
The Journal of Defense Software Engineering

Sponsored by the
Embedded Computer

Resources Support
Improvement Program

(CRSIP)

January 2000
Volume 13 Number 1

Published by the
Software Technology Support Center

Discovering

Lessons

Learned

Plot Your Course

by Reuel Alder
Software Technology Support Center

2020 A.D. The United States of America
takes on another police action in Latin
America and bombs the Chibcharian Embassy,
killing several Chibcharian diplomats.
Angered, the Chibcharians imprison thou-
sands of Americans in retaliation. The
President sends a carrier group and issues a
demand to the Chibcharian Premier.

President: “Unless all U.S. prisoners are immediately released,
we will begin to destroy your military installations.”

Premier: "“Mr. President. I assume you are aware of the mas-
sive power outage that has just occurred in the
Northeastern United States. All telephone service to
the Southeast has been cut. The floodgates in the
West have been opened. This is a demonstration
of our capabilities. We are confident that many of
your weapons systems will not function as a result of
the hidden disabling code we have embedded in
them. Our demands are simple. Recall your carrier
group or we will signal your weapons to self-
destruct. We demand a public apology and 5 billion
dollars to compensate the family members affected.
In addition, we demand the entire production of
your Midwestern farmland in perpetuity.”

The president reviews this threat with his technical advisors
and discovers that the Department of Defense (DoD) has relied
heavily upon commercial-off-the-shelf (COTS) components.

Early warnings were given. As Will Tracz writes in his arti-
cle on architectural issues and other lessons learned in compo-
nent-based software development (see page 4), it is important to
know what COTS can do to you and beware of how you recon-
figure your processes to meet COTS component capabilities.
However, the real threat began when COTS development
moved offshore because the United States only educated 17,000
software professionals per year, and the DoD’s need for software
far exceeded internal production capability. This exportation of
software development had begun in the early 1990s, beginning
with the country of Aidinia.

Aidinia was a model of off-shore development with produc-
tion costs 1/10th of those in the United States. Aidinia applied
disciplined software development concepts like the Capability
Maturity Model (CMM) that the Software Engineering
Institute developed. Its number of CMM Level 5 companies
grew from five to 20 in 15 years before Chibcharia began cap-
turing the market.

Following Aidinia ’s example, Chibcharia educated more
than 10,000 software professionals the first year of its program,
and produced more software developers than the Aidinians by
2005. Five years later, all major corporations were doing business
with Chibcharia, and nearly all DoD contractors purchased their
COTS components from them. Contractors were rewarded for
saving money, and COTS developed there at 1/20 the cost was
the proven way to do it.

The security topics captured by Bryan C. Critenton in this
issue (see page 27) are critical and will take a great deal of effort
to resolve; however, they are only the beginning of DoD software
challenges if core software development moves to foreign coun-
tries. This is a lesson we do not want to learn.

2 CROSSTALK The Journal of Defense Software Engineering January 2000

On the cover

acrylic painting by Alex Nabaum

Alex Naubam studied illustration at the Denver Art Students League and Utah State University.
In addition to his work in graphic art, he works as an editorial illustrator in Salt Lake City.

From the Publisher

The Capability Maturity Model for Software and SW-CMM
are registered in the U.S. Patent and Trademark Office.

THE UNDER SECRETARY OF DEFENSE

3010 DEFENSE PENTA G O N
W ASHINGTON, DC 20301-3010

26 Oct 1999

AACCQQUUII SSII TTII OONN AANNDD
TTEECCHHNNOOLLOOGGYY

MEMORANDUM FOR COMPONENT ACQUISITION EXECUTIVES
DIRECTOR OF BALLISTIC MISSILE DEFENSE ORGANIZATION

SUBJECT: Software Evaluations for ACAT I Programs

It is DoD policy that software systems be designed and developed based upon software
engineering principles. This includes the selection of contractors with the domain experience in
developing comparable software systems, a successful past performance record, and a
demonstrable mature software development capability and process. It also requires a software
measurement process to plan and track the software program, and to assess and improve the
development process and associated software product.

Software development and performance is an integral component of advanced defense
systems. Accordingly, it will be a technical requirement for contract that each contractor
performing software development or upgrade(s) for use in an ACAT I program will undergo an
evaluation, using either the tools developed by the Software Engineering Institute (SEI), or those
approved by the DoD Components and the DUSD(S&T).

At a minimum, full compliance with SEI Capability Maturity Model Level 3, or its
equivalent level in an approved evaluation tool, is the Department’s goal. However, if the
prospective contractor does not meet full compliance, a risk mitigation plan and schedule must
be prepared that will describe, in detail, actions that will be taken to remove deficiencies
uncovered in the evaluation process and must be provided to the Program Manager for approval.
The Deputy Under Secretary of Defense (Science & Technology) will define Level 3
equivalence for approved evaluation tools. The evaluation will be performed on the business unit
proposed to perform the work. The reuse of existing evaluation results performed within a two-
year period prior to the date of the government solicitation is encouraged.

This policy is effective immediately and will be incorporated into the current DoD 5000
series rewrite.

January 2000 CROSSTALK The Journal of Defense Software Engineering 3

J.S. Gansler

Policy and Management

“If the process hasn’t changed, then the lesson wasn’t learned.”
—Ben Manning, Lockheed Martin Tactical Defense Systems

By using COTS components, software developers not only face
increased opportunities to rapidly create new applications, but
also face increased challenges to configure, integrate, and sustain
these applications in the future. Arguably the technical key to
success lies in the architecture that the system designers select for
the components to be integrated into, as well as the middleware
or “glue” that holds them together. Unfortunately, as proven by
countless COTS-based project failures, project managers must
take into consideration certain nontechnical factors, such as the
volatility and flexibility of the requirements, the stability of the
vendor, and the respective components that they supply. This
paper describes some of the misconceptions that software devel-
opers and managers often have in planning for COTS-based sys-
tems [1]. First a series of myths are exposed in the light of reality
of lessons learned from real world experience. This is followed by
some rules of thumb for developing COTS-based systems.

This paper addresses COTS software issues, but the lessons
learned equally apply to COTS hardware.

Operational Model
The COTS-based system acquisition and development model
used by this paper assumes the following roles for the three
major stakeholders:

1) The customer—who pays for the application to be built.
Note that the customer also selects the developer/contrac-
tor/system integrator (e.g., through a competitive bid).

2) The developer—who builds the system out of COTS
components. Note the developer may not always be the
one to select the COTS components being integrated, as
the customer may have stipulated them as part of the
system requirements.

3) The COTS vendor—who supplies components to the
developer and customer, along with its support and
upgrades. It is important to point out that the customer
needs to address the sustainment of the COTS-based sys-
tem, or total ownership cost, because system maintenance
can be adversely affected if certain architectural and pro-
curement factors (e.g., licensing fees, security, and tech-
nology refresh) are not properly addressed early in the sys-
tem life cycle upgrades.

The customer must address the sustainment of the COTS-
based system or total cost of ownership (TCO) [2], because
system maintenance can be adversely affected if certain architec-
tural and procurement factors (e.g. licensing fees, security, and
technology refresh) are not properly addressed early in the
system life cycle.

Myths
This section contains a collection of COTS component lessons
learned and is organized into two parts. The first subsection
focuses on architectural issues. The second subsection focuses
on management/procurement, or nontechnical issues.

Architectural Issues
The following myths deal with issues that the developer needs to
consider when doing the initial trade-off analysis for a COTS-
based system..

Myth 1: It is important to know what COTS components can do
for you.

Reality: It is important to know what COTS components can do
to you.

A system architect must always evaluate the build, buy, or
modify tradeoff when determining how to meet the customer’s
requirements. COTS components, in general, provide certain
functional capabilities at an extremely attractive initial cost.
However, experience shows that functions come with limitations
and implications. As the number of COTS components to be
integrated increases, the dependencies and interplay among them
becomes more complex, and can lead to intractable problems or
difficult negotiations between different suppliers as to whose
product is really at fault when things do go wrong. To compli-
cate matters further, certain nonfunctional requirements, such as
security, fault tolerance, or error handling, may not be uniformly
supported by all components to the degree necessary to guaran-
tee overall system performance. These potential hot spots typical-
ly form a list of risks that the architect must trade off in deciding
the overall composition of the system under development.

Myth 2: COTS-based systems can be designed top-down.
Reality: COTS-based systems are built bottom-up.

COTS components facilitate a spiral development model in
the sense that functionality can be quickly demonstrated in most

4 CROSSTALK The Journal of Defense Software Engineering January 2000

Lessons Learned

Architectural Issues, other Lessons Learned
in Component-Based Software Development

Will Tracz, Ph.D.
Lockheed Martin Federal Systems

Component-based software development, while reducing initial development time and effort, requires additional
infrastructure and process support across the entire lifetime of an application. This paper summarizes lessons
learned in dealing with commercial-off-the-shelf (COTS)-based architectures. In particular, it focuses on the
technical and managerial issues associated with the acquisition, evaluation, selection, configuration, risk man-
agement, and evolution of software components.

applications. In doing so, the customer benefits by early valida-
tion of requirements and the developer reduces risks by learning
firsthand about the capabilities and configuration and integra-
tion difficulties associated with the components. Most architects
understand this point and do not limit their choice of compo-
nents by making design decisions too early. They recognize the
need to remain flexible in trading off functionality across com-
ponents until the components are fully proven and the integra-
tion mechanisms identified.

Myth 3: An open-system architecture solves the COTS
component interoperability problem.

Reality: There is no standard definition for “open system,”
and “plug and play” does not always work.

Customers and developers clearly recognize the advantages
of having plug-compatible components. They not only like hav-
ing a choice of components, but knowing that if one component
supplier goes out of business, there is another source for compat-
ible components. It is debatable as to how successful open sys-
tem initiatives have been (such as the Defense Information
Infrastructure Common Operating Environment) [3]. Most will
agree that when it works, it is great, but the number of plug-
compatible components has yet to reach critical mass.

Myth 4: You do not need to test COTS components.
Reality: You need to test COTS components more because you

do not understand how they were built.
It would be nice if all COTS components worked as adver-

tised. But oftentimes there is a gap between what is advertised
and what is delivered. Being that it is economically and often-
times physically impossible for a COTS vendor to test all its
products in combination with all other products under all oper-
ating conditions, subtle feature clashes can occur.

Furthermore, when developers are trying to leverage emerg-
ing technology, oftentimes marketing pressures force COTS ven-
dors to deliver products with reduced capabilities along with the
promise for increased functionality in future versions. Since the
system integrator is usually responsible for the overall perform-
ance of the system, the system integrator should evaluate all
components before they are selected for inclusion into the system.

Myth 5: COTS products are selected based on extensive
evaluation and analysis.

Reality: COTS products often are selected based on slick demos,
web searches, or by reading trade journals.

Because component-based architecture development is a
relatively new field, systems integrators and customers still
struggle with methods to keep abreast of technology advances
and ways to determine which product best suits their needs.
Oftentimes, in the rush to make a decision, the choice of
COTS products is not made based on a strong business case or
the total ownership cost. This problem has been around in vari-
ous forms for a long time (e.g., GIGO [Garbage In, Garbage
Out]) and ways of dealing with it (trade studies, test labs, inde-
pendent product certification agencies) can be discriminators
used by the customer in reducing risks associated with the
acquisition of a COTS-based system.

Myth 6: COTS components come with adequate documentation.
Reality: Features sell COTS components, not documentation.

This myth may be thought of as a continuation of the pre-
vious two myths. The lack of documentation is a risk the system
architect faces in determining the suitability of COTS compo-
nents. In some instances the customer, upon being exposed to
certain component features demonstrated in a certain (some-
times contrived) context, may place unnecessary or unrealistic
constraints on the developer’s implementation without adequate
justification or flexibility in negotiating for different and possi-
bly better components.

Myth 7: You can configure a COTS-based system to meet
your requirements.

Reality: You can configure your process to meet the COTS
component capabilities

The 80/20 rule applies to most COTS-based system efforts.
The customer can satisfy 80 percent of its desired business
process for 20 percent of the cost of a custom system (in 20 per-
cent of the time). Most difficulties occur when a customer or
developer thinks that the additional 20 percent is achievable at
traditional software development costs. The cost of modifying
COTS, or providing extra functions, is more difficult for the
developer because it has little control or insight into how the
COTS product was designed, documented, tested, or
written/built. This information is usually proprietary and, in the
light of upgrades and new versions, maintaining compatibility
becomes a challenge. Most successful system integrators never
modify COTS, and thoroughly understand the requirements
(i.e., assuming an all requirements are negotiable approach). If
the business case justifies modifying COTS components, then
the developer should recommend that option.

Managerial Issues
The following myths deal with issues the customer considers
when selecting a contractor to develop a COTS-based system.

Myth 8: The processes COTS products support reflect industry
best practices.

Reality: The process a COTS product supports often only reflects
the market schedule and domain experience of the vendor.

As much as COTS vendors would like the customers to
believe that one size fits all, this is simply not the case (See Rule
12). Market considerations drive product offerings and most
COTS component providers have product roll-out plans that
include extended features and configuration parameters and
hooks that allow tailoring and customization to support a better
fit to best practices.

Myth 9: You buy a COTS product.
Reality: You buy the right to use a version of a COTS product.

COTS components provide immediate solutions at a fixed
cost, but most applications have a life cycle that spans several
releases of those components, which means that it is unrealistic
(except in the case of hardware components) to expect the fol-
low-on costs to be zero. In addition to the acquisition cost of

January 2000 CROSSTALK The Journal of Defense Software Engineering 5

Architectural Issues, other Lessons Learned in Component-based Software Development

the components, the customer and developer need to explore
the cost and level of support services as well as opportunities for
commodity purchases.

Myth 10: Vendors will fix problems in the current release of
the product.

Reality: Vendors will fix problems in the next version of
the product.

As mentioned in the previous myth, the level of service one
receives from the component supplier is negotiable. Unless the
contract explicitly states it, the type of problem fixes one receives
will be market driven (See Rule 6).

Myth 11: If you are a large enough customer, you can influence
COTS component suppliers.

Reality: The market influences COTS component suppliers.
Again, the size of the current and future customer base drives

the COTS component supplier in determining his response to
user needs (See Rule 6).

Myth 12: COTS-based systems are a panacea.
Reality: COTS components exacerbate inadequacies in the

system development process by compressing the develop-
ment schedule.

To some, COTS components may seem like a silver bullet
because they can provide faster, cheaper, and better solutions for:

• relatively simple applications.
• use in mature problem domains.
• using a small number of mature, unmodified components.
• proven integration mechanisms.

But not all applications fall into this category. The mere
fact that applications are developed so quickly facilitates the
possibility that the wrong application will be developed, the
wrong COTS components initially selected, and the perceived
short-term success will pave the way to long-term disaster.

Additional Myths
The following myths are relatively self-explanatory and reflect
some of the points made in the rules of thumb stated in the
next section, or previous myths.

Myth 13: COTS components are free except for the purchase price.
Reality: COTS-based system sustainability issues overwhelm

acquisition costs.

Myth 14: You can ignore vendor upgrades.
Reality: You lose support of back systems if you ignore vendor

upgrades.

Myth 15: You can pay a vendor to modify COTS components to
meet your requirements.

Reality: You can pay a subcontractor to modify COTS
components to meet your requirements.

Rules of Thumb
Rule 1: “The cost of COTS is 1 percent of that of developed code.”

This rule is attributable to Ed Feigenbaum of Stanford
University and formerly the Air Force’s Chief Scientist. To apply
this rule, one would take the cost of a shrink-wrapped compo-
nent and multiply it by 100 to get a rough approximation of
the development cost for comparable function. Clearly there are
other factors, such as the size of the customer base, for deter-
mining the cost of most COTS products, so one needs to use
this rule judiciously.

Rule 2: “The maximum shelf life of a COTS software component
is two years.”

This rule factors into determining the total ownership of an
application in that all COTS components that have been config-
ured and integrated together will probably have to be replaced
two years after each was introduced into the marketplace. To
complicate matters, each new version of a component might have
additional dependencies and possibly introduce new, conflicting
functionality. Also, the updates may not be released at the same
time or validated with the same versions of other components,
further complicating matters.

Rule 3: “The half-life of COTS product expertise is six months.”
This rule is attributable to Kurt Wallnau, Software

Engineering Institute, who observed that with the fast-paced
introduction of new product versions, as well as competing
products, there is an unprecedented obsolescence associated
with current technology. The inverse of this rule is that every
six months you need to plan on evaluating a new version of a
COTS product.

Rule 4: “You need to evaluate COTS in an environment as close
to the operational environment as is possible.”

This lesson learned comes from too many bad experiences
with COTS components that have been selected, designed
around, and determined to have a pathological dependency that
either completely precludes their incorporation, or makes the
integration process much more complex and costly.

Rule 5: “You can never make a 100 percent Diminishing
Manufacturing Source-resident COTS-based solution.”

Any commercial source of technology is outside the direct con-
trol of the customer. Consequently, for certain critical applica-
tions, system integrators and the customer must work together
to take precautionary measures to ensure the sustainability of
the application. These measures include paying a third party to
store the design documentation and source code of the compo-
nents or negotiating for the establishment of an open Applica-
tion Program Interface in hopes of stimulating plug-compatible
competition (i.e., a second source).

Additional Rules of Thumb
The following rules of thumb are self-explanatory. It is debat-
able which of the last two rules is more important, but it is clear
that they play an important role in determining the success of
any development effort.

6 CROSSTALK The Journal of Defense Software Engineering January 2000

Lessons Learned

Rule 6: “The smaller the customer base, the higher the COTS
cost and the better the service.”

Rule 7: “The largest problem with COTS is its short life span.”

Rule 8: “Stay away from the cutting-edge COTS products, unless
it is the only way you can get the performance you need.”

Rule 9: “By using COTS components you decrease development
time and increase integration time.”

Rule 10: “The selection of COTS components is a risk-mitigation
or risk-creation situation.”

Rule 11: “A COTS-based system may not be the cheapest solution.”

Rule 12: “A COTS-based system will never completely or exactly
satisfy a customer’s need.”

Conclusion
Who is at fault for most COTS-based system failures? Is the

customer to blame for expecting COTS to be a panacea? Are the
developers to blame for not using good engineering judgement
in identifying risks and opportunities to mitigate them? The cus-
tomer must be flexible and must understand the short- and long-
term tradeoffs with respect to certain COTS options. Current
customer acquisition processes often force asking the wrong
questions at the wrong time. In the case of government acquisi-
tions in general, the customer neither has enough COTS-smart
people nor has strong policy guidance.

But the customer should not take all the blame. Developers
have been naive in trusting vendor vaporware claims and in
underestimating the challenges of component configuration and
interoperability. Fortunately, they are becoming savvier in their
testing and integration capabilities. The ultimate solution, used
by many of the leading system integrators, relies on setting up
Integrated Product Teams consisting of the customer, the user,
the developer, and the COTS suppliers. Such a forum often
provides a venue where all stakeholders can better understand
the requirements, their priorities, and the total ownership cost

tradeoffs that are available with full insight on their short-term
and long-term impact.

There are many COTS-based system development lessons
learned. Unfortunately, the near-term trend seems to indicate
that these lessons will be re-learned by many customers unless
proper education, policy definition, and sharing of experience
occur. Finally, it should be clear that a COTS-based system
might not always be the best solution available. When all the
factors are considered, a business case laid out, and a TCO
study done, a custom implementation may be more cost-effec-
tive over the life of the project. ◆

About the Author
Dr. William Tracz is a senior software engineer
for Lockheed Martin Federal Systems.
Currently, he is lead architect for several COTS
and Reuse Repository projects as well as the
principle investigator on an internal independ-
ent research and development project focused
on nonintrusive software integration mecha-
nisms. Dr. Tracz also is an ad hoc member of

the Air Force Scientific Advisory Board COTS panel, chairman of
the Lockheed Martin Software Subcouncil Working Group on
COTS Software and Reuse, as well as editor of ACM SIGSOFT
Software Engineering Notes.

