Basics of Two-Fluid Plasma Physics—a Short Summary Loren Steinhauer

The elementary building blocks for a multi-fluid are the canonical momentum $\mathbf{P}_{\alpha} = m_{\alpha} \mathbf{u}_{\alpha} + q_{\alpha} \mathbf{A}/c$, and the generalized vorticity $\mathbf{\Omega}_{\alpha} = \nabla \times \mathbf{P}_{\alpha}$ (or α -vorticity) where m_{α} , \mathbf{u}_{α} , q_{α} are the species mass, flow velocity and charge, and $\alpha = i, e$ denotes the species, and \mathbf{A} is the vector potential. The quadratic invariant of a species is the self helicity, or " α -helicity," the "density" of which is $\mathbf{P}_{\alpha} \cdot \mathbf{\Omega}_{\alpha}$. These are generalizations of helicities that appear in a simple fluids and MHD. For zero electron mass the electron helicity reduces to the familiar magnetic helicity, an invariant in ideal MHD. The evolution of the α -helicities is governed by the helicity transport equation, derived from Maxwell's equations and the equations of motion.

Each helicity transport equation has the form, $n_{\alpha}D_{\alpha}(\mathbf{P}_{\alpha}\cdot\mathbf{\Omega}_{\alpha'}n_{\alpha})/Dt = \nabla \cdot [(...)\mathbf{\Omega}_{\alpha}] + friction$, where n_{α} is the density. The generalized vorticity appearing in the divergence term implies the existence of a "local" α -helicity associated with these lines, $K_{\alpha} = (c^2/8\pi q_{\alpha}^2)\int_C d\tau \mathbf{P}_{\alpha}\cdot\mathbf{\Omega}_{\alpha}$, where *C* is the volume occupied by a bundle of α -vortex lines. The constant factor gives K_{α} the convenient units of energy-length. The total derivative $D_{\alpha'}Dt$ implies that the local α -helicity convects with its own species. If an α -vortex line does not intersect the system boundary, then in the strictly ideal (frictionless) case, the associated α -helicity is constant. There is a circulation theorem, $\Gamma_{\alpha} = \int_C \mathbf{P}_{\alpha} \cdot d\mathbf{x} = const$, where *C* is an α -vortex line, and $d\mathbf{x}$ is a differential length vector along that line. Each species has its own set of α -vortex lines, its own local α -helicities, and its own circulation theorem.

In the realistic case with friction, visco-resistive instabilities drive reconnections that break individual α -vortex lines and destroy their identity. This is a case of nonuniform convergence because even a minute amount of friction is enough to compromise the local α -helicities. The only quantities immune to these topology altering events are the global α -helicities, $K_{\alpha} = (c^2/8\pi q_{\alpha}^2) \int_V d\tau \mathbf{P}_{\alpha} \cdot \mathbf{\Omega}_{\alpha}$, where V is the system volume. Even global invariants may not be *rugged* in the sense that they are *more* "invariant" than the organized energy form, *i.e.* the magnetofluid energy $W_{mf} = \int_V d\tau \left(\sum m_{\alpha} n_{\alpha} u_{\alpha}^2 + B^2 / 8\pi \right)$, composed of the flow energy and the magnetic energy (the sum is over species). The ruggedness of the global α -helicities has been supported by three arguments. (1) Selective *decay*: W_{mf} decays more rapidly than K_{α} in thin reconnection layers. Properly applied, this argument must account for limits on viscous friction coefficients for sharp gradients. (2) *Inverse cascade*: the fluctuation spectrum of $\widetilde{W}_{mf}(k)$ and $\widetilde{K}_{\alpha}(k)$ satisfy the necessary conditions for a cascade toward larger scale objects (k is the wave number of the disturbance). (3) Stability to resistive modes: K_{α} is less affected than W_{mf} by resistive modes. Each of these is the generalization of arguments previously applied to verify the ruggedness of the magnetic helicity in weakly-dissipative MHD.

A minimum energy state is found formally by minimizing W_{mf} subject of invariant α -helicities, and (given axisymmetric system boundary) the global angular momentum, $L_{\theta} = \int d\tau r \Sigma m_{\alpha} n_{\alpha} u_{\alpha\theta}$. The variation with respect to $\delta \mathbf{u}_{\alpha}$ leads to the flow equations: $n_{\alpha} (\mathbf{u}_{\alpha} - \Omega r \hat{\mathbf{\theta}}) = (\lambda_{\alpha} / \ell_{c}^{2}) \Omega_{\alpha}$ where λ_{α} , Ω are the Lagrange multipliers associated with invariant α -helicities and angular momentum, and $\ell_c = c/\omega_{pi} = (m_i c^2/4\pi e^2)^2$ is the length scale. An entropy maximization procedure subject to invariant K_{α} , L_{θ} , and total energy (W_{mf} + thermal) leads to the same equation. In addition, a global Bernoulli equation links the pressure to the flow by a relation that applies throughout the system volume. Note that an important feature of a two-fluid minimum energy state is the length scale ℓ_c . A two-fluid may or may not relax to the minimum energy state depending on whether the fast mechanisms have been stabilized.

Reference: L.C. Steinhauer and A. Ishida, Phys. Plasmas 5, 2609 (1998)