National Cancer Institute Technology
 
 

UIP Publications
Bypass section navigation bar
 

Baker Project – University of Michigan

  1. Core-Shell Tecto(dendrimers): I. Synthesis and Characterization of Saturated Shell Models; S. Uppuluri, D. Swanson, L. Piehler, J. Li, G. Hagnauer, D. Tomalia, Advanced Materials, Vol 12, No 11, 2000.

  2. The Characterization of Poly(amidoamine) Dendrimer Packing By Atomic Force Microscopy; J. Li, D. Qin, J.R. Baker, D. Tomalia, Polymer Preprints, Vol 41, No 2, 2000, pp 1446.

  3. Dendripore and Dendrilock Concepts New Controlled Delivery Strategies; R. Esfand, D. Tomalia, A.E. Beezer, J.C. Mitchell, M. Hardy, C.Orford, Polymer Preprints, Vol 41, No 2, 2000.

  4. A revolution of nanoscale proportions; L. Balogh, D.A. Tomalia, G.L. Hagnauer, Chemical Innovation, March 2000, 19-26.

  5. The use of PAMAM dendrimers for the efficient transfer of genetic material into cells; Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR, Jr., Pharmaceutical Science & Technology Today 2000:3(7), 232-245.

  6. Characterizations of Core-Shell tecto-(Dendrimer) Molecules by Tapping Mode Atomic Force Microscopy; Jing Li, D. R. Swanson, D. Qin, H. M. Brothers, L. T. Piehler, D. Tomalia and D. J. Meier, Langmuir, 15(1999) 7347-7350.

  7. Visualization and Characterization of Poly(amidoamine) Dendrimers by Atomic Force Microscopy; Jing Li, L.T. Piehler, D. Qin, J. R. Baker Jr, and D. A. Tomalia and D. J. Meier. Langmuir, 16(2000)5613-5616.

  8. The characterization of high generation poly(amidoamine) G9 dendrimers by atomic force microscopy (AFM); Li J, Qin DJ, Baker JR, Tomalia DA, Macromolecular Symposia, 2001, 167, 257-269.

  9. The Synthesis and Testing of Anti-Cancer Therapeutic Nanodevices; Baker JR, Jr., Quintana A, Piehler L, Banaszak-Holl M, Tomalia D, Raczka E, Biomedical Microdevices 2001:3(1), 61-69.

  10. Betley, T. A., M. M. Banaszak Holl, B. G. Orr, D. R. Swanson, D. A. Tomalia, and J. R. Baker Jr., Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Dendrimers: the Effects of Substrate and pH on Dendrimer Deformation. Langmuir 2001, 17, 2768.

  11. Gel Electrophoretic Characterization of Dendritic Polymers in Dendrimers and other Dendritic Polymers; Zhang, A., Tomalia, DA, Edited by Jean M.J. Frechet and Donald A. Tomalia, John Wiley & Sons Ltd, 2001.

  12. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor; Quintana A, Moyer J, Piehler L, Raczka E, Lee I, Myc A, Majoros I, Patri A, Thomas T, Mulé J, Baker JR, Jr., Pharmaceutical Research, Vol. 19. No. 9, 2002, 1310-1316.

  13. Dendrimer nanocomposites in medicine; Balogh L, Bielinska A, Eichman JD, Valluzzi R, Lee I, Baker JR, Jr., Lawrence TS, Khan MK, Chimica OGGI/Chemistry Today 2002:5, 35-40.

  14. Dendritic polymer macromolecular carriers for drug delivery; Patri A, Majoros I, Baker JR, Jr, Review: Using Nanotechnology for Drug Development and Delivery in Current Opinion in Chemical Biology, 2002, 6, 466.

  15. Antibody-dendrimer conjugates for targeted prostate cancer therapy; Patri, Anil K, Thommey Thomas, James R. Baker Jr., Neil H. Bander, Polym. Mater. Sci. Eng., 2002, 86, 130.

  16. Structural molecular dynamics studies on therapeutically-applied polyamidoamine dendrimers: the effects of pH and surface derivatization group; Lee I, BD, Wetzel AW, Kar A, Meixner W, and Baker JR, Jr., Macromolecules 2002: 35, (11), 4510-4520.

  17. Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Core-Shell Tecto(Dendrimers) using Carbon-Nanoprobes; Betley, T. A. , J. A. Hessler, A. Mecke, M. M. Banaszak Holl, B. G. Orr, S. Uppuluri, D. A. Tomalia, and J. R. Baker Jr., Langmuir 2002, 18, 3127-3133.

  18. Enhancement of Laser-Induced Optical Breakdown Using Metal/Dendrimer Nanocomposites; Ye, Jing Yong, L. Balogh and Theodore B. Norris, Applied Physics Letters 80, 1713 (2002).

  19. Biosensing based on two-photon fluorescence measurements through optical fibers; J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas and J. Baker Jr., Opt. Lett. 27, 1412 (2002).

  20. Adaptive Correction of Depth Induced Aberrations in Multiphoton Confocal Microscopy using a Deformable Mirror; L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris. J. Microscopy 206, 65 (2002).

