
Februay 2003 2-1

Chapter 2

Software Life Cycle

CONTENTS
2.1 INTRODUCTION ...3

2.2 PROCESS DESCRIPTION ..3

2.2.1 LIFE CYCLE MODELS ..4
2.2.1.1 Waterfall Model ...4
2.2.1.2 Incremental Model...5
2.2.1.3 Evolutionary Model (Prototyping)...6
2.2.1.4 Spiral Model ..7

2.3 APPLICATION ...9

2.3.1 EVOLUTIONARY ACQUISITION AND SPIRAL DEVELOPMENT ...9
2.3.2 SELECTION MATRIX ...10

2.4 LIFE CYCLE CHECKLIST ..11

2.4.1 BEGINNING A DEVELOPMENT PROJECT ..11
2.4.2 DEVELOPMENT PROJECT IS UNDER WAY ...12

2.5 REGULATIONS..12

2.6 REFERENCES ..12

2.7 RESOURCES...12

2.7.1 SOFTWARE LIFE CYCLE..12
2.7.2 SOFTWARE ACQUISITION/DEVELOPMENT...13

Chapter 2: Software Life Cycle Condensed GSAM Handbook

2-2 Februay 2003

This page intentionally left blank.

Februay 2003 2-3

Chapter 2

Software Life Cycle

2.1 Introduction
In the early days of computing, software was developed by many individuals following their own methods. Often,
the methods employed some form of “code and fix”, where the programmer writes some code and then tests it to see
how it performs. The programmer then uses the test results to modify or fix the code and tests again. Programmers
were able to get by with this type of development for two reasons. First, no better way had been developed, and sec-
ond, software was not that complex. As software grew more complicated and organizations relied on computers for
more of their operations, including finances and even human lives, this laissez faire approach to programming gave
way to more disciplined methods. The overall framework in which software is conceived, developed, and main-
tained is known as the Software Development Life Cycle (SDLC). This chapter discusses the various types of
SDLCs, along with their advantages and disadvantages.

A life cycle model defines the phases, milestones, deliverables, and evaluation criteria of the software devel-
opment process. These form the basis of the work breakdown structure (WBS), used for project planning and man-
agement.

2.2 Process Description
Life cycles are usually referred to as models, and define the phases of a software development effort. Simple life
cycles may have only three phases, Design, Development, and Maintenance; while complex life cycles may include
20 or more phases. Generally, software life cycles include the phases shown in Figure 2-1.

Requirements

Design

Implementation

Testing

Deployment

Maintenance

Figure 2-1 Common Life Cycle Phases

These “classic” phases are often divided into additional phases to allow better definition and control of the develop-
ment process. They may also be repeated in an iterative manner, depending on the software complexity and the life
cycle model used. Most life cycle phases are identical or similar to the common phases identified above and the
following general descriptions will apply across most models. Note that single phases are composed of multiple ac-
tivities.

The Requirements Phase consists of analyzing the problem or need for which the software is being developed. This
analysis, a systems engineering activity, develops and specifies requirements, stating what the software must do. In
addition to stated requirements, requirements are derived from higher-level requirements and statements of need.

In the Design Phase the software structure is defined. Technical approaches are chosen and problems are solved
conceptually. This phase is often divided into a Preliminary Design Phase and a Detailed Design Phase. In the pre-
liminary design the initial software architecture is developed. In the detailed design, functional modules are defined,
along with user interfaces and interfaces between modules.

Chapter 2: Software Life Cycle Condensed GSAM Handbook

2-4 Februay 2003

The Implementation Phase (sometimes called the Development Phase) is where the programming or coding takes
place to execute the software design. This phase is often iterative, with unit and integration testing being performed
after a software build, and the results used in another round of programming.

Software is tested for functionality and requirements compliance during the Testing Phase. Testing is often split into
three separate phases: Unit Testing, Integration Testing, and Acceptance Testing. The first two may be part of a re-
peated cycle of coding and testing, while acceptance testing verifies requirements compliance.

During the Deployment Phase the software is installed in the intended system and users are trained in its operation.
At this point the software development effort is considered complete.

