Glossary

Abundance: a measure of the size of the population. Abundance is measured by counting individuals (density) per unit area (square meter), or by determining the amount of area covered (percent cover). Density is the most common measure of abundance for animals such as sea stars and abalone since individuals are widely spaced and easily counted. For animals such as colonial anemones and for many plants such as sea lettuce, rockweed and coralline algae, percent cover is a better measure of abundance.

Species Richness: the total number of different species in a community. Undisturbed communities in habitats such as mussel beds will have a large number of different kinds of plants and animal species. The way to determine species richness is to take a complete inventory of all the different species in an area.

Biodiversity: the relative distribution of the numbers of individuals among species present in an area. Healthier, undisturbed, mature communities have high biodiversity (many species each with many individuals); that is, good representation of a variety of different groups of plants and animals.

Percent Cover: measure of abundance found by determining the amount of area being occupied by a given species

Density: measure of abundance found by counting individuals in a unit area (eg. square meter).

Discreet individuals: individual animals or plants that are widely enough spaced or distinctive enough to be counted.

Outliers: a term referring to data which does not appear to group with the majority of the data. For example, in a list of numbers--1, 2, 4, 2, 6, 3, 56-- "56" is an outlier. What you do with that outlier requires critical thinking. An outlier may be a data point recorded incorrectly (e.g., typographic error) or it may represent a completely valid data point. For example, if plotting population data locates a gray whale in Oklahoma City, it can be assumed to be an erroneous point and should be tossed. However, if you want to estimate the size of a population and counts of sample plots are: 0, 113, 114, 117, 124, 128, 130, 500—neither of the outliers (in this case, "0" and "500") should be thrown out without checking back with the person recording the data because each number may be a valid count and is needed to accurately estimate the total population.

Science in the Tidepool

Analysis of Variance (ANOVA) Student Worksheet No. 1

Photoquadrat _A (Site) No. 1	Photoquadrat _B (Site) No. 2	Photoquadrat _C (Site) No. 3	
Sample $1 = X_A$	Sample $1 = X_B$	Sample $1 = X_C$	
$X_A^2 =$	$X_B^2 =$	$X_C^2 =$	
Sample $2 = X_A$	Sample $2 = X_B$	Sample $2 = X_C$	
$X_A^2 =$	$X_B^2 =$	$X_C^2 =$	
Sample $3 = X_A$	Sample $3 = X_B$	Sample $3 = X_C$	
$X_A^2 =$	$X_B^2 =$	$X_C^2 =$	
Sample $4 = X_A$	Sample $4 = X_B$	Sample $4 = X_C$	
$X_A^2 =$	$X_B^2 =$	$X_C^2 =$	
Sample $5 = X_A$	Sample $5 = X_B$	Sample $5 = X_C$	
$X_A^2 =$	$X_B^2 =$	$X_C^2 =$	
$\sum X_A =$	$\sum X_b =$	$\sum X_c =$	$\sum X = \sum X_A + \sum X_b + \sum X_c$
$\sum X_{A}{}^{2} =$	$\sum X_{B^2} =$	$\sum X_C^2 =$	$\sum X^2 = \sum X_{A^2} + \sum X_{C^2}$
N _A = 5	$N_B=5$	N _C = 5	N (total number of
			$samples) = N_A + N_B + N_C$

X is the number of mussels (or other organisms) counted.

Science in the Tidepool

Analysis of Variance (ANOVA) Student Worksheet No. 2

Step 1. Calculate Variances (Sum of Squares, SS) from ANOVA Worksheet No. 1

$$SS_{Total} = \sum X^2 - \frac{(\sum X)^2}{N}$$

$$SS_{Between} = \frac{(\sum X_A)^2}{N_A} + \frac{(\sum X_B)^2}{N_B} + \frac{(\sum X_B)^2}{N_C} + \dots$$

$$SS_{Within} = SS_{Total}$$
 - $SS_{Between}$

Step 2. Complete the Anova Table

Variance	Degrees of	Sum of	Mean Square
Source	Freedom	Squares (SS)	
Between	1 (for 2 photoquadrats)	$SS_{Between}$	$\frac{SS_{Between}}{1} =$
Within	8	SS_{Within}	$\frac{SS_{Within}}{8} =$
Total	N - 1 = 9	SS_{Total}	

Step 3. Calculate the F Statistic

$$F_{1,8} = \frac{\textit{MeanSquareBetween}}{\textit{MeanSquareWithin}} =$$

Where $F_{1,8}$ subscripts indicate the degrees of freedom for this analysis.