  21. Drug Delivery; Henry, Celia M. Chemical & Engineering News, Vol. 80, No. 34, (39-47) August 26, 2002.

  22. Surface Modification of CdSe Nanocrystals with Organic Ligands; L. Balogh, C. Zhang, S. O'Brien, N. Turro, L. Brus, Chemistry Today, 2002:6, 45-51

  23. Acetylation of Poly(amidoamine) Dendrimers; I. Majoros, B. Keszler, S. Woehler, T. Bull, J. Baker, Macromolecules 2003, 36, 5526-5529

  24. DNA-directed Synthesis of Generation 7 and 5 PAMAM Dendrimer Nanoclusters; Y. Choi, A. Mecke, B. Orr, M. Babazak Holl, J. Baker, Nanoletters 2004: 4(3), 391-397

  25. 3H Dendrimer Nanoparticle Organ/Tumor Distribution; S. Nigavekar, L. Sung, C. Becker, T. Lawrence, L. Balogh, M. Khan, Pharmaceutical Research, Vol. 21, No. 3, March 2004,
    476-483


  26. Deformability of Poly(amidoamine) Dendrimers: A. Mecke, I. Lee, J. Baker, M. Banaszak Holl, B. Orr, European Physical Journal E - Soft Matter Vol. 14, 2004, 7-16


  27. Detection and Analysis of Tumor Fluorescence Using a Two-Photon Optical Fiber Probe; T. Thomas, M. Thiri Myaing, J. Ye, K. Candido, A. Kotylar, J. Beals, Z. Cao, B. Keszler, A. Patri, T. Norris, J. Baker, Biophysical Journal, 2004:86(6), 3959-3965


  28. Interaction of Poly(amidoamine) Dendrimers with Supported Lipid Bilayers and Cells: Hole Formation and the Relation to Transport;  S. Hong, A. Bielinska, A. Mecke, B. Keszler, J. Beals, X. Shi, L. Balogh, B. Orr, J. Baker Jr., M. Banaszak Holl, Bioconjugate Chemistry 2004, 15 , 774-782.


  29. Deformability of Poly(amidoamine) Dendrimers; A. Mecke, I. Lee, J. Baker Jr., M. Banaszak Holl, B. Orr, European Physical Journal E - Soft Matter 2004, 14, 7-16.


  30. Two-photon fluorescence biosensing with conventional and photonic crystal fibers; M. Myaing, J. Ye, T. Norris, T. Thomas, J. Baker Jr, W. Wadsworth, G. Bouwmans, J. Knight, P. Russell, Proceedings of SPIE, Optical fibers and sensors for medical applications IV, vol. 5317 (2004).


  31. Two-photon fluorescence biosensing with conventional and photonic crystal fibers; M. Myaing, J. Ye, T, Norris, T. Thomas, J. Baker Jr., W. Wadsworth, G. Bouwmans, J. Knight, P. Russell, Progress in Biomedical Optics and Imaging, Vol. 5, 151-157 (2004).


  32. Enhanced Two-photon Biosensing with Double-Clad Photonic Crystal Fibers; M. Myaing, J. Ye, T. Norris, T. Thomas, A. Kotylar, A. Patri, J. Baker, Jr., W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, P. Russell, Opt. Lett., 28, 1224 (2003).


  33. Monitoring LIOB-induced bubble characteristics in gelatin using high-frequency ultrasound; C.Tse, M. Zhody, J. Ye, T. Norris, L. Balogh, K. Hollman, M. O'Donnell, SPIE Proceedings of the 2004 Conference on Medical Imaging 5373, 242-249 (2004).


  34. Trapping cavitation bubbles with a self-focused laser beam; J. Ye, C. Tse, M. Zohdy, G. Chang, K. Hollman, M. O'Donnell, J. Baker Jr., T. Norris, Opt. Lett., 29, 2136-2138 (2004).


  35. An ultrasonic method to measure effective temperature in the vicinity of laser-induce optical breakdown; M. Zhody, C. Tse, J. Ye, M. O'Donnell, Proceedings of the 2003 IEEE Ultrasonics Symposium, pp. 1103-1106 (2003).
Chance Project – University of Pennsylvania
  1. Detection Limit Enhancement of Florescent Heterogeneities in Turbid Media by Dual Interfering Excitation,; Intes, X., Chen, Y., Li, X. and Chance, B., (2002) Applied Optics, 41, 3999-4007.

  2. Analytical Model for Diffuse Optical Tomography with Phased Array System; Intes, X., Ntziachristos, V. and Chance, B. (2002) Optics Express, 10, 2-14.

  3. Electro-Optical Scanning Null-Line Improving Detection Sensitivity of Phased Array System; Mu, C., Chen, Y., Intes, X., Chance, B. and Luo, Q., (2002) Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference, 75-76.

  4. Fast Imaging of Fluorescence Labeled Tumor; Chen, Y., Mu, C., Intes, X., Nioka, S. and Chance, B., (2002) Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference, 77-78.

  5. Diffuse Optical Tomography using Dual-Interfering-Source; Chen, Y., Mu, C., Intes, X. and Chance, B., (2002) Proceedings of SPIE, 4536, 253-260.

