
February 2003 12-1

Chapter 12

Testing

CONTENTS
12.1 INTRODUCTION ...3

12.2 PROCESS DESCRIPTION ..4

12.2.1 ESTABLISHING A TEST PROCESS...5
12.2.1.1 Testing Levels ..5
12.2.1.2 The Testing Process ...5
12.2.1.3 Test Planning ...6

12.2.2 TYPES OF TESTING..7
12.2.2.1 Debugging..7
12.2.2.2 Code and Unit Testing ...8
12.2.2.3 Integration Testing...8
12.2.2.4 System Testing..8
12.2.2.5 Acceptance Testing ..8
12.2.2.6 Regression Testing...8
12.2.2.7 Maintenance Testing..9
12.2.2.8 Alpha Testing ...9
12.2.2.9 Beta Testing ...9
12.2.2.10 Black box testing..9
12.2.2.11 Stress Testing ...9

12.3 TESTING CHECKLIST...9

12.3.1 BEFORE STARTING..9
12.3.2 DURING EXECUTION...10

12.4 REFERENCES ..10

12.5 RESOURCES...10

Chapter 12: Testing Condensed GSAM Handbook

12-2 February 2003

This page intentionally left blank.

February 2003 12-3

Chapter 12

Testing
 “We test because we know that we are fallible …” – Paul C. Jorgensen

12.1 Introduction
Testing is not new to any of us. It comes almost daily and can be formal or informal. Our steps through school and
training are marked by tests. For some, each day brings a test of survival. Progress is never realized without some
form of testing. This maxim also holds true for software development projects.

While failure to properly implement a functional test program for software used by a commercial enterprise can lead
to loss of revenue and the demise of the company, failure in a military environment can lead to mission failure, pre-
cipitate injury and death, and ultimately jeopardize the survival of the nation. This chapter discusses testing princi-
ples and processes, particularly as they relate to software testing. However, the concepts can also be readily applied
to other types of systems. Because testing is part of a comprehensive assessment and evaluation program, you are
encouraged to also read Chapter 11, “Assessing Project Health,” if you have not already done so.

A good testing program is essential for reliable operational performance, and will significantly reduce support and
maintenance costs. Properly implemented testing significantly improves the probability of project success, thereby
enhancing the likelihood of mission success. Test planning and preparation impact the project early by helping de-
fine requirements that are testable. As products are being developed, testing allows the developers to discover and
fix problems before they can become showstoppers. While a good testing program costs money and can’t necessar-
ily put a troubled project on the road to recovery by itself, it does provide extra insurance that most project managers
need by helping to signal and avoid trouble. [1]

Testing has two fundamental purposes: [2]

1. To evaluate quality or acceptability of that which is being tested.

2. To discover problems or errors.

These primary purposes can be further expanded into three groups of objectives, shown in Table 12-1.

Table 12-1 Objectives of Testing [1]

Demonstration Detection Prevention

• Show that the system can be
used with acceptable risk.

• Demonstrate functions under
special conditions.

• Show that products are ready for
integration or use.

• Discover defects, errors, and
deficiencies.

• Determine system capabilities
and limitations.

• Determine quality of compo-
nents, work products, and the
system.

• Provide information to prevent
or reduce the number of errors.

• Reduce the number of early
errors propagated through to
later phases.

• Clarify system specifications
and performance.

• Identify ways to avoid risks and
problems in the future.

Chapter 12: Testing Condensed GSAM Handbook

12-4

12.2 Process Description
Testing is one of the major inputs to project health, serving not only as an indicator of, but also as a primary con-
tributor to, the health of the project by improving quality and discovering errors and risks before they become criti-
cal problems. Because a testing program is a major part of the project it should be well defined and documented. It
should be considered in and influence every major phase of the project, as shown in Figure 12-1.

