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Basics of Two-Fluid Plasma Physics—a Short Summary
Loren Steinhauer

The elementary building blocks for a multi-fluid are the canonical momeRgum

= myUq + qsA/C, and the generalized vortici€y, = 0O0%P, (or a-vorticity) wheremy, Ug,

g« are the species mass, flow velocity and chargeganile denotes the species, afd

is the vector potential. The quadratic invariant of a species is the self helicity, or “
helicity,” the “density” of which i9?,[@, . These are generalizations of helicities that
appear in a simple fluids and MHD. For zero electron mass the electron helicity reduces
to the familiar magnetic helicity, an invariant in ideal MHD. The evolution obthe
helicities is governed by the helicity transport equation, derived from Maxwell's
eqguations and the equations of motion.

Each helicity transport equation has the fongl)o( Po[@4/n,)/Dt = OM...) Q4] +
friction, wheren, is the density. The generalized vorticity appearing in the divergence
term implies the existence of a “locat*helicity associated with these lindg, =
(¢*/18m,°)fc dT P44, whereC is the volume occupied by a bundlegefortex lines.

The constant factor give&, the convenient units of energy-length. The total derivative
D./Dt implies that the locat-helicity convects with its own species. If arvortex line
does not intersect the system boundary, then in the strictly ideal (frictionless) case, the
associatedr-helicity is constant. There is a circulation theoréms fc Pq[dx = const
whereC is ana-vortex line, and ®is a differential length vector along that line. Each
species has its own setafvortex lines, its own locat-helicities, and its own

circulation theorem.

In the realistic case with friction, visco-resistive instabilities drive reconnections
that break individuadr-vortex lines and destroy their identity. This is a case of non-
uniform convergence because even a minute amount of friction is enough to compromise
the locala-helicities. The only quantities immune to these topology altering events are
the globala-helicities,Kq = (/8,7 £ dT Po[@4, whereV is the system volume. Even
global invariants may not beggedin the sense that they arere“invariant” than the
organized energy forne. the magnetofluid energf: = £ d7 (Zmenaus” + B%/81m),
composed of the flow energy and the magnetic energy (the sum is over species). The
ruggedness of the globathelicities has been supported by three argumentSelétive
decay Wnsdecays more rapidly thag, in thin reconnection layers. Properly applied,
this argument must account for limits on viscous friction coefficients for sharp gradients.

(2) Inverse cascadethe fluctuation spectrum (!v-f/mf (k and IZa(k ) satisfy the necessary

conditions for a cascade toward larger scale obj&asstlie wave number of the
disturbance). (3ptability to resistive mode, is less affected thaw,s by resistive
modes. Each of these is the generalization of arguments previously applied to verify the
ruggedness of the magnetic helicity in weakly-dissipative MHD.

A minimum energy state is found formally by minimizig,; subject ot invariant
a-helicities, and (given axisymmetric system boundary) the global angular momentum,
Lo = /AT rZmgngaUqe. The variation with respect tu, leads to the flow equations:

n,(u, - Qré) =(A, /1?)Q, wherelAq, Q are the Lagrange multipliers associated with



invarianta-helicities and angular momentum, afd=c/w,, = (mc’/47&?)* is the

length scale. An entropy maximization procedure subject to inva€jaiht,;, and total

energy Win + thermal) leads to the same equation. In addition, a global Bernoulli
equation links the pressure to the flow by a relation that applies throughout the system
volume. Note that an important feature of a two-fluid minimum energy state is the length

scale’ .. A two-fluid may or may not relax to the minimum energy state depending on
whether the fast mechanisms have been stabilized.
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