  6. Chimeric RNA-DNA molecular beacon assay for RnaseH; Rizzo, J., L.K. Gifford, X. Zhang, A.M. Gewirtz, Ponzy Lu, (2002). Mol. & Cell. Probes 116, 9722-23.

  7. Novel Near-infrared Cyanine Fluorochromes: Synthesis, Properties, and Bioconjugation; Lin, Y., Weissleder, R. and Tung, C.H., (2002) Bioconjugate Chem.13, 605-610.

  8. Imaging of Differential Protease Expression in Breast Cancers for Detection of Aggressive Tumor Phenotypes; Bremer, C., Tung, C.H., Bogdanov, A. and Weissleder R., (2002) Radiology, 222, 814-818.

  9. Detection of dysplastic intestinal adenomas using enzyme sensing molecular beacons in mice; Marten, K., Bremer, C., Khazaie, Sameni, M., Sloane, B., Tung, C.H. and Weissleder, R., (2002) Gastroenterology, 2002,122, 406-414.

  10. Receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging Tung, C.H., Lin, Y., Moon, W.K. and Weissleder, R., (2002). ChemBioChem, 3, 784-786.

  11. Signal-to-noise Analysis for Detection Sensitivity of Small Absorbing Heterogeneity in Turbid Media with Single-source and Dual-interfering-source; Chen, Y., Mu, C., Intes, X. and B. Chance, (2001) Optics Express 9, 212-224.

  12. Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity; Intes, X., Chance, B., Holboke, M. and Yodh, A., (2001) Optics Express, 8, 223-231.

  13. Detection Sensitivity and Optimization of Phased Array System; Chen, Y., Intes, X., Mu, C., Zhou, S., Holboke, M., Yodh, A.G. and Chance, B., (2001) Proceedings of SPIE, 4250, 211-218 (2001).

  14. Study of Characteristics of Protease-Activated NIR Fluorescent Probes in Tumors by using a 3D High Resolution Image System. In Optical Tomography and Spectroscopy of Tissue IV; Gu, Y., Chance, B., Tung, C.-H. and Weissleder, R., Britton Chance, Robert R. Alfano, Bruce J. Tromberg, Mamoru Tamura, Eva M. Sevick-Muraca, (2001) Proceedings of SPIE Vol. 4250. pp. 196-203.

Curiel Project – University of Alabama

  1. A Targetable, Injectable Adenoviral Vector for Selective Gene Delivery to Pulmonary Endothelium in Vivo; P. Reynolds, K. Zinn, V. Gavrilyuk, I. Balyasnikova, B. Rogers, D. Buchsbaum, M. Wang, D. Miletich, W. Grizzle, J. Douglas, S. Danilov, D. Curiel, Molecular Therapy, Vol 2, No 6, 2000, pp 562-578.

  2. Characterization of the Cyclooxygenase-2 Promoter in an Adenoviral Vector and Its Application for the Mitigation of Toxicity in Suicide Gene Therapy of Gastrointestinal Cancers; M. Yamamoto, R. Alemany, Y. Adachi, W. Grizzle, D. Curiel, Molecular Therapy, Vol 3, No 3, 2001.

  3. Genetic Targeting of Adenovirus Vectors; V. Krasnykh, J. Douglas, V. van Beusechem, Molecular Therapy, Vol 1, No 5, 2000.

  4. Ectodomain of Coxsackievirus and Adenovirus Receptor Genetically Fused to Epidermal Growth Factor Mediates Adenovirus Targeting to Epidermal Growth Factor Receptor-Positive Cells; I. Dmitiev, E. Kashentseva, B.E. Rogers, V. Krasnykh, D. Curiel, Journal of Virology, Vol 74, No 15, 2001, pp 6875-6884.

  5. Genetic Targeting of an Adenovirus Vector via Replacement of the Fiber Protein with the Phage T4 Fibritin; V. Krasnykh, N. Belousova, N. Korokhov, G. Mikheeva, D. Curiel, Journal of Virology, Vol 75, No 9, 2001, pp 4176-4183.

  6. Strategies to Accomplish Targeted Expression of Transgene in Ovarian Cancer for Molecular Therapeutic Applications; E. Casado, J. Gomez-Navarro, M. Yamamoto, Y. Adachi, C.J. Coolidge, W.O. Arafat, S.D. Barker, M.H. Wang, P.J. Mahasreshti, A. Hemminki, M. Gonzalez-Baron, M.N. Barnes, T.B. Pustilnik, G.P. Siegel, R.D. Alvarez, D.T. Curiel, Clinical Cancer Research, Vol 7, 2001, pp 2496-2504.

  7. Selective Gene Delivery Toward Gastric and Esophageal Adenocarcinome Cells via EpCAM-Targeted Adenoviral Vectors; D.A. Heidman, P.J. Snijders, M.E. Craanen, E. Bloemena, CJ Meijer, S.G. Meuwissen, V.W. van Beuseschem, H.M. Pinedo, D.T. Curiel, H.J. Haisma, W.R.Gerritsen, Cancer Gene Therapy, Vol 8, 2001, pp 342-351.

