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LIST OF SYMBOLS

Dimengonless scding factors which are ratios between fundamenta properties
(length, mass, modulus, etc.) which characterize the two systemsthat are
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Statistical measure of the gppropriateness of the modd from regresson
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Head injury criteria (egn 2.1) where the time interva is limited to 36

Head injury criteria (egn 2.1) where the time intervd islimited to 15

Shear load measured at the upper neck load cell as specified by SAE J211

Axid load (negative for compression, postive for tenson) measured at the
upper neck load cell as specified by SAE J211 (March 1995)

Bending moment (negative for extension, pogtive for flexion) a the occipita
condyles as specified by SAE J211 (March 1995)

Intercept value for compression or tension for calculating Nij (egn 3.1)

Intercept value for extenson or flexion at the occipita condyles for calculating

Normalized neck injury criteria (egn 3.1)

Symbal  Units Description
8

compared
E MPa Modulus of eadticity
F; Mpa
p Probability of injury
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andyses
AlS
HICq

milliseconds
HIC,s

milliseconds
Fx N

(March 1995)
Fz N
My Nm
Fint N
Mint Nm

Nij (egn 3.1)
Nij
dc

Normadized central chest deflections for the human surrogate measured using
chestbands



dmax Normalized maximum chest deflections from five locations for the human
surrogate measured using chestbands

As G 3 millisecond clip vaue for thoracic spind accd eration measured in the dummy
or human surrogate

Aint G Intercept for spinal acceleration used to calculate CTI (egn 4.2)

Ac G Critical acceleration limit for thoracic injury criteria

D mm Chest deflection measured in the dummy

Dint mm Intercept for dummy chest deflection used to caculate CTI (egn 4.2)

Dc mm Critica deflection limit for thoracic injury criteria

UR Five chestband measurement locations (upper right, upper center, upper

ucC left, lower right, lower |eft) for deflection and velocity used in the statistical

UL andyses of thoracic injury

LR

LL

Y, m/sec Veocity of the chest measured ether at the five location stes (UR, UC, UL,
LR, LL) for the human surrogate by the chestband or at the sternum for the
anthorpometric test devices

V*C sec-1 Viscous criterion, which is the product of the chest velocity, V, and the

VC normalized compression of the chest, D/Chest depth.
CTI Combined Thoracic Index (egn 4.2)

Restraint system (Table 4.1)

ABG Air bag

DPL Padded dash panel

KNEE Knee bolster

LAP Lap bet

2PT 2 point belt (shoulder belt without Igp belt)

3PT 3 point belt

RIBFXR Number of rib fractures (Table 4.1)



Development of Improved Injury Criteriafor the
Assessment of Advanced Automotive Restraint Systems- ||

EXECUTIVE SUMMARY

INTRODUCTION

The National Highway Traffic Safety Adminigration’s (NHTSA) plans for upgrading the Federd
Motor Vehicle Safety Standard (FMVSS) No. 208 fronta crash protection safety standard include
improving protection requirements for the normally seated mid-sized adult mae, aswdl asincluding
additiona requirements that will specify performance limits to minimize the risks from arbags to smdl-
szed occupants and children in both normal and out-of-position seating locations. These new crash
specifications will require the use of additional dummies of various Szes aswell as additiona
performance criteria that appropriately represent injury thresholds of these additiona population
segments.

Based on the agency’ s andysis of comments received in response to the publication of the NPRM and
the accompanying technical reports, the agency has made modifications to the recommended injury
criteriaand thelr associated performance limits. A detailed discussion of the comments recelved and
the agency’ s analys's may be found in Appendix A. This report, which is a supplement to the previous
report, “ Development of Improved Injury Criteriafor the Assessment of Advanced Automotive
Restraint Systems’, (Kleinberger, et. a, NHTSA Docket 98-4405-9) documents these modifications
and the retionale.

BACKGROUND

Injury criteria have been developed in terms that address the mechanica responses of crash test
dummiesin terms of risk to life or injury to aliving human. They are based on an enginearing principle
that statesthat the internal responses of a mechanicd structure, no matter how big or small, or from
what materid it is compaosed, are uniquely governed by the structure' s geometric and materid
properties and the forces and motions applied to its surface. The criteria have been derived from
experimentd efforts usng human surrogates where both measurable engineering parameters and injury
consequences are observed and the most meaningful relationships between forcessmotions and resulting
injuries are determined using datistica techniques.

Deveopment of human injury tolerance levelsis difficult because of physical differences between
humans. It isfurther complicated by the need to obtain injury tolerance information through indirect
methods such as testing with human volunteers below the injury level, cadaver testing, anima testing,
computer smulation, crash recongtructions, and utilization of crash test dummies. Each of these indirect
methods has limitations, but each provides vauable information regarding human tolerance levels. Due
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to the prohibitive number (and cost) of tests required to obtain a datisticdly sgnificant sample size, it
ultimately becomes necessary to consolidate the available information each of these methods provides,
and apply ajudgement as to what best represents a reasonable tolerance leve for agiven risk of injury.

Human volunteer testing has the obvious shortcoming in that testing is done at sub-injurious exposure
levels. It dso poses problemsin that instrumentation measurements must be obtained through non-
invadve atachments, volunteers are most often military personnd who may not be representative of the
average adult population, and the effects of muscle tenson and involuntary reflexes are difficult to
ascertain. While cadaver testing is essentid to the development of human injury tolerances, it dso hasa
number of inherent variables. Cardiopulmonary pressurization, post mortem tissue degradation, muscle
tension, age, gender, anthropometry, and mass are dl factors which produce consderable variability in
test results. Animd testing aso has this problem, aong with the need to trandate anatomy and injury to
human scaes, but has the advantage of providing tolerance information under physiologic conditions.
Crash recondructions provide injury data under norma human physiologica conditions, however, the
forces and accdl erations associated with those injuries must be estimated. Computer smulation and
testing with crash test dummies provide vauable information, but these methods are dependent upon
response information obtained through the other methods.

Frequently criteria are devel oped, based on extensve andysis, for one size dummy (e.g., an adult) and
these criteria are gpplied and trandated to other size dummies (e.g., a child) through a process known
asscding. Scaling techniques overcome the influence of geometric and materid differences between
experimenta subjects and the subjects of interest. This technique assumes that the experimental object
and the object of interest are scale models of each other and that their mass and material differences
vary by reatively smple mathematica rdaionships. If these assumptions are met, engineering
experience shows that the scaled vaues are good gpproximations of the expected vaues. However,
the more these assumptions are not valid, the more the trandated physica measurements may be
digtorted from their true levels
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PROPOSED HEAD INJURY CRITERIA

Existing NHTSA regulations specify a Head Injury Criteria (HIC) for the 50" percentile male. The
biomechanical basis for HIC for the 50 percentile adult male was reviewed and dternatives to this
function were sought. While congderable progress has been made in the capabilities of andyticd finite
element heed/brain modds to smulate the mgor injury mechanisms prevaent in brain injury, it was felt
that it would be premature for their results to be used in this current proposed rulemaking action.

The NPRM proposed to maintain the performance limit for HIC evauated over amaximum time
interval of 36 milliseconds for the 50" percentile male, and scaled vaues for the other dummy sizes.
Many commenters suggested using the more conservetive scaled vaues for the HIC limits for the child
dummies. The AAMA suggested limiting the HIC evauation interva to maximum of 15 milliseconds
with a performance limit of 700 for the 50" percentile male and scaled limits for the other dummy sizes,

In a Federd Register Notice issued on October 17, 1986, NHTSA indicated that it planned to limit the
maximum HIC time interva to 36 milliseconds. The agency recognized thet available human volunteer
tests demondtrated that the probability of injury in long duration events was low, but reasoned that the
agency should take a cautious approach and not sgnificantly change the expected pass/fail ratios that
the then unlimited HIC time interval provided. Evaudtion, at the time, of the proposed 17 millisecond
limit againg various test sets from NCAP and FMV SS 208 testing available a the time was found to
reduce the failure rate from 46% to 35%. Thisfact contributed to the agency’s decison to reject the
proposa of reducing the maximum HIC time interva to ether 15 or 17 milliseconds without a
commensurate reduction of the maximum HIC value. However, to somewhat accommodate the
gpparent over-gringency of the limited HIC for long duration events, the agency did propose limiting
the maximum time interva to 36 milliseconds. This provison dlowed the maximum average long
duration acceleration to rise to alimit of 60 G's.

The agency is now proposing to evauate the HIC over amaximum 15 millisecond time intervd for Al
dummy sizes with arequirement that it not exceed a maximum of 700 for the adult dummies. Thiswill
amultaneoudy provide aequdly stringent evauation of long duration events while providing increased
gringency for short duration events where biomechanical certainty is not as strong. We are proposing
to change the HIC timeintervd to a maximum of 15 milliseconds for al dummy Szes and to revise the
HIC limits by commensurate amounts, based on a scaling from the proposed new limit for the 50th
percentile adult male dummy.

Both geometric and materid failure scaing, coupled with engineering judgement, were employed to
trandate the critica HIC vaue to other occupant sizes. The recommended critical HIC levelsfor the
various occupant Szes are given in Table ES.1. Although the large mae Hybrid [11 dummy is not
included in the proposed testing for the advanced air bag SNPRM, the HIC 5 limit islised for
completeness.

ES-3



.TableES.1: Proposed Head Injury Criterion for Various Dummy Sizes
Dummy Type Large 8§ Mid- Small 6 Year 3Year 1Year
Male Sized Female Old Old Old
Male Child Child I nfant
Exiging HIC 5 Limit NA 1000 N/A N/A N/A N/A
Proposed HIC 5 Limit 700 700 700 700 570 390

performance limits are listed here for completeness.
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PROPOSED NECK INJURY CRITERIA

Existing NHTSA regulations specify neck injury criteria for the 50 percentile male as part of the

FMV SS No. 208 dternative test, S13.2. The previous biomechanics technica paper describes in detall
the derivation of the neck injury criteria, Nij, from biomechanical data (NHTSA Docket 1998-4405-
9).

Comments received from various advocate groups suggested adopting conservative performance limits
for the children in light of the red world injuries and deaths of children due to passenger air bags.
Comments from the manufacturersin genera supported the independent evauation of neck forces and
moments, rather than the evaluation of combined loads used by Nij. Three commenters (two
manufacturers and one restraint manufacturer) supported Nij with a critical vaue of 1.4 based on
practicability arguments.

Based on the comments received and the discussions &t the two public meetings (see summary in
Appendix E), the agency has opted to continue its support of Nij with a modified formulation and a
performance limit of 1.0. The issue of neck injury, especiadly to out-of-position adults and children, is
one of the priorities of this rulemaking and the agency would be remissif it did not include the most
accurate and up-to-date methods to assess what conditions are injurious and non-injurious. The
agency continues to believe that Nij has a strong foundation in biomechanics. Furthermore, testing has
shown that the performance limits proposed in the SNPRM are practicable given the time frame of this
rulemaking.

The agency has made dight modifications to the formulation of Nij, referred to as the SNPRM Nij, and
the scaling techniques used based upon the comments received. In generd, the critical vaues for the
SNPRM Nij are equd to or lower than the critical vaues proposed in the NPRM for the child test
dummies. However, the SNPRM Nij critica vaues for the adult test dummies are about the same or
dightly higher than that in the NPRM, but they are consgtent with the higher performance limits (up to a
vaue of 1.4) asdiscussed in the NPRM Nij which better match redl world estimates of adult neck

injury.

The resulting neck injury criteria, called “Nij”, propose critica limits for dl four possible modes of neck
loading; tenson or compression combined with either flexion (forward) or extension (rearward) bending
moment. The Nij is defined as the sum of the normdized loads and moments, i.e,

L Fz My

Nij = + 3.1
I:lnt M int

where F; isthe axid load, F,; isthe criticd intercept vaue of load used for normdization, My isthe
flexion/extenson bending moment, and M, is the critical intercept value for moment used for
normdalization.
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The criticd intercept flexion and extens on moments were scaed up and down to dl other dummy

szes, while the critical intercept tenson and compression vaues were only scaled from the three year-
old for the child dummies. 50" male and 5™ femae tension and compression va ues were obtained from
previoudy developed adult cadaveric test data rather than relying on values scaled from the three year-

old. The scaled criticd intercept vaues for the various Szed dummies and loading modes are given in
Table ES.2. Although the large mae Hybrid 111 dummy is not included in the proposed testing for the
advanced air bag SNPRM, the Nij critical intercepts are listed for completeness.

Table ES.2: Proposed Critical Interceptsfor the Neck Injury Criterion, Nij, for the SNPRM

Dummy Type Tension | Compression | Flexion Extension

(N) (N) (Nm) (Nm)

CRABI 1-year-old infant 1465 1465 43 17
Hybrid 111 3-year-old child 2120 2120 68 27
Hybrid 111 6-year-old child 2800 2800 93 39
Hybrid 111 small female 3370 3370 155 62
Hybrid 11 mid-szed male 4500 4500 310 125
Hybrid 111 large males 5440 5440 415 166

8 TheLarge Male (95" percentile Hybrid 111) is not currently proposed for inclusion in the SNPRM, but the

performance limits are listed here for completeness.
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PROPOSED THORACIC INJURY CRITERIA

NHTSA currently mandates regulatory limits of 60g for chest acceleration and 76 mm (3 inches) for
chest deflection as measured on the Hybrid 111 50" percentile male dummy. Considerable
biomechanica information developed since the 1950's was used to assess potentid loading thresholds
for chest injuries and thisinformation has been the basis for the exigting criteria. In the previous report,
the agency presented andysis of anew series of 71 highly instrumented frontal impact tests using human
surrogates which were conducted over the last 5-6 years. This test series used five different restraint
combinations (3-point belt, 2-point belt/knee bolster, driver airbag and |ap belt, driver airbag and knee
bolgter, and driver arbag and 3-point belt) with a variety of crash pulses and velocity changes. The
diverse capabilities of the instrumentation employed during this test series dlowed the caculation and
performance comparison of currently effective and potentialy revised chest injury measures with the
observed injury outcomes.

The andyses performed looked at a variety of statistical measures (log likelihood, p-vaue, gamma
function, and concordant/discordant percentages) to evauate the ability of both individua and multiple
response variables to explain the observed experimentd injury results. Based on these Satistical
measures, the analysi's demondtrated that while sngle variables, such as pesk chest acceleration, peak
chest deflection, or the Viscous Criterion (V* C) advanced by one or more non-NHTSA researchers,
provided a measure of prediction of injury outcome, aformulation that included both pesk chest
acceleration and maximum chest deflection, caled the Combined Thoracic Index (CTI) appeared to
provide superior predictive cgpability compared to al others examined. The formulation of the CTl is:

A D
CTI = —™& + & (4.2)
A int D int
where A and Dy, are the maximum observed accd eration and deflection,
and A and D, are the corresponding maximum alowable intercept values.

In response to the NPRM, many comments were received on the addition of CT1 to the current
regulations limiting chest acceleration and chest deflection independently (Appendix E). On one hand,
some commenters supported the inclusion of CTI. For instance one commenter stated that CTI seems
to be amore sophigticated and redistic means by which to measure chest injury. The Nationd
Transportation Safety Board (NTSB) suggested that it may be appropriate to use different CTI vaues
for belted and unbelted occupants. On the other hand, some commenters opposed CT1 because they
believe that the increased stringency of CTI1 will lead to more aggressive air bags and/or softer vehicle
gructures, which would have a negative effect on red world benefits. The AAMA questioned the
inclusion of afew of the data points which may be outliersin the andyses, andyzed various subsets of
biomechanica data, and has reached conclusons that are different from NHTSA regarding CTI.
Others recommend that further research and review are necessary.
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Though the agency believes that the combination of maximum chest acceleration and deflectionisa
better predictor of injury than individua threshold limits for chest deflection and acceleration, there are
il some questions regarding the interpretation of data used in the development of CT1. Plansfor
future testing are focused on answering some of these questions and increasing the number of
observationsin the data set. Therefore, until more datais avalable and areandyss of the larger data
et is conducted to evauate the efficacy of a CTl-based injury criteria, individua limits of maximum
chest acceleration and deflection will be used for regulation purposes. However since CTl has
demonstrated superior predictive capabilities than either deflection or acceleration aone, the agency has
proposed to use CTI to assess the probability of injury for its economic andyses. Thus, after the
biomechanica data set was modified by removing afew questionable data points and correcting data
reporting errorsin afew tests, amodified CT1 was derived as described in Chapter 4. The revised
critical CTI intercept values for the various sSized occupants are shown in the Table ES.3. Although the
large mae Hybrid 111 dummy is not included in the proposed testing for the advanced air bag SNPRM,
the CTI intercepts are listed for compl eteness.

Table ES.3: Deflection and Acceleration I nter ceptsfor Modified CTI

Dummy Type Large Mid- Smdl 6 Year 3Year 1Year
Mades Szd Femde Old Old Old
Mde Child Child Infant
Chest DeflectionIntercept | 114mm | 103mm | 84 mm 64 mm 57 mm 50 mm
for CTI (Dint) 45in) (4.0in) (3.3in) (25in) (22in) (20in)
Chest Acceleration 83 90 90 90 74 57
Intercept for CTI (Aint)

8 TheLarge Male (95" percentile Hybrid I11) is not currently proposed for inclusion in the SNPRM, but the
performance limits are listed here for compl eteness.

After the publication of the previous report for the NPRM, AAMA provided an dternate thoracic
injury criteriawhich addresses AlS$4 thoracic injuries. The AAMA argued that since AIS$3 injuries
are predominantly associated with rib fractures and children, in generd, seldom have rib fractures, it
may be more appropriate to consider AlS$4 thoracic injuries which congtitute both soft tissue and
bone injuries. Based on analysis using the Mertz/Weber method on the data published by Neathery
(1975), AAMA recommended the chest deflection threshold in out-of-position and in-position
condiitions to be 64 mm for the 50" percentile male which corresponds to a 5% probability of an

AlIS$4 thoracic injury.

Since this proposd is an increase in dringency from the current maximum of 76.2 mm of deflection for
the 50" percentile male and further research is needed to establish the efficacy of CTI, the agency is
proposing to adopt a chest deflection limit of 63 mm (2.5 inches) for the 50" percentile male. This
would be in addition to the current performance limit of 60 g'sfor the 3-msec clip vaue of resultant
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chest accderation. Theseindividud deflection and chest accderation performance limits have been
scaed to the various dummy sizes and are shown in Table ES4. Although the large mae Hybrid 111

dummy is not included in the proposed testing for the advanced air bag SNPRM, the chest
performance limits are listed for completeness.

Table ES.4: Performance Limitsfor Chest Deflection and Chest Acceleration Evaluated

| ndependently
Dummy Type Large Mid- Smdl 6Year | 3Year | 1Year
Mdes Szed Femde Old Old Old
Mde Child Child Infant
Chest Deflection Limit for 7Omm | 63mm | 52mm 40mm [ 34mm 30
Thoracic Injury (Dc) (28in) | (25in) | (20in) | (16In) | (1L4in) mm**
(L2in)
Chest Accelerdion Limit for 55 60 60* 60 55 50
Thoracic Injury Criteria (Ac)
) The Large Male (95" percentile Hybrid I11) is not currently proposed for inclusion in the SNPRM, but the
performance limits are listed here for compl eteness.
* Although geometric scaling alone would predict higher Ac valuesfor females, it is believed that lower bone

mineral density would offset this effect. Therefore, the acceleration tolerance valuesfor small females are
kept the same as for mid-sized males.
*x The CRABI 12 month old dummy is currently not capable of measuring chest deflection.
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PROPOSED LOWER EXTREMITY INJURY CRITERIA

While agreat ded of research is currently underway both in experimenta activities to determine
biomechanicd tolerance criteria as wdl as developing enhanced lower extremities for the dummies,
both sets of activities are not ready for incluson in these recommendations. Because femoral fractures
in children are not a sgnificant problem in automotive crashes, the NPRM  recommended to use femur
load only for the adult dummies. The 10 kN limit for the axid femur load on the Hybrid I11 50
percentile male dummy was maintained and NHTSA proposed a 6.8 kN limit, obtained by geometric
scaling, for the 5 percentile female dummy.

In response to the NPRM, commenters supported the inclusion of performance limits for
femoral compressive loads for the 5" percentile female dummy specified in the NPRM in addition to
maintaining the currently specified value for the 50 percentile male dummy. Furthermore, AAMA
proposed adding femora compressive load performance criteriaof 2310 N for the 6 year-old dummy.
The Nationa Transportation Safety Board (NTSB) recommended that tolerance levels of lower
extremities need to be further investigated and validated. NTSB aso suggested that the NHTSA
consder dummies such as advanced lower extremity (ALEX, now renamed the THOR-LX) dummy
for future incorporation into the standards.

Although the NHTSA agrees with the AAMA that femord compressive load limits for the six
year-old dummy are important to consider, the SNPRM does not specify such limits because the testing
configurations specified in the SNPRM for the six year-old dummy do not impose substantia loading on
the lower extremities. NHTSA isaso continuing the development of an advanced lower extremity test
device, the THOR-L X, and continues to sponsor experimenta impact injury research to determine the
mechanisms and tolerances of the lower extremities, including the foot, ankle and leg. When this effort
iscomplete, it is anticipated that this research will be incorporated into future safety standards.
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SUMMARY AND RECOMMENDATIONS

Thisreport presents NHTSA’s andysis of available biomechanica data to define mathematica
relaionships that can discriminate the mechanica impact conditions under which various portions of the
human body will or will not be injured. In those cases where the data were sparse or not directly
goplicable, accepted engineering techniques, such as scaing and engineering judgement, were

employed to both develop and extend existing knowledge to dl of the various occupant sizes being
congdered for the proposed rulemaking action. Table ES.6 summarizes the proposals that are aresult
of this effort, and are believed to represent the best characterization of injury criteriaavallable a this

time. Although the large mae Hybrid 111 dummy is not included in the proposed testing for the

advanced air bag SNPRM, the performance limits are listed for compl eteness.

Table ES.6: Summary of Recommended Injury Criteriafor the SNPRM

Recommended Large§ Mid- Small 6YO 3YO 1YO
Criteria Male Sized Female Child Child Infant
Male
Head Criteria HIC (15 msec) 700 700 700 700 570 390
Neck Criteria SNPRM Nij 10 10 10 10 10 10
Critical Intercept Vaues
Tension and Compression (N) 5440 4500 3370 2800 2120 1465
Flexion (Nm) 415 310 155 93 68 43
Extension (Nm) 166 125 62 39 27 17
Thoracic Criteria
1. Chest Acceleration (g) 55 60 60 60 55 50
2. Chest Deflection (mm) 70 63 52 40 A 30*
(2.8in) (25in) (2.0in) (1.61in) (1.41in) (1.2in)
Lower Ext. Criteria
Femur Load (kN) 127 10.0 6.8 NA NA NA
8§ The Large Male (95" percentile Hybrid 111) is not currently proposed for inclusion in the SNPRM, but the
performance limits are listed here for completeness.
* The CRABI 12 month old dummy is not currently capable of measuring chest deflection.
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The following chapters delineate in much greater detail the available biomechanicd data, its sources,
and the procedures used to derive the proposed recommended performance limits for each major body
area and occupant size. Appendix A presents asummary of the responses to the Notice of Proposed
Rulemaking for FMV SS No. 208 and other opportunities for public comment on proposed injury
criteria. Appendices B, C, and D offer extensve examples of the gpplication of the various proposed
injury criteriato availabletest data. Appendix E discusses satistical analysis procedures for developing
injury risk curves from biomechanicd test data. Appendix F summarizes the development of age-
dependent neck scale factors. Appendix G provides the source files for a software program to calculate
the Nij Neck Injury criteria
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Chapter 1
| ntroduction

Many researchers from around the world have contributed to the current base of knowledge of
biomechanics. Over a century ago, researchers conducted tests to determine the strength of various
biologica tissues. (Duncan, 1874 and Messerer, 1880) Research into the safety of automotive
occupants has been actively pursued for decades. Current issues and experimenta results are presented
every year a internationa conferences dedicated to biomechanics research. One of these annud
meetings, the Stapp Car Crash Conference, has recently celebrated its 43 anniversary. In developing
the proposed injury criteria, the NHTSA's Nationd Transportation Biomechanics Research Center
(NTBRC) has drawn extengvely from existing published research. Exigting data from human cadavers,
anima subjects, and to alimited degree live volunteers have been extensvely analyzed during the
process of developing the proposed injury criteria. Discussion of these previous experimental studies
will beincluded in the sections for each individua body region.

In this introduction, two techniques - scaling and Satisticd analys's - that are used in developing the
proposed injury criteria are summari zed.

1.1 SCALING TECHNIQUES

Often, data can be collected for a specific type of vehicle occupant under a given loading condition,
(e.g., an adult mae), but data cannot be collected on other types of occupants. Thisis clearly
evidenced by the paucity of biomechanical data available for children. Given these circumstances,
biomechanics researchers must turn to scaling techniques and engineering judgement to develop injury
criteriafor other sze occupants (e.g., children).

Thetype of scaling most commonly used in automotive applications is dimensona anayss. For
mechanica sysemsin which therma and electrica effects are abosent, this technique dlows the
unknown physica responses of a given system to be estimated from the known responses of asmilar
system by establishing three fundamentd scaling factors that are based on ratios between fundamenta
properties that characterize the two systems.(Newton, 1687, Langhaar, 1951 and Taylor, 1974) For
gructurd andyss, the three fundamenta ratios are length, mass density, and modulus of eadticity or
diffness. The scaling ratios for other variables of interest are based on the fundamenta ratios.(Méelvin,
1995) The three dimensionless fundamenta ratios are defined as

Length Scale Rdtio: 8. =L,/L,
Mass Dengity Retio: 8,=D,/D,

Modulus of Eladticity Ratio: 8 =E,/E,
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where the subscripts 1 and 2 refer to the subjects to be scaled to and from, respectively. Scale factors
for dl other physical quantities associated with the impact response of the system can be obtained from
these three dimengonlessratios.

When scding data between adult subjectsit is generdly assumed that the moduli of dadticity and mass
densities are equal for both subjects, and that the scale factors for these quantities are equa to one. The
effect of this assumptionisthat dl the physical quantities can be scaled as functions of the basic length
scaeratio, 8, , assuming geometric Smilitude. When scaling data from adults to children, or between
children of various ages, differencesin the moduli of elasticity must be consdered to account for the
anatomic dructurd immaturity in children. Assuming mass dengty to be congtant for dl subjects (8, =
1), the following scale factors can be formed. (Méelvin, 1995)

Length Scae Factor: 8, =L,/L,

Mass Scale Factor: 8, =(8.)°
Modulus of Eladticity Scae Factor: 8:=E/E

Time Scale Factor: 8:=8,/(8p"
Accderation Scale Factor: 8,=8c/8,.

Force Scale Factor: 8:=(8,)?8:
Moment Scale Factor: 8y =(8.)% 8¢

HIC Scale Factor: 8uic = (8p)?/ (8)'°

The generdized scding relationships listed above are termed equd stress scaing and dlow one to infer
what the response of one subject size is based on measurements of another subject size. For example,
if one subject has twice the length (8, = 2) and three times the modulus (8¢ = 3) as another, aforce
which is 12 times as great would be necessary to produce the same stress in the two subjects. AAMA
noted in their response to the NPRM that by scaling failure threshold levels according to the modulus of
eladticity scae factor, the implicit assumption is that the ratio of failure strainsis equd to one. However,
falure grain and dresslevels of biologicd tissue may be age dependent. Therefore, it ismore
appropriate to scae failure threshold levels by the failure stress (F;) or strength ratio. Accordingly,
falure stress ratio was used in the scaling of threshold level's between various dummy sizes.

Length Scae Factor: 8, =L,/L,

Mass Scale Factor: 8m=(8L)°



Failure Strength Scde Factor: 84=FulFp

Accderation Scale Factor: 8r=8 /8,

Force Scale Factor: 8 = (8.)? 8

Moment Scale Factor: 8w =(8.)° 8

HIC Scale Factor: 8uc=B)*° /()

1.2 STATISTICAL ANALYSISTECHNIQUES

Because mechanica surrogates of humans (crash test dummies), rather than living humans, are used in
crash tests to evauate the safety attributes of vehicles, relationships between measurements of
engineering variables made on the dummy and the probability of a human sustaining a certain type and
severity of injuries are needed. The process to devel op these relationships, commonly called injury
criteria, isto conduct a series of experimenta tests on highly instrumented biologicdly redigtic human
surrogates, such as cadavers, that expose them to crash conditions of interest. Measurements of
engineering variables, such asforces, velocities, deflections, and accelerations, are made to
mechanically characterize each impact event. Necropsy results are used to document the concomitant
injuries. The data are entered into an gppropriate database for andyss. The following procedures are
considered by the NTBRC to provide the most meaningful relationships and thus were gpplied as
indicated.

Firg, the level or severity of injury in each test was classfied usng the 1990 AIS manud. Eachtestin
the data set was then assigned to one of two categories: (1) “no injury” representing the absence of
injuries or minor injuries of AIS<3, or (2) “injury” representing seriousinjuries of AIS$3. Logidtic
regression was then used to develop injury criteria models where the mathematica relationship between
the dichotomous dependent variable (“injury” or “no injury”) and various independent measured or
caculated variables such as spine accel eration were estimated. In logigtic regresson, a“ null hypothess’
isinitidly made assuming that thereis no reationship between the dependent injury variable and the
candidate independent variable under study. The goodness of fit of the model is determined by
examining the -2 log-Likelihood Ratio (-21og(LR)), which is a measure of the probability thet the
independent variable(s) explains the available outcomes. The -2log (LR) is used to test the null
hypothesis and provide measures of regjection of the null hypothess cal “p-vaues’. Higher vaues of -
2l0g(LR) and lower p-valuesindicate that the model provides a better fit to the data.

