
February 2003 15-1

Chapter 15

Software Design

CONTENTS
15.1 INTRODUCTION ...3

15.2 PROCESS DESCRIPTION ..3

15.2.1 DESIGN PROCESS..4
15.2.1.1 Functional Design [2] ...4
15.2.1.2 System Design [3] ..5
15.2.1.3 Program Design [4] ..5

15.2.2 DESIGN METHODS ..6
15.2.2.1 Structured Design ..6
15.2.2.2 Object Oriented Design ...6
15.2.2.3 Extreme Programming [5] [6] ..7

15.2.3 OTHER DESIGN CONSIDERATIONS ..7
15.2.3.1 Programming Guidelines...7
15.2.3.2 Reuse..8
15.2.3.3 Computer Aided Software Engineering (CASE) ..8

15.2.4 EXAMPLE DESIGN PROCESS..8

15.3 SOFTWARE DESIGN CHECKLIST..9

15.3.1 BEFORE STARTING..9
15.3.2 DURING DESIGN ...9

15.4 REFERENCES ..9

15.5 RESOURCES...10

Chapter 15: Software Design Condensed GSAM Handbook

15-2 February 2003

This page intentionally left blank.

February 2003 15-3

Chapter 15

Software Design
 “There are very good reasons for everything they do. To the uninitiated some of their little tricks and some of their

regulations seem mighty peculiar…” – Eric Frank Russell – “Men, Martians and Machines”

15.1 Introduction
The first digital computer, ENIAC, was constructed in the mid-1940’s and became operational in 1945. It weighed
over 30 tons, contained 19,000 vacuum tubes and 1500 relays, and used a little under 200 kilowatts of electricity. Its
clock cycled at 100 kilohertz and it could multiply 10 digit numbers 384 times a second. [1] In less than the lifetime
of a man, ENIAC has evolved into a technology base where computers pervade our existence, being found in appli-
ances and machines affecting virtually every aspect of our lives. This paragraph is being written on a digital com-
puter which can be operated on a human lap, consumes less than 150 watts, and can perform tens of millions of
multiplications a second. The physical side of the computing has gone from tubes to transistors to integrated circuits
to Very Large Scale Integration (VLSI), and continues unabated in its headlong rush to make everything ever
smaller and ever faster.

During this same period the initially experimental craft of programming digital computers has gone through several
major revolutions and countless innovations to become a science requiring a lifetime’s study to fully comprehend.
Any photograph of the current state of computer programming will have become a page in history by the time it is
developed. Even the meaning of the sentence you just read will become archaic, if not undecipherable, within a few
years because of the convergence of computing and photography. And so it continues.

Computer software began as machine-specific binary code instructions, or ones and zeroes. Thus the first generation
of software and programmers were artists as much as anything else, creatively trying to write programs small
enough to fit into the limited memory, and fast enough to be useful with the limited processing power. Second gen-
eration programming took a step away from ones and zeroes to use mnemonics, special words that represented bi-
nary code instructions, to write their programs. Third generation programming incorporated procedural languages in
which a single word might be translated into hundreds or thousands of binary instructions. Fourth generation lan-
guages attempted to move programming from the realm of telling the computer how to do something, to telling the
computer what you want done and letting it write its own procedural program. Fourth generation programming has
not been fully successful and software is still generally written in procedural languages with some fourth generation
additions and other enhancements. Software development is one of the fastest evolving fields of engineering there
are. To cut development costs and time new methods and processes are constantly being created. Software develop-
ment has become so progressive that its innovations are often applied to other disciplines to help them deal with
their own changes.

In spite of all this talk of computer programming, the major work of programming a computer is not programming,
or writing software code, but software design. Software is now usually very complex in nature and often consists of
multiple programs and resource files. To create good software requires discipline, training, creativity, a lot of work,
and good software design processes. This chapter examines the overall software design process and samples some of
the design methods used within that process.

15.2 Process Description
Software design is part of the systems development life cycle. Remember that most projects include the develop-
ment of other system elements in addition to software. Software development rarely has the luxury of proceeding
independently of other development, but is constrained to some extent by the other elements and the system as a
whole. Software development also has its own life cycle (see Chapter 2) that further constrains the software design
effort, determining what methods can be used and how they can be used.