  8. A Novel System for Mitigation of Ectopic Transgene Expression Induced by Adenoviral Vectors; P.N. Reynolds, M.D. Holmes, Y. Adachi, L. Kaliberova, D.T. Curiel, Gene Therapy, Vol 8, 2001, pp 1271-1275.

  9. Phage Display of Adenovirus Type 5 Fiber Knob as a Tool for Specific Ligand Selection and Validation; Journal of Virology, Vol 75, 2001, pp 7107-7113.

  10. Improved Gene Transfer Efficiency to Primary and Established Human Pancreatic Carcinoma Target Cells via Epidermal Growth Factor Receptor and Integrin-Targeted Adenoviral Vectors; J.G. Wesseling, P.J. Bosma, V. Krasnykh, E.A. Kashentseva, J.L. Blackwell, P.N. Reynolds, H. Li, M. Parameshwar, S.M. Vickers, E.M. Jaffee, K. Huibregtse, D.T. Curiel, I. Dmitriev; Gene Therapy, 8, 2001, pp 969-976.

  11. Midkine and Cyclooxygenase-2 Are Promising for Adenoviral Vector Gene Delivery of Pancreatic Carcinoma; J.G. Wesseling, M. Yamamoto, Y. Adachi, P.J. Bosma, M. van Wijland, J.L. Blackwell, H. Li, P.N. Reynolds, I. Dmitriev, S.M. Vickers, K. Huibregtse, D.T. Curiel, Cancer Gene Therapy, 2001.

  12. Engineering of Adenovirus Vectors Containing Heterologous Peptide Sequences in the C Terminus of Capsid Protein IX; Dmitriev IP, Kashentseva EA, Curiel DT., J Virol. 2002 Jul;76(14):6893-9.

  13. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses; Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM, Barnes MN, Alvarez RD, Siegal GP, Curiel DT, Hemminki A., Mol Ther. 2002 Jun;5(6):695-704.

  14. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus; Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE, Barnes MN, Alvarez RD, Curiel DT., J Natl Cancer Inst. 2002 May 15;94(10):741-9.

  15. Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain; Kashentseva EA, Seki T, Curiel DT, Dmitriev IP., Cancer Res. 2002 Jan 15;62(2):609-16.

  16. New generation adenoviral vectors improve gene transfer by coxsackie and adenoviral receptor-independent cell entry; Reynolds PN, Curiel DT., Kidney Int. 2002 Jan;61 Suppl 1:24-31.

  17. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells; Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ, Barker SD, Straughn M, Barnes MN, Alvarez RD, Hemminki A, Curiel DT., Clin Cancer Res. 2002 Jan;8(1):275-80.

  18. Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines; Seki T, Dmitriev I, Kashentseva E, Takayama K, Rots M, Suzuki K, Curiel DT. Buchsbaum DJ, Curiel DT. Gene therapy for the treatment of cancer. Cancer Biother Radiopharm. 2001 Aug;16(4):275-88. Review.

  19. Gene therapy for the treatment of cancer; Buchsbaum DJ, Curiel DT., Cancer Biother Radiopharm. 2001 Aug;16(4):275-88. Review.

  20. CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors; Alemany R, Curiel DT., Gene Ther. 2001 Sep;8(17):1347-53.

  21. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression; Hemminki A, Belousova N, Zinn KR, Liu B, Wang M, Chaudhuri TR, Rogers BE, Buchsbaum DJ, Siegal GP, Barnes MN, Gomez-Navarro J, Curiel DT, Alvarez RD., Mol Ther. 2001 Sep;4(3):223-31.

  22. Transcriptional targeting for ovarian cancer gene therapy; Casado E, Nettelbeck DM, Gomez-Navarro J, Hemminki A, Gonzalez Baron M, Siegal GP, Barnes MN, Alvarez RD, Curiel DT., Gynecol Oncol. 2001 Aug;82(2):229-37. Review.

  23. Efficient gene transduction by RGD-fiber modified recombinant adenovirus into dendritic cells; Asada-Mikami R, Heike Y, Kanai S, Azuma M, Shirakawa K, Takaue Y, Krasnykh V, Curiel DT, Terada M, Abe T, Wakasugi H., Jpn J Cancer Res. 2001 Mar; 92(3): 321-7.

  24. Conditional gene targeting for cancer gene therapy; Haviv YS, Curiel DT., Adv Drug Deliv Rev. 2001 Dec 17;53(2):135-54. Review.

  25. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin; Krasnykh V, Belousova N, Korokhov N, Mikheeva G, Curiel DT. J Virol. 2001 May; 75(9): 4176-83.