The Maintenance Phase includes fixing errors and modifying or upgrading the software to provide additional func-
tionality, such as enabling the software to work with new computing platforms. This phase costs far more in time
and effort than the original development. Software maintainers must relearn the original software code to understand
what was done, then make changes to specific modules to produce the desired effect without interfering with rest of
the software. It’s much easier to change requirements earlier than it is to change software code later. This also means
that software should be developed with maintenance in mind.

2.2.1 Life cycle Models
There are many life cycle models, or paradigms. Most of them are variations of three classic software development
models: the waterfall, incremental, and spiral models. These three, along with the evolutionary model, are summa-
rized here.

2.2.1.1 Waterfall Model
The waterfall model, also known as the linear sequential model, is shown in Figure 2-2 with its major phases, mile-
stones, and products. It is a highly structured development process, first used on DoD software projects in the 1970s.
It is the “traditional” approach to software development and was derived from defense and aerospace project lifecy-
cles. It is considered superior to the previously used “code and fix” methods of software development, which lacked
formal analysis and design.

Software Items (SIs)

System Requirements
Definition

Software Requirements
Analysis

System
Functional

Review

Preliminary
Design Review

Preliminary Design

Critical Design
Review

Detailed Design

Coding and Unit
Testing

Test
Readiness

Review

Component Integration
and Testing

Software
Specification

Review

Integration Testing

System Testing

Maintain Software

System Segment
Specification

Software Requirements
Specification

Software Design
Document - Preliminary

Software Design
Document - Final

Software Units
(SUs)

Tested Software

Condensed GSAM Handbook Chapter 2: Software Life Cycle

Februay 2003 2-5

Figure 2-2 Waterfall Model [1]

The waterfall model is documentation-intensive, with earlier phases documenting what must be done and subsequent
phases adding greater detail and defining how it should be done. The output from one phase serves as the input to
the next phase, with the project flowing from one step to the next in a waterfall fashion. Phases are assumed to be
sequential, with only localized feedback during the transition between phases. This is accomplished by using re-
views as gates. Comprehensive reviews validate the work of one phase, and require the resolution of any problems
before development is allowed to proceed to the next phase.

An important consideration for the Waterfall model is that fixes or modifications are often put off until the mainte-
nance phase. This can be very costly, as the cost to correct a problem gets higher with each successive phase.

Advantages

• System is well documented.
• Phases correspond with project management phases.
• Cost and schedule estimates may be lower and more accurate.
• Details can be addressed with more engineering effort if software is large or complex.

Disadvantages

• All risks must be dealt with in a single software development effort.
• Because the model is sequential, there is only local feedback at the transition between phases.
• A working product is not available until late in the project.
• Progress and success are not observable until the later stages. If a mistake or deficiency exists in the documen-

tation of earlier phases, it may not be discovered until the product is delivered.
• Corrections must often wait for the maintenance phase.

Application

The Waterfall model can be successfully used when requirements are well understood in the beginning and are not
expected to change or evolve over the life of the project. Project risks should be relatively low.

2.2.1.2 Incremental Model
The incremental model is essentially a series of waterfall cycles. One variant is shown in Figure 2-3. The require-
ments are known at the beginning of the project and are divided into groups for incremental development. A core set
of functions is identified in the first cycle and is built and deployed as the first release. The software development
cycle is repeated, with each release adding more functionality until all requirements are met. Each development cy-
cle acts as the maintenance phase for the previous software release. While new requirements that are discovered
during the development of a given cycle can be implemented in subsequent cycles, this model assumes that most
requirements are known up front. The effort is planned and executed to satisfy the initial list of requirements. A
modification to the incremental model allows development cycles to overlap. That is, a subsequent cycle may begin
before the previous cycle is complete.

Figure 2-3 The Incremental Model is a Series of Waterfalls

Advantages

• Provides some feedback, allowing later development cycles to learn from previous cycles.
• Requirements are relatively stable and may be better understood with each increment.

