
February 2003 10-1

Chapter 10

Software Engineering Processes

CONTENTS
10.1 INTRODUCTION ...3

10.2 PROCESS DESCRIPTION ..3

10.2.1 SOFTWARE PROJECT PLANNING..6
10.2.2 REQUIREMENTS AND SPECIFICATION..6
10.2.3 DESIGN...7

10.2.3.1 Systems Level Design...7
10.2.3.2 Program Design...7
10.2.3.3 CASE Tools..7

10.2.4 CODING WITH PROGRAMMING LANGUAGES ...8
10.2.4.1 Programming Languages ..8
10.2.4.2 General programming skills ..9
10.2.4.3 Operating Systems ...9
10.2.4.4 Hardware Systems ...9

10.2.5 TESTING, VALIDATION, AND VERIFICATION...9
10.2.6 HUMAN FACTORS ...10
10.2.7 MAINTENANCE ...10
10.2.8 SUMMARY ..11

10.3 SOFTWARE ENGINEERING PROCESSES CHECKLIST..11

10.3.1 BEFORE STARTING..11
10.3.2 DURING PROJECT EXECUTION ..12
10.3.3 AT COMPLETION...12

10.4 REFERENCES ..12

10.5 RESOURCES...12

Chapter 10: Software Engineering Processes Condensed GSAM Handbook

10-2 February 2003

This page intentionally left blank.

February 2003 10-3

Chapter 10

Software Engineering Processes
 “Because software, like all capital, is embodied knowledge, and because that knowledge is initially dispersed, tacit,
latent, and incomplete in large measure, software is a social learning process ... in which knowledge that must be-
come the software is brought together and embodied in the software.” – Howard Baetjer, “Software as Capital”

10.1 Introduction
In the earliest days of computers, memory was small, language consisted of binary machine code, and programmers
were adventurous souls from other disciplines who made up the craft of programming. While early programmers
could get by writing some code and using clever tricks, often undocumented, those were not the “good old days.” As
technology advanced, so did the need to build bigger and ever more complex programs. Software development
reached a point where it had to be developed by teams. There had to be requirements, plans, detailed designs, actual
building, testing, development of efficient, intuitive user interfaces, and integration into larger systems of computers,
machines, and people. The discipline to develop software in this manner is known as software engineering, a com-
plex process that itself requires many sub-processes.

To put up a tent you need a level spot of ground, located in a small clearing. A tent is a relatively simple form of
shelter with few requirements. It can be erected quickly, with little planning, and at little cost, but it does have its
limitations. Contrast this with building a house. Much more is needed by way of planning, materials, cost, time, and
work. Presumably, the builder or future owner of the house has some specific and general requirements to be met.
These will need to be turned into some type of floor plan, which must then be approved by the requirement giver.
There may even be artists’ renditions of what the completed house will look like. Following the top-level plan, de-
signers will put together detailed plans for each room and all the major components of the house. Again, these must
be approved. When the design is satisfactory, the building will start and proceed until the house is finished. There
will be inspections along the way and inspectors will examine and test various parts of the house for quality, func-
tionality, and adherence to the plans and standards. There will probably be some changes during the actual building
to make up for unknown variations in the building lot, available materials, or other factors. The future owner may
even request a change after seeing what the plan is going to produce. When the structure is complete, designers or
owners will decide on paint colors, carpets, lighting, and furniture. Sometime before being used, the house will need
to be connected to various utilities, sidewalks, and roads. This will make it a part of the community. The primary
differences between tent and house are the levels of complexity and functionality. Requirements for greater func-
tionality result in a more complex system, which requires a more complex construction process.