Comprehensive Testing Program

Planning AcceptanceRequirements Integration & TestDesign Coding

Figure 12-1 An Effective Testing Program is Part of all Project Phases

Testing is accomplished by implementing a testing program. A good program includes the right people, methods,
tools, and equipment needed to perform the testing, along with a testing process to integrate all these into an effi-
cient, effective program, as shown in Figure 12-2. [3] Testers should be trained, skilled, and motivated people. Em-
ploying people who lack these attributes will increase the amount of time and resources needed for testing and in-
crease the risk of overlooking important testing considerations.

Because testing is an integral part of the develop-
ment process, adequate time and resources are re-
served for testing. Tests also serve as milestone and
progress indicators. Proven methods should be used
to facilitate efficient, effective testing. It must be
remembered that everything cannot be tested. Even
if it were possible to think of all possible test cases,
the effort would consume over 90% of a project’s
resources and take an unacceptable length of time.
Because of this, testing must be risk-based, where
those areas with the greatest risk of failure are given
the most attention. Effective testing is creative and
uses careful analysis, planning, and design to select
test strategies, methods, and tests to get the greatest
amount of evaluation for the testing resources avail-
able. [1]

Appropriate equipment should be available and
properly used to allow thorough testing. Without the
right equipment, testers may have to use slower,
roundabout testing methods, taking longer to test,
perhaps missing important test results, or even bypassin

Test tools cover a broad spectrum of testing assistants.
requirements met, to full automatic testing systems tha
cal flow of testing, depending on test results. Tools ma
tools requires consideration be given to the type of test
tion, costs, schedule, possibility for reuse, and requirem
ing what has been tested and what has not. Additionall
ture reference. Test results are used as a feedback mec
reworked, but for improving the development process a

Too often, testing is viewed as a hurdle to get over, ra
development process. When testing is considered and p

m

Testing Program

Process

People Methods

Tools Equipment
Figure 12-2 Elements of an Effective Testing Progra
February 2003

g important tests.

They range from simple databases to track tests, results, and
t perform comprehensive testing, including varying the logi-
y be hardware based, software based, or both. The choice of
ing, the amount of testing, testing expertise of the organiza-
ents. A commonly used tool is a tracking system for record-
y, a database of test results is maintained for current and fu-
hanism not only to determine which components need to be
nd methods in the current and future projects.

ther than a tool for improving both product quality and the
lanned early in the project, along with establishing require-

Condensed GSAM Handbook Chapter 12: Software Engineering Processes

February 2003 12-5

ments that are testable, it can provide guidance throughout the project and reduce the time required for rework. Early
life cycle testing helps prevent propagation of defects to later stages of development.

12.2.1 Establishing a Test Process
The testing process is the keystone to effective testing. It defines how test components are used with each other, and
what is to be done at what times. The test process should be active throughout the entire development life cycle as
indicated by Figure 12-1. It begins with planning and continues on through the acceptance of the developed product.
Table 12-2 lists the major testing activities performed during each major phase of the project.

Table 12-2 Testing Activities of Project Phases

Phase Testing Process Activity

Planning Testing activities are scheduled throughout the project. Testing to meet requirements is estab-
lished as a project priority.

Requirements Requirements are written so that they are testable.

Design System and components are designed to be testable and to meet requirements by passing tests.

Coding Testing is performed in the code-test cycle (see Figure 12-6) and on complete software units.
Debugging and regression testing is also performed.

Integration &
Test

Testing is performed on integrated subsystems and systems (integration and system testing.)
Debugging and regression testing are also performed. (See Figures 12-3 and 12-6.)

Acceptance User acceptance testing is performed.

12.2.1.1 Testing Levels
A testing process should also follow a hierarchy of testing (shown in Figure 12-3) where components are tested at
the lowest level and then at successively higher levels of integration until the complete system is tested and de-
bugged. Finally acceptance testing is performed.