Step 4. Look up F in Table.

A -]	l F	AI	NDO	OM	N	UN	1B	ER	S																				
			9 7							1 3			3	4 6	7 3	5 4	18	76	8	0 9	5 9	0 9	1 1	7	39	29	27	7 49	9 45
			4 2							7 4				1 8					2	0 6	3 6	1 0	4 0	2	00	82	29	16	6 65
			2 2 1 9							0 9 7 0				3 20									7 6						3°06
			0 7		_	-				3 6				3 3									3 9' 8 7'						3 59
8.9					BI.								0	. 00	, 2			00	90	0 9	υI	т 0	0 7		12	17	17	68	33
			6 5							7 6				69									8 8						70
			6 97							3 2 3 5				30									4 39						32
			7 33							1 7				66									2 47						79 24
	73	7	9 64	1 57	7 53	3				3 4				80									3 44						35
			2 01							8			22	10	94	1 0	5 4	58	60	97	7 09	34	1 33	3 8	50	50	07	39	98
			50							7				72									01						51
	83		5 29 3 54							8				74					18	3 47	54	06	10) 6	8	71	17	78	17
			46							84				76 82									93						62 13
	65	45	3 11	76	7.4		17	46	QE	09		0																	9-1
			43							80				04 31					73				86						44
	74	35	09	98	17	,	77	40	27	72	2 1	4		23									37						63 55
			62							91			36	93	68	7	2 0	3					90						18
	09	89	32	05	05		14	22	56	88	5 1	4	46	42	75	6	7 8	8					22						98
			91							76			46	16	28	38	5 5	4	94	75	08	99	23	3	7 (18	92	00	48
3			69							68			70	29	73	41	3	5	53	14	03	33	40						41
			48 07							79				97							04			25	2 2	2	20	64	13
-			64							20 44				86 21									39						15
																			43	65	17	70	82	07	7 2	0	73	17	90
			69 44							77				92							45							05	
			72							99 43				36 62							61							94	
	42	48	11	62	13	9				87				86							04 11							59 66	
	23	52	37	83	17					98				93							22							25	
			35							38			45	86	25	10	2	5	61	96	27	93	35	65	3	3 '	71	24	72
			99							81			96	11	96	38	96	3	54	69	28	23	91	23					
			31 80							93				35					77	97	45	00	24	90	1	0 8	33	93	33
			88							68 22				60 28							12							01	
																					08			70	6.	1 7	4	29	41
			90 46							52 52				56							31							18	
			54							52 53			15 40								39			97	1	1 8	39	63	38
			51							72				66					50	04	70	00	33	84 20	96	0 2	88	52	07
	94	86	43	19	94					08				88					01	54	03	54	56	05					
			62							84			44	99	90	88	96	3	39	09	47	34	07	35	44	4 1	13	18	80
			51							09			89	43	54	85	81		88	69	54	19	94					30	
			10 24							07			20	15	12	33	87		25	01	62	52	98	94	62	2 4	16	11	71
 	10	20		91	±0		ž-	90	12	82	96		69	86	10	25	91	-	74	85	22	05	39	00	38	3 7	5	95	79
FT-F	10000 A		A STATE OF		eren:		1730	4	9			Place 12		V	o the side	胡椒		1000				TIT.			1986				No.
9 01	The state of the state of	20.00	52				21	8	30	81	45	17	48		1975		74	1 0	2 9	4 - 3	39 ()2	77	.55	73	2	2 7	0	97 05
3 51)	56	12	71	92	55	3	6 (04	09	03	24	0.73			1	1 6	6 4	4 (90	13	80	99	33	7	1 4	3	05
8 17			09	97	33	34	40	8	8	16	12	33	56				48	3 3	2 4	7 7	79 2	88	31	24	96	4	7 1	0	02
9 53		1	10	51	82	16	15	1	5 (24	00 87	99	94				69	0	7 4	9 4	1 3	88	87	99 07 24 63	79	19	9 7	6	35
- 10	11 01		10	J1	34	10	10	U	Τ (34	01	09	38	-8			- 0	16.							3/1				'