Software engineering is younger than other engineering disciplines and is based on an industry that is undergoing
unbelievable change. Because of its relative youth, the software industry tends to be populated by younger, creative,
innovative people. All these combine to produce a constantly evolving discipline. Just as software life cycles have
multiplied (see Chapter 2, Software Life Cycle.), so too has software engineering diverged into many different
methods, each with its own disciples and champions. It is not possible to sample even the major methods here, but
most development methods incorporate, to a greater or lesser degree, a standard set of activities common to most
software engineering. These common pieces, framed in a “standard” engineering methodology will form the basis of
our study.

10.2 Process Description
Software engineering goes far beyond learning how to write programs with computer languages. While there are
aspects of software engineering which are used more effectively, or even exclusively, with specific languages, the
discipline is not dependent upon language, notwithstanding the divine qualities some programmers may ascribe to
their chosen language of worship. The following statement warns of the true position of programming in the scheme
of software engineering; there is much more to software development than programming.

Chapter 10: Software Engineering Processes Condensed GSAM Handbook

10-4 February 2003

“The sooner you begin writing code, the longer it will take to get done.”

Much of software engineering is associated with the software life cycle process employed (See Chapter 2, Software
Life Cycle). The software development model used in a project is a portion of the overall project life cycle, and
should fit within the project life cycle. The classic software development waterfall model is shown in Figure 10-1.
[1] This model embodies all the major aspects of the software engineering process. The prototyping activity is not
part of the classic model but is commonly used to provide feedback and allow iterative development where require-
ments or solutions need further definition. Other development models are often used. In addition to Figures 10-2
and 10-3, the life cycle models presented in Chapter 2 show some of the more common models.

Requirements
Analysis

System
Design

Program
Design

Coding

Unit & Integration
Testing

System
Testing

Acceptance
Testing

Operation &
Maintenance

Prototyping

Verification

Validation

Verification

Figure 10-1 Classic Waterfall Software Development With Prototyping Modification [1]

The waterfall model has each activity flowing into the subsequent activity following its completion. While engineers
look ahead and try to anticipate issues and needs that will surface later in the project, the waterfall is limited in its
ability to provide feedback and allow the work of earlier steps to be modified. The prototyping modification shown
in Figure 10-1 can help alleviate this deficiency somewhat.

The V model improves on the sequential nature of the waterfall model by planning and preparing acceptance tests in
conjunction with the requirements analysis. System tests are established during system design and unit and integra-
tion tests are planned during program design. The tests are not performed until later in the development process, but
developing tests in conjunction with the applicable requirement or design activity facilitates a more unified and fo-
cused development effort. Figure 10-2 depicts the V model.

Condensed GSAM Handbook Chapter 10: Software Engineering Processes

February 2003 10-5

Requirements
Analysis

System
Design

Program
Design

Coding

Unit & Integration
Testing

System
Testing

Acceptance
Testing

Operation &
Maintenance

Verify Design

Validate Requirements

Figure 10-2 V Software Development Model [1]

The shark tooth model, shown in Figure 10-3, incorporates prototyping and involves the user in providing feedback
to the development process. Users are involved in the system requirements analysis, following which, the developers
perform software requirements analysis. A prototype is produced and shown to the user. Requirements are refined
and development proceeds through different design phases, involving reviews and further prototype demonstrations
as necessary. The prototypes allow the user and developer to better understand each other and produce a product
more in line with the user’s real needs.

System
Requirements

Analysis

ImplementationPreliminary
Design

Detailed
Design

Component
Integration & Test

Unit
Test

System
Integration & Test

User
Acceptance

Requirements
Analysis

Prototype
Demo 1

Prototype
Demo 2

Design
Review

De ve lo p e r

Manag e r

Us e r

Figure 10-3 Shark Tooth Development Model [1]

The DoD requires the use of the spiral development model (see 2.2.1.4) wherever possible. This model is more it-
erative than the shark tooth model and at first glance appears far more complex. However, careful inspection will
reveal that it employs the same software engineering activities as the other models. In other words, there are several
development models, along with variations on those models, but there is a standard set of software engineering prin-
ciples which can be found within the framework of most development life cycles. It is the job of the Software Engi-
neer (SE) to apply these principles in a systematic, disciplined, and quantifiable approach to software development.
[1] A partial list of the skills and knowledge areas that make up software engineering is shown below.

