
CrossTalkCrossTalk
FFeebbrruuaarryy 22000000 TThhee JJoouurrnnaall ooff DDeeffeennssee SSooffttwwaarree EEnnggiinneeeerriinngg VVooll.. 1133 NNoo.. 22

RISK
MANAGEMENT

AHEAD

2 CROSSTALK The Journal of Defense Software Engineering Febuary 2000

Risk

Both Sides Always Lose: Litigation of Software Intensive contracts
Can litigation be averted by a contract agreeable to both parties?

by Tom DeMarco and Tim Lister

Continuing Risk Management at NASA
Six primary functions of risk management per NASA GSFC.

by Linda Rosenberg, Al Gallo, Tim Hammer, and Frank Parolek

Integrating “Crisis”
into Project Management training
An overview of software risk management literature and software tools.

by Darrell Corbin, Russ Hamerly, Roger Cox, and Kenneth Knight

A Practical Approach to Quantifying
Risk Evaluation Results
A simple approach to risk analysis combining SEI/SRE and COCOMO.

by Peter Hantos

12th Annual Software Technology Conference
Only 12 weeks remain to register for STC 2000.

by Dana Dovenbarger

Risk Management Rollout and Installation at the NRO
How did the National Reconnaissance Organization introduce a disciplined risk management process
that has provided significant cost-benefits?

by Al Krum, August Neitzel, Jo Lee Loveland Link, and Richard Barbour

Evaluating COTS Using Function Fit Analysis
Function fit analysis is a methodology proven to be successful in evaluating commercial-off-the-shelf software.

by Lori A. Holmes

4

7

12

15

20

Departments

OOnn tthhee ccoovveerr::
Anthony Peters of
L-3 Communications
in Layton, Utah,
represents risk
management as
a winding road.

3

11
14
25

6

31

From the Publisher

Call for Articles/Letters to the Editor

Risk Management Web Sites

Quote Marks

Coming Events

BackTALK

22

26

LLtt.. CCooll.. JJooee JJaarrzzoommbbeekk

RReeuueell SS.. AAllddeerr

LLyynnnn SSiillvveerr

KKaatthhyy GGuurrcchhiieekk

MMaatttthheeww WWeellkkeerr

HHeeaatthheerr WWiinnwwaarrdd

801-775-5555
801-777-8069
crosstalk.staff@hill.af.mil
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html
http://www.crsip.hill.af.mil

SSuubbssccrriippttiioonnss: Send correspon-
dence concerning subscriptions and changes of
address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, Utah 84056-5205

AArrttiiccllee SSuubbmmiissssiioonnss:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Guidelines for CROSSTALK Authors, available upon
request.We do not pay for submissions. Articles published in
CROSSTALK remain the property of the authors and may be
submitted to other publications.
RReepprriinnttss aanndd PPeerrmmiissssiioonnss:: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
TTrraaddeemmaarrkkss aanndd EEnnddoorrsseemmeennttss:: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center.All product names referenced in this issue
are trademarks of their companies.
CCoommiinngg EEvveennttss: We often list conferences, seminars, sym-
posiums, etc., that are of interest to our readers.There is
no fee for this service, but we must receive the information
at least 90 days before registration. Send an announcement
to the CROSSTALK Editorial Department.
SSTTSSCC OOnnlliinnee SSeerrvviicceess:: at http://www.stsc.hill.af.mil.
Call 801-777-7026, e-mail randy.schreifels@hill.af.mil.
BBaacckk IIssssuueess AAvvaaiillaabbllee:: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
TThhee SSooffttwwaarree TTeecchhnnoollooggyy SSuuppppoorrtt CCeenntteerr was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SSPPOONNSSOORR

PPUUBBLLIISSHHEERR

AASSSSOOCCIIAATTEE
PPUUBBLLIISSHHEERR

MMAANNAAGGIINNGG EEDDIITTOORR

AASSSSOOCCIIAATTEE
EEDDIITTOORR//LLAAYYOOUUTT

AASSSSOOCCIIAATTEE
EEDDIITTOORR//FFEEAATTUURREESS

VVOOIICCEE

FFAAXX

EE--MMAAIILL

SSTTSSCC OONNLLIINNEE

CCRROOSSSSTTAALLKK OONNLLIINNEE

CCRRSSIIPP OONNLLIINNEE

CrossTalk

30 Web Addition

New CMMI Requirements for
Risk Management

Management

Software TechnologyEngineering

On a clear, crisp winter Saturday, I experienced risk management at its finest when I
took my family to a grand opening of a light rail system that took years of planning
and building. Excitement filled the air on this festive day of free trolley rides, and
giveaways like hot dogs and T-shirts. There was no parking when we arrived at one of

the rail stations, due to the large turnout. I finally left my car in a warehouse parking lot, hoping
that no one cared that I had parked in an unauthorized zone (Risk No. 1).

My wife and I and three young children walked to the light rail station and waited. And
waited. And waited some more. Three trolleys, stuffed with riders, rolled by before I finally
jammed my family onto the next one, wondering as I did so if there would be room on a return-
ing trolley to get us back within the hour (Risk No. 2).

I took my chances and the trolley sped smoothly ahead. I noticed that all the stations along
the route were packed with long lines of people waiting to board, and that every trolley we passed
was filled to overflowing. When we arrived at the end of the line, the trolley doors rolled open
and riders were asked to exit (Risk No. 3).

Many of us looked out the windows at the line of more than 2,000 waiting people and said,
"Heck no, we won't go." We knew a long wait was ahead once we exited. There was no way my
family would be able to return to our car within an hour (Risk No. 4).