DEGREES OF FREEDOM FOR NUMERATOR

		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
	1 2 3 4 5	161 18.5 10.1 7.71 6.61	200 19.0 9.55 6.94 5.79	216 19.2 9.28 6.59 5.41	225 19.2 9.12 6.39 5.19	230 19.3 9.01 6.26 5.05	234 19.3 8.94 6.16 4.95	237 19.4 8.89 6.09 4.88	239 19.4 8.85 6.04 4.82	241 19.4 8.81 6.00 4.77	242 19.4 8.79 5.96 4.74	244 19.4 8.74 5.91 4.68	246 19.4 8.70 5.86 4.62	8.66	249 19.5 8.64 5.77 4.53	250 19.5 8.62 5.75 4.50	251 19.5 8.59 5.72 4.46	252 19.5 8.57 5.69 4.43	253 19.5 8.55 5.66 4.40	254 19.5 8.53 5.63 4.37
DENOMINATOR	6 7 8 9 10	5.99 5.59 5.32 5.12 4.96	5.14 4.74 4.46 4.26 4.10	4.76 4.35 4.07 3.86 3.71	4.53 4.12 3.84 3.63 3.48	4.39 3.97 3.69 3.48 3.33	4.28 3.87 3.58 3.37 3.22	4.21 3.79 3.50 3.29 3.14	4.15 3.73 3.44 3.23 3.07	4.10 3.68 3.39 3.18 3.02	4.06 3.64 3.35 3.14 2.98	$\begin{bmatrix} 3.57 \\ 3.28 \\ 3.07 \end{bmatrix}$	3.94 3.51 3.22 3.01 2.85	3.87 3.44 3.15 2.94 2.77	3.84 3.41 3.12 2.90 2.74	3.81 3.38 3.08 2.86 2.70	3.77 3.34 3.04 2.83 2.66	3.74 3.30 3.01 2.79 2.62	3.70 3.27 2.97 2.75 2.58	3.67 3.23 2.93 2.71 2.54
FOR	11 12 13 14 15	4.84 4.75 4.67 4.60 4.54	3.89 3.81 3.74	3.59 3.49 3.41 3.34 3.29	3.36 3.26 3.18 3.11 3.06	3.20 3.11 3.03 2.96 2.90	3.09 3.00 2.92 2.85 2.79	3.01 2.91 2.83 2.76 2.71	2.95 2.85 2.77 2.70 2.64	2.90 2.80 2.71 2.65 2.59	2.85 2.75 2.67 2.60 2.54	2.69	2.72 2.62 2.53 2.46 2.40	2.65 2.54 2.46 2.39 2.33	2.61 2.51 2.42 2.35 2.29	2.57 2.47 2.38 2.31 2.25	2.53 2.43 2.34 2.27 2.20	2.49 2.38 2.30 2.22 2.16	2.45 2.34 2.25 2.18 2.11	2.40 2.30 2.21 2.13 2.07
S OF FREEDOM	16 17 18 19 20	4.49 4.45 4.41 4.38 4.35	3.63 3.59 3.55 3.52 3.49	3.24 3.20 3.16 3.13 3.10	3.01 2.96 2.93 2.90 2.87	2.85 2.81 2.77 2.74 2.71	2.74 2.70 2.66 2.63 2.60	2.66 2.61 2.58 2.54 2.51	2.59 2.55 2.51 2.48 2.45	2.54 2.49 2.46 2.42 2.39	2.49 2.45 2.41 2.38 2.35	2.42 2.38 2.34 2.31 2.28	2.35 2.31 2.27 2.23 2.20	$2.23 \\ 2.19$	2.24 2.19 2.15 2.11 2.08	2.19 2.15 2.11 2.07 2.04	2.15 2.10 2.06 2.03 1.99	2.11 2.06 2.02 1.98 1.95	2.06 2.01 1.97 1.93 1.90	2.01 1.96 1.92 1.88 1.84
DEGREES	21 22 23 24 25	4.32 4.30 4.28 4.26 4.24	3.47 3.44 3.42 3.40 3.39	3.07 3.05 3.03 3.01 2.99	2.84 2.82 2.80 2.78 2.76	2.68 2.66 2.64 2.62 2.60	2.57 2.55 2.53 2.51 2.49	2.49 2.46 2.44 2.42 2.40	2.42 2.40 2.37 2.36 2.34	2.34 2.32 2.30	2.32 2.30 2.27 2.25 2.24	2.25 2.23 2.20 2.18 2.16	2.18 2.15 2.13 2.11 2.09	$\frac{2.07}{2.05}$	2.05 2.03 2.01 1.98 1.96	2.01 1.98 1.96 1.94 1.92	1.96 1.94 1.91 1.89 1.87	1.92 1.89 1.86 1.84 1.82	1.87 1.84 1.81 1.79 1.77	1.81 1.78 1.76 1.73 1.71
	30 40 60 120 ∞	4.17 4.08 4.00 3.92 3.84	3.32 3.23 3.15 3.07 3.00	2.92 2.84 2.76 2.68 2.60	2.69 2.61 2.53 2.45 2.37	2.53 2.45 2.37 2.29 2.21	2.42 2.34 2.25 2.18 2.10	$2.17 \\ 2.09$		2.12	2.16 2.08 1.99 1.91 1.83	$ \begin{array}{c} 2.00 \\ 1.92 \\ 1.83 \end{array} $	1.92 1.84 1.75	1.66	1.89 1.79 1.70 1.61 1.52	1.84 1.74 1.65 1.55 1.46	1.69 1.59 1.50	$egin{array}{c} 1.74 \\ 1.64 \\ 1.53 \\ 1.43 \\ 1.32 \\ \end{array}$	1.58 1.47 1.35	1.62 1.51 1.39 1.25 1.00