• Project Planning • Requirements & Specification • Software Architecture

Chapter 10: Software Engineering Processes Condensed GSAM Handbook

10-6

• Design Methods • Software Components Design • Coding (Programming)

• Data Structures • Languages, levels, constructs, syntax • Operating Systems

• Algorithms • Human Factors • CASE Tools

• Modeling • Measurement & Estimation • Software Quality

• Testing • Verification and Validation • Numerical methods

• Demonstrations • Communications • Life Cycles

Key areas of this list are discussed in the following paragraphs.

10.2.1 Software Project Planning
As in every other discipline, planning is an essential skill for developing software. Planning includes determining
what activities need to be done, in what order, when, and by whom. It also includes the following:

• What tools will be used • Design methods to be used • Test methods

• How activities will be divided • Problem solving approach • Configuration control

• Scheduling • Demonstration methods • Design reviews

• Requirements management • Documentation, internal & deliverable • Risk management

• Quality management

Responsibility for all this planning is shared by the project manager and members of the development team, includ-
ing individual engineers. Each member of the team must be able to plan, or contribute to the planning of those areas
with which he or she is involved.

10.2.2 Requirements and Specification
Requirements form the basis of the goals for which software is developed. Seldom are requirements known in com-
plete detail, and engineers must elicit requirements from stakeholders to find out what is really needed and wanted.
It is far more than asking questions. It involves developing and asking the right questions, perhaps educating both
developers and users so they can reach a point of common understanding. It also consists of being able to communi-
cate with users in such a way as to make sure each party
knows how the other perceives the requirements.

The requirements process, summarized in Figure 10-4, has
two major activities and two major products. The require-
ments gathered during the elicitation activity are docu-
mented in a system specification. This document is written
in natural language (common everyday speech) and de-
scribes what the final system or software should do for the
users. It can be general in nature or very detailed. Both
stakeholders and developers should be in agreement that
the system specification adequately and accurately de-
scribes the new system and its capabilities. Note that some
analysis is usually required to produce the system specifi-
cation.

If it is not possible to implement the system requirements due to
developers negotiate with the stakeholders to agree on a set of re
constraints.

When the system specification is complete, its requirements are a
ply with them. Analysis is the primary activity here, with occasio

Requirements
Elicitation

Analysis

System
Specification

Functional
Specification

Formal Language

Natural Language
Figure 10-4 Requirements Elicitation and
Analysis [1]
February 2003

 time, money, technology, or other constraints, the
quirements that can be performed under the given

nalyzed to determine what will be needed to com-
nal returns to the users to elicit information to clar-

Condensed GSAM Handbook Chapter 10: Software Engineering Processes

February 2003 10-7

ify ambiguities. The product of the requirements analysis is a functional specification containing detailed require-
ments. The functional specification not only differs in its level of detail from the system specification, but also in its
format. It is a formalized description of the system, presented in a language that better describes what must be ac-
complished in terms of software functionality. It gives specifics of what must be accomplished. It often includes
relationship diagrams, data flows, use case diagrams, and logic flows. To those uninitiated into the world of formal-
ized software specification, it might appear as a foreign language using foreign mathematics. But to the software
engineering world it is the exact bridge needed to cross from the systems specification to the design process.

10.2.3 Design
Design is generally performed at two primary levels, the overall system design and the design of lower level compo-
nents, also known as program design. While these two levels are summarized here, it should be remembered that
there may be a prototype building cycle in the development plan. In that case, there would be one or more iterations
of design-build-test to get a better idea where the system is going, before the final lower design is performed.