Chapter 2: Software Life Cycle Condensed GSAM Handbook

2-6 Februay 2003

• Allows some requirements modification and may allow the addition of new requirements.
• It is more responsive to user needs than the waterfall model.
• A usable product is available with the first release, and each cycle results in greater functionality.
• The project can be stopped any time after the first cycle and leave a working product.
• Risk is spread out over multiple cycles.
• This method can usually be performed with fewer people than the waterfall model.
• Return on investment is visible earlier in the project. [7]
• Project management may be easier for smaller, incremental projects. [7]
• Testing may be easier on smaller portions of the system.

Disadvantages

• The majority of requirements must be known in the beginning.
• Formal reviews may be more difficult to implement on incremental releases than on a complete system. [2]
• Because development is spread out over multiple iterations, interfaces between modules must be well-defined in

the beginning. [2]
• Cost and schedule overruns may result in an unfinished system.
• Operations are impacted as each new release is deployed.
• Users are required to learn how to use a new system with each deployment.

Application

The incremental model is good for projects where requirements are known at the beginning, but which need func-
tionality early in the project or which can benefit from the feedback of earlier cycles. Because each cycle produces a
working system, it may also be advantageous for projects whose continued funding is not assured and may be cut at
any time. It is best used on low to medium-risk programs. If the risks are too high to build a successful system using
a single waterfall cycle, spreading the development out over multiple cycles may lower the risks to a more manage-
able level. [3]

2.2.1.3 Evolutionary Model (Prototyping)
The evolutionary model, like the incremental model, develops a product in multiple cycles. Unlike the incremental
model, which simply adds more functionality with each cycle, this model produces a more refined prototype system
with each iteration. The process, shown in Figure 2-4, begins in the center with initial requirements and plans, and
progresses through multiple cycles of planning, risk analysis, engineering, and customer evaluation. Each cycle pro-
duces a prototype that the customer evaluates, followed by a refinement of requirements.

Specification, development, and testing activi-
ties are carried out concurrently (in the engi-
neering quadrant) with rapid feedback. Since
requirements continue to change, documenta-
tion is minimal, although essential information
must still be included for understanding the
system and for future support. Implementation
compromises are often made in order to get the
prototype working – permanent fixes can be
made with the next prototype. Operational ca-
pability is achieved early, but users must be
willing to learn how to use each new prototype.

General system requirements must be known
prior to development. This is particularly help-
ful where evolving technology is being intro-

Risk AnalysisPlanning

Engineering
Customer
Evaluation

Initial
Requirements &

Planning

Based on Initial
Requirements

Based on
Customer Reaction

Initial Prototype

Next Prototype

Engineered System

Figure 2-4 First Generation Evolutionary Model [4]

Condensed GSAM Handbook Chapter 2: Software Life Cycle

Februay 2003 2-7

duced into the project. The evolutionary model relies heavily on user feedback after each implementation to refine
requirements for the next evolutionary step.

Advantages [5]

• Project can begin without fully defining or understanding requirements.
• Final requirements are improved and more in line with real user needs.
• Risks are spread over multiple software builds and controlled better.
• Operational capability is achieved earlier in the program.
• Newer technology can be incorporated into the system as it becomes available during later prototypes.
• Documentation emphasizes the final product instead of the evolution of the product. [2]
• This method combines a formal specification with an operational prototype. [2]

Disadvantages [5]

• Because there are more activities and changes, there is usually an increase in both cost and schedule over the
waterfall method.

• Management activities are increased.
• Instead of a single switch over to a new system, there is an ongoing impact to current operations.
• Configuration management activities are increased.
• Greater coordination of resources is required.
• Users sometimes mistake a prototype for the final system.
• Prototypes change between cycles, adding a learning curve for developers and users.
• Risks may be increased in the following areas:

− Requirements – Temptation to defer requirements definition.
− Management – Programs are more difficult to control. Better government/contractor cooperation needed.
− Approval – Vulnerable to delays in funding approval, which can increase schedule and costs.
− Architectural – Initial architecture must accommodate later changes.
− Short term benefits – Risk of becoming driven by operational needs rather than program goals.
− Risk avoidance – Tendency to defer riskier features until later.
− Exploitation by suppliers – Government bargaining power may be reduced because initial contract may not

complete the entire task, and subsequent contracts are not likely to be competed.
− Patchwork quilt effects – If changes are poorly controlled, the product quality can be compromised.