Modd building strategies and goodness of fit measures outlined by Hosmer and Lemeshow (1989)
were used to develop the injury criteriamodds as wel as for comparing their relaive predictive ability.
The Goodman-Kruskal Gamma of rank correation was used for assessing the predictive ability of the
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moddl. Similar to R in regression andysis, aGammavaue of 1 indicates perfect predictive ability
while avaue of O indicates no predictive ability of the modd. The predictive ability of the mode can
also be assessed by the percentage of concordance and discordance. A greater percentage of
concordance indicates better predictive ability of the modd.

Much of the data used in this andysis have been previoudy anayzed using the Mertz/\Weber
method.(Mertz, 1996). This method uses only two data points from the available experimenta data set
to define the range of overlgp region between “non-injury” and “injury”, that is, the lowest vaue
associated with “injury” and the highest value associated with “non-injury”. Based on these two points,
amodification of the “median rank” method is used to determine the mean and standard deviation of an
assumed cumulative norma digtribution function to explain the probability of an injurious event
occurring. No dtatistical goodness of fit measures are used to guide the analysis or provide evauations
of the resulting predictive relationships.

Because of the consderable methodologicd differences between these two methods, sgnificantly
different functions can result from the data set depending on whether the Mertz/\Weber method or
logistic regression technique was employed. Therefore, because logistic regression technique uses the
entire available experimenta data set, uses the widely accepted statistical concept of “maximum
likelihood” to obtain its results, and provides established statistica measures to eva uate absolute and
relative predictive capabilities of the resulting relationships, logigtic regression was used for al analyses
performed in the development of cervical and thoracic injury criteriaand tolerance limits discussed in
the previoudy published report on injury criteria.

In response to the previoudy published agency report, the AAMA commented that the Statistical
methods used by the agency are invalid and that “no significant mathematical or experimental foundetion
was given”. Thelogigtic regresson methods used to develop CTI are well established methods used in
epidemiologica research and in drug studies which are well documented in many booksand is
explained in detail by Kuppa (1998). Other references may be found in Hosmer and Lemeshaw
(1989), Menard, and Kleinbaum, et a (1982). Methods of analyses using regression methods such as
ANOVA and logistic regression have aready been proven to be effective methods for data where the
dependent variable is nomind (such asinjury outcome). Therefore, it was consdered unnecessary to
go into the mathematical details of this procedure. Logidtic regression is extendvely used in determining
appropriate dose levelsin drug effectiveness sudies. The process of determining injury threshold levels
using ded test data follows a smilar methodol ogy.

The relative merits of the various Satistical methods were discussed at the biomechanics public meeting
held on April 20, 1999. Simulation studies showed that logitic regresson using the maximum
likelihood method is able to predict the population parameters more accurately than other methods such
as the Mertz-Weber median rank method or the Certainty Method, as shown in Appendix E. Thus, the
agency continues to support logigtic regression techniques as the most gppropriate method of andlyss
and dso usesthis technique for the analyses discussed in the current report.
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Chapter 2
Head Injury Criteria

2.1 BACKGROUND

Motor vehicle crashes are responsible for nearly one haf of the more than fifty thousand who die
and gpproximately one million who are hospitalized as aresult of head injury in the United States
(Bandak et a, 1996). Head injury continues to be aleading cause of death and disability athough
consderable advancement in the understanding of head injury mechanisms and the introduction of
arbag restraint systems has resulted in the reduction of the number and severity of head injuries. In
Spite of these advancements the only injury criteriain wide use is the Head Injury Criterion (HIC),
which was adopted over twenty-five years ago.

This Head Injury Criterion has a historica basisin the work of Gadd (1961) who used the Wayne
State Tolerance Curve (WSTC) to develop what eventualy became known as the Gadd severity index
GSl (1966). The WSTC is based on the average resultant trandationa head acceleration. It evolved
from the early work of Gurdjian and co-workers (1955) who used the clinically observed prevaence of
concomitant concussions in skull fracture cases (80% of al concusson cases o had linear skull
fractures (Melvin, 1993)) to relate cadaver impacts to brain injury. Gurdjian and co-workers concluded
that by measuring the tolerance of the skull to fracture loads one is effectively inferring the tolerance to
brain injury. Lissner and co-workers (1960) later developed a relationship between the magnitude of
the trandational anterior-posterior acceleration and the load duration that became known asthe
WSTC. Versace (1971) proposed aversion of the current HIC in 1971 as a measure of average
acceleration that correlates with the WSTC. HIC was then proposed by NHTSA as a replacement for
the GSl in FMV SS No. 208 and is computed according to the following expression:

25

€ 1 = u
HIC = maxée—— cp(t)dta (t,- t)
2”1 ty g

wheret, and t; are any two arbitrary times during the acceleration pulse. Accderation ismeasured in
multiples of the accderation of gravity (g) and time is measured in seconds. On October 17, 1986,
NHTSA proposed to limit thisHIC timeinterva to 36 milliseconds. The agency recognized that
avallable human volunteer tests demongrated that the probability of injury in long duration events was
low, but reasoned that the agency should take a cautious gpproach and not significantly change the
expected pass/fal ratios that the then unlimited HIC provided. Evauation, at the time, of the proposed
17 millisecond limit againg various test setsfrom NCAP and FMV SS 208 testing available at the time
was found to reduce the failure rate from 46% to 35%. This contributed to the agency’ s decison to
regject the proposal of reducing the HIC timeinterva to 15 to17 milliseconds without a commensurate
reduction of the maximum HIC vaue. However, to somewhat accommodate the apparent over-
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gringency of the limited HIC for long duration events, the agency did propose limiting the maximum
timeinterva to 36 milliseconds. This provision alowed the maximum average long duration
acceleration to riseto alimit of 60 G's.

The agency is proposing to evauate the HIC over amaximum 15 millisecond time intervd for dl
dummy sizes with a requirement that it not exceed a maximum of 700 for the 50 percentile male and
the 5 percentile femae. Thiswill Smultaneoudy provide a equaly stringent evaluation of long duration
events while providing increased stringency for short duration events where biomechanica certainty is
not as strong. We are proposing to change the HIC time interva to amaximum of 15 milliseconds for
al dummy szes and to revise the HIC limits by commensurate amounts, based on a scding from the
proposed new limit for the 50th percentile adult mae dummy.

The HIC limits proposed in the NPRM reflected a scaling methodology that included both
geometrical and materia property scaling using the properties of the crania sutures. This method was
based on the assumption that the pediatric skull deformation is controlled by properties of the cranid
sutures, rather than the skull bones. Comments received in response to the NPRM and at a public
meeting held on April 20, 1999 focused primarily on two issues: (1) the time duration used for the
computation of HIC and (2) the scading of HIC for the child dummies. In generd, commenters urged
that more consarvative vaues for HIC should be adopted for the child dummies and especidly for the
12-month-old CRABI infant dummy. Commenters cited differences in structure between the compliant
infant skull with soft cranid sutures and the adult skull in addition to the uncertain tolerances of the
infant’ sbrain. AAMA recommended that the duration for the HIC computations be limited to 15
milliseconds with a limit of 700 for the 50" percentile adult mae dummy, which is consistent with
Canadian Motor Vehicle Safety Standard No. 208. The basisfor AAMA’s recommended 15
millisecond duration was that, in the origind biomechanica skull fracture data from which HIC was
derived, no specimen experienced a skull fracture and/or brain damage with a HIC duration greater
than 13 milliseconds. AAMA aso argued that HIC36 overestimates the risk of injury for long-duration
head impacts with air bags. That organization cited a study where human volunteers who were
restrained by air bags experienced HIC36 greater than 1000 and did not experience brain injury or
skull fracture.

Based on arecent analysis of 295 NCAP tests, shown in Figure 2-1, the stringency of HIC,5 of
700 and HIC44 of 1000 appear to be equivaent for long duration events because while HIC ;5
produces alower numerica vaue for long duration events, its lower threshold, 700, compensates for
thisreduction. Of the 295 NCAP tests examined, 260 passed and 18 failed both criteria, 10 tests that
faled HIC,5 passed HIC,, while 7 tests thet failed HIC,4 passed HIC 5. Thus, the two criteriaand
associated thresholds offer gpproximeately the same stringency for long durations events.  For short
duration events, where ether criteriawould produce the same numerica vaue, HIC,5 with its proposed
700 threshold is more stringent. The agency bdlievesthat this increased stringency (conservativeness)
for short duration impactsisjudtified in light of the HIC function’s somewhat uncertain relationship with
brain injury and the extreme measures employed to scae the adult threshold of 700 to smdl children
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and the 5" femae. Thus, the agency proposes to employ a 15 millisecond time interval whenever
caculaing the HIC function and limiting the maximum response of the adult dummiesto avaue of 700
and suitably scaling the performance limits for the child dummies.

1400

NHTSA DATA
1200 328 samples . .

1000

400
y=0.6822x - 10.507

R’ =0.8963
200 |

1 L 1
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HIC36

Figure 2-1: Comparison of HIC,5 and HIC5; for NCAP data.

Comparisons were made between HIC, 5 and HIC4. For sinusoida pulses (Figure 2-2),
HIC,5=700 gives lower pesk acceleration limit for short duration pulses but higher pesk acceleration
for long duration (>50ms) pulses. HIC,5=500 gives lower peak accderation limit for pulses with
duration up to75ms and the same limit after that.
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Figure 2-2: Comparison of HIC,5 and HICg for theor etical head acceleration pulsewhich isa
half-sine wave

2.2 SCALING HIC TO VARIOUS OCCUPANT SIZES

The head gtructure for the whole dummy family used in FMV SS 208 is essentidly a padded rigid
auminum shell that does not deform as does the human skull under loading. The amount and type of
deformation in the human skulll, for a particular loading, varies sgnificantly with age with marked
difference between very young children and adults. Scaling for these effects in various occupant Szes
requires knowledge of the geometric, materia, and rate response differences in the populations. The
paucity of available data on the properties and biomechanica response of the human head as afunction
of age makes the scding task very difficult. McPherson and Kriewadl (1980) reported a study of the
mechanica properties of fetd crania bone. The study included bending tests on samples of skull bone
from fetuses and one sx year old child. They obtained tensile moduli scaling factors, for the Six year
old, of 0.59-0.79, depending on the direction, compared to the adult. Results reported by Melvin
(1995) indicated that the stiffness ratio with respect to the adult vaue was 0.243 for the newborn skull
and 0.667 for the Six year old.



A scaling factor for HIC can bewritten as| e = (1 )2/ (I )*° wherel ¢ isthe materid scde
factor and | | isthe head length scae factor. To summarize the agency’ s development of HIC scaling
factors presented in the previous report (NHTSA Docket 1998-4405-9), three different scaling
methods were investigated to obtain HIC vaues for the various occupant sizes. Results from these
scaing methods are shown in Table 2-1. Geometric scaing done predicted higher tolerance to head
accderation for achild than for an adult. For example, the HIC44 scale factor for a 12 month old
dummy, assuming | ¢ = 1, would be 1.34. Thus, the scaled HIC; limit for a 12 month old is 1344.
Melvin (1995) used bone modulus as a scae factor in obtaining results that give relatively low HIC
vauesfor children, for insgtance 138 for a 12 month old. Here, NHTSA’s used Mélvin's agpproach but
with adifferent head length scale factors obtained from a different source (NHTSA, 1996). Thethird
method for scaling HIC used in the previous report (NHTSA Docket 1998-4405-9) assumes that
pediatric skull deformation is controlled by the properties of the crania sutures, rather than the skull
bones. Using tendon strength as a surrogate for suture stiffness leads to a HIC 44 limit for a 12 month old
of 660, which falsin between the previous two methods. This method was used to scae the HIC 4
limits proposed in the NPRM. Table 2-1 shows the proposed HIC44 vdues for each dummy sze.
Although ascded HIC 4 value of 1081 was obtained for the six year old, avaue of 1000 was
maintained to avoid having a higher threshold for achild than for an adult, given the uncertaintiesin the
scaing process. The proposed limit for the three year old was rounded up from 894 to 900. The limit
for the 12 month old was rounded up from 659 to 660.



Table 2-1. Head Injury Scale Factorsand Criteria.

Mid-Sized Small 6 Year Old 3Year 12 Month
Male Female Old Oold
Head Length 1.000 0.931 0.899 0.868 0.821
Scale Factor
Bone Modulus 1.000 * 0.667 0.474 0.320
Scale Factor
Tendon Strength 1.000 * 0.960 0.850 0.700
Scale Factor
Geometric Scaling 1.000 1.113 1.173 1.237 1.344
Only
Materid Scaling with 1.000 1.000* 0.522 0.278 0.138
Bone Modulus
Materiad Scaing with 1.000 1.000* 1.081 0.894 0.659
Tendon Strength
Materid Scaling with 1.000 1.113 1.033 0.812 0.555
Failure Strength
(AAMA)

* Data comparing the modulus and strength of female anatomic structures to male are not available at thistime.
Although geometric scaling alone would predict higher tolerance values for females, it is believed that lower bone
mineral density would offset this effect. Therefore, the tolerance values for small females are kept the same as for
mid-sized males.

In response to the NPRM, the AAMA proposed that the bulk modulus of the brain should be used
as the materid scding factor rather than the bone modulus. Based on asmple anaysis of the skulll,
brain and flesh as a series of sorings, Irwin and Mertz caculated that the bulk modulus of the brain has
amore sgnificant effect on the overdl stiffness of the skull and brain than the bone modulus (Irwin and
Mertz, 1997). The AAMA proposed using the following scaling ratios,

Time Scale Factor: 8,=8_.
Acceleration Scae Factor: 8+=82/(8)
HIC S:ale FECIOI’ 8H|C = (8 Ff ) 2'5/ (8|_) 15

where 8, istheratio of head lengths and 8 istheratio of falure stress of brain tissue with age. Since
there are no data on the variation of failure stress of brain tissue with age, Mertz made the assumption
that its variation is the same as the variation of calcaned tendon noted by Médvin (1995). The AAMA
aso proposed for ease of computation to use a congtant maximum time interval of 15 milliseconds for
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the evaution of HIC, dthough the scaling techniques would suggest that the maximum time interva
would aso be different for the various dummy sizes, ranging from 12.3 to 15 milliseconds. The
resulting scde factors, shown in Table 2-1 are very Smilar to that obtained by using the tendon strength
as the materia property.

After review of the various comments received, the agency conducted further analyses using the
finite dement method as the bagis for an aternate gpproach to the aforementioned techniques to scae
HIC vauesfor different szed occupants. This gpproach utilized sdient geometric and materid
characteristics and features specific to 3 year old, 6 year old, and adult head approximations. Skull
grain response was used as the biomechanical basis for determining the different HIC vaues for the
various occupant Szes. This processis inherently gpproximate and is highly dependent on materia and
failure descriptions for the various bone types. The availability of such vauesin the literature is sparse
in the case of adult cranid bone and nearly nonexistent for pediatric bone and suture tissue.

The approach involved the congtruction of two idedlized spherical finite eement models for each
age. Thefirst isaproportiondly layered deformable model of the head and the second isarigid model
representing the dummy head equivaent for that age. The deformable mode was dropped until some
biomechanica threshold was exceeded. The dummy head mode was then dropped from the same
height to obtain the associated HIC vaue noting that the dummy models were cdlibrated againgt drop
requirements for physical dummy heads. Each model was based on actud human dimensions and
weightsfor that age. The thickness of the skull, and scalp layers were not scaled from size to Size but
rather chosen to represent actua dimensions reported for the various sized occupants. The materia
parameters were aso chosen to represent specific reported vaues from the literature and were not
scaed by a generdized scding reationship to the various occupant sizes. The bones of the skull are
joined together by joints caled sutures. For the first year and a half after birth these sutures develop
into fibrous connective tissue tying the bones together and by the end of this period closing skull
openings such as the fontanelle. Between the ages of 3 and six these joints go through an ossification
process that essentidly transforms them from connective tissue to bone. The effect of these sutures on
the bresking strain of 1 year old skull is not congdered explicitly in the models but is accounted for in
the overdl diffness of the skull. Thisisan important point sSince variaionsin the threshold strain values
result in large variaionsin the resulting HIC. More data on child skull stiffness and bresking srainis
needed. The fallure level for the deformable models was determined based on a vaue of maximum
principle strain in the skull. The vaue for this strain in the adult has been reported to be about 0.5%
(Wood, 1971). An estimation for the same vaue in the 6 year old skull was taken to be 0.5% and the
breaking strain values for the 3 and 1 year old children were taken as 1% and 2% respectively. These
vaues are summarized in Table 2-2.



Table 2-2: Finite Element Analyss (FEA) Based Scaling Techniques for HIC 15.

Breaking | Dummy Based HIC ;5 Range Scaled HIC 5
Strain Based on FEA Using AAMA Techniques

1YO 2% 200-300 390

3YO 1% 300-400 570

6YO 0.5% 500-600 723

Adult 0.5% 700 700

Small Female 0.5% 700 779

Mid-Sized 0.5% 700 700
Male

The agency has consdered the proposa by the AAMA for scaling HIC 5 according to tissue failure
stresses and has found it to be approximately equivaent to both the scaled HIC, 5 values determined
through finite eement analysis and the scaing technique employed in the NPRM which uses tendon
grength. In addition since there was a consensus among the members of the AAMA to adopt the
scaing technique based on tissue failure stresses, the agency proposes to use this method for scaling the
HIC,;5 performance limits. However, the AAMA proposed performance limits higher than 700 for the
six year old child and for the 5" percentile femae. In light of the uncertainties in the scaling techniques,
the agency bdieves it would not be prudent to alow a higher limit for a child than for an adult, and thus
propose that the performance limit for the Sx year old be set a avaue of 700 for HIC 5 Furthermore,
since the biomechanica data used to develop HIC conssted of both mae and female skulls of various
gzes and since head Szeis not well correlated to body Size, the agency is proposing asingle value for
HIC,;5 of 700 for dl al adult dummies. The agency’s recommended performance limits are summarized
in Table 2-3. Although the large male Hybrid I11 dummy is not included in the proposed testing for the
advanced air bag SNPRM, the HIC 5 limit islisted for completeness.

Table 2-3: Proposed Head Injury Criterion for Various Dummy Sizes

Dummy Type Large§ Mid- Small 6 Year 3Year 1Year
Male Sized Female Old Old Old

Male Child Child Infant

Proposed HIC 5 Limit 700 700 700 700 570 390

8 TheLarge Male (95" percentile Hybrid 111) is not currently proposed for inclusion in the SNPRM, but the
performance limits are listed here for completeness.




2.3 HEAD INJURY RISK ANALYSIS

Prasad and Mertz (1985) andyzed available test data from human surrogates to determine the
relationship between HIC and injuries to the skull and brain. Methodologies used to andyze the brain
injury data had a number of limitations, and resulted in arisk curve nearly identicd to the skull fracture
injury risk. Skull fracture data conssted of head drop tests on both rigid and padded flat surfaces
(Hodgson, 1977), ded tests against windshields (Hodgson, 1973), and helmeted drop tests (Got 1978,
Tarriere 1982). The combined set of data conssted of 54 head impacts, with HIC vaues ranging from
175 to 3400. HIC durations ranged from 0.9 to 10.1 msec. The lowest HIC value associated with a
skull fracture was 450, and the highest HIC vaue associated with a non-fracture was 2351.

These data were analyzed by Hertz (1993) fitting normd, log normal, and two-parameter Weibull
cumulative digtributions to the data set, usng the Maximum Likelihood method to achieve the best fit for
each function. The best fit of the data was achieved with the log norma curve, shown in Figure 2-3.
Since the data consgts of short duration impacts which were typically less than 12 milliseconds, the
HIC curve would be applicable to both HIC,5 and HIC;5 . The probability of skull fracture (MAIS
3 2) associated with aHIC 5 limit vaues of 700 for amid-sized maeis 31 percent. Based on scaling
procedures, injury risk levels associated with the proposed HIC 5 performance limits for each dummy
are assumed to be equivaent to the risk for aHIC,5 vaue of 700 for amid-sized adult male.
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Figure2-3. Injury risk curvefor the Head Injury Criterion (HIC).

The probability of skull fracture (AIS® 2) is given by the formula,
dn(HIC) - mp
s 2

p (fracture) = N

where N() is the cumulative normd digtribution, m= 6.96352 and s = 0.84664.
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24 APPLICATION OF HIC TO AVAILABLE TEST DATA

Cdculations of HIC,5 and HIC 45 were made for awide variety of test data available in the NHTSA
database (Tables B1 thru B25). Analyses were conducted for data from 35 mph NCAP tests, 30 mph
FMV SS No. 208 compliance tests, 48 kmph (30 mph) rigid barrier and 40 kmph (25 mph) offset tests
with 5" percentile adult female dummies, and out-of-position tests with the 3 year old, 6 year old and
5™ percentile adult female dummies. The percentage of vehicles that passed the newly proposed
criteriaof HIC,5 £700 for the adult dummies and the six year old dummy is discussed below. As
expected from initid regresson analyss of the NCAP vehicle tests that showed the the two criteriaand
associated thresholds offer the same stringency for long durations events (Figure 2-2), HIC 5 £ 700 for
the adults shows very smilar passrates as HIC;,£ 1000 for dl vehicle tests andyzed including those
with the 5" percentile female dummy. The equivalency of the two criteriais also demondtrated for
direct air bag loading to the head in the out-of-position tests. In these tests, the pass rates of the 5"
percentile female and 6 year old child dummy are very smliar for HIC;5 and HIC .

Datafrom atota of 124 NCAP crash tests from 1997 to 1999 model year vehicles were andyzed
with ATD’sin both the driver and passenger position to determine how the new proposa of HIC 5 £
700 would perform if it were adopted. In these tests, about 94% of the drivers and 92% of the
passengers had avaue of HIC,5 £700.

Datafrom atotal of 40 FMV SS No. 208 compliance tests for 1996-1999 vehicles were andyzed
with ATD’sin both the driver and passenger positions. All drivers had avaue of HIC,5 £700. All
passengersin the 1998-1999 model year vehicles had avaue of HIC,5 £700. 93% of the passengers
in the 1996-1997 mode year vehicles had avaue of HIC,5 £700. The averages of HIC; for dl
drivers and passengers are 222 and 239, respectively.

Data from tests conducted at Transport Canada using the Hybrid 111 5" percentile adult female
dummy in 1998-1999 model year vehicles were dso andyzed. In these tests, the 5 percentile femde
dummies were belted and seated in afully forward position. For the seventeen 208 tests conducted at
48 kmph, dl drivers and passengers had avaue of HIC,5 £700, with an average vaue of HIC 5 equa
to 205 and 206, respectively. For the twenty-nine 40% offset frontal tests conducted at 40 kmph, al
driversand all but one passenger had avaue of HIC,5 £700, with an average vaue of HIC,5 equd to
182 and 114, respectively.

Data from four NHTSA 208 tests with unbelted 5™ percentile female dummies in 1999 cars were
andyzed. All passengers and drivers had avadue of HIC,;5 £700. The averagesfor drivers and
passengers are 169 and 299, respectively.

The 14 tests with the 5" percentile adult femae dummy in the driver position 1 and position 2 using

1998-1999 mode vehicles were also andlyzed. The position 1 driver test condiition with the 5
percentile femde dummy is intended to maximize head and neck loading from arbag deployment while
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the pogition 2 test condiition is intended to maximize chest loading due to air bag deployment. For the
position 1 tests, 14 out of 14 tests had avaue of HIC,5; £700, with an average value of HIC,5 equa to
79. For the pogition 2 tests, 14 out of 14 tests had avaue of HIC,5 £700, with an average value of
HIC,5 equal to 39.

Thefina set of data analyzed for this report were from Hybrid 111 6 year old dummy out-of-position
tests using 1996 to 1999 model year vehicles. Out-of-position tests were conducted to investigate the
traumainduced when the child dummy isin close proximity to the deploying airbag. Two out-of-
position test conditions were considered for the 6 year-old Hybrid 111 dummy. Thechild postion1is
designed primarily to evauate contact forces of the deploying airbag on the head and chest. This
position is intended to represent a tandardized worst case condition in which the child has been thrown
againg the fronta sructure of the vehicl€ sinterior due to pre-impact braking and/or vehicle impact.
The child position 2 is designed to primarily address the contact forces and loading forces of the
deploying airbag on the head and neck. This position isintended to represent aworst case scenario in
which the child dides forward or is Stting forward on the seat while the upper torso jack-knifes forward
toward the instrument pand. 7 out of 7 testsin position 2 using the 1999 model vehicles had avaue of
HIC,5 £700, with an average value of HIC,5 equa to 246. 15 out of 19 testsin pogition 1 had avaue
of HIC,5 £700, with an average vaue of HIC,5 of 510. 9 out of 12 testsin position 1 with a4 inch
distance from the chest to the instrument pane had avaue of HIC,5; £700, with an average vaue of
HIC,;5 of 546. 10 out of 11 testsin position 1 with an 8 inch distance from the chest to the instrument
pand had avaue of HIC,5 £700, with an average value of HIC 5 of 345,

In summary, dmost adl the NCAP tests, FMV SS No. 208 compliance tests, Transport Canada
offset and rigid barrier tests using the 5 percentile adult female, and out-of-position tests using the 5™
percentile adult femae passed the proposed injury criteriaof HIC,; £700. However, for out-of-
position tests using the 6 year-old, some basdline airbag systems failed the proposed head injury
criteria
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Chapter 3
Neck Injury Criteria

3.1 BACKGROUND

The current FMV SS No. 208 dternative ded test includes injury criteriafor the neck consisting of
individua tolerance limits for compression (compression of the neck), tenson (force stretching the
neck), shear (force perpendicular to the neck column), flexion moment (forward bending of the neck),
and extenson moment (rearward bending of the neck). Tolerance vaues are based on a saect number
of volunteer, cadaver, and dummy tests. Limits are typicaly set a minima threshold levels, but are
based on smdl sample sizes.

The current tolerance leve for axia compression was developed by Mertz et d (1978). They used
aHybrid 111 50% mae dummy to investigate the neck reaction loads when struck by atackling block
that had reportedly produced serious head and neck injuriesin footba| players. The compression
tolerance varied with the duration of the load application, with a pesk vaue of 4000 Newtons.

Current tolerance levels for tenson and shear loads were developed by Nyquist et ad (1980). They
used the Hybrid 111 50% male dummy to reconstruct redl-world collisons, and correlated field injuries
with dummy responses for 3-point belted occupants in fronta collisons. Limits for tension and shear
were set at 3300 N and 3000 N, respectively.

Tolerance levels for flexion and extension bending moments were based on ded tests conducted on
volunteers and cadaver subjects.( Mertz, 1971) Volunteer tests provided data up to the pain threshold,
and cadaver tests extended the limits for seriousinjuries. Ligamentous damage occurred in asmall
stature cadaver subject at an extension moment of 35 ft-Ibs (47.5 Nm). This value was scaled up to an
equivaent 50% mae level of 42 ft-Ibs (57 Nm). No injuries were produced during flexion testing, so
the maximum measured value of 140 ft-Ibs (190 Nm) was taken as the injury assessment reference
vaue (IARV). It should be noted that these moment tolerance levels are based on human limits, rather
than from dummy measurements. Tolerance limits are therefore dependent on the biofiddlity of the
dummy neck in bending.

Experimenta tension tests on cadaveric specimens condst of asmall number of sudies.
Y oganandan et a (1996) tested isolated and intact cadaveric specimensin axia tension under both
quas gtatic and dynamic conditions. Isolated specimens failed at a mean tenson value of 1555 N. Intact
specimens failed at a higher mean tenson vaue of 3373 N. Shea et d (1992) investigated the tenson
tolerance of the neck with afixed extension angle of 30 degrees. Under this combined loading
condition, ligamentous cervica spine specimens failed at amean tension vaue of 499 N. These results
indicate that the presence of an extenson moment would have asignificant effect on the tensle
tolerance of the cervicd spine. One additional test conducted on alive baboon demonstrated that
physiologicd failure of the spind cord occurs a gpproximately haf the distraction load which causes
gructurd failure of the cervical column (Lenox, 1982).
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3.1.1 Adult VersusChild Injury Tolerance

In scaling between people of different sizes and age groups, geometric differences do not fully
account for the differencesin tolerance to loading. Variationsin materia properties and the degree of
skeletd maturity also have astrong effect on injury tolerance. Red world crash investigations, as
documented through NHTSA's Specid Crash Investigation Program, show the differencesin injury
patterns associated with age. For forward-facing children in close proximity to a deploying airbag,
typica injuriesinclude atlanto-occipital didocations with associated contusions or lacerations of the
brain stem or spinal cord. Closed head injuries are common, but skull fractures are typicaly not
observed. For adults under the same airbag loading conditions, typica injuries include basilar skull
fractures with associated contusions or lacerations of the brain stem or spind cord. Atlanto-occipita
didocations are typicaly not observed.(Kleinberger, 1997)

One crude study on pediatric tolerance was conducted in 1874 by an obstetrician who pulled on
the legs of dillborn children to determine how much force could be applied in a breech ddivery before
cervica injury occurred. One additiond test was conducted on an infant that had died two weeks after
birth. Although based on a single data point, the results indicate that the tolerance of the cervica spine
sgnificantly increases even within the first two weeks of life (Duncan, 1874).

Two additiond studies were conducted using matched pairs of tests in which ajuvenile porcine
subject and a 3-year-old child dummy were subjected to out-of-position deployments from a number
of different airbag systems (Mertz and Weber, 1982; Prasad and Danidl, 1984). The pig was judged by
the authors to be the most appropriate animal surrogate based on a number of anatomica and
developmentd factors. Measured responses in the child dummy were correlated with injuries sustained
by the surrogate. Prasad and Danid concluded from their results that axia tension loads and extenson
(rearward) bending moments should be linearly combined to form a composite neck injury indicator.
Critical values proposed for tenson and extension for the 3-year-old dummy were 2000 N and 34 Nm,

repectively.
3.2 DEVELOPMENT OF Nij NECK INJURY CRITERIA

Current FMVSS No. 208 injury criteriafor the neck using the dternative ded test include individua
tolerance limits for axid loads, shear loads, and bending moments. If axid loads (tenson and

compression) and bending moments (flexion and extension) are plotted together on agreph, the
requirement is that the dummy response mugt fal within the shaded box, as shown in Figure 3-1.
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Tension
3300

Extension i
57 190 Flexion

4000
Compression

Figure 3-1: Current ded test alternative neck injury criteria.