  26. Simultaneous evaluation of dual gene transfer to adherent cells by gamma-ray imaging; Zinn KR, Chaudhuri TR, Buchsbaum DJ, Mountz JM, Rogers BE., Nucl Med Biol. 2001 Feb;28(2):135-44.
  27. Coxsackievirus-adenovirus receptor genetically fused to anti-human CD40 scFv enhances adenoviral transduction of dendritic cells; Pereboev AV, Asiedu CK, Kawakami Y, Dong SS, Blackwell JL, Kashentseva EA, Triozzi PL, Aldrich WA, Curiel DT, Thomas JM, Dmitriev IP., Gene Ther. 2002 Sep;9(17):1189-93.
  28. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice; Zinn KR, Chaudhuri TR, Krasnykh VN, Buchsbaum DJ, Belousova N, Grizzle WE, Curiel DT, Rogers BE., Radiology. 2002 May; 223(2):417-25.

  29. Midkine promoter-based adenoviral vector gene delivery for pediatric solid tumors; Adachi Y, Reynolds PN, Yamamoto M, Grizzle WE, Overturf K, Matsubara S, Muramatsu T, Curiel DT., Cancer Res. 2000 Aug 15;60(16):4305-10.

  30. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus; Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE, Barnes MN, Alvarez RD, Curiel DT., J Natl Cancer Inst. 2002 May 15;94(10):741-9.

  31. Strategies to alter the tropism of adenoviral vectors via genetic capsid modification. Vector Targeting for Therapeutic Gene Delivery, Ed: Douglas, J.T.D., and Curiel, D.T., John Wiley and Sons, 2002, 171-200.

  32. Conjugate-based targeting of adeno-associated virus vectors; Ponnazhagan, S., Pereboev, A., Mahendra, G., Curiel, D.T., and Kleinschmidt, J. Vector Targeting for Therapeutic Gene Delivery, Ed: Douglas, J.T.D., and Curiel, D.T., John Wiley and Sons, 2002, 201-219.

Farkas Project – University of Pittsburgh and Carnegie Mellon University

  1. Spectral Microscopy for Quantitative Cell and Tissue Imaging; D.L. Farkas, Methods in Cellular Imaging, 2001, pp 345-361.

  2. Applications of Spectral Imaging: Detection and Analysis of Human Melanoma and its Precursors; D.L. Farkas, D. Becker, Pigment Cell Research, Vol 14, 2001, pp 2-8.

  3. Learning Multispectral Texture Features for Cervical Cancer Detection; Liu, Y., Zhao, T., Zhang, J., IEEE International Symposium on Biomedical Imaging: Macro to Nanao, Washington, DC, July 7-10, 2002.

  4. Does Multispectral Texture Features Really Improve Cervical Cancer Detection?; Zhao, T., Zhang, J., Liu, Y., International Conference on Diagnostic Imaging and Analysis (ICDIA 2002), August, 2002.

  5. SVM Based Feature Screeening Applied to Hierarchical Cervical Cancer Detection; J. Zhang, Y.Liu, T. Zhao, International Conference on Diagnostic Imaging and Analysis (ICDIA 2002), August, 2002.

  6. High Fidelity Optical Coherence Tomography of tumorigenesis in Rat Bladders Induced by N-Methyl-N-NitrosoUrea (MNU) installation, Medical Physics, 28: 2432-2440.

Kopelman Project – University of Michigan

  1. Rapid and Quantitative Assessment of Cancer Treatment Response Using in Vivo Bioluminescence Imaging; A. Rehemtulla, L.D. Stegman, S.J. Cardoza, S. Gupta, D.E. Hall, C.H. Contag, B.D. Ross, Neoplasia, Vol 2, No 6, 2000, pp 491-495.

  2. Fluorescent Nanosensors for Intracellular Chemical Analysis: Decyl Methacrylate Liquid Polymer Matrix and Ion Exchange-Based Potassium PEBBLE Sensors with Real-Time Application to Viable Rat C6 Glioma Cells; M. Brasuel, R. Kopelman, T.J. Miller, R. Tjalkens, M.A. Philbert, Analytical Chemistry, Vol 73, No 10, 2001, pp 2221-2228.

  3. A Real-Time Ratiometric Method for the Determination of Molecular Oxygen Inside Living Cells Using Sol-Gel-Based Spherical Optical Nanosensors with Applications to Rat C6 Glioma; H. Xu, J.W. Aylott, R. Kopelman, T.J. Miller, M.A. Philbert, Analytical Chemisty, Vol 73, No 17, 2001, pp 4124-4133.

  4. A Real-Time Ratiometric Method for the Determination of Molecular Oxygen Inside Living Cells Using Sol-Gel-Based Spherical Optical Nanosensors with Applications to Rat C6 Glioma; H. Xu, J. Aylott, R. Kopleman, T. Miller, M. Philbert, Analytical Chemistry, 2001.

  5. Rapid and Quantitative Assessment of Cancer Treatment Response Using in Vitro Bioluminescence Imaging; A. Rehemtulla, L. Stegman, S. Cardozo, S. Gupta, D. Hall, C. Contag, B. Ross, Neoplasia, Vol 2, No 6, 2000, pp 491-495.

  6. Fluorescent Nanosensors for Intracellular Chemical Analysis: Decyl Methacrylate Liquid Polymer Matrix and Ion-Exchange-Based Potassium PEBBLE Sensors with Real-Time Application to Viable Rat C6 Glioma Cells; M. Brasuel, R. Kopelman, T. Miller, R. Tjalkens, M. Philbert, Analytical Chemistry, May 15, 2001.