Application

The evolutionary model can be employed on most types of acquisitions. However, it is usually employed on medium
to high-risk systems. The evolutionary model should be considered for systems where requirements are not all
known or not yet refined, but are expected to evolve. It is more applicable to new systems than upgrading existing
software. [2] The developing and using organizations must be flexible and willing to work with evolving prototypes.
Programs well suited to employ the evolutionary model have some or all of the following characteristics. [5]

• Software intensive systems. • Have a large number of diverse users.
• Have rapidly changing software technology. • Developing an unprecedented system.
• Humans are an integral part of the system. • Limited capability is needed quickly.

2.2.1.4 Spiral Model
 The spiral model [6] was developed with the goal of reducing risk in the software life cycle. It combines elements
of the waterfall, evolutionary, and incremental models, and depending on how it is implemented can strongly resem-
ble any combination of the others. The model’s spiral nature can be seen in Figure 2-5, one of several variants. The

Chapter 2: Software Life Cycle Condensed GSAM Handbook

2-8 Februay 2003

project starts at the center and progresses through multiple cycles, each working through the software development
activities associated with the four quadrants:

1. Determine objectives, alternatives, constraints.
2. Evaluate alternatives. Identify and resolve risks.
3. Develop the next-level product.
4. Plan the next phase.

Risk management is a key element of the Spiral model and each round of the spiral identifies problems with the
highest risk and develops solutions for that set of problems. The process may even resemble a waterfall with addi-
tional risk management techniques. Each cycle ends in a review in which stakeholders agree on plans for the next
cycle. While a prototype may be produced for IOC, software is usually not developed for release until the last cycle.
[7]

Risk
Analysis
Conceptual
Prototyping

Project
Definition

Concept of
Operation
System
Software
Spec.

 System/
Product

Objectives,
Alternatives,

and
Constraints

Risk
Analysis

Demonstration
Prototyping

Engineering and
Project

Planning

Risk
Analysis

Risk
Analysis

Risk
Analysis

Software
Require-

ments Spec,
Updated

System
Software

Specification

Design
and

Development
Transition

Planning

Design
Objectives,

Alternatives,
and

Constraints

Design
Assessment

Prototyping

Software
Architecture

and
Preliminary

SDDs

CSCI
Integration

and
Test

Site
Activation

Training
Planning

Implementation
Objectives,

Alternatives,
and

Constraints

Operational
Prototyping

Simulations, Models,
and Benchmarks

Detailed
Design

Code

Unit
Test

Integration
and Test

Qualification
Testing

IOC
DELIVERY

Enhanced
Operational

Capability
Integration,

Activation
and
Training

Planning

Support
and

Maintenance

Constraints
and

Alternatives,
Objectives,

Prototyping
Operational

Updated

Updated
Detailed

Design

Code

Unit
Test

Integration
and Test

Formal
TestingUser

Acceptance
Test and
Training

FOC
DELIVERY

FCA/PCA

Product
Review

Design
Review

Rqmts
Review

System
Review

PLAN NEXT PHASE

DETERMINE OBJECTIVES,
ALTERNATIVES, AND
CONTRAINTS

EVALUATE ALTERNATIVES,
IDENTIFY AND RESOLVE RISKS

DEVELOP NEXT LEVEL PRODUCT

Figure 2-5 The Spiral Model [5]

The Spiral model has been used extensively in the commercial world because of its performance in a market-driven
environment. It significantly reduces technical risk and more easily incorporates new technology and innovations.
At the same time, it tends to increase cost and schedule risks. In the past the Spiral model has been difficult to im-
plement in the DoD environment. This is because contracts with predefined deliverables and schedules do not easily

Condensed GSAM Handbook Chapter 2: Software Life Cycle

Februay 2003 2-9

accommodate repeating phases, requirement tradeoffs, and changing deliverables. [5] However, use of the Spiral
model, where applicable, is directed by DoDI 5000.2, and it has become somewhat popular in the Defense and
Aerospace industries.