10.2.3.1 Systems Level Design
The first design activity is to develop a system level concept of what the software will look like, accomplish, and
how it will participate in the overall system of hardware, software, and humans. This includes defining interfaces
with the world external to the system, including the user interfaces, the various software subsystems, along with
their functions, and the interfaces and data flows between them. The system and software specifications are used
extensively to ensure the system is being built to satisfy the requirements. The systems design defines what goes into
and out of the system, what functions are performed, and by what subsystems. The design is generally presented for
approval or modification at a preliminary or system design review.

10.2.3.2 Program Design
Program design takes the overall structure, functionality, interfaces, and data flows of the system and adds detail.
The structure is defined down to the individual program modules. This is done by dividing design into smaller steps,
such as Top Level Design and Detailed Design. Subdividing the design process implements the divide and conquer
principle, making design easier and more controlled while facilitating the detection of errors.

All necessary processing and sub-functions that make up the system functions are named, defined, and allocated to
specific modules. Because different people may be working on different modules, interfaces must be defined ex-
actly. Data flows and data storage are mapped out and defined in detail. Algorithms, mathematical and other proc-
essing are all defined. Individual modules are designed using pseudo-code or natural language to describe what each
module does. Data and variables used to interface with other modules are precisely defined.

The completed design is usually presented for formal approval at a critical design review. This is critical as the name
says. It is used to spot any inconsistencies, logic errors, interface mismatches, and forgotten functions.

The temptation will always exist to leave more of the design to the coding activity. Remember, “the sooner you be-
gin writing code, the longer it will take to get done.” The more complete and detailed the design is, the faster and
easier coding can be accomplished. Better design also means fewer errors, easier debugging, and less time spent in
the code and test iterations. Good, well-documented designs also make software maintenance much easier and far
less costly than it would otherwise be.

10.2.3.3 CASE Tools
Computer Aided Software Engineering (CASE) tools are software programs that assist the software engineer in de-
signing and documenting software. They are usually dependent on the design methodology employed by the devel-
opment team, and may even be dependent on the language chosen for implementing the design. Their chief contri-
butions consist of the following advantages:

• Encourage or enforce a formal design process or methodology.

• Document the design in a consistent, formal manner.

• Track the details to help ensure things aren’t forgotten.

• Unify the development team in their efforts.

Chapter 10: Software Engineering Processes Condensed GSAM Handbook

10-8 February 2003

In addition to the above advantages, some CASE tools help in discovering errors, developing tests, tracking re-
quirements, and other benefits. Every effort should be made to select an easy-to-use, functional, helpful, and proven
tool that not only integrates with your development process, but actually facilitates, assists, and documents that pro-
cess in as many areas as possible.

10.2.4 Coding with Programming Languages
Coding, or programming, as we have discussed, is only a part of the software engineering process. For most engi-
neers, it is the favorite part, where you put things into the computer and it responds. This is probably the greatest
source of temptation to start coding right away, and to try to wrap the other aspects of software engineering into the
coding process. Sadly, the desire to move prematurely into programming, to “save time” or “save money,” even
extends to some leaders and managers, who may be under pressure by those above them who know little of the de-
velopment process. There is a joke where the manager says to the programmers, “I’ll go up and find out what they
need and the rest of you start coding.”

Programming is where planning, specifying, and designing take on real existence, at least as much as a non-tangible
entity can. This is where the engineer creates actual programs that execute on a computer, receiving inputs and pro-
viding outputs. Programming starts with coding individual modules or functions. These units are then integrated
together in progressively larger and more complex subsystems, until the entire software system is brought together
and executed as a system. Each step of integration shows the software units can work together or discovers problems
with their interaction. Programming involves these major knowledge areas:

• The programming language

• General programming skills

• The Operating System (OS)

• Hardware that may be associated with the software

10.2.4.1 Programming Languages
There are countless programming languages. They have been developed or created since the beginning of the com-
puter era. Some are general purpose and have been converted to run on many different platforms or computer sys-
tems. Others are narrow in their application and have been made for specific purposes or for specific computers.
They are called by many names: Cobol, Fortran, C, Basic, APL, Pascal, Ada, C++, Java, FoxPro, C#, Assembly, etc.
Each language has specific reserved words it uses to command the computer to perform certain operations. These
reserved words must be used in a certain syntax, the order or structure of programming statements, for the computer
understand them. In addition, each language has requirements for the structure of the overall program, how it im-
plements general programming operations, how it deals with the computer, and how a program is written, compiled,
and executed. Most programmers know more than one language but have a favorite. Learning to use a programming
language, like spoken languages, takes training (formal or informal) and practice.