Lockheed Martin Federal Systems
Mail Drop 0210, 1801 State Route 17C
Owego, N.Y. 13827
Voice: 607-751-2169
Fax: 607-751-2169
E-mail:Will.Tracz@lmco.com
Internet: http://www.owego.com/~tracz

References
1. SEI, COTS-Based Systems (CBS) Initiative, available at

http://www.sei.cmu.edu/cbs/index.html
2. Gartner Group, Total Cost of Ownership: A New Tool for

Controlling the Cost of IT, http://www.info.edge.com/5509toc.htm
3. IPESO/DISA, DII COE Defense Information Infrastructure

Common Operating Environment, http://dii-sw.ncr.disa.mil/coe/

January 2000 CROSSTALK The Journal of Defense Software Engineering 7

Architectural Issues, other Lessons Learned in Component-based Software Development

The Defense Systems Management College
(DSMC) has released a new systems engineer-
ing guide, Systems Engineering Fundamentals,
that it calls a more basic tutorial on systems
engineering than DSMC’s guidebooks released
in 1982, 1986 and 1990. Systems Engineering
Fundamentals was developed as a supplemen-
tal text to DMSC’s systems engineering courses.
DSMC uses the text in all its courses, and
promotes it as a companion to the “How-to”
Handbook published by the International
Council of Systems Engineering (INCOSE).

The new guidebook is intended to be the sys-
tems engineering foundation for these courses;
whereas, the INCOSE book is the application.

Additional description, as well as information on
downloading a free pdf version or ordering hard
copies, can be found at
http://www.dsmc.dsm.mil/pubs/gdbks/sys_eng_fund.htm

John Leonard of the Washington Military Area is
the primary author.

New Guidebook Released on Systems Engineering Fundamentals

The Need for a Database System

Boeing Electronic Products (EP) designs
and develops some of the avionics1 for
Boeing Commercial Airplanes (BCAG).

About 1990, when the 777 airplane
program was getting started2 , EP was
instructed to develop an electronic data-
base to track and record problems encoun-
tered during design and development of
EP electronics. BCAG wanted a database
it could access. After the 777 was fielded,
all airplanes were to use this database.

The existing problem reporting sys-
tem was paper-based. One paper copy of
each problem report (PR) was stamped
“original.” Multiple copies were made for
each person assigned to work the problem.
Each person would record his or her
response by writing on the hard copy.
Periodically, the Integrated Product Team
(IPT) leader, responsible for a given piece
of avionics, would call together all mem-
bers of the team, known as the
Engineering Review Board. These meet-
ings could last for hours, trying to take all
inputs and create one original PR. An eas-
ier way was needed to consolidate board
members’ input.

Requirements Definition

and Implementation
Engineers, IPT leaders, and other potential
customers did not seem to know what
they wanted/needed in a problem report-
ing system. All the organizational require-
ments were surveyed (EP Configuration
Management Plan, RTCA/DO-178B
“Software Considerations in Airborne
Systems and Equipment Certification,” EP
Software Quality Assurance procedures,
etc.). Using the PR as a guide, the existing
process was captured in a flowchart repre-
sentation with a text description of each
block. A requirements document was
developed from this process document.

The numbering scheme for the PRs

was used in conjunction with automation
of the problem reporting process. A two-
field scheme was used. The first field was
an Avionics Product (LRU)3 designation
such as 7WEU (777 Airplane Warning
Electronics Unit). The IPT leaders and
auditors needed a list of all PRs for a
desired component. A search on this first
field would provide that list. The second
field was a four-digit number that was
assigned sequentially. Once a PR receives
this two-field dash number, it cannot be
deleted, so there is no break in the num-
bering sequence. This simplified the IPT
leader’s control and made any audit
process easier.

Four text fields, as well as signature
blocks, were associated with each PR.
Each text field needed to accommodate
extensive data (20,000 characters each).
In the PR heading were smaller fields for
pertinent data needed for tracking and
reporting. The entry of valid data to these
fields was enforced through the use of
pull-down lists that provided all valid
options for a given field.

Because of the size and quantity of
PRs, the speed and capacity of a main-
frame was needed. EP chose to use Oracle
on a VAX mainframe rather than an IBM
due to the availability of VAX program-
mers in EP. EP was unable to find an
existing user interface to meet its require-
ments. User access to the mainframe was
via dumb monochrome monitors or by
loading an access icon to the personal
computers.

A major implementation complica-
tion was the need to have five variations
of the PR (i.e. variations on the fields and
associated process). The struggle to agree
on a uniform PR form and process was
futile; each user organization wanted its
own little corner of the world. The result
was five different PR databases. Maintain-
ing requirements, processes, procedures,

updates, and training for five different
databases was a nightmare.

Throughout the PR process (see
Figure 1), e-mail messages were to be trig-
gered to inform personnel and to assign
tasks. There are now 43 possible messages
for each PR. For instance, after an origina-
tor of a PR has completed the appropriate
“title” and “description” fields, the system
sends the PR as an e-mail message to those
responsible for the product (component)
in question. The length of these e-mail
messages was a challenge, since they
included the 20,000-character-length text
fields. This will be solved by e-mailing
only a brief message that includes a URL
access to the web site that the assigned can
access to see the complete PR and perform
the applicable function.

The system also automatically changes
the status of the PR as it moves through
the phases shown in Figure 1. Portions of
a PR are approved in each phase. After
approval, the status changes and fields are
locked, preventing changes by unautho-
rized persons. Engineers, configuration
management specialists, and IPT leaders
have different levels of authorization.

User Acceptance of the System

After implementation of the requirements
and extensive testing, the database was
given to the users. A program directive
and a users manual were written. Hands-
on training was also conducted—not an
intensive course, but intended to acquaint
the user with the database and convey
some of the rationale used for its creation.

Function Keys
The users’ first reaction was, “This data-
base is not user friendly.” No one liked
using the function keys to move around
the database. Many keyboards did not
support the function keys we were using,
and corresponding control keys, ^B or F10

8 CROSSTALK The Journal of Defense Software Engineering January 2000

Building a CM Database: Nine Years at Boeing
Susan Grosjean

Boeing Electronic Products

A Boeing organization developed an Oracle-based database to track problems during the life
cycle of the Boeing 777 airplane. Over nine years, it has evolved from mainframe to web
implementation as technology has become available. This article reviews some basic approaches
to developing configuration management databases and includes resulting lessons learned.

= Exit had to be developed. These key
strokes were displayed at the bottom of
each screen.

Unlike the paper PR, the electronic
version forced the entry of required infor-
mation. The IPT leaders did not like the
fact that the database forced everyone to
do business the same way, and that it had
checks and balances in place to ensure
this practice.

But users liked the information the
system provided: the position of a given
PR in the life cycle, e-mail notification of
PR status, who was assigned to work PR
related tasks, and visibility into process
bottlenecks. If a PR had languished on
someone’s desk for months, the IPT leader
needed to know that. Sometimes the IPT
leader was surprised to find that the lan-
guishing occurred on his or her own desk.
Canned reports included listings of all PRs
by responsible IPT leader or by assignee,
and totals of the quantity of PRs by open
and closed status.

Windows
Three years ago, Oracle offered Develo-
per/2000, allowing a more user-friendly
front end. We needed to retain the VAX,
as by now all four text fields had
increased to 65,000 characters each. With
high-level management backing during
the implementation of the front end, all
Seattle-based groups adopted a single PR
form. The groups also agreed with using
basically the same process.

The Parts Engineering Organization
in Seattle levied additional requirements,
as it wanted a way to track and record
problem reports involving obsolete parts.

Since a single part obsolescence is
often common to several LRUs, a process
enhancement was created to generate
multiple corresponding PRs. A parent PR
(the first PR written) is created and dup-
licate copies are made for each impacted
LRU. These child copies retain a link to
the parent. When the child PRs are
closed, the parent PR can be closed.

Requirements expanded beyond
Seattle to Irving, Texas—our manufactur-
ing site. Irving has a problem-reporting
system also implemented in Oracle. A
requirement to transmit engineering prob-
lems between the Seattle and Irving data-
bases was accomplished by developing an

interface that transfers the PR from their
database to Seattle’s.

The Seattle system now has approxi-
mately 1,000 users with about 40,000
recorded problems. The database tracks
and creates reports for any type of problem
encountered by EP (product, test, obsolete
parts, production) as well as lessons
learned, action items, corrective actions,
and PRs against the database itself.

Intranet
Access via the Boeing web is partially
implemented. This provides access from
more locations but with slower response
times than those experienced by users
who access the system directly using the
software application windows front end.
The database is migrated off the VAX to
a Unix operating system.

January 2000 CROSSTALK The Journal of Defense Software Engineering 9

Building a Configuration Management Database: Nine Years at Boeing

Legend
ES - elect ronic signat ure
IPTL - Integrated Product
 Team Leader
CM - conf iguration
 manager
ECP - engi neer ing
 change proposal 4

SW - sof tware
HW - hardware
PI - Product Improvem ent

Originator enters
appl icabl e headi ng info
and problem descr iption.

Applicabl e IPTL recei ves
e-mail not ificat ion w ith
attached PR.

IPTL assi gns anal ysi s
engi neer and provi des
 elect ronic signat ure.

Analyze problem, m ake
recom m endation.
ES of engi neer , IPTL,
and originator.

ORIGINATION

PROBLEM
ANALYSIS

IM PACT
ANALYSIS

(OPTIONAL)

IPTL assi gns
anal ysi s engi neer .

Descr iption of im pact if
appl icabl e. ES of
engi neer , IPTL, customer.

DISPOSITION
(FIX)

RELEASE
DATA

PRODUCT
IM PROVEM ENT
AND CLOSURE

Record and ver ify fix ;
ES of “pr epared by” and
originator.

Enter any release data
for closur e, reference
ECP4, if any.

CM enters signat ures as
appl icabl e & indicat es
closur e or PI for a future
conf iguration

(This step is not yet
im plem ented elect ronical ly)

Figure 1. Boeing Electronic Products (EP) Problem Reporting

10 CROSSTALK The Journal of Defense Software Engineering January 2000

Lessons Learned
You may consider commercial off-the-
shelf tools that may meet most of your
requirements or investigate other organi-
zations or divisions using a tool similar to
your requirements. Implementing this sys-
tem has been a lot of work spread sporadi-
cally over nine years. Remember, EP had
in-house Oracle developers; many organi-
zations do not have similar resources.

Establish a team to consider new
requirements. One result of nine years of
experience is EP’s use of an Engineering
Review Board that helps determine if a
change or enhancement will benefit all
users. This database has a PR type, which
enables the users to write a PR against the
PR system. These PRs include problems
encountered and enhancements.

Designate a focal point to write and
transmit requirements to the database
programmer. This should be one or two
people who are familiar with the database
and who interface well with the program-
mer. Once approved by the Engineering
Review Board, the focal point writes or
rewrites the requirements to ensure they
are easily understood by the programmer.
The change/enhancement is added to the
users manual and if the change/enhance-
ment is substantial, training is scheduled.

Consider the importance of your
testing approach. For the first four years,
a separate test database was maintained.
Later, the test database was dropped
because of the work required to maintain
it. Testing is now performed on the pro-
duction database. This has been a cost-
effective compromise that has resulted in
few bugs.

Make sure there is room to grow. In
this case, text fields have grown from
20,000 characters to 65,000. Other
organizations may decide to use the data-
base once it has proven itself. Also, the
more you give users, the more they seem
to want.

Sponsorship can make it easier. Once
senior management saw the benefit of
using a standard process, a single PR, and
a single database, EP no longer had to
maintain separate requirements, processes,
procedures, and updates.

Technology improvements can make
it easier. By providing pull-down and
pop-up lists within the PR fields, diverse

users could live with the generic PR.
Training is essential to the effective-

ness of the database and the user. It saves
users hours of time by not having to
struggle with an unknown element, and
gives them hands-on experience.

Help lines and training manuals are
important in helping users further under-
stand what they are expected to do. Help
lines appear throughout most of the
screens to inform and ensure that the PR
is completed accurately. The training
manual for this database is set up for
step-by-step instructions with visual aids.

Summary

Boeing’s need for a CM database has
been outlined. Defining the database
requirements in specific terms for design
and implementation presented some
challenges. The implementation present-
ed user interface challenges. The system
has evolved to meet new requirements
and to exploit new technology.◆

About the Author
Susan C. Grosjean is a configuration
management specialist with the Electronic
Products Group. She has 20 years of
configuration management experience at
Boeing. Prior to developing the database
described in this article, she developed
status accounting databases for the B1-B
and B2 bombers.

Boeing Commercial Airplane Group
P.O. Box 3707, No. MS OU-47
Seattle,Wash. 98124-2207
425-266-3731
Susan.Grosjean@PSS.Boeing.com

Notes
1. Electrical and electronic devices in

aviation, including the software
embedded in those devices.

2. For BCAG, the 777 airplane represented
an unprecedented software challenge in
terms of the size and complexity of the
airplane’s systems. The 2.5 million lines of
newly developed software were approxi-
mately six times more than any previous
Boeing commercial airplane development
program. Including commercial-off-the-
shelf and optional software, the total size
is more than 4 million lines of code. This
software was implemented in 79 different
systems produced by various suppliers
throughout the world. CROSSTALK

January 1996, “Software Development
for the Boeing 777.”

3. Line replaceable unit is the terminology
for the circuit board, drawer, or cabinet
that can be removed and replaced when
hardware failure occurs.

4. Class I Changes are called Engineering
Change Proposals (ECPs) and consist of
changes that are so extensive that addi-
tional customer funds must be contract-
ed to implement the change. Changes
smaller that Class I are called Class II.

Lessons Learned

We welcome reader comments regarding CROSSTALK articles or matters pertaining
to software engineering. Please send your comments and Letters to the Editor to
crosstalk.staff@hill.af.mil or mail to

OO-ALC/TISE
Attn: CROSSTALK staff
7278 Fourth Street

Hill AFB, Utah 84056-5205

Please limit letters to less than 250 words. Include your name, phone number, and
e-mail address with any letter. We will withhold your name upon request.

Talk to CROSSTALK

Project managers and program managers
need ready information about the status
of the system they are maintaining/
developing to answer the questions:
• What are the pieces of the system?
• How do the pieces relate?
• Which pieces are being purchased?
• Which pieces are under maintenance

contract?
• What am I spending to maintain a

component?
• How many change requests are outstan-

ding and against which components?
• What is the status of a change?
• What components present the greatest

business, schedule, and technical risks?
These are a sample of many questions
that can be asked.

Project Management and

Configuration Management
A search for answers may bring a person
to more than one management discipline,
namely the project management discipline
and the configuration management disci-
pline. EIA Standard IS-649 [1]1 notes the
relationship between these disciplines, and
Ovum observes that the relationship will
be reflected in the tools that support PM
and CM [2].2 While tools can be bought
to help answer the questions, the chal-
lenge is in finding one that most closely
meets your functional, budgetary, and cul-
tural requirements.

This article assumes you have deter-
mined that most of your questions are of a
CM status reporting nature. Tables 1 and
2 list the kind of information typically
attributed to PM and CM. The tables also
enhance understanding of the relationship
between the PM and CM disciplines if
you modify the PM information table by
substituting the words “problem/change”
for “project.” Often a problem/change
becomes a project if it is big enough.

Buy vs. Build
A manager with access to in-house soft-
ware development expertise may, at some
point, consider the expense and effort of
evaluating, procuring, customizing, and
maintaining a commercial-off-the-shelf
product (COTS) vs. the expense and
effort of building and maintaining a tool.
While COTS tools usually include some
kind of database, they are not specifically a
database. For the manager who is focused
specifically on the kind of functionality
that a database system, including a graphi-
cal user interface and database engine, can
provide, the COTS CM tools are not nec-
essarily the most attractive option. Often
an in-house developed database is a better
match functionally. Some may be more
easily procured, if the in-house develop-
ment resources are available.

Aside from functionality and eco-
nomics, cultural issues may sway a man-
ager to build rather than buy the tool.
The argument, “We are a development
organization; why pay outsiders to do
what we can do?” carries some weight.
Your people may simply want to build
their own tool vs. learn a COTS product,
so there is a morale issue or bias.

The vendor of a COTS CM product
might point out that the vendor’s product
can be customized to any process, that it
will be more mature than a home-grown
tool (better documentation, ready training,
fewer defects) and that maintenance costs
will be lower. There is the potential addi-
tional advantage of having all the data and
CM functionality in a single system as
noted by Ovum’s Clive Burrows:

Gathering management information is
greatly simplified if change features are
part of the CM system—without them,
complex cross-references between different
databases are required, and full navigation
and searching may not be possible.

Unfortunately, many CM vendors have
developed their own add-on capability in
this area using new development tools, dif-
ferent databases, and even a different style
of user interface. In some cases, the only
area of commonality is the product "badge"
created by the marketing department [3].

In practice, the buy vs. build decision
is not an either/or solution. This author
sees a lot of organizations that use COTS
products for some CM requirements and
"roll their own" CM database to handle
status accounting and project manage-
ment requirements. Here are three such
organizations.

Three Air Force Examples
1. In the 1980s, the Automatic Test

Equipment projects in TIS at Hill
AFB had developed an in-house
database in dBase IV, a nonrelational
database tool available from Inprise
Corporation (formerly Borland). In
1997, TIS used its own software
developers to migrate the database to
a Microsoft Access implementation to
control the status accounting require-
ments for configuration management.

When TIS was contracted to

January 2000 CROSSTALK The Journal of Defense Software Engineering 11

The CM Database: To Buy or to Build?
Reed Sorensen

Computerized Thermal Imaging Inc.

For some organizations, it makes sense to develop a database system that supports reporting, auditing,
problem tracking, and certain project management (PM) functions rather than buy a commercial
configuration management (CM) product that additionally provides capabilities such as version
control, build, merge, and conflict identification. This article provides examples of organizations that
have developed a CM database and discusses the relationship between the PM and CM disciplines.

act ual progress with respect to planned progress
indi vi dual resource prof iles (ski lls, labor rat e)
work breakdown struct ure codes
and associ ated fields
dependenci es for proj ect tasks
proj ect cal endar
schedul e im pacts due to increased workl oad
flexi ble cost report ing (e.g. by account , depar tm ent)
cri tical path
Gantt char t vi ew of proj ect schedul e

list of conf igured item s
m ap changes/ probl em s to engi neer assi gned
status of probl em /changes (open, deferred, cl osed)
repor t progress on probl em /changes
versi on inform ation
di fferences between versi ons
file revi si on history

Table 2. Representative CM Information

Table 1. Representative PM Information

12 CROSSTALK The Journal of Defense Software Engineering January 2000

Lessons Learned

configuration manage the GTACS 3

software, it followed the Program
Office mandate to use and implement
CCC Harvest. The GTACS software
development community required a
robust code management tool. After a
year of working with Harvest, TIS
chose to keep its Microsoft Access
database for another year and then
migrate it to Oracle and also retain
CCC Harvest. The bottom line was
that it needed Harvest for the code
management and it liked its in-house
developed database for information
management.

2. CIDSS at Peterson AFB maintains the
software for the Space Environmental
Support System. It chose Microsoft
Access to implement Project Logging
and Tracking Tool (PLATT), a data-
base that tracks requirements submit-
ted by the customer as well as internal-
ly generated software maintenance
tasks. While not experienced with
Microsoft Access as a development
tool, one CIDSS person with strong
software development background and
the ability to learn implemented the
database. Version control of software
code at CIDSS is implemented using
Configuration Management System by
Digital Electronics Corp.