Advantages

• It provides better risk management than other models.
• Requirements are better defined.
• System is more responsive to user needs.

Disadvantages

• The spiral model is more complex and harder to manage.
• This method usually increases development costs and schedule.

Application

The spiral method should be considered for projects where risks are high, requirements must be refined, and user
needs are very important.

2.3 Application
2.3.1 Evolutionary Acquisition and Spiral Development [8]
The Evolutionary Acquisition and Spiral Development approach to acquisition and development has been used to
satisfy the preference for evolutionary acquisition strategies established in DoD Directive 5000.1 and DoD Instruc-
tion 5000.2. This approach combines incremental, evolutionary, and spiral methods to reduce cycle time and speed
delivery of advanced capability to warfighters. It can develop or acquire both hardware and software in manageable
pieces and allow the insertion of new technology and capabilities over time.

Evolutionary acquisition fields an initial hardware or software increment (or block) of capability, providing im-
proved capability in a shorter period of time than is possible with a full development effort. This initial deployment
is followed by subsequent increments of capability delivered by multiple development cycles. Two variations of this
approach are possible. In one, the ultimate capability may be known at the beginning of the program. In the other,
the final capability evolves and is defined by matching maturing technologies to the evolving needs of the users.

Spiral development is the iterative process used for developing a defined set of capabilities in a single increment. An
increment is a militarily useful and supportable operational capability that can be developed, produced or acquired,
deployed, and sustained. An increment may include more than one spiral. Each increment has its own objectives set
by the user. An extension of this method can also be applied to Pre-planned Product Improvement (P3I) strategy
which adds improved capability to a mature system. This approach is shown in Figure 2-6.

Chapter 2: Software Life Cycle Condensed GSAM Handbook

2-10 Februay 2003

Increment 1

Spirals

Spirals

Spirals

Increment 2

Increment 3

Spirals

Increment 4

Evolutionary
Acquisition

P3I

Figure 2-6 Evolutionary Acquisition, Spiral Development, and P3I

2.3.2 Selection Matrix
The purpose of Table 2-1 is to aid in the selection of a life cycle model. It lists various project constraints, along
with their applicability to models discussed in this chapter. The applicability is listed for the standard definitions of
the models and may not apply equally to modified models. [7] [9]

Table 2-1 Life Cycle Selection Matrix

Legend
 Symbol Meaning

! Method is recommended for this constraint
" Method is satisfactory for this constraint.

(none) Method is not recommended for this constraint.

Waterfall Incremental Evolutionary Spiral

1. Requirements are known and stable. ! !

2. User needs are unclear/not well defined ! "

3. An early initial operational capability is
needed.

! !

4. Early functionality is needed to refine re-
quirements for subsequent deliveries.

! !

5. Significant risks need to be addressed. " ! !

6. Must interface with other systems. " " "

7. Need to integrate new or future technology. ! !

8. Software is large or complex ! ! " "

9. Software is small or limited in functionality. " " "

10. Software is highly interactive with user. " " "

Condensed GSAM Handbook Chapter 2: Software Life Cycle

Februay 2003 2-11

Waterfall Incremental Evolutionary Spiral

11. Software involves client/server function. " " " !

12. Initial cost and schedule estimates must be
followed.

! ! "

13. Detailed documentation necessary. ! ! "

14. Minimize impact on current operations. ! "

15. Full system must be implemented. ! " "

16. Reduce the number of people required. ! !

17. Project management must be simpler. ! "

18. System must be responsive to user needs. " ! !

19. Progress must be demonstrated early. ! !

20. User feedback is needed. ! ! "

21. Reduce the costs of fixes and corrections. " ! "

2.4 Life Cycle Checklist
This checklist is provided to assist you in choosing an appropriate life cycle for your project if you are beginning a
development effort, or to ensure you understand your development life cycle if your project is already under way. If
you cannot check an item off as affirmative, you need to rectify the situation yourself or get help in that area. [8]

2.4.1 Beginning a Development Project
! Do you have an understanding of common life cycle models, along with their strengths, weaknesses, and con-

straints?

