CRITICAL TECHNOLOGIES AND CAPABILITIES FOR HUMAN SPACEFLIGHT

Space Radiation Modeling	 Space weather simulation/visualization system to assess developing radiation conditions Model(s) to describe dynamic behavior of trapped radiation belts Model(s) of geomagnetic cutoff, including diurnal, seasonal, and solar cycle activity dependence Quantitatively assess radiation risks Model(s) of interaction of heavy ions in galactic cosmic rays with spacecraft, planetary atmospheres, and regoliths Improved radiation transport and shielding codes
Radiobiology	 Models, sensors, and systems to measure and predict effects of radiation on humans Determination of RBEs (radiobiological equivalents) for neoplastic transformation of human cells Radiophysical models for neoplastic transformation Determination of RBEs for lung and mammary cancers Method(s) of calculating probabilities of cancer induction at organ level Methods for determining genetic effects of high LET (linear energy transfer) radiation on humans Strategies for determining and evaluating potential microgravity-radiation synergism Operational measures (e.g., mission planning and operations, safe shelters, etc.) Chemical and biological modifiers and radioprotectants
Space Radiation Monitoring	 Space-based neutron monitor (spectrometer/dosimeter) capable of measuring neutron energies to at least 20 MeV in the presence of high proton levels Early warning system for predicting solar particle events and their size based on x-ray and gamma ray spectral characteristics of observed solar flares Small, portable electronic dosimeter to be used in EVA suits and habitable volumes (will provide dose and dose-equivalent rates and integrated values) New and advanced/improved techniques and materials for passive dosimetry, including biological radiation sensors
Environmental Physiology & Biophysics	 Determine effects of changing pressure, especially in decompression illness (DCI) Determine effects of temperature on health and performance of crew in spacecraft and during EVA Measure metabolic rates, especially during EVA, and to relate them to fatigue and risk of DCI Measure effects of different gas species such as oxygen, water, carbon dioxide, and ionized particles Treat DCI, with methods such as hyperbaric therapy and/or hyperbaric/oxygen therapy Understanding how spacecraft bioelectromagnetic fields and non-ionizing radiation affects crew In-flight/in-suit Doppler systems Methods for treating decompression illness
Physical Performance	 Monitor effectiveness of nutritional supplements, pharmacological agents, exercise, and myostimulation Assess lean body mass, aerobic/anaerobic capacity, muscle endurance/strength, thermal regulation, neuromuscular control, and compliance in use of countermeasures

Skeletal Integrity	 Inflight, compact, light weight dual energy x-ray absorption to perform hip, spine, and heel bone mineral density measurements Automated urine collection, measurement, and sample storage/analysis equipment Load cells in pedals of cycle ergometer and angle measurement for hub and pedals Inflight dynamometers for hip, knee, and ankle measurements Finite element (FE) approach for skeleton measurements/analysis using minimal radiation (FE model incorporates bone morphology and bone density) 	
Calcium Deposition (Stones)	Measure calcium levels during flight and quantify effects on neurosensory, cardiac, muscle, or other systems Countermeasures (procedures and pharmacologic/nutritional agents) that prevent ectopic calcium deposition in 99% of population	
Orthostatic Tolerance	 Hardware for an integrated countermeasures program to maintain orthostatic tolerance for landing, planetary excursion, emergency, entry, egress, and postflight rehabilitation Technologies for exercise, pharmacologic agents (e.g. mineral corticosteroid, fluid augmentation), fluid therapy, neurostimulation, compression garment 	
Artificial Gravity Countermeasures	 Hardware to assess artificial gravity as a countermeasure Systems to determine most efficient combination of g-level and exposure duration for intermittent AND continuous centrifuge operation Systems to verify centrifuge effectiveness in maintaining skeletal integrity, calcium metabolism, physical performance, orthostatic tolerance, neurosensory function, and other physiological functions, identifying positive and negative side effects Systems to verify effect of intermittent and continuous centrifuge exposure on humans at several gravity values, including near-zero, 1/6 g (lunar surface), 3/8 g (Mars) and 1 g 	
Neurosensory and Sensorimotor Function	 Ultra-lightweight binocular 3-D video eye movement monitoring Ultra-lightweight 6-degree-of-freedom head movement monitoring Non-head coupled visual display system Wide field stereo head mounted display (HMD) with eye and head movement monitoring and see-through capability Dynamic visual acuity testing and analysis system; 3-D video eye movement capture and analysis software Develop mathematical models of visual-vestibular integration and adaptation Head-body tracking system Develop mathematical models of postural and locomotor control Dynamic posturography system Evaluate role of proprioceptive and somatosensory information in sensorimotor functions Human-rated angular and linear whole-body acceleration devices Measure orientation and perceptual disturbances Evaluate ability to perform mental rotation on Earth and in space (tests/devices) Evaluate adaptive changes in spatial orientation during spaceflight Improved pre-flight and in-flight adaptation to altered vestibular, proprioceptive and somatosensory inputs (tests/devices) Evaluate changes in sensory-motor performance 	
Neurosensory and Sensorimotor Countermeasures	 Sensory substitution using electrical and/or magnetic stimulation Preflight adaptation to altered sensory inputs to reduce sensorimotor disturbances, spatial orientation and perceptual disturbances, and space motion sickness Inflight maintenance of 1 g sensorimotor and perceptual function, including a shortarm centrifuge, 3-D eye-head movement monitor with visual display system, and foot pressure (somatosensory) input device Vibrotactile orientation system/device for inflight maintenance of spatial orientation, particularly during EVAs 	