  7. Fluorescent nano-PEBBLE Sensors Designed for Intracellular Glucose Imaging; H. Xu, J. Aylott, R. Kopleman, Analyst, 2002, 127, 1471-1477.

  8. Cooking with Nanoparticles: A Simple Method of Forming Roll, Pancake, and Breaded Polystyrene Microparticles; J. Anker, T. Horvath, R. Kopelman, European Cells and Materials, 3, Suppl 2, 2002, 95-97.

  9. Production, Characteristics and Applications of Fluorescent PEBBLE NanosensorsL Potassium, Oxygen, Calcium and pH Imaging inside Living Cells; M. Brasuel, J. Aylott, H. Clark, H. Xu, r. Tjalkens, M. Philbert, Sensors and Materials, 14, 6, 2002.

  10. Production of Singlet Oxygen by Ru(dpp(SO3)2)3 Incorporated in Polyacrylamide PEBBLES; M. Moreno, E. Monson, R. Reddy, A. Rehemtulla, B. Ross, M. Philbert, R. Schneider, R. Kopelman, Sensors and Acutators, B90, 2003, 82-89.

  11. Magnetically Modulated Optical Nanoprobes; J. Anker, R. Kopelman, Applied Physics Letters, 82, 7, 2003, 1102-1104.

  12. Aspherical Magnetically Modulated Optical Nanoprobes (MagMOONs); J. Anker, C. Behrend, R. Kopelman, Journal of Applied Physics, 93, 10, 2003, 6698-6700


  13. Room-Temperature Preparation and Characterization of Poly (ethylene glycol)- Coated Silica Nanoparticles for Biomedical Applications; H. Xu, F. Yan, E. Monson, R. Kopelman, J. Biomed. Mat. Res. Part A 66A(4), 870-879 (2003)


  14. PEBBLE Nanosensors for in vitro Bioanalysis; E. Monson, M. Brasuel, M. Philbert, R. Kopelman, Biomedical Photonics Handbook, T. Vo-Dinh, Ed., Ch. 59, 1-12, CRC Press (2003)


  15. The Embedding of meta-Tetra (hydroxyphenyl) Chlorin into Silica Nanoparticle Platforms for Photodynamic Therapy and Their Singlet Oxygen Production and pH Dependent Optical Properties; F. Yan, R. Kopelman, Photochemistry and Photobiology 78, 587-591 (2003)


  16. A Novel Polyacrylamide Magnetic Nanoparticle Contrast Agent for Molecular Imaging Using MRI; B. Moffat, G. Reddy, P. McConville, D. Hall, t. Chenevert, R. Kopelman, M. Philbert, R. Weisssleder, A. Rehemtulla, B. Ross, Mol. Imaging 2, 324-332 (2003)


  17. Synthesis and Characterization of Silica-embedded Iron Oxide Nanoparticles for Magnetic Resonance Imaging; F. Yan, H. Xu, J. Anker, R. Kopelman, B. Ross, A. Rehemtulla, R. Reddy, J. nanoscience and Nanotechnology 4, 72-76 (2004)


  18. Real-time Measurements of Dissolved Oxygen Inside Live Cells by Ormosil (Organically Modified Silicate) Fluorescent PEBBLE Nanosensors; Y. Koo, Y. Cao, R. Kopelman, S. Koo, M. Brasuel, M. Philbert, Analyt. Chem. 76, 2498-2505 (2004)


  19. Poly (Decyl methacrylate) based Fluorescent PEBBLE Swarm Nanosensors for Oxygen Microimaging; Y.Cao, Y. Koo, R. Kopleman, Analyst 129, 745-750, 2004


  20. Nanoscale Probes Encapsulated By Biologically Localized Embedding (PEBBLEs) for Ion Sensing and Imaging in Live Cells; S. Buck, H. Xu, M. Brasuel, M. Philbert, R. Kopelman, Special Issue, Editors E. Bakker and E. Pretsch, Talanta 63, 41-59, (2004)

Lanza Project – Washington University

  1. Experimental determination of phase velocity of perfluorocarbons: Applications to targeted contrast agents; Hall CS, Lanza GM, Rose JH, Kaufman RJ, Fuhrhop RW, Handley SH, Waters KR, Miller JG, Wickline SA., IEEE Trans Ultrason Ferroelec Freq Contr 2000; 47 (1): 75-84.

  2. Molecular imaging of stretch induced tissue factor expression in carotid arteries with intravascular ultrasound; Lanza GM, Abendschein DR, Hall CS, Marsh JN, Scott MJ, Scherrer DE, Wickline SA., Invest Radiol 2000; 35:227-234.

  3. Enhancement of reflectivity by specific perfluorocarbon emulsions used in site-targeted ultrasound contrast agent; Marsh JN, Hall CS, Scott MJ, Fuhrhop RJ, Gaffney PJ, Wickline SA, Lanza GM., Journal of Society of Photo-optical Instrumentation Engineers 2000; 1: 333-340.