Using this formulation, if the mid-sized male dummy measures less than 3300 N of tensgon aong
with less than 57 Nm of extension moment, it would pass the current criteria. This formulation does not
consder the combined effect of extension and tension.

The concept that a compaosite neck injury indicator based on alinear combination of axia tenson
loads and extension (rearward) bending moments was devel oped by Prasad and Danid (1984) using
their results from experimenta tests on porcine subjects. Based on their formulation for a 3 year old
dummy, the dlowable region in the tension/extension quadrant of the plot becomes the shaded area
shown in Figure 3-1. Any test faling above the diagond linein this plot would exceed the tolerance

levels. Tension (N)
2000

Extension (Nm)
34

Figure 3-2: Linear combination of axial and tension loads for porcine subjectsrepresenting
the size of athreeyear old child (Prasad and Daniel, 1984).

Next, the concept of neck criteria based on alinear combination of loads and moments, as
suggested by Prasad and Daniel, was expanded to include the four mgjor classifications of combined
neck loading modes, namely tenson-extension, tension-flexion, compress on-extension, and
compression-flexion. Proposed critica intercept vaues for tensgon load, compression load, extension
moment, and flexion moment were established and are discussed later in section 3-3.

The resuiting criteria are referred to as N;;, where “ij” represents indices for the four injury

mechaniams, nandy Nrg, Ntg, Neg, and N, Thefirg index represents the axid load (tension or
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compression) and the second index represents the sagittal plane bending moment (flexion or extension).
This N;; concept was first presented in NHTSA’s report on child injury protection (Klinich, 1996).
Graphically, the shaded region of the plot in Figure 3-3 shows the region for dl four modes of |oading
which would pass the performance requirements for Nij. The intercept vaues shown are those
proposed for the Hybrid [11 mid-szed mae dummy.

Tension (N)
4500
Extension (Nm) Flexion (Nm)
125 310
4500

Compression (N)

Figure 3-3: SNPRM neck injury criteria for the 50" per centile male dummy.
The shaded region represents combinations of neck forces and moments which would passthe criteria
of Nij #1.0.

Since each specific dummy has a unique set of critica intercept vaues, for subsequent scding this
plot has been normalized by dividing each semi-axis by its critical intercept value for a specific dummy.
The resulting plot becomes symmetric about the origin and has maximum alowable vaues of unity.
Graphicaly, the shaded box shown in Figure 3-4 designates the alowable vaues of loads and moments
represented by this normalized calculation.

Tension
1

Extension T Flexion

1
Compression

Figure 3-4: Normalized SNPRM neck injury criteriafor all dummy sizes.
The shaded region represents combinations of neck forces and moments which would passthe criteria
of Nij #1.0.
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Red-world cervica injuries resulting from airbag interaction often are classified as tenson-extenson
injuries. A tendleload applied to the neck results in stretching of both the anterior (front) and posterior
(rear) soft tissues of the neck. If an extenson (rearward) bending moment is superimpaosed upon the
tendle load, the anterior soft tissues will be further stretched while the posterior tissues will become less
dretched. Under thisloading scenario, atenson-extenson injury is more likely to occur than atenson-
flexion, compression-extenson, or compression-flexion injury. Accordingly, the value for Nz would be
expected to be the maximum of the four N;; values.

3.2.1 Method of Calculation of Nij Criteria

In developing the Nij criteria, information produced in crash tests using dummies, and the
ggnificance of that information are consdered. For any given loading of the dummy, the sandard 6-axis
upper neck load cdl dynamicaly records the loads and momentsin dl three directions at the top of the
neck. For afrontd collison, primary motion and measured neck reactions occur in the sagittd plane.
Out of plane motion and reactions are typically of secondary importance. As areault, only the two
meesurements associated with sagittal plane motion are used in the current formulation of the Njj neck
injury criteria, namely axid load (F,) and flexion/extenson bending moment at the occipital condyles
(My). Shear load (Fx) isonly used to cdculate the effective moment at the occipital condyles. Using
the neck cdll polarities established by SAE (SAE J1733, 1994) this is accomplished by multiplying the
shear load by the height of the load cell above the condyles and subtracting this value from the Y-axis
moment measured by the load cdll.

Loads and moments at each instance in time are normalized with respect to the corresponding
critical intercept values defined for tengon, compression, extenson, and flexion. The normaized flexion
and extenson moments are added to the normalized axia |oad to account for the superposition of load
and moment. The proposed neck injury criteria can thus be written as the sum of the normalized |oads
and moments.

M
Nij = ¥ + y (3.1)
Fint Mint

where F, isthe axid load, F,;; is the corresponding critical intercept vaue of load used for
normdization, My is the flexion/extens on bending moment computed at the occipitd condyles, and M,
is the corresponding critica intercept vaue for moment used for normdization. At each ingancein
time, Fz and My liein one of the four quadrants shown in Figures 3-3 and 3-4 which correspond to the
four loading modes of tenson-extension, tension-flexion, compression-flexion, and compresson-
extenson. Nij is computed a each instance in time for only that quadrant where Fz and My lie. For
example, if at oneingance in time the axia forceis+1000 N (i.e., tension) and the bending moment a
the occipital condyleis-50 N-m (i.e., extenson),

_ 1000 - 50
TE = +
4500 - 125
The maximum Nij in time for each of the four loading modes, represented by the four quadrantsin

= 0.62 32
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Figure 3-4, is computed from which the maximum Nij for al the four loading modesis determined.

The vaues for calculating the N;j; are uniquely specified for eech dummy, and are defined in Teble
3.6 for the CRABI 12-month-old dummy and the Hybrid 111 3-year-old, 6-year-old, smdl femde, and
mid-sized male dummies. Source code for a C++ program to calculate the Nij criteria using standard
test dataisincluded in Appendix G. This source code, as well as an executable verson of the program,
isaso available from the NHTSA web site at http://www.nhtsa.dot.gov.
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3.3 DEVELOPMENT AND SCALING OF Nij CRITERIA TO VARIOUS
OCCUPANT SIZES

Initial critica intercept values for tenson load and extenson moment were calculated for the 3 year
old dummy based on the Mertz/Prasad experimentd test data. As noted at the beginning of section 3.2,
previoudy published tolerance levels were based on individua tolerance limits. These independent
limits, which do not account for the complex combined loading, were published in context of the short-
term aternative ded test. Critical intercept vauesfor axid load and sagittal plane bending were
previoudy determined by assuming that each measurement was independently linked to the resulting
injury. Tendon limits were set assuming thet no extension moment was gpplied. Smilarly, bending limits
were set assuming that no tenson was present.

In the previous report (NHTSA Docket 98-4405-9), engineering judgement of the tolerences of
the adult human neck was used to determine the weighting of the relative importance of the tenson and
extension in the Nij formulation, which is hereafter referred to the NPRM Nij. Then, the Mertz/Prasad
paired pig and dummy data were re-andyzed usng a multi-variate logistic regresson to determine the
predictive ability for the combination of tension and extension in the NPRM Nij formulation. The
resulting critica valuesin the NPRM Nij formulation were 2500 N for tenson and 30 N-m for
extenson for the three-year old. In their response to the NPRM, the AAMA suggested adightly
different lineer combination of the axid forces and bending momentsin the neck to predict the failure of
the anterior-longitudind ligament (ALL). This combination assumed thet the force in the ALL would be
equa to one-half the measured tendle force and that the additiona tengle force due to extenson would
be equa to the measured extension moment divided by the distance from the anterior surface of the
atlasto the posterior surface of the ALL. Based on these assumptions, the resulting critica values for
the three-year old are 2120 N for tenson and 26.8 N-m for extension. In light of the large
biomechanica variability in humans, the proposal by NHTSA and the AAMA for the critical vaues are
essentialy the same and NHTSA has adopted the AAMA limits for the three-year old as the basis for
the formulation of the Nij which isused in the SNPRM. However, it isimportant to note, thet due to
different satigtica techniques used by the AAMA and the agency which are discussed in detall in
Chapter 1, the probability of AlS 2+ risk associated with avaue of SNPRM Nij = 1.0is5%
according to the AAMA’ s techniques and 22% according to the agency’ s techniques.

Criticd intercept tenson and extension vaues for other dummy sizes were scaled from the 3 year
old dummy using the scaling techniques presented in Chapter 1 and include the effect of age dependent
falure sress. The AAMA proposed using the failure stress of the calcaned tendon for the determining
the failure stressratio. Forces were scaled according to cross-sectional area of the neck, represented
by the circumference squared, multiplied by the failure stress of the ligaments (8F; 8,%). Bending
moments were scaled according to the third power of the characteristic neck length, represented by the
circumference cubed, multiplied by the failure stress of the ligaments (8F; 8, 3). Circumference
measurements are used to quantify characteristic neck length because it is a Smple measurement to
record. Circumference measurements, failure strength of the cal caneus tendon, and the associated scale
factors for each dummy size are shown in Teble 3.1. Vauesincluded in this table were sdlected from
severd anthropometric studies conducted on adults and children (Snyder 1977, Schneider 1983, and
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Weber 1985).

Table3.1. Comparison of Scale Factorsfor Various Dummy Sizes.

Dummy Neck Neck Length Failure Failure Stress
Circumference Scale Factor Strength Scale Factor

(mm) 8. Fr (kg/mm?) 8F;
CRABI 12-month-old 224 0.585 391 0.70
Hybrid I11 3-year-old 244 0.637 4.76 0.85
Hybrid I11 6-year-old 264 0.689 539 0.96
Hybrid 11 small female 304 0.7 5.6 1.00
Hybrid 11 mid-sized male 333 1.000 56 1.00
Hybrid I11 largemale 421 1.099 56 1.00

Table 3.2. Comparison of Axial Scaling Factorsfor Various Dummy Sizes.

Dummy Axial Force Scale Axial Force Scale

Factor Factor

8F; 8,2 (MCW)
CRABI 12-month-old 0.240 0.26
Hybrid I11 3-year-old 0.345 0.29
Hybrid I11 6-year-old 0456 0.35
Hybrid Il small female 0.630 0.63
Hybrid 111 mid-sized male 1.000 1.00

Table 3.3. Comparison of Extension Scaling Factorsfor Various Dummy
Sizes.

Dummy Extension ScaleFactor | Extension Scale Factor
8F; 8,2 (MCW)
CRABI 12-month-old 0.140 0.22
Hybrid I11 3-year-old 0.220 0.32
Hybrid I11 6-year-old 0.314 041
Hybrid 11 small female 0501 0.70
Hybrid 11 mid-sized male 1.000 1.00

Kumaresan et. a (Appendix F) used an dternative scaing technique to determine the critical force
and moment vaues based on a literature survey of age dependent failure strengths of the various
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ligamentsin the neck. This dternative technique shows smilar scaling factors as those based on the
cacaned tendon failure strength (Tables 3.2 and 3.3).

Applying the scale factors from Table 3.1 to the critica intercept tenson and extension limits for the
3 year old dummy yiddsthe criticd intercept vauesfor dl dummy sizes shown in Table 3.4. Vduesfor
critical intercept compression and flexion were established by setting fixed ratios between tenson and
compression loads, and between extenson and flexion moments.

Table 3.4. Scaled Critical Intercept Valuesfor Tension and Extension.

Dummy Tension (N) | Extenson (Nm)
CRABI 12-month-old 1465 17
Hybrid 111 3-year-old 2120 27
Hybrid 111 6-year-old 2800 39
Hybrid 111 small female 3880* 62
Hybrid 11 mid-szed male 6170* 125

* Proposed axial load limits for adult dummies are based on experimental data and are lower than the scaled values
presented in thistable.

To better understand the rel ationship between dummy and human responses to loading, a modeling
study was conducted usng MADY MO to determine a scae factor between human and dummy neck
loads and moments (Nightingale, 1998). In addition to the standard MADY MO mode of the Hybrid
[11 dummy provided with the software, a second model was created to represent a human occupant.
Axid diffness of the neck and rotationd tiffness of the occipital condyle joint were modified
individualy and in combination to determine their effect on measured loads. A generic airbag mode
was deployed into an out-of-position driver modd initidly placed in an 1SO 1 postion, whichis
intended to maximize loading on the head and neck. A summary of the resultsis presented in Table 3.5.
These results indicate that the measured extension moments for the 50 percentile male dummy were
approximately 2.4 times higher than for a human, whereas the tension and shear measurements did not
change draméticdly. This supports the recommended critica intercept extenson moment vaue of 125
Nm suggested above for the mid-sized mae dummy, dthough it is dightly more than double the
previous human-based value of 57 Nm (Mertz, 1971).
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Table 3.5. Neck Reactions from Simulations of OOPAIrbag Deployments.

M odel . Extension
Configuration Tension (N) Shear (N) Moment (Nm)

Hybrid Il Axid Stiffness
Hybrid 11l Rotationa Stiffness 4744 2787 -173*
(Full Hybrid 11l Dummy Modd)

Human Axid Siffness

Hybrid 111 Rotational Stiffness 3503 2653 "152

Hybrid 11 Axid Stiffness

Humean Rotationdl Siffness 4599 4105 -123

Human Axid Stiffness
Human Rotationd Stiffness 3717 2769 -72*
(Full Human Moddl)

* A ratio of approximately 2.4 exists between the Hybrid 111 and human extension moment responses.

Critical intercept vaues for flexion moment were set by maintaining aratio of 2.5 between flexion
and extenson. Thisisthe same astheratio proposed by the AAMA for out-of-position eva uation of
air bagsin which the flexion limit for the 50 percentile male is 190 N-m and the extension limit is 77
N-m. Moment limits previoudy stated in the literature were based on human cadaveric tolerances, and
did not represent dummy-based vaues (Mertz, 1971). Moment tolerances used in this report are
based on dummy responses, and are sgnificantly higher than the valuesin the regulations for the
dternative ded test. Proposed SNPRM critical intercept vaues for extenson and flexion moment for all
dummy sizes are shown in Table 3.6.

Table 3.6. Proposed Critical Intercept Valuesfor SNPRM Nij
Neck Injury Calculation.

Dummy Tension | Compression | Flexion | Extension

(N) (N) (Nm) (Nm)

CRABI 12-month-old 1465 1465 43 17
Hybrid 111 3-year-old 2120 2120 68 27
Hybrid 111 6-year-old 2800 2800 93 39
Hybrid 111 small female 3370 3370 155 62
Hybrid 11 mid-szed male 4500 4500 310 125
Hybrid I11 largemale 5440 5440 415 166
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Axid loading of the adult neck isatest condition for which there is Sgnificant experimentd data
Proposed critical intercept values of tenson and compression for adult dummies are therefore based on
experimental data rather than on scding.  Pintar and Y oganandan (Pintar et d., 1998) conducted
dynamic compression tests to the head/neck complex with impact velocities ranging from 0.25 crm/sto
800 cm/s. Measured loads and accel erations on the specimens were correated with documented
injuries sustained by the specimens.  The naturd lordosis in the cervica spine was removed by forcing
it to bein astraight column which gpproximates a pure axial compressve load to the cervicd spine. The
compressive tolerance leve of the cadaveric specimens varied from 7 kN for the young to 2 kN for the
very old. Based on regression anadyss of the data, a compressve tolerance level of about 4500 N
under dynamic loading conditions was estimated for malesin the age range of 30-35 years. Using a
drop track system, Nightingde et d. (1997) conducted smilar dynamic compression tests on 22
cadaveric head/neck specimensin which the natura lordosis of the cervical spine was maintained.

Thus, the specimen had a combination of axia load and moment which contributes to failure. The mean
compressve force to fallure in the Nightingde et d. sudy was signficantly lower than thet in the Pintar
et d. gudy for mde specimens of Smilar mean age. The lower injury tolerance in the Nightingae study
is due to the additiona bending moment present, which is minimized in the Pintar sudy by removing the
lordoss. Thisis congstent with the biomechanical basis of Nij. The axid falure force in these two
gudiesisin about the same range as the previoudy published injury assessment reference values of
3300 N for tension (Nyquist 1980) and 4000 N for compression (Mertz 1978).

Based on the experimentd data discussed above with axia tolerances of the human neck of ranging
from 3300 to 4500 N depending on test conditions, the scaled values of 3880 and 6170 N for the
amall femae and mid-sized mae gppear to betoo high. This discrepancy can be expected due to the
large size differences and structurd differences between the neck of an adult and the neck of the three
year old subject from which the Nij formulation was derived.  Thus, based on the experimenta data of
Pintar (1995) which most closdly represents apure axiad compression of the cervicd spine, an axia limit
for the mid-szed mae dummy of 4500 N is proposed. The axid limit proposed for the smdl femaeis
3370 N, which is based on the interpolating the tension vaue for the 6 year old and the mid-szed mae
according to the scaling ratios presented in Table 3.1. Preliminary NHTSA-sponsored tests on
cadaveric head/neck specimens indicate that the tolerance of the neck to compression is not
ggnificantly different from the tolerance for tenson (Nightingae, unpublished). As aresult, the axid load
limit in tendon is assumed to be equd to that in compresson. The axid limits for the adult dummies are
dightly higher than those proposed in the NPRM and are congstent with the option in the NPRM to
dlow a performance limit of Nij up to avalue of 1.4. Based on the agency’ s andysis of comments by
many groups to adopt conservative vaues of neck injury criteria, especidly for children, the Nij criticd
vaues presented in Table 3.6 for the child dummies are lower than those proposed inthe NPRM. This
consarvativenessis warranted until sufficient datais available to support higher tolerances for the
pediatric neck.
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3.4 NECK INJURY RISK ANALYSIS

Risk curves previoudy presented by Mertz (1997) were calculated based on the Mertz/\Weber
modified Median Rank method using experimentd data from porcine subjects.(Mertz, 1982; Prasad,
1984) These data using the linear combination of forces and moments suggested by Mertz as
described in the section 3.3 were re-andyzed using logistic regression, yielding the porcine risk curve
shown in Figure 3-5. This curve represents the probability of injury to a porcine subject as a function of
the measured |oads and moments on a 3 year old child dummy placed in the same conditions, such asin
close proximity to adeploying airbag. An Nij vaue of 1.0 on this curve is associated with
approximately a22% risk of an AIS$3injury.

In order to establish the corresponding risk curve for alive human subject, a comparison was made
between the injury rates predicted using Nij calculations from experimental dummy test data and redl
world injury rates estimated from the Nationa Automotive Sampling System (NASS) database. Data
from 1997, 1998, and 1999 New Car Assessment Program (NCAP) crash tests were analyzed and
compared with NASS cases from smilar crash conditions. NCAP tests involve a 56 kmph (35 mph)
full rigid barrier impact with belted mid-szed mae dummiesin both the driver and passenger seeting
postions. It isimportant to note that NCAP tests use a’56 kmph (35 mph) impact velocity and belted
dummies, whereas FMV SS No. 208 compliance tests at 48 kmph (30mph) use both belted and
unbelted dummies. Therefore, it is not arequirement that NCAP tests meet FMV SS No. 208 injury
criteria

The probability of neck injury, given that a crash occurred, was examined for red world non-
rollover frontal crashesin various delta-V ranges. Neck injuries included vertebrd fractures, contusons,
lacerations, and transections of the cord, aswell as brain sem injuries and basilar skull fractures that
occur as aresult of loading to the neck. Although the biomechanica tolerance curves were based on
AIS$3 neck injuries, AIS$2 NASS data was examined because there are a number of fata injuries
coded as AIS 2 “broken neck, only information available.” Generdly, these injuries represent only
about 1-3% of al AlS 2+ cases, and in the case of airbag vehicles there was only one AIS 2 casein
the data between 25 and 30 mph ddtaV, which is not consdered in the find andysis when only higher
deltaV crashes are considered.

Results from this risk comparison indicate that for New Car Assessment Program (NCAP) crash
conditions, NASS data show about a 3 to 7 percent probability of neck injury for belted occupants of
arbag equipped vehicles compared to about a 12 percent probability of neck injury predicted using the
Nij criticd vauesligted in Table 3-4. For unbelted occupants with air bags, the probability of neck
injury estimated from NASS is about 1 to 7 percent compared to about a9 percent probability of neck
injury from unbelted crash tests a 30 mph.

In the previous report which used the NPRM critica vaues, an adjustment was made to the origina
porcine risk curve to establish a human curve to account for differences between estimates of neck
injury rates based on NASS and experimental test data. By contrast, using the criticd vaues
developed in this document, an adjustment to the origina porcine risk curve was not necessary because
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the NASS estimates were reasonably close to the experimenta estimates of neck injury rates. Since
the Nij criteria are defined as normalized injury measures, an Nij value of 1.0 represents a 22% risk of
AIS 3+ injury for dl occupant Sizes. The origind porcine data from Mertz (1982) and Prasad (1984)
were aso used to calculate arisk curve for AIS$2, 4, and 5 injuries using logigtic regression and are
presented in Equation 3.2.
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Figure 3-5. Injury Risk Curvefor N;; Neck Injury Criteria.

p(AIS® 2) = 1+ e2.3-54fll95Nij
P(AIS® 3) = 1+ e3,;|-27-]_969Nij (32)
P(AIS® 4) = 1+ 62'2-93 1195Ni]
P(AIS® ) = 1+ e:e,.a:al-17-1.195|\uj
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Figure 3-6. N;; Risk Curvesfor AIS2+to AIS5+ Injuries.

3.5 APPLICATION OF PROPOSED Nij CRITERIA TO AVAILABLE
TEST DATA

Cdculaions of Nij were made for awide variety of test data available in the NHTSA database.
Anayses were conducted for data from NCAP tests for both drivers and passengers, FMV SS 208 30
mph rigid barrier crash tests with 1998 vehicles, 25 mph offset tests with 5" percentile femae drivers
and passengers, 30 mph rigid barrier tests with 5™ percentile female drivers, and out-of-position tests for
6 year old and 5" percentile femae dummies. Results from these tests are presented graphicaly in
Appendix A, and are included in tabular format in Appendix C.

Comparisons between the Nij combined neck injury criteria and the suggested performance limits
submitted by the AAMA for out-of-position occupants are shown for the different types of data
andyzed. Two points are plotted for each test, corresponding to each set of injury criteria. A typica
plot is shown in Figure 3-7.
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Figure 3-7. Typical Plot Comparing Nij with Current Injury Criteria.

The point corresponding to the Nij criteria, labeled witha €, islocated at the vaues of axid load
(F,) and flexion/extengon bending moment (M) which yidd the maximum vaue for Nij. It isimportant
to redlize that these vaues for F, and My are concurrent in time and are not necessarily equd to the
maxima during the entire event. The point corresponding to the AAMA proposed vaues for out-of-
position, labded with a 1", islocated a the overal maximum vaues of axid load and bending moment.
The two vaues that determine this point are independent of time, and do not necessarily occur a the
sametime. It isaso important to notice that shear load is not included on this plot.

Since the AAMA independent point always represents the overall maximawhile the Nij point does
not, it isimpaossible for the Nij point to be located further from the origin than the 208 point. To help
identify the matched sets of points, they have been joined together by aline. If the line segment is short,
and the points lie essentidly on top of one ancther, it implies that the Nij maximum vaue occurs close to
the same time as the independent maxima. I the line segment islong, this indicates that the Nij maximum
occurs & amuch different time than the independent maxima.

The thick broken rectangle in Figure 3-3 represents the AAMA proposa for neck injury criteria for
axia load and bending moment in out-of-pogition testing. The AAMA’ s suggested independent limits for
tension, compression, flexion and extension which are the same as those used currently for the 50"
percentile mae in the dternative ded test option, with the exception of the extenson value. The
AAMA’s proposed a limit in extension for the 50" percentile maleis 77 N-m for out-of-position testing
and 96 N-m for in-pogition testing, which are higher than the 57 N-m used currently for the ded test.
The AAMA reasoned that for in-position testing because the occupant would be aware of the crash and
would tense the neck muscles, the performance limits could be raised for tension and extension.
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However, the agency has determined that it is not prudent to raise these limits because not al occupants,
especialy passengers, may be aware of an impending crash and furthermore because there was little
scientific datato support the large increase in the extenson tolerance to 96 N-m.  Thus, the limit of 77
N-m is plotted for the extension limit for the 50" percentile male. The solid “kite’ shape represents the
Nij = 1.0 criteria, corresponding to a22% risk of an A1S$3 injury. The vertices for each region shown
on the plot are scaled for each different dummy size. Data points lying within either the box or kite are
consdered to pass the corresponding criteria

3.5.1 Vehicle Crash Tegting with the 50" Per centile Male Dummy

NCAP data from 1996 through1999 were anayzed for both drivers and passengers. A total of 307
occupants from 154 tests conducted from 1996 to 1999 were anayzed. Results are summarized in
Figures 3-8 and 3-9 and aso in Appendix Figures C.1 through C.4. In each year, more than 90% of
the occupants in the driver or passenger position passed SNPRM Nij performance limit of 1.0, with a
maximum vaue 1.42 for the driver in amode year 1996 vehicle with an airbag and a maximum vaue of
1.55 for one passenger in amodel year 1996 vehicle with an airbag.

Limited crash test data are available for the andlysis of neck injury risk in unbelted frontal collisons
because neck load cells were not required in compliance tests prior to the 1997 adoption of criteriain
the ded test dternative under FMV SS 208. A series of thirteen tests conducted under FMV SS 208
barrier crash conditions with 1998 and 1999 vehicles was conducted by the agency using the 50"
percentile male dummy. Results from these tests are shown in Figure 3-9 and in Appendix Figures C.5
and C.6. All thirteen tests, both drivers and passengers, eedlly fdl within the allowable range for the
SNPRM Nij criteria.
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Figure 3-8: SNPRM Nij Pass Rates for the 50" per centile male dummy in the driver position
Belted NCAP a 35 mph into flat, rigid barrier, and unbelted 208 tests at 30 mph into flat, rigid barrier.
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Figure 3-9: SNPRM Nij Pass Rates for the 50" per centile male dummy in the passenger
position Belted NCAP at 35 mph into flat, rigid barrier, and unbelted 208 tests at 30 mph into flat, rigid
barrier.
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3.5.2 Vehicle Crash Tegting with the 5" Per centile Female Dummy

Data from recent tests conducted at Transport Canada using belted Hybrid I11 5" percentile femae
dummy in mode year 1998 and 1999 vehicles were also analyzed. In these tests, the 5™ percentile
femae dummies were belted with the seat positioned as far forward as possible and the seatback
adjusted dightly more upright. Due to the far forward seating position and potentia for late deployments
for the offset tests, these conditions are quite severe and are somewhat Smilar to dynamic out-of -
position tests.

Results from 48 kph (30 mph) rigid barrier tests and low speed tests into an offset deformable barrier
are presented in Figures 3-10and 3-11and in Appendix Figures C.7 thru C.10. For the twenty-six rigid
barrier tests which were conducted, 65% of the drivers and 92% of the passengers passed the Nij
performance limit of 1.0. For the twenty-nine 40 percent offset frontal tests conducted at speeds varying
from 20 to 25 mph in which the air bag deployed, 66% of drivers and 90% of passengers passed the Nij
= 1.0 criteria. In some of the lower speed offset tests, the air bag did not deploy and are indicated in
Appendix Tables B.15 and B.16 with an asterisk.

These results using current air bag system demondrate that testing with the belted 5" percentile femaein
the full forward position at gpeeds up to 30 mphin arigid barrier or up to 25 mph into an offset
deformable barrier is a practicable test which is being met by over 50% of the vehicles. Similar testing
of the unbelted 5" percentile female dummy in a 30 mph rigid barrier test showed similar performance
with 3 out of 4 vehicles passing on the driver and passenger side (Appendix Figures C.11 and C.12).
However, this testing indicates that some vehicles will need to be redesigned to ensure safety for dl
occupant szes at dl available seating pogtions in the vehicles.
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Figure 3-10:Nij Pass Rates for the 5" percentile female dummy in the driver position
A - belted tests at 25 mph into an offset deformable barrier, B - belted tests at 30 mph into flat, rigid
barrier, and C - unbelted 208 tests at 30 mph into flat, rigid barrier
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Figure 3-11 Nij Pass Rates for the 5" per centile female dummy in the passenger position
A - belted tests at 25 mph into an offset deformable barrier, B - belted tests a 30 mph into flat, rigid
barrier, and C - unbelted 208 tests at 30 mph into flat, rigid barrier

3.5.3 Out-of-position Testing with the 5" Per centile Female Dummy and Child Dummies

Out-of-pogition tests for different sized dummies were aso conducted and analyzed by NHTSA.
Driver postion 1 for adult dummies places the chin just above the airbag module; position 2 centersthe
gternum on the module. Driver position 1 tests for adults are intended to maximize |oading to the head
and neck, resulting in higher risk of neck injuries. For children, the position 2 places the chin above the
arbag module. Thus, position 2 tests for children are intended to maximize loading to the head and neck,
resulting in higher risk of neck injuries. Since these tests represent the worst case scenarios involving
arbag deployments, dummy measurements are expected to be rdatively high.