3. TISHB at Hill AFB develops opera-
tional flight software for the F-16
multirole fighter. For the past seven
years it has used a database that
TISHB developed to track changes to
the software and associated test
stands. The approach has been suc-
cessful for at least two reasons:
1) the Sybase Server used to imple-
ment the database is used for several
other applications and was already
available when the buy or build deci-
sion was made.
2) the responsiveness of in-house
Sybase expertise means changing
requirements are implemented readily.
As a capability becomes obsolete, it is
deleted from the system. Version con-
trol, file merging, and build manage-
ment are implemented at TISHB
using Concurrent Versions System
freeware with a user interface that

TISHB developed.

There is a common thread in these three
scenarios. All of the above organizations
are using some COTS product for CM,
but also chose to implement a database
on their own.

Recommendations
Define your process and requirements.
Whether you buy or build, half the battle
is defining your requirements [4].
Requirements drive your database design
and implementation, or your evaluation
and customization of a COTS product.
Documenting your current approach to
CM is part of the definition task. You may
also have in mind a desired future process
that differs from the current process; if so,
also document the future process.

Walk, do not run.
As a manager, can I live with my current
mode of operation, and if so, for how
long? Boeing's approach to developing a
database over several years was successful
for them [5]. You will need to trade off
the time required to implement a data-
base vs. the cost and quality issues to
implement that database. Faster imple-
mentation means more initial expense
(purchase or development) or less quality
(less functionality and/or more bugs).

Use as little automation as practical.
Some level of automation will be appro-
priate in managing the data that answers
the questions posed in this article’s intro-
ductory paragraph, but you will want to
use as little as practical. This will maxi-
mize your answers and minimize the cost
of maintaining the automation. Do not
maintain a high-end tool when a spread-
sheet will provide the answers.

Conclusion
As a manager, do I have internal expertise
that is available for implementing a solu-

tion based on my well-defined require-
ments? Do I have the needed database
development tools available? If so, the
build option is attractive. Table 3 is a rep-
resentative list of database development
tools.◆

About the Author
Reed Sorensen serves in configuration man-
agement, quality assurance, and technical
publication roles at CTI (Computerized
Thermal Imaging Inc.),
which deploys thermal
imaging and associated
technologies for use in
medical screening, diagno-
sis, and patient manage-
ment. Sorensen has more
than 20 years experience:
1) developing and main-

taining software and documentation,
and

2) improving configuration management
and documentation processes.

He has published articles in CROSS-TALK on
various software related subjects.

Computerized Thermal Imaging Inc.
476 Heritage Park Blvd., Suite 210
Layton, Utah 84041
Voice: 801-776-4700
Fax: 801-776-6440
E-mail: reeds@siinet
Internet: http://www.cti-net.com

References
1. EIA/IS 649 National Consensus Standard

for Configuration Management, August
1998, page 1

2. Ovum Evaluates: Configuration
Management, 1999, Page 12.

3. Burrows, Clive. “Configuration
Management: Coming of Age in the
Year 2000.” CrossTalk, March 1999.

4. See Susan Grosjean’s Building a
Configuration Management Database:
Nine Years at Boeing, in this issue.

5. IBID.

Product Vendor ht tp: //
DB2 IBM Corporat ion www.sof twarei bm .com /data/db2
Inform i x I nform i x Software Inc. www.inform ix.com
dBase I nprise Corporat ion www.inprise.com
Access M i crosof t Corpor ation www.m icrosof t.com /office/ access
SQL Server M i crosof t Corpor ation www.m icrosof t.com /sql /?RLD=183
Visual FoxPro M i crosof t Corpor ation m sdn.m icrosof t.com /vf oxpro/
Oracl e Oracl e Corporat ion www.oracl e.com
Sybase Sybase, Inc. www.sybase. com

Table 3. Some database development tools and vendors that may or may not be useful for your organization 4

January 2000 CROSSTALK The Journal of Defense Software Engineering 13

Notes
1. Configuration management principles

underlie sound business practices used
throughout industry and government to
provide: . . . Access to accurate informa-
tion essential to the product's develop-
ment, fabrication, production, use,
maintenance, procurement, and eventu-

al disposal.
2. ...in future the scope of what is consid-

ered to be CM will undoubtedly include
strong links with project management
systems.

3. Ground-based C2 elements of the Theater
Air Control System supporting air opera-
tions performed by the Combat Air
Forces.

4. This is a representative list, not an
exhaustive one. The list is for informa-
tion only; no endorsement of these
products or vendors is implied.

The CM Database:To Buy or to Build

If your experience or research has pro-
duced information that could be useful to
others, CROSSTALK will get the word out.
We welcome articles on all software-
related topics, but are especially interest-
ed in several high-interest areas. Drawing
from reader survey data, we will highlight
your most requested article topics as
themes for future issues. In future issues
of CROSSTALK, we will place a special, yet
nonexclusive, focus on:

CMMI
June 2000

Submission deadline: Feb. 1, 2000

Personal Software Process and
Team Software Process

July 2000
Submission deadline: March 1, 2000

Object-Oriented Technology
August 2000

Submission deadline: April 3, 2000

We will accept article submissions on
all software-related topics at any time;
issues will not focus exclusively on the
featured theme.

Please follow the Guidelines for
CROSSTALK Authors, available on the
Internet at http://www.stsc.hill.af.mil.

Ogden ALC/TISE
ATTN: Heather Winward
7278 Fourth Street
Hill AFB, Utah 84056-5205

You may e-mail articles to
features@stsc1.hill.af.mil.
or call 801-775-5555 DSN 775-5555.

Call for Articles

In an effort t o k eep C ROSSTALK’s mailing database up- to-date we would like to know what is new with you.

Fill out our easy- to-use form at http://www.stsc.hill.af.mil/Crosstalk/crostalk.html (click ‘subscription form’)

or respond in writing at:
fax: 801-777-8069
e-mail: stsc.custserv@hill.af. mi l
mail: CrossTa lk
O O-ALC/TISE
7278 F ourth Street
Hill AFB, Utah 84056-5205

Your information will be promptly updated and you will continue to receive all the latest software
engineering information from C ROSSTALK The Journal of Defense Software Engineering.

(First-time readers, please fill out the free subscription form located between pages 16 and 17
or visit our web site at http://www.stsc.hill.af.mil/Crosstalk/crostalk.html)

Have you changed your suit?
New job? Different e-mail address? Updated contact information?

This author considers the role learning
typically plays in technology adoption
through lessons learned and training,
extending more recently to the use of
repositories. This is contrasted with mod-
els that support learning and successful
change more actively—through improve-
ment frameworks and tools—as illustrat-
ed by the examples of IDEALSM, an
established model for software process
improvement,1 and the IDEALSM-based
New Technology Rollout (INTRo), a
web-based process guide for technology
change management.2

Learning is the fuel for technology
change management. In turn, the creative
exploration and exploitation of technology,
knowledge, and processes are critical ingre-
dients for realizing learning organizations.
Once we recognize these interdependencies
and the need for knowledge integration,
we will be able to move away from educa-
tion and training-by-firehose instruction
toward the next generation of approaches
and mechanisms to support communica-
tion, coordination, and collaboration.

Why is Learning Important?
Technology change management is not
an isolated activity but a process that
touches many of the socio-technical
activities at work in an organization.
This bigger picture of technology change
management includes business and work
processes, and technical systems, as well
as processes related to group dynamics
and collaboration.

The connection is clear. When we ask
people to change how they do their work,
as we do in improvement or technology
adoption efforts, we are asking them to
learn. If you pay attention to how people
learn, you will be capable of more effec-
tive change management. Learning and
technology change management reinforce

one another. If you are smart about how
you manage change, you will help make
your workplace a learning organization,
and that will pay off in many ways.

Learning is the keystone for dealing
with the high number of failed change
efforts, the rapid rate of change in informa-
tion technology, and the need for new org-
anizational and management constructs.
Why is learning important?
• Approximately 70 percent of business

process re-engineering efforts, or
redesigns, fail [1,2]. The number and
degree of failures would decline if we
paid attention to connections between
technology adoption and learning.
Resistance is typically trivialized and
resistors are seen as people that need
handling. In fact, resistance can antici-
pate and surface flaws in intent, design,
and implementation, and be a predic-
tor of problematic and high-risk
endeavors [3].

• Work groups of the 21st century will
manage change in dynamic situations.
Older freezing and refreezing
metaphors from organizational devel-
opment are inadequate [4]. Multimedia
technologies and practices supporting
process change, modeling, simulation,
and collaborative and distributed work
are key. Skill sets in the new work force
that allow for flexibility, speed, and
experimentation will be prized. We
must learn how to learn.

• Traditional management constructs are
outdated. Managers and practitioners
express different kinds of fearfulness
about adopting certain innovations,
specifically process automation, work-
flow technologies, and groupware [5,6].
We must address the incompatibilities
between collaborative technologies and
organizational hierarchies and bureau-
cracies if we are to ease the transition to

newer forms of work groups, including
high-performance teams, self-directed,
autonomous teams, and integrated
product (process or practice) teams.

What About TCM in the CMM?
We can already see a rethinking of tech-
nology change management in proposed
changes to the Capability Maturity
Model for Software (SW-CMM v1.1.)
Draft C of the SW-CMM, enlarges the
scope for technology change manage-
ment: the purpose of Organization
Process & Technology Innovation “is to
identify process and technology improve-
ments and innovations that would meas-
urably improve the organization’s soft-
ware processes, thereby helping achieve
the organization’s software process
improvement goals.”

The transformation of Technology
Change Management into Organization
Process and Technology Innovation is a
step toward a more robust and innovative
approach. However, much remains to be
understood about these activities, espe-
cially about how they are operationalized.

Are we ready for technology change
management and learning organizations?
Yes, more than ever. We are at a water-
shed with the potential to get leverage
from experience in process improvement,
our intellectual investment in organiza-
tional learning, matching our interests
with enabling information technology.
But first, how are we learning now?

Learning: The Current State
If we were to describe how learning takes
place in our organizations, chances are we
would say it occurs through:
• training

Learning: The Engine for Technology Change Management

Linda Levine
Software Engineering Institute

This is the second part of a two-part article. Part one, published in November, explored the adaptations
needed in the process movement and knowledge-creation approaches to achieve the vision of a learning
organization. Part two looks at learning in practice by examining some frameworks and tools that pull
together process, knowledge management, and technology to support learning and effective change.

14 CROSSTALK The Journal of Defense Software Engineering January 2000

The Capability Maturity Model for Software and
SW-CMM are registered in the U.S. Patent and
Trademark Office.

January 2000 CROSSTALK The Journal of Defense Software Engineering 15

Learning:The Engine for Technology Change Mangement

• professional development
• lessons learned documents
• war stories
• process asset libraries (PALs) or

repositories

Training and professional development
are usually associated with individual
learning. Project learning can be captured
when lessons are documented; war stories
are sometimes shared informally with
others. Such stories convey valuable,
undocumented learning (that may be
imprudent to record) gained during the
life of a project. When and where are
these lessons applied? A good question,
and one most organizations fail to
address. Process asset libraries represent
our best current attempt at information
sharing and organizational learning,
where artifacts (process and method
descriptions, plans, standards, policies,
templates, forms, etc.) are made available
for adaptation and reuse through reposi-
tories. Too many of these libraries, how-
ever, degrade to online file cabinets or
archives. The repository’s role as coordi-
nating mechanism—a forum and space
for information sharing and exchange—
in the larger learning environment is
never realized.

Our understanding of the organiza-
tion as a structure, as building and edi-
fice, drives how we tackle learning and
work. We build complementary forms in
the same image as the organization—
whether these forms are products or proj-
ects or teams—in order to handle prob-
lems. The challenge awaits to envision
and internalize a newer understanding of
the structure of the organization as a per-
meable, flexible, virtually networked
locus of activity. If we accept this chal-
lenge and the shift it represents, gradually
we will gravitate to solutions that empha-
size transaction and interaction, and serve
as vehicles for communication and col-
laboration. As our experience base grows,
so will our ability to work in solution
spaces where learning is valued.

Active and Interactive

Learning: The Desired State
“The lecture is the most inefficient method
of diffusing culture. It became obsolete

with the invention of printing. It survives
only in our universities and their lay imita-
tors, and a few other backward institu-
tions…. Why don’t you just hand print lec-
tures to your students? Yes I know. Because
they won’t read them. A fine institution it
is that must solve that problem with plat-
form chicanery” [7].

The models and mechanisms for organi-
zations of the 21st century will support
learning by doing—communication,
coordination, and collaboration—in an
interactive mode. Now, we primarily
learn from discrete events in which we are
involved, and we have scant understand-
ing of the work and learning of others.
Consequently, we fail at lessons applied
on a triple score.

1. Few incentives explicitly encourage
lessons applied and information
sharing;

2. Even fewer mechanisms transfer
knowledge across teams and parts of
an organization;

3. We rarely reflect on the learning
process. Chris Argyris offers a valu-
able characterization.

Argyris distinguishes between single-
loop learning, which asks a “one-dimen-
sional question to elicit a one-dimension-
al answer.” He offers the example of how
a thermostat measures temperature
against a standard setting and turns the
heat on or off accordingly. He contrasts
this with double-loop learning, which
“takes an additional step or, more often
than not, several additional steps. It turns
the question back on the questioner. . . .
In the case of the thermostat, for
instance, double-loop learning would
wonder whether the current setting were
actually the most effective temperature at
which to keep the room and, if so,
whether the present heat source were the
most effective means of achieving it. A
double-loop process might also ask why
the current setting was chosen in the first
place. In other words, double-loop learn-

ing asks questions not only about objec-
tive facts but also about the reasons and
motives behind those facts” [8].3

Double-loop learning describes the
active learning we have been emphasizing.
The benefits for knowledge integration
and transfer across organizations and com-
munities are also evident; this was the
topic for Part One of this article. The
practical question remains: What early
examples do we have of frameworks or
tools that try to pull together process,
knowledge management, and technology
to support organizational learning? Two
such examples are IDEAL (Initialing,
Diagnosing, Establishing, Acting,
Leveraging), a high-level model for soft-
ware process improvement, and the
IDEAL-Based New Technology Rollout
(INTRo), a web-based process guide for
technology change management. INTRo
was designed with the principles of organi-
zational learning and knowledge manage-
ment in mind. We consider these examples
and the role that learning plays in each.

The IDEAL Model
The IDEAL model was conceived as a life
cycle model for software process improve-
ment based upon the CMM for software.
The model provides a disciplined engi-
neering approach for improvement,
focuses on managing the improvement
program, and establishes the foundation
for a long-term improvement strategy [9].
Following the phases, activities, and prin-
ciples of the IDEAL model has proven
beneficial in many process improvement
efforts. The model consists of five phases
listed below.

Development of IDEAL was prompt-
ed by requests from people who were
engaged in Software Process Improvement
(SPI) initiatives based upon the SW-
CMM. The original model incorporated
results of fieldwork the Software Engin-
eering Institute (SEI) had conducted with
early SPI adopters. Designed to satisfy
specific needs, its focus was initially

II Ini tiat ing Layi ng the groundw ork for a successf ul im provem ent effort
DD D iagnosi ng D eterm i ning w here you are rel at ive to w here you w ant to be
EE Establ ishi ng Planni ng the speci fics of how you w ill reach your dest inat ion
AA A cting D oing the w ork accordi ng to the plan
LL Learni ng Learni ng from the experi ence and im provi ng your abi lity

to adopt new technol ogi es in the future

Table 1: The Five Phases of IDEAL

16 CROSSTALK The Journal of Defense Software Engineering January 2000

restricted in terms of breadth and depth.
In terms of breadth, the language used
was process-specific; in terms of depth, it
was seen as a life cycle model for larger,
long-term efforts, such as moving an
organization from one maturity level to
another. The potential for extending the
model’s application to other technology
domains and to efforts of virtually any
size soon became clear, and the SEI
launched an effort to reframe the model
in a way that would facilitate its broader
application. This effort resulted in the
representation shown as Figure 1.

The more generic language used also
opened the door for adopting the IDEAL
Model as a standard life cycle that can be
applied at all levels of activity within any
major change effort (for example, in SPI
terms, a maturity level, a key process area,
a key process area component, and an
activity).4 Some find the multiple levels
of applicability helpful.

In the learning phase of IDEAL, the
adoption or improvement experience is
reviewed to determine what was accom-
plished, whether the effort met the
intended goals, and how the organization
can more effectively or efficiently imple-
ment change in the future. Addressing any
and all of these concerns represents active
or double-loop learning.

As a whole, the model reinforces
learning through the concept of continu-
ous process improvement, but clearly

IDEAL locates specific learning activities
in the learning phase. Some have
observed that learning should not reside
in one phase (as after-the-fact reflection).
Instead, learning needs to be recognized
as an interwoven process thread. How-
ever, threading has not been expressly
called out in the existing model.

INTRo
INTRo is a web-based process guide
focused on making connections among
business problems, value propositions,
technology solutions, and their imple-
mentation.5 INTRo was designed to help
organizations adopt and implement new
tools or technology. Since many such
efforts are complex, and the effects so far

reaching, a structured approach is
required. Successful technology
change management also requires
comprehensive knowledge and
skills that often do not reside in a
single organization, individual, or
team. Typical practitioners do not
have the full range of skills needed
to manage technology adoption.
INTRo helps to fill the skill gap.

All approaches to technology
change involve assumptions and
expectations about what is central in
a change effort. Many see “new
technologies dominating the
improvement effort; others focus on
changes in process or business prac-
tices; some perceive organizational
change. Very few, however, perceive
change in multiple facets of the

organization (process, technology, people,
culture, organization); they commonly
recognize change in no more than one or
two dimensions [10]. INTRo was
designed to recognize the multiple dimen-
sions of change, including multiple sub-
systems in the organizational system, and
to integrate these perspectives.

IDEAL provides a usable, under-
standable approach to continuing
improvement by outlining the steps nec-
essary to establish a successful improve-
ment program. INTRo goes further,
embodying the detailed how-to informa-
tion needed to manage the introduction
of a new technology, organized into a
work breakdown structure of stages,
steps, and tasks. Tips, checklists, guide-
lines, and tutorials accompany process
descriptions. Related work products, such
as a project schedule, a configuration
baseline, and a training strategy, are also
included in template form.

INTRo consists of seven stages, as
summarized in Table 2.

Learning in INTRo
INTRo departs structurally from IDEAL
and learning is not treated separately. Tasks
that facilitate knowledge integration are
interwoven. Learning is built into the
process, rather than accounted for at the
end in a lessons learned or post-mortem
activity. The approach to knowledge
integration is accomplished a number
ways, and each of these is discussed briefly.

Lessons Learned

Figure 1: The IDEAL Model

Paral lel or sequent ial
inst antiations of
Breakt hrough to fine tune
the com plete Solution

INTRo Process Overview

Project Ini tiation

Organi zat ional
Analysi s

W hole Product
Design

Technol ogy Select ion
and Test ing

RolloutIterations

Technol ogy- Based
Solution Defini tion

Breakt hrough

Figure 2: IDEAL-Based New Technology Rollout

Set
Context

Build
Sponsorshi p

Chart er
Infrast ruct ure

Charact eri ze
Current &
Desired States

Develop
Recom m endations

Set
Pri ori ties Develop

Approach

Plan
Actions

Creat e
Solution

Pilot/Test
Solution

Refine
Solution

Im plem ent
Solution

Analyze
and
Validate

Propose
Future
Actions

Stim ulus for Change

Ini tiating

Diagnosi ng

Establ ishi ng

Acting

Learni ng

January 2000 CROSSTALK The Journal of Defense Software Engineering 17

• stage management and stage end
assessment activities

• process and product improvement
activities

• knowledge and skills transfer mecha-
nisms and strategy

• just in time: techniques, tutorials, relat-
ed kernals

• process threads
• coordinating mechanisms

Stage Management, Stage-

End Assessment Activities
After project initiation, all of the stages
begin with a stage management step and
end with a stage-end assessment step.
Stage management sets the stage and
ensures the readiness to begin, with tasks
that include kickoff, monitoring of proj-
ect progress, issue identification and reso-
lution, and management of exceptions.
Stage-end assessment, at the end of a
stage, involves reviewing and baselining
project/deliverables and preparing for the
next stage.