Chapter 15: Software Design Condensed GSAM Handbook

15-4 February 2003

What is presented here as a software design process is a generalized form that will have to be tailored to conform to
the various life cycles involved. Additionally, new development methods are evolving to match various types of
development with more streamlined and efficient development. While some of these are presented here, the list is
incomplete and only representative.

15.2.1 Design Process
The software design phase falls between requirements definition and integration. As shown in Figure 15-1, the in-
puts to the software design process are the software requirements. The software developed during the design phase
is passed on to the integration and test phase. Requirements, integration and test are covered in other areas of this
book (Chapters 4, 10, 12, and 14). The design process involves an iterative series of progressively more detailed
phases that eventually produce coded software modules ready for integration. Each of these phases is further elabo-
rated below. Remember that there may be more activities or additional iterations of the three shown depending on
the development life cycle used. For example, the spiral development model (Section 2.2.1.4) will go through this
process two or more times to arrive at the final product.

Functional
Design

System
Design

Program
DesignRequirements Integration

& Test

Functional Structure
User Interfaces
System Inputs/Outputs
Logical Model
Data Dictionary

Design Specifications
Program Specifications
Programming Standards
Physical Model
Draft Test Plans

Software Units/Modules
Final Test Plans
User Documentation
Programmers Reference
Installation Plan
Training Plan

Products Products

Figure 15-1 Software Design Activities

Note: Functional design and system design may be called by other names, such as preliminary and detailed design.

15.2.1.1 Functional Design [2]

The functional design phase converts the Software Requirements Specification, which tells what the software must
do, into a functional design specification, describing how to do it. The functions and structure of the software are
defined, including:

• Logical System Flow • Data Organization

• System Outputs • System Inputs

• Processing Rules • Operational Characteristics (User’s Viewpoint)

While the focus is on the functional structure of the software, prototyping is often used during this activity to dem-
onstrate the functional design to users and other stakeholders.

The following major activities are performed during functional design:

• Define Software Structure • Define Content Of System Inputs

• Design User Interfaces • Define Content Of System Outputs

• Design System Interfaces • Design System Security Controls

• Build Logical Model • Build Data Model

Condensed GSAM Handbook Chapter 15: Software Design

February 2003 15-5

• Develop Functional Design • Procure Hardware And Software

• Conduct Structured Walkthroughs • Conduct Functional Design Review

The products of the functional design phase include:

• Functional Design Document • Logical Model

• Data Dictionary • Design Records

• Expanded Requirements Traceability Matrix • Hardware And Software Procurement Records

15.2.1.2 System Design [3]

The system design phase converts the user-oriented functional design into technical, computer-oriented, detailed
system design specifications. Individual software modules, routines, processes, and data structures are defined,
while maintaining the interfaces defined in the functional design phase.

The major activities of this phase include:

• Select System Architecture • Design Software Module Specifications

• Develop System Design • Develop System Test Plan

• Develop Program Specifications • Define Programming Standards

• Develop Conversion Plan • Conduct System Design Review

• Develop Integration Test Plan • Design Physical Model And Database Structure

• Conduct Structured Walkthroughs

The products of the system design phase include:

• System Design Document • Program Specifications

• Design Specifications • Programming Standards

• Physical Model • Expanded Data Dictionary

• Draft Integration Test Plan • Draft System Test Plan

• Conversion Plan • Expanded Requirements Traceability Matrix

15.2.1.3 Program Design [4]

The function of the program design phase is to produce the actual working software modules specified in the System
design phase. The program specifications from the system design phase are used to design and code the individual
program modules. Each module must conform to the design documents produced in earlier phases and be thoroughly
tested in readiness for integration and testing. Additional activities in this phase include documentation and test
planning.

The following activities are included in this phase:

• Write Programs • Conduct Unit Testing

• Generate Operational Documents • Conduct Structured Walkthroughs

• Develop Training Program • Establish Programming Environment

• Plan Transition To Operational Status

Chapter 15: Software Design Condensed GSAM Handbook

15-6 February 2003

The products of this phase include the following:

• Software Units And Modules • Installation Plan

• Final Integration Test Plan • Final System Test Plan

• Project Test File • Transition Plan

• Users Manual • Programmers Reference Manual

• Training Plan

15.2.2 Design Methods
Originally, almost anything went as far as programming methodology was concerned. Programmers all had their
own styles and idiosyncrasies. The problems associated with this laissez faire approach began to surface when pro-
grammers had to work together on larger, more complex projects. Without a common design method, they had
problems with module boundaries, interfaces, data structures, and the list went on. The problems became insur-
mountable during the maintenance phase when software had to be updated and the original programmer had moved
on. It was often easier to build new software than to update the previous version. To help overcome these obstacles,
design methodologies were developed and implemented throughout the industry. While the level of success of these
methods varies, it is a fact that implementing design methods is far better than not using them.