Results from the 5 percentile female tests using 1996, 1998 and 1999 mode year air bag systems
are shown in Figure 3-12 and in Appendix Figures C.13 and C.14. For the 5" percentile femade
dummy, 5 of 15 tests (33%) in position 1 and 10 of 15 tests (67%) in the position 2 passed the Nij
performance limit.
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Figure 3-12: Nij Pass Ratesfor the 5" per centile female dummy in driver position 1 and
position 2

Out-of-pogition data for the Sx year-old dummy in position 1 and position 2 were aso conducted.
In addition, to quantify the effect of proximity of the dummy to the air bag module on neck injury, a
series of testsin modified pogitionl in which the dummy is placed 4 and 8 inches away from the air bag
were conducted on 1998 model year air bag systems. For the position 1 tests using 1996, 1998 and
1999 mode year air bag systems, 2 of 18 tests (11%) passed the Nij criteriaof 1.0. For the position 2
testsusing a series of air bags from 1999 modd year vehicles, 2 of 7 tests (29%) passed (Figure 3-13).
The 1999 Acura RL, which has dual-stage passenger air bag, was tested in position 1 and position 2
positions in two ways. (1) firing only the first stage and (2) firing the both stages with a40 ms delay
between the two stages. For thefirst stage only firing, the Nij values were 0.91 and 0.83 for positions 1
and 2, respectively. For the two stage firing with delay, the Nij values were 1.26 and 0.94 for positions
1 and 2, respectively. Thus, thefirst stlage Acura RL was the only air bag system which passed Nij for
both positions.

3-20



35

29
30

25

20

15

11

Nij Pass Rates, %

10

Position 1 Position 2

Figure 3-13: Nij Pass Ratesfor the 6 year-old dummy in child positions 1 and 2
3.5.4 Vehicle Crash Reconstruction Testing

Thefina set of test data andyzed for this report was from a series of crash recongtructions
conducted with a Hybrid I11 6-year-old dummy. Three cases involving serious and fata injuriesto a child
of approximately 6 years of age were salected from reports prepared by NHTSA’s Specid Crash
Investigation Team. An additiond two cases involving only minor injuries were selected from NASS.
The three cases involving serious and fatd injuries faill Nij by awide margin, as demondrated by their
location well outside of the alowable kite shape (Figure 3-14). The two casesinvolving only minor
injuries %ONij and are within the dlowable kite shape.
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Figure 3-14: Nij for Crash Reconstruction using the 6 year-old dummy



3.5.5 Comparison of Nij with Independent Evalution of Neck Forcesand Moments

The AAMA supported the independent eva uation of neck forces and moments, rather than the
evauation of combined loads used by Nij. Thus, the AAMA proposed separate performance limits for
tension, compression, flexion, and extenson. The pass rates for the various data sets described above
using the AAMA independent method are aso presented in Appendix C. Overal, the proposed neck
injury criteria, Nij, and the independent performance limits show very smilar pass rates for dl dummy
gzes. Moreover, if avehidefalls Nij it typicaly fals at least one of the independent performance limits
and vice versa. Since the two criteria gppear to be equally stringent and the agency believes that the
superposition of forces and moments has a better biomechanica basis, Nij will remain as the proposa
for the SNPRM.

3.5.6 Issues

There have been crash test Stuations where the agency has observed high neck moments being
generated a the upper load cdl of the Hybrid 11 dummy within 20 milliseconds of the initiation of large
neck shear loads without observing substantid angular deformation of the dummy neck. While we
believe that these are true loads being generated by the restraint system and not artifacts of an
ingppropriately designed neck transducer, we are uncertain whether this loading condition is
biomechanicdly redigtic. That is, the current Hybrid I11 neck exhibits considerable bending resstance
(i.e, inflexibility) at its occipitd condylejoint. The inflexibility may dlow large moments to be tranamitted
to the neck by the head without much relaive motion. This, in turn, can creete aStuation in which the
angular deflection due to the gpplied moment is opposed and even sometimes nullified by the
superimposed angular deflection induced by the neck’s shear force. Thus, high moments can be
produced with little observable rotationa deformation of the neck. In contrast to this, the human
occipital condyle joint gppears to have congderable laxity which requiresit to experience significant
rotation ( = 20 degrees of the head with respect to C1) before it can sustain a substantial moment across
it. Thiswould suggest that rgpid, high moments generated on a dummy without any concomitant
head/neck rotation are possbly an artifact of Hybrid 111's neck design and not necessarily ared |oad
that contribute to the potentia for neck injury.

We seek comment on whether anyone else using the Hybrid 111 dummy has experienced this rapidly
produced high moment/low angular deflection condition, whether they agree or disagree with our
andysis of the mechanics and possible consequences of the Situation, and whether they have any
biomechanicd data supporting either maintaining the current neck design or justifying its modification.

We note that it would not be possble to modify in any sgnificant way the current neck design within
the time frame of thisrulemaking, i.e., before the March 1, 2000 deadline for afina rule. Moreover, we
believe that dummies with the current neck are adequate for measuring risk of neck injury in the
proposed tests. To the extent that commenters advocate modifying the neck, we ask them to address
how dummies with the current neck should be used in the find rule to measure risk of neck injury.
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Thereis another technica issue related to the Hybrid 111 dummy neck for which we are seeking
public comment. On the selection of data channel, SAE J 211, paragraph 5, states "that selection of
frequency response class is dependent upon many consderations, some of which may be uniqueto a
particular test." Further, SAE J211 notes that "(t)he channd class recommendations for a particular
goplication should not be consdered to imply that al the frequencies passed by that channd are
sgnificant for the gpplication.” In the case of head-to-air bag interaction, the agency observed that the
specified channd frequency class (CFC) for the neck at 1,000 for force and 600 for the bending
moment admits neck data that has spikes of very short duration that may not be appropriate for
evauating the potentid for neck injury to the human. Prdiminary evidence indicates that the human neck
response under smilar impact would respond with considerably lower frequency response class data,
which implies that the neck response data when processed for injury assessment should befiltered to a
lower CFC level than suggested by SAE J211. Accordingly, the agency seeks comments on an
appropriate CFC for evauating data from neck load cells for injury assessment purposes and whether
that CFC should depend on the impact environment (e.g., vehicle crash tests, out-of-position tests, etc.)

36 RECOMMENDATIONS

Taking into consideration al of the experimental data for the various crash test conditions presented
in this section, and comparing the results with redl world injury statistics, the recommended neck injury
criteria reasonably predict the occurrence of injuries in these types of crashes. Based upon the foregoing
andyds, the Nij criteria have been demongtrated to be a reasonable injury criteriafor use with the
proposed upgrade to the FMV SS 208 frontal impact protection standard.
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Chapter 4
Thoracic Injury Criteria

4.1 BACKGROUND

Classic work by Stapp (1970) and Mertz and Gadd (1968) led to the development of the injury
threshold for chest acceleration of 60G’s. The first injury assessment recommendation for the rib cage
and underlying organs using chest deflection was developed by Neathery et d. (1975) for blunt frontal
loading. Nesathery et d. recommended a chest injury assessment vaue of three inches maximum sterndl
compression for a50™ percentile male in blunt frontal impact. This recommendation represented a
50% risk of an AlS $3 thoracic injury for a45 year old human.

Viano and Lau (1988) re-andyzed the data Neathery used and provided a recommendation of
35% external chest compression to avoid rib cage collapse due to multiple rib fractures and crush to
internal organs. Assuming a chest depth of 229 mm for the 50 percentile male, this corresponds to a
chest deflection of 65 mm. Based on this study, Mertz (1984) revised his origind maximum chest
deflection requirement from 75 mm to 65 mm for blunt impect.

Mertz et a. (1991) developed thoracic injury risk curves based on Hybrid 111 chest compression
response with shoulder belt loading by comparing the chest compression response of the Hybrid 111
dummy with injuries to car occupants in Smilar exposures. According to Mertz' sinjury risk curve for
belt restrained occupants, 2 inches of chest compression in the Hybrid 111 dummy is associated with a
40% risk of injury while 3 inchesis associated with a95% risk of injury.

Horsch (1991) demongtrated that the location of the belt on the shoulder and pelvis of the dummy
influenced the measured chest deflection. Asaresult, the actua chest deflection of a car occupant
under smilar conditions was underestimated using the Hybrid 11 dummy in many instances. Horsch et
d. (1991) andyzed fidd data and equivdent tests with Hybrid 111 dummy and determined that 40 mm
of Hybrid 111 chest deflection for belt restrained occupants was associated with a 25% risk of an
AIS$3 thoracicinjury.

Horsch and Schneider (1988) reported that the Hybrid 111 dummy demonstrates biofidelity a and
above 4.6 m/simpact velocity but it may be differ than the human chest at lower impact velocities.
Sed testsa 30 mph using the Hybrid 11 dummy with belt restraints or airbag restraints suggested that
the chest compression velocity was approximately 2 to 3.5 m/sec and so the dummy chest would
behave dtiffer than a human chest under belt or airbag restraint environments. Therefore, injury
assessment based on chest deflection measured in the Hybrid 111 chest under belt or airbag restraintsin
a 30 mph crash would under predict the actud injury outcome. Hence, this suggests that even the
recommended injury criteria of 65 mm maximum chest deflection may be high.
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4.2 ANALYSISOF HUMAN SURROGATE TEST DATA

Data availablein NHTSA’ s Biomechanics database from ded tests using human surrogates were
andlyzed to establish athoracic injury criterion with improved injury predictive capabilities over other
exiding criteria. A totd of seventy one frontal impact ded tests from three different impact trauma
|aboratories were examined and analyzed using logistic regression as discussed in Chapter 1. Data
from fifty-four of these ded tests have previoudy been published. (Morgan, 1994). In each test, the
human surrogate was restrained by one of five possible system configurations at the driver’s position:
(2) 3-point belt, (2) 2-point belt/knee bolster, (3) driver airbag and lap belt, (4) driver airbag and knee
bolster, and (5) combined driver airbag and 3-point belt. The change in velocity () V) of these tests
ranged from 23 to 56 km/h. Following the tests, the surrogates were radiographed and necropsied to
delineste any traumathat occurred during the impact event. The leve or severity of injury was coded
using the 1990 AlS manud. All AIS$3 injury in these testsinvolved rib fractures or associated soft
tissue lacerations. The mean age of the human surrogates was 60 years and the mean mass was about
70kg. After the publication of the biomechanics report with the NPRM (Docket 98-4405-9)
(Kleinberger, et ., 1998), minor errors in the data set were identified and subsequently corrected.
The ded test dataiis presented in Table 4-1 with the shaded cells representing corrected vaues.

Human surrogates were fitted with tri-axia accelerometers at the first thoracic vertebrae.
Chestbands (Eppinger, 1989) were wrapped around the chest at the location of the fourth and the
eighth rib to obtain continuous measurements of chest deformations during impact. Chest deflections a
five different locations UL, UC, UR, LL, and LR on the chest (Figure 4-1) were obtained by tracking
the distance between pairs of points on the periphery. Chest deflections were then normaized by the
chest depth of the specimen. Chest deflection was differentiated to obtain rate of deflection, from
which velocity V and V* C were computed. The chest deflection and rate of deflection obtained from
chestband data are externa measurements which include the deflection and rate of deflection of the skin
and flesh aswell asthose of theribs.

® @
» w

Figure4-1. Location of five chest deflection measurement sites.
Table4.1

4-2



Detailsof The 71 Sled Tests Using Human Surrogates

TESTID |VELOCITY|RESTRAINT AGE | SEX | MASS [ AIS | RIB A MAX. NORMALIZED DEFLECTION |MAX.INSTANT. EXTERNAL VEL. (m/{MAX. v*C

(kph) TYPE (kg) FX gs uL uc UR [ L [ LR w uc UR | LL [ LR | (misx)
ASTS47 33.50 3PT 65 M 66 1 1 015 @ 021 [ 026 |000 ]| 015] 166 | 153 | 1.73 | 074 | 158 0.29
ASTS53 34.90 2PTIKNE | 61 F 61 3| 21 3807| 025 | 031 | 039 [000| 007] 398 | 277 | 264 | 111 | 172 0.64
ASTS61 46.70 3PT/DPL | 62 M 66 4 | 23 4258 023 | 030 | 026 | 029 | 033| 269 | 378 | 312 | 486 | 2.86 0.97
ASTS66 48.30 3PT/DPL | 53 M 51 3 [ 20 028 028 [026 [011 | 021] 370 | 197 | 232 | 145 | 259 0.50
ASTS79 48.00 3PT/DPL | 68 M 66 4 | 19 4236] 036 035 | 022 |004|032] 279 | 274 | 234 [ 095 | 245 0.71
ASTS93 48.80 ABG/KNE | 66 M 89 4| 25 66.99| 026 | 032 | 038 |[027 | 032] 591 | 733 | 902 | 496 | 555 2.28
ASTS94 49.60 ABG/KNE | 66 F 62 5 |20 8817| 025 | 026 | 026 |023| 034 271 | 246 | 200 | 358 | 541 1.41
ASTS96 34.00 ABG/KNE | 58 F 97 4 | 14 | 11154 005 005 | 005 [005| 007 202 | 173 | 215 | 130 | 137 0.06
ASTSO7 33.50 ABG/KNE | 67 M 74 5 [ 14 7042 | 011 | 013 | 014 [013 | 043]| 138 | 151 | 155 | 301 | 178 0.26
ASTS102 | 33.20 2PT/IKNE | 60 M %5 5 [ 10 2527 | 022 | 030 [ 032 | 006 018] 400 | 498 | 449 [ 133] 223 1.30
ASTSI103 | 3250 2PT/IKNE | 57 M 102 5 [ 13 011 012 [ 016 | 006 | 0.08]| 356 | 519 [ 591 | 203 | 228 0.38
ASTS104 | 32.30 2PT/KNE | 66 F 104 5 [ 11 2822| 040 | 052 | 043 |000| 031] 230 | 323 | 334 [ 062 | 242 1.03
ASTSI113 | 47.30 2PT/IKNE | 24 F 57 5 [ 12 4337| 033 040 | 029 (012 | 020 165 | 1.96 | 142 | 1.89 | 1.65 0.53
ASTS174 | 2590 3PT/IKNE | 57 F 61 3 | 12 2074| 024 | 033 | 033 |001| 003]| 251 | 321 | 294 | 066 | 1.00 0.97
ASTS175 | 25.70 3PT/IKNE | 58 M 116 2 3 2833| 025 | 032 | 025 [006 | 018 268 | 299 | 225 | 067 | 175 0.64
ASTS223 |  54.90 2PT/KNE | 51 M 61 4 | 13 4730] 040 @ 045 | 030 [ 000 | 017 260 | 310 | 215 | 056 | 157 0.77
ASTS224 | 54.30 2PT/IKNE | 58 M 65 4 | 16 4230 022 034 | 044 |008 | 016 223 | 292 | 318 [ 398 | 1.56 0.90
ASTS225 | 53.90 2PT/IKNE | 36 M 72 4 | 16 4310 032 | 022 | 013 [002 | 031 413 | 359 | 244 | 087 | 477 1.04
ASTS227 | 5350 2PT/KNE | 53 M 70 3 | 12 5073| 036 | 039 | 037 |001]| 019] 851 | 800 | 575 [ 110] 191 221
ASTS228 | 54.70 2PTIKNE | 47 M 84 4 | 16 4328 022 | 034 | 042 [004 | 020 624 | 789 | 994 | 230 | 287 2.95
ASTS229 | 54.00 2PT/IKNE | 37 M 60 4 | 17 4694 027 | 019 | 013 | 006 | 0.36| 356 | 288 | 206 | 112 | 355 1.00
ASTS250 | 54.90 2PT/KNE | 39 M 50 4 | 12 5404 | 017 | 013 | 010 [ 004 | 0.09]| 268 | 264 | 241 | 066 | 065 0.34
ASTS258 | 55.40 2PT/IKNE | 69 M 64 3 | 14 5431 020 | 027 | 031 |005]| 019] 28 | 367 | 455 | 131 ]| 271 0.82
ASTS259 |  56.40 2PT/KNE | 64 F 77 4 | 15 80.83| 0.09 | 013 [ 017 |000| 006 1.38 | 196 | 260 [ 046 | 0.77 0.23
ASTS294 | 56.80 3PT/KNE | 68 F 55 4 | 10 6200| 022 | 031 | 038 [026| 026] 292 | 266 | 308 [ 536 | 272 0.94
ASTS296 | 59.80 3PT/KNE | 59 M 73 a4 | 2 6160 | 029 | 041 | 036 [004 | 025 295 | 352 | 327 | 087 | 267 1.13
ASTS303 | 5750 3PT/ABG | 64 M 50 2 4 5194| 016 | 012 | 008 [000| 011 261 | 170 | 143 | 044 | 156 0.13
ASTS304 | 59.40 3PT/ABG | 65 M 57 4 | 15 6762 | 030 | 034 | 025 | 001 | 016 311 | 375 | 319 | 0.99 | 3.24 0.85
ASTS305 | 59.40 3PT/ABG | 66 F 58 4 | 12 6764 | 040 | 037 | 029 | 002 019] 330 | 303 | 260 [ 090 | 2.22 0.77
UVA333 58.20 3PT/ABG | 50 M 64 3 6 7870 | 018 | 019 | 014 | 000 ]| 0.07] 172 | 182 | 144 | 054 | 0.94 0.28
UVA334 58.20 3PT/ABG | 47 M 79 3 5 7289| 023 | 023 | 024 |001 | 013 138 | 136 | 144 [ 114 | 170 0.30
UVA335 58.60 3PT/ABG | 69 M 66 2 2 5213| 015 | 012 | 008 | 002 | 010 1.80 | 261 | 252 | 062 | 082 0.11
UVA356 57.20 ABGIKNE | 64 M 74 4 | 30 6007 | 020 | 023 | 025 [032] 028 463 | 437 | 422 | 616 | 373 1.04
UVA357 57.20 ABG/KNE | 48 M 80 5 [ 10 7595] 021 | 023 | 023 |031|031] 363 | 405 | 374 | 448 | 423 0.64
UVA358 59.00 ABG/KNE [ 40 M 81 4 | 17 5660 | 013 | 015 | 015 | 020 | 027 | 129 | 157 | 151 [ 278 | 3.35 0.48




Table 4.1 (Continued)

TESTID |VELOCITY[RESTRAINT] AGE | SEX [mMAsSs| Als| RiB A | MAX.NORMALIZED DEFLECTION |MAX. INSTANT. EXTERNAL VEL. (m/s[MAX. v*C
(kph) TYPE (kg) FX g's UL uc UR [ LL [ LR | w uc | UR  LL | LR | (miso
H9013 48.00 3PTIKNE | 34 M 71 0 0 2723 040 | 044 | 032 | 009 | 0.09| 408 | 415 | 307 651 | 183 1.33
H9207 48.60 ABGKNE | 25 M 74 0 0 4854 008 | 011 | 012 | 011 [ 044 | 115 | 149 | 129 205 | 159 0.19
H9212 48.00 ABGKKNE | 38 M 79 0 0 4565| 014 | 016 | 014 | 013 [ 007 | 205 | 224 | 211 241 | 202 0.23
H9216 48.00 3PT/KNE | 20 M 86 2 0 3368 025 | 018 | 010 | 001 [ 0.05| 230 | 264 | 217 104 | 1.00 0.47
H9310 48.00 3PT/IKNE | 52 F 68 2 1 2878 | 030 | 027 | 019 | 002 013] 234 [ 201 | 153 078 | 138 0.40
H9311 48.00 ABG/3PT | 47 F 76 2 0 3128 | 017 | 024 | 019 [ 004 [ 019 183 | 256 | 215 101 | 137 0.39
H9312 48.00 ABG/3PT | 32 M 85 2 3 3154 | 014 | 016 | 014 | 001 [ 017 | 206 | 214 | 168 136 | 163 0.20
RC101 49.90 3PT 58 M 85 4 | 10 3092 | 010 | 012 | 011 | 011 [ 034 | 297 | 345 | 403 253 | 405 1.23
RC102 48.30 3PT 58 M 73 4 [ 12 8953 | 017 | 022 [ 016 [ 014 [ 049 | 353 | 387 | 330 141 | 319 117
RC103 48.30 3PT 66 M 76 3 8 042 | o051 | 043 | 009 | 011 222 | 261 0.18
RC104 48.30 3PT 58 M 70 3 | 13 4047 ) 004 | 013 [ 017 | 003 [ 016 185 | 177 | 228 121 | 338 0.41
RC105 48.30 3PT 67 M 73 3 | 10 7289 | 040 | 043 | 040 | 009 | 0.29 | 1051 | 928 | 511 139 | 377 3.14
RC106 48.30 3PT 44 M 90 4 9 5300 | 032 | 034 | 031 | 000 | 007 | 1198 [ 1246 | 961 197 | 242 2.28
RC107 48.30 3PT 63 F 77 4 | 2 4658 | 030 | 037 [ 026 [017 [ 028 279 | 260 | 251 223 | 370 091
RC108 48.30 3PT 57 M 73 4 8 5487 | 035 | 022 [ 012 [ 008 [ 003] 790 | 609 | 422 147 [ 132 219
RC109 48.30 3PT 59 M 91 3 | 1 3233] 027 | 036 [ 046 | 014|022 49 | 540 | 515 662 | 341 2.05
RC110 48.30 3PT 63 F 61 4 | 2 5640 | 011 | 024 | 034 | 005|035| 806 | 7.06 [ 791 105 | 466 1.73
RC112 48.30 ABGILAP | 67 F 50 2 3 439% | 012 | 016 | 018 | 001 [ 000 | 213 | 270 | 299 101 | 083 0.37
RC113 48.30 ABGILAP | 64 M 70 2 3 4327 ] 036 | 033 | 030 | 004 [ 008| 353 | 375 | 350 248 | 277 0.78
RC114 48.30 ABGILAP | 58 M 73 0 0 5066 | 024 | 023 | 020 | 021 [ 014 | 491 | 507 | 437 328 | 245 0.58
RC115 48.30 ABG/3PT | 67 F 57 3 | 13 023 | 029 | 033|017 ]| 028]| 38 [ 562 | 349 357 | 361 0.76
RC116 48.30 ABG/3PT | 68 M 59 4 | 10 2880 | 031 | 026 | 022 [010[ 010| 305 | 253 | 244 246 | 231 0.64
RC117 23.20 3PT 76 M 58 3 9 2351 019 | 025 | 026 | 001 017] 314 | 406 | 359 041 | 181 0.83
RC118 46,50 ABGKNE | 29 F a1 0 0 4404 019 | 021 [ 019 | 015|027 141 | 225 | 233 125 | 329 0.35
RC119 45.40 ABGKNE | 71 M 81 4 | 11 5370 | 020 | 024 | 028 [ 035|041 766 | 954 | 1106 11.87 | 948 3.05
RC120 2350 3PT 51 M 66 3 8 2173 | 040 | 036 | 028 | 026 | 0.22| 251 | 253 | 232 224 | 234 0.85
RC121 2450 3PT 67 M 66 0 0 1621 | 026 | 023 | 018 | 003 | 009| 206 | 1.87 | 170 057 | 114 0.40
RC122 23.70 3PT 81 F 60 2 4 1517 | 021 | 024 [ 020 [004 | 013 128 | 149 | 128 073 | 124 0.19
RC123 23.70 3PT 67 F 68 2 1 1584 | 026 | 022 | 015 | 001 | 016| 175 | 163 | 118 044 | 147 0.27
RC124 31.60 ABGKNE | 76 M 80 0 0 1840 | 016 | 019 | 019 | 024 | 020| 616 | 531 | 316 371 | 267 0.44
RC125 43.80 ABGKNE | 75 F 85 3 | 10 4555 | 023 | 026 | 027 | 032 031] 164 | 300 | 348 369 | 351 1.01
RC126 34.70 ABGIKNE | 64 F 54 3 6 2685 | 018 | 018 | 015 | 027 | 037 116 | 137 | 135 491 | 511 1.08
RC127 34.40 ABGKNE | 81 M 62 2 3 2061 | 012 | 011 [ o011 o014 ] 018] 205 | 135 | 129 151 | 251 0.33
RC128 29.90 ABG/3PT | 67 F 46 2 3 2310 034 | 034 [ 026 | 005 020] 232 [ 237 | 201 054 | 2.09 0.48
RC129 32.80 ABGILAP | 59 M 78 3 8 015 | 017 | 017 | 019 ]| 010]| 199 | 227 | 216 469 | 342 0.63
RC130 32.70 ABG/3PT | 56 M 63 2 4 017 | 019 [ 013 | 004 | 012] 146 | 172 | 146 068 | 149 0.25




After the publication of the previous report, comments from AAMA and Ford Motor Co.
suggested that some tests in the data set appear to be outliersin terms of restraint performance. In
particular, in four ded tests conducted at the Univergity of Virginiawith air bag/knee bolster restraints
(ASTSO3, ASTSH, ASTS96, and ASTS97), the occupant’ s head hit the sun visor resulting in very
high spind acceleration to the occupant. Since the large spinal acceleration were not due to chest
loading but due to head contact, these four tests were not considered for further andlysis. Further, in
four tests using 2-point belt restraints conducted at an impact velocity of 33 kph (ASTS102,
ASTS103, ASTS104, and ASTS113), the occupant sustained AIS 5 injurieswhile in Smilar tests at
higher velocities the occupant sustained lessthan AIS 5 injuries. The higher AIS vaues for these tests
may be due to difference in autopsy reporting. Due to this unexplained discrepancy, these four tests
were also not considered in further analysis. Therefore, out of 71 ded tedts, 63 tests were used for the
revised analyss presented in this report.

Satidicd andyses were conducted using the 3 millisecond clip value of thoracic spine resultant
acceleration (Ag), maximum normalized central chest deflection (dc) corresponding to
the location of chest deflection measurement on the Hybrid 111 dummy, maximum normalized chest
deflection at any one of the five locations on the chest (dmax), maximum chest velocity (V), and the
maximum Viscous Criterion (VC) a any one of the five locations on the chest. The satistical andyses
were aso repeated using the 3 millisecond clip value of thoracic spine resultant acceleration which was
normalized by length based on the cube root of the cadaver mass. Since the difference between the
results using the unscaled and scaled spind accd erations was not significant and the unscaled
accelerations produced a dightly better fit to the data, the analyses presented use the unscaled spind
accelerations.

Thoracic injury outcomes classfied using the AIS scae were reclassified into three categories: dl
tests with thoracic A1S<3, AIS=3, and AIS>3. Logigtic regression was used to develop the various
injury criteriamodels. Modd building strategies and goodness of fit measures outlined by Hosmer and
Lemeshow (1989) were used to develop the models as well as for comparing their relative predictive
ability. The goodness of fit of the mode was determined by examining the -2log-likelihood ratio (-
2log(LR)) which is a measure of the probability that the independent variables explain the available
outcome. The-2log(LR) is used to test the null hypothesis that the coefficient associated with the
independent variable is zero. Under the null hypothesis, -2log(LR) has a chi-square distribution and
SASteds this null hypothesis and provides p-vaues. Higher vaues of -2log(LR) and lower p-values
indicate that the modd provides a better fit to the data. Assuming the null hypothesisistrue, the
differencein the -2log LR va ue between one modd and another where an extraindependent variableis
added is a chi-sgquare digtribution with one degree of freedom. The null hypothesis that the coefficient
associated with the additiond variable was tested using this chi-square distribution.

The Goodman-Kruskal Gamma of rank correlation was used for ng the predictive ability of
themodd. Similar to R in regression andysis, aGammavaue of 1 indicates perfect predictive ability
while avaue of O indicates no predictive ability of the moded. Predictive ahility of the modd can dso
be assessed by the percentage of concordance and discordance. The greater the percentage of
concordance, the better the predictive ability of the model.

The probability of injury from alogistic regresson modd is given by p=(1+e@*)1 where x isthe
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vaue of the risk factor in the modd and a and I3 are regression coefficients. Thefirdt logistic regression
andyses were univariate usng the single independent variables, A,, dmax, dc, V, and VC (Table 4-2).
The p-vaue and goodness of fit measures for these analyses suggest that A and VC are better
predictors of injury thandmax or dc. The results dso suggest that dmax is a better predictor of injury
than dc.

Next, models using various linear combination of measured parameters were developed. The
stepwise salection procedure in logistic regresson was used to select combination of variables that best
predict injury outcomein the data set. Among al multivariable models examined, alinear combination
of chest deflection and spind acceleration was the best predictor of injury. Modd VI isalinear
combination of dc and A while mode VI isalinear combination of dmax and A, (Table 4-2). The p-
vaue and gamma associated with models VI and VI are higher than the other models suggesting that
the linear combination modes are better injury predictors than the models using single independent
variables (Modes|-V). Also, the higher -2Log (LR) value of Modd VIl over Mode VI suggests that
mode VI isabetter fit of the data

Table 4-2. Details of L ogistic Regression M odels
Mode (a+3*risk factor) -2Log(LR) | pvaue | concord | discord | Gamma
[. -2.0506+0.063A 16.33 0.0001 75.0% 25.0% 0.500
1. -0.031+3.53dc 334 0.077 62.8% 37.2% 0.2%4
1. -2.614+10.877dmax 16.05 0.0001 74.5% 25.5% 0.488
IV. -0512+1.531VC 14514 0.0003 74.6% 25.4% 0.496
V. -0.7705+0.3565V 1054 0.0012 72.4% 26. 6% 0462
V1. -3.73+0.066A ;+6.07dc 2041 0.0001 78.4% 21.6% 0.568
VII. -7.13+0.08A ;+14.71dmax 35.56 0.0001 85.4% 14.6% 0.707

Figures 4-2 to 4-4 present the logistic regression injury risk curves (A1S$3) for models|, 111, and
VIl. These models represent respectively the 3 msec clip vaue of resultant spina acceleration (AS),
maximum chest deflection a any one of five measured points (maximum normalized chest deflection,
dmax, multiplied by 229 mm representing chest depth of a50™ percentile male), and alinear
combination of Asand dmax. The linear combination of spina acceleration and chest deflection
(Modd VII) separated the AlS$3 observations from the Al S<3 observations better than any of the
other moddis.
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Figure 4-2. Probability of injury using 3-msec clip value of resultant spinal acceleration (As) as
risk factor (model I). Filled in circlesrepresent 63 sled test data categorized as A1 SE3injury
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Figure4-3. Probability of injury usng maximum chest deflection (dmax*299 mm) asrisk
factor (modd 111).
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Figure4-4. Probability of injury using linear combination of dmax and A asrisk factor (model
VII).