Acceptance Testing

System Testing

Integration Testing

Unit Testing

Subsystem Subsystem Subsystem

Unit

System

Unit Unit Unit Unit Unit Unit Unit

Figure 12-3 Testing Hierarchy

12.2.1.2 The Testing Process
The overall test process is shown in simplified form in Figure 12-4. Because it has already been discussed, the proc-
ess leaves out the consideration of testing in establishing requirements and in design. After completion of the first
(planning) activity, all other activities are repeated for unit, integration, and system testing. Because of the code-test-
debug cycle (shown in Figure 12-6), there may be several iterations of coding and integration, along with their ac-
companying testing.

Chapter 12: Testing Condensed GSAM Handbook

12-6 February 2003

Prepare Each
Test Case

Establish a
Corrective

Action
Process

Develop
Test

Evaluation
Master Plan

Perform
Tests

Produce
Test

Report

Put Products
Under

Configuration
Control

- Plan should be well-defined,
 clear, and documented.

- Track action to closure.

- Write test case specifications.
- Trace all tests to requirements.
- Trace all requirements to tests.

- If test failed or errors were found:
 -- Analyze, debug,
 -- Retest

Keep
Records

Fix Errors

- Track completed tests
 vs. planned.
- Track defects

Figure 12-4 Simplified Testing Process

12.2.1.3 Test Planning
When planning the testing program, a hierarchy of plans is involved in the process, each providing test direction at
different levels of the system and detail. Figure 12-5 depicts the Test Planning Tree as defined by the Software Pro-
gram Managers Network (SPMN). The contents of these planning documents which relate to testing are summarized
in Table 12-3. [4] More can be found on this and other testing principles in the SPMN’s highly recommended Little
Book of Testing, Volumes I and II. [1]

System Test Plan

Software Test
Description

Software Test
Procedure

Software Test
Case Definition

Software Test
Scenario

Test Case
Implementation

Repeated For
Each Unit &
Subsystem

Software Test Plan

Program PlanProgram Plan

Program Plan
Test & Eval

Management Plan

Program Plan
Software

Development Plan

Program Plan
System

Engineering
Management Plan

Figure 12-5 Test Planning Tree [4]

Condensed GSAM Handbook Chapter 12: Software Engineering Processes

February 2003 12-7

Several of these documents may be combined where appropriate. Often, the test procedure will contain the informa-
tion for the case definition, test scenario, and case implementation.

Table 12-3 Testing Related Content of Project Planning Documents [4]

Planning Document Testing Related Content

Program Plan Defines program requirements, strategies, etc. Identifies test requirements.

Test & Eval Management Plan Establishes entire testing strategy and practices.

System Engineering Management
Plan

Identifies plans, methods, standards, processes, and systems for integration
and test requirements.

System Test Plan Defines system testing strategies, controls, and processes. Test case re-
quirements are discussed and success criteria are identified.

Software Development Plan Describes the criteria for overall integration, test, and completion.

Software Test Plan Defines software and integration test plans, strategies, controls, and proc-
esses. Also defines test case requirements and completion criteria.

Software Test Description Describes the requirements for individual test cases.

Software Test Procedure Provides a step-by-step procedure for executing the test. It traces to a re-
quirement specification.

Software Test Case Definition Defines the test case and specifies success criteria for a test step.

Software Test Scenario Identifies specific data, sources, interfaces, timing, expected response, and
the next step to take in response to a test condition.

Test Case Implementation Executable test case.

12.2.2 Types of Testing
Many different types of testing are used to fulfill the many different testing needs. Several of the major types are
summarized here. Figure 12-6 indicates the phase of the project where some of these are generally found. Note that
test types may be found in more than one phase. Remember that maintenance projects are usually considered as de-
velopment projects also, ending with special maintenance and regression testing.