Process and Product

Improvement
Stage-end assessments sometimes include
process review activities. These reviews
verify that all planned processes have
been completed according to the stan-
dards of the stage. Based on the results,
problem reports or change requests may
be generated—on the process being
audited—to initiate process improvement
activities. In rollout, the final stage of
INTRo, extensive product and process
improvement activities are performed.
These tasks involve review and baseline of
project/deliverables, collection of project
feedback and metrics, metrics analysis,
analysis of product quality, and comple-
tion of process reviews.

Knowledge and Skills Transfer

Mechanisms and Strategy
Key activities highlight learning. For
example, knowledge and skills transfer
focuses on determining the strategy,
including roles and responsibilities, and
mechanisms for knowledge transfer and
support of the new technology after roll-
out when in maintenance mode. The
strategy covers mechanisms that will take

Learning:The Engine for Technology Change Management

SSttaaggeess aanndd SStteeppss
 TTaasskkss:: KKeeyy AAccttiivviittiieess

PPrroojjeecctt IInniittiiaattiioonn

Proj ect K ickof f

Proj ect O rgani zat ion

Product /obj ect M anagem ent Procedures

Schedul ing, Budget , and Control

§ I dent ify busi ness dri vers and object ives; D efine scope;
devel op over al l approach

§ Est abl ish team ; D eterm i ne cost s

§ I dent ify key product s, D efine conf igurat ion m anagem ent,
product revi ew s, product basel ines, reuse st rat egy

§ D evel op schedul e; produce budget ; est abl ish proj ect
cont rol procedures; Perf orm cost /benef it and ri sk anal ysi s

OOrrggaanniizzaattiioonnaall AAnnaallyyssiiss

Requirem ent s D efini tion

Current State Basel ine

D esired State

§ D ef ine high-level requi rem ent s; Collect previ ous change
ef fort inform at ion; D raf t high- level sket ch of the sol ution

§ Revi ew exi st ing processes and asset s; D evelop a busi ness
process m odel of the current st ate; Review techni cal
archi tect ure requi rem ent s; Gather data about cul ture

§ Creat e list of im provem ent s; Invest igate technol ogy ideas;
D esign new busi ness process m odel; Ident ify levers of change,
Ident ify sources of resi st ance

TTeecchhnnoollooggyy--BBaasseedd SSoolluuttiioonn DDeeffiinniittiioonn

Technol ogy- Based Solutions/O pt ions

A pproach for Breakt hrough and Rollout

§ Package sol ution opt ions; Perf orm anal ysi s on m ultiple sol utions;
M ake recom m endat ions; D eterm i ne increm ent s for sol ution;
D evelop plan for acqui si tion; Ident ify product s for eval uat ion

§ D evel op high-level plan for Breakt hrough; D eterm i ne iterat ions for
breakt hrough and rol lout ; D evelop resi st ance m itigat ion st rat egy;
Conduct stakehol der bri ef ings

TTeecchhnnoollooggyy SSeelleeccttiioonn aanndd TTeessttiinngg

A rchi tect ure/Com ponent s
Ident ificat ion & Select ion

Technol ogy Procurem ent

A rchi tect ure Inst al lation & Test ing

N ew Technol ogy Test Scenari os

§ Eval uate and sel ect the techni cal inf rast ruct ure;
Incl ude perf orm ance test ing

§ Revi ew cont ract agreem ent s; O btain requi red si gnat ures;
G enerat e purchase orders

§ I nst al l com ponent s for test ing; Set up user access ri ghts;
Test m ulti-user access and com ponent conf igurat ions

§ Revi ew test resul ts and basel ine archi tect ure

WWhhoollee PPrroodduucctt DDeessiiggnn

Social D esign, Polici es & Standards,

Support M echanism s, Trai ning
Preparat ion

Know ledge Ski lls & Transf er
M echanism s

§ Revi ew resi st ance m itigat ion st rat egy; Revise rew ard, incent ive,
and com pensat ion program s; Restruct ure organi zat ion if needed

§ Est abl ish pol ici es to support the technol ogy; def ine st andards

§ D et erm i ne help desk & techni cal support ; D evelop
docum entation; D eterm ine com m unicat ion m echanism s

§ I dent ify trai ning requi rem ent s for al l rol es/l evel s; D evelop
trai ning st rat egy; D esign or produce trai ning m ateri als;
Pilot the trai ning on those w ho w ill support the new technol ogy

§ Know l edge & ski lls transf er to ensure success af ter rol lout ;
Ident ify user group m em bers and devel op chart er for group

Table 2: Stage, Step and Task Summaries for INTRo

BBrreeaakktthhrroouugghh

Breakt hrough K ickof f

Inst al lation & Solution Test ing

Breakt hrough M onitori ng

§ D et ai l breakt hrough plan; Creat e post inst al lation test scri pts;
Conduct trai ning to breakt hrough team

§ I nst al l inf rast ruct ure com ponent s; Custom ize or conf igure
com ponent s; M igrat e data; Perf orm accept ance test ing;
Test w hole-product sol ution

§ M oni tor and m anage resi st ance; Review sol ution test ing resul ts;
Im plem ent cri tical changes; Schedul e other changes bef ore
rol lout begi ns

RRoolllloouutt

Iterat ive Rollout Planni ng

Rollout Launch

Inst al lation & Custom izat ion

Iterat ive Rollout Review

§ D et ai l the plan for rol lout ; Creat e post inst al lation test scri pts

§ Conduct bri efing w ith rol lout users; Conduct trai ning

§ I nst al l the inf rast ruct ure com ponent s; Custom ize/conf igure
the technol ogy; M igrat e data; Perf orm accept ance test ing; Enable
support m echanism s & other w hole-product sol ution elem ents

§ M oni tor and m anage resi st ance; Review effect iveness of sol ution;
Im plem ent cri tical Change Request s and schedul e rem ai ning CRs
bef ore next rol lout

§ Basel ine busi ness process and techni cal archi tect ure m odels;
Review m etri cs and m ake recom m endat ions for process
im provem ent ; M ake product im provem ent recom m endat ions

18 CROSSTALK The Journal of Defense Software Engineering January 2000

the metrics analysis data, knowledge gath-
ered from technical support, and help-
desk personnel into account. A user
group for process feedback is created.
Information flow is planned among this
group, technical support, and the help-
desk team.

Just in Time Learning:

Techniques, Tutorials,

Related Kernels
INTRo offers techniques and related
kernels of information, in context, in the
web-based guide. For example, the require-
ments definition step includes a technique
on critical requirements analysis; the cur-
rent state baseline step includes techniques
on use case modeling and business process
modeling. Other techniques are provided
for performing personal and walkthrough
reviews, etc.6

Process Threads
INTRo takes a first step in building
process threads for tasks that are related
but conducted at different points in the
process. For example, early in the organi-
zational analysis stage, we begin a thread
related to organizational culture. Cultural
analysis is important: the information
gathered will tell about previous change
efforts that were more and less successful.
The organization’s culture also will influ-
ence our approach for breakthrough and
rollout. The thread is woven into subse-
quent stages, through development of the
resistance mitigation strategy, and the
design of the whole-product solution.
Process threading allows us to build on
previous learning in a topic/area and
emphasizes the iterative nature of solu-
tion development. The so-called answer
on the culture of an organization is not
gained in a single task but through a
series of relevant, related activities per-
formed over time. Initial activities in cul-
ture process thread are summarized in
Table 3.

Coordinating Mechanisms
These make up the engine for knowledge
management. All of the learning features
already described support coordination
and integration. These mechanisms relate
to both the structure and content of
INTRo, and range from
• activities, such as stage management

and stage-end assessment; process and
product reviews

• associated activities: use of process
threads

• artifacts: knowledge and transfer strate-
gy, resistance mitigation strategy, solu-
tion definition, whole-product design,
etc.

• agents: project team, breakthrough
teams, user groups, learning center

Still Learning
INTRo is undergoing end-to-end testing
and the development team is gathering
comments and requirements from reviews
and pilot testing; the next version of
INTRo will incorporate this input.
Version 1.0 established a baseline that
may now be refined and enhanced.

Colleagues working in different cities
and in different organizations co-devel-
oped INTRo. Organizations adopting
new technology also often have the need
to collaborate among distributed loca-
tions—INTRo requires the use of collabo-
rative techniques. We used collaborative
tools to enable our work, and as we were
developing, we captured data on how the
remote collaboration was working. We are
analyzing this data and may encapsulate
practices to be included in future versions
of INTRo that support cooperative work
on virtual or distributed teams.

In many ways, INTRo represents an
intersection among process management,
knowledge management, and collabora-
tion tools and techniques—all crucial
aspects of organizational improvement
and organizational learning. Future ver-
sions will make more deliberate connec-
tions among these disciplines.

Conclusion
In part one, Integrating Knowledge and
Processes in the Learning Organization, we
showed that local adjustments were neces-
sary within the process and knowledge-cre-
ation movements. Within the process
arena, it remains for us to balance process
formalization with process creation by
leveraging individual knowledge and
diverse perspectives through information
exchange. Within the knowledge-creation
arena, the challenge to filter and channel
information for decision-making awaits.
Organizations that support information
sharing and knowledge creation are much
more likely to establish effective and effi-
cient processes and to improve organiza-
tional life [11,12].

In practice, technology change man-
agement represents the fusion of technolo-
gy innovation and process and knowledge
management as it is fully defined, opera-
tionalized, and enacted in a learning
organization [13]. In part two, we looked
at frameworks and tools that pull together
process, knowledge management, and
technology to support learning and suc-
cessful change. We illustrated this with the
IDEALSM model for software process
improvement, and INTRo, a web-based
process guide for technology change man-
agement. To different degrees, and levels of
detail, both support the premises of active
learning. INTRo places greater emphasis
on organizational learning and enabling
technology.

As we approach the 21st century, it is
clear that our understanding of organiza-
tions, learning, and work is still unclear,
changing, and likely to keep changing.
We have yet to envision the future of
organizations—as adaptive, virtual net-
works of activity. If we accept this chal-
lenge and the shift that it represents, we
will begin to effect solutions that reflect
this vision and foster communication,
coordination, and collaboration. As our
experience base grows, so will our ability
to create spaces where active and interac-
tive learning routinely occur.◆

About the Author
Linda Levine leads the effort at SEI on
IDEALSM transition framework develop-
ment, aimed at extending improvement
models into structured processes for tech-

Lessons Learned

OOrrggaanniizzaatt iioonnaall AA nnaallyyssiiss

Requirem ent s D efini tion
Current State Basel ine
D esired State

- Col lect previ ous change ef fort
inform at ion

- G at her data about cul ture
- I dent ify levers of change, Ident ify

sources of resi st ance

Table 3: Initial Activities in Culture Process Thread

January 2000 CROSSTALK The Journal of Defense Software Engineering 19

Integrating Knowledge and Processes in the Learning Organization

nology adoption and rollout. She is a
process developer for INTRo. She also
researches technology suppression, reason-
ing and communication, design disciplines,
and the relationships between organization-
al learning and the use of collaboration
technology. Dr. Levine hs her doctorate
from Carnegie Mellon. She publishes wide-
ly and is the co-founder of the Working
Group (8.6) on Diffusion, Transfer, and
Implementation of Information
Technology, part of the federation for
Information Technology for Information
Technology (IFIP).

Software Engineering Institute
Carnegie Mellon University,
Pittsburgh, Pa., 15213
Voice:Tel. 412-268-3893
Fax: 412-268-5758
E-mail: ll@sei.cmu.edu

References
1. Wellins, Richard S. and Murphy, Julie

Schulz. (1995). Re-engineering: Plug
into the Human Factor. Training and
Development, pp. 49, 33-37.

2. Kock, Ned. (1999). Process improvement
and organizational learning: The role of
collaboration technologies. Hershey, Pa.:
Idea Group Publishing.

3. Levine, L. (1997). An ecology of resist-
ance. In T. McMaster, E. Mumford, E. B.
Swanson, B. Warboys, and D. Wastell
(Eds.). Facilitating Technology Transfer
Through Partnership: Learning from
Practice and Research. IFIP TC8
WG8.6 International Working Conference
on Diffusion, Adoption and
Implementation of Information Technology,
pp. 163-174. Ambleside, Cumbria UK,
London: Chapman & Hall.

4. Schein, E. (1996). Three Cultures of
Management: The Key to Organizational
Learning, Sloan Management Review,
Fall, pp. 9-20.

5. Christie, A.M..; Levine, L.; Morris, E. J.;
Zubrow, D.; Belton, T.; Proctor, L.;
Cordelle, D., and Ferotin, J-E. (1996).
Software process automation: Experiences
from the trenches. (SEI Technical Report
SEI-96-TR-013). Pittsburgh, Pa.:
Software Engineering Institute.

6. Grudin, J. (1995). Groupware and coop-
erative work: Problems and prospects. In
R.M. Baecker, J. Grudin, W.A.S. Buxton
and S. Greenberg, (Eds.), Readings in
Human Computer Interaction: Toward the
Year 2000 (pp. 97-105). San Mateo,

Calif.: Morgan Kauffman.
7. Skinner, B. F. (1948). Walden Two. New

York: The Macmillan Co.
8. Argyris, C., Good Communication that

Blocks Learning, Harvard Business
Review, July-August 1994

9. Gremba, J. and Myers, C. (1997). The
IDEALSM Model: A practical guide for
improvement. Bridge, Pittsburgh, Pa.:
Software Engineering Institute. Also at
www.sei.cmu.edu/ideal/ideal.bridge.html

10.Price Waterhouse Change Integration
Team. (1995). Better change: Best prac-
tices for transforming your organization.
Chicago: Irwin Professional Publishing.

11.Brown, J. S. and Duguid, P. (1991).
Organizational learning and communi-
ties of practice: Toward a unified view of
working, learning, and innovation.
Organization Science 2(1), 58-82

12.Brown, J.S. and Gray, E.S. (1995). After
reengineering: The people are the com-
pany. Fast Company, Premiere Issue,
pp. 78-81.

13.Lundberg, C. C. (1991). Creating and
Managing a Vanguard Organization:
Design and Human Resources Lessons
from Jossey-Bass. Human Resource
Management, 30(1), 89-112.

Acknowledgements
Recent writing on INTRo done with
Geralyn Syzdek (Computer Associates)
and Eileen Forrester (SEI) significantly
influenced this article. I would like to
express my appreciation.

Notes
1. The Software Engineering Institute is a

federally funded research and develop
ment center sponsored by the
Department of Defense. IDEALSM is a
service mark of Carnegie Mellon
University. For more information visit
www.sci.cmu.edu/IDEAL.html

2. INTRo is a collaborative effort between
SEI and Computer Associates (formerly
Platinum technology, Inc).

3. For more of Argyris’ insight, refer to
Argyris, C. (1976). Single- and double-
loop models in research on decision
making. Administrative Science Quarterly,
21(3), 363-375. ; and Argyris, C. and
Schon, D. A. (1996). Organizational
Learning II, Reading, Mass.. Addison-
Wesley, et. al.

4. IDEAL is similar to other improvement
models, (e.g PDCA) but differs in subtle
and important ways (Myers, 1998).
PDCA is an acronym for Plan, Do,
Check, Act: four steps in an improve
ment cycle that is widely used in Total
Quality Management (TQM). This cycle
is described by W. Edwards Deming’s
Out of the Crisis. Deming is well known
as the father of PDCA.

5. INTRo is a co-development effort
between the SEI and Computer Assoc.
(formerly Platinum technology Inc.)

6. These techniques and related kernals are
made available by Computer Associates
(formerly Platinum technology Inc.) as
part of the INTRo co-development
effort. They are process assets in the
Process Library in Platinum’s Process
Engineer tool set.

Suggested Additional Readings

Bannon, L. J. and Kuutti, K. (1996).Shifting perspectives on organizational memory:
From storage to active remembering. In J. Nunmaker and R. Sprague (Eds.), Proceedings
of the 29th Annual Hawaii International Conference on System Sciences, (pp. 156-167).
Maui, Hawaii: IEEE.

Roth, G. L. (1997). Learning Histories: Using Documentation to Assess and Facilitate
Organizational Learning, Working paper, MIT Sloan School of Management. At
http://learning.mit.edu/res/wp/index.html

Schein, E. (1995). Kurt Lewin’s Change Theory in the Field and in the classroom: Notes
Toward a Model of Managed Learning. Working paper, MIT Sloan School of
Management. On the web at http://learning.mit.edu/res/wp/index.html

Schein, E. (1995). “On Dialogue, Culture , and Organizational Learning,” E.M.R.
Spring, pp. 23-29. (reprinted from Organizational Dynamics, Autumn/1993)

Schein, E. (1997). Organizational Learning: What is New? Working paper, MIT Sloan
School of Management. On the web at http://learning.mit.edu/res/wp/index.html

Senge, P. (1990). The Fifth Discipline. N.Y.: Doubleday.

20 CROSSTALK The Journal of Defense Software Engineering January 2000

http://afkm.wpafb.af.mil/ASPs/Def_SubjArea(1).asp
Subject areas in the Air Force Knowledge Management index cover opera-
tions (flying ops, space, intelligence, missile, C2, etc.), logistics, support
(security, personnel, etc.), medical, professional, standardization (scientific
research and development, acquisition, contracting, etc.), special investiga-
tions, history, and command policy.

http://call.army.mil/call.html
Center for Army Lessons Learned virtual research library. This page con-
tains one or more hyperlinks to resources external to the Department of
Defense. These hyperlinks do not constitute endorsement by the Center
for Army Lessons Learned.

http://www.safaq.hq.af.mil/acq_ref/bolts/bolt10/lb10_team/final_report/acqpla15.html
Lessons Learned and the Navy "Turbo Streamliner." The Navy has developed an electronic compendium of lessons learned in
applying acquisition reform which may be particularly helpful in reviewing requests for proposal, but also provides valuable
information to request for proposal writers. The Navy's program, an interactive tool called "turbo streamliner," was the product
of a centralized request for proposal review team established to assess how well acquisition reform has been incorporated into
Acquisition Category I requests for proposals.

http://llis.nasa.gov/
The purpose of the NASA Lessons Learned Information System is to collect and make available for use the lessons learned from
almost 40 years in the aeronautics and space business. Access is restricted to NASA, approved NASA contractors, and other
approved United States government organizations. Use requires either Netscape 4.0 or higher and Internet Explorer 4.0 or higher,
and activating the browser's Java capabilities. Only a Java-capable browser will be able to navigate the site fully.

http://joy.gsfc.nasa.gov/modsd/lessons.html
The Mission Operations and Data Systems Directorate has developed a broad and exhaustive wealth of knowledge about ground
data systems based on many years of experience engineering, developing, integrating, maintaining, and operating them. Key infor-
mation is captured in a lessons learned database Reusable Experience with Case-Based Reasoning for Automating Lessons Learned.

http://www.cnsl.spear.navy.mil/Y2K/cnsly2k/support-faq/lessons.htm
Army and Navy Year 2000 Lessons Learned

http://ryker.eh.doe.gov/ll/sells/faq.html
The Society for Effective Lessons Learned Sharing develops fact sheets to help lessons learned professionals implement and improve
lessons learned programs. Subject areas include, but are not limited to, a lessons learned list server, tips for writing lessons learned
documents, corrective action, and program review criteria.

For a humorous look at Lessons Learned . . .
http://top7business.com/archives/1998/09/090998.html
Top 7 Lessons Learned While Growing Up on the Farm

http://members.tripod.com/~musone/learned.html
One Man’s Look at Personal Lessons Learned

Lessons-Learned Web Sites

January 2000 CROSSTALK The Journal of Defense Software Engineering 21

With defense and commercial technology so tightly interwoven,
developers must evaluate commercial and other off-the-shelf1

options—and a client must evaluate the developer’s proposed
solution—in practically every project undertaken. An evaluation
is best carried out by engaging in a cost-benefit analysis: costs
and risks of implementation vs. benefits delivered. This paper
presents the criteria for this analysis.