  4. Site-targeted contrast agent detects molecular expression of tissue factor after balloon angioplasty; Hall CS, Abendschein DR, Scherrer DE, Scott MJ, Marsh JN, Wickline SA, Lanza GM., Journal of Society of Photo-optical Instrumentation Engineers 2000; 1: 325-332.

  5. In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles; Lanza GM, Abendschein DR, Hall CH, Scott MJ, Scherrer DE, Houseman A, Miller JG, Wickline SA., J Am Soc Echocardiogr 2000; 13: 608-614.

  6. Magnetic resonance contrast enhancement of neovascular with v3-targeted nanoparticles. Anderson SA, Rader RK, Westlin WF, Null C, Jackson D, Lanza GM, Wickline SA, Kotyk JJ, Magn Reson Med 2000;44: 433-439.

  7. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent; Yu X, Song S-K, Chen J, Scott MJ, Fuhrhop RJ, Hall CS, Gaffney PJ, Wickline SA, Lanza GM., Magn Reson Med 2000;44: 867-872.

  8. Time evolution of enhanced ultrasonic reflection using a fibrin-targeted nanoparticle contrast agent; Hall CS, Marsh JN, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. J Acoust Soc Am 2000;108: 3049-3057.

  9. A novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques; Flacke S, Fischer S, Scott M, Fuhrhop R, Allen J, McLean M, Winter P, Sicard G, Gaffney P, Wickline S, Lanza G., Circulation 2001; 104: 1280 - 1285.

  10. Temperature dependence of ultrasonic enhancement with a site-targeted contrast agent; Hall C, Marsh J, Scott M, Gaffney P, Wickline S, Lanza G., J Acous. Soc AM 2001.

  11. Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model; Marsh J, Hall C, Scott M, Fuhrhop R, Gaffney P, Wickline S, Lanza G., IEEE Trans Ultrason Ferroelec Freq Contr 2001; 2001; 49: 29-38.

  12. Targeted antiproliferative drug delivery to vascular smooth muscle cells with an MRI nanoparticle contrast agent: implications for rational therapy of restenosis; Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis K,L. Chinen, Scott MJ, Fuhrhop RW, Scherrer DE, Wickline SA., Circulation 2001.

  13. Molecular Imaging and Targeted Drug Delivery with a novel, ligand-directed paramagnetic nanoparticle technology; G. Lanza, D. Abendschein, X. Yu, P. Winter, K. Karukstis, M. Scott, R. Fuhrhop, D. Scherrer, S. Wickline, Acad Radiol 2002;9:S330-S331.

  14. Blood Contrast Enhancement with a Novel, Non-gaseous Nanoparticle Contrast Agent; S. Wickline, M Hughes, F. Ngo, C. Hall, J. Marsh, P. Brown, J. Allen, M. McLean, M. Scott, R. Fuhrhop, G. Lanza, Acad Radiol 2002;9:S290-S293.

  15. Temperature Dependence of Acoustic Impedance for Specific Fluorocarbon Liquids; J. Marsh, C. Hall, S. Wickline, G. Lanza, JASA 2002:112:2858.

  16. Nanotechnology for molecular imaging and targeted therapy; S. Wickline, G. Lanza, Circulation 203;107:1092-1095.

  17. Molecular Imaging with targeted Ultrasound Contrast Agents; Proc IEEE Ultrason Symp 2000; 00CH37121:1917-1926.

  18. Molecular Imaging, Targeted Therapeutics, and nanoscience; S. Wickline, G. Lanza, J Cellular Biochemistry 2002;87 (Suppl 39):90-97.

  19. Nanotechnology for Molecular Imaging and Targeted Therapy; S. Wickline, G. Lanza, Circulation 2003; 107: 1092-1095.

  20. Molecular Imaging in MR with a Targeted Paramagnetic Nanoparticle; R. Lamerichs, S. Caruthers, S. Wickline, Medica Mundi 2003:47:34-39.


  21. Targeted Ultrasonic Contrast Agents for Molecular Imaging and Therapy; a brief review; M. Hughes, G. Lanza, J. March, S. Wickline, Medica Mundi 2003:47:66-7.


  22. Alphav Beta3-Targeted Nanoparticles with High 111 Payloads Improve Molecular Imaging of Angiogenesis in Vx-2 Rabbit Tumors; Harris T, Gulyas G, Athey P, Kiefer G, Simon J, Fuhrhop R, Scott M, Allen J, Zhang H, Caruthers S, Wickline S, Lanza G, Society of Nuclear Medicine, 2004


  23. Improved Molecular Imaging Contrast Agent for Detection of Human Thrombus; P. Winter, S. Caruthers, X. YU, S. Song, J.Chen, B. Miller, J. Bulte, J. Robertson, P. Gaffney, S. Wickline, G. Lanza, Magn Reson Med 2003; 50:411-416


  24. Molecular Imaging of Angiogenesis in Nascent Vx-2 Rabbit Tumors Using a Novel A5B3-targeted Nanoparticle and 1.5 Tesla Magnetic Resonance Imaging, Cancer Research 2003; 63:5838-5843