Interpolation should be performed using reciprocals of the degrees of freedom.

By permission of Prof. E. S. Pearson from M. Merrington, C. M. Thompson, "Tables of percentage points of the inverted beta (F) distribution," Biometrika, vol. 33 (1943), p. 73.

		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
	1 2 3 4 5	4,052 98.5 34.1 21.2 16.3	5,000 99.0 30.8 18.0 13.3	5,403 99.2 29.5 16.7 12.1	5,625 99.2 28.7 16.0 11.4	5,764 99.3 28.2 15.5 11.0	5,859 99.3 27.9 15.2 10.7	5,928 99.4 27.7 15.0 10.5	27.5	6,023 99.4 27.3 14.7 10.2	6,056 99.4 27.2 14.5 10.1	6,106 99.4 27.1 14.4 9.89	6,157 99.4 26.9 14.2 9.72	6,209 99.4 26.7 14.0 9.55	6,235 99.5 26.6 13.9 9.47	6,261 99.5 26.5 13.8 9.38	6,287 99.5 26.4 13.7 9.29	6,313 99.5 26.3 13.7 9.20	6,339 99.5 26.2 13.6 9.11	6,366 99.5 26.1 13.5 9.02
	6 7 8 9 10	13.7 12.2 11.3 10.6 10.0	10.9 9.55 8.65 8.02 7.56	9.78 8.45 7.59 6.99 6.55	9.15 7.85 7.01 6.42 5.99	8.75 7.46 6.63 6.06 5.64	6.37 5.80	8.26 6.99 6.18 5.61 5.20	8.10 6.84 6.03 5.47 5.06	7.98 6.72 5.91 5.35 4.94	7.87 6.62 5.81 5.26 4.85	7.72 6.47 5.67 5.11 4.71	7.56 6.31 5.52 4.96 4.56	7.40 6.16 5.36 4.81 4.41	7.31 6.07 5.28 4.73 4.33	7.23 5.99 5.20 4.65 4.25	7.14 5.91 5.12 4.57 4.17	7.06 5.82 5.03 4.48 4.08	6.97 5.74 4.95 4.40 4.00	6.88 5.65 4.86 4.31 3.91
J. W. C. C.	11 12 13 14 15	9.65 9.33 9.07 8.86 8.68	7.21 6.93 6.70 6.51 6.36	6.22 5.95 5.74 5.56 5.42	5.67 5.41 5.21 5.04 4.89	5.32 5.06 4.86 4.70 4.56	5.07 4.82 4.62 4.46 4.32	4.89 4.64 4.44 4.28 4.14	4.74 4.50 4.30 4.14 4.00	4.63 4.39 4.19 4.03 3.89	4.54 4.30 4.10 3.94 3.80	4.40 4.16 3.96 3.80 3.67	4.25 4.01 3.82 3.66 3.52	4.10 3.86 3.66 3.51 3.37	4.02 3.78 3.59 3.43 3.29	3.94 3.70 3.51 3.35 3.21	3.86 3.62 3.43 3.27 3.13	3.78 3.54 3.34 3.18 3.05	3.69 3.45 3.25 3.09 2.96	3.60 3.36 3.17 3.00 2.87