! Has the operational concept been analyzed to determine what life cycle method would best support the acquisi-
tion?

! Can the requirements be fully defined prior to the beginning of the project? Are they stable?

! Do you know the timeline for deployment of the new system?

! Are funds secure for development of the entire system?

! Are the risks identified?

! Will risks impact the ability of the project to move forward at crucial points in the system development?

! Is new or developing technology to be used in the system?

! Will there be a parallel hardware development effort?

! Do you understand the level of complexity of the system to be developed?

! Do you know what the interfaces to existing and future systems are?

! Do you know the size and magnitude of the development effort?

! Do you understand the users’ needs?

! Are users able or expected to participate in the development?

! Do you know what types of acquisition contracts are available for this effort?

! When choosing a life cycle model, do you know why you are choosing it over other models?

Chapter 2: Software Life Cycle Condensed GSAM Handbook

2-12 Februay 2003

2.4.2 Development Project is Under Way
! Do you know what life cycle model was selected for your project?

! Do you understand the project aspects pertaining to the life cycle:

! Phases – What are they and what are they supposed to accomplish?

! Milestones – What are they? What is their significance?

! Criteria for transitioning from one phase to another?

! Deliverables – What is expected, during phases, and at the end of the project?

! Reviews – What is reviewed when? Who are the reviewers? What actions follow a successful review, an
unsuccessful review? What are the entry and exit criteria for each review?

! Feedback mechanisms – How is feedback obtained? Who provides it? Who receives it? How is it used?

! Documentation – What is to be produced and what it is used for?

! Do you know where your project is in the life cycle?

! Is your project following the life cycle?

2.5 Regulations
− Clinger-Cohen Act of 1996, The National Defense Authorization Act for Fiscal Year 1996.
− DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs and Major Automated

Information System Acquisition Programs, June 2001.
− FAR -- Part 39; Acquisition of Information Technology; (FAC 97-27); 25 June 2001.

2.6 References
[1] Brundick, Bill, Editor, Parametric Cost Estimating Handbook, Chapter 5, Naval Sea Systems Command, Fall

1995.
[2] Sorensen, Reed, “A Comparison of Software Development Methodologies,” Crosstalk, January 1995
[3] Whitgift, David, Methods and Tools for Software Configuration Management, 1991, p17.
[4] Pressman, Roger S., “Understanding Software Engineering Practices, Required at SEI Level 2 Process Matur-

ity,” Software Engineering Training Series, Software Engineering Process Group, 30 July 1993.
[5] Guidelines for the Successful Acquisition and Management of Software Intensive Systems (GSAM), Version 3,

Chapter 5, USAF Software Technology Support Center, May 2000.
[6] Boehm, Barry W., “A Spiral Model of Software Development and Enhancement,” IEEE Computer, May 1988.
[7] McKenzie, Charlotte A., MIS327 - Systems Analysis and Design, Course Schedule, 1999.
[8] Memorandum from the Undersecretary of Defense for Acquisition Technology and Logistics, Subject: Evolu-

tionary Acquisition and Spiral Development, 12 April 2002.
[9] Quann, Eileen, personal communication to Lloyd K. Mosemann, II, September 1995.

2.7 Resources
2.7.1 Software Life Cycle
Association for Computing Machinery (ACM), ISO 12207 and Related Software Life-Cycle Standards:

www.acm.org/tsc/lifecycle.html

Crosstalk magazine articles:

− “Comparison of Software Development Methodologies”
www.stsc.hill.af.mil/crosstalk/1995/jan/comparis.asp

http://www.acm.org/tsc/lifecycle.html
http://www.stsc.hill.af.mil/crosstalk/1995/jan/comparis.asp