The mutinous group on our trolley cheered as our trolley started back in the other direction.
I was happy to think we would soon be back to our waiting car, 15 miles away, with our crying
baby. However, the next trolley stop changed the whole afternoon.

We waited for the trolley to move; it did not. After about 10 minutes, passengers were told
that the front trolley had brake problems. We waited 30 minutes while they pumped the brakes, a
long wait (Risk No. 5) with three children ages 5, 3, and 1.

Eventually, the trolley moved, but at a reduced speed of 2 mph. By the time we arrived at the
next station, the trolley's power had shut down due to a software problem (Risk No. 6).

I mitigated my next risk and called a friend, who rescued us. Our risk-filled day ended as we
arrived home.

Most of us deal with risks every day. At what point do you execute a risk mitigation plan? In
their article, Continuing Risk Management at NASA, (see page 7), Dr. Linda H. Rosenberg, Ted
Hammer, Al Gallo, and Frank Parolek, point out that risk involves the likelihood that an undesir-
able event will occur. They write about the importance of risk management in identifying and
dealing with potential problems before they reach crisis level, focusing on the project's objective,
being proactive, and involving personnel at all levels of the project.

Taking risks is a fact of life. The severity and degree of a risk needs to be properly managed or
catastrophic results can occur. Manage risk; do not let it manage you. Be cognizant of the road signs
along your project's route that may signal a detour or a bumpy road ahead. Mitigate those risks.

Do not get stranded along the side of the road. No risk management is risky business.

Lynn P. Silver
Associate Publisher

February 2000 CROSSTALK The Journal of Defense Software Engineering 3

From the Publisher

Risky Business

A contract is a kind of specification. Instead of describing a
new system, it describes a business agreement. A contract suffers
from some of the same difficulties that plague a specification: nei-
ther is ever entirely clear, entirely right, or entirely free from inter-
pretation. None of these problems is fatal when there is goodwill
and a commonality of interests between the parties. With these
two essential ingredients, people work out their differences and
come to a successful conclusion. But when the two essential
ingredients are missing, that is when matters begin to go south.

Going South to the Tune of More than $100 mil

Take, for example, the case of a contract to build an ambi-
tious reservation system a few years back. The disputants were
the Fly-By Information Services Co. and the Magnificent Hotel
Corp. (fictitious names used to protect the guilty parties and the
authors). Fly-By was to build the system and Magnificent to
specify the requirements and pay for the result.

The first sign that all was not right was the extraordinary dif-
ficulty of coming up with a contract. As with a specification
effort, when contract negotiations are particularly rough, that is a
sign that there is conflict brewing beneath the surface. This nego-
tiation was fierce. Everybody hated everybody. It was like one of
those marriages that quickly dissolves into bitter acrimony. You
have to wonder, when the principals are so wrong for each other,
why they bothered. So, too, the contract between Fly-By and
Magnificent.

One way to deal with conflict is to paper it over in ambigu-
ity. You do that when you write a speculation that conceals dis-
agreement rather than pleasing one of the disagreeing parties at
the expense of another. In an aggressively negotiated contract,
the result is not what you would at first expect, a contract with
every “i” dotted and “t” crossed. Instead, you tend to end up
with ambiguities wherever there are truly unresolvable conflicts.
That is what happened in the Fly-By case.

The rest of the story is especially grim. The case was litigat-
ed for years and finally settled, with nobody really winning. The
settlement was $100 million-plus, but not enough to make any-
one whole. No system was built or delivered. Everybody wasted
years of their lives. The legal fees were staggering. The opportu-
nity costs, the useful things they could have been doing instead
of litigation, were even worse. Both sides showed huge losses.

Since the contract was weak, the case finally turned on a sin-
gle incident: Fly-By had fired a succession of managers who tried
to tell the big boss that the date was unworkable. Magnificent
found out, brought in the fired managers as witnesses, then
pointed triumphantly to one clearly written contract provision
that said Fly-By was obliged to inform its partner if it had credi-
ble reason to believe the delivery would be late. That cost Fly-By
more than $100 million. Everybody ended up with enormous
losses, but Fly-By’s were more than Magnificent’s.

Even told in such sketchy terms, the case of Magnificent vs.

Fly-By contained many of the patterns of a typical litigation
where software is at the heart. The first of these is obvious to
anyone who has ever been involved in software litigation:

Pattern 1: Both sides always lose.

Stepping Back for a Look at the Context

As impressive as growth of the software industry has been,
it is outpaced by growth of software-related litigation. It is not
unusual for a large software development organization today to
have upwards of 50 active cases on its hands. Litigation costs are
not usually charged against an information technology budget,
but if they were, they would be—when spread across unlitigated
and litigated projects—a larger component than coding. We are
experiencing an epidemic of litigation on software projects. This
is different from the general litigiousness that has often been
noted about our society. Americans are all too prone to ask the
courts to resolve disagreements, but this has not in the past
been particularly true of American corporations. Corporations
understood that everybody loses in litigation and that the costs
can be ruinous.

The growth of software-related litigation is, we think, due
to some factors that affect all corporations today, but have been
particularly strongly felt in the software sector. The extensive
layoffs in the early 1990s, together with the lean and mean atti-
tude they engendered, have led to the glut of litigation today.

The Heart of the Matter
There have been downsizings in our economy before, but

the ones that struck us so hard between 1990-95 were curiously
vindictive. The people who were booted out were made to feel
that they were not just unlucky, but somehow at fault. They
were fat that needed to be trimmed. The people who remained
were also made to feel bad and told in no uncertain terms that
they would have to pick up all the work of their dismissed col-
leagues, and then some, or else risk being booted out.