A computer language should be selected for use only after a careful review of the systems and software engineering
factors that influence the overall life cycle costs, risks and potential interoperability. [2] When choosing a language,
all factors considered should be documented along with the decision process and the results. Major factors to con-
sider are:

• Reliability • Performance • Interoperability

• Safety • Security • System Architecture

• Standards • Development Tools • Software Architecture

• Development Methodologies • Maintenance & Supportability • Staffing

• Cost • Schedule • Open Systems

Condensed GSAM Handbook Chapter 10: Software Engineering Processes

February 2003 10-9

10.2.4.2 General programming skills
General programming skills exist apart from specific languages and may be implemented by most languages, albeit
in different manners. They include operations (loops, branches, Boolean logic, etc.), structures (arrays, strings, ob-
jects, etc.), algorithms (sorting, mathematical, parsing, compression, etc.), data types (strings, integers, floating
point, Boolean, etc.), input/output, threads, inheritance, etc. These are learned to some extent by studying theory and
to a greater extent by actual programming. Because skills are usually learned to satisfy a need – “How do I sort this
efficiently?” – rather than curling up with a good algorithm book in front of the fireplace, experience can play a big
part in producing good, efficient program code. This is the area where skilled programmers practice their “art” and
employ their tricks.

Another subject belonging to skills is the use of programming style. Just as written language is easier to understand
and use when certain style conventions are used, programs can be made easier to follow, understand, debug, test,
and maintain if certain style conventions are employed. Generally, this will be one of the project requirements.
Various style guides exist for languages in the industry and within many organizations.

10.2.4.3 Operating Systems
The operating system (OS) is a program that acts as the heart and soul of the computer. When a computer is pow-
ered up the OS runs through all the system checks and sets up memory and other resources for use by other pro-
grams. The OS receives instructions from and presents information to the computer operator and launches other pro-
grams as directed. As in programming languages, people prefer one OS over another and often ascribe personality
traits to the various OS’s they know or have heard of. Unlike languages, which are often associated with divine at-
tributes, OS’s are more often than not ascribed diabolical qualities, and viewed as inherently evil entities that must
be bypassed or appeased to get anything done.

Software engineers must come to know the OS that resides on the computer for which they are writing software. The
OS will in most cases be running at the same time as the new software. In spite of having to figure out ways to work
around the OS to accomplish certain software feats, in many cases the OS will perform various functions outside of
the new program. For example, why write a driver and interface program for a keyboard, monitor, or printer when
one can simply ask the OS to perform that function? Knowing how the OS operates and what it can and cannot do
for you is essential for programming.

10.2.4.4 Hardware Systems
Because software cannot be touched, it doesn’t exist outside a computer system. Software is meaningless without
hardware to exist in. Each type of computer system has its own capabilities, resources, and idiosyncrasies. This is
true for all systems, whether they are general-purpose desktop computers or embedded computers in a microwave
oven or weapon system. Memory, storage, communications, calculation speed, and interfaces are all constrained and
defined by actual physical hardware. To use them, the software engineer must have an understanding of what hard-
ware is available, how it is used or accessed, what its limitations are, and how it is controlled by software. By itself,
hardware is just silicon and metal. Software is intangible. Only together do they form a functional system. One can-
not be understood without the other.