Design methods are generally used within the framework of the design process discussed in the previous section.
The method and/or the process may be modified to combine the two. There is not enough time or room here to make
an in-depth study of all the design methods that are available or in use. The three presented here are considered with
the briefest regard. They were chosen because they represent an evolution in software development methods. Learn
the essential principles of the methods being used on your project. Know their advantages and disadvantages and
why they were chosen.

15.2.2.1 Structured Design
Structured design was a major step toward taming the Hydra of spaghetti code programming. It imposed various
rules for software design that made it much easier to document, follow, maintain, and in spite of the complaints of
some programmers, even easier to design. Two major rules of this method were that (1) programs were to be broken
into functions and subroutines, and (2) there was only a single entry point and a single exit point for any function or
routine. This imposed an order heretofore unknown in software development and was a major step in making it into
a discipline. While other methods have provided even greater order and capacity, most software code is still struc-
tured at its lowest level.

15.2.2.2 Object Oriented Design
While structured design had vastly improved the software industry, there were still problems. A change in one part
of the program often required thorough searching of the entire program to determine what effects the change had
caused in other routines. A simple design change in a single subroutine could ripple throughout the whole program.
Code that affected a single decision might be spread throughout the program. Additionally, variables and program
structure were accessible to other developers. It wasn’t so much a problem of multiple people being able to affect
and modify all the code, as it was that those other people had to be mindful of what was going on in subroutines
throughout the program so they wouldn’t inadvertently interfere with them. And there were other issues.

Object Oriented Design (OOD) was developed to overcome many of the problems left unsolved by structured de-
sign. It introduced a whole new way of looking at software and currently forms the basis of most new software de-
velopment. In OOD, a model of the real world is developed to characterize and test the design before having to build
it. The model is populated by objects, representations of real world objects that have attributes and functions. OOD
also implements encapsulation, where data and other information are hidden within objects. Other developers can
use an object without having to worry about the data inside or how the object operates. One only needs to know
what goes into the object, what comes out, and what operations it performs. Another concept implemented under
OOD is inheritance, where data and objects can be created from previously defined parent data and objects, and
have all the attributes of those parents. A third concept, polymorphism, allows multiple objects to be modified

Condensed GSAM Handbook Chapter 15: Software Design

February 2003 15-7

through the modification of a single entity. These three concepts greatly enhance developers’ abilities to more easily
manage multiple objects, reuse and maintain software, and deal with complex software systems.

15.2.2.3 Extreme Programming [5] [6]
A relatively new method of programming is currently making inroads in many small to medium size software devel-
opment efforts where requirements are vague or rapidly changing. Known as Extreme Programming (XP), it views
risk as the basic problem of software development and implements “common sense” approaches to overcome vari-
ous risks inherent in design. Table 15-1 lists several common risks and their XP solutions.

Table 15-1 How XP Deals With Common Risks

Risk XP Recommended Mitigation

Schedule slips Implement short release cycles so that the scope of any slip is limited. Im-
plement higher priority features first so features that slip past the release
date are lower value.

User mission misunderstood The user is an integral part of the team. The specification is continuously
refined during development with both developer and user learning.

Mission changes Release cycles are shortened so there is less change during the develop-
ment of a single release.

Software rich with unneeded features Features are implemented in order of their priority (value).

Staff turnover Programmers are given responsibility to estimate and complete their own
work. They receive feedback to improve their estimates. Communications
between team members is encouraged to reduced feelings of isolation.

High defect rate Software is tested from both the programmer’s and user’s perspectives,
function by function, and program feature by program feature.

Project is cancelled The user chooses the smallest release that makes the most sense mission-
wise so there is less to go wrong and software value is the greatest.