It often fell to information technology (IT) management to
carry out the downsizings and to convey upper management’s
attitude of righteous indignation about fat on the payroll. The
effect on the workers was either catastrophic for those who were
laid off, or depressing. That much was obvious. What was not
so obvious was the effect on IT management. Our speculation is
that the downsizing exercise made many IT managers more
fearful and insecure than ever, and caused them to retreat into
an attitude of embattled authoritarianism. This attitude has
been bad for everyone (except Scott Adams, who has turned it
into millions).

What does this have to do with litigation? We believe it is
at the very heart of the flurry of litigation that we began to
observe by 1995. Embattled IT managers, fearful and under the
gun to show improved performance, fell back on lines like. “Do
not tell me it cannot be done in two years. I am the boss. It will

4 CROSSTALK The Journal of Defense Software Engineering February 2000

Risk Management

Both Sides Always Lose: Litigation of Software-Intensive Contracts
Litigation of software-intensive endeavors is a major growth industry. The costs of litigation are
rising faster than any other aspect of software development. Understanding five key patterns of such
litigation is essential to maintaining the health of any organization that builds or buys software.

be done in two years.”
Engineers, who knew that deadlines were unworkable or

that quality would suffer, shrugged in the face of such insis-
tence. They reasoned that management would learn in the long
run that impossible is impossible. And so impossible targets
were accepted. They made their way into contracts. The con-
tracts were signed. The project workers tried their best and
failed. Then the parties went to court.

This is almost exactly the story of the project that Fly-By
conducted for Magnificent. Fly-By wanted the work and bid to
win. It obligated itself to perform at a level that time would
prove was unattainable. The voice of reason was drowned out by
that of management, intent on using its force to impose its
wishes. It succeeded, briefly.

Pattern 2: When authority trumps reality, reality
always wins in the end.

“Golly, How the Truth Will Out.”

An invariant feature of such litigation is that all project
records are subpoenaed. That means that each and every manag-
er and worker has to provide the entire contents of his or her
files to be copied and provided to the other side. There are no
exceptions. You may be reluctant to provide a copy of that
bothersome little memo where the true defect rates were dis-
cussed, but as the court papers make clear, if you do not provide
it and you are found out, you go directly to jail. Not the com-
pany, and not just officers of the company, but you. For most
employees, this is a fairly persuasive argument. And so, even the
most incriminating evidence generally gets delivered.

As litigation consultants and expert witnesses, we spend an
inordinate amount of time poring over these project records.
The surprising thing is that, in most of these cases, there is a
great deal of what we might call lying. It is not at all unusual to
find yourself with a memo from X to his boss stating that deliv-
ery will be delayed by at least six months and a memo from X
to the client, dated the same day, providing comforting assur-
ances that the project is on schedule.

Outright lying is a direct sin of commission. Equally com-
mon are sins of omission, situations where X knows something
bad and neglects to tell it to the client. Omission is a different
flavor of lie. Both are subject to this invariant of legal cases:

Pattern 3: Lying to your contract partner is morally inde-
fensible, generally illegal, and always gets found out in
litigation.

The old rule of honorable behavior—do not lie to the other
guy—seems to have been replaced with a new rule: do not tell
the other guy anything that is not true unless he has no possible
way of knowing that what you say is not true. Same with sins of
omission (what the lawyers call unfair surprise), the new rule
seems to be that it is OK to neglect to mention an inconvenient
fact that the other guy has no way of hearing about on his own.
All this subterfuge comes back to eat you alive during litigation.

The Other Side of the Coin
We have spoken mostly of cases where the software builder

overcommits. But it is also possible for the other party to be at
fault. This happens when a software buyer imposes wishful think-
ing deadlines on a builder, conceals real requirements to keep the
price down, and hopes to impose them on the builder as freebie
changes, tries to get ambiguity into a contract to be exploited
later, and so on. In general, buyers are every bit as likely as
builders to try to trump reality with authority, and to tell little
lies. And they are just as subject to the three patterns presented.

Buyers are particularly prone to one of the worst fallacies of
contracting, the idea that risk always moves with responsibility. It
does not. When you are the buyer and another organization
agrees to build a system for you, signing the contract moves pri-
mary responsibility for successful implementation from you to the
builder. Not all the risks involved in attempting the project move
with that responsibility (no organization can completely buy its
way out of risk). If the contractor fails to deliver, both parties
lose. Since this is a real risk from the buyer’s point of view, it is
incumbent on that buyer to manage that risk. Software is a risky
business and both sides of any software project need to do serious
risk management. We think that most organizations understand
this, but our data indicate that those who get into litigation are
disproportionately likely to avoid it:

Pattern 4: Litigation is almost always a result of imper-
fect risk management by either or both parties.

Most of the litigations we have seen have involved organiza-
tions that failed to do any risk managment at all.

Everything we have discussed so far deals with events that
precede the actual court case, the causative factors. That is inter-
esting in the abstract, but if you are about to go to court, your
mind is understandably occupied with other things, i.e. what do
you do to avoid losing your shirt?

You are in a Litigation—What Do You Do?
Litigation may be a lose-lose business, but there are certain

defensive strategies that may help to limit your losses. The most
important one we know is to investigate and calibrate your proj-
ect with respect to industry norms. For example, if the other side
alleges that you have been fickle about the requirement and
heaped ruinous numbers of change requests on the builder, your
best defense is to show that your performance in this respect is
better than the industry norm. It helps to know that the industry
norm for changeability of specification is someplace between 1
and 2 percent per month of the original specified size (measured
in function points). It helps to have a good source for such evi-
dence, in this case The Condensed Guide to Software Acquisition
Best Practices [1].