10.2.5 Testing, Validation, and Verification
Software must be evaluated at intervals during development and when complete to determine if it actually performs
as it should. Testing is done at various stages from the coding phase throughout the remainder of the project. Indi-
vidual programmers test individual modules or units of the program as they are programming. This helps them spot
errors in both logic and coding. It also shows that the module is correct and functional. During the integration proc-
ess, modules are tested together in subsystems to detect errors with module interfacing and with working together.
Additionally, integration testing determines whether the larger groupings of modules function smoothly and cor-
rectly together. Testing continues with larger and larger groups until the full system is evaluated. If testing is done
correctly throughout the development process, the final acceptance testing should be a demonstration of the full,
correct functionality of software and its fulfillment of requirements. There should not be any surprise errors or non-
performance. The hierarchy of testing is shown in Figure 10-5.

Chapter 10: Software Engineering Processes Condensed GSAM Handbook

10-10 February 2003

Acceptance Testing

System Testing

Integration Testing

Unit Testing

Subsystem Subsystem Subsystem

Unit

System

Unit Unit Unit Unit Unit Unit Unit

Figure 10-5 Testing Hierarchy

When evaluating software, two specific types of performance are considered: validation and verification. Validation
is the determination of whether the right software has been built. Does it meet the requirements established in the
beginning phases of the project? Verification is determining whether the software has been built according to the
design. A system can be built right without building the right system. In other words, the software may be verified
and not validated. Ultimately, the system must meet both criteria, being built according to the design and the re-
quirements, if it is to be useful.

Figures 10-1 and 10-2 show where verification and validation testing are performed and what drives them. It should
be noted that although acceptance testing validates the system for the stakeholders, acceptance testing should be a
formality. The real testing should have been performed throughout unit testing, integration, and system testing.

10.2.6 Human Factors
While many automated systems deal only with machines, most have at least some interaction with humans. Software
engineering includes understanding and taking into account the human aspect of the man-machine interface. This
includes human sensory, psychological, and bio-mechanical considerations. Some software functions almost exclu-
sively as an interface to humans. Other software requires human interaction only for startup and occasional direc-
tion. Software functionality is worth very little if the user cannot easily and efficiently control the software. Great
care and consideration must be given to interaction between the computer and the user. This includes such things as
intuitiveness, color, light, noise, redundancy, input methods, and display/output methods of the interface, as well as
fatigue, stress, and boredom of the user. Developers must also understand information theory and human informa-
tion processing. While failure to incorporate human factors into the development process may result in poor sales for
a computer game, in a logistics system it can lead to people not using the software tool and bypassing the system. In
an avionics or weapons system it can lead to injury or death.

10.2.7 Maintenance
When software is fielded or released to the users there will be a period of training and learning. If the users find
things they would like to add or change, and that is likely, the stage is set for upgrades to the software. While we
have talked extensively about software development, most of the money spent on software, 70% or more, is spent on
maintenance. Maintenance may consist of fixing a problem not discovered in the development phase, adding new
functionality to the software, or modifying the software to deal with changes in the rest of the system. While main-
tenance is usually the longest phase of the software life cycle, it is dealt with in a manner similar to previous devel-
opment efforts.

Software maintenance projects are development projects that begin with previously constructed software. Using that
software becomes one of the requirements of the new, improved system. The maintenance project, like other proj-
ects, consists of planning, requirements, design, coding, and testing. Software maintenance will generally go on in a
series of discrete upgrade projects as needs arise and as resources are available until the overall system is retired
and/or replaced. The maintenance cycle is shown in Figure 10-6.

Condensed GSAM Handbook Chapter 10: Software Engineering Processes

February 2003 10-11

Software Maintenance

Software
Development

Project

Upgrade
Development

Project

Upgrade
Development

Project

Upgrade
Development

Project

Upgrade
Development

Project

Deployment

Release Release Release Release

System Retirement

Time

Figure 10-6 Maintenance Upgrade Cycle

10.2.8 Summary
This chapter has provided only a brief overview of primary software engineering activities or knowledge areas.
Many other areas, such as those in the list in Section 10.2, have been left out because of time and space constraints,
not because they are not essential. Better understanding of the software engineering process can be gained by
studying those areas in the reference material listed at the end of this chapter.