Integration
Testing

Requirements Design Code Integration

Code & Unit
Testing

System
Testing

Debugging

Acceptance
Testing

Acceptance Deployment Maintenance

Maintenance
Testing

Regression Testing
Regression

Testing

Figure 12-6 Types of Testing Performed During Different Project Phases

12.2.2.1 Debugging
Debugging is testing used from the unit to the system level to determine what is causing errors. It consists of search
methods used to isolate problems to a specific module or cause. When the problem is found it is fixed and retested.
While a formal test failure is usually an indicator of errors, debugging often involves a great deal of “free-form”
testing by software and systems engineers. While training can help, most expertise in debugging comes from experi-
ence.

Chapter 12: Testing Condensed GSAM Handbook

12-8 February 2003

12.2.2.2 Code and Unit Testing
As a software engineer codes a software module or unit, there will usually be testing of different pieces along the
way to make sure they are accomplishing the purpose of the unit. This is code testing and will consist mostly of in-
formal, free-form testing. Unit testing is performed when the unit is believed to be complete. It is tested to make sure
all inputs are handled correctly, producing the correct outputs with the proper timing, etc. Unit testing is usually
more formal because the unit will probably need to handle specific inputs and produce specific outputs or actions.
When units are complete, they are ready for the integration process.

It should be noted that unit testing is not always as straightforward as the name implies. Each unit should be well
defined before the testing is defined. Not every module or source file is necessarily a unit, especially when consid-
ering code maintenance or enhancement. A unit may consist of a single module, part of one module, or may be
comprised of several modules and their associated files. A unit may overlap several requirements, or a single re-
quirement may involve several units. A system architect may be necessary to assist the test definition process.

12.2.2.3 Integration Testing
While software modules may function well by themselves when they are developed, getting them to work together
efficiently and correctly is another matter. After they have been coded and tested individually, individual software
components are combined to form a final software product. During this integration effort, tests are performed on
various groupings of components to determine how well they work together. Incompatibilities, errors, and inadequa-
cies are discovered and fixed. Eventually, all software modules are integrated and debugged so they function cor-
rectly as a whole.

12.2.2.4 System Testing
When the software, hardware, and other subsystems are complete, they in turn are integrated and tested as a system.
This is the final development testing. Any problems or errors discovered during systems testing are analyzed to de-
termine which subsystems are at fault, then those subsystems are sent back for debugging, with its attendant code,
unit, and integration testing. Figure 12-7 shows the various levels of testing associated with development and how
problems and errors feed back to earlier developmental stages. System testing evaluates the functionality of the sys-
tem, including capabilities, compatibility, stability, performance, security, and reliability. [5]

Code Test
Unit

Testing Integration Testing System
Testing

Acceptance
TestingDesign

Figure 12-7 Development, Test, and Debug Cycle

12.2.2.5 Acceptance Testing
Acceptance testing is that formal demonstration that the system performs according to requirements. It should be
rehearsed during the system testing phase so that there are no failures or problems to be discovered. Acceptance
testing is usually witnessed by the customer and other stakeholders. A failure at this point is usually indicative of
incomplete testing in the development phase. Because the format and procedures of the acceptance tests have been
coordinated and agreed upon among developers and stakeholders, successful completion of the test should signal
acceptance by the customer and clear the way for deployment.

12.2.2.6 Regression Testing
Regression testing is not associated with any particular stage of the project, but should be performed whenever there
has been a change to a component or the system. It consists of testing components or a system after changes have
been made to verify that the components or systems still comply with the requirements and that the modifications
have not caused unintended effects. [5]

Condensed GSAM Handbook Chapter 12: Software Engineering Processes

February 2003 12-9

12.2.2.7 Maintenance Testing
Maintenance testing must be performed anytime there is a maintenance upgrade to the system. Its purpose is to en-
sure the new modifications are properly integrated and work with the rest of the system. It also verifies that the up-
grade provides the additional functionality the maintenance upgrade is supposed to add. Maintenance testing should
include regression testing to ensure the upgrade does not cause any undesired effects. [5]