As you may surmise, a successful use of the norms implies a
certain fluency with metrics. Organizations that cannot or do not
measure themselves in a fairly systematic way are always at a huge
disadvantage in litigation. If you are deficient at measurement,
and the other side is on top of it, the jig is up. Metrics is one of
the three major subjects on which virtually all litigations turn:

Pattern Five: Most litigations end up focused on
measurement, management, or requirements
practice, or some combination thereof.

February 2000 CROSSTALK The Journal of Defense Software Engineering 5

Both Sides Always Lose: Litigation of Software Intensive Contracts

The things you do to win a litigation are doing careful
measurements work, focusing on good management practice,
and conducting exhaustive and thoughtful analysis of require-
ments. Paradoxically, these also are three of the principal things
you should do to avoid litigation.

A Final Word
The more you think about litigation, the more you must

think about the underlying contract. It is tempting to conclude
that the lesson here is to get your lawyers involved early and often
in order to come up with iron-clad contracts that simply cannot
go wrong. While early legal work may be a good investment, it is
not entirely realistic to think it can avoid all problems. If the basis
of understanding is flawed, no contract will improve it.

Rather than focusing on the contract as a legal instrument,
turn your attention to the understanding at the heart of it.
When parties develop a real commonality of interest, all is possi-
ble. Litigation becomes less likely and success more likely. The
project may not go smoothly from beginning to end, but it will
tend to respond constructively to the problems it encounters and
have the best chance of delivering a useful and effective system.

How can you know whether you are forging a partnership
as opposed to signing a deal that will come back to haunt you?
The best rule is to think of a contract as bad if one party can
win while the other loses. Win-lose situations are a precursor to
litigation, since only the most saintly organization could accept
lose-lose when it could, under the guarantees of the contract,
slip into a win-lose situation. This is the kind of contract you
must avoid, even if your organization is the putative winner.

But this sounds crazy. Is not the heart of successful con-
tracting an attempt to place yourself in a position where you
can win at the expense of the other party? Too often it is, but
such contracts usually turn out badly. The only contract that is
truly healthy is one where you feel good signing either side.

That starts you out with the best chance of success. Mea-
sure carefully, manage well, and pay attention to requirements.

One more thing: do a little risk management, just in case.!

Reference
1. The Program Manager’s Guide to Software Best Practices, Crystal

City, Va: Software Program Managers Network, Sept. 1995.

6 CROSSTALK The Journal of Defense Software Engineering February 2000

RRiisskk MMaannaaggeemmeenntt

About the Authors
Tom DeMarco and Tim Lister, principals of the Atlantic
Systems Guild, have been partners for nearly 20 years. They are
the authors of Peopleware: Productive Projects and Teams, co-edi-
tors of Software: State of the Art, and joint designers of seminars
on risk management for software; leading successful projects,
and controlling software projects. Their consulting practice
focuses on project management, measurement, and development
methods. They are called on often to serve as expert witnesses
and litigation support consultants.

Tom DeMarco
115 Shermans Point Road
P.O. Box 160, Camden, Maine 04843
Voice: 207-236-4735
Fax: 207-236-8432

E-mail: tdemarco@systemsguild.com
Internet: http://www.systemsguild.com

Tim Lister
353 W. 12th St.
New York, N.Y. 10014
Voice: 212-620-4282
Fax: 212-727-1044
E-mail: lister@acm.org

Quote Marks

“Computers are useless,
they can only give you answers.”

—Pablo Picasso

“I do not fear computers.

I fear lack of them.”

—Issac Asimov

“Computers make it easier to do a lot of
things, but most of the things they make

easier to do don’t need to be done.”
— Andy Rooney, 60 Minutes

"Computers in
the future may weigh

no more than 1.5 tons."
—Popular Mechanics, 1949,

forecasting the relentless
march of science.

“Software and cathedrals are
much the same—first we build
them, then we pray.”
Samuel T. Redwine, Jr.

“I don’t think
it’s that significant.”

—Tandy president John
Roach, 1981, on IBM’s

entry into the micro-
computer field.

“Act in haste and repent
at leisure; code too soon
and debug forever.”
—Raymond Kennington

“A computer does not substitute for judgement any more than a pencil substitutes for literacy.
But writing without a pencil is no particular advantage.” —Robert S. McNamara, The Essence of Security

“I have traveled
the length and

breadth of this country
and talked with the best
people, and I can assure
you that data processing
is a fad that won’t last
out the year.” —editor in
charge of business books,

Prentice Hall, 1957

This article has been reprinted with the permission of Cutter
Information Corp., provider of information resources for IT pro-
fessionals worldwide. It originally appeared in Cutter IT Journal,
April 1998, Vol. XI, No. 4 http://www.cutter.com/consortium

February 2000 CROSSTALK The Journal of Defense Software Engineering 7

Software risk management is impor-
tant because it helps avoid disasters,
rework, and overkill, but more impor-
tantly because it stimulates win-win situa-
tions. Software risk management objec-
tives are to identify, address, and eliminate
software risk items before they become
threats to success or major sources of
rework. In general, good project managers
are also good risk managers. It makes good
business sense for software development
projects to incorporate risk management as
part of project management.

NPG 7120.5A, the NASA guidebook
for project managers, requires risk manage-
ment applications and includes a section
briefly discussing what should be included
in a risk management plan [1]. The SEI-
developed course on continuous risk man-
agement was first taught in January 19981

[2]. Since then, more than 300 students at
NASA centers have attended the course.

There are a number of definitions
and uses for the term risk, but there is no
universally accepted definition. What all
definitions have in common is agreement
that risk has two characteristics:

uncertainty: An event may or may
not happen.
loss: An event has unwanted conse-
quences or losses.
Therefore, risk involves the likelihood

that an undesirable event will occur, and
the consequences can be severe. Risk man-
agement can:
• Identify and deal with potential prob-

lems before they are problems and
before a crisis exists.