  25. Molecular Imaging of Angiogenesis in Early-stage Atherosclerosis with A5B3-integrin-targeted nanoparticles; P. Winter, A. Morawski, S. Caruthers, R. Fuhrhop, H. Zhang, T. Williams, J. Allen, E. Lacy, J. Robertson, G. Lanza, S. Wickline; Ciculation 2003; 108:2270-2274


  26. Targeted Ultrasonic Contrast Agents for Molecular Imaging and therapy; G. Lanza, S. Wickline, Curr Prob Cardiology 2003: 28:625-653

  27. Molecular Imaging and Targeted Drug Delivery: Merging Medical Paradigms; G. Lanza, S. Caruthers, M. Hughes, C. hall, J. Marsh, M. Scott, H. Zhang, A. Schmeider, K. Crowder, A. Morawski, S. Wickline, Proc IEEE Ultrason Symp 2003; 03CH37476C: 526-531


  28. Optimization of Site-targeted Perfluorocarbon Nanoparticle Contrast in Whole Blood for Molecular Imaging Applications; M. Hughes, J. Marsh, C. hall, R. Fuhrhop, G. Lanza, S. Wickline, Proc IEEE Ultrason Symp 2003; 03CH37476C: 536-539


  29. Augmented and Selective Delivery of Liquid Perfluorocarbon Nanoparticles to Melanoma Cells with Nonconventional ultrasound; K Crowder, M. Hughes, J. Marsh, M. Scott, R. Fuhrhop, G. Lanza, S. Wickline, Proc IEEE Ultrason Symp 2003, 03CH37476C;532-539


  30. Targeted Nanoparticles for Quantitative Imaging of Sparse Molecular Epitopes with MRI; A. Morawski, P. Winter, K. Crowder, S. Caruthers, R. Fuhrhop, M. Scott, D. Robertson, D. Abendschein, G. Lanza, S. Wickline, Magn Reson Med 2004;51:480-486

Luhmann Project – University of California at Davis

  1. Three-Dimensional Theory of Emittance in Compton Scattering and X-Ray Protein Crystallography; F.V. Hartemann, H.A. Baldis, A.K. Kerman, A. Le Fol, N.C. Luhmann, B. Rupp, Physical Review E, Vol 64, Article No 016501, 2001.

  2. Electron Beam Characterization of a High-Gradient X-Band Photoinjector; D. Gibson, F. Hartemann, E. Landahl, F. Strong, A. Troha, J. Heritage, H. Baldis, N. Luhmann, Bulletin of the American Physical Society, September, 2000.

  3. Three-Dimensional Theory of Emittance in Compton Scattering; F. Hartemann, A. Le Foll, A. Kerman, B. Rupp, D. Gibson, A. Troha, N. Luhmann, A. Baldis, Bulletin of the American Physical Society, September, 2000.

  4. Three-Dimensional Theory of Emittance in Compton Scattering and Protein Crystallography; Physical Review E, Vol 64, Article No 016501, 2001.

  5. Electron Beam Characterization of a Low-Emittance X-band Photoinjector; Physical Review Special Topics - Accelerators and Beams 4, 090101, 2001.

  6. RF Characterization of a Tunable, High-Gradient, X-band Photoinjector; F. Hartemann, E. Landahl, D. Gibson, A. Troha, J. Van Meter, J. Heritage, H. Baldis, N. Luhmann, Jr., C. Ho, T. Yang, M. Horny, J. Hwang, W. Lau, M. Yeh, IEEE Transactions on Plasma Science 28(3): 898-904.

  7. Three-Dimensional Theory of Emittance in Compton Scattering and X-Ray Protein Crystallography; F. Hartemann. et al., Proc. Of Applications on Intense Lasers, 2000.

Martin Project – iMEDD Inc.

  1. Microfabrication of Silicon-based nanoporous Particulates for Medical Applications; M. Cohen, K. Melnik, A. Boiarski, M. Ferrari, F. Martin, Biomedical Microdevices 5(3):253-259

Meyyappan Project – NASA AMES Research Center

  1. Combinatorial Optimization of Heterogeneous Catalysts Used in Growth of Carbon Nanotubes; A. Cassell, S. Verma, L. Delzeit, M. Meyyappan, J. Han, Langmuir, January, 2001.

Wickstrom Project – Thomas Jefferson University

  1. Characterization of Mutations and Loss of Heterozygosity of P53 and K-RAS2 in Pancreatic Cancer Cell Lines by Immobilized Polymerase Chain Reaction; J. Butz, E. Wickstrom, J. Edwards, BMC Biotechnology 3:11


  2. Radionuclide-peptide nucleic acid diagnosis and treatment of pancreatic cancer; E. Wickstrom, X. Tian, N. Amirkhanov, A. Chakrabarti, M. Aruva, P. Rao, M. Thakur, W. Qin, W. Zhu, E. Sauter, Philips, M.I., ed., Methods in Molecular Medicine 106: Antisense Therapeutics, 2nd ed., Chap. 8, 135-192.


 
Bypass Navigation Cancer.gov NCI Overview Scientific Priorities Funding Tutorial Technology Industrial Relations Small Business About OTIR Site Map Contact Home