The improved predictive abilities of modds usng dmax over models using dc can be explained by
the distribution of the location of maximum deflections. Table 4-3 presents the location of maximum
deflection among the five locations on the chest. Maximum chest deflection occurs at the upper centra
chest location in only 25% of the ded tests. The centra chest deflection (dc) versus maximum chest
deflection (dmax) for the cadaver ded tests, sorted by the restraint system, is shown in Figure 4-5. The
difference between dc and dmax is quite high in some 2 and 3 point bt restrained tests. In these tests,
dmax was a the lower chest location of LR while dc is computed at location UC (Figure 4-1). The
difference between dc and dmax is dso quite high in some airbag restraint tests where the steering
whed rim penetrated into the lower chest resulting in maximum chest deflection at the lower chest

location (LL or LR).

Table 4-3 Location of Maximum Deflection in Belt and Airbag Sled Tests

Restraint Type uL uc UR LL LR
Belt 15 15 11 0 8
Airbag 1 1 1 4 7
Total 16 16 12 4 15
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Figure4-6. Model VII usng dmax versusModel VIl using dc asan estimator of dmax. The
lar ge differencesin dmax and dc noted in Figure 4-5 are diminished dueto the effect of spinal
acceleration.

For the 63 human surrogeate tests used in the revised analyses, a 3-msec clip value of spind
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acceleration (As) has been shown to corrdate wel with injury since it represents the overal severity of
the loading on the subject. For example, in some cadaver ded tests used in the andys's, there was
sgnificant seering whed rim penetration into the lower thorax which resulted in significant injury but
presented low chest deflection at the upper thorax. The spind acceleration in these tests were
reasonably high and therefore the linear combination of A, and dmax proved to be a good predictor of
injury. Aninjury criteria using chest deflection aone may not have predicted the correct injury leve
under such circumstances as well as the linear combination of deflection and acceleration. The Hybrid
[11 dummy has only one chest deflection gage and it has been noted by various researchers (Backaitis et
d., 1986), (Cesari, et d., 1990) that the maximum deflection may be missed in some ingances. For
these reasons, it is beieved that the linear combination model using dmax and A, is the most
gopropriate injury criteriafor ng thoracic trauma. However, since only one deflection
measurement is avallable on most dummies, the central chest deflection will be used with this
formulation. Thiswill result in dightly lower cdculated vaues for Modd VII since dc equas dmax in
roughly 20 percent of the tests as described above and shown in Figure 4-6. It isintended that the
maximum deflection from multiple points on the chest will be incorporated into the sandard when dl of
the dummies have multiple measurement capabilities.

4.3 DEVELOPMENT OF COMBINED THORACIC INDEX (CTI) FOR
THE 50% ADULT MALE

Since the anayses were conducted using normalized deflections, the chest deflectionsin Modd VI,
dmax, were multiplied by 229 mm which represents the chest depth of a50% adult mae. The
probability of injury function for Modd VII can be re-written using the maximum externa chest
deflection, D, with the following equetion,

1

p = 1+ @ (- 712570.08As+0064D)

(4.0)

Using this probability of injury equation, lines of equa probability of injury (iso-injury lines) for the
linear combination of deflection and spind acceleration (Mode VII) were generated (Figure 4-7).
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Figure4-7. Linesof equal probability of AIS$3injury using thelinear combination of
maximum deflection and spinal acceleration (Modd VII). Thetest data categorized into
restraint condition and injury outcome is also presented on the graph.

The 50% probability of injury line for the population of human surrogates examined in this data set
was used as the injury assessment reference line since it corresponds to about a 25% probability of
injury for the live human subjects, as will be discussed in detall in Section 4.5.

Mode VII used the normdized externa chest deflections, the sum of the deflection of the ribs and
skin, measured on cadavers using chest bands. However, the chest deflections measured on the
dummy represent only the interna chest deflections of the ribs. To account for the difference between
cadaver and dummy deflection measurements, 8 mm was subtracted from the externa chest deflection
in the 50% probability iso-injury line to represent internd rib deflection measurements. The equation of
the 50% probability of injury line usng the deflections adjusted for the skin thicknessis mathematically
equivaent to aline which has intercepts on the verticad and horizontal axes of D= 103 mm and A, =
90g, respectively. Thus, the combined thoracic injury criteria, CTl, is defined with the following
equation,

CT| = Amax + D max 4.2)
Aint D int
where Amax is the maximum vaue of 3 msdip spind acceeraion (As), Dmax is the maximum vaue of
the dummy deflection (D), and A, and D,,; are the respective intercepts as defined above.
After the publication of the biomechanics report published with the NPRM (4405-9), AAMA
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provided an dternate thoracic injury criteriawhich addresses Al1S$4 thorecic injuries. They argued
that Snce AIS$3 injuries are predominantly associated with rib fractures and children, in generd,
seldom have rib fractures, it may be more appropriate to consider AlS$4 thoracic injurieswhich
congtitute both soft tissue and bone injuries. Based on andlysis using the Mertz/Weber method on the
data published by Neathery (1975), AAMA recommended the chest deflection injury assessment
reference value (IARV) in out-of-position and in-position conditions to be 65 mm for the 50"
percentile mae which corresponds to a 5% probability of an A1S$4 thoracic injury.

Though the agency believes that the combination of maximum chest acceleration and deflection isa
better predictor of injury than individua 1ARV for chest deflection and acceleration, there are still some
questions regarding the interpretation of data used in the development of CTI. Plansfor future testing
are directed towards answering some of these questions and increasing the number of observationsin
the data set. Therefore, until more data is available and areandyss of the larger data set is conducted
to evauate the efficacy of a CTl based injury criteria, the individud limits of maximum chest
acceleration (Ac) and deflection (Dc) will be used for regulation purposes.

In order to harmonize with the IARV used by Transport Canada, the chest deflection limit for the
50% male was taken to be 63 mm (2.5 inches) and 3-msec clip vaue of resultant chest acceleration
limit wastaken to be 60 g's. Therefore, the recommended performance limits are Ac=60 g's and
Dc=63 mm for the 50% mae. The proposed CTI injury criteriafrom the NPRM will be used for
edimating the probability of injury.

4.4 SCALING OF THORACIC INJURY CRITERIA TO VARIOUS
OCCUPANT SIZES

As discussed in Chapter 1, scaling techniques are necessary to obtain injury assessment reference
vauesfor the various dummy sizes. Thoracic performance limit lines have been scaed using techniques
gmilar to those used by Mevin for the CRABI 6-month infant dummy (Melvin, 1995). Geometric scde
factors were taken from Mertz' s paper on Injury Assessment Reference Vaues (Mertz, 1997). In his
paper, Mdvin discusses the importance of scaling, not only by geometric size, but o by the materid
diffness of the biologica structures. Dummy chests were designed with varying stiffness to account for
changes in material bending properties for different aged occupants. Deflection criteria can thus be
scaled usng only geometric factors, assuming
8e = 1, while acceleration criteria use both geometric and materid scaling factors. The relevant scale
factors presented in the paper are given in Table 4-4 for reference. Thus, deflections for various dummy
gzes, D, or acceerations, A, can be found by scaling asfollows:

D =1, Depth  Dsovemale

| £ (4.3
A = | ASO%maIe

L, Mass

where the IARV for the 50% mae dummy are D 5po,mae @A A so06male
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Table 4-4. Thoracic Scaling Factors for Various Occupant Sizes

Scale Factor 95" %le | 50 Yile | 5" %ile | 6 Year 3Year 12 Month
mde Made Femde | Oldchild | Old Child | Old Infant

Length Based on 1.107 1.000 0.817 0.617 0.557 0.485

Chest Depth

(?L, Depth)

Length Based on 1.090 1.000 0.862 0.650 0.578 0.504

Mass (7., mass)

Bone Modulus 1.000 1.000 * 0.667 0474 0.320

Scale Factor (?p)

* Data comparing the modulus and strength of female anatomic structures to male are not available a
thistime.

The deflection and acceleration intercepts (Aint=90 and Dint=103) for the Combined Thoracic
Index for the 50% adult male and the proposed deflection and acceleration performance limits (Ac=60
and Dc=63) were al scaed according to equation 4.3. Mdvin (1995) conducted a thorough anaysis
by examining various scaling techniques and proposed 50 g's as the chest acceleration IARV for the Six
month old CRABI. However, the scded chest acceleration for the 12 month old CRABI dummy using
Equation 4.3 isonly 40 g's. Since we expect the 12 month old to have at least the same, if not a
greater, chest accdleration IARV than the 6 month old, the chest accderation performance limit for the
12 month old was raised from its scaled value to 50 g's. Mertz proposed a chest acceleration IARV of
55 g'sfor the 3-year old which corresponds to 1% probability of AIS$3 thoracic injury based on an
anadyss (Mertz/Weber method) of the combined pig data of Prasad/Danidls (1984) and Mertz et al.
(1979). However, the scaled acceleration limit of the 3-year old using Equation 4.3 is50 g's. Since the
scaled six year old chest accderation IARV is 60 g's and we expect the 3 year old IARV to be
between the 12 month old and the six year old, chest acceleration performance limit of 55g's
recommended by Mertz was used for the 3-year old dummy. The scaled chest acceleration
performance limit for the 5% femde dummy is 73 g's. However, it is bdieved that the lower bone
dengty of the female bone will lower this limit somewhat and so the chest acceleration performance limit
for 5" percentile femae was taken to be the same as the fiftieth percentile male and equal to 60 g's.
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Table 4-5. Scaled Deflection and Acceleration Valuesfor Various Occupant Sizes

Vdue 95" %ile | 50" %ile | 5" %ile | 6 Year 3Year 12 Month
mde Mde Femde | Old Child | Old Child | Old Infant

Chest Deflection 114 103mm | 84 mm | 64 mm 57 mm 50 mm (2.0

Intercept for CTI (4.0in) (33in) | (247in) | (22in) in)

(Dint) --for anadyss

purposes only

Chest Acceleration | 83 90 90 90 74 57

Intercept for CTI

(Aint)--for andysis

purposes only

Chest Deflection 70 63mm | 52mm | 40mm 3Amm 30 mm**

Limit for Thoracic (25in) (20in) | (1.61iNn) (1.3in) (1.2in)

Injury (Dc)

Chest Acceleration | 55 60 60* 60 55* 50

limit for Thoracic

Injury (Ac)

* Although geometric scaling one would predict higher A, vaues for females, it is believed that lower
bone minerd density would offset this effect. Therefore, the accel eration tolerance vadues for smal
femaes are kept the same as for mid-sized males.

** The CRABI 12 month old dummy is currently not cgpable of measuring chest deflection.

" The scaled chest acceleration threshold of 50 g'swas raised to 55 g's according to anaysis by
Mertz on the pig data.

"* The scaled chest acceleration for the 12 month old CRABI was raised to 50 g's to be consistent with
that proposed by Mélvin for the 6 month old CRABI

Only the individua deflection (Dc) and chest acceleration (Ac) have been proposed for regulation
proposesin the SNPRM. The CTI injury criteria proposed in the NPRM (CT1 #21.0 and dightly
modified Critica Intercept Vaues) will be used to estimate the probability of injury for andyss
purposes only. Figure 4-8 presents the proposed performance limits for acceleration and deflection
for the five dummy sizesin the SNPRM.
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Figure 4-8. Proposed chest acceleration and deflection performance limitsfor all dummy
Sizes.

45 DEVELOPMENT OF PROBABILITY OF INJURY RISK CURVES
FOR THE THORAX

45.1 Adjustment of Risk Curvesfor Live Human Subjects

Viano et d. (1977) observed satisticaly significant differencesin biomechanical responses and
injuries between live and postmortemn animas. On an average, the live animals demongtrated 26%
lower rib fractures than the postmortem animals for the same level of chest deflection. Horsch et dl.
(1991) noted that human surrogates are more easily injured than car occupants for smilar exposures.
This apparent difference in tolerance between car occupants and human surrogate data was also noted
by Foret Bruno et d. (1978). Y oganandan et a. (1991) noted that in human surrogate ded tests, there
was conggtently higher reporting of rib fractures from detailed autopsy than from radiography aone.
They noted that for the same crash severity, greater severity injury was reported in human surrogate
ded teststhan in fiedd data They atributed these differences to the method of identifying rib fractures
and the differences in the dynamic response characterigtics of the living human and the surrogete.
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Figure4-9. Agedistribution of the USA driving population exposed to frontal collisons.

The 50% probability of injury line used in the development of the Combined Thoracic Index (Figure
4-7) would represent a significantly lower probability of injury for acar occupant. Figure 4-9 presents
the age digtribution of the USA population exposed to fronta collisons based on NASSfiles. The
weighted average age of the driving population is gpproximately 30 years. The average age of the 71
surrogates used in the ded testsis 58 years. Thus, there was a nearly thirty year difference in average
age of the surrogate data as compared to that of the average driving population. Thisthirty year age
difference, the increased fragility of cadavers, and the over reporting of injury in experimentd tests
suggested an adjustment in the probakility of injury to represent the probability of AIS$3 thoracic injury
for the average live human driving population. Based on dl these factors, the 50% probability of injury
linein Figure 4-7 was adjusted to represent a 25% probability of injury leve for the live human driving
population. The adjusted probability of injury curve written in terms of CTI (defined in Equation 4.2)
and the origind unadjusted curve are shown in Figure 4-10.
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Figure 4-10. Reduced probability of injury usng Modd VII astherisk factor torelate ded
test datatoreal world crashes. A value of one correspondsto 25% probability of injury.
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Data from the 63 human surrogate tests were aso reandyzed using logistic regresson to
determine the probability of AIS$2, 3, 4, and 5 thoracic injury using chest deflection done, chest
acceleration done, and the combined CTI.. The resulting AIS$2, 3, 4, and 5 curves were shifted the
same amount as the corresponding AIS$3 curve in each case to account for differences between the
surrogate test subjects and the average driving population. The probability of injury equations for the
adjusted AIS$2, 3, 4, and 5 injury risk curves usng maximum chest deflection (Dmax) asillugtrated in
Figure 4-11, are presented in Equation 4.4. The probability of injury equations for the adjusted
AlIS$2, 3, 4, and 5 injury risk curves using maximum 3-msec clip value of resultant spind acceleration
(Amax) asillugrated in Figure 4-12, are presented in Equation 4.5. The probability of injury equations
for the adjusted A1S$2, 3, 4, and 5 injury risk curves using CTl asillugtrated in Figure 4-13, are
presented in Equation 4.6. The probability of AIS$5 injury is not very religble since there was only one
test with an A1S=5 in the ded test data of 63 observations.

1
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Figure4-11: AIS 2+, 3+, 4+, and 5+ injury adjusted risk curvesfor for the Hybrid 111 50"
per centile male dummy using maximum chest deflection (Dmax).

P(AIS® 2) = 1+ e(1_8706-](;.04439DmaX)

PAIS? 3) = — s 44
P(AIS? 4) = 1+ e(5.0952:!-0.0475Dmax)

pP(AIS3 5) = 1

1 + g(8:8274-0.0459Dmax)
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Figure4-12: AIS 2+ to 5+ adjusted injury risk curvesfor the 50" percentile Hybrid 11 dummy
using maximum 3-msec clip value of resultant spinal acceleration (Amax).

P(AIS® 2) = 1+ e(1.232:!1: 0.0576AC)
PAIS® 3) = — 6(3.149130.063%@ (43)
P(AIS® 4) = 1+ e(4.342-5-0.0630Ac)
p(AIS3 5) = P e(8.76512-0.0659AC)
PAIS® 2) = 1+ e(4.84:7|- 6.036CTI)
P(AIS3 3) = 1+ e(s_zzi 7.125CT1) (4.6)
P(AIS3 4) = 1+ e(9.87:2|- 7.125CTI)
p(AIS3 5) = -

1+ g(14242- 6589CTI)
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Figure4-12: Adjusted Risk curvesfor AlS 2+, 3+, 4+, and 5+ injury using CT1 (for all
dummies).

To verify that the thoracic injury risk curve was reasonable, comparisons were made between the
injury rates predicted usng CTI caculations from experimental test dataand real world injury rates
estimated from the NASS database. NASS data for front seat outboard occupantsinvolved in fronta,
non-rollover crashes from 1988 to 1996 were andyzed to determine whether weighted injury
probabilities estimated from NASS were reasonably close to those predicted by CT1 and the individua
performance limit using vehicle crash test data gathered from FMV SS No. 208 compliance testing and
NCAP testing.

Results of the NASS data analys's suggested that for unbelted occupantsin smilar crash conditions
asthe FMV SS 208 tests (deltarV $ 30), the weighted percentage of front seet occupants with AIS 3+
chestinjuriesis 25to 37%. For the 1996-1999 modd year vehiclesin the FMV SS 208 compliance
test data base, the weighted average (weighted by sales volume of each vehicle) percentage probability
of AIS$3 thoracic injury estimated using CT1 for the driver was 18% and for the passenger 4.5%.
Taking into account that 75 percent of dl front seet occupants are drivers, the weighted percentage
probability of AIS 3+ injuriesto front seat occupants, estimated using CTl, is gpproximately 15%.
Thus, for unbelted front seat occupants in high speed crashes, CT1 somewhat underestimates the risk of
AIS$3 injury based on NASS data.

In contrast, the weighted percentage probability of AlS 3+ injuries estimated using maximum 3-
msec clip value of resultant chest acceleration (Amax) done is 45% for the driver and passenger while
that estimated using maximum chest deflection (Dmax) aoneis 14.5% for the driver and 6% for the
passenger. Thejoint probability of AlS 3+ injury (assuming independence of events) is 53% for the
driver and 48% for the passenger. Taking into account that 75% of front seat occupants are drivers,
the weighted percentage probability of front seet occupants, estimated from the individud injury criteria
using Dmax and Amax is 52%. Therefore, the individua injury criteria grosdy overestimeate therisk of
AIS$3 injury for unbdted front seat occupantsin high speed crashes based on NASS data.

For crashes comparable to NCAP test conditions, NASS data indicates a weighted percentage of
front seat occupants with AIS$3 injury of 16 to 17 percent. A similar andysis procedure was gpplied
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to the 1996-1999 NCAP test data as that conducted using the FMV SS 208 compliance test data
described above. The analysis of NCAP test data suggests that the weighted percentage probability of
AIS 3+ injuriesfor front seat occupants, estimated using CTl, is 16%. In contrast the weighted
percentage probability of AIS 3+ injury for front seat occupants, estimated using the individua chest
deflection and accderation injury criteria, is55%. Theindividud injury criteriagrosdy overesimate the
risk of AIS$3 injury for belted front seet occupantsin high speed crashes while CTI providesa
reasonable estimate of AIS 3+ injury based on NASS data.

Looking at both belted and unbelted vehicle occupants, the adjusted probability of injury curve
developed for the Combined Thoracic Index (CTl)seemsto reasonably represent the injury frequency
in red world crashes, while the individud performance limits of chest deflection and acceleration
grosdy overestimate the risk of AIS$3 injury in real world crashes.

46 RATE OF STERNAL DEFLECTION

After the publication of the biomechanics report with the NPRM (4405-9), AAMA recommended
gernd deflection rate as an gppropriate injury predictor for assessing the risk of heart and/or aortic
injuriesin out-of-pogition conditions. The AAMA andyzed the combined Prasad/Danid (1984) and
Mertz (1979) pig data using the Mertz/\Weber technique to develop an injury risk curve for AIS$4
heart and lung injuries for the 3-year old dummy using the rate of sternd deflection as the risk factor.
Based on thisandyss, AAMA recommended an IARVof 8 nV/srate of sterna deflection which
corresponds to a 5% probability of AlS$4 thoracic injury for the 3-year old. The data was reandyzed
using logigtic regression, the results of which correspond to nearly 15% probability of AIS$4 thoracic
injury a 8 m/srate of sterna deflection Figure (4.13).
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The AAMA gpplied scaling techniques to determine threshold levels for 5% probability of AIS$4
thoracic injury for the other dummy sizes. AAMA recommended an IARV for rate of serna deflection
of 8.2 m/sfor the adult dummies. In out-of-pogition tests conducted at the University of Virginiausing
the fifth percentile femae Hybrid 111 dummy (Cranddl, 1997), the less aggressive bag registered 8 n/s
rate of serna loading while the more aggressve bag registered approximately 12 nv/s. In out of
position tests using female cadaveric subjects (Crandall, 1997), the less aggressive air bag caused
AIS=3 injury while the more aggressive air bag caused AIS$4 thoracic injury. However, chest
deflection was found to correlate better with thoracic injury (r=0.82) than rate of sternal deflection
(r=0.49). It should be noted that none of the cadaveric subjects sustained thoracic soft tissue injuriesin
this series of out-of-position tests which may explain the poor correlation of rate of deflection with
injury. Further research is needed to better understand the mechanisms of severe soft tissue injury and
to determine oft tissue injury criteria. Due to the limited data available regarding thoracic soft tissue
injury, an injury assessment reference vaue for rate of sterna deflection will not be recommended at the
present time. The agency believes that rate of sternd deflection isagood candidate for prediction of
heart and aortic injuries and will monitor it in future tests.

4.7 APPLICATION OF PROPOSED THORACIC PERFORMANCE
LIMITSTO AVAILABLE TEST DATA

The proposed thoracic injury criteriarequires each test to satisfy two performance requirements.
These are (1) the 3 ms dlip accderation is less than or equd to Ac, and (2) the maximum chest
deflection islessthan or equd to Dc. Thethoracic injury criteriawere calculated for awide variety of
tests available inthe NHTSA database. Anayses were conducted for data from 30 mph FMV SS No.
208 compliance tests, 35 mph NCAP tests, 48 kmph rigid barrier and 40 kmph offset tests with 5"
percentile female dummies, and out-of-position test with the 6 year-old and 5™ percentile female
dummies. The accompanying graphs and data for dl the tests presented here are provided in detail in
Appendices B and D.

4.7.1 Application of Proposed Thoracic Injury Criteriato FMVSS No. 208 Barrier and
NCAP Tests

Data from 1996-1999 NCAP crash tests and 1996-1999 FMV SS No. 208 full barrier crash tests
were andyzed to determine how various production vehicles performed using the proposed thoracic
injury criteria. Figures D.1 - D.4 present the 3 msec clip vaue of chest acceleration and maximum chest
deflection of drivers and passengersin pre-1998 and 1998-1999 vehiclesin NCAP and FMV SS No.
208 crash tests dlong with the thoracic performance limits for the 50" percentile male. The
accompanying details of these tests are provided in tables B.1 - B.12.

For the NCAP tests with 1996-1999 model year vehicles, 90% of the drivers and 93% of the
passengers passed the chest acceleration performance limit while dl the dummies passed the chest
deflection performance limit. The percentage of vehicles among the 1996-1999 NCAP tests that pass
the chest acceleration and deflection performance limitsin each year are presented in

Figure 4-14.
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Figure 4.14. Percentage of vehicles passing both the proposed performance limitsin NCAP
tests by seating position.

For the 1996 - 1999 FMV SS No. 208 barrier tests using the 50 percentile Hybrid I11 dummy,
98% of the drivers and 93% of the passengers passed the chest acceleration performance limit of 60
g swhile dl the drivers and passengers passed the chest deflection performance limit of 63 mm. The
vehicles which fail the 208 rigid barrier tests for the 1998-1999 years were certified by the ded test
option in FMV SS 208.

4.7.2 Application of the Proposed Thoracic Performance Limitsto Vehicle Crash Testswith
the 5 Per centile Female Dummy

Data from tests conducted at Transport Canada using the Hybrid 111 5" percentile femae dummy in
mode year 1998-1999 vehicleswere dso andyzed. In these tests, the dummy in the driver and
passenger position were belt restrained and the seat was adjusted to the full forward position. Figures
D.5 - D.8 present the 3 msec clip value of chest accd eration and maximum chest deflection for the
various Trangport Canada tests along with the thoracic performance limits for the 5™ percentile female
dummy. The details of these tests are provided in Tables B.13 - B.16.

A series of 48 kmph (30 mph) vehicle crashes of modd year 1998-1999 vehiclesinto arigid
barrier were conducted using the belted 5™ percentile adult female dummiesin the driver and passenger
position seated in the full frontal seat track position. All the drivers and passengers passed the chest
deflection and acceleration performance limits except for one passenger whose chest acceleration
exceeded 60 g's. The percentage of drivers passing the chest deflection and acceleration performance
limits is 100%, while that for passengersis 96%.

Vehicle crash tests into the European deformable barrier at 40 kmph (25 mph) closing speed and a
40% offset were conducted with belted 5™ percentile female dummiesin model year 1998-1999
vehides. Such avehide crash involves a soft crash pulse which may result in late deployment of the
arbag in some vehices. All dummiesin the driver and passenger position passed the thoracic
performance limits for chest acceleration (=60 g's) and chest deflection (=52 mm) due to the soft crash
pulse.

4-22



4.7.3 Application of Proposed Thoracic Performance Limitsto Out-of-Position Test
Conditions Using the 5 Per centile Adult Female Dummy

Out-of-position tests were conducted to investigate the trauma induced when the vehicle occupant
isin close proximity to the deploying airbag.  Since fatdities due to airbag interaction have been noted
in red world crashes to mainly involve children and small femae occupants, out-of-pogition tests were
conducted using the 5" percentile female dummy and the Hybrid 111 6-year old dummy.

The driver out of position 1 test condiition with the 5™ percentile female dummy is intended to
maximize head and neck loading from airbag deployment while the out-of-position 2 test condition is
intended to maximize chest loading due to air bag deployment. Postion 1 and Position 2 out-of -
position tests using the 5™ percentile female dummy were conducted using 1996-1999 vehicle air bags
and the results are presented in Figures D.9 and D.10 and Tables B.19 and B.20. The dummy passed
the performance limits of 60 g's chest accderation and 52 mm chest deflection in dl the tests.

4.7.4 Application of Proposed Thoracic Performance Limitsto Out-of-Position Test
ConditionsUsing 6-Year Old Dummy

Out-of-pogition tests were conducted to investigate the traumainduced when the child dummy isin
close proximity to the deploying airbag. Two out-of-position test conditions were considered for the 6
year-old Hybrid 11 dummy. The child OOP position 1 is designed primarily to evauate contact forces
of the deploying airbag on the chest. This position is intended to represent a tandardized worst case
condition in which the child has been thrown againg the frontal structure of the vehicle sinterior dueto
pre-impact braking and/or vehicleimpact. The child OOP Position 2 is designed to primarily address
the contact forces and loading forces of the deploying airbag on the head and neck. This position is
intended to represent aworst case scenario in which the child dides forward or is sitting forward on the
sest while the upper torso jack-knifes forward toward the instrument pand.

In the firgt series of the Position-1 out-of-position tests, 1996-1999 production year air bags were
used with zero clearance between the dummy chest and the instrument pand, the results of which are
presented in Figure D-11. The chest accdleration performance limit of 60 g's was met in 84% of the
tests while the chest deflection performance limit of 40 mm was met in 26% of the tests. In the second
series of Pogition-1 OOP tests, 1996-1998 production year air bags were used with 4 inches of
clearance between the dummy chest and the instrument panel, the results of which are presented in
Figure D-12. The chest acceleration performance limit of 60 g'swas met in dl of the tests while the
chest deflection performance limit of 40 mm was met in 75% of thetests. In the third series of Position-
1 OOP tests, 1996-1998 year air bags were used with 8 inches of clearance between the dummy chest
and the ingrument pand, the results of which are presented in Figure D-13. The chest acceleration
performance limit of 60 g'swas met in dl of the tests while the chest deflection performance limit of 40
mm was met in 90% of the tedis.

Pogition-2 out-of-position tests with the head of the 6 year old dummy on the instrument pand were
conducted, the results of which are presented in Figure D-14. Only 1999 production year air bags
were used inthesetests.  The chest accderation performance limit of 60 g's was met in 57% of the
tests while the chest deflection performance limit of 40 mm was met in 71% of the tests. Detals of the
Position-1 and Position-2 out-of-position tests are presented in Tables B.21-B.24.
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Chapter 5
Lower Extremity Criteria

5.1 FEMUR INJURY CRITERIA

A vast amount of research is currently being conducted to better understand the complex
mechanisms of foot and ankle injuries. New dummy legs and associated injury criteria are under
development, but are not yet available for use with this stlandard. Current recommendations are to
continue using femur load for the adult dummies, but not for the child dummies The exising IARV for
femur load used in FMV SS 208 is 10 kN for the 50" percentile male. The femur tolerance loads for
the 5™ percentile female and the 95" percentile male were determined by scaling the 50™ percentile
male IARV by the femur cross-sectiona area scale factor, (Mertz, 1989) presented in Table 5.1. The
scae factor for the failure strength and the modulus of eadticity for dl three adult Szesis assumed to be
1.

Table5.1 Femur load ARV and associated scale factor for different size adult dummies

Hybrid I11 5th Hybrid I11 50th Hybrid I11 95th
percentile femde percentile mae percentile maleg
Femur Cross-sectional 0.682 1.0 1.272
area scale factor
Femur axid force IARV 6.8 10 12.7
(kN)
8§ The Large Male (95" percentile Hybrid 111) is not currently proposed for inclusion in the SNPRM, but the

performance limits are listed here for completeness.

Figure 5-1 and Equation 5.1 present the injury risk curve associated with femur loads. A femur
load of 10 kN for the mid-sized male dummy represents a 35 percent risk of sustaining an AIS$2
injury. Injury risk values for the small female are assumed to be equivaent to the mae risk after
goplication of the scale factor.

1
1+ (579 05196F)

P(AIS? 2) = (51)

whereF = femur forcein kN
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Figure 5-1. Injury risk curvefor femur loads.