Monitoring, Diagnosis & Therapy	 Laboratory diagnostics (clinical chemistry, hematology, pathology, microbiology, etc.) Imaging diagnostics (radiographic, magnetic resonance, ultrasound, etc.). Non- or minimally invasive monitors (ECG, BP, SpO₂, HR, T, etc.) that employ implantable/injectable/ingestible sensors Telemetry to/from sensors and processing systems Autonomous/expert systems for all elements of care: monitoring, diagnosis, therapy, and surgical assistance Multimedia technologies for maintaining medical records Advanced user interfaces for diagnosis, therapy and training (VR, haptic, etc.) Advanced computer-based medical training and simulation techniques and systems Robotic (autonomous) and tele-operated medical assistance systems 	
IMMUNE PROTECTION	 Means to determine maximal acceptable decrements of cellular and humoral protective mechanisms, relation of immune system dysfunction to incidence of infection, cancer induction, allergy, and autoimmune disease manifestations Pharmacological agent(s) as a countermeasure Means to decrease "stress response" Means to improve current Preflight Health Stabilization Program In-flight cytometer, delayed type hypersensitivity test device ("skin test"), in-flight enzyme-linked immunosorbent assay (ELISA) system, in-flight blood collection and distribution system, and a cell culture and challenge system 	
Medical Intervention	 Systems for emergency surgery and critical care Systems for rescue, resuscitation, stabilization, and transport Fluid therapy systems, with infusion pumps, on-site production of sterile fluids, nutritional support, blood and blood component replacement Extended (3 year) shelf-life pharmaceuticals Medical waste management system Advanced medical storage systems (samples, pharmaceuticals, etc.) Equipment and protocols for microsurgery and microtherapeutics Hyperbarics for use in microgravity and on planetary surfaces Portable (inflatable) hyperbaric chamber 	
Psychosocial Stability	 An integrated countermeasures program that encompasses preflight training, group support, self help, pharmacologic treatment, exercise, etc. Systems designed to measure, evaluate, and preserve psychosocial stability 	
Crew Productivity	 Tools and models for determining acceptable performance ranges for different types of tasks Tools for modeling complex missions with multiple participants, assessing predicted vs. actual productivity, and updating model status to identify potential problems or failures 	
Proficiency & Skills	 Authoring tools optimized for computerized training for unique or unusual skills or tasks Non-intrusive technologies for monitoring individual and group performance over mission duration Advanced virtual reality systems with low power, volume, and mass requirements, which provide position tracking, wide field-of-view head mounted displays, and haptic feedback for on-board refresher training and skill monitoring Authoring languages for VR training systems that incorporate error feedback to user, prompting, and tools for data collection and performance assessment 	

Crew Accommodations	 New methods of trash disposal to reclaim useful materials while minimizing or eliminating disposal volume, such as plastics O g and/or partial g washing and drying of clothes Provide crew consumables (food, water, etc.) in a wide variety of emergency situations with least possible mass Repair systems without Earth support Analyze spares requirements, document repair procedures at very low level (e.g. components rather than boards), and develop multipurpose troubleshooting tools Improve cleaning technologies Method of tracking location and status (e.g., health, functional state, etc.) of all onboard objects items 	
FOOD AND GALLEY	 Shelf life extension to store a complete and acceptable diet for 3 - 5 years as required by 1000-day mission scenarios Advanced food packaging to minimize waste and trash Means for food preparation for crew Reduction in waste generated (both food and packaging wastes) Enhancements in acceptability, palatability, and variety 	
BIOMASS PROCESSING	 Harvesting technologies Processing (e.g., drying, grinding, or making bread from flour) Sugar and oil production compatible with human-rated chambers 	
Habitability	 Measure personal space, time, and privacy requirements Measure actual and preferred levels of habitability factors such as volume and area, noise, vibration, odor, temperature, and humidity, and their relationship to crew performance and productivity over mission duration Tools to measure personal preference for habitability factors in individual crew members Model that can continuously estimate likelihood of potential critical events 	
Contingencies	 Analytical model that identifies and evaluates potential responses to critical events for a decision support system Advanced and/or improved models of human decision-making that provide assistance in predicting and resolving contingencies or critical events in human-human or human-system situations 	

Compiled by the Advanced Technology Integration Group at NASA's Johnson Space Center.

Don Stilwell	Alyssa Mueller	Terri Gilbert
NASA-JSC Mail Code SL	NASA-JSC Mail Code SL-F	NASA-JSC Mail Code SL-F
281-483-7308	281-244-5537	281-333-0190 x48
donald.j.stilwell1@jsc.nasa.gov	smueller@ems.jsc.nasa.gov	tgilbert@futron.com