No Free Lunch

Off-the-shelf software may offer tremendous benefits but there is
no such thing as a free lunch. Any department manager forced to
support desktop software and locked into an endless upgrade
cycle can tell you that.2 The essential drawback to off-the-shelf
solutions is that they do not allow absolute control over the origin
and often the ongoing baseline of code upon which they rely.

These are a few of the cautions that go with using off-the-
shelf software:
Items are often unique. Uniqueness demands that developers
adapt to new ideas and methods, which can be time-consuming
and costly.
The efficacy of stand-alone applications is debatable. Advertising
does not always translate into reality, and this may lead to costly
technical resets.
New paradigms may be unwelcome. Off-the-shelf technologies
may satisfy user needs, but may be incompatible with current
doctrine.
Implementation may not be rigorous enough. An off-the-shelf item
may not be developed to the performance standards required in
some applications.
Coverage may only be partial. Off-the-shelf software may not be
intended specifically for the target application and so may offer
only partial solutions.
Vendor support may be critically unavailable. Outside developers
are not directly under your control and are often not available
when most needed.
Products may be volatile. Volatility can increase maintenance costs
as technical-refresh requirements are increased. As support for a
baseline technology disappears, advanced obsolescence may be the
result.

Do not let everything above scare you, for off-the-shelf soft-
ware still is fundamentally a good thing. The task is to maximize
the return on its use while minimizing potential drawbacks.

Off What Shelf?
The many flavors of “off-the-shelf” range from fully commercial-

off-the-shelf (COTS) to simply reused code. Our classification
scheme is provided as a framework for thinking about the suc-
cess factors that follow, and also to dispel the notion of COTS as
a monolithic entity. Everything in Chart 1 can be COTS.

Nonembedded items are essentially stand-alone applica-
tions, while embedded items undergo tight integration directly
into delivered systems. The latter are further divided into adapt-
ed software (old code, designs, modified applications) vs. com-
ponents intended for reuse (programming libraries, application
program interfaces, stand-alone code such as DLLs). As Chart 2
shows, the choice between using embedded and nonembedded
items partially rests with how specialized the application is.

Integration Factors
To get an off-the-shelf item ready for use, you have to integrate
it. Integration is the cognition and effort required to get some-
thing you did not create to work properly. This can be as simple
as installing something like a commercial word processor on
your desktop, or as complex as the big-team, multiyear effort
required for integrating enterprise resource planning software.

The following sections cover the interrelated components of
an off-the-shelf implementation analysis: criticality, scope, and
“meta” and “micro” success factors. Analysis components must
be linked to assess the significance, risk and prospects for fulfill-
ing integration (See Table 1).

Off-the-Shelf Software: Practical Evaluation

Lee Fischman and Karen McRitchie
Galorath Incorporated, The SEER Product Developers

This article provides practical advice on evaluating off-the-shelf software by exploring the constellation of success
factors common to all such software, from stand-alone applications to low-level components. The article attempts
to reduce much of what has been discussed in previous literature into a few succinct sections. The factors that we
develop are particularly suited to evaluating contractor proposals for utilizing off-the-shelf solutions.

"Not Invent ed Here"

Em bedded Not Em bedded

Adapted Com ponent
Integration

Extent of reuse desi gned into off-the-shel f item

Chart 1 Framework for considering COTS success factors

Effort Ful fillm ent
of Proj ect

G oals

Risk to
O veral l
Proj ect

Scope Size of the job X

Cri tical ity Critical ity of integration effort to
over all appl icat ion requi rem ents

X

“M eta” Fact ors High-level indicat ions of success X X

“M icro” Fact ors Low-level indicat ions of
integration effort

X

Table 1 Assessing significance, risk, integration prospects

22 CROSSTALK The Journal of Defense Software Engineering January 2000

Lessons Learned

Criticality
If an integration effort fails, what must be done to insure the
entire project is not jeopardized? Any management approach
with (the hope of) strong risk controls must extend its realm
into off-the-shelf issues as well:
• Do alternate off-the-shelf options exist as backups?
• Has an up-front evaluation insured that failure will not occur?
• If this off-the-shelf integration effort fails, can the project

stand to lose the functionality?
Scope
Integration factors are only useful when the scope of the inte-
gration effort is understood. For example, a large project with a
small integration task does not face much risk due to integra-
tion uncertainties. We present two scoping methods depending
on the amount of knowledge you have:

Quick Sizing—Although an imprecise method, quick sizing
does not require much information and it can be used either
with code-level or “black box” integration. The idea is to estab-
lish the magnitude of off-the-shelf items by deciding whether
(by fuzzy analogy) they simply are small, medium, or large. This
magnitude is then adjusted by the proportion of the application
that will be used. Table 2 illustrates the process:

Attribute Sizing—This method yields fairly precise indications
of size, although its use is limited to code-level integration. A size
metric of some sort is used to quantify the off-the-shelf software;
we recommend the number of functions and data tables actually
being used. If the software is object-oriented, its number of par-
ent classes and methods across all instantiations might be count-
ed. Alternate metrics could probably be substituted with similar
intent, although correlation with effort needs to be determined.

“Meta” Factors
The factors laid out in Table 3 are most appropriate for high-
level evaluation of reuse plans,4 particularly when compared
against column entries representing key management objectives.
A client or program office could use these as a scoring chart to
gauge the relative merit and risk of contractor proposals for
integrating off-the-shelf solutions. We have provided our assess-
ment of factor impacts with arrows indicating positive or nega-
tive effect; darker arrows represent a more definite effect.

There is not enough space to discuss how all row weight-
ings in Table 3 were derived, but we will discuss the process
behind “Maturity/Stability of Product” to give an idea of the

thought process involved.

Development Schedule—The less mature a product, the greater
the frequency of more significant upgrades. Waiting for upgrades
could introduce development lags.

Project Risk—A more mature, stable product reduces risk by
having a well-understood COTS baseline to work with.

Purchase Price—A less mature product could cost less to
induce purchases, but it could cost more because the developer
needs to recoup costs.

Development Cost—Lower maturity implies increased compo-
nent volatility, and changes will take time for developers to learn.

Maintenance Cost—A mature product will refresh less and
require less ongoing effort to incorporate new versions.

Quality—The likelihood of undetected defects greatly increases
with a less mature product, therefore, maturity will increase
delivered quality.

As you can see, the weighting process is quite intuitive;
comparative weights are recommended instead of absolute,
numerical ones. Weightings can vary significantly depending on
the component and project, so we recommend you re-evaluate
weights as necessary. Evaluate off-the-shelf options against a cus-
tom-developed one, if that is the alternative.

“Micro” Factors
These factors are intended to address detailed integration issues
involving off-the-shelf code. A developer could use these to
gauge reuse risks and potential costs at a highly detailed (perhaps
component) level.

OFF-THE-SHELF PRODUCT CHARACTERISTICS

Component Type—The level of access provided, and required.
Ranges from pre-existing code requiring extensive modification
to pre-built, encapsulated components with discrete interfaces.

Component Volatility—How mature is the product, how often
will it be upgraded, and to what extent? Ranges from an alpha
release to a highly mature product.

Component Application Complexity—The difficulty of the
application, in terms of the amount of study and experience
required to become proficient in using it. Ranges from a simple,
general application to one that is very peculiar and difficult to
fully understand.

Interface Complexity—The design and coding overhead

Extent of Funct ional ity That Is Used

e of O ff-the-
el f Softw are

Exam ples Som e (< 40 %) M uch (30 – 70%) M ost (> 60%)

Sm all M i nor set of funct ions that del iver
funct ional ity at a subsyst em level with no

further m ethodol ogi cal ram ificat ions; m inor
appl icat ion (text edi ting, etc.) to be

incor porated into target syst em .

Very Sm all Sm al l Sm al l

M edium M ajor set of funct ions that requi re a
“m ethodol ogy shi ft”; m ajor subsyst em , such
as a database engi ne or graphi cs render ing.

Sm all M edi um M edium

Large M aj or library that is fundamental to proper
expl oitation of the target envi ronm ent;

primary appl icat ion that will be m odified
to cur rent requi rem ents, such as deskt op
sof tware or highl y appl icat ion-speci fic

sof tware.

M edium Large Large

O ff-the-
Shelf

 Custom
O ff-the-Shelf

Very
com m on

Highly
speci fic

Fully
Custom

Im plem entation
cost

Chart 23 Degrees of application specialization

Table 2 Quick-sizing magnitude of off-the-shelf items

Size of Off-
the-Shelf
Software

January 2000 CROSSTALK The Journal of Defense Software Engineering 23

required to integrate this component.
Ranges from a simple, stable interface to
one that incorporates many factors that
change with the circumstances of imple-
mentation.

Product Support—The degree of access
to vendor or effective third-party support.
Support may be as good as an onsite con-
sultant or as nonexistent as a disbanded
original development team.

INTEGRATION INSTANCE

Component Selection Completion—
The extent to which the off-the-shelf com-
ponent has been identified and evaluated.
Ranges from selection completed to no
product evaluations done.

Experience With Component—The
developers’ experience with the compo-
nent: Is each integration of this a signifi-
cantly new and complex task, or has it
become a standard operation?

Learning Rate—Rate at which people can
learn while implementing a component.
Ranges from exceptional opportunities for
learning-while-doing to a massive task
with very little opportunity for learning-
while-doing, with each integration being
new territory.

Reverse Engineering—The percentage of
component functionality that must under-
go thorough review by technical staff.
Ranges from “black box” to line-by-line
review and testing.

Component Integrate and Test—The
integration effort required for this com-
ponent; rank this against what typically is
required to integrate a home-grown unit
of code into a software program. Ranges
from above-average, intimate dependen-
cies that need to be addressed to virtually
no effort to be integrated into the target
system.

Test Level—The rigor and formality of
testing is related to contractual require-
ments and the potential for loss if the soft-
ware malfunctions during operation.
Ranges from “highest reliability” or “public
safety” (rigorous testing, following pre-
scribed plans, procedures, and reporting)
to “slight inconvenience” (minimal testing,
no prescribed procedures or reporting).

For a risk analysis, these micro-factors
can be ranked using the suggested ranges,
compiled with a weighting scheme, and
overall scores can be compared for differ- Table 3 Factors for high-level evaluation of reuse plans

Notes D evelopment Pr oject Of f-the-shelf D ev elopment Maintenance Quality
S chedule Risk Purc hase & Integra tion Cost

Price Cost
Target project/environment
Openness Highly stan-
of architect- dardized, able
ture to accomodate

wealth of pre-
built compo-
nents under
stable, well-
understood
conditions

Flexibility of An envelope,
requirements rather than a

rigid bench-
mark, within
which an inte-
grated item’s
performance
and function
can lie

Attitude of Progressive
staff s taff with a

desire to bal-
ance what is
new and good
with a fair de-
gree of caution

Evolutionary A system ar-
emphasis in chi tecture and
system re- interfaces that
quirements are robust

enough to
accomodate
significant pro-
duct upgrades

Off-the-shelf product and provider
Maturity/stabi- Proven over
lity of product time and in the

marketplace
Commercial A well-devel-
competitive- oped market
ness of pro- with numerous
duct suppliers
Supplier A bi l i ty t o
“reputation” support and

respond over
the long term

Evolutionary V ersion
emphasis in changes are
product not radical,
strategy and are inclu-

sive of the
existing cus-
tomer base

Transparency Insight into—
and ability to
modify if nec-
essary—inter-
nals of code

Refresh Pace with
Frequency which new

versions are
released, and
extent of
modification

Functional Appropriate-
match ness of off -the-

shelf item to
the current
application

Performance Suitability of
sui tabi l i ty off-the-shelf

item to
application’s
performance
requirements

i ii i ii ii h

ii ii i ii hh

i ii i i h

ii i ii hh

i ii ii ii hh
ii ii hh

ii h ii hh

ii ii hh

ii ii h i ii hh

hh hh h hh

ii ii ii ii hh

ii ii ii ii hh

ent components within a project. We also find that component
integration is somewhat analogous to other kinds of software
reuse, and we have mapped these factors into cost determinants
of reuse effort to obtain a rough integration cost model.

Running the Cost-Benefit Analysis
There are two kinds of off-the-shelf vs. custom comparisons,
easy ones and hard ones. It is not worth dwelling on the easy
comparisons, such as whether to build something like a word
processor from scratch or buy one. However, the more difficult
choices will need a cost-benefit analysis. Costs and benefits may
not always be expressed in dollar amounts; if this is the case,
then you must resort to relative comparisons.

Obtain dollar costs for custom development using any suit-
able method, including an estimating model. Off-the-shelf costs,
meanwhile, include purchase and vendor support fees plus actual
integration effort; a small number of cost models are available to
estimate the latter. The nonmonetary costs of integration have
been covered with the micro- and meta-factors presented here.
Make certain to apply these factors to both off-the-shelf and cus-
tom development options.

To a great extent, software benefits are accounted for in
terms of functionality delivered. Off-the-shelf software may
offer a substantial solution but not a complete one, at least not
what a custom product could deliver. User flexibility therefore
goes a long way towards certifying that something not home-
grown is good enough. For example, can performance require-
ments be relaxed? If no single “silver bullet” exists then a fine-
grained amalgam of solutions may approach a full solution for
the target application.

Make certain that benefit evaluation extends into the hidden
realms beyond mere functionality delivered. An off-the-shelf
option may offer better vendor support, less expensive service,
and plentiful expansion options. Other advantages can be harder
to quantify, such as ease of use and a community of like- users.
Significant hidden benefits should be carried through into final
comparisons.

You are going to have to mix dollar comparisons with less
tangible costs and benefits. Zero in on the factors driving your
situation and let these guide your analysis, keeping the number
of compared items to a manageable amount. This sort of multi-
variate comparison process is an ideal candidate for a method
known as the analytic hierarchy process,5 which basically pro-
vides a formal framework for the mixed comparison of many
unrelated factors.

Summary
In planning off-the-shelf integration, some useful general manage-
ment advice may be available, but it is really up to your careful
research, preparation, and skills to make any effort a success. The
next time you need to integrate off-the-shelf technology, the best
tactic is to ask the supplier for a manual. If there is no manual,
start worrying.◆

About the Authors
Lee Fischman is special projects manager at
Galorath Inc. in El Segundo, Calif. He conducts
research and development of SEER tools and
consulting methods, and has explored software
economics and estimating in numerous papers
over the past several years.

Karen McRitchie is vice president of develop-
ment at Galorath Inc. She has more than 10
years of experience in software and hardware
cost estimating and reliability modeling. She
has been a lead member of cost estimating
teams on many major projects.

Galorath Incorporated,The SEER Product Developers
100 North Sepulveda, Suite 1801
El Segundo, Calif. 90245
Voice: 310-414-3222
Fax: 310-414-3220
http://www.galorath.com
Fischman’s e-mail: fischman@galorath.com
McRitchie’s e-mail: karenm@galorath.com

A list of related writings is provided at

http://www.galorath.com/COTS_references.html

Notes
1. COTS is dead, long live COTS! From being an infrequent short-

cut to the traditional build everything development emphasis,
COTS has become pervasive in today’s software development
projects. The term is generic and can refer to many types of appli-
cations, levels of complexity and integration. Meanwhile, a host of
other off-the-shelf solutions have matured, which, although not
truly commercial, offer similar benefits. The COTS shorthand has
become a kind of mantra, yet the more general challenge of using
off-the-shelf software provides a much more complete lesson. We
therefore define off-the-shelf software as any cogent code that is
being reused.

2. Adequate vendor support frequently must be obtained through
upgrades, as support is removed from older versions of software.

3. Chart 2 shows the relationship between specificity of require-
ments and implementation cost as a function of customization.
As requirements grow more specialized, the cost of using off-the-
shelf software increases. Past a certain point, off-the-shelf soft-
ware must be mixed with custom work to fulfill specific require-
ments. The most specific needs (target recognition, radar cross-
section calculation, etc.) may require fully custom solutions.

4. The emphasis in these factors was derived primarily from a litera-
ture survey. It is very hard to gather actual data; we are therefore
interested in hearing from you. The chart has been posted on our
web site at www.galorath.com/COTS_survey.htm
You can suggest alterations to the factors, including alternate
weightings, and your rationale for any changes you suggest. We
will send the results of the survey to everyone who participates or
simply registers.

5. A great deal of information on this method is available at
www.expertchoice.com (no affiliation with Galorath Inc.).

24 CROSSTALK The Journal of Defense Software Engineering January 2000

Lessons Learned

January 2000 CROSSTALK The Journal of Defense Software Engineering 25

In the rush to provide Year 2000 (Y2K)
compliance, many systems have not been
adequately evaluated and validated from a
security perspective. Most of the efforts
have focused on date-oriented testing,
with little concern for the post-Y2K secu-
rity integrity of the system. Many of the
patches and fixes developed have not been
tested for potential security violations.

In the process of these developments,
many security procedures have been
bypassed to accommodate immediate
access for online testing. Though some
bypasses have been removed, many were
left behind to allow for quick fixes. These
backdoors may even be active in some
commercial products. In short, the
impact of the Y2K fixes may prove more
devastating to the security of the opera-
tional systems than the Y2K bug itself.

The New Threat
Post-millennium systems and security
administrators are facing several new com-
plex problems. It is now obvious that Y2K
impacts reach across the entire enterprise
system to include security applications,
security logs, security time stamps, and
security access verification routines.

In addition to this wave of problems,
several new security threats have appeared.
New viruses are generated at an alarming
rate, and some are designed to target the
Y2K fixes. Some of the Y2K fixes have
injected new bugs into operational sys-
tems and security management routines.
In addition, several backdoors have been
uncovered that are remnants of Y2K
development efforts and test procedures.

Most fixes were never evaluated for
security impacts or given sufficient opera-
tional time to ring-out all of the inherent
problems. Many of the environment vari-
ables will not even be present for some
time. This presents a staggering manage-

ment challenge to all security and systems
administrators.

Compromised Security
With the advent of these multiple chal-
lenges and simultaneous problems, cur-
rent security practices will probably fail.

Security procedures that require man-
ual intervention will be too slow to react
before system damage occurs. Reactive
systems and security management will not
protect most enterprise systems in this
new environment. Slow reactionary proce-
dures may open the system to a high
probability of swift and lethal damage.
Over the next few months, all of the
unknown variables will be brought into
play. Most of the Y2K fixes have not been
introduced to full battlefield conditions.

In addition, all the minor program-
ming errors that have crept into these
fixes can then become apparent. The full
impact of various security violations, inte-
gration problems, interface disconnects,
and programming errors will have to be
dealt with in the near future. This collec-
tive impact is unpredictable. New and
previously unknown bugs will appear,
which will further challenge the security
and integrity of our systems.

It must be recognized that many
software developers have installed private
access paths, or backdoors, in many of
the online patches being implemented.
Many Y2K development environments
are such that none of the developers are
certain as to how stable their patches or
fixes are. Therefore, the implementation
of backdoors has become a popular fail-
safe access for developers.

Unfortunately, the backdoors are
insecure, and provide a vehicle for hack-
ers to surf through the system. This new
environment is a prime target for major
security breaches.

System Monitoring

and Management
The goal of Systems Monitoring and
Management is to ensure that not only
applications, but also all resources that
support them, are online and performing
optimally so user productivity and securi-
ty remain high. Their availability, per-
formance, and integrity are only as good
as the system’s weakest link.

Total systems management is best
accomplished by taking a top-down data-
centric rather than a bottom-up hard-
ware-centric view. In the case of enter-
prise systems management, this means
monitoring and managing the applica-
tion, database, middleware, operating sys-
tem, servers, network, and other related
systems’ hardware or software.