.• Focus on the project’s objective and
consciously look for things that may
affect quality throughout the produc-
tion process.

• Allow the early identification of poten-
tial problems (the proactive approach)
and provide input into management
decisions regarding resource allocation.

• Involve personnel at all levels of the
project; focus their attention on a
shared product vision, and provide a

mechanism for achieving it.
• Increase the chances of project success.

NASA focuses on continuous risk
management that can be applied to any
development process: hardware, software,
systems, etc. It provides a disciplined envi-
ronment for proactive decision making to:
• Continually assess what could go wrong.
• Determine which risks are important.
• Implement strategies to deal with them.
• Assure measured effectiveness of imple-

mented strategies.
Risk management must not be

allowed to become shelfware. The process
must be a part of regularly scheduled,
periodic product management. It requires
routinely identifying and managing risks
throughout all phases of the project’s life.
The set of continuous risk management
functions throughout a project’s life cycle
is the foundation for the application of
continuous risk management. Each risk
nominally goes through these functions
sequentially, but the activity occurs con-
tinuously, concurrently, and iteratively.
Risks are usually tracked in parallel while
new risks are identified and analyzed, and
the mitigation plan for one risk may yield
another risk.

Continuous Risk Management

Principle Functions

Identify
The purpose of identification is to

consider risks before they become prob-
lems and to incorporate this information
into the project management process.
Anyone in a project can identify risks to
the project. Each individual has particular
knowledge about various parts of a project.
Uncertainties and issues about the project
are transformed into distinct (tangible)
risks that can be described and measured.

During this function, all risks are
written with the same, two-part format.
The first part is the risk statement, writ-
ten as a single statement concisely speci-
fying the cause of the concern as well as

its impact. The second part may contain
additional supporting details in the form
of a context.

A risk statement’s aim is to be clear,
concise, and sufficiently informative that
the risk is easily understood. Risk state-
ments in standard format must contain
two parts: the condition and the conse-
quence. The condition/consequence for-
mat provides a complete picture of the
risk, which is critical during mitigation
planning. It is read as follows:

given the <<ccoonnddiittiioonn>> there is a possi-
bility that <<ccoonnsseeqquueennccee>> will occur
The condition component focuses on

what is currently causing concern; it must
be something that is true or widely per-
ceived to be true. This component pro-
vides useful information when determin-
ing how to mitigate a risk. The consequence
component focuses on the risk’s intermedi-
ate and long-term impact. Understanding
the depth and breadth of the impact is
useful in determining how much time,
resources, and effort should be allocated to
the mitigation effort. A well-formed risk
statement usually has only one condition,
but may have more than one consequence.

Risk statements should avoid abbre-
viations or acronyms that are not readily
understood, sweeping generalizations,
and irrelevant detail

Since the risk statement is to be con-
cise, a context is added to provide enough
additional information about the risk to
ensure that the original intent of the risk
can be understood by other personnel,
particularly after time has passed. An
effective context captures the what, when,
where, how, and why of the risk by
describing the circumstances, contribut-
ing factors, and related issues (back-
ground and additional information not in
the risk statement).

A diagram of the complete risk state-
ment and context are shown in Figure 1.

An example is shown in Figure 2.
One condition and two consequences are
the risk statement. The context explains

Continuing Risk Management at NASA
The NASA Goddard Space Flight Center (GSFC) Software Assurance Technology Center (SATC) teaches a risk management
process based on a course developed in collaboration with the Software Engineering Institute at Carnegie Mellon University.
This risk management process has been taught to projects at all NASA Centers and is being successfully implemented on many
projects. This paper will discuss the six primary functions of risk management and will give project managers the information
they need to understand if risk management is to be effectively implemented on their projects at a cost they can afford.

why this is a risk, and supplies additional
information for someone unfamiliar with
this risk.

Risk identification depends heavily on
both open communication and a forward-
looking view to encourage all personnel to
bring forward new risks and plan beyond
their immediate problems. Although indi-
vidual contributions play a role in risk
management, teamwork improves the
chances of identifying new risks. It allows
personnel to combine their knowledge and
understanding of the project.

Analyze
The purpose of analysis is to convert

data into decision-making information.
Analysis is a process of examining the
risks in detail to determine the extent of
the risks, how they interrelate, and which
ones are the most important. Analyzing
risks has three basic activities: evaluating
their attributes (impact, probability, and
time frame), classifying, and prioritizing
or ranking them.
Evaluating—The first step provides bet-
ter understanding of the risk by qualify-
ing the expected impact, probability, and
time frame. This involves establishing
values for:

Impact: the loss or negative affect on
the project should the risk occur
Probability: the likelihood
the risk will occur
Time frame: the period when action
must be taken in order to mitigate
the risk
Figure 3 shows sample values used to

evaluate a risk’s attributes.
Classifying—The next step is to
classify risks. There are several ways to
classify or group risks. The ultimate pur-
pose of classification is to understand the
nature of the risks facing the project and
to group any related risks to build more
cost-effective mitigation plans. The
process of clarifying risks may reveal that
two or more risks are equivalent—the
statements of risk and context indicate

that the subject of these risks is the same.
Equivalent risks are duplicate statements
of the same risk and should be combined
into one.
Prioritize—The final step in the analysis
function is to prioritize the risks. The
purpose is to sort through a large number
of risks and determine which are more
important—the few vital risks—and to
separate the risks to be dealt with first
when allocating resources. This involves
partitioning risks or groups of risks based
on the vital few sense and ranking risks or
sets of risks based on consistently apply-
ing an established set of criteria. No proj-
ect has unlimited resources with which to
mitigate risks. It is essential to determine
consistently and efficiently which are
more important and then to focus those
limited resources on mitigating risks.