12.2.2.8 Alpha Testing
Alpha testing is a preliminary field test by a select group of users with the purpose of finding bugs not discovered
through previous testing and to refine the user interface. It is an extension of system testing and may or may not be
used, depending on the project and product. The product is complete by this time but not necessarily refined. The
test group is usually made up of people within the developing organization, but not the developers themselves. [5]

12.2.2.9 Beta Testing
Beta testing is similar to and performed following alpha testing. Like alpha testing, it is optional, depending on the
project. The key difference is that the testers consist of selected users outside the developer’s organization. [5]

12.2.2.10 Black box testing
Black box testing is testing the function of a component or system from a user’s point of view without regard to the
internal structure or logic involved. [5] This should be done at various times throughout the development to maintain
an understanding of the user’s perspective and meet the user’s needs as well as the requirements.

12.2.2.11 Stress Testing
Stress testing is a form of system testing. The systems or subsystem is tested under extreme or abnormal conditions
outside the operational envelope with the purpose of finding the limits where the item being tested fails or breaks
down. This enables the testers to determine how much margin there is between expected operating conditions and
failure conditions. Stress testing may also be used to determine sensitivity, which types of conditions or combina-
tions thereof affect the system most and least. [6]

Stress testing of hardware may include vibration, pressure, temperature, and other environmental conditions. In
software systems conditions may include abnormal quantities, high frequency of interrupts, etc.

12.3 Testing Checklist
This checklist is provided to assist you in understanding the testing issues of your project. If you cannot answer a
question affirmatively, you should carefully examine the situation and take appropriate action.

12.3.1 Before Starting
! 1. Is testing planned for and considered throughout the entire development life cycle?

! 2. Is the overall testing strategy defined and documented, and is it an integral part of and consistent with the
development program? [4]

! 3. Is the testing process well defined, documented, understood, and supported by the development team and
management?

! 4. Are test requirements clearly defined? [4]

! 5. Are test methods, techniques, controls, and standards clearly defined and consistent with the testing strat-
egy? [4]

! 6. Is each test activity traceable to specific requirements? [4]

! 7. Are configuration management and quality assurance in place and are they adequate to support the testing
strategy? [4]

! 8. Are testers trained, skilled, and motivated people?

! 9. Have adequate time and resources been reserved for testing?

Chapter 12: Testing Condensed GSAM Handbook

12-10 February 2003

! 10. Are time and resources allocated for test preparation early in the project life cycle?

12.3.2 During Execution
! 13. Is testing used as a primary tool to ensure good project health?

! 14. Is testing implemented as a tool for improving product quality and the development process as a whole?

! 15. Is early life cycle testing used to prevent propagation of defects to later stages of development?

! 16. Is a tracking system being used to record what has been tested and what has not?

! 17. Is a database of test results being maintained for current and future reference?

! 18. Are tests used as milestone and progress indicators?

! 19. Is the right amount of testing being done to balance risk with available time and resources?

! 20. Are you using inspections and other evaluation methods (see Chapter 11) to reduce the errors found
through testing?

! 21. Do you know when your testing is complete?

12.4 References
[1] Software Program Managers Network, Little Book of Testing, Vol. 1, 1998:

www.spmn.com/products_guidebooks.html
[2] Jorgensen, Paul C., Software Testing A Craftsman’s Approach, CRC Press, 1995, p.3.
[3] Kit, Ed, Software Testing in the Real World, Addison-Wesley, 1995, p.3.
[4] Software Program Managers Network, Little Book of Testing, Vol. II, 1998:

www.spmn.com/products_guidebooks.html
[5] Program Manager’s Guide for Managing Software, 0.6, 29 June 2001, Chapter 11:

www.geia.org/sstc/G47/SWMgmtGuide%20Rev%200.4.doc

[6] University of South Australia, Software Testing notes: http://louisa.levels.unisa.edu.au/se1/testing-
notes/testing.htm