Condensed GSAM Handbook Chapter 2: Software Life Cycle

Februay 2003 2-13

− “Spiral Model as a Tool for Evolutionary Acquisition” www.stsc.hill.af.mil/crosstalk/2001/may/boehm.asp
− “Prototypes: Tools That Can Be Used and Misused” www.stsc.hill.af.mil/crosstalk/1994/jan/xt94d01g.asp
− “Extreme Methodologies for an Extreme World” www.stsc.hill.af.mil/crosstalk/2001/jun/leishman.asp
− “Dispelling the Process Myth: Having a Process Does Not Mean Sacrificing Agility or Creativity”

www.stsc.hill.af.mil/crosstalk/2001/nov/glazer.asp
− “Balancing Discipline and Flexibility With the Spiral Model and MBASE”

www.stsc.hill.af.mil/crosstalk/2001/dec/boehm.asp
− “Customizing the Software Process to Support Avionics Systems Enhancements”

www.stsc.hill.af.mil/crosstalk/2001/sep/donzelli.asp
− “Tailoring a Software Process for Software Project Plans Part 1: Context and Making Tailoring Decisions”

www.stsc.hill.af.mil/crosstalk/1996/apr/tailorin.asp
− “Tailoring a Software Process for Software Project Plans Part 2: Documenting the Project's Defined Soft-

ware Process” www.stsc.hill.af.mil/crosstalk/1996/may/tailorin.asp
− “MIL-STD-498: What's New and Some Real Lessons Learned”

www.stsc.hill.af.mil/crosstalk/1996/mar/lesslear.asp
DeGrace, Peter and Stahl, Leslie, Wicked Problems, Righteous Solutions: A Catalogue of Modern Software engi-
neering Paradigms, Yourdon Press.

Department of Energy (DOE) Software Engineering Methodology, Chapter 2: http://cio.doe.gov/sqse/sem_toc.htm

Department of Justice Systems Development Life Cycle Guidance Document:
www.usdoj.gov/jmd/irm/lifecycle/table.htm

Georgia Tech slides of software life cycles:
www.cc.gatech.edu/computing/SW_Eng/people/Faculty/Colin.Potts/Courses/3302/1-08-mgt/

Guidelines for the Successful Acquisition and Management of Software-Intensive Systems (GSAM), Version 3.0,
Chapter 5, OO-ALC/TISE, May 2000. Available for download at: www.stsc.hill.af.mil/gsam/guid.asp

LevelA Software, Introduction to life cycle models: www.levela.com/software_life_cycles_swdoc.htm

McKenzie, Charlotte A., MIS327 - Systems Analysis and Design, Course Schedule, 1999. See lecture with model
selection guide: http://metr.cua.edu/faculty/mckenzie/mis327/MIS%20327%20Course%20Schedule.html

OSD Program Manager’s Guide for Managing Software, Chapter 4 – Life Cycle Models:
http://www.geia.org/sstc/G47/SWMgmtGuide%20Rev%200.4.doc

Parametric Estimating Handbook, Chapter 6, International Society of Parametric Analysts (ISPA) – Commercial
Software Models: www.ispa-cost.org/PEIWeb/ch6.htm

Parametric Cost Estimating Handbook, Chapter 5, DoD, NASA, etc.:
www.jsc.nasa.gov/bu2/PCEHHTML/pceh.htm

Vision 7, overview of life cycle phases:
http://www.vision7.com/SoftwareDevelopment/ProjectLifeCycle/default.asp

2.7.2 Software Acquisition/Development
Air Force Acquisition Gameboard. Must have a .mil web presence: https://afkm.wpafb.af.mil/ASPs/Gameboard

Air Force Publication Web Site – The official source site for Air Force Administration Publications and Forms:
http://afpubs.hq.af.mil

Air Force Software Technology Support Center (STSC) documentation and standards:
http://stsc.hill.af.mil/doc/index.asp

Best Manufacturing Practices (BMP), TRIMS Risk Management and Best Practices software downloads:
www.bmpcoe.org/pmws/index.html Download KnowHow software and copies of DOD 5000.1, 5000.2, etc:
www.bmpcoe.org/pmws/download/knowhow.html