	16 17 18 19 20	8.53 8.40 8.29 8.19 8.10	6.23 6.11 6.01 5.93 5.85	5.29 5.19 5.09 5.01 4.94	4.77 4.67 4.58 4.50 4.43	4.44 4.34 4.25 4.17 4.10	4.20 4.10 4.01 3.94 3.87	4.03 3.93 3.84 3.77 3.70	3.89 3.79 3.71 3.63 3.56	3.78 3.68 3.60 3.52 3.46	3.69 3.59 3.51 3.43 3.37	3.55 3.46 3.37 3.30 3.23		3.26 3.16 3.08 3.00 2.94	3.18 3.08 3.00 2.92 2.86	3.10 3.00 2.92 2.84 2.78	3.02 2.92 2.84 2.76 2.69	2.93 2.83 2.75 2.67 2.61	2.84 2.75 2.66 2.58 2.52	2.75 2.65 2.57 2.49 2.42
	21 22 23 24 25	8.02 7.95 7.88 7.82 7.77	5.78 5.72 5.66 5.61 5.57	4.87 4.82 4.76 4.72 4.68	4.37 4.31 4.26 4.22 4.18	4.04 3.99 3.94 3.90 3.86	$\frac{3.76}{3.71}$	3.64 3.59 3.54 3.50 3.46	3.51 3.45 3.41 3.36 3.32	3.40 3.35 3.30 3.26 3.22	3.31 3.26 3.21 3.17 3.13	3.17 3.12 3.07 3.03 2.99	2.98 2.93 2.89	2.88 2.83 2.78 2.74 2.70	2.80 2.75 2.70 2.66 2.62	2.72 2.67 2.62 2.58 2.53	2.64 2.58 2.54 2.49 2.45	2.50	2.46 2.40 2.35 2.31 2.27	2.36 2.31 2.26 2.21 2.17
	$\begin{array}{c} 30 \\ 40 \\ 60 \\ 120 \\ \infty \end{array}$	7.56 7.31 7.08 6.85 6.63	5.39 5.18 4.98 4.79 4.61	4.51 4.31 4.13 3.95 3.78	4.02 3.83 3.65 3.48 3.32	3.70 3.51 3.34 3.17 3.02	3.29 3.12 2.96	3.30 3.12 2.95 2.79 2.64	2.99 2.82 2.66	2.89 2.72 2.56	2.98 2.80 2.63 2.47 2.32	2.84 2.66 2.50 2.34 2.18	2.52 2.35 2.19	2.55 2.37 2.20 2.03 1.88	2.47 2.29 2.12 1.95 1.79		2.30 2.11 1.94 1.76 1.59	1.66	2.11 1.92 1.73 1.53 1.32	2.01 1.80 1.60 1.38 1.00

DEGREES OF FREEDOM FOR DENOMINATOR

Interpolation should be performed using reciprocals of the degrees of freedom.

By permission of Prof. E. S. Pearson from M. Merrington, C. M. Thompson, "Tables of percentage points of the inverted beta (F) distribution," Biometrika, vol. 33 (1943), p. 73.