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Basics of Two-Fluid Equilibria—a Short Summary
Loren Steinhauer

The formalism is developed for axisymmetric multi-fluid equilibria as follows.
First the various continuity equations governing the fields (Gauss’s law of magnetism,
steady Faraday’s law) and flows (species continuity) are replaced in favor of scalar
variables (stream functions, etc.).
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where B is the magnetic field, nα and uα are the species density and velocity; φ, φα are the
toroidal field and flow variables, and ψ, ψα are the field and flow stream functions.  The
remaining equations for the fields (electromagnetic, gravitational) can then be expressed
in terms of these scalar variables, e.g. the toroidal and poloidal Ampere’s laws are
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where *∆  = ∇⋅[(1/r2)∇] is the familiar Grad-Shafranov operator, and qα is the charge of
species α.  The equation of motion for each species is simplified by two steps:  (1)
introduce the classical thermodynamic enthalpy hα(pα,Sα) where pα,Sα are the pressure
and entropy variables for species α; and (2) express the Lorentz force in terms of the
generalized vorticity.  These take particularly simple forms using the α-surface variable
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The surfaces Ψα = const are the drift surfaces for the α species.  Then the equation of
motion simplifies to
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where the total enthalpy is GE VmVqumhH αααααα +++= 22 , Ωα = mα∇×uα + qαB/c is

the α-vorticity, and Θα  =  ∂hα/∂Sα.  This generalizes the total enthalpy of a simple fluid
in that it is species-specific and it also accounts for electrostatic (VE) and gravitational
(VG) potential energies.  Consideration of the three principal components of the equation
of motion (θ, Ωα, ∇Ψα) leads to the identification of the three arbitrary surface functions
for each species:  entropy, )( ααα Ψ= SS ; flow stream function, )()4( αααα πψ Ψ= Gqc ;

and total enthalpy, )( ααα Ψ= HH .  The result is a closed system of equations describing

axisymmetric, multi-fluid equilibria.

The standard reduced case of a two-fluid assumes massless electrons,

quasineutrality, and ideal species, γ
α

γγ
αα γγ 1)1(])1([ Sph −−= , where γ is the adiabatic

index.  This leads to a system of two second order equations for the magnetic and ion
stream functions plus an auxiliary “Bernoulli” equation for the density.

( ) [ ]








′Θ−′+′++
Ψ−

′
=





 Ψ

′
′ ii

i

c

iei

c

i

ic

i
i

i

SnH
e

cmr
GGG

Gnr

G

G

nr
)(

1
2

2

2

2

2222

2

"""

ψ
∇⋅∇

( ) [ ]ee
i

c

eei

c

i SnH
e

cmr
GGG ′Θ−′−′+−

Ψ−
=∆ )(

2

2

2

2

2
*

""

ψ
ψ



( ) ( )[ ] eiiici

i

i
st HHG

cm

e

r
n

C +=Ψ∇′+Ψ−++Ψ
−

− 2242

2

2

2
1 ||

2

1

1
"ψψ

γ
γ γ

The other variables are given by algebraic relations in terms of Ψi, ψ, and n:
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This system reduces to the familiar Grad-Shafranov equation with the specification of of
no ion flow.

A subset of two-fluid equilibria have minimum energy subject to constraints on
the α-helicities and the mechanical angular momentum.  In the minimum energy state the
arbitrary functions must take specific forms
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where λα, Ω  are the Lagrange multipliers associated with the α-helicity and angular
momentum invariants.

Reference:  L.C. Steinhauer, “Formalism for Multi-Fluid Equilibria with Flow,”
submitted to Phys. Plasmas, Feb. 1999.