Software system goes bad A comprehensive set of tests is created and maintained, and then run mul-
tiple times after every change to ensure a quality baseline.

Extreme programming gets its name by doing good things to extreme levels. Because code reviews are good, code is
reviewed all the time. Because testing is good, everyone tests all the time, even the users. Because architecture is
important, everyone defines and refines the architecture all the time. If short iterations are good, make them very
short, even hours or minutes instead of weeks, months, or years.

Obviously, XP is not applicable to all projects, but it can be successful in the proper setting. And if XP may not be
right for a specific project, some of its principles and strategies may be. It also shows us one of the directions soft-
ware development is heading.

15.2.3 Other Design Considerations
15.2.3.1 Programming Guidelines
The software development guidelines for your project should be documented in a Software Standards and Conven-
tions Document (SSCD). This document defines the following:

1. Overall software development process, including each of the design phases.

2. Programming language quality, style, and standards guidelines.

3. Documentation Standards.

4. Guidelines for use of design tools.

5. Reuse strategies.

Chapter 15: Software Design Condensed GSAM Handbook

15-8 February 2003

6. Software configuration control.

7. Test standards.

8. Review and inspection processes.

9. Metrics to be used.

15.2.3.2 Reuse
Because of the high cost of software development, considerable consideration should be given to designing software
that is reusable wherever possible. Designing for reuse begins in the planning phase and must be considered
throughout the project to be effective. Proper implementation of reuse techniques and modern design methods, such
as OOP, will make maintenance easier and less costly, and can even provide software modules for other projects.

15.2.3.3 Computer Aided Software Engineering (CASE)
CASE tools are software programs that assist the software engineer in designing and documenting software. They
are usually dependent on the design methodology employed by the development team, and may even be dependent
on the language chosen for implementing the design. Their chief contributions consist of the following advantages:

• Encourage or enforce a formal design process or methodology.

• Document the design in a consistent, formal manner.

• Track the details to help ensure things aren’t forgotten.

• Unify the development team in their efforts.
In addition to the above advantages, some CASE tools help in discovering errors, developing tests, tracking re-
quirements, and simulating the software design. Every effort should be made to select an easy-to-use, functional,
helpful, and proven tool that not only integrates with your development process, but actually facilitates, assists, and
documents that process in as many areas as possible.

15.2.4 Example Design Process
The following example is a process currently being used in the development of an upgrade to an Operational Flight
Program (avionics) for an aircraft. The original software already exists so this upgrade will provide additional func-
tionality. The project uses object oriented programming, and is implemented in Ada. There are three design phases,
identified as Preliminary, Detailed, and Implementation.

15.2.4.1 PRELIMINARY DESIGN
a. Review and Allocate Requirements - Review all new requirements and allocate them to objects, creating

new objects as needed.

b. Create Description of Objects – Describe each new object at a high level.

c. Identify Object Associations – Identify the associations between objects. This is often done by identify-
ing the messages that flow between the objects and using the flows to identify associations.

d. Allocate Objects to Subsystem – Allocate all objects to subsystems in the existing architecture.

e. Identify Object Attributes – Define the visible attributes (data portion) of each object.

f. Identify Object Operations – Define the visible operations of the object.

g. Develop Static Structure – Static structure is developed using Class/Object diagrams in a CASE tool.

h. Develop Scenarios – High-level scenarios (sequences of events and responses) are developed for signifi-
cant events.

15.2.4.2 DETAILED DESIGN
a. Translate Object Diagrams into Ada – Translate each Class/Object diagram into an Ada package speci-

fication.

Condensed GSAM Handbook Chapter 15: Software Design

February 2003 15-9

b. Refine Ada packages using Program Design Language (PDL)/Ada – PDL/Ada is a design methodol-
ogy that combines Ada language control structures with commentary, allowing evaluation of a design be-
fore it is coded. PDL/Ada consists of block comments and only those Ada control statements sufficient to
describe the program structure. The following components are included:

− Block Comments – These describe processing to be performed and are written in English.
− Program Structure – When necessary, show program structure with Ada control statements.
− Data Definitions – Define data to be used. Include name, description, units, and range.
− Object Interface Definitions – Details of object interfaces are defined and documented.

15.2.4.3 CODING
a. Coding – Ada packages are coded according to the specifications of the Detailed Design.

b. Unit Testing – Program units are tested to ensure they perform correctly against scenarios before being
turned over to integration.