12.5 Resources
Crosstalk Magazine: www.stsc.hill.af.mil/crosstalk/

− “The Problem with Testing”: www.stsc.hill.af.mil/crosstalk/2001/07/index.html
− “Maintaining the Quality of Black-Box Testing”: www.stsc.hill.af.mil/crosstalk/2001/05/korel.html
− “Proven Techniques for Efficiently Generating and Testing Software”:

www.stsc.hill.af.mil/crosstalk/2000/06/wegner.html
− “ Model to Assess Testing Process Maturity”:

www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/11/burnstein.asp
− Planning Efficient Software Tests”: www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1997/10/planning.asp
− “Using Statistical Process Control with Automatic Test Programs”:

www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/08/statistical.asp
− “Engineering Practices for Statistical Testing”:

www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/04/statistical.asp
− “Using Inspection Data to Forecast Test Defects”:

www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/05/inspection.asp
Department of Energy (DOE) Software Engineering Methodology, Chapters 7-9:

http://cio.doe.gov/sqse/sem_toc.htm

NASA, Recommended Approach to Software Development, Sections 7-9:
http://sel.gsfc.nasa.gov/website/documents/online-doc.htm

http://www.spmn.com/products_guidebooks.html
http://www.spmn.com/products_guidebooks.html
http://www.geia.org/sstc/G47/SWMgmtGuide Rev 0.4.doc
http://louisa.levels.unisa.edu.au/se1/testing-notes/testing.htm
http://louisa.levels.unisa.edu.au/se1/testing-notes/testing.htm
http://www.stsc.hill.af.mil/crosstalk/
http://www.stsc.hill.af.mil/crosstalk/2001/07/index.html
http://www.stsc.hill.af.mil/crosstalk/2001/05/korel.html
http://www.stsc.hill.af.mil/crosstalk/2000/06/wegner.html
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/11/burnstein.asp
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1997/10/planning.asp
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/08/statistical.asp
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/04/statistical.asp
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/05/inspection.asp
http://cio.doe.gov/sqse/sem_toc.htm
http://sel.gsfc.nasa.gov/website/documents/online-doc.htm

Condensed GSAM Handbook Chapter 12: Software Engineering Processes

February 2003 12-11

Program Manager’s Guide for Managing Software, 0.6, 29 June 2001, Chapters 10-11:
www.geia.org/sstc/G47/SWMgmtGuide%20Rev%200.4.doc

Software Testing Stuff: www.testingstuff.com/

Software Testing Institute: www.softwaretestinginstitute.com/

SPMN Testing Guidebooks available for download at: www.spmn.com/products_guidebooks.html

SPMN 16 Critical Software Practices: www.spmn.com/16CSP.html

University of South Australia, Software Testing notes: http://louisa.levels.unisa.edu.au/se1/testing-notes/testing.htm

http://www.geia.org/sstc/G47/SWMgmtGuide Rev 0.4.doc
http://www.testingstuff.com/
http://www.softwaretestinginstitute.com/
http://www.spmn.com/products_guidebooks.html
http://www.spmn.com/16CSP.html
http://louisa.levels.unisa.edu.au/se1/testing-notes/testing.htm

Chapter 12: Testing Condensed GSAM Handbook

12-12 February 2003

This page intentionally left blank.

	Introduction
	Process Description
	Establishing a Test Process
	
	Table 12-2 Testing Activities of Project Phases

	Testing Levels
	The Testing Process
	Test Planning
	Several of these documents may be combined where appropriate. Often, the test procedure will contain the information for the case definition, test scenario, and case implementation.
	Table 12-3 Testing Related Content of Project Planning Documents [4]

	Types of Testing
	Debugging
	Code and Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Regression Testing
	Maintenance Testing
	Alpha Testing
	Beta Testing
	Black box testing
	Stress Testing

	Testing Checklist
	Before Starting
	During Execution

	References
	Resources