Crosstalk magazine. Extensive database of articles on software engineering. Published by the Air force Software
Technology Support Center (STSC): http://www.stsc.hill.af.mil/crosstalk/

http://www.stsc.hill.af.mil/crosstalk/2001/may/boehm.asp
http://www.stsc.hill.af.mil/crosstalk/1994/jan/xt94d01g.asp
http://www.stsc.hill.af.mil/crosstalk/2001/jun/leishman.asp
http://www.stsc.hill.af.mil/crosstalk/2001/nov/glazer.asp
http://www.stsc.hill.af.mil/crosstalk/2001/dec/boehm.asp
http://www.stsc.hill.af.mil/crosstalk/2001/sep/donzelli.asp
http://www.stsc.hill.af.mil/crosstalk/1996/apr/tailorin.asp
http://www.stsc.hill.af.mil/crosstalk/1996/may/tailorin.asp
http://www.stsc.hill.af.mil/crosstalk/1996/mar/lesslear.asp
http://cio.doe.gov/sqse/sem_toc.htm
http://www.usdoj.gov/jmd/irm/lifecycle/table.htm
http://www.cc.gatech.edu/computing/SW_Eng/people/Faculty/Colin.Potts/Courses/3302/1-08-mgt/
http://www.stsc.hill.af.mil/gsam/guid.asp
http://www.levela.com/software_life_cycles_swdoc.htm
http://metr.cua.edu/faculty/mckenzie/mis327/MIS 327 Course Schedule.html
http://www.geia.org/sstc/G47/SWMgmtGuide Rev 0.4.doc
http://www.ispa-cost.org/PEIWeb/ch6.htm
http://www.jsc.nasa.gov/bu2/PCEHHTML/pceh.htm
http://www.vision7.com/SoftwareDevelopment/ProjectLifeCycle/default.asp
http://afpubs.hq.af.mil/
http://stsc.hill.af.mil/doc/index.asp
http://www.bmpcoe.org/pmws/index.html
http://www.bmpcoe.org/pmws/download/knowhow.html
http://www.stsc.hill.af.mil/crosstalk/

Chapter 2: Software Life Cycle Condensed GSAM Handbook

2-14 Februay 2003

Defense Acquisition Deskbook. www.deskbook.osd.mil

Defense Acquisition University web site: www.dau.mil

Department of Defense single stock point of military specifications, standards, and related publications:
http://dodssp.daps.mil/

DoD Software Information Clearinghouse: www.dacs.dtic.mil

OSD acquisition web site: www.acq.osd.mil

RSPA. R. S. Pressman & Associates library of software engineering knowledge. In particular, see “An Adaptable
Process Model”: http://www.rspa.com/spi

Software Program Managers Network (SPMN). Sponsored by the Deputy Under Secretary of Defense for Science
and Technology (DUSD (S&T), Software Intensive Systems Directorate. www.spmn.com

SPMN Guidebooks available for download at: www.spmn.com/products_guidebooks.html

University of Southern California (USC) Center for Software Engineering (CSE), Technical Reports:
http://sunset.usc.edu/publications/TECHRPTS/index.html

http://www.deskbook.osd.mil/
http://www.dau.mil/
http://dodssp.daps.mil/
http://www.dacs.dtic.mil/
http://www.acq.osd.mil/
http://www.rspa.com/spi
http://www.dtic.mil/dusdst/
http://www.spmn.com/
http://www.spmn.com/products_guidebooks.html
http://sunset.usc.edu/publications/index.html
http://sunset.usc.edu/publications/index.html

	Introduction
	Process Description
	Life cycle Models
	Waterfall Model
	Advantages
	Disadvantages
	Application
	Incremental Model
	Advantages
	Disadvantages
	Application
	Evolutionary Model (Prototyping)
	Advantages [5]
	Disadvantages [5]
	Application
	Spiral Model
	Advantages
	Disadvantages
	Application

	Application
	Evolutionary Acquisition and Spiral Development [8]
	Selection Matrix

	Life Cycle Checklist
	Beginning a Development Project
	Development Project is Under Way

	Regulations
	References
	Resources
	Software Life Cycle
	Software Acquisition/Development