15.3 Software Design Checklist
This checklist is provided to assist you in understanding the software design issues of your project. If you cannot
answer a question affirmatively, you should carefully examine the situation and take appropriate action.

15.3.1 Before Starting
! 1. Do you have a well-documented software development process?

! 2. Do you understand what is to be performed and produced in each phase of the design process?

! 3. Do you have a Software Standards and Conventions Document (SSCD)?

! 4. Does the SSCD contain direction in those areas listed in Section 15.2.3.1?

! 5. Are you familiar with the methods, tools, standards, and guidelines in the SSCD?

! 6. Are applicable and efficient design methods (OOD, etc.) being implemented on your project?

! 7. Are the developers experienced in the chosen development process and methods?

! 8. Is software reuse being considered throughout the development effort?

! 9. Has an analysis of alternatives been completed?

! 10. Is the selection of architecture and design methods based on system operational characteristics?

15.3.2 During Design
! 11. Are CASE tools being used to assist and document the design effort?

! 12. Does your design process include a robust configuration control process?

! 13. Is the design effort being properly documented? Adequate but not burdensome?

! 14. Is your team committed to following the design process?

! 15. Are all design elements traceable to specific requirements?

! 16. Are all requirements traceable to design elements?

! 17. Have all software units been identified?

! 18. Are the characteristics of all data elements identified (type, format, size, units, etc.)?

15.4 References
[1] Weik, Martin H., The ENIAC Story, 1961: http://ftp.arl.mil/~mike/comphist/eniac-story.html

http://ftp.arl.mil/~mike/comphist/eniac-story.html

Chapter 15: Software Design Condensed GSAM Handbook

15-10 February 2003

[2] Department of Energy (DOE) Software Engineering Methodology, Chapter 5:
http://cio.doe.gov/sqse/sem_toc.htm

[3] ibid, Chapter 6.
[4] ibid, Chapter 7.
[5] Beck, Kent, Extreme Programming Explained, Addison-Wesley, 2000.
[6] Mayford Technologies web site: www.mayford.ca

15.5 Resources
CSIRO-Macquarie University, Design tool resources: www.jrcase.mq.edu.au/seweb/designtool/dt.html

Champeaux, Dennis de, et al, Object-Oriented System Development, 1993, readable online at:
http://gee.cs.oswego.edu/dl/oosdw3/

Department of Energy (DOE) Software Engineering Methodology: http://cio.doe.gov/sqse/sem_toc.htm
Guide to Software Engineering Body of Knowledge: www.swebok.org

Little Book of Software Design, Software Program Managers Network, November 1998. Download at:
www.spmn.com/products_guidebooks.html

Object Agency , “Comparison of Object-Oriented Development Methodologies”:
http://www.toa.com/smnn?mcr.html

Program Manager’s Guide for Managing Software, 0.6, 29 June 2001, Chapters 8 & 10:
www.geia.org/sstc/G47/SWMgmtGuide%20Rev%200.4.doc

Software Engineering Body of Knowledge:
www.sei.cmu.edu/publications/documents/99.reports/99tr004/99tr004abstract.html

http://cio.doe.gov/sqse/sem_toc.htm
http://www.mayford.ca/
http://www.jrcase.mq.edu.au/seweb/designtool/dt.html
http://gee.cs.oswego.edu/dl/oosdw3/
http://cio.doe.gov/sqse/sem_toc.htm
http://www.swebok.org/
http://www.spmn.com/products_guidebooks.html
http://www.toa.com/smnn?mcr.html
http://www.geia.org/sstc/G47/SWMgmtGuide Rev 0.4.doc
http://www.sei.cmu.edu/publications/documents/99.reports/99tr004/99tr004abstract.html

	Introduction
	Process Description
	Design Process
	Functional Design [2]
	System Design [3]
	Program Design [4]

	Design Methods
	Structured Design
	Object Oriented Design
	Extreme Programming [5] [6]

	Other Design Considerations
	Programming Guidelines
	Reuse
	Computer Aided Software Engineering (CASE)

	Example Design Process
	PRELIMINARY DESIGN
	DETAILED DESIGN
	CODING

	Software Design Checklist
	Before Starting
	During Design

	References
	Resources