Conditions and priorities will change
during a project, and this natural evolu-
tion can affect the important risks to a
project. Risk analysis must be a continual
process. Analysis requires open communica-
tion so that prioritization and evaluation
are accomplished using all known infor-
mation. A forward-looking view enables
personnel to consider long-range impact.

Plan
Planning is the function of deciding

what, if anything, should be done about a
risk or set of related risks. Decisions and

mitigation strategies are developed based
on current knowledge of project risks. The
purpose of plan is to:
• Make sure the consequences and

sources of risk are known.
• Develop effective plans.
• Plan efficiently (only as much as needed

or is of benefit).
• Produce the correct set of actions over

time that minimize the cost and sched-
ule impacts of risks while maximizing
opportunity and value.

• Plan important risks first
There are four options to consider

when planning for risks:
1. Research: establish a plan to research

the risk(s).
2. Accept: decide to accept the risk(s),

and document the rationale behind
the decision.

3. Watch: monitor risk conditions for
any indications of change in proba-
bility or impact (tracking metrics
must be established and documented).

4. Mitigate: allocate resources and
assign actions in order to reduce the
probability or potential impact of
risks. This can range from simple
tasking to sweeping activities:
• Action Items: a series of discrete

tasks to mitigate risk.
• Task Plan: formal, well-documented

and larger in scope.

8 CROSSTALK The Journal of Defense Software Engineering February 2000

Risk Statement

Condition; Consequence

Contributing factors

Risk source

Circumstances Interrelationships

Figure 1. Risk Statement and Context

Risk statement: This is the first time that the software staff will use
OOD; the staff may have a lower-than-expected productivity rate and
schedules may slip because of the associated learning curve.

Context: Object-oriented development is a very different approach
that requires special training. There will be a learning curve until the
staff is up to speed. The time and resources must be built in for this or
the schedule and budget will overrun.

Figure 2. Example of Risk Statement and Context

AAttttrriibbuuttee VVaalluuee DDeessccrriipptt iioonn
Probability Very Likely (H)

Probable
(M)
Improbable (L)

High chance of this risk occurring, thus becoming a problem > 70%
Risk like this may turn into a problem once in a while {30% < x < 70%}
Not much chance this will become a problem {0% < x < 30%}

Impact Catastrophic (H)

Critical (M)

Marginal (L)

Loss of system; unrecoverable failure of system operations; major
damage to system; schedule slip causing launch date to be missed; cost
overrun greater than 50% of budget

Minor system damage to system with recoverable operational capacity;
cost overrun exceeding 10% (but less than 50% of planned cost)

Minor system damage to project; recoverable loss of operational capacity;
internal schedule slip that does not impact launch date cost overrun less
than 10% of planned cost

Timeframe Near-term
(N)
Mid-term
(M)
Far-term
(F)

Within 30 days
1 to 4 months from now
more than 4 months from now
NOTE: refers to when action must be taken

Figure 3. Sample Attribute Values

RRiisskk MMaannaaggeemmeenntt

February 2000 CROSSTALK The Journal of Defense Software Engineering 9

Continuing Risk Management at NASA

Dealing with risk is a continuous
process of determining what to do with
new concerns as they are identified and
efficiently utilizing project resources. An
integrated approach to management is
needed to ensure mitigation actions do
not conflict with project or team plans
and goals. A shared product vision and
global perspective are needed to create
mitigation actions on the macro-level to
benefit the project, customer, and organi-
zation. The focus of risk planning is to be
forward-looking, to prevent risks from
becoming problems. Teamwork and open
communication enhance the planning
process by increasing the amount of
knowledge and expertise applied to the
development of mitigating actions.

Track
Tracking is the process by which risk

status data are acquired, compiled, and
reported. The purpose is to collect accu-
rate, timely, and relevant risk information,
and to present it in a clear and easily
understood manner to the appropriate
group of people. Tracking is done by those
responsible for monitoring watched or mit-
igated risks. Tracking status information
becomes critical to performing the next
function in the continuous risk manage-
ment paradigm, i.e. control. Supporting
information, such as schedule and budget
variances, critical path changes, and proj-
ect/performance indicators can be used as
triggers, thresholds, and risk- or plan-spe-
cific measures where appropriate.

When a mitigation plan has been
developed for a risk or risk set, both the
mitigation plan and the risk attributes are
tracked. Tracking the mitigation plan, or
even a list of action items, will indicate
whether the plan is being executed cor-
rectly and/or on schedule. Tracking any
changes in the risk attributes will indicate
whether the mitigation plan is reducing
the impact or probability of the risk.
Tracking risk attributes gives an indication
of the effectiveness of the mitigation plan.

Program and risk metrics provide
decision makers with information needed
for making effective decisions. Normally,
program metrics are used to assess the cost
and schedule of a program as well as the
performance and quality of a product.
Risk metrics are used to measure a risk’s

attributes and assess the progress of a miti-
gation plan. They can also be used to help
identify new risks. For example, a program
metric might look at the rate of module
completion. If this indicates that the rate
of completion is lower than expected, then
a schedule risk should be identified.

Open communication regarding risk
and mitigation status stimulates the proj-
ect and risk management process. Tracking
is a continuous process—current informa-
tion about a risk status should be con-
veyed regularly to the rest of the project.
Risk metrics provide decision makers with
information needed for effective decisions.

Control
The purpose of the control function is

to make informed, timely, and effective
decisions regarding risks and their mitiga-
tion plans. It is the process that takes in
tracking status information and decides
what to do based on the reported data.
Controlling risks involves analyzing status
reports, deciding how to proceed, and
implementing the decisions.