In response to the NPRM (NHTSA Docket, 4405-9), commenters supported the inclusion of
performance limits for femoral compressive loads for the 5" percentile female dummy specified in the
NPRM (4405-9) in addition to maintaining the currently specified value for the 50 percentile male
dummy. Furthermore, AAMA proposed adding femoral compressive load performance criteria of
2310 N for the 6 YO dummy. The Nationa Transportation Safety Board (NTSB) recommends that
tolerance levels of lower extremities need to be further investigated and vdidated. NTSB aso suggests
that the NHTSA consider dummies such as advanced lower extremity (ALEX, now called the THOR-
LX) dummy for future incorporation into the standards.

Although the NHTSA agrees with the AAMA that femord compressive load limits for the six
year-old dummy are important to consider, the SNPRM does not specify such limits because the testing
configurations specified in the SNPRM for the six year-old dummy do not impose substantia loading on
the lower extremities. NHTSA isaso continuing the development of an advanced lower extremity test
device, the THOR-L X, and continues to sponsor experimental impact injury research to determine the
mechanisms and tolerances of the lower extremities, including the foot, ankle and leg. When this effort
iscomplete, it is anticipated that this research will be incorporated into future safety standards.
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5.2INJURY CRITERIA FOR THE LEG

Although not proposed in the NPRM (4405-9) or the SNPRM, a modified verson of the Tibia Index
currently in use by EEVC (Hobbs, 1997) was used for analys's purposes in the regulatory evauation
and is briefly described below. Thetibiaindex was origindly proposed by Mertz (Mertz,1993) as an
injury tolerance criterion for the leg which combines bending moment and axial compressive loads on
the leg as measured by the Hybrid 111 tibiaload cdl. The modified verson of the tibiaindex (TI)
adopted by EEVC isgiven by

T FyuMyi3

Fc Mc

where F is the measured compressive axia force (kN) in the superior-inferior direction. M isthe
resultant moment of the media-lateral and the anterior-posterior moments. M and F are the critica
bending moment and critica axid compressive force and are presented in the following table:

Hybrid I11 5th Hybrid 11 50th Hybrid 11 95th

percentile femde percentile mae percentile mae
Mc 115Nm 225 Nm 307 Nm
Fe 22.9kN 35.9kN 44.2 kN

The vaues of M and F. for the 50" percentile male are based on human bone tolerance values
obtained from (Y amada, 1970). The critical values for the 5" percentile female and the 95 percentile
male were obtained by using scaling relations proposed by Mertz et d. (1989). A TI threshold of 1.3
was recommended and adopted by EEV C (Hobbs, 1997) based on analysis of crash test data.

The Tibia Index assumes that failure of the tibia occurs in compresson. However, 3-point bending
tests with superimposed axial compression conducted at the University of Virginia suggested that the
tibia can fracture in compression or in tension (Schreiber, 1997). Also, Schreiber noted that the critical
bending moment used in Tl is consarvative and underestimates the failure threshold of the leg in bending
since the contibution of the fibula and associated leg soft tissue in bending was not taken into
congderation.. The magnitude of F used in Tl is based on the compressive strength of the tibia mid-
digphyss bone segments which is the strongest part of the bone. The digtd third region of the tibia has
the smallest cross-section and the thinnest cortex and so is more susceptible to failure in compresson
than the mid-digphysis. Therefore, the critical compressive force used in the tibiaindex overestimates
the strength of the leg in compresson. Another assumption in the application of Tl to the Hybrid 111
dummy isthat the Hybrid 111 leg accurately measures the mid-shaft bending moment and forces that
would occur in the human tibia during axial compression of theleg. Cranddl et d. (1996)

demondtrated that the mass, moment of inertia, and gtiffness of the leg and foot of the Hybrid 11 dummy
are quite different from those of the human leg and foot. The structurd geometry of the Hybrid 111 leg
and the dignment of the leg shaft with respect to the joint centersis not the same as that of the human.
Therefore, the response of the Hybrid 111 leg is different than that of a human under Smilar impact
conditions.
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Chapter 6
Recommendations

Summarizing al of the discussion presented in this paper, Table 6-1 shows the injury criteriaand critica
values recommended for each body region. HIC 5 is currently being recommended for head
protection, scaled appropriately for al dummy sizes. A neck criteriaof SNPRM Nij#1.0 isbeing
recommended, with critical vaues defined for al dummies. For the chest, the individud limits on chest
deflection and spina acceleration are recommended for regulation with the CT1 used for predicting

injury probability rates. Femur load is recommended only for the adult dummies.

Table 6-1. Recommended Injury Criteriafor FMVSS No. 208 SNPRM

Recommended Large§ Mid- Small 6YO 3YO 1YO
Criteria Male Sized Female Child Child I nfant
Male
Head Criteria HIC 5 700 700 700 700 570 390
Neck Criteria: SNPRM Nij 10 10 10 10 10 10
Critical Intercept Values
Tension and Compression (N) 5440 4500 3370 2800 2120 1465
Fexion (Nm) 415 310 155 93 68 43
Extension (Nm) 166 125 62 39 27 17
Thoracic Criteria
1. Spine Acceleration (g) 55 60 60 60 55 50
2. Chest Deflection (mm) 70 63 52 40 A 30*
(2.8in) (25in) (2.0in) (1.6in) (1.4in) (1.2in)
Lower Ext. Criteria
Femur Load (kN) 127 10.0 6.8 NA NA NA
8 The Large Male (95" percentile Hybrid I11) is not currently proposed for inclusion in the SNPRM, but the

*

performance limits are listed here for completeness.

The CRABI 12 month old dummy is not currently capable of measuring chest deflection.
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APPENDI X A: Opportunitiesfor Public Comment on Injury Criteria Proposed in the Sept 30,
1998 Publication of the Notice of Proposed Rulemaking for FMVSS No. 208

NHTSA has provided numerous opportunities for al interested parties to submit comments on the
proposed injury criteriafor review. Theseinclude:

1 Written comments submitted to Docket #4405 of the Department of Transportation Document
Management System, which may be viewed in Room 401 of the Department of Transportation,
400 7™ Street, SW., Washington, D.C. 20590 or at www.dms.dot.gov.

2. A public meeting held on November 23, 1998 in which technical presentations were made by
the agency to describe the basis for the various injury criteria proposed, Mr. Vann Wilber,
Director of Vehicle Safety for the American Automobile Manufacturers Association (AAMA),
made a presentation on their views of the proposed rulemaking, and a discusson was held. A
summary of this meeting may be found in submission number 89 to Docket #4405.

3. A public meeting held on April 20, 1999 in which additiona technica presentations were made
by the agency to describe the basis for the various injury criteria proposed and offer additiona
anayses performed by the agency in response to the comments received. Dr. Harold Mertz of
Genera Motors presented technical material on head injury and neck injury; Dr. Priya Prasad
of Ford Motor Company presented atechnica andyss on chest injury criteria; and Dr. Guy
Nuschultz presented an andysis on Satigtica anadyss techniques. The transcript of this meeting
will be submitted to Docket #4405 shortly.

The agency has weighed the rlaive merit of these comments and has proposed some modified injury

criteriain the SNPRM. Thefollowing is a detailled summary of the comments received and the
agency’ s response to those comments.
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Appendix A: Summary of Comments Submitted to Docket #4405 and Agency Analysis

Al Geneal Injury Criteria

NHSTA has proposed to add anew set of requirements to prevent air bags from causing injuries and
to expand the existing set of requirements intended to ensure that air bags cushion and protect
occupantsin frontal crashes. The agency has proposed injury criteria and performance limits thet it
believes are gppropriate for each dummy size, including the 12-month CRABI, 3-year-old, 6-year-old,
5™ percentile adult female, and 50" percentile adult male Hybrid 111 dummies.

Comments Received:

In generd, al commentersincluding manufacturers (BMW, GM, Ford, Mazda), manufacturing
asociaions (AIAM), associations (IHHS, Advocates for Highway Safety, Public Citizens) and
citizens (Byron Bloch) strongly supported NHTSA's effort to minimize risks associated with air
bag systems by adopting additiond anthropometric test devices (ATD) of different Szes with
gopropriate injury criteria. Commenters specific remarks on each injury criteria are discussed
in the following sections. The following statements summarize the comments on injury criteriain
generd.

BMW commends NHTSA'’ s efforts to establish new injury criteria. GM, Ford and Mazda
support the addition of appropriate injury criteriaand additional ATD szes. A few commenters
(AIAM, 1IHS, Consumer’s Union, Advocates for Highway Safety) emphasized the need for
neck injury criteriain the proposed regulation. AIAM bdieves that the current injury criteria,
with the addition of neck criteria, are adequate to ensure the protection of occupantsin red-
world callisons. 11HS states that based on red-world neck injuries to children, the addition of
neck injury criteriaare welcome and crucia. The Nationa Trangportation Safety Board States
that Sde impact requirements and the corresponding injury criteria need to be reviewed and
may need to be addressed in the new standards. The NTSB dates that many manufacturers
are developing Sde air bags for the front and rear sedts.
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A.2 Consensus of International Community and Delayed Introduction of New Injury Criteria
The NPRM proposes two new injury criteria, the neck injury criteria, Nij and the Combined Thoracic
Index (CTI), and performance limits for dl dummy sizes for in-position and out-of-pogition testing .
Since the current regulation uses only the 50 percentile male dummy, the NPRM specifies
performance limits for the existing injury criteria (chest acceleration, chest deflection, HIC, femur loads)
for the various dummy sizes. Findly, as an dternative to usng Nij, performance limits for current neck
injury criteriawhich are currently used only for the temporary ded test dternative are dso specified for
the various dummy sizesin both in-position and out-of-position testing. Many comments received,
especidly regarding the newly proposed injury criteriaand the scaling of the injury criteriato various
dummy sizes suggested that further discusson and the consensus of the internationd scientific
community was necessary before adopting these criteriaand performance limitsin aFinal Rule.

Comments Received:

A number of commenters (BMW, AIAM, Nissan, Subaru, Mazda, AORC) recommended that
aconsensus within the internationd scientific community needs to be reached before new injury
criteria are adopted and used as regulatory compliance measures. BMW recommends that the
agency follow the recommendations of working group 6 (1SO TC22/SC12), which is
comprised of internationdly-recognized biomechanics experts. AIAM recommends thet the
agency convene an internationa pand of biomechanics expertsto review and critique the new
criteria before they are adopted, with priority given to scaled criteriafor the new dummy sizes.
AlAM gated that Snceit is not criticd to include CT1 and Nij in the find rule, they recommend
postponing their inclusion until the biomechanics community can thoroughly consider their
appropriateness. Nissan is concerned that CTI has not been peer-reviewed or otherwise
vdidated by the scientific community. Subaru is concerned that the new injury criteria have not
yet been proven by the biomechanics community. Mazda beievesthat CTl and Nij have not
been aufficiently evauated by the internationa biomechanics community to be used in
regulation. The AORC dates that the foundation for al the injury criteria proposed in the
NPRM may not have the agreement of biomechanics experts.

Other commenters recommended the inclusion of the new injury criteriawith the current
rulemaking. Advocates stated that Nij should be included since it offers amore redistic means
of measuring neck injury and should offer amore stringent means of preventing significant risk
of neck injury. The Center for Auto Safety supports the inclusion of CT1 with continued
research and Nij with alimit of 1.0. Public Citizens supports the use of new, more
sophisticated and redlistic means to measure neck and chest injury, specificaly Nij with alimit
of 1.0 and CTI.

A few commenters, including Subaru, Volvo, Nissan, recommended addressing new injury
criteria separately (CT1 and/or Nij) from the find rule for FMVSS No. 208. Subaru
recommends continued research on the newly proposed injury criteriaand review of the new
criteria separate from the Find Rule. Volvo bdievesthat chest injury should be evauated
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separately from this rulemaking. Nissan recommends directing priority toward the reduction of
adverse effects of air bags and the introduction of new injury criteria on a separate bass.

Response to Comments:

The pressing need to minimize the risk to occupants of al Szesin avariety of crash condition
precludes the time consuming process of convening a pand of internationa biomechanics
experts and obtaining the consensus of the biomechanics community on the proposed new
injury criteria. As an dterndive, the agency has provided numerous opportunities for interested
parties to submit comments for the agency’ s review and had considered the viewpoints of each
responder. Therationde for maintaining or changing each of the proposed injury criteriawill be
discussed individudly.

NHTSA is continuing to Sponsor cooperétive research agreements with many of the leading
universtiesin the field of automoative biomechanics to further our knowledge on the mechanisms
and tolerance of the human body and to improve scaling procedures to ensure the safety of
occupants of dl szes.
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A.3: Overview of Commentson Head Injury Criterion

The NPRM proposes that the Head Injury Criterion evaluated over an interva of 36 ms be maintained
for the 50" percentile male dummy and scaled for the various sized dummies. The agency requests
comments on the proposed injury criterion and performance limits.

Comments Received:

Two commenters, Volvo and Autaliv, support the performance limits for HIC evaduated over a
36 msinterval for dl dummy sizes as proposed in the NPRM. Autoliv accepts the Head Injury
Criterion as proposed for dl dummy sizes since they gppear to be consistent with current risk
levels. Autoliv aso mentioned that further research on rotationd brain injury mechanism might
be beneficid. Volvo does not oppose the HIC vaues for the various dummy sizes proposed in
the NPRM, athough the reduction for child dummies does not appear to be thoroughly
investigated and is lacking biomechanica datato support it.

Two commenters, I1HS and Advocates for Highway Safety, recommend performance limits for
HIC that are lower than 660 for the 12 month CRABI dummy. The IIHS recommends a
threshold for the 12 month CRABI dummy that is closer to the lowest HIC vaue of 138 based
on different scaling techniques presented in Chapter 3. They Sate that “adopting the lower
vaue increases the certainty that, if the manufacturers choose to deploy airbags in the presence
of rear-facing infant restraints, the airbags would not cause serious brain injury”. Advocates
dates that infants are far more likely to be susceptible to internal organ damage, especidly brain
trauma and brain swelling, from seemingly benign impacts including those a injury levels below
that established for adults.

The National Transportation Safety Board suggested that the NPRM should provide a factor of
sdfety in the HIC performance limitsfor dl child dummies to account for uncertaintiesin the
pediatric kull. The NTSB dso dates that the NPRM did not provide sufficient information
regarding the source or assumptions underlying the HIC scaling factor to alow evauation of the
appropriateness of the HIC scaing factor.

The AAMA proposed evauating the Head Injury Criterion with a 15 msinterva asisusedin
the Canadian Federd Motor Vehicle Safety Standard, rather than the 36 msinterva whichis
currently regulated in the US. In addition, the AAMA proposes using a different satistical
technique to andyze the data and using different scaling technique for the various dummy Sizes.
The HIC vaues proposed by the AAMA for both in-position and out-of-position testing are
summarized in Table A3.1.
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Table A3.1: Comparison of NPRM Proposal and AAMA Proposal for the Head Injury

Criterion (HIC)

Dummy Sze AAMA Proposal NPRM Proposal
HIC 15* HIC 5**
CRABI 12 Month 390 660
HIII - 3yr 570 900
HIIl -6yr 723 1000
HIIIl - Small Female 779 1000
HIIl - Mid Male 700 1000
* Evduated over a maximum 15 millisecond interva

** Evduaed over a maximum 36 millisecond interva

Response to Comments:

Comparison of the statistical techniques used by AAMA and the agency may be found in

section 1-2.

Based on numerous commenters who suggested lowering the HIC 55 performance limits for the
children, especidly the 12 month CRABI, further andyses were performed by the agency on
thisissue and the AAMA proposal for HIC ;5. A detailed discusson may be found in Chapter

2.
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A.4: Overview of Comments on the Neck Injury Criteria

The current FMV SS No. 208 dternative ded test includesinjury criteriafor Th neck conssting of
individua tolerance limits for tenson (force stretching the neck), shear (force perpendicular to the neck
column), compression (force compressing the neck), flexion moment (forward bending of the neck) and
extenson moment (rearward bending of the neck). Due to the incidence of neck injuriesin the redl
world data gathered by the Nationa Automotive Sampling System and NHTSA’s Specia Crash
Investigations, the NPRM proposed two dternative methods for assessing the risk of neck injury for the
various dummy sizes: (1) Nij, with avaue of either 1.0 or 1.4, and (2) independent eva uation of the
tension, compression, flexion, extension, forward and rearward shear on the neck. The NPRM
requested comments on the two proposed criteria, including the proposed performance limits.

Comments Received:

A number of commenters (AAMA, DaimlerChryder, Ford, Genera Motors, Isuzu, Toyota,
Subaru, Mazda, AIAM) strongly oppose the inclusion of Nij in the proposed regulation. The
AAMA supports the independent evaluation of neck loads and moments and proposes two
separate levelsfor in-position and out-of-position testing levels based on the protective aspects
of passve neck muscle tenson (Tables A4.1 and A4.2). A technica discussion of the
methodology used by the AAMA to obtain these performance limitsis presented in Section
5.2.3. Subaru believesthat Nij is not an appropriate injury measure for the wide range of tests
proposed in the NPRM, but does not offer further explanation. Although Porsche does not
date that they oppose Nij, Porsche points out that Nij is sendtive to smal differencesin
occupants forward displacement, especialy with angled (30 degree) crash tests.

Table A4.1: AAMA Proposed | ndependent Neck Valuesfor Out-of-Position

Dummy Sze Tension Compression Flexion Extension
(N) (N) (N-m) (N-m)
CRABI 12 Month 780 960 27 11
HII -3 yr 1130 1380 42 17
HIII -6 yr 1490 1820 60 24
HIll - Small Female 2070 2520 95 39
HIll - Mid Male 3290 4000 190 77
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Table A4.2: AAMA Proposed | ndependent Neck Valuesfor In-Position

Dummy Sze Tension Compression Flexion Extension
(N) (N) (N-m) (N-m)
CRABI 12 Month 780 960 27 11
HII -3 yr 1480 1380 42 22
HIIl -6 yr 1910 1820 60 30
HIll - Small Female 2620 2520 95 49
HIll - Mid Male 4170 4000 190 96

Honda, Volvo, and Autaliv support Nij with a preferred maximum of 1.4 at the present time,
rather than the independent regulation of neck loads and moments.  Based on reasons of
practicdity, Autoliv Sates that if alower value were initidly sdlected, there would be adelay in
introduction of advanced safety systems due to more complicated design iterations. Honda
supports the performance limit of 1.4, which includes “worst casg’ tests, due to numerous
uncertainties including the gppropriate vaues, the biofiddity of the necks of the various
dummies, and the scaling procedures. Honda states that overly severe criteriain one crash
scenario could lead to reduced protection in another crash scenario. Volvo states that research
indicates that neck injuries is dependent upon a combination (superposition) of the different
individud criterion, which judtifies the inclusion of Nij as proposed in the NPRM. Volvo dates
that the proposed individua performance limits for neck injuries, in particular the moments
specified for the child dummies, gppear to by unjustifiably low and do not appear supported by
biomechanica data. Volvo aso states that adopting criteria of this stringency without adequate
biomechanicd datamay hamper development of new ar bag designs and thus many
manufacturers may chose suppression rather than low-risk deployment.

ITHS, Public Citizens, and Advocates for Highway Safety support the neck injury criterion, Nij.
[IHS strongly recommends 1.0 as the performance limit to ensure little or no harm to out-of -
position occupants. Public Citizens sates that Nij seems to be a more sophigticated and
redistic way to measure neck injury. Public Citizens supports Nij so long as the forces when
combined in the Nij formulation do not exceed the individuad performance limits specified in the
current ded test aternative in FMV SS No. 208. Furthermore, Public Citizens believes that
NHTSA should adopt a more stringent Nij value of 1.0 because it represents significantly
reduced risk of serious neck injury and several manufacturers have demondrated that such a
gandard isindeed feasible. Advocates for Highway Safety favors the adoption of Nij because
it offers amore redistic means of measuring neck injury and should offer a more gringent
means of preventing sgnificant risk of neck injury, especidly for unbelted children. Advocates
supports the introduction of Nij so long as the maximum vaue of the combination of neck
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forces and moments do not exceed the limits for the neck criteriawhen evaluated

independently.

Although the Nationa Trangportation Safety Board (NTSB) States thet there was insufficient
detailsin the NPRM to evauate the appropriateness of Nij, the NTSB dates that a value of Nij
equa to 1.0 seems gppropriatdy cautious for children due to uncertainties in the interaction at
the occipital condyles of achild, adult, and a porcine modd from which the criterion was
developed. The NTSB aso recommendsinclusion of shear and rotationa criteriato address
neck injury in fronta, sde, and combined angle impacts.

The Consumers Union supports the addition of new injury criteria, especiadly regarding neck
injury. The Consumer Union gtates that their review of films and reports from NHTSA’s New
Car Assessment Program has shown some “troubling neck motions in some test dummies.”

Mazda believes that some type of neck injury criteria are needed for the various dummy Szes
based on the nature of the airbag induced injury patterns that are appearing in the fied.
However, Mazda believes Nij has not been sufficiently evaluated by the internationd
biomechanics community to be used in regulation.

Response to Comments:

Based on the comments received and the discussions at the two public meetings (see summary
E-2 and E-3), the agency has opted to continue its support of Nij with amodified formulation.
The issue of neck injury, especidly to out-of-position adults and children, is one of the priorities
of this rulemaking and the agency would be remissif it did not include the most accurate and
up-to-date methods to assess what conditions are injurious and non-injurious. The agency
continues to believe that Nij has a strong foundation in biomechanics and testing has shown that
the performance limits are practicable or that aternative options, such as suppresson systems,
are practicable. Although some commenters have suggested that the Nij = 1.0 may be too
conservative leading manufacturer’ s to choose suppression rather than low-risk deployment for
the small femae and out-of-pogtion children, the agency believes that this tringency is
warranted until biomechanical data and field data become available to change this performance
limit. The agency aso believes that there has been sufficient time and precedence for the
evauation of aformulaion of combined loads and moments, smilar to Nij. Thetwo
parameters, axid force and bending moment at the occipital condyles have long been used to
evauate neck injury. Asearly as 1984, Prasad and Daniel published areport demondtrating
that linear combination of neck loads and moments was a good predictor of neck injury for a
series of piglets exposed to air bag deployments. Furthermore in 1996, the agency issued a
report describing techniques for developing injury reference vaue for child dummies which
included a combination of neck loads and moments to assessinjury. Thus, amodified Nij will
remain as the proposa for the SNPRM.
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A.5: Overview of Commentson Chest Injury Criteria

For chest injury, NHTSA proposed two dternativesin the NPRM. Under the first dternative, the
agency would add the new chest injury criterion, the Combined Thoracic Index (CTI) for usein dl test
procedures for adl dummy szes. The formulation of CTI isalinear combination of two parameters,
chest acceleration and chest deflection, that are currently used independently in FMVSS No. 208. The
linear combination of acceleration and deflection was shown in Chapter 4 to be a better predictor of
injury in Smulated frontal impact conditions than chest accderation of chest deflection done. Under the
second dternative for chest injury, the agency would smply continue to maintain separate limits on
chest acceleration and chest deflection for dl dummy sizes. NHTSA requested comments on the two
proposed aternative, on how they are caculated, and on the proposed performance limits. [n addition,
the agency requested comments on whether the same limits should be established for al test
requirements, e.g., out-of-position, low speed tests, high speed tedts.

Comments Recelved:

BMW, Isuzu, Daimler Chryder, Ford, Genera Motors, Honda, Toyota, Subaru, VVolvo,
Mazda, Autoliv, AIAM, AAMA, and the Alliance for Automobile Manufacturers oppose the
inclusion of CTI. BMW and Honda opposed CTI because they believe that the increased
sringency of CTI will lead to more aggressive air bags and/or softer vehicle structures, which
would have a negative effect on real world benefits. Honda stated that the addition of CTI for
the teting of the unbelted 50" percentile male dummy and other sized dummies requires a
tremendous amount of development work that will dilute and delay the development of
advanced air bags. Subaru states that the industry has no experience on the appropriateness of
CTI and that new injury criteriamay hinder the development of new technologies. Isuzu
opposed CTI based on unknown correlation with real world injury data, unknown
biomechanicd integrity, and opposition againg establishing US specific criteria. Mazda Sates
that there isno evidence that CTl isavaid measure of thoracic injury.

The AAMA whose members are Ford, Generd Motors and DaimlerChryder, opposed the
incluson of CTl. The AAMA has presented a different interpretation of the dataand has
questioned the inclusion of afew of the data points which may be outliersin the andyses. Asan
dternative to CTI, the AAMA proposed using chest acceleration, chest deflection, and chest
deflection rate for all dummy sizesin out-of-position testing and in-position testing for a severity
equal to or less than the 30 mph generic ded test currently specified in FMV SS No. 208 (Table
A5.1). The chest acceleration limit proposed for the 50 percentile maeis consistent with the
current requirements of FMVSS No. 208. The chest deflection limits for the 50 percentile
maeislower than that currently required. The deflection, acceleration, and deflection rate limits
proposed for the other dummy sizes are scaled from the values for the 50™ percentile male.

The Alliance of Automohbile Manufacturers, which is the newly formed association whose
members are BMW, DaimlerChryder, Ford, Genera Motors, Mazda, Nissan, Toyota,

A-10



Volkswagen, and Volvo supports further public comment on the comprehensive injury criteria
recommended by AAMA and requires additiond evauation before the Alliance can endorse all
the specific valuesin the AAMA submission.

Honda, Toyota, Volvo, Mazda, Autoliv, AIAM proposed to maintain the current criteria that
limit chest accdleration and chest deflection independently for the 50 percentile male dummy
and add smilar criteriafor the other dummy sizes. However, Toyota opposed the chest
acceleration and chest deflection criteria for the 5" percentile female dummy, although Toyota
offered no rationale for this opposition. Autoliv Sated that the gpproach presented by CTI
looks promising, but needs more evauation.

Toyotaand VVolvo beieve that snce the maximum chest deflection and maximum chest
accderation do not occur smultaneoudy in a crash, the formulation for CIT should evduate the
combined loading at every indant in time, following the pattern used for Nij.

The Tri-Laterd Working Group, which is made up of mgor motor vehicle manufacturers from
Europe, Japan and the United States who are members of ACEA, JAMA, and AAMA,
expressed its concern about the gpplication of new, untried test measures such as CT1 and Nij.
In addition, the combination of amultitude of tests, test variations, dummy positions, and new
injury criteria presents an impossible task for manufacturers.

Honda, I1HS, Advocates for Highway Safety, Center for Auto Safety, Toyota, Takata, AIAM,
Autoliv, and Alliance of Automobile Manufacturers recommend further research and review.
Honda recommended further consideration by NHTSA of the regions of the surrogate data
where chest acceleration is greater than 60 g and there is low deflections and regions where the
chest deflection is greater than 75 mm and there are low accelerations. Honda suggests
consdering modifying the Hybrid 111 dummy in the future to be cgpable of measuring more than
75 mm of deflection. The lIHS urged NHTSA to continue its research to secure reasonable
answers to some technica questions that were regarding CT1 at the recent 42" Stapp mesting.
Advocates for Highway Safety supports more research and apublic discussion of CTI before
it isadopted. Advocates believesthat other thoracic injury measures adso have potentid, and
the exigting chest injury criteriaare well understood and well established even if ther rdaive
merits are subject to debate. Toyota statesthat CT1 isnot yet well established and is not ready
for usad in the development of vehicle safety systems nor for inclusion in alegd requirement.

Center for Auto Safety, Public Citizens supported theincluson of CTI. Public Citizens Sates
that CTIl seems to be a more sophisticated and redistic means by which to measure chest

injury.

Volkswagen commented that it did not have sufficient time to conduct testing with the various
dummies and the proposed injury criteria. Volkswagen will submit comments on the proposed
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criteriawhen data and experience become available.

The Nationa Trangportation Safety Board (NTSB) suggests that is may be appropriate to use
different CTI valuesfor belted and unbelted occupants based on the comparison of actua
NASS datato that predicted by CTI. Furthermore, the NTSB suggests thet differencesin the
ribcage structure and organ position between adults and children may suggest the use of lower
criteriafor children.

Table A5.1: Chest Injury Criteria Proposed by AAMA and NPRM

Dummy Chest Deflection Chest Deflection Chest
(mm)* Rate Acceleration
(m/s) (G)
AAMA | NPRM | AAMA | NPRM | AAMA | NPRM
CRABI 12 Month 31 37 7.6 NA 50 40
HII -3 yr 36 42 8.0 NA 55 50
HIII -6 yr 40 47 8.5 NA 60 60
HIll - Small Female 53 62 8.2 NA 73 60
HIIl - Mid Male 64 76 8.2 NA 60 60

* For the NPRM, alinear combination of chest deflection and chest accdleration, CTl = 1, was
imposed in addition to the above limits on chest deflection and chest accdleration.

Response to Comments:

Based on the comments received and the discussions at the two public meetings, the agency has
opted to continue research on the thoracic injury criteria, CTI, and to propose a chest
acceleration limit of 60 g's and a reduced chest deflection performance limit from the current 76
mm to 63 mm for the 50" percentile male dummy. However since CTI has demonstrated
superior predictive capabilities than elther deflection or acceleration aone, the agency proposes
to use CTI to assess the probability of injury from dummy responses for both economic
andyses and other safety evauation efforts. The derivation of amodified CTI formulation,
which includes suggestions by commenters to remove a few questionable data points and
correct data reporting errorsin afew tests, is discussed in detail in Chapter 4 of this report.
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A.6: Lower Extremity Injury Criteria

Currently, FMV'SS 208 specifies an axia load limit of 10kN (2250 pounds) for the 50" percentile male
Hybrid 11 dummy, as measured by aload cell at the location of the mid-shaft of the femur. The
purpose of the axid load limit on the femur is to reduce the probability of fracture of the femur and aso
surrounding structures in the thigh, such as the patellaand pelvis. The crash configuration currently
specified in standard 208 is afrontal impact at speeds up to 30 mph and at an angle up to 30 degrees
from the perpendicular with an unbelted or belted 50" percentile male dummy. Because the NPRM
proposes to also require testing for the 5 percentile female in the same test configuration, it is
appropriate to include an axial load limit for the 5 percentile female dummy. The axid load limit
proposed in the NPRM was scaled down based on cross sectional area of the femur to 6.8 kN to
account for the smaller bone size of the 5™ percentile female.

