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Basics of Two-Fluid Plasma Physics—a Short Summary
Loren Steinhauer

The elementary building blocks for a multi-fluid are the canonical momentum Pα
= mαuα + qαA/c, and the generalized vorticity Ωα = ∇×Pα (or α-vorticity) where mα, uα,
qα are the species mass, flow velocity and charge, and α = i,e denotes the species, and A
is the vector potential.  The quadratic invariant of a species is the self helicity, or “α-
helicity,” the “density” of which is Pα⋅Ωα .  These are generalizations of helicities that
appear in a simple fluids and MHD.  For zero electron mass the electron helicity reduces
to the familiar magnetic helicity, an invariant in ideal MHD.  The evolution of the α-
helicities is governed by the helicity transport equation, derived from Maxwell’s
equations and the equations of motion.

Each helicity transport equation has the form, nαDα( Pα⋅Ωα/nα)/Dt = ∇⋅[(…)Ωα] +
friction, where nα is the density.  The generalized vorticity appearing in the divergence
term implies the existence of a “local” α-helicity associated with these lines, Kα =
(c2/8πqα

2)∫C dτ Pα⋅Ωα, where C is the volume occupied by a bundle of α-vortex lines.
The constant factor gives Kα the convenient units of energy-length.  The total derivative
Dα/Dt implies that the local α-helicity convects with its own species.  If an α-vortex line
does not intersect the system boundary, then in the strictly ideal (frictionless) case, the
associated α-helicity is constant.  There is a circulation theorem, Γα = ∫C Pα⋅dx = const,
where C is an α-vortex line, and dx is a differential length vector along that line.  Each
species has its own set of α-vortex lines, its own local α-helicities, and its own
circulation theorem.

In the realistic case with friction, visco-resistive instabilities drive reconnections
that break individual α-vortex lines and destroy their identity.  This is a case of non-
uniform convergence because even a minute amount of friction is enough to compromise
the local α-helicities.  The only quantities immune to these topology altering events are
the global α-helicities, Kα = (c2/8πqα

2)∫V dτ Pα⋅Ωα, where V is the system volume.  Even
global invariants may not be rugged in the sense that they are more “invariant” than the
organized energy form, i.e. the magnetofluid energy Wmf = ∫V dτ (Σmαnαuα

2 + B2/8π),
composed of the flow energy and the magnetic energy (the sum is over species).  The
ruggedness of the global α-helicities has been supported by three arguments. (1) Selective
decay:  Wmf decays more rapidly than Kα in thin reconnection layers.  Properly applied,
this argument must account for limits on viscous friction coefficients for sharp gradients.

(2) Inverse cascade:  the fluctuation spectrum of )(
~

kWmf and )(
~

kKα  satisfy the necessary

conditions for a cascade toward larger scale objects (k is the wave number of the
disturbance).  (3) Stability to resistive modes:  Kα is less affected than Wmf by resistive
modes.  Each of these is the generalization of arguments previously applied to verify the
ruggedness of the magnetic helicity in weakly-dissipative MHD.

A minimum energy state is found formally by minimizing Wmf subject ot invariant
α-helicities, and (given axisymmetric system boundary) the global angular momentum,
Lθ = ∫dτ rΣmαnαuαθ.  The variation with respect to δuα leads to the flow equations:
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invariant α-helicities and angular momentum, and 222 )4( ecmc ipic πω =="  is the

length scale.  An entropy maximization procedure subject to invariant Kα, Lθ, and total
energy (Wmf + thermal) leads to the same equation.  In addition, a global Bernoulli
equation links the pressure to the flow by a relation that applies throughout the system
volume.  Note that an important feature of a two-fluid minimum energy state is the length
scale c" .  A two-fluid may or may not relax to the minimum energy state depending on

whether the fast mechanisms have been stabilized.

Reference:  L.C. Steinhauer and A. Ishida, Phys. Plasmas 5, 2609 (1998)