Decision makers need to know when
or whether there is a significant change in
risk attributes, and the effectiveness of
mitigation plans within the context of
project needs and constraints. The goal is
to obtain clear understanding of the cur-
rent status of each risk and mitigation
plan relative to the project in order to
make decisions based on that understand-
ing. Tracking data is used to ensure that
project risks continue to be managed
effectively and to determine how to pro-
ceed with project risks. Options include:
Replan: A new or modified plan is re-
quired when the threshold value has been
exceeded, analysis of the indicators shows
that the action plan is not working, or an
unexpected adverse trend is discovered.
Close the risk: A closed risk is one that
no longer exists or is no longer cost-effec-
tive to track as a risk. This occurs when
the probability or impact falls below a
defined threshold, or the risk has become
a problem and is tracked.
Invoke a contingency plan: A contingency
plan is invoked when a trigger has been
exceeded or other related action needs to
be taken.
Continue tracking and executing the
current plan: No additional action is

taken when analysis of the tracking data
indicates that all is going as expected or
project personnel decide to continue
tracking the risk or mitigation plan as
before.

Open communication is important
for effective feedback and decision mak-
ing, a critical aspect of control. Risk con-
trol is also enhanced through integrated
management; combining it with routine
project management activities enables
comprehensive project decision making.

Communication, Documentation
The purpose of communicating and

documenting is for all personnel to under-
stand the project’s risks and mitigation
alternatives as well as risk data to make
effective choices within the constraints of
the project. Communication and docu-
mentation are essential to the success of
all other functions within the paradigm
and are critical for managing risks.
Identify: In risk identification, risk state-
ments are communicated.
Analyze: In analysis, project personnel
communicate information about impact,
probability, and time frame attributes.
Risk classification involves grouping risk
information communicated by individuals.
Plan: Action plans are developed and
communicated to project personnel.
Track: Reports designed to communicate
data to decision-makers are compiled.
Control: The decisions made during con-
trol must be communicated and recorded
to project personnel.

For effective risk management, an
organization must have open communi-
cation and formal documentation.
Communicating risk information is often
difficult because the concept of risk com-
prises two subjects that people do not
normally deal well with: probability and
negative consequences.

Not only continuous risk manage-
ment, but the project as a whole is in
jeopardy when the environment is not
based on open communication. No one
has better insight into risks than project
personnel, and management needs their
input. Experienced managers know that
the free flow of information can make or
break any project. Open communication
requires:
• Encouraging free-flowing information

at and between all project levels.
• Enabling formal, informal, and

impromptu communication.
• Using consensus-based processes that

value the individual voice, bringing
unique knowledge and insight to iden-
tifying and managing risks.

NASA Risk Management Course
Risk is a daily reality on all projects,

and continuous risk management should
become just as routine. It should be ongo-
ing and comfortable, and neither imposed
nor forgotten. Like any good habit, it
should seamlessly fit into the daily work.
During the course taught at NASA, vari-
ous tools and methods are demonstrated
that will work for any project. The key is
to adhere to the principles, perform the
functions, and adapt the practice to fit the
project’s needs. Continuous risk manage-
ment is not one-size-fits-all. To be effec-
tive, tailoring is needed. Tailoring occurs
when organizations adapt the processes,
and select methods and tools which best
fit their project management practice and
their organizational culture. Following the
principles of continuous risk management
is the key to successful tailoring.

With this in mind, the Continuous
Risk Management course for NASA was
tailored to two days. The first day was
lecture, covering all material with some
exercises applying methods and tools.
This is an intense day, as there is a lot of
information to absorb. The second day is
devoted to a project workshop. In most
classes, personnel from one or two proj-
ects attend the lecture, then split up for
the workshop (Classes are limited to 20
students.) The workshop is done in small
groups. Periodically, these groups come
together to review what each group has
chosen to work on. Depending on the
audience, there are two possible work-
shops, one for management, and the
other for the implementation team.

The workshop for management starts
by compiling the project information
needed for the risk management plan.
This starts with getting the functional
organizational chart, identifying key
meetings where risk management activi-
ties should take place, and identifying key
personnel. The methods and tools to be
used are then selected, and the criteria for

the attributes probability, impact, and
time frame are defined. This usually takes
two to three hours. A shortened version
of the implementation workshop
described below is then applied.

The implementation workshop starts
by identifying risks to the project based
on everyone’s knowledge. Phrases are
used, with brainstorming, to compile a list
of more than 20 potential risks. It is
stressed that if it is a problem now, it is
not a risk. From this list five risks are
identified as those the group feels it can
do something about and would like to
work on. The risks are written using the
correct format of condition and conse-
quence as shown in Figure 1. The risk
context is discussed but not written.
Using these five risks and the attribute
definitions from management, the risks
are classified and prioritized. A mitigation
plan for the top risk is developed, data for
tracking is identified, and presentation
formats discussed. Depending on time,
two or three risks are processed through
this cycle so that the attendees not only
feel comfortable with the process, they
have some risks specific to their project
that they can start working on. Based on
course feedback, it seems the workshop is
the key to the training’s success.

When a class is not made up of peo-
ple from the same project, either the
group is told to make up a project based
on common experience, or it uses a proj-
ect with which many are familiar. The
second option is encouraged so real work
is accomplished, although it only benefits
a few attendees.

After completion of the course, stu-
dents should:
• Understand the concepts and princi-

ples of continuous risk management
and how to apply them.

• Possess basic risk management skills
for each function of the risk manage-
ment paradigm.

• Be able to use key methods and tools.
• Be able to tailor CRM to a project or

organization.