Those who become software engineers go through a rigorous course of study, training, and practice to gain knowl-
edge, develop skills, and gain insight into the software development process. The discipline is the application of
engineering principles to software development and brings a number of knowledge fields together in a coordinated
effort. Because of the vast amount of man years spent developing software there have been many innovations and
improvements to the engineering process which have not only benefited the software industry but have migrated into
other engineering disciplines as well. Because of the constant improvement of the computer industry and the incor-
poration of computers into more and more tools, toys, and other systems, keeping up with the advances in software
engineering is a full time, and probably lifetime, process.

10.3 Software Engineering Processes Checklist
This checklist is provided to assist you in understanding the software engineering issues of your project. If you can-
not answer a question affirmatively, you should carefully examine the situation and take appropriate action.

10.3.1 Before Starting
! 1. Do you know what software development life cycle your project will be employing and how it coordinates

with the software and project life cycles?

! 2. Does the development team have experience in the software development life cycle to be used?

! 3. Do the developers, the stakeholders, and you understand what the steps of the development process are, and
what the inputs and products of each step are?

! 4. Has your project been planned in the various software development areas listed in Section 10.2.1 and in
Chapter 3?

! 5. Do you know what design method has been chosen for the development effort and why it was chosen over
other methods?

! 6. Does your development team have experience with the chosen design method? If not, has the schedule been
adjusted to allow for learning the new design method?

! 7. Have proven CASE tools been chosen to assist in the software design?

! 8. Does your development team have experience with the chosen CASE tools? If not, has the schedule been
adjusted to allow for learning to use the CASE tools?

! 9. Has an appropriate programming language been chosen and do you know the reasons it was chosen?

Chapter 10: Software Engineering Processes Condensed GSAM Handbook

10-12 February 2003

! 10. Does your development team have experience with the chosen programming language? If not, has the
schedule been adjusted to allow for learning the chosen programming language?

! 11. Is the development team sufficiently skilled and experienced in programming to properly and efficiently
design, code, and test the software?

10.3.2 During Project Execution
! 12. Are your requirements complete, unambiguous, and agreed to by both developers and stakeholders?

! 13. Have you completed both system and functional specifications, and have they been reviewed and approved
by stakeholders?

! 14. Is the development team familiar with or provided with the appropriate opportunity to become familiar with
the operating system and system hardware?

! 15. Is a detailed software design being completed, reviewed, and approved before coding starts?

! 16. Is testing being properly implemented and satisfactorily completed at unit, integration, and system levels
before acceptance testing?

! 17. Are human factors being considered sufficiently in the software design?

10.3.3 At Completion
! 18. Does the completed software correctly implement the design?

! 19. Does the software meet the requirements?

! 20. Does the software meet the users’ needs?

10.4 References
[1] Michael Black, “Introduction to Software Engineering” Lectures: www.cs.brown.edu/courses/cs032/
[2] DoD 5000.2-R, Mandatory Procedures For Major Defense Acquisition Programs (MDAPS) And Major Auto-

mated Information System (MAIS) Acquisition Programs, April 5, 2002. Section 4.3.5:
http://sw-eng.falls-church.va.us/dod5000-2.html

10.5 Resources
ASD(C3I) Memorandum, "Use of the Ada Programming Language," April 29, 1997. Factors to consider when

choosing selecting a programming language: http://sw-eng.falls-church.va.us/oasd497.html

Crosstalk Magazine: www.stsc.hill.af.mil/crosstalk/

− “Getting Software Engineering into Our Guts”: www.stsc.hill.af.mil/crosstalk/2001/jul/bernstein.asp
− “The Software Engineer: Skills for Change”: www.stsc.hill.af.mil/crosstalk/2001/jun/cross.asp
− “The V Model: www.stsc.hill.af.mil/CrossTalk/2000/jun/hirschberg.asp

DeGrace, Peter and Stahl, Leslie, Wicked Problems, Righteous Solutions: A Catalogue of Modern Software engi-
neering Paradigms, Yourdon Press.