It is only when security and systems
administrators view an entire environ-
ment, rather than a limited point-solution
perspective, that they begin to support the
overall objectives of true enterprise sys-
tems management: supporting end-user
data access, security, and productivity.

Typically, multiple levels are involved
in implementation of Enterprise Systems
and Enterprise Security monitoring and
management. Each successive level of
implementation should add value to the
previous level. In addition, security and
systems administrators should assist in
determining specific requirements for
each level.

It is recommended that every system
implementation include at least a baseline
server monitoring function, an applica-
tion service monitoring function, and a
security service monitoring function.
These areas of focus ensure that a signifi-
cant level of operational protection is
provided.

Restoring Cyber Security
Bryan C. Crittenton

Vistronix Inc.

This article addresses the security management issues of millennium enterprise system environments. The
intent is to define an approach that enhances cyber security and reduces negative system impacts through
automated monitoring and management techniques. In addition, this article addresses the benefits of
proactive security and systems management. This proactive approach details some of the automatic func-
tional responses that can be initiated to alleviate a variety of security violations and systems malfunctions.

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering January 2000

Capturing Enterprise

System Data
One of the first levels of implementation
is Baseline Server Monitoring. Here, the
objective is to monitor and manage
specific information technology plat-
forms and resources. Initial policy
baselines, or baseline configura-
tion agents, are defined, devel-
oped, tested, and deployed.
In addition, monitoring
consoles are established
specifically to aid
operations centers,
system adminis-
trators, and
database
adminis-
trators.

Necessary infrastructure and opera-
tions and administration support proce-
dures also are established to support long-
term stability. This level of implementa-
tion results in a fully operational, rapid
deployment of baseline configured
clients, agents, managers, and monitors.
The baseline implementation establishes
the foundation from which to implement
the application service monitor or the
security service monitor.

The next level of implementation is
the application service monitor. Here, the
management focus shifts from monitor-
ing and managing individual systems to
monitoring and managing the enterprise
system. An internal service assurance
manager and security service manager
also should be implemented. At this level,
flexibility and extendibility of approach
and tools used are vital.

This phase generally requires specific
customization to meet the unique systems
or security requirements of the enterprise
system topology. These components also
wil require knowledge modules to provide
product and platform information profiles
on which tools can guide their manage-
ment functions. When this level of imple-
mentation is reached, the approach must
support the application service manage-
ment, security management, and server
monitoring and management.

The security level of implementation
can be referred to as a security service mon-
itor. Here, management focus shifts away

from monitoring and managing applica-
tion aspects of the enterprise systems to
monitoring and managing the security of
the enterprise system. At this level, all of
the systems security functions must be
monitored and managed. The flexibility

and extendibility of the security levels
and approach will determine the

integrity of the entire system.
This requires specific securi-

ty customization. The compo-
nents require security mod-

ules to provide user pro-
files, access information,

and security level
information pro-

files for multiple-
level security

systems.

Additionally, implementation should
be oriented toward business process mon-
itoring. This level of management service
should be undertaken only after applica-
tion service monitoring and security
management are in place. At this level of
implementation, the focus is to monitor
and maintain critical day-to-day business
processes. An example is monitoring the
number of people using an application
for license monitoring. When the num-
ber of users exceeds the license limit, the
Business Process Monitor would generate
an alert, and log out all inactive users.

This level of implementation adds
business process monitoring to the func-
tionality of the other previous levels.

Converting Data into

Usable Information
By intelligently monitoring all of the nec-
essary systems and security functional
parameters, events, accesses, and process-
es, an effective management scenario can
be implemented along with a proactive
response agenda that will avoid major sys-
tem malfunctions and security breaches.

The backbone of an automated man-
agement system is the data that is collect-
ed, and the response philosophy adopted.

Automatically monitoring all of the
required functional parameters within the
enterprise system allows the service moni-
tors to build a baseline profile of the entire
system. Once a baseline is established,
trend information can be correlated.

With a trend database, a service moni-
tor can identify out-of-tolerance condi-
tions. In order to provide instantaneous
responses, the service managers can auto-
matically act upon these conditions, which
can range from increasing security on
endangered systems to putting failing
devices offline, or calling the security
administrator on a cellular phone to deliv-
er a message about a breach condition.

Reactive vs. Proactive

Management Environment
In a manually oriented management phi-
losophy, viral attacks on the systems or
security breaches could usually be dealt
with in real-time increments. As systems
have become more complex and commu-
nications more robust, reaction time has
become more critical.

Management philosophies need to be
reoriented to a more proactive posture.
Problem responses now need to be han-
dled on a nanosecond basis, which only a
truly automated, proactive management
approach can handle.

By implementing the new enterprise
systems/security management approach,
disaster can be avoided. For example, the
automated trend analysis in the service
monitor can indicate when a database
caching size is incorrect. The service man-
ager can then initiate a response function
to increase or decrease cache size, elimi-
nating a potential database failure.

A disk may be experiencing soft fail-
ures. The service monitor would detect
this trend, and the service manager could
soft-fail over to another disk drive or a
backup copy of the data.

A security breach might be detected,
and offending users piped to a dummy
system while authorities are notified, all
within nanoseconds.

Through the implementation of a
security service monitor and a security
service manager, all security functions can
be dealt with at the computer’s speed.
Breaches can be contained, privacy can be
maintained, new users initiated, inappro-
priate connections monitored or severed,
virus handling automated, macros moni-
tored, keywords tracked, and integrity
verified. Security trend analysis informa-
tion also could prove quite useful for
future systems development.

Software Engineering Technology

Basel ine
Server

M onitori ng

Business
Process

M onitori ng Securi ty
Servi ce

M onitori ng

Applicat ion
Servi ce

M onitori ng

January 2000 CROSSTALK The Journal of Defense Software Engineering 27

Proactive Management

Approach
A proactive management approach must
be designed to manage exceptionally com-
plex systems with high availability. Since
most new applications demand global
accessibility, constant availability is crucial.

Enterprise system applications may
also be accessing and interacting with
data in real time to support critical
processes like tactical information pro-
cessing. Availability requirements for
these applications increase dramatically as
users become more dependent on them.

The management approach must also
be prepared for periodic and unscheduled
disturbances, keeping the systems running
regardless of a localized failure, or recover
them quickly in spite of individual failures
or breaches. For example, requests must
not be lost if a processor or server goes
down. This type of loss could result in
lost information, increased operational
cost, and lost confidence in the system.

Downtime for maintenance and
unscheduled outages also can be planned
and supported. Finally, the proactive
management approach must be scalable
to accommodate usual increases in load
or multiple problems. As more applica-
tions come online, more concurrent usage
can result in serious bottlenecks, loss of
available services, lost incoming requests,
and unacceptably slow response times.
These are all taken into consideration in
the proactive management system.

From a management standpoint,
acceptable response times for applications
must be no more than three seconds for
typical actions, and no more than seven
seconds for the longest operations. Failure
to provide this rate of performance man-
agement can result in user dissatisfaction,
and again, loss of system confidence.

For Internet applications, the per-
formance management approach should
expect larger-than-normal numbers of
concurrent users. Managing Internet serv-
ice demands that are above defined peak
usage are not as predictable as similar
demands placed on internal systems. As an
example, a major news story could create
an unexpected surge of hits to a site over a
short time period. If any part of the enter-
prise system cannot handle the demand,

cascade failures might occur, which may
introduce security vulnerability.

Finally, the management approach
must also manage all networked applica-
tions and the data they access. Both must
remain secure to ensure absolute privacy
and protection of sensitive information.
Legal and financial exposures created by
security breaches can be as high as tens of
millions of dollars in damages per inci-
dent. With stakes this high, security con-
cerns are critical.

Parameter Handling
The goal of enterprise management is to
define the representation of management
data, as well as the methods used to
extract data or control managed objects.

The goal of security management is
to define and enforce security policies,
identify and channel the user community,
and ensure that only authorized individu-
als access information. To meet diverse
goals, parameter monitoring is designed
to cover the entire technology stack from
hardware drivers, to software applications,
to network devices.

The data collected by parameter
monitoring is translated into trend analy-
sis databases and data models. New man-
agement technologies have been devised
to support instrumentation of all systems
and security applications and collections
of parameter data required to quickly
avert these systems problems.

To implement this technology, an
enterprise systems management architec-
ture was created. This architecture com-
bines all the components
to monitor, manage, and
proactively recover from
security breaches to sys-
tems malfunctions.

The enterprise sys-
tems management archi-
tecture has three basic
components, as shown
in the adjacent graphic.

This management
architecture provides the
definition of standard
parameters, attributes,
properties, and their asso-
ciation to the managed
objects. The collection of
the parameter data

involves instrumentation of hardware,
software, and access data, which is fun-
neled to the service manager. This data
can be used for advanced management,
such as access and security correlation,
security violation and problem diagnosis,
or predictive availability modeling.

The resulting systems impact is
increased security, availability, and relia-
bility. Furthermore, this approach will
reduce support personnel and systems
downtime. The resulting operational cost
reduction provides the driving force
behind this new approach to enterprise
systems and security management.

Conclusions

Systems and security administrators face
multiple problems due to unknown and
injected failures from Y2K solutions.
These problems are multifaceted, parallel,
designer bugs that could cause massive
system failures and security breaches.

To counteract these looming failures,
new automated management approaches
must be implemented. These need to
include well-thought-out automated sys-
tems responses that contain damage and
protect system resources and users. Relying
on existing manual procedures, or frame-
works that do not provide a solid automat-
ed response to intrusions, viral attacks, or
systems failures due to Y2K solutions will
cripple most enterprise systems.

New enterprise management technol-
ogy helps unify systems and security
management. This approach to enterprise
management provides a high degree of

Know ledge
M odules

(m anagem ent
obj ect schem as)

Servi ce M anagers
(consum ers/ cl ient s)

Servi ce
M onitors

(dat a col lect ors)

28 CROSSTALK The Journal of Defense Software Engineering January 2000

Software Engineering Technology

conceptual breadth, and stands as an
enabler for the next generation of systems
and application management tools.◆

Our approach to enterprise systems
and security management is depicted in
the chart below:

About the Author
Bryan C. Crittenton
is Director of
Information
Technology Programs
for Vistronix Inc in
Vienna, Va. He has
more than 15 years
experience support-

ing enterprise-wide management informa-
tion systems in such areas as data, network,
and Internet security and intrusion protec-
tion, network architecture analysis and
design, department-wide financial and
administrative systems design and develop-
ment, and data warehousing and mining.
Crittenton has numerous certifications in
network design, software engineering, total
quality management, and systems architec-
ture and planning. He holds a master’s
degree in business administration from the
Virginia Polytechnic Institute and State
University and a bachelor’s degree from the
University of Virginia.

Vistronix Inc.
8391 Old Courthouse Road, Suite 205
Vienna,Va. 22182
Voice: 703-734-2270
Fax: 703-734-2271
E-mail: bcritten@vistronix.com

Developm ent Phase

Im pl em entat ion PhaseTest Phase

Design Phase

Proj ect Ini tiat ion/Analysi s Phase

Define Syst em
Securi ty

Param et ers
and Scope

Assess Current
Syst em Securi ty

Envi ronm ent

Define Syst em
Securi ty, Techni cal ,

O perat ional , and
User Requirem ent s

Conduct Cost/
Benef it, R isk,

and Envi ronm ent al
Im pact Analysi s

Develop Logi cal
Design (Securi ty
Process, Data)

Develop Detai led
Physi cal Design

Develop New
User and O perat ing

Procedures

Perf orm
Coding

Acqui re &
Configure New

H ardware & Software

Int egrat e H ardware,
Software, and Syst em s

Product s

Conduct
Syst em s
Securi ty
Test ing

Conduct User
Accept ance

Test ing

Develop
Trai ning
M ateri als

Conduct User
& Techni cal

Trai ning

Assess Securi ty
Syst em

Effect iveness

The following article can be found in its entirety on the Software Technology Support Center web site at
http://www.stsc.hill. af.mil/CrossTalk/crostalk.html. Go to the web addition section of the table of contents.

Content Change Management: Problems for Web Systems
Susan Dart

Dart Technology Strategies

Web Addition

Behind the facade of a web site lies the task of managing its infrastructure and content. This is
driving the Internet economy into a web crisis. The software community has experienced a similar
crisis and knows that configuration management (CM) is a key player in resolving it. Nine chal-
lenges facing web systems are presented. As the entire world becomes connected to the World Wide
Web, content problems will be magnified. While traditional software CM provides a static solu-
tion (such as via a centralized development methodology creating batched, planned releases), con-
tent CM will provide a dynamic solution (via distributed, real-time updates) in response to user
traffic monitoring. It is imperative that the lessons learned from CM are applied to web tools.
Otherwise, the Web community is doomed to experience all the delivery, quality and complexity
problems that have plagued the software community.

Web Addition

Content Change Management: Problems for Web Systems
Susan Dart

Dart Technology Strategies

The World Wide Web is a unifying force bringing the world clos-
er together. Regardless of race, color, creed, skills, educational
background, computer platform, browser, nature of business, geo-
graphical location, and job position, we all look the same. Busi-
ness is being transformed into E-commerce. Such revenue is
expected to hit $220 billion by 2001 [1]. Behind the facade of e-
commerce though, the Web Crisis is looming [2]. It is the expo-
nential proliferation of web content created, and maintained,
without any expertise in data management techniques—the pro-
liferation of hacked together web-based systems developed without
any rigorous approach and kept running via a continual stream of
patches. Companies are desperate to put their business applica-
tions on the Internet. Gold rush fever is encouraging business
start-ups centralized around the Web. With the advent of many
low-cost publishing tools that are very easy to use, web system
creation is now so simple that anyone without programming skills
can create one.

The demand for content creation and maintenance is escalat-
ing at an unmanageable rate. Some analysts have predicted that
by the year 2002, the market revenue from content management
tools will be around $5 billion [3]. And even when we have it
under control, content has a multiplier or snowball effect, where
we will further exploit new ways of using content. First-genera-
tion web systems have focused on providing access to any piece of
information around the world. The next generation web systems
will focus on knowledge management—managing the semantics,
or concepts, of content rather than just the raw information.

For now, though, we see the shortcomings of first-genera-
tion web systems. There are problems with information being
published on the web site at the wrong time and information
that is inaccurate, top-secret, corrupt, inconsistent, unauthorized,
unchecked, garbage, stale, or inappropriate. These can have dev-
astating consequences for companies such as millions of dollars
lost in lost revenue, lost customers, and lowered stock prices
(such as with software crash [4]). The causes are easily linked to
lack of well-defined processes, testing, cross-checking of informa-
tion, authorized changes, security checking, or responsibility for
coordinated changes. Essentially, the problems stem from poor
CM practices. The first generation of web systems were crafted
from immature tools and languages, and inexperienced staff. To
properly provide Change Content Management (CCM)—CM
for web systems—we will have to go beyond the capabilities tra-

ditionally provided by industrial-strength software CM tools
because the challenges presented by the emerging web economy
are exceptional.

This paper is designed to raise questions about CCM for
the Web so that we can understand the new demands placed on
companies by web systems. A web system is a generic term for
an application that can be accessed via the Web. It fundamental-
ly consists of content (its data, such as a document), application
server (for executing actions on the data, such as updating docu-
ment), access (its interface, such as the client’s browser) and the
web server (common ones include Apache, Internet Information
Server and Enterprise Server). The biggest challenge for the
Web community is how to build maintainable web systems that
are highly responsive to immediate, high-volume change.

This paper defines the kinds of resources in the Web envi-
ronment that are used in web systems, specifies the classes of web
systems being developed, identifies the many challenges that com-
panies are facing in their efforts to understand CCM, highlights
capabilities provided by software CM and web CCM tools and
ends with recommendations for approaching the solutions.

Behind the facade of a web site, lies the task of managing its infrastructure and content. This is driving the Internet
economy into a Web crisis. The software community has experienced a similar crisis and knows that configuration
management (CM) is a key tool in resolving it. Nine challenges facing web systems are presented. As the entire world
becomes connected to the world wide web, content problems will be magnified. While traditional software CM pro-
vides a static solution (such as via a centralized development methodology creating batched, planned releases), con-
tent CM will provide a dynamic solution (via distributed, real-time updates) in response to user traffic monitoring.
It is imperative that the lessons learned from CM be applied to web tools. Otherwise, the Web community is doomed
to experience all the delivery, quality and complexity problems that have plagued the software community.

M ultim edia
DBM S

Data
warehouse

OLAP
syst em

Docum ent
im aging
syst em

ERP
workf low
syst em

M ainfram e

W eb servers

W eb
accel erat ors

INTERNET
Intranet
Extranet
V irtual Pri vat e Network
(VPN)

FIREW ALL

Thin cl ient

Fat
cl ient

Users Users

Port als

Storage Area
Networks (SANs)

Data
m art

Non-PC devi ces
PDAs
Sm art phones
Pagers
W ebTV

Figure 1. The Web Environment

1 CROSSTALK The Journal of Defense Software Engineering January 2000

Note: This is a reprint of an article original © Springer Verlag 1999,
from the proceedings of their 9th International Conference on SCM.

January 2000 CROSSTALK The Journal of Defense Software Engineering 2

The World Wide Web Environment
Web systems can be huge, with millions of pages, many intercon-
nections, and incredibly high hit rates. Consider Figure 1 which
highlights the many kinds of resources throughout the Web that
can be components of web systems. It shows that users can be
connected to the network via a thin client or a fat client. A thin
client means application code is resident on the server, rather than
on the client (fat client). A firewall determines the kind of access,
encryption and security levels. Web servers provide much of the
application code and can have accelerators for caching dynamic
pages in order to improve user access time. The network can be
specialized into an intranet, extranet or virtual private network
(VPN). An Intranet is an internal network behind a firewall that
allows only users within the company to access it. An Extranet
allows outside partners to have access to the Intranet. A VPN is a
secure and encrypted connection between two points across the
Internet. It acts as an Intranet or Extranet except it uses the pub-
lic Internet as the networking connection rather than a company’s
own wiring. This enables, for instance, a company’s branch offices
to be inexpensively connected via the Internet.

Attached to the network can be other types of networks
such as storage area networks (SANs) and portals. SANs are net-
works that pool resources for centralized data storage. They may
include multiple servers working against a centralized data store
built with redundant hardware such as RAID (high-volume stor-
age) devices. Portals (such as Yahoo!, AOL) are full-service hubs
of e-commerce, mail, online communities, customized news,
search engines and directories, all suited to the particular needs
of an audience. Portals are evolving into corporate enterprise
portals. Such portals, for instance, enhance corporate decision-
making by integrating the company’s applications, thereby
removing barriers that exist between business units.

Other resources that can make up web systems are: Data
Base Management Systems; workflow applications used for opti-
mizing business processes, such as Enterprise Resource Planning
tools (e.g., SAP, PeopleSoft, Baan); database applications such as
OnLine Analytical Processing systems, which allow users to per-
form multidimensional analysis on data via their browsers; docu-
ment management tools [5] for providing access into shared
libraries of documents; imaging systems for optical character
recognition of documents; data warehouses containing terabytes
of data;1 multimedia databases for holding archives of music,
speech, videos; mainframes which contain approximately 70
percent of legacy data for large companies; data-marts, which
are data warehouses with their own unique interpretation of
business data to suit certain functional needs of a business unit;
and, non-PC devices, such as pagers, personal digital assistants,
WebTV, and smart phones.

Web systems are made up of various combinations of the
resources shown in Figure 1. Each of the resources imply content
that can be dynamically added, changed, deleted, accessed,
manipulated, along with their relationships and hyperlinks.
CCM will need to control the static content that goes into the
web system along with the dynamic content that is created dur-
ing execution of the web system. Different kinds of web systems

are being developed which affect the nature of CCM.