Comments Recelved:

AAMA, Ford, and Autoliv support theincluson of performance limits for femora compressive
loads for the 5™ percentile femae dummy specified in the NPRM in addition to maintaining the
currently specified value for the 50" percentile male dummy. Furthermore, AAMA proposes
adding femorad compressive load performance criteria of 2310 N for the 6 YO dummy.

The Nationa Transportation Safety Board (NTSB) recommends that tolerance levels of lower
extremities need to be further investigated and validated. NTSB aso suggests that the NHTSA
consder dummies such as advanced lower extremity (ALEX) dummy for future incorporation
into the standards.

Response to Comments:

Although the NHTSA agrees with the AAMA that femord compressive load limits for the six
year-old dummy are important to consider, the NPRM does not specify such limits because the
testing configurations specified in the NPRM for the Six year-old dummy do not impose
subgtantia loading on the lower extremities. For instance, NPRM positions 1 and 2 for the Six
year-old specify chest loading and neck loading positions associated with the deployment of the
passenger’ sside air bag a close proximity. The pre-impact breaking test specified in the
NPRM with an unbeted six year-old dummy could result in loading to the femur, but thereisa
low risk of femord injury at the pecified speed of —kph. The NHTSA is continuing the
development of an advanced lower extremity test device, the THOR-L X, and continues to
gponsor experimenta impact injury research to determine the mechanisms and tolerances of the
lower extremities, including the foot, ankle and leg. When this effort is complete, it is
anticipated that this research will be incorporated into future safety standards.

A-13



A.7: Real world problem/ Real world benefits of the proposed injury criteria

Comments Recelved:

A number of commenters (Nissan, Porsche, Toyota, Mazda) state that there has not been
aufficient red world data to suggest that new injury criteriaare needed. Nissan dates that there
has not been sufficient real world data to suggest that the existing chest and neck criteriaare
inappropriate, inadequate, or otherwise require improvement. Porsche states that there exists
no evidence judtifying an increase in the stringency of the thoracic injury criteria  Toyota
believes that the red world accident data do not demonstrate a need for new injury criteria
Mazda states that CT1 seems to be focused on improving the effectiveness of airbagsin high
gpeed crashes, an area where there is no demonstrated problem.

A number of commenters (Isuzu, Nissan, Mazda, BMW, AORC) question the red world
benefits of adopting the new injury criteria, CTI and Nij. 1suzu States that the correlation of
CTI1 and Nij with red world crash injury datais unknown. Nissan states that it has not been
shown that the adoption of CTI1 or Nij will lead to the reduction of injuriesin the real world.
Nissan expressed it's concern about whether CT1 is an gppropriate injury measure for al test
conditions. Mazda dso sates that NHTSA’s own preliminary economic andyss suggests that
there are a best, minima benefits from the application of CTI.

BMW do not support adopting CTI or any other new injury criteria until the full effects of the
criteria on real world occupant protection are well understood. The AORC believes each of
the injury criteriamust be shown to have a scientific foundation and thet it must be shown that
compliance with the criteriawill in fact provide measurable safety benefits.

IIHS dtates that red-world crash data indicate that children are particularly at risk of serious
and fatd neck injuries from deploying airbags.

Response to Comments:

Based on comments received, NHTSA has reconsidered its origina proposal for using the CTI
for regulatory purposes. Instead, it has opted to employ individuad limits for chest acceleration
(60g) and chest deflection (63 mm) for the 50 percentile male and scaled vaues for the
various dummy sizes. However, the agency continues to propose to use the CTI to assess
probability of injury from dummy responses for both its economic and other safety evaluation
efforts. Detalls are presented in Chapter 4 dong with efforts to link performance limits with redl
world problems.
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A.8: Other Injury Criteria

NHTSA proposed injury criteria and performance limits for the head/brain, neck, chest (except the 12
month CRABI dummy), and femur (adult dummy only) for al dummy sSzes. In addition to receiving
comments on the proposed injury criteria, the agency received comments on comments on two areas of
possible injury associated with air bags which are not specified in the NPRM.

Comments Received:

The Center for Automobile Safety expressed concern that the NPRM did not proposed injury
criteriafor the upper extremities. The Center stated that although a broken arm or hand may
not be as traumatic as a severed spina cord or a cardiac fallures, these types of injuries il
pose a hazzard to drivers who are the intended beneficiaries of ar bag deployment.

The American Academy of Otolaryngology and Head and Neck Surgery, Inc. Satesthat there
have been 60 documented cases of patients as of December 15, 1998, seeking medical
assstance because of hearing loss, tinnitus, and/or vertigo after exposure to airbag deployment.
Out of 51 patients who underwent objective hearing eva uations, 43 showed evidence of
hearing loss, 42 experienced tinnitus, 13 complained of dizziness, and 6 patients sustained
ruptured ear drums, four of whom required surgery. The Academy states that these reports are
in contrast to previous statements by NHTSA and others denying the potentia for injury to
occur after exposure to air bag deployment. The Academy wishes to baance the benefits of air
bags with risks of noise exposure and permanent hearing loss during air bag deployment,
particularly during non-threatening crashes.

The American Academy of Pediatrics recommends testing of pregnant dummy and assessment
of fetd injury.

Response to Comments:

The agency acknowledges that drivers side air bags may pose a risk to the upper extremities
and fully supports the efforts of the SAE to develop an insdrumented arm the gpproximate Sze
and weight of the arm of a5™ percentile femade. Thisinstrumented arm will alow
manufacturers to measure the forces, moments, rotations and accelerations of the arm and to
minimize the potentid for upper extremity injury. Preiminary research sponsored by the
NHTSA has provided provisiond injury criteria performance limits for the bending strength of
the forearm (Bass, Stapp 1997) and research by others have provided provisona limits based
on the acceleration of the wrist (Hardy, Stapp 1997). Since the agency’ s primary focus of the
rulemaking isto diminate the serious risks associated with the deployment of air bags, a the
present time the agency will not be proposing injury criteriafor the upper extremities.
However, the agency will continue to monitor the incidence and severity of upper extremity
injuries.

A-15



The agency is aware of the possible risks of hearing loss and tinnitus following exposure to air
bag deployments and is conducting research in thisarea. Since the agency’ s primary focus of
the rulemaking is to eliminate the serious risks associated with the deployment of air bags, a the
present time the agency will not be proposing injury criteria associated with the noise of the

deploying air bag. However, the agency will continue to monitor the incidence and severity of
hearing loss and tinnitus.
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A.9: Scaling

NHTSA is proposing injury criteriaand performance limits that it believes are appropriate for each
gzed dummy. The limits were scaled based on the limited existing biomechanica data for the various
gzesto maintain aregulation with a consstent level of protection for al occupants. The agency
requested comments on what risk levels are acceptable, what factors should be considered in sdlecting
performance limits for different test requirements, and how uncertainties related to injury criteria should
be addressed, especialy with respect to children.

Comments Received:

A few commenters (NTSB, AAMA, Honda) stated that the scaling procedures proposed in the
NPRM needed modifications. The Nationa Transportation Safety Board states that the scaling
procedures used in developing the performance limits for the various dummies seems overly
amplistic and potentidly ingppropriate. However, the NTSB did not provide an aternative
procedure for scaing. The AAMA provided an dternative set of scaling techniques, which are
discussed in the gppropriate chapters of this document. Honda stated that additional scientific
debate and further biomechanical testing is needed to improve scaing techniques before
implementing them as new requirements.

A number of commenters (Trauma Link, Advocates for Highway Safety) suggested that due to
increased susceptibility to injury and uncertainties in the development of injury criteriafor
children, the performance limits should be more conservative for children. TraumaLink stated
that children experience sgnificantly different injuries and injury congtdlations than adults (eg.
more brain swelling), additiond funding for research on pediatric mechanical properties and
injury tolerancesis needed. TraumaLink suggests that the proposed criteria should be
considered as interim criteria that should be re-evauated and updated on aregular basis.
Advocates for Highway Safety supports separate, scaled injury criteria performance limits for
the various dummy szes based on the view that children are susceptible to injury &t lower level
impacts than adults. Advocates believes that for any area of uncertainty, performance limits
should be st in favor or assuring greater protection for infants and children. Thus, Advocates
believes that maintaining the same leved of therisk of injury for children and for adultsis not an

appropriate policy.

Response to Comments:

Basad on the comments received and discussions at the public meetings, the agency has
adopted more stringent scaling techniques for the injury criteria performance limits for the child
dummies, as discussed in detall in section 1-2.
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Appendix B

Tabulated Results from Analyses of Available
NHTSA Test Data



The injury measures for each body region were cdculated and compared for awide variety of
tests available in the NHTSA database. Anayses were conducted for data from 30 mph FMV SS No.
208 compliance tests, 35 mph NCAP tests, 48 kmph rigid barrier and 40 kmph offset deformable barrier
tests with 5™ percentile female dummies, and out-of-position tests with the 6-year old and 5™ percentile
femae dummies. Thetest data are listed in the following tables according to the test type and the occupant
position (driver or front seat passenger).

For the head region, HIC 5 injury criteria proposed in this SNPRM and HIC 5 proposed in the
NPRM (Docket 98 4405-9) are listed for each test. For the neck, the maximum SNPRM Nij (proposed
in this SNPRM) and the maximum NPRM Nij (proposed in the NPRM NHTSA Docket 1998-4405-9)
areliged. Also ligted for the neck region are the maximum tenson, compression and shear forcesin
Newtons and the maximum extension and flexion moments in Newton-meters. For the chest region, the
maximum chest deflection in millimeters, the 3-msec clip vaue of resultant chest accderationing's,
maximum chest velocity in m/s, and CTI-V2 (Verson of CTI presented in this SNPRM: Equation 4.2 and
Table 4-5) areliged. For the lower extremities, the maximum right and left femur force in Newtons are
listed, where gpplicable.

The performance limits for the injury measures corresponding to the ATD under consderation are
presented above each column. The performance limits for HIC15, SNPRM Nij, chest acceleration, chest
compression, and femur force for different dummy sizes are those recommended in this SNPRM for
regulation purpose and are listed in Table 6-1. The performance limit for HIC36 and NPRM Nij for
different dummy sizes are as presented in NPRM NHTSA Docket 1998-4405-9. Although CTI-V2 has
not been recommended for regulation purpose in this SNPRM, it is used as a comparison to the individua
chest deflection and chest acceleration performance limits for analyss purposes.  Theindividua
performance limits for maximum neck tension, compression, flexion, and extension for the 50" percentile
mae are from the current FMV SS No. 208 neck injury performance limits using the dternative ded ted,
while those for other dummy sizes are from AAMA recommendations for out-of-position occupants.

A vehideis sad to pass acartain injury measure if the performance limit for the injury meesure is
greater or equa to the maximum computed value of theinjury measure. In each table, summary satistics
are presented for each injury measure such as average vaue of the injury measure, number of vehiclesin
table with computed injury measures, the number of vehicles that pass the injury measure performance
limit, and the percentage passing rate of the vehicles for that injury measure. The summary datistics are
used to compare the performance of the different injury measures for each body region.
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Appendix C

Application of Proposed Nij Neck Injury
Criteriato Available NHTSA Test Data



Cdculations of Nij were made for awide variety of test data available in the NHTSA database.
Anayses were conducted for data from NCAP tests for both drivers and passengers, FMV SS 208
unbelted 30 mph rigid barrier crash tests with 1998 and 1999 modd year vehicles, 25 mph offset tests
with 5" percentile female drivers and passengers, 30 mph rigid barrier tests with 5" percentile femae
drivers, and out-of-position tests for 6 year old and 5" percentile female dummies. Results from these
tests are presented here and are included in tabular format in Appendix B.

Comparisons between the Nij combined neck injury criteria and the suggested performance limits
submitted by the AAMA for out-of-position occupants are shown for the different types of data
andyzed. Two points are plotted for each test, corresponding to each set of injury criteria. The point
corresponding to the Nij criteria, labeled with a €, islocated at the vaues of axid load (F,) and
flexion/extenson bending moment (M) which yield the maximum vaue for Nij. It isimportant to redize
that these valuesfor F, and My are concurrent in time and are not necessarily equd to the maxima
during the entire event. The point corresponding to the AAMA proposed values for out-of-position,
labded with a I, islocated at the overal maximum vaues of axid load and bending moment. The two
vaues that determine this point are independent of time, and do not necessarily occur at the sametime.
It is dso important to notice that shear load is not included on this plot.

Since the AAMA independent point always represents the overall maxima while the Nij point does
nat, it isimpossible for the Nij point to be located further from the origin than the AAMA independent
point. To help identify the matched sets of points, they have been joined together by aline. If theline
segment is short, and the points lie essentialy on top of one ancther, it implies that the Nij maximum
vaue occurs close to the same time as the independent maxima. If the line segment islong, thisindicates
that the Nij maximum occurs a a much different time than the independent maxima.

The thick broken rectangle in the figures represents the AAMA proposal for neck injury criteria for
axia load and bending moment in out-of-position testing. The AAMA’ s suggested independent limits
for tension, compression, flexion and extension which are the same as those used currently for the 50
percentile mae in the dternative ded test option, with the exception of the extenson value. The
AAMA’s proposed a limit in extension for the 50" percentile maleis 77 N-m for out-of-position testing
and 96 N-m for in-pogition testing, which are higher than the 57 N-m used currently for the ded test.
The AAMA reasoned that for in-position testing because the occupant would be aware of the crash
and would tense the neck muscles, the performance limits could be raised for tenson and extension.
However, the agency has determined that it is not prudent to raise these limits because not al
occupants, especidly passengers, may be aware of an impending crash and furthermore because there
was little scientific data to support the large increase in the extension tolerance to 96 N-m.  Thus, the
limit of 77 N-m is plotted for the extension limit for the 50" percentile male. The solid “kite’ shape
represents the Nij = 1.0 criteria, corresponding to a 22% risk of an AIS$3 injury. The vertices for each
region shown on the plot are scaled for each different dummy size. Data points lying within either the
box or kite are considered to pass the corresponding criteria.
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FigureC-1. Comparison of Neck Injury Criteriafor 1998 NCAP Testswith Belted
50" PercentileMale ATD in Driver Position.
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FigureC-2. Comparison of Neck Injury Criteriafor 1998 NCAP Testswith Belted
50" Percentile Male ATD in the Passenger Position.
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FigureC-3. Comparison of Neck Injury Criteriafor 1999 NCAP Testswith Belted
50" Percentile Male ATD in the Driver Position.
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FigureC-4. Comparison of Neck Injury Criteriafor 1999 NCAP Testswith Belted
50" Percentile Male ATD in the Passenger Position.
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FigureC-5. Comparison of Neck Injury Criteriafor 1998-1999 Unbelted 208 Barrier
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FigureC-6. Comparison of Neck Injury Criteriafor 1998-1999 Unbelted 208 Barrier
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Figure C-10. Comparison of Neck Injury Criteriafor Transport Canada 40% Offset
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Figure C-11. Comparison of Neck Injury Criteriafor 1999 NHTSA Unbelted 208
with 5" Percentile Female ATD in the Driver Position.
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Figure C-12. Comparison of Neck Injury Criteriafor 1999 NHTSA Unbelted 208 with
5 Percentile Female ATD in the Passenger Position.
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Figure C-13. Comparison of Neck Injury Criteria for Out-of-Position Testswith
51 Per centile Female Hybrid 111 Dummy in Position-1 Driver Position.
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Figure C-14. Comparison of Neck Injury Criteriafor Out-of-Position Testswith
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Figure C-16. Comparison of Neck Injury Criteriafor Out-of-Position Testsfor
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Appendix D

Application of Proposed Thoracic Injury
Criteriato Available NHT SA Test Data



The thoracic injury criteriawere caculated for awide variety of tests available in the NHTSA database.
Anayses were conducted for data from 30 mph FMV SS No. 208 compliance tests, 35 mph NCAP
tests, 48 kmph rigid barrier and 40 kmph offset tests with 5 percentile female dummies, and out-of-
position test with the 6 year-old, and 5 percentile female dummies. The results are presented in a
tablular form in Appendix B.

In the following figures, the 3 msec clip chest acceleration and the maximum sternd chest deflection
measured by the dummy are plotted on the x and y axes, respectively. The solid lines represent the
limits for the two proposed thoracic injury critieria. These are (1) the 3 ms clip accelerdtion isless than
or equa to Ac and (2) the maximum chest deflection islessthan or equa to Dc, where Ac and Dc are
ligedin Table D.1.

TableD.1. Scaled Deflection and Acceleration Valuesfor Various Occupant Sizes

Vdue Mid-Sized | Smdl 6Yexr Old | 3Year 12 Month
Mde Femde Old Old

Chest Deflection 63 mm 52 mm 40 mm 34 mm 30 mm**

Limit for Thoracic (25in) (20in) (16in) (1.3in) (L.2in)

Injury (Dc)

Chest Accderation | 60 60* 60 55* 50"

Limit for Thoracic

Injury Criteria (Ac)

* Although geometric scaling alone would predict higher A . values for females, it is believed that lower bone mineral
density would offset this effect. Therefore, the accel eration tolerance values for small females are kept the same as
for mid-sized males.

** The CRABI 12 month old dummy is currently not capable of measuring chest deflection.
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Figure D-1.

performance limits for chest acceleration and deflection for the 50" per centile

male dummy. The passing rate for the dummy in the driver position is 90%.
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FigureD-2. 1996 to 1999 NCAP crash tests with the ATD in the passenger position and

performance limits for chest acceleration and deflection for the 50" per centile
male dummy. The passing rate for the dummy in the driver position is 93%.
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FigureD-3. 1996 to 1999 FMVSS 208 crash tests with the ATD in the driver position and

performance limits for chest acceleration and deflection for the 50" per centile
male dummy. The passing rate for the dummy in the driver position is 98%.
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FigureD-4. 1996 to 1999 FMVSS 208 crash testswith the ATD in the driver position and
performance limits for chest acceleration and deflection for the 50" per centile
male dummy. The passing rate for the dummy in the driver position is 93%.
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FigureD-5. 1998 - 1999 FMVSS 208 type crash tests with the belted 5" per centile female
Hybrid 111 dummy in the driver position and the performance limitsfor chest
acceleration and deflection for the 5™ per centile female dummy. The passing rate
for the dummy in the driver position is 100%.
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FigureD-6. 1998 - 1999 FMVSS 208 type crash tests with the belted 5" per centile female
Hybrid 11 dummy in the passenger position and the performance limitsfor chest
acceleration and deflection for the 5t per centile female dummy. The passing rate
for the dummy in the passenger position is 96%.
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FigureD-7. 1998 - 1999 vehicle offset crash tests with the 5" percentile female dummy in
thedriver position and the performance limitsfor chest acceleration and
deflection for the 5" percentile female dummy. The passing rate for the dummy in
the driver position is 100%.
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FigureD-8. 1998 - 1999 vehicle offset crash tests with the 5" percentile female dummy in

the passenger position and the performance limitsfor chest acceleration and
deflection for the 5 per centile female dummy. The passing rate for the dummy in

the passenger position is 100%.
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Position-1 Condition and the performance limitsfor chest acceleration and
deflection for the 5" percentile female dummy. The passing rate for the dummy in
the OOP Position 1 condition is 100%.
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Figure D-10. 1996 - 1999 air bag systemswith the 5" per centile female dummy in the OOP
Position 2 Condition and the performance limitsfor chest acceleration and
deflection for the 5™ percentile female dummy. The passing rate for the dummy in
the OOP Position-2 condition is 100%.
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1996 -1999 air bag systemswith the 6-year old Hybrid |11 dummy in the OOP
Position 1 tests and the performance limits for chest acceleration and deflection
for the 6 year-old dummy. The chest has zero clearance from the instrument
panel. The passing rate for the dummy in this OOP condition is 26%.
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1996 -1998 air bag systems with the 6-year old Hybrid 111 dummy in the OOP
Position 2 tests and the performance limits for chest acceleration and deflection
for the 6 year-old dummy. The chest has a 4 inch clearance from the instrument
panel. The passing rate for the dummy in this OOP condition is 75%.
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Figure D-13. 1996 -1998 air bag systems with the 6-year old Hybrid |11 dummy in the OOP
position 1 tests and the performance limitsfor chest acceleration and deflection
for the 6 year-old dummy. The chest has an eight inch clearance from the
instrument panel. The passing rate for the dummy in this OOP condition is 90%.
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2 tests and the performance limitsfor chest acceleration and deflection for the 6
year-old dummy. The head has zer o clearance from the instrument panel. The
passing rate for the dummy in this OOP condition is 43%.
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Appendix E

Statistical Analysis Procedures for
Developing Injury Risk Curves from
Biomechanical Test Data



Statistical Analysis Proceduresfor Developing Injury Risk Curvesfrom
Biomechanical Test Data

Introduction

In impact biomechanics tests, the injury outcome, which isin generd nomind, is the dependent
variable and the independent variables are the impact levels and other response variables. Specimen
characterigtics and test conditions are the confounders. For conditions where the specimen sustains an
injury, the injury threshold of the specimen islower than the applied risk factor level and vice versa
The objective of andysis procedures areto (1) identify arisk factor or a combination of risk factors
which have the highest injury predictive ability among dl other factors; (2) identify confounders and
contral for them; and (3) estimate the cumulative probability of injury curve of the population using the
identified risk factors.

Analysis Procedures

Three popular methods of andlysis of biomechanicd test data are (1) Logistic Regression, (2)
Mertz-Weber method, and (3) Certainty method. A brief description of each procedure is provided
below:

Logigtic Regresson: This procedure uses the maximum likelihood method to estimate the
parameters of the assumed distribution so thet the probability of getting the values of the
dependent variable in the data sampleis as high as possible. Regression methods are versdtile,
well established procedures where it is easy to handle different types of deta Smultaneoudly.
This method provides good diagnostics on the goodness of fit and predictive ability of models.
The method alows good control of confounders and interaction effects. The method requires
the assumption of a distribution which may result in loss of datistical power.

Mertz-Weber Method: The Mertz-Weber method assumes that the injury threshold levels are
normally distributed. The injured specimen with the lowest gpplied risk factor is defined asthe
weskest specimen and the uninjured specimen with the highest applied risk factor is defined as
the strongest specimen. The mean of the threshold leve distribution is the average of therisk
factor associated with the weakest and strongest specimens. The standard deviation of the
digribution is estimated using a median rank table where the number of observations between
the weakest and strongest specimen associated risk levels are taken into congderation. The
Mertz-Weber method essentidly uses only two observations from a data sample. Therefore,
there is significant loss of atistica power. The method provides no diagnostics on goodness of
fit or predictive ability of models. The method only works with one continuous variable at a
time s0 it offers no control of confounding or interaction effects.

Certainty Method: The Certainty Method is an empiricd technique where datais categorized
into two groups. At aprescribed leve of the risk factor, injured data with associated risk factor
bel ow the prescribed level and uninjured data with associated risk factor above the prescribed
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levdl are categorized in the “certainty group” . The rest of the dataiis categorized in the
“uncertainty group”. The probability of injury at the prescribed threshold leve is obtained using
only the datain the certainty group. Since this method discards information in the uncertainty
group, thereislossin gatistical power. This method aso offers no diagnostics on the goodness
of fit and predictive ability of the mode. It isdifficult to control for confounding and interaction
effects using this method.

Simulation Study:

A smulation was conducted to compare the performance of the three andlysis procedures:
logidtic regression, Mertz-Weber method, and the certainty method. For these smulations, specimens
were randomly selected from a population with a Gaussan failure threshold digtribution (p=65 and
s=25) asshown in Figure E-1. Each specimen was then subjected to arisk factor level (gpplied force)
which was sdected randomly from a uniform distribution ranging between 20 and 120, as shown in
Figure E-2. If the gpplied force leve for a specimen exceeded its failure threshold leve, then that
gpecimen was consdered to havefalled. If the applied force for a specimen did not exceed itsfalure
threshold leve, then that specimen was consdered to have not failed. Left and right censored
observations were obtained in this manner. Table E.1 presents one such data set where the applied
force, the specimen falure threshold leve, and the failure outcome (failure=1 and non-failure=0) are
provided. Inthis data set, the failure data point with the lowest dose leve is not the “weakest
specimen” as noted in the Mertz/Weber method. Also, the non-failure data point with the highest dose
leved isnot the * strongest gpecimen”.

Initidly, samples with 100 observations were smulated. Figures E-3 to E-8 are the results of
three such smulations. In each case, the probability of injury curve from logistic regresson more
closdly reflects the actud failure threshold curve of the population than does the curve generated using
the Mertz-Weber method and the certainty method. The Mertz-Weber and certainty methods aways
underestimate the variance in the data. Note that in smulation 4 (Figure E-4), the Mertz-Weber
derived probability curveis Sgnificantly different from the actua probability of injury and thelogistic
regresson and certainty method derived probability curve. Since the Mertz-Weber method uses only
two data points, it is Sgnificantly influenced by outliers asin this data set, where thereisafalure a a
low applied force of 29.

Next, the effect of sample Size on the estimate of the population falure threshold levels was
examined by changing the sze of the sample. The sample size was changed from 50 to 200
observations by adding or removing random observations from the sample from smulation 5. For a
sample size of 50 observations, dl three methods of analysis are not accurate (Figure E-6) though
logigtic regression il is the closest estimate of the population parameters a low applied force leve.
The logidtic regression curve is a better estimate of the population threshold curve than the certainty and
Mertz-Weber methods for a sample size of 100 observations (Figure E-7). For a sample size of 200
observations, the curve derived from logistic regresson isdmaost identical to the population cumulative
digtribution of failure threshold (Figure E-8). Thereis not much change in the probability of injury
curves derived from the Mertz-Weber and Certainty methods as the sample sizeisincreased. Since
the Mertz-Weber and Certainty methods do not employ dl the observationsin estimating the
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population parameters, there is not much effect of sample sSize on their parameter estimates.

The log-likelihood vaue (the log of the probability of getting the dataiin the sample) isan
esimate of the goodness of fit of thedata Thislog-likelihood or LogL vaue is the highest for the
logidtic regression curve (Table E-2) for each of the amulations. This suggests that the logistic
regression curve best represents the datain the sample. Note that the actua threshold curve has a
lower likelihood vaue than the logidtic regresson curve. Thisis because the sample szeis smdl and the
digtribution of injury threshold levelsin the sample is not the same as that of the population.

Estimation of Failure Threshold Levels:

Congder the stuation where an gpplied force level corresponding to a 20% probability of
falure of the population is of interest. The gpplied force corresponding to a 20% probability of fallure
obtained from logistic regression and the Mertz-Weber method for each of the smulation is shown in
Table E-3. The average dose leve at 20% probability of fallure for the first Sx smulations (100
observations) from the Mertz-Weber method is 52.48 and for the certainty method is52.2. Thisis
consderably higher than the dose leve of 43.95 for a 20% probability of failure of the population in
condderation. The dose levd a 20% probability of falure from logigtic regression for the first 6
amulationsis 45.87 which is closer to that of the population than the Mertz-Weber method.

The average of the population probability of failure which corresponds to the dose leve at 20%
probability of failure from the Mertz-Weber and certainty methods is 31% as compared to 22.3% from
logidtic regression. Thisimplies that the Mertz-Weber and certainty methods grosdy underpredicts the
probability of falure at lower dose levels and so threshold levels selected at low probability of failure
using the Mertz-Weber method may not offer adequate protection.

Only sx smulations were congdered here. It is expected that as the number of smulationsis
increased, the average dose leve a 20% probability of failure from logistic regression would be amost
the same as that of the population. However, the corresponding dose level from the Mertz-Weber
method will gill be higher than that of the population.

When the sample size is increased to 200 observations (Smulation 7), the dose leve at 20%
probability of falure from logidtic regresson is dmost the same as that of the population while the
Mertz-Weber method still has a higher corresponding dose leve.

Table E.1: Daafrom Smulation 5

dose actual failure
threshold outcome
117.662 61.836 1
38.385 85.666 0
23.816 96.762 0
41.878 11.237 1 Z weakest specimen
100.504 79.528 1
43.168 101.644 0
119.029 47.284 1
105.454 57.293 1
48.495 43.334 1



51.547 62.907 0
118.615 88.910 1
119.070 66.904 1

37.392 49.398 0

37.529 68.925 0

88.043 69.840 1
113.657 56.224 1

61.720 69.801 0

51.463 74.760 0

90.040 70.918 1
107.490 83.041 1

71.091 85.642 0

60.352 79.601 0

59.199 59.946 0

61.864 39.564 1

57.267 83.311 0
100.067 44.686 1

64.669 97.837 0

74.527 84.110 0

69.013 71.581 0
103.141 47.896 1

86.849 51.151 1

38.870 99.016 0

60.836 116.968 0
105.344 121.826 0

28.105 63.425 0
64.678 77.452 0
117.050 38.974 1
25.761 110.173 0
93.706 101.713 0
35.692 76.699 0
96.843 17.697 1
111.121 90.813 1
52.397 71.339 0
102.822 49.575 1
119.454 118.224 1
96.582 59.973 1
96.440 75.849 1
58.997 38.696 1
48.978 68.314 0
69.296 54.083 1
59.823 57.468 1
102.777 76.403 1
45.092 47.939 0
87.985 97.208 0
70.341 44.000 1
115.085 103.438 1
23.810 66.824 0
95.661 32.636 1
35.471 33.959 1
33.781 87.519 0
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45.987 77.327 0
63.021 75.814 0
86.050 97.745 0
49.383 49.846 0
58.681 73.547 0
59.710 53.660 1
48.557 77.516 0
107.655 82.580 1
20.873 70.497 0
98.853 79.540 1
41.600 76.241 0
76.213 105.321 0
28.694 78.560 0
87.152 49.821 1
104.419 45.165 1
117.950 68.108 1
28.737 93.466 0
113.396 24117 1
66.884 78.924 0
112.471 43.332 1
79.955 100.935 0
97.764 56.058 1
40.733 16.129 1
47.371 33.388 1
39.570 42.536 0
71.309 74.224 0
45.738 70.984 0
28.553 95.541 0
41.627 85.186 0
92.658 124.640 0
95.623 24.022 1
105.921 57.262 1
45.929 64.692 0
113.825 53.071 1
33.966 62.577 0
28.637 69.669 0
83.246 63.893 1
70.058 57.108 1
72.312 69.651 1
29.696 110.722 0
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Table E.2: Log-likelihood vaues for the sample in each smulation.