Department of Energy (DOE) Software Engineering Methodology: http://cio.doe.gov/sqse/sem_toc.htm

Guide to Software Engineering Body of Knowledge: www.swebok.org

Guidelines for the Successful Acquisition and Management of Software-Intensive Systems (GSAM), Version 3.0,
Chapter 11, OO-ALC/TISE, May 2000. Available for download at: www.stsc.hill.af.mil/gsam/guid.asp

Program Manager’s Guide for Managing Software, 0.6, 29 June 2001:
www.geia.org/sstc/G47/SWMgmtGuide%20Rev%200.4.doc

http://www.cs.brown.edu/courses/cs032/
http://sw-eng.falls-church.va.us/dod5000-2.html
http://sw-eng.falls-church.va.us/oasd497.html
http://www.stsc.hill.af.mil/crosstalk/
http://www.stsc.hill.af.mil/crosstalk/2001/jul/bernstein.asp
http://www.stsc.hill.af.mil/crosstalk/2001/jun/cross.asp
http://www.stsc.hill.af.mil/CrossTalk/2000/jun/hirschberg.asp
http://cio.doe.gov/sqse/sem_toc.htm
http://www.swebok.org/
http://www.stsc.hill.af.mil/gsam/guid.asp
http://www.geia.org/sstc/G47/SWMgmtGuide Rev 0.4.doc

Condensed GSAM Handbook Chapter 10: Software Engineering Processes

February 2003 10-13

Software Engineering Body of Knowledge:
www.sei.cmu.edu/publications/documents/99.reports/99tr004/99tr004abstract.html

Software Engineering Education websites: http://faculty.db.erau.edu/hilburn/se-educ/
Software Engineering Institute: www.sei.cmu.edu
Software Engineering Process Group, Tutorials: http://prg.cpe.ku.ac.th/developer/tutorial.html
Software Reality. Stories of software engineering mistakes: www.softwarereality.com

University of Michigan, Introduction of Software Engineering:
www.engin.umd.umich.edu/CIS/course.des/cis375.html

University of Toronto, Software engineering notes: www.cs.toronto.edu/~sme/CSC444F/

Verification, Validation and Evaluation of Expert Systems: www.tfhrc.gov/advanc/vve/cover.htm

http://www.sei.cmu.edu/publications/documents/99.reports/99tr004/99tr004abstract.html
http://faculty.db.erau.edu/hilburn/se-educ/
http://www.sei.cmu.edu/
http://prg.cpe.ku.ac.th/developer/tutorial.html
http://www.softwarereality.com/
http://www.google.com/search?q=software+engineering+tutorial&hl=en&lr=&ie=UTF-8&start=10&sa=N
http://www.google.com/search?q=software+engineering+tutorial&hl=en&lr=&ie=UTF-8&start=10&sa=N
http://www.engin.umd.umich.edu/CIS/course.des/cis375.html
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.tfhrc.gov/advanc/vve/cover.htm

Chapter 10: Software Engineering Processes Condensed GSAM Handbook

10-14 February 2003

This page intentionally left blank.

	Introduction
	Process Description
	Software Project Planning
	Requirements and Specification
	Design
	Systems Level Design
	Program Design
	CASE Tools

	Coding with Programming Languages
	Programming Languages
	General programming skills
	Operating Systems
	Hardware Systems

	Testing, Validation, and Verification
	Human Factors
	Maintenance
	Summary

	Software Engineering Processes Checklist
	Before Starting
	During Project Execution
	At Completion

	References
	Resources