Types of Web Systems
It is difficult to classify the types of web systems being built
today as there is no universal blueprint for such systems, the
design is still an immature art and the systems themselves are
evolving fast. But for the purposes of opening up discussions
about CCM, we need to understand the types of architecture of
web systems with respect to content creation. In a broad sense, a
web system which is visible via its web site, either acts as a
provider of information or is an application. But the applica-
tions can be of different types.

From a content perspective, we are interested in types of
web systems which have data points where data can be added,
changed, deleted, accessed or accumulated. Once we understand
the types of applications, we can then determine the nature of its
CCM needs, its development processes, and types of tools need-
ed to properly maintain it. A web system can be categorized as
having the properties of one or more of the following classes:

Informational: information sites with read-only usage, com-
monly called “brochureware” e.g., information presented on a
site that gives details about a company and its products. First-
generation web systems are this type and are static.
Delivery system: download content to user or resource e.g.,
download upgrades or plug-ins
Customized access: access is via a customized interface or
based on user’s preferences e.g., my customized view of my
Internet Service Provider’s home page, or favorite portal
User-provided information: user provides content by filling
in a form e.g., subscription to a magazine or registering for a
company’s seminar
Interactive: Two-way interaction between sites, users and
resources e.g., business-to-business
File sharing: remote users collaborate on common files e.g.,
users coordinate schedules
Transaction-oriented: user buys something e.g., buys books
or travel tickets
Service provider: rentable applications; user rents an applica-
tion on a per user, per month basis e.g., virus scan program
Database access: user makes queries into a database e.g., sup-
plier looks up catalog of parts
Document access: libraries of online documents are available
e.g., view corporate standards
Workflow-oriented: a process has to be followed e.g., order
entry automation
Automatic content generator: robots or agents automatically
generate content e.g., “bots” scour the Web to bring back
specific information such as best price on products.

Given these classes, it becomes obvious that content can
essentially be created by anyone or any other resource: from the
content designer, the webmaster, any user, another database or
device, or other web system. From a CCM perspective, it is
straightforward to capture content that makes up a released base-
line since that is static content, but what about content that is
created or changed dynamically? This raises four key questions:

Content Change Management: Problems for Web Systems

3 CROSSTALK The Journal of Defense Software Engineering January 2000

(1)] What constitutes a configuration item for a baseline
with static and dynamic objects?

(2) How can dynamic baselines be captured?
(3) Now that the user of the web system participates in the

creation or changing of a baseline, how does that affect
the definition of the CCM lifecycle?

(4) Are CCM requirements different for each class of web
system?

These are some of the questions being asked by webmasters,
developers and CM managers.

Enterprise Challenges for Web Systems
CCM is not a problem for small, static web systems managed by
a few developers. It is a problem for medium and large, enter-
prise systems that involve many content developers creating
many pages that will have a high hit rate involving high-volume
database accesses and updates every minute. For instance, the
NASDAQ stock exchange system [6], is a web system of types 1,
4, 5, 6,7, 9, 10 and 12, and was built to sustain 12 million hits
per day with 8 web servers per database server. When the stock
market goes crazy, the NASDAQ site gets 20 million hits per
day. Its content must be completely accurate, and it changes
within seconds. Boeing [7], with a web system of types 1, 2, 4,
5, 9, 10, and 11, has 1 million pages hosted by 2,300 Intranet
sites on more than 1,000 web servers.

Developing and maintaining such large systems with large
volumes of content offers many challenges to companies. These
challenges span technical, people, process, and political issues.
The major ones obvious today are the following, and are
described in detail below.

1) the dynamic, active nature of content
2) variant explosion
3) the free-form style of development
4) the performance effect of content
5) scaleability of content
6) the urgency and frequency of change to content
7) the outsourcing and ownership of content
8) the immaturity of tools, techniques, standards and skills
9) corporate politics.

The Dynamic, Active Nature of Content
Web content is dynamic because it is created on-the-fly based
on a user’s or agent’s request. It is active because programs are
executed in response to the request and to the user’s environ-
ment (browser and plug-ins on the client side). For instance,
HTML is static but when combined with active controls (such
as ActiveX), it becomes dynamic such as when the web site gives
users feedback on the type of data they are supposed to enter to
make sure the input complies. Content can be generated and
changed in real-time such as with tables, forms, database
queries, documents, and code.

Content is made up data objects, component libraries, and
code. These can be static or dynamic, singular or a collection,
compiled or interpreted, source or binary code. Objects include
documents, images, streaming video and audio, files, or tables.

Code can be active controls and scripts such as: ActiveX controls,
Java, C++, VisualBasic, HTML, DHTML, XML, VRML, OLE
controls, Active Server Pages, Java applets, VBScript, JavaScript,
and ISAPI, CGI, and Perl scripts. Scripts or behaviours can be
attached to web objects allowing, for instance, the user to alter
attributes, such as color, positioning and font size on objects or
execute applications. Component libraries are reusable code to be
used as toolkits. Examples are JavaBeans, Microsoft Foundation
Classes and Lotus’ eSuite of business applets.

An applet or a control is a compiled binary file that a field in
the HTML references. A script is executable code in a readable
source language that can be embedded directly in the HTML tag.
In essence, an object becomes a container for various pieces of
content, all of which, need to be under CM control.

We are moving toward container-based, or a component
bundling approach, to software development. This means CM
techniques need to account for embedded scripts and customized
components. Also, the executing environment needs to be taken
into account. For example, if a browser does not support a certain
scripting language, then the behavior of the web system will be
different. Also, HTML files can be manually touched up. Scripts
can easily be changed because they are interpreted whereas applets
or controls typically are compiled. This assumes that the source
code can be accessed, which is not the case when components are
bought and reused in their binary form. Hence, changing or
recompiling is not an option sometimes. Executing code may
require a series of steps. For example, a Java file is compiled into
platform-independent bytecodes; these are then processed by a
Just In Time compiler to yield fast native instructions for a partic-
ular platform. All the above objects types, their relationships to
intermediate forms, and all the tools, need to be tracked for good
CM practices.

Web pages are dynamically created, which means that any
CM control also must be of a dynamic nature. For example, an
.asp file2 is recognized; the VBScript is interpreted with the
appropriate database or related files being accessed; the server
creates the full HTML on-the-fly thereby dynamically generat-
ing the web page that is then displayed. How is all this data
tracked for CM purposes? How is a dynamic baseline captured?
To add complexity, hyperlinks can be created on-the-fly to point
to documents. This changes the original baseline. Also, dynami-
cally generated pages can be customized using ActiveX, CGI
scripts, JavaScript and DHTML frames.

There is more. Content has meta-data associated with it
that must be captured:
• The separation of content and format. Companies have stan

dard templates into which content is published. These tem-
plates are part of the released baseline.

• External structure information, such as the hierarchy and
relationship of web pages

• Internal structure information, such as embedded objects
• Hyperlinks to internal or external pages, static or dynamic
• Task objects that indicates some activity must happen to an

object, such as updating the content
• Transaction, such as data involved in carrying out an e-com-

merce activity

Web Addition

January 2000 CROSSTALK The Journal of Defense Software Engineering 4

Content Change Management: Problems for Web Systems

• Security information attached to each objects
• Audit logs related to the activity on each object
• Tool compatibility information, such as the version of the

browser for which this object is valid
• Bill of materials: the artifacts used to create the baseline

(tools, tool options, data, files)
• Generated or converted files, such as a Word document that

is converted into HTML
• Validation rules, such as a form requires input validation for

each field
• Handler rules, such as a data base access request invokes cer-

tain tools and operations.
There are obviously many properties about content that need

to be captured. Ideally, a company should have a well-defined
CM data model that captures all the properties and relationships
of content. With that, configuration items, baseline,s and releases
can be defined.

Variant Explosion
Web systems imply a variant explosion problem. Consider that
web systems are either created from scratch, are redesigned or
merged web systems, or are web-enabled legacy applications. In
many cases, companies must live with all these systems in paral-
lel. Thus, a company could easily have a nightmarish number of
versions of their latest baseline. For example, it has four variants
of its main application available at all times:
• The demo version which is a partial web-enabled baseline of

the original legacy code with a minimal set of functionality as
this is the textual version

• a full version that is the same as the first where all functional-
ity is available since it is the graphical version

• the true web version that is a completely redesigned
form of the application ideally suited to the web rather
thanmerely web-enabled legacy code, and

• the original legacy system for non-web use.

Each variant must work with two different browsers
(Internet Explorer and Netscape Navigator), including the
latest three versions of those browsers—and support five
different languages for international use. Hence, we have
(1 * 5) + (3 * 2 * 3 * 5) = 95 potential variants.3 Most
companies have different teams working on separate vari-
ants without much communication, reuse or change prop-
agation across common code. With the variants, come all
the complexity of parallel development support for simul-
taneous changes and concurrent baselines, along with sig-
nificant change propagation to selected variants, thereby
demanding change set support [8], more sophisticated
change tracking along with help-desk support and much
better release planning and change scheduling. The ramifi-
cations are dramatic. Variant management and change
propagation have long plagued software companies.

The Free-Form Style of Development
Web system development is different from traditional
software development. [9,10] This is due to the nature

of the tools, languages, skills of the developers, and the dynamic
nature of the Web environment. There is tremendous pressure
on developers to code and publish. And the web tools support
this free-form style of development. Also, the skill set of the
developers is quite limited with typically no experience in soft-
ware engineering. They are guided only by the capabilities of the
tools and languages that, as we know from software engineering
practices, cannot be adequate.

Scripting languages (such as JavaScript, Jscript, Tcl,
VBScript) are changing the way that applications are developed.
Most of these are interpretive languages or use Just In Time com-
pilers. This leads to a style of change on the fly. There is no
process between creating content and publishing it. Programming
has gone from a process-oriented compiler-based approach, to
combine components, mix in some new code and publish.
Essentially, this squeezes the change cycle time dramatically
because all sense of process is eliminated. This enables a faster rate
of change that is a real benefit for web systems but provides
greater opportunity for errors through lack of testing and content
coordination and authorization of change. The question becomes
how can testing, system integration, load testing and release man-
agement processes be inserted into the code-and-go paradigm to
enable proper CM? Some companies use staging areas for testing
before publishing to a live site, whereas many do not.

The complexity of web system development can be seen in
Table 1. The major phases are highlighted along with who
assumes responsibility for those steps. There are at least nine key
steps involved in getting the web system functioning. At each
point, CM issues come into play, such as, which release or ver-
sion of the web system is being changed or published or tested
or registered or validated for security purposes or being moni-

1. M AJOR ACTIVITY IN W EB SYSTEM W HO DOES THE W ORK

2. Desi gn and creat ion W eb Team or IT Dept. or
Outsourced

3. Inf rast ruct ure support : servers, net work
connect ions, databases

Outsourced to network
m anagem ent com pany, or
host ed by IT Dept.

4. Test ing e. g., com pat ibi lity of cont ent, l ink
accuracy, vi ewable by al l ki nds of browsers

W eb Team or IT Dept.

5. Publ ishi ng of cont ent Busi ness Units or W eb Team or
IT Dept.

6. Regi st eri ng of si tes on search engi nes W eb Team or IT Dept.

7. Securi ty checki ng: access cont rol , hacker
anal ysi s, vi rus detect ion

W eb Team or IT Dept or
Securi ty Consul tant

8. M oni tori ng: traf fic perf orm ance: intel ligent
load bal anci ng and web page redesi gn;
repl icat ion; web accel erat ors/ cachi ng; t raf fic
shapi ng capaci ty planni ng

W eb Team or IT Dept.

9. M ai ntenance: cont ent evol ution vi a
changes, enhancem ent s, del etions, redesi gn

Content expert s or W eb Team
or IT Dept.

Table 1. Typical web system lifecycle phases

5 CROSSTALK The Journal of Defense Software Engineering January 2000

Web Addition

tored for hits or performance improvements. Without CCM
practices and tool support, these activities become fraught with
errors. Automated workflow along with role-based activities
must be supported in web tools
The Performance Effect on Content
Performance—particularly response time to a user’s request—
plays a major role in influencing content design. High perform-
ance web systems have continuous traffic monitoring. Users must
have immediate access to quickly changing content under any
load situations. If access times are not acceptable, a company
makes a decision to either install web accelerators that enable
caching to improve performance, or it redesigns the content for
better access. For instance, at the Olympics site [11], traffic moni-
toring showed bottlenecks for users by having to navigate too
many pages to get to the right content. The web site was
redesigned on-the-fly to make access easier and speedier along
with adding caches.

Web accelerators, or caches, are beginning to play bigger
roles in performance enhancement, with content being designed
to take into account caching techniques for accelerators. But a
dependency results between the content baseline and the version
of the caching algorithm and server that are used. Also, server
crashes (such as with the E*trade brokerage site crashes that shut
out users who lost money through lack of trading access) must
be catered to in contingency plans. This means content must be
replicated across servers that, in turn, means synchronization and
distribution of real-time updates.

Scalability of Content
The Olympic and NASDAQ [12] web systems are huge in

terms of number of pages, amount of traffic, and number of
database and web servers. Millions of pages cannot be reason-
ably stored in a flat file system. Databases are obviously required
for storage and are being redesigned to suit web access. Some
database companies are redesigning their products so that web
applications are stored directly in the database, such as Oracle’s
WebDB. This helps with scalability, reliability, and administra-
tion. It is likely that first-generation web systems will be
redesigned to use web-enabled databases. This means that CM
capabilities must be integrated and synchronized with database
facilities.

The Urgency and Frequency of Change
The web enables the paradigm of change at the speed of thought.
The mindset is typically: I see a problem and can, or need, to fix
it immediately because it is globally visible. Corporate embarrass-
ment or even worse, litigation, needs to be avoided. There may
be no time to follow through a normal change life cycle (such as
with a change request, Change Control Board, change authoriza-
tion, edit, testing and re-release). Because the change can be done
so easily, process is often bypassed. All the benefits of change
tracking are lost. Repeatability will be a difficult benefit to
achieve. Rollback of a site may be the only option for companies,
but the corporate need of keeping the web site accurate takes top
priority. There are changes that may need to be propagated across
all pages of a web site, or just a few pages. For example, simply

changing a copyright notice may involve changing each of the 1
million pages, whereas other changes may involve a select set of
pages so that an incremental publishing capability is required,
along with ways of organizing files into partitions to enable incre-
mental updates. A company needs to define its classes and priori-
ty of changes and decide what process should be followed for
each type of change.

Outsourcing
Outsourcing is a significant trend for industry, especially for
web system creation, and sometimes maintenance. It is done for
many reasons: to reduce operating costs, share risks with others,
access leading-edge technology without having to purchase the
infrastructure for it, use expertise not found in-house, do things
more quickly, and to focus more on a company’s core compe-
tencies. Outsourcing does require distributed management tech-
niques along with doing CM with a third-party.

Easy-to-use web tools and specialized commercial-off-the-
shelf tools (such as OLAP, ERP, document management) are
helping to change the political infrastructure of companies. For
instance, business units no longer are forced to rely on the
Information Technology (IT) department in order to get things
done. They buy the best tool that suits their need, bypassing IT.
They can even rent the infrastructure for supporting the tools,
and outsource its administration. This complicates issues of who
has responsibility for what, how to maintain control and visibili-
ty over outsourced changes, and whether a business unit guaran-
tees that a quality process was followed for the outsourced work.

Immaturity of Tools, Techniques,

Standards, and Skills
Engineering techniques for web systems are in their infancy.
Tools, standards, and skill sets are maturing, albeit slowly. Each
month new tools and new versions of tools are released that sup-
port easier ways of building web systems. As a result, companies
have to maintain different tool technologies in parallel. Standards
(such as XML (eXtensible Markup Language) from World Wide
Web Consortium, or WebDAV (from the Internet Engineering
Task Force) are slowly being developed that in turn will affect
the tools. There are many web technology tools that enable easy
publishing of content without team coordination or process.
Because of the many choices, large companies will end up having
their business units using different tools. To get some control
over how content is developed, and to ensure that quality
processes are followed in publishing content, companies will
have to define standards and guidelines. These standards will
pertain to style templates, component libraries, tools, languages,
servers, testing processes, and CM.

Web systems require developers and content experts for
their creation and maintenance. Many web developers have lit-
tle background in software engineering. Content creators can be
human resources personnel, marketing people, accounting staff,
etc. Their web skills are totally dependent on their knowledge
gleaned from the web tool set and any training class they
attended. This implies that the tools need to have interfaces that
suit the content writer, yet have excellent CM processes embed-

ded to compensate for the lack of software skills.

Corporate Politics
There is confusion in companies these days as to who should
have the right to publish content on the web site. For instance,
business units publish independently from the IT department.
Essentially there is lack of control as to what goes up, when, and
how it has been tested and whether it conforms to standards.
This is particularly a problem when the web system has content
that must be coordinated and validated as a whole with other
departments (accounting, marketing, personnel, etc.) or with
other applications. Who assumes responsibility for the informa-
tion’s accuracy on the web site? Who assures that quality control
processes have been followed before information is published on
the site? Who is responsible for making changes? Who assumes
the cost of change? The IT department’s role is changing dra-
matically—from an infrastructure provider to that of a strategic
advisor and standards producer. Many traditional IT functions,
such as network administration, are being outsourced.
Outsourcing will significantly change the modus operandi of IT
departments. Web creation is mostly outsourced these days.
Companies face a delicate balancing act in trying to rein in the
proliferation of web systems while leaving employees freedom to
meet their business needs.

Software CM—Major Part

of Content Change Management
Everything that the software community has learned about CM

can be applied to the CCM problems. Software CM spans a sig-
nificant spectrum of activities and roles within a company [13,
14] and Table 2 highlights the main goals of CM. The software
CM tool vendors are adding CCM capabilities to their tools.

Web tool vendors are beginning to realize that CM prac-

tices must be incorporated into their tools Advice on good web
design [15] is beginning to highlight the importance of CM but
only in the sense of version control of files. However, according

to Powell, web engineering advice completely ignores CM.
Table 3 lists some of commercial software CM tools.

Software CM vendors are taking different approaches to
CCM support in their tools. Some, such as StarTeam, are web-
enabled and have purchased web technology companies with the
intention of tool integration. Others, such as TrueChange, have
decided to build a completely new software CM tool for CCM.
Others such as Continuus and MKSIntegrity, have added on
CCM support. The former’s offering, WebSynergy and WebPT,
provide a web front-end into all of its existing CM process-ori-
ented capabilities as well as web-authoring tools with transparent
access to files. The latter’s offering, WebIntegrity, integrates its
version control facilities with an authoring tool.

Web Technology Tools
Web tools are marketed for web authors or web developers. As
to what constitutes a CCM tool, that is not totally clear and
there is no consistency in functionality across the tools.
Suitability for large-scale development seems to determine
whether it is a CCM tool or an authoring tool. Tools are first
generation ones (with respect to CCM support), with only one
product (DynaBase) claiming that it provides configuration
management facilities. Some tools are geared to large-scale web
production although it is not yet clear how scaleable these tools
are. Half a million components seems to be the maximum now.
Table 4 lists some commercial CCM tools.
If there are any similarities or trends, they would be:
• support for web languages
• command line interfaces
• templates for separating content from formatting
• version control of files
• roll-back of complete sites
• minimal workflow support for publishing authorization
• audit logging, event triggers
• commercial database interfacing
• drag-and-drop component reuse (to minimize programming)
• role support for authorizations
• minimal change tracking
• concurrent site production (for multiple releases).

Some noteworthy features include:

• TeamSite provides visual differencing for examining two ver
sions of content side by side.

• Tasks can be assigned to authors using notifications.
• Authors can be notified when content is published on the web.
• Content is moved to a staging area each time it is changed or

receives approval to be published.
• Drumbeat gives developers guidance on targeting code to

specific browsers thereby providing variant creation support.
• Raveler teams can be set up with pre-configured workflows.
• StoryServer supports static and dynamic versioning.

Overall, more CM support needs to be provided to support
CCM needs.

