Basics of Two-Fluid Plasma Physics-a Short Summary Loren Steinhauer

The elementary building blocks for a multi-fluid are the canonical momentum \mathbf{P}_{α} $=m_{\alpha} \mathbf{u}_{\alpha}+q_{\alpha} \mathbf{A} / c$, and the generalized vorticity $\boldsymbol{\Omega}_{\alpha}=\nabla \times \mathbf{P}_{\alpha}$ (or α-vorticity) where $m_{\alpha}, \mathbf{u}_{\alpha}$, q_{α} are the species mass, flow velocity and charge, and $\alpha=i, e$ denotes the species, and \mathbf{A} is the vector potential. The quadratic invariant of a species is the self helicity, or " α helicity," the "density" of which is $\mathbf{P}_{\alpha} \cdot \Omega_{\alpha}$. These are generalizations of helicities that appear in a simple fluids and MHD. For zero electron mass the electron helicity reduces to the familiar magnetic helicity, an invariant in ideal MHD. The evolution of the α helicities is governed by the helicity transport equation, derived from Maxwell's equations and the equations of motion.

Each helicity transport equation has the form, $n_{\alpha} D_{\alpha}\left(\mathbf{P}_{\alpha} \cdot \Omega_{\alpha} / n_{\alpha}\right) / D t=\nabla \cdot\left[(\ldots) \Omega_{\alpha}\right]+$ friction, where n_{α} is the density. The generalized vorticity appearing in the divergence term implies the existence of a "local" α-helicity associated with these lines, $K_{\alpha}=$ $\left(c^{2} / 8 \pi q_{\alpha}{ }^{2}\right) \int_{C} d \tau \mathbf{P}_{\alpha} \cdot \Omega_{\alpha}$, where C is the volume occupied by a bundle of α-vortex lines. The constant factor gives K_{α} the convenient units of energy-length. The total derivative $D_{o} / D t$ implies that the local α-helicity convects with its own species. If an α-vortex line does not intersect the system boundary, then in the strictly ideal (frictionless) case, the associated α-helicity is constant. There is a circulation theorem, $\Gamma_{\alpha}=\int_{C} \mathbf{P}_{\alpha} \cdot \mathrm{d} \mathbf{x}=$ const, where C is an α-vortex line, and $\mathrm{d} \mathbf{x}$ is a differential length vector along that line. Each species has its own set of α-vortex lines, its own local α-helicities, and its own circulation theorem.

In the realistic case with friction, visco-resistive instabilities drive reconnections that break individual α-vortex lines and destroy their identity. This is a case of nonuniform convergence because even a minute amount of friction is enough to compromise the local α-helicities. The only quantities immune to these topology altering events are the global α-helicities, $\left.K_{\alpha}=\left(c^{2} / 8 \pi q_{\alpha}{ }^{2}\right)\right)_{V} d \tau \mathbf{P}_{\alpha} \cdot \Omega_{\alpha}$, where V is the system volume. Even global invariants may not be rugged in the sense that they are more "invariant" than the organized energy form, i.e. the magnetofluid energy $W_{m f}=\int_{V} d \tau\left(\Sigma m_{\alpha} n_{\alpha} u_{\alpha}{ }^{2}+B^{2} / 8 \pi\right)$, composed of the flow energy and the magnetic energy (the sum is over species). The ruggedness of the global α-helicities has been supported by three arguments. (1) Selective decay: $W_{m f}$ decays more rapidly than K_{α} in thin reconnection layers. Properly applied, this argument must account for limits on viscous friction coefficients for sharp gradients. (2) Inverse cascade: the fluctuation spectrum of $\tilde{W}_{m f}(k)$ and $\tilde{K}_{\alpha}(k)$ satisfy the necessary conditions for a cascade toward larger scale objects (k is the wave number of the disturbance). (3) Stability to resistive modes: K_{α} is less affected than $W_{m f}$ by resistive modes. Each of these is the generalization of arguments previously applied to verify the ruggedness of the magnetic helicity in weakly-dissipative MHD.

A minimum energy state is found formally by minimizing $W_{m f}$ subject ot invariant α-helicities, and (given axisymmetric system boundary) the global angular momentum, $L_{\theta}=\int d \tau r \Sigma m_{\alpha} n_{\alpha} u_{\alpha \theta}$. The variation with respect to $\delta \mathbf{u}_{\alpha}$ leads to the flow equations: $\mathrm{n}_{\alpha}\left(\mathbf{u}_{\alpha}-\Omega r \hat{\boldsymbol{\theta}}\right)=\left(\lambda_{\alpha} / \ell_{\mathrm{c}}^{2}\right) \Omega_{\alpha}$ where λ_{α}, Ω are the Lagrange multipliers associated with
invariant α-helicities and angular momentum, and $\ell_{c}=c / \omega_{p i}=\left(m_{i} c^{2} / 4 \pi e^{2}\right)^{2}$ is the length scale. An entropy maximization procedure subject to invariant K_{α}, L_{θ}, and total energy ($W_{m f}+$ thermal) leads to the same equation. In addition, a global Bernoulli equation links the pressure to the flow by a relation that applies throughout the system volume. Note that an important feature of a two-fluid minimum energy state is the length scale ℓ_{c}. A two-fluid may or may not relax to the minimum energy state depending on whether the fast mechanisms have been stabilized.

Reference: L.C. Steinhauer and A. Ishida, Phys. Plasmas 5, 2609 (1998)

