.1	3.7
1969	2.0	5.6	0.0	5.2
1970	2.0	7.8	2.6	4.8
1971	0.0	7.0	2.0	5.6
1972	0.1	3.2	0.1	3.6
1973	1.6	1.2	0.1	1.2
1974	0.5	4.5	1.1	1.4
1975	0.0	2.2	0.0	1.3
1976	2.4	1.0	0.0	0.8
1977	0.0	3.0	0.0	0.8
1978	0.0	3.7	0.0	0.7
1979	0.0	1.1	0.0	0.4
1980	0.5	0.6	0.0	0.3
1981	0.0	1.6	0.0	0.3
1982	0.0	0.5	0.0	0.2
1983	0.0	0.3	0.0	0.2
1984	0.0	0.3	0.0	0.1
1985	0.0	0.1	0.0	0.1
1986	0.0	1.5	0.0	0.2
1987	0.0	0.1	0.0	0.2
1988	0.0	0.1	0.0	0.1
1989	0.0	0.1	0.0	0.2
1990	0.0	0.0	0.0	0.1

ANNUAL FISSION YIELDS OF ATMOSPHERIC WEAPONS TESTS AND ⁹⁰Sr DEPOSITION FOR THE NORTHERN AND SOUTHERN HEMISPHERES