Conclusion
The web environment provides the opportunity to connect

GOAL EXPLANATION
Ident ificat ion Uniquel y ident ify parts of the cont ent
Control Ver si on cont rol of al l obj ect s incl udi ng basel ines
Status account ing Tracki ng the status of al l work on al l obj ect s
Audit and revi ew Keeping an audi t trai l, conf irm ing al l processes fol lowed
Cost-effect ive product ion Fast and qui ck bui lds of sof tware releases
Quality autom ation Ensur ing al l test ing, not ificat ions, si gnof fs, revi ews are done
Team work opt im izat ion Enabl ing team s to work in paral lel effect ivel y
Enabl ing change Cont aining the expl osi on of changes

Table 2. Goals of software configuration management

CM TOOL VENDOR W EBSITE
Continuus Cont inuus www.cont inuus. com
ClearCase Rat ional www. rat ional .com
Harvest Pl atinum Technol ogy www.platinum .com
Perf orce Perf orce Software www.perf orce. com
PVCS M erant www.m erant .com

Source Integrity M KS www.m ks.com
SourceSaf e M icrosof t www.m icrosof t.com
StarTeam Starbase Corp. www. starbase. com

Team Connection I BM www.ibm .com
TrueChange True Software www.truesof t.com

Table 3. Some Commercial Configuration Management Tools

January 2000 CROSSTALK The Journal of Defense Software Engineering 6

Content Change Management: Problems for Web Systems

many different resources. Whilst the resultant web systems are
easily created, they are complex systems offering many challenges
for CCM. We need to understand the problems that companies
are having with web systems in order to properly define their
CCM requirements. We still need solutions to questions such as:
1) What are good content development and change processes

for teams developing large-scale web systems?
2) Are there different processes depending on the type of web

system, size of company, volume of web data?
3) Can the types of web systems be categorized into classes or

architectures?
4) Will component libraries be indicative of these architectures?

5) What factors affect the definition of the CM process and
CM items?

6) Do we need system models, data models, architectures of
web sites in order to fully capture the appropriate CM meta-
information?

Second-generation web systems will focus on knowledge
management and need sound engineering principles such as
CM behind them. Given the many challenges, much of the
solution will have to be embedded in the tools because the skill
set of the developer cannot be guaranteed. This means that the
CM processes will have to be implemented in the web tools
rather than relying on manual procedures. Along with excellent
variant support, change tracking, and change propagation (espe-
cially via change sets). CM is becoming an issue for all compa-
nies because in order to survive beyond the first decade of the
new millenium, companies must place their applications on the
World Wide Web.

References
1. International Data Corporation, 1999.
2. Murugasen, S., Deshpande, Y.: Proceedings of ICSE99 Workshop

on Web Engineering. International Conference on Software
Engineering, Los Angeles, USA (May 1999)

3. Merrill Lynch Co., 1999.
4. Bloomberg News: Net Shares Battered Amid Signals That Web’s

Expansion Is Slowing. Wall Street Journal (June 15, 1999)
5. Dart, S: The Dawn of Document Management. Application

Development Trends (Aug. 1997)
6. Hutcheson, M.: The NT Application That Wouldn’t Die

(NASDAQ.COM). Enterprise Development. 1,1 (Dec. 1998)
7. Sliwa, C: Maverick Intranets: A Challenge for IT.

Computerworld (March 15, 1999)
8. Dart, S.: To Change Or Not To Change. Application

Development Trends (June 1997)
9. Gellerson, H. Gaedke, M.: Object-oriented Web Application

Development. IEEE Internet Computing (Jan/Feb 1999) 60-68
10. Lockwood, L.: Taming Web Development. Software

Development Magazine (April 1999)
11. Iyengar et al.: Techniques for Designing High-Performance

Web Sites. IBM Research (March 1999) 17pp
12. Powell, T.: Web Site Engineering. Prentice Hall, NJ, (1998)
13. Dart, S.: The Agony and Ecstasy of CM. A half-day tutorial

given at 8th International Workshop on Software CM,
Brussels Belgium (July 20-21, 1998)
http://www.cs.colorado.edu/~andre/SCM8/dart.html

14. Dart, S.: Not All Tools are Created Equal. Application
Development Trends (Oct. 1996) 7pp
http://www.adtmag.com/pub/oct96/fe1002.htm

15. Siegel, D: Secrets of Successful Web Sites : Project Management on
the World Wide Web. Haydn Books, Indianapolis, Ind. (1997)

Notes
1. Data warehouses provide common interfaces to variant databases.
2. Active Server Page, a combination of static HTML and VBScript
3. Then add in variants for non-PC devices such as pagers, PDAs

and smart phones that have “micro-browsers”, and the number
of variants escalates further.

About the Author
Susan Dart is President of Dart Technology Strategies Inc., an
independent consulting firm that helps companies attain config-
uration management solutions. Dart has 23 years of experience
with software tools, development environments, and technology
adoption. She has several publications and seminars to her cred-
it, including Evaluating Configuration Management Tools
(Ovum, 1996), and was a member of the U.S. Federal Aviation
Authority committee on developing CM for bomb detection
systems. She is a member of the Program Committees for the
International Conferences on Web Engineering and on CM.

Previously, Ms Dart was Vice President of Process Technology at
Continuus Software Corporation, where she implemented
deployment services to assist strategic customers in achieving the
best possible, enterprise-wide CM solution. Before that, she
spent seven years at the CMU SEI, creating models for CM and
evaluating software development environments. Dart has also
developed compilers at Tartan Inc. and telecommunications soft-
ware and international standards for Telstra, Australia. She has a
master's degree in software engineering from CMU and a bache-
lor's degree with distinction in domputer science from RMIT.

Dart Technology Strategies Incorporated.
1280 Bison, PMB 510.
Newport Beach, Calif. 92660. USA
Voice: 949-224-9929
Fax: 949-515-4442
E-mail: sdart@susandart.com
Internet: www.susandart.com

CONTENT TOOL VENDOR W EB SITE
Art icl eBase Runni ng Start www. runni ngst art.com

Dream W eaver M acrom edi a www.dream weaver .com
Drum beat 2000 Elem ental Software www.drum beat .com

DynaBase I nso www.inso. com
Front ier Userl and www.userl and.com

Front Page98 M icrosof t www.m icrosof t.com
Fusi on NetObject s www.netobj ect s.com
Raveler Pl atinum

Technol ogi es
www.ravel er.com

StoryServer Vi gnet te corp. www. vi gnet te.com
Team Site Interwoven www.interwoven. com

Table 4. Commercial Web Content Development Tools

7 CROSSTALK The Journal of Defense Software Engineering January 2000

Web Addition

January 2000 CROSSTALK The Journal of Defense Software Engineering 29

Scene: “The project is finally over,” the project manager muses.
“Everyone has either been transferred, is hanging around to wait
for the next assignment, or is satisfying the old saying, ‘The job
ain’t done until the paperwork is finished.’

“Hmm. That just leaves preparing the final costing reports,
archiving the products and related paperwork in case there is a
post-audit, and preparing lessons learned. Lessons learned should
only require a page or two; I’ll find out who is available.”

An Afterthought
As shown by the above example, documenting lessons learned is
often downplayed as a needed, and sometimes required, task to
help future projects avoid problems. The need for lessons learned
is described as:

“… so that they [causes of variances, the reasoning behind the
corrective action chosen, and other types of lessons learned] become
part of the historical database for both this project and other projects
of performing organizations”[1].

So, what is the problem? My experience in the federal gov-
ernment and industry is that the current lessons-learned efforts
are not seen as worth the time spent in their implementation.
Lessons learned are mainly afterthoughts done at the end of a
project to close out one of the final checklist items to terminate
a project. Providing lessons learned when they occur is consid-
ered to be time consuming, and there are things of higher prior-
ity that must be completed first. There is a prevailing view that
the idea of having lessons learned is good. In reality, presented
issues are normally typical (for example, schedule and cost must
be managed) or unique to a project.

As has been stated by many authors and project managers,
“It is generally cheaper to prevent problems than to fix prob-
lems.” This is especially true of project problems. If done correct-
ly, an organizational lessons learned database can prevent project
headaches and save time and money.

Current Lessons Learned Task
What causes these obstacles? Let us take one example, “What is
wrong with looking at old problem reports?” Problem reports
do not provide lessons learned information since management
and business issues are normally not part of problem reports.
Also, many problem report issues are so technical and project
specific that they do not help future projects anticipate or avoid
problems. As a result, many problem-report solutions are also
too technical and project specific. In addition, most problem
reports do not address the question, “What could have been
done to prevent this problem?”

Proposed Lessons Learned Task
To overcome these obstacles and to make a lessons learned task
work, there must be a clear understanding of the purpose for
documenting lessons learned. I propose the following definition:

Lessons learned task—An ongoing project task to docu-
ment a project’s major negative and positive issues. The
documented lessons learned are used to prevent issues
from having a negative impact on a project and to provide
alternative ways of doing things.

To implement a continuous lessons learned task, without
making it an overhead nightmare, it is necessary to define the
type of issues to be continuously reported. For example, issues
approaching a plus or minus 5 percent impact on cost, sched-
ule, or deliverable product size or performance shall be entered
into an organizational lessons learned database.

A second lessons learned subtask is to consider the format of
a lessons learned report. A problem report identifies a problem,
the cause, and solution; a lessons learned report identifies the
same things as well as what should have been done in advance to
recognize and prevent the issue.

A third lessons learned subtask is that a successful lessons
learned database needs to have the assignment of responsibili-
ties. Someone in a project management office could be responsi-
ble for cost, schedule, customer interactions, and management
lessons learned. A quality assurance organization could be
responsible for deliverable product issues (including processes,
development, delivery, installation and maintenance).

Thus, a lessons learned task does not have to be complicated,
costly, or wait until project termination.

Is It Worth the Effort?
A timely lessons learned database must be part of an organiza-
tion’s process improvement effort. This database can be used to
reduce risks by providing users with information about how
people were able to recognize risks (hopefully in advance) and
overcome these risks. As a result, a lessons learned database
becomes not just a project tool, but also an organizational tool
to help ensure the past can be used to help the future of an
organization. An organizational lessons learned database can
economically reduce risks and costs while providing greater ben-
efits than independent project lessons learned databases.

Recommendation
A common statement is that quality must be built into a prod-
uct or service. For product quality to occur, a person/ organiza-
tion must step back and realize that quality must be built into a

Literature and standards mention the importance of lessons learned. So why are we still having
problems? Why have we not learned our lesson?

Open Forum

The Need for a Useful Lessons Learned Database

George Jackelen
EWA Inc.

project before quality can be built into a product
or service. Going a step further, quality must be built into an
organization before quality can be built into a product. The
following steps can help establish quality projects:
• Define the format and criteria for information to be stored in

an organizational lessons learned database.
• Assign responsibility for timely updates of the lessons learned

database to a few people or organizations. The responsibility
should include examining an organizational lessons learned
database prior to and during a project.

• Identify metrics, including frequency of measurement and
reporting, for ensuring effective lessons learned task imple-
mentation and to measure the level of success. For example,
have project metrics to identify the lessons learned database’s
usefulness. This could include such questions as:
—What issues were prevented or resolved, based on the pro-

vided information?
—What information is being duplicated? Does the organiza-

tion have a bigger problem?
—Is the lessons learned database periodically audited to ensure

it is being updated with timely information that is used?

Conclusion
A lessons learned database is a useful management tool to help
projects reduce the number and level of risk items and to provide
useful information to identify positive ways to run a project. The
main need is for a positive attitude about the value and cost
effectiveness of efficiently run lessons learned databases. In addi-
tion, there can be a tremendous organizational benefit to reduce
risk and to assist in a process improvement effort. There is a
need for useful lessons learned databases.◆

Acknowledgement
I want to thank Dan Solomon for his advice.

Reference
Project Management Institute. A Guide to the Project Management
Body of Knowledge, Project Management Institute, Upper Darby,
Pa., 1996.

About the Author
George Jackelen is project manager and analyst
for two NASA Independent Verification and
Validation projects. During his 30-plus years expe-
rience, he has performed software and hardware
quality assurance for DoD and industry, and
developed or provided review comments on ISO,
IEEE, DoD and contractor standards, policies,
procedures, etc. He has a master’s of science degree
in Computer Science from Texas A&M University.

1000 Technology Drive
Fairmont,W.Va. 26554
Voice: 304-367-8252
Fax: 304-367-0775
E-mail: gjackele@ewa.com

The Need for a Useful Lessons Learned Database

February 28—March 3
16th International Conference on Data Engineering ICDE 2000

http://www.research.microsoft.com/icde2000/

March 6-8
13th Conference on Software Engineering

Education and Training CSEET&T
http://www.se.cs.ttu.edu/CSEET2000

March 6-10
Software Management/Applications of Software

Measurement SM/ASM 2000
http://www.sqe.com/smasm/2000/

March 13-17
6th International Conference on Practical Software Techniques

http://www.softdim.com

March 20-22
5th Annual Association for Configuration & Data Management

Technical Conference
http://www.acdm.org

March 20-23

12th Software Engineering Process Group Conference

SEPG 2K

http://www.sei.cmu.edu/products/events/sepg/

April 11-14

Infosecurity 2000

http://www.infosec.co.uk/page.cfm

April 18-20
FOSE :Leading-Edge Technology for Leaders in Government

http://www.fedimaging.com/conferences

April 30—May 4
The 12th Annual Software
Technology Conference

http://www.stsc.hill.af.mil/index.asp

June 20-22
Product Focused Software Process Improvement PROFES 2000

http://www.ele.vtt.fi/profes2000

August 28-31
First Software Product Line Conference SPLC1
http://www.sei.cmu.edu/plp/conf/SPLC.html

Coming Events 2000

30 CROSSTALK The Journal of Defense Software Engineering January 2000

Lt. Col. Joe Jarzombek

Reuel S.Alder

Lynn Silver

Kathy Gurchiek

Matthew Welker

Heather Winward

801-775-5555 DSN 775-5555
801-777-8069 DSN 777-8069
crosstalk.staff@hill.af.mil
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html
http://www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning subscrip-
tions and changes of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, Utah 84056-5205
E-mail: stsc.custserv@hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to
the Editor or other editorial matters should be sent to the
same address listed above to the attention of CROSSTALK Editor.

Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please follow the
Guidelines for CROSSTALK Authors, available upon request.We do not
pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publica-
tions.

Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.

Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the official
views of, or endorsed by, the government, the Department of
Defense, or the Software Technology Support Center. All
product names referenced in this issue are trademarks of
their companies.

Coming Events:We often list conferences, seminars, sympo-
siums, etc., that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.

STSC Online Services: This can be reached on the Internet.
World Wide Web access is at http://www.stsc.hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or e-mail
to schreifr@software.hill.af.mil.

Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge. If you
would like a copy of the printed edition of this or another
issue of CROSSTALK, or would like to subscribe, please contact
the customer service address listed above.

The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies that will improve the quality
of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of
their delivery. CROSSTALK is assembled, printed, and distributed
by the Defense Automated Printing Service, Hill AFB, Utah
84056. CROSSTALK is distributed without charge to individuals
actively involved in the defense software development
process.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING
EDITOR

ASSOCIATE
EDITOR/LAYOUT

ASSOCIATE
EDITOR/FEATURES

VOICE

FAX

E-MAIL

STSC ONLINE

CROSSTALK ONLINE

CRSIP ONLINE

Got an idea for BACKTALK? Send an e-mail to backtalk@stsc1.hill.af.mil

BackTALK

With appreciation and apologies to Don McLean . . .
A long, long time ago

I can still remember how that PC used to make me smile
And I knew if we got a chance

We could make those pixels dance
And maybe we’d be happy for a while

But February made me shiver
With every program he’d deliver

Bad news on the Altair
It just didn’t seem fair

I can’t remember if I sighed
When I read about his legal slide

But something touched me deep inside
The day the software died

So … {Refrain}
Refrain

Bye-bye, Mr. Microsoft Guy
Got his product preloaded
And I still don’t know why

And them Redmond boys were eating ham on rye
Singin’ Bill is just a regular guy
He even stuck his face in a pie

Did he write BASIC stuff
And did he have faith in DOS enough

If Allen told him so
Do you believe in point ‘n click
Can GUI save your carpal tick

And can you teach me how to surf real slow
Well, I know that you’re in love with DOS

‘Cause I saw you sell it to the boss
He had no clue to choose

Man, I dig those IBM blues
He was a lonely teenage techno-geek
With a gift for fancy market speak
But I knew it was tongue-in-cheek

The day the software died
I started singing … {Refrain}

Now for 10 years we’ve been on PCs
Still DOS grows fat on our CDs
But that’s not how it used to be

When Gates brawled with the Apple King
In a coat worn since he was 13

And cash that came from you and me
Oh, and while the King was looking down

Gates stole his thorny crown
The courtroom was adjourned

No software was returned
And while Netscape geared up on the Net

The Redmond boys began to sweat
Their next move would set their debt

The day the software died
We were singing … {Refrain}
I met a girl who runs Outlook

And I asked her to fix my address book
But she just smiled and turned away

I went down to the sacred store
Where I’d run Outlook once before

But the man there said the program wouldn’t run
And in the streets the users screamed

The managers cried, and the hackers dreamed
The servers were all chokin’

The firewall had been broken
And the two men who had the most,

Bill the kid and Paul the ghost
They built their mansions on the coast

The day the software died
And they were singing …

Bye-bye, Mr. Microsoft Guy
Got his product preloaded
And I still don’t know why

And them Redmond boys and their long hippie hair
Singin’ this will be the day that we cry

—Gary Petersen, Shim Enterprises

Software Pie

January 2000 CROSSTALK The Journal of Defense Software Engineering 31

Memorandum for Component Acquisition Executives
The Under Secretary of Defense gives his thoughts on component acquisition.

CROSSTALK

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

BULK RATE
US POSTAGE PAID

Permit No. 481
Cedarburg,WI

Management

J. S. Gansler 3
Policy and

2 From the Publisher: Plot Your Course
20 Lessons Learned Web Sites

31 BackTALK: Software Pie

Order DSMC’s System
Engineering Fundamentals 7

Coming Events 30

AnnouncementsDepartments and

LearnedLessons

Reed Sorensen 11

Will Tracz, Ph.D. 4

Susan Grosjean 8

Architectural Issues, other Lessons Learned in
Component-Based Software Development

A summary of technical and managerial lessons learned from COTS-based architectures.

Building a CM Database: Nine Years at Boeing
Developing configuration management databases and (Boeing) 777 lessons learned.

The CM Database:To Buy or to Build?
A discussion of the relationship between PM and CM disciplines.

Learning:The Engine for Technology Change Management
Part two of a two-part series exploring the adaptation needed to become a learning organization.

Off-the-Shelf Software: Practical Evaluation
Advice on COTS evaluation using common success factors useful in evaluating contractor proposals.

Restoring Cyber Security
Advice on COTS evaluation using common success factors useful in evaluating contractor proposals.

Content Change Management: Problems for Web Systems
Nine challenges facing web systems are addressed using lessons learned from content CM.

The Need for a Useful Lessons Learned Database
Why are we still having problems with lessons learned?

Lee Fischman 21
Karen McRitchie

Linda Levine 14

TechnologySoftware Engineering

ForumOpen

Bryan C. Crittenton 25

Susan Dart 28

AdditionWeb

George Jackelen 29

	Cover
	From the Publisher
	Memorandum for Component Acquisition Executives
	Architectural Issues, other Lessons Learned in Component-Based Software Development
	New Guidebook Released on Systems Engineering Fundamentals
	Building a CM Database: Nine Years at Boeing
	The CM Database: To Buy or to Build?
	Call for Articles
	Learning: The Engine for Technology Change Management
	Lessons - Learned Web Sites
	Off-the Shelf Software: Practical Evaluation
	Restoring Cyber Security
	Content Change Management: Problems for Web Systems
	The Need for a Useful Lessons Learned Database
	Coming Events
	BackTalk
	Index