Simulation No. sample actual Logistic Mertz-weber Certainty
sizen threshold
simulation 1 100 -51.29 -50.51 -57.64 -59.73
simulation 2 100 -39.61 -39.37 -42.08 -41.75
simulation 3 100 -4355 -43.26 -52.42 -48.41
simulation 4 100 -3747 -36.06 -47.03 -36.97
simulation 5 100 -4452 -43.08 -50.79 -46.35
simulation 6 100 -35.29 -34.05 -39.2 -37.12
simulation 5 50 -21.2 -19.83 -22.13 -21.21
simulation 5 75 -33.38 -31.87 -36.49 -34.08
simulation 5 150 -64.36 -64.37 -76.76 -69.61
simulation 5 200 -87.37 -87.96 -107.39 -97.04

Table E.3: Doselevesat 20 % probability of failure from Mertz-Weber method and logigtic
regression and the probability of failure of the population at the dose leves corresponding to 20%

probability of failure from the Mertz-Weber method and logistic regresson.

Force at 20% Probability of Failure

Actual Probability of Injury from Forcesin

Columns 2, 3, and 4

Column 2 Column 3 column 4 M-W Logistic Certainty
M-W Logistic certainty

Simulation 1 57.83 4161 55.8 0.387 0175 0.36
Simulation 2 51.63 46.9 540 0.29%6 0.235 0.33
Simulation 3 52.96 3812 46.3 0.315 0141 0.23
Simulation 4 46.78 5247 55.0 0.233 0.308 0.34
Simulation 5 57.87 50.93 545 0.383 0.287 0.34
Simulation 6 47.80 4512 478 0.246 0.213 025

Average 52.48 45.87 52.2 0.311 0.223 0.31
Simulation 7 5721 440 522 0.377 02 0.3

* The dose level at 20% probability of failure of the population under consideration (=65 and s=25) is43.95.
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Figure E-4. Resultsof analyss of data set from smulation 4 with 100 observations.
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Conclusion:
Results of the amulation study showed that

1.

2.

3.

Logigtic regresson is more accurate in estimating the population threshold levels than the
certainty method or the Mertz-Weber method.

The accuracy of the estimates using logistic regresson increased with increase in sample size.
Sample size did not have much effect on the other two methods of anaysis.

Mertz-Weber and the Certainty methods result in a significant loss of power due to loss of
information. Therefore, the population parameters were not estimated accurately even for large
samplesize.

The Mertz-Weber and the certainty methods underestimate the standard deviation of the
population digtribution. Therefore, a low levels of risk factor, these methods underestimate the
probability of injury.

The estimated risk factor levels at low probability of injury (<40%) using the Mertz-Weber and
the Certainty methods is dways higher than the actua levelsin the population. Therefore, these
methods overestimate the population injury threshold levels.

Due to the improved accuracy of estimation of population parameters and the greeter versatility
of logigtic regression to handle different types of variables, to control for confounding, to
account for interaction between independent variable, and to provide better diagnogtics, logigtic
regression is the choice of andyds of biomechanicd impact test data.
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Appendix F: Age-dependent Neck Scale Factors Based on Geometrical and
Spine Component Data under Tension, Extension, Compression, and
Flexion

Srirangam Kumaresan, Narayan Y oganandan, Frank A. Pintar
Department of Neurosurgery, Medical College of Wisconsin
and the Department of Veterans Affairs Medical Center
Milwaukee, WI

This document presents the method used to calculate the scale factors for the neck of one,
three, and six year old children, and 5™ percentile adult female and 50" percentile adult male under
tengon, extension, compression, and flexion. The variations in the mechanica properties of each spind
component (e.g., vertebra, discs, ligaments, cartilage, spind cord, and muscles) were combined with
the neck overal geometrica parameters[1-12]. Materia property data were obtained from literature
and in-house tests conducted at the MCW under each load vector. The active components of the spine
were identified, and a statisticaly based relationship was established for each component thet related its
material property to age. The data were normalized with respect to the adult, and a mean value
representing the materia scale factor was obtained. This material scae factor was combined with the
geometrical scae factors (Appendix F(a)). For example, at a specific age, under compression, material
properties of the vertebra, disc, and cartilage were averaged to obtain amaterialy scaled factor using
the adult mae as standard. The overal neck cross-sectiona areafactor for this age was multiplied by
the above-determined materid factor to obtain the combined scaling factor. Similar procedures were
adopted for tension, extenson, and flexion. The derived scale factors using this combined spindl
materid and geometrical approach as a function of age and loading mode are given in Table F-1. The
spina component materia property data for the 5™ percentile adult female and 50" percentile adult
male were considered standard because skeletd maturity is completely achieved for these adult groups.

TableF.1: Scdefactorsasafunction of loading mode derived from combined spind component
materid and geometrica andyss.

Age/Group Tension Extension Compression Flexion
1 year 0.26 0.22 0.26 0.23
3 years 0.29 0.32 0.28 0.33
6 years 0.35 0.41 0.34 0.42

51 female 0.63 0.70 0.63 0.70
50" male 1.00 1.00 1.00 1.00




Refer ences:

1.

> w

10.

11.

12.

Breig A. Biomechanics of the centra nervous system. Some basic norma and pathologica
phenomena. Stockholm: Almavist & Wiksdl International, 1960.

Duncan J. "Laboratory note: On tensile strength of fresh adult foetus™ Brit Med J. 2:763-764,
1874.

Gdante . "Tendle properties of human lumbar anulus fibrosus™ Acta Ortho Scand :100, 1967.
Gilsanz V, Vaterasan M, Senac M, Cann C: "Quantitative spinad minerd andysisin children.”
Ann Radiol. 29(3/4):380-382, 1986.

Myklebust JB, Pintar FA, Y oganandan N, Cusick JF, Maiman DJ, et d.: "Tendle strength of spind
ligaments™ Spine. 13(5):526-531, 1988.

Nachemson A, Evans J. "Some mechanica properties of third lumbar inter-laminar ligament
(ligamentum flavum)." J Biomech. 1:211-217, 1968.

Fintar F, Y oganandan N, Gennardlli T. Head and neck tension biomechanica moded s for pediatric
and smdl femde populations. 43rd AAAM. Barcelona, Spain, 1999:357-366.

Pintar FA. Biomechanics of Spind Elements [Doctora Dissertation]. Milwaukee, WI: Marquette
University, 1986. 222 pp.

Scher A: "Traumaof spind cord in children.” SAfr Med J. 50:2023-2025, 1976.

Tkaczuk H: "Tendle properties of human lumbar longitudind ligaments." Acta Orthop Scand.:
115, 1968.

YamadaH. Strength of Biologicd Materids. Batimore, MD: Williams & Wilkins, F.G. Evans, ed.
1970.

Y oganandan N, Kumaresan S, Pintar F, Gennerdli T. "Pediatric biomechanics" In: Accidentd
Injury, A. Nahum and J. Mdvin, eds.. New Y ork: Springler-Verlag, In press.

Acknowledgment:
This study was supported in part by DOT NHTSA Grant DTNH22-93-Y-17028, and the Department

of Veterans Affairs Medica Center Research.



APPENDIX F(a)

Scale Factorsunder Tension (| +)

Table F(a).1: Materia Effect of Active Spina Component (I 1)

lyear | 3years | 6years | 5" female | 50" male
Vertebrae 0.79 0.77 0.77 10 10
Disc 0.68 0.7 0.73 10 10
Catilage 0.79 0.81 0.84 1.0 1.0
Ligamet - ALL (AAOM) | 084 | 087 | 0.89 1.0 1.0
-PLL (TM) 0.84 0.87 0.89 1.0 1.0
- ISL 0.84 0.87 0.89 1.0 1.0
-CL 0.84 0.87 0.89 1.0 1.0
-LF (AOM) 0.76 0.78 0.81 1.0 1.0
Spind cord 0.41 0.44 0.49 1.0 1.0
Neck muscles 0.54 0.58 0.63 1.0 1.0
Average 0.733 0.756 0.783 1.0 1.0

Table F(a).2 : Geometrica Effect of Overal neck cross-sectiond arearatio (I )

| g

1 year 0.35
3years 0.39
6 years 0.45
51 femde 0.63
50" mde 1.0

Table F(a).3: Combi

| 1

1 year 0.26
3years 0.29
6 years 0.35
5 femde 0.63
50" mde 1.0

ined Material and Geometry Effect (| 1 =1, x| o)




Scale Factorsunder Extension (I ¢)

Table F(a).4 : Materia Effect of Active Spinal Component (1 ;)

lyear |3year |6years | 5" femde | 50" mde

Vertebrae 0.79 0.77 0.77 10 10
Disc 0.68 0.70 0.73 1.0 1.0
Catilage 0.79 0.81 0.84 10 10
Ligament - ALL 0.84 0.87 0.89 1.0 1.0

-PLL 0.84 0.87 0.89 1.0 1.0
Spind cord 0.41 0.44 0.49 1.0 1.0
Neck muscles 0.54 0.58 0.63 1.0 1.0
Average 0.699 0.72 0.749 1.0 1.0

Table F(a).5:Geometrical Effect of Overal neck cross-sectiond areaand length rétio (1 ¢)

area neck length | Average(l )
1 year 0.35 0.29 0.32
3years 0.39 0.50 0.45
6 years 0.45 0.66 0.56
51 femde 0.63 0.76 0.63
50" mde 1.0 1.0 1.0
Table F(a).6 : Combined Materid and Geometry Effect (I ¢ =1y X1 )
| e
1vyear 0.22
3years 0.32
6 years 0.41
51 femde 0.7
50" mde 1.0




Scale Factorsunder Compression (I ¢)

Table F(a).7 : Materia Effect of Active Spinal Component (1 ;)

lyear | 3years | 6years | 5" femde | 50" mde
Vertebrae 0.79 0.77 0.77 1.0 10
Disc 0.68 0.70 0.73 1.0 1.0
Catilage 0.67 0.70 0.74 10 10
Average 0.71 0.72 0.75 1.0 1.0

Table F(a).8 : Geometrica Effect of Overal neck cross-sectiond areardtio (I )

| ¢

1 year 0.35
3years 0.39
6 years 0.45
5 femde 0.63
50" mde 1.0

Table F(a).9 : Combined Materid and Geometry Effect (I c =1 y X1 )

| c

1 year 0.25
3years 0.28
6 years 0.34
51 femde 0.63
50" mde 1.0




Scale Factorsunder Flexion (| ¢)

Table F(a).10 : Materid Effect of Active Spind Component (I )

lyear | 3years | 6years | 5" femde | 50" mde

Vertebrae 0.79 0.77 0.77 1.0 1.0
Disc 0.68 0.7 0.73 1.0 1.0
Catilage 0.79 0.81 0.84 1.0 1.0
Ligament - 1SL 0.84 0.87 0.89 1.0 1.0

-CL 0.84 0.87 0.89 1.0 1.0

-LF 0.76 0.78 0.81 1.0 1.0
Spind cord 0.41 0.44 0.49 1.0 1.0
Neck muscles 0.54 0.58 0.63 1.0 1.0
Average 0.706 0.728 0.756 1.0 1.0

Table F(a).11: Geometrica Effect of Overdl neck cross-sectiond areaand length ratio (I )

Area Length Average (I ¢)
1 year 0.35 0.29 0.32
3years 0.39 0.50 0.45
6 years 0.45 0.66 0.56
5" femde 0.63 0.76 0.7
50" mde 1.0 1.0 1.0
Table F(a).12 : Combined Materia and Geometry Effect (I e =1 X1 g)
| ¢
1 year 0.23
3years 0.33
6 years 0.42
51 femde 0.7
50" mde 1.0




Appendix G

SNPRM Nij Program Listing



1 nij_v9.cpp

1 SNPRM Nij (Version 9) Reference Implementation

I

1 This code is areference implementation of the SNPRM Nij injury criteria

1 thiswas written for purposes of clarity and no consideration has been made for speed. style,
1 or efficiency. The Standard C++ library was used to avoid any confusion due to c-style

1 memory allocation.

I

1 Program Input:

1 This program requires input of three ascii x-y files, where each line of the input

1 file contains two floating point values, one for the time and one for the y value

1

I *** All three files must have the same number of points and the same time data***

I *** All input data must be unfiltered and will be filtered within this program

1

I Additionally, the program queries for the dummy size and whether the condyle correction factor
I isto be applied

1

I Program Output:

I The Nij injury criteria, the time of Peak injury

Il
#include <iostream>
#include <fstream>
#include <vector>
#include <ctype.h>

using namespace std;
typedef vector <double> DBLVECTOR,

#include "bwfilt.h" /I bwfilt implementation

/I declarations

bool ReadAsciiFile ( char *filename, DBLVECTOR &X, DBLVECTOR &Y);

void VectorMax( float & Max, float & MaxTime, DBLVECTOR &time, DBLVECTOR &fVector);
void VectorMin( float &Min, float &MinTime, DBLVECTOR &time, DBLVECTOR &fVector);
double FindTimeStep( DBLVECTOR &time);

int main( int argv, char *argc(])

{
DBLVECTOR tx, ty, tz, xForce, yMoment, zForce;
char szbuf[255];

/l read in the filename for the x axis
cout << "Enter file Namefor X axis Force Data: "<< endl;
cin >> szbuf;
if ('ReadAsciiFile(szbuf, tx, xForce) )
{
cout << "Error X axisdataFile" << endl;
exit (0);
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/I read in thefilename for they axis
cout << "Enter file Namefor Y axis Moment Data: "<< end!;
cin >> szbuf;
if (!ReadAsciiFile(szbuf, ty, yMoment) )
{
cout << "Error Y axisdataFile" << endl;
exit (0);
}

I/l read in the filename for the x axis
cout << "Enter file Namefor Z axis Force Data: "<< endl;
cin >> szbuf;
if (!ReadAsciiFile(szbuf, tz, zForce) )
{ cout << "Error Z axisdataFile" << endl;
exit (0);
}

/I make sure dl threefiles have identical time data

if ((tx.sze() = ty.size() || (tx.Sze() '= tz.s5z€() )

{
cout << "Time data does not match between Axes" << endl;
exit (0);
}
inti;
for (i=0; i<tx.5z&(); i++)
{
i{f ( (ex(i]*=ty[i]) || (ex[i]!=tz[i]) )
cout << "Time data does not match between Axes" << endl;
exit (0);
}
}

/I clear two of thetime arrays - not needed any longer
ty.erase(ty.begin(), ty.end() );
tz.erase( tz.begin(), tz.end() );

/I find the time step, and make sure that it is constant (within 1%6)

double del = FindTimeStep( tx );

if (de<=0.0)

{
cout << "Could not find a constant time step for the data' << endl;
exit(0);

}

/I Filter the data - assume unfiltered data
bwfilt( xForce, del, 600);

bwfilt( zForce, del, 1000);

bwfilt( yMoment, del, 600);
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/I Select the dummy type
int nNDummyType=0;
cout << "1 - CRABI 12 month old Dummy" << endl;
cout <<"2-Hybrid Il - 3 Year old Dummy" << endl;
cout <<"3-Hybrid Il - 6 Year old Dummy" << endl;
cout << "4 - Hybrid 11 - 5th % female Dummy" << endl;
cout << "5 - Hybrid 11 - 50th % male Dummy" << endl;
cout << "6 - Hybrid 111 - 95th % male Dummy" << endl;
cout << endl <<"Enter Dummy Type:";
cin>>nDummyType;
if ((NDummyType <=0) || (hDummyType > 6) )
{

exit(0);
}

/1 set the critical values based on the dummy type
double CVt, CVc, mCVf, mCVe, fCondyle,
switch (nDummyType)
{
case 1: /l CRABI 12 month old Dummy
CVt=14650;
CVc=14650;
mCVf = 430;
mCVe= 17.0;
fCondyle = 0.0058;
break;
case 2: /I Hybrid 111 - 3'Year old Dummy
CVt=21200;
CVc=21200;
mCVf =680,
mCVe= 27.0;
fCondyle=0.0;
break;
case 3: /I Hybrid 111 - 6 Y ear old Dummy
CVt=28000;
CVc=28000;
mCVf =930,
mCVe= 39.0;
fCondyle=0.01778;
break;
case 4. /[ Hybrid 111 - 5th % female Dummy
CVt=33700;
CVc=3370.0;
mCVf = 155.0;
mCVe= 620;
fCondyle=0.01778;
break;
caseb: /[ Hybrid 111 - 50th % male Dummy
CVt=45000;
CVc=4500.0;
mCVf = 3100;
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case 6.

}

mCVe= 1250,
fCondyle=0.01778;
break;
/I Hybrid 111 - 95th % mae Dummy
CVt=54000;
CVc=54000;
mCVf =4150;
mCVe=166.0;
fCondyle=0.01778;
break;

/I prompt for Condyle Correction

cout << "Correct for Occipital Condyle Offset (" << fCondyle<<") Y /N ?' << endl;
char yesNo;

cin >>yesNo;

yesNo = toupper( yesNo );

/I compute the normalized data
DBLVECTOR Tension, Compression, Flexion, Extension;
for (i=0; i<tx.5z&(); i++)

{

if (zForcdi] >0)

{
Tension.push_back( zForce[i] / CVt); /l Tension
Compression.push_back( 0.0f );

}

else

{
Compression.push_back( -zForce]i] / CVc); /I Compression
Tension.push_back( 0.0f );

}

/I Condyle Correction

if (yesNo=="Y")

{
yMoment[i] -= xForce[i] * fCondyle;

}

if (yMoment[i]>0)

{
Fexion.push_back( yMoment[i] / mCVf); // Flexion
Extension.push_back( 0.0f );

}

else

{
Extension.push_back( -yMoment[i] / mCVe); /I Extension
Flexion.push_back( 0.0f );

}
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/I find the maximums and the time of the maximum

float maxTension, maxCompression, maxShear, minShear;
float maxF exion, maxExtension;

float tTension, tCompression, tShearmax, tShearmin;
float tFlexion, tExtension;

VectorMax( maxTension, tTension, tx, Tension);
VectorMax( maxCompression, tCompression, tx, Compression);
VectorMax( maxShear, tShearmax, tx, XForce);
VectorMin( minShear, tShearmin, tx, xForce);

VectorMax( maxHexion, tFlexion, tx, Flexion);
VectorMax( maxExtension, tExtension, tx, Extension);

// Output the Maximums

cout << "Maximum Shear \t" << maxShear << "\tat " << tShearmax <<" ms" << endl;

cout <<"Minimum Shear \t" << minShear <<"\tat " << tShearmin <<" ms" << endl;

cout << "Maximum Tension \t" << maxTension* CVt <<"\tat" <<tTension<<" ms"' <<endl;

cout << "Maximum Compression\t"<<maxCompression* CV ¢ <<"\tat "<<tCompression<<" ms' << endl;
cout << "Maximum Flexion \t" << maxFlexion*mCVf << "\tat " << tFlexion<<" ms" << endl;

cout << "Maximum Extension \t" << maxExtension*mCVe<< "\tat " << tExtension <<" ms' << endl;
cout << endl;

/I Compute the Nij Values
DBLVECTOR Nitf, Nte, Ncf, Nce;
for (i=0; i<tx.5z&(); i++)

{
if ((Tension[i] >0.0) && (Flexion[i]>0.0))
Ntf.push_back( Tension[i] + Flexion[i] );
else
Ntf.push_back( 0.0);
if ((Tension[i] > 0.0) && (Extension[i]>0.0) )
Nte.push_back( Tension[i] + Extension[i] );
else
Nte.push_back( 0.0);
if ((Compression[i] >0.0) && (Flexion[i]>0.0) )
Ncf.push_back( Compression[i] + Flexion[i] );
else
Ncf.push_back( 0.0);
if ((Compression[i] >0.0) && (Extension[i]>0.0) )
Nce.push_back( Compression[i] + Extension[i] );
else
Nce.push_back( 0.0);
}

/] save the Max Value and the Time of the Max Value
float maxNtf, maxNte, maxNcf, maxNce;

float tNtf, tNte, tNcf, tNce;

VectorMax( maxNtf, tNtf, tx, Ntf );

VectorMax( maxNte, tNte, tx, Nte);
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VectorMax( maxNcf, tNcf, tx, Ncf );
VectorMax( maxNce, tNce, tx, Nce);

/I Output the results

cout << "Maximum Ntf\t" << maxNtf << "\tat " << tNtf <<" ms" << endl;
cout << "Maximum Ntelt" << maxNte << "\tat " << tNte<<" ms' << endl;
cout << "Maximum Ncf\t" << maxNcf << "\tat " << tNcf <<" ms' << endl;
cout << "Maximum Ncelt" << maxNce << "\tat " <<tNce<<" ms' << endl;
cout << endl;

return O;
}
bool ReadAsciiFile ( char * szFilename, DBLVECTOR &X, DBLVECTOR &Y)
{

ifstream inFile;

inFile.open( szFilename);

if (inFilefail())
{

return false;
}

double xTemp, yTemp;
while (linFile.eof() )
{
inFile >> xTemp >> yTemp;
/I check for errors
if (inFilefail())
{
/l'input failed - save the data we already have and return;
if (x.9z&() > 0)
break;
/I no datawas read - return an error
return false;
}
X.push_back( xTemp);
y.push_back( yTemp);
}
/I closethefile
inFile.close();
return true;

}

void VectorMax( float & Max, float &timeMax, DBLVECTOR &time, DBLVECTOR &fVector)

{
Max = timeMax = 0.0f;
for (int i=0; i<fVector.sz&(); i++)
{
if (fVector[i] >Max)
{
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Max = fVector][i];
timeMax = time{i]* 1000.0f;

}

void VectorMin( float & Min, float &timeMin, DBLVECTOR &time, DBLVECTOR &fVector)
{
Min = timeMin = 0.0f;
for (int i=0; i<fVector.size(); i++)
{
if (fVector[i] <Min)
{
Min = fVector]i];
timeMin = time[i]* 1000.0f;

}

double FindTimeStep( DBLVECTOR &time)
{
/I make surethereis data
if (timesize()<=2)
return 0.0;

double del = time[1]-time[Q];
doubletest;
double tError = 0.01* del; /I allow a 1% deviation in time step
for (inti=2; i<time.size(); ++i)
{
test = timg[i] - time[i-1];
if (test<=0)
/I check for errors - time must be monotonically increasing
return 0.0;
elseif (abs(test-del) > tError)
return 0.0;
}
return del;
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/I bwfilt.cpp

#include <math.h>

#include <vector>

#include <iostream>

typedef std::vector <double> DBLVECTOR;

template< class T >
inline

T const &
min(Tconst& x, Tconst& y) {return ((x<y)?x:y);}

It

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

In-Place Second-Order Butterworth Filter of Time Series

Function:

Filters data forward and backward with a second order

Butterworth algorithm, giving zero phase shift and according to the

SAE J211. Thisagorthim operates on the -3db cutoff frequency, whichis
indicated as Fnin the J211 g[ecification. Thereisan overloaded entry
point which allows specifying one of the J211 Channel Frequency Classes.
This routine implements the algorithm outlined in J211 and uses areversed

mirror pre-start treatment for both the forward and reverse passes.

Authors: Stuart G. Mentzer, Stephen Summers

Fortran version - 5/95, C version 9/96, C++ standard library version 3/98

input:

return:

y - pointer to data array (float)
del - timeincrement between pointsiny (float)
fCut - Cutoff Frequency, -3db, indicated as Fnin SAE J211

0 on success
1 onfailure

It

int bwfilt( DBLVECTOR &y, float del, float fCut)

{

int nTailPoints, nHalfTail Points, i;
double fédb, wd, wa, a0, al, a2;
doublebl, b2, x0, x1, x2, y0, y1, y2, ynfp2;

int nPoints = y.size();
/I Check for apositive number of points
if (nPoints<=0)

std::cout << " BWFILT Error - Nonpositive number of Data Points";
return(0);
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/I Check positive time step
if (ded <=0)
{
std::cout << " BWFILT Error - Nonpositive time step”;
return(0);
}
/I Check positive cutoff frequency
if (fCut<=0)
{
std::cout <<" BWFILT Error - Nonpositive Cutoff Frequency";
return(0);
}
if (fCut > (0.5f/del*0.775) )
{
/I sampling rateis lower than the cutoff frequency - return true
/1 BwFilt goes unstable as f Cut approaches 0.5/del
return 1;

}

/I Set 6dB attenuation frequency
fédb = fCut * 1.2465;

/I Computefilter coefficients per J211

wd = 6.2831853L * f6db;

wa=sin(wd* del * 0.5) / cos(wd * del * 0.5);

a0 =wa*wa/ (1. + sgrt(2.0)*wa+ wa*wa);

al=2*a0;

a2=a0,

bl =-2.0*(wa*wa- 1.0) / (1.0 + sgrt(2.0)* wa + wa*wa);

b2 = (-1.0 + sgrt(2.0)*wa - wa*wa) / (1.0 + sgrt(2.0)*wa + wa* wa);

/I Set the number of tail pointsto use
nTailPoints = (int)(0.01/ ( min(fCut*0.01, 1.0) * del) + 0.5);

/ISAE J211 reccomends at least 10 ms, increase if necessary
i =(int) (0.01/dd +0.5);
if (NTailPoints<i)

nTailPoints=1i;

/Il regardless of time step and Frequency spec, use at |east one point
if (NTailPoints< 1)
nTailPoints=1;

/I Make sure that enough data points exist for thetail, el se cut back tail

if (nTailPoints > nPoints)

{
/lcout << "BWHFILT tail length < 10 ms, does not satisfy SAE J211 reccomendation”;
nTail Points = nPoints;
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/I Set up pre-start array - Inverted mirror
ynfp2 =2* y[Q];
x1 =ynfp2 - y[nTailPointg];
X0 =ynfp2 - y[nTailPoints-1];
y1=00;
nHalfTailPoints= ( nTailPoints/2) + 1;
for (i=nHalf TailPoints; i<=nTailPoints; i ++)
{
} yl=yl+yl[i];
yl=ynfp2- (yl/(nTalPoints- nHalfTailPoints+ 1) );
yo=yl,
for (i=-nTallPoints+2; i<=-1; i++)
{
x2=x1,
x1=x0;
X0 =ynfp2 - y[-I];
y2=yl,
yl=y0;
y0=a0*x0 + al*x1 + a2*x2 + b1*yl + b2*y2;
}

/I Filter forward
for (i=0; i<nPoints; i++)
{
x2=x1,
x1=x0;
x0=y[if;
y2=yl,
yl=y0;
y0=a0*x0 + al*x1 + a2*x2 + b1*yl + b2*y2,
yli] = (float) yO;
}

/I setup the pre-start array for the backward filter
ynfp2 = 2* y[nPoints-1];
x1 =ynfp2 - y[nPoints -1 -nTail Points];
X0 = ynfp2 - y[nPoints -2 -nTailPoints];
y1=0.0;
for (i=nHalfTailPoints; i<=nTail Points; i++)
{
yl=yl+y[nPoints-1-i];
}
yl=ynfp2- (yl/(nTalPoints- nHalfTailPoints+ 1) );
yo=yl
for (i=nPoints-nTailPoints+3; i<=nPoints-2; i++)
{
X2=x1,
x1=x0;
X0 =ynfp2 - y[i];
y2=yl,
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yl=y0;
y0=a0*x0 + al*x1 + a2*x2 + b1*yl + b2*y2;
}

/I Filter backwards
for (i=nPoints-1; i>=0; i--)
{
x2=x1,
x1=x0;
x0=y[if;
y2=yl,
yl=y0;
y0=a0*x0 + al*x1 + a2*x2 + b1*yl + b2*y2;
y[i] = (float) yO;
}

return(l);
}

1

| optional entry routineto BWFILT using achannel frequency class.
| Thisroutines translates the J211 Channel Frequency Classinto

/I specified cutoff frequency (Fn).

1

int bwfilt( DBLVECTOR &Y, float del, int nClass)

~ =~

if ((nClassl=60) && (nClass!=180) && (nClass!=600) & & (nClass!=1000) )
std::cout << "Frequency Channel Classisnot specified in SAE J211";

return(bwfilt( y, déd, (float)(nClass* 1.666667) ));

}

i

/1 overloaded function definition to allow calling with separate array
/1 pointers so that the original displacement datais not overwritten

11
int bwfilt( DBLVECTOR &y, DBLVECTOR &Vf, float del, float fCut)
{
for (inti=0; i<y.size(); i++)
yi[i] = ylil;

return(bwfilt( yf, del, fCut ));

I/ bwfilt.h

/I butterworth filtering function prototypes

11

int bwfilt( DBLVECTOR &Y, float del, float fCut); /I cutoff frequency

int bwfilt( DBLVECTOR &y, float del, int nClass); /I channel class

int bwfilt( DBLVECTOR &y, DBLVECTOR & yf, float dd, float fCut); /I no overwrite
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