Implementation
Three steps should be considered

when implementing risk management.
First, project risk management should be
structured. The training itself is not

important, it is what the training does for
the project. The training helps the project
to see how a formal process can be used
to manage risks, but more importantly
facilitate communication and initial
brainstorming among project personnel.

Second, the project should adopt
tools that project members are familiar
with to aid in tracking risks and commu-
nication of risk status. The key is to use
tools that members know how to use,
and that they will use.

Lastly, the risk management process
needs to be integrated into the normal
project management process. Risk man-
agement must become the normal way of
doing project business. This ensures that,
rather than a separate process requiring
extra overhead, risk management is
ingrained. This leads to a cost-effective
implementation within the project.

Conclusion

Most project managers agree that risk
management works, but the difficulty lies
in actual implementation, even when it is
required. The risk management plan is
often hastily written and then thrown in a
corner to gather dust. In addition to the
course, NASA has established a web site,
http://satc.gsfc.nasa.gov/crm, that contains
sample risk management plans and a
schedule of classes. Much time is spent
discussing with managers the benefits of
taking a formal training course, the cost of
which is more than recovered by a project
when team members all work toward com-
mon goals in a coordinated manner.!

References
1. Continuous Risk Management

Guidebook, CMU, SEI, 1996
2. NASA Procedures and Guidelines

7120.5A, section 4.2.

Note

1. Some material is based on reference No. 1.

About the Authors
Linda H. Rosenberg
manages the Software
Assurance Technology
Center at Goddard Space
Flight Center, NASA.
The SATC primary
responsibilities are in the

10 CROSSTALK The Journal of Defense Software Engineering February 2000

RRiisskk MMaannaaggeemmeenntt

February 2000 CROSSTALK The Journal of Defense Software Engineering 11

areas of metrics, assurance tools and tech-
niques, risk management, and outreach pro-
grams. Although she oversees all work areas,
Rosenberg's area of expertise is metrics. The
emphasis of her work with project managers
is metrics application to evaluate quality of
development products. She holds a bache-
lor’s degree in mathematics and a master’s
and a doctorate degree in computer science.

Al Gallo manages the
Software Assurance
Technology Center at
NASA's Goddard Space
Flight Center. He has
more than 15 years expe-
rience in software sys-

tems engineering and quality assurance. As
one of the SATC's lead trainers of continu-
ous risk management, he has provided train-
ing and consulting throughout NASA. Gallo
holds bachelor’s degrees in pure mathematics
and computer science as well as a master’s
degree in technical management from the
Johns Hopkins University, Baltimore, Md.

Ted Hammer is the
Associate Chief of the
Systems Safety and
Reliability Office at the
NASA Goddard Space
Flight Center. His duties
entail overall manage-

ment responsibility for the continuous risk
management and SATC activities of the
office. The SATC is the GSFC center of
excellence for applied research in software
assurance tools and methods. Hammer has
more than 22 years experience in software
development and assurance, and holds a
bachelor’s degree in electrical engineering
from the University of Maryland. He is a
member of the American Society for Quality.

Frank Parolek is the
SATC Senior Risk
Management
Coordinator at NASA's
Goddard Space Flight
Center. He is responsible
for providing continuous

risk management (CRM) training and other
risk management consulting at all NASA
sites. He also coordinates the CRM Train the
Trainers program and has provided training
to the FAA, Army, and other organizations
external to NASA. Parolek earned a bache-
lor’s degree in liberal arts from Regents
College and an advanced Russian Linguist

Certificate from Defense Language Institute/
Foreign Language Center.

✐✐ I would like to compliment Norm
Brown on his paper published October
1999, High-Leverage Best Practices—What
Hot Companies are Doing to Stay Ahead
and How DoD Programs Can Benefit.
Could you follow it up with a paper
describing and listing the 16 critical soft-
ware practices?

I think this would be a big help to
those industry and government people
who develop and maintain software.

Dr. L.G. Egan
Software Certification Institute

Please see our October issue on best practices, in
which Jane T. Lochner of the Navy addresses the
"16 Critical Software Practices for Performance-
Based Management." Thank you for writing.

We welcome reader comments regarding CCRROOSSSSTTAALLKK articles or matters pertaining
to software engineering. Please send your comments and Letters to the Editor to
crosstalk.staff@hill.af.mil or mail to

OO-ALC/TISE
Attn: CCRROOSSSSTTAALLKK staff

7278 Fourth St.
Hill AFB, Utah 84056-5205

Please limit letters to less than 250 words. Include your name, phone number, and

Talk to CROSSTALK

Letters to the Editor

Editor’s Note

✐✐ May I suggest another entry to
Influential Men and Women of Software?
(CCRROOSSSSTTAALLKK,, December 1999)

The women who programmed ENIAC
were given the task of programming the
first modern electronic computer. Most
of what we now consider good program-
ming was invented by these "amateurs,"
including notions of subroutines and
software development process.

We who make our living programming
computers owe a debt to the creativity of
these unknown women, a tribute to
whom may be found in a recent exhibit
at the Smithsonian (American History)
in Washington, D.C.

Joe Iaquinto

If your experience or research has pro-
duced information that could be useful to
others, CCRROOSSSSTTAALLKK will get the word out.
We welcome articles on all software-
related topics, but are especially interest-
ed in several high-interest areas. Drawing
from reader survey data, we will highlight
your most requested article topics as
themes for future issues. In future issues
of CCRROOSSSSTTAALLKK,, we will place a special, yet
nonexclusive, focus on:

Personal Software Process and
Team Software Process

July 2000
Submission deadline: March 1

Object-Oriented Technology
August 2000

Submission deadline: April 3

Software Acquisition
September 2000

Submission deadline: May 4

We will accept article submissions on
all software-related topics at any time;
issues will not focus exclusively on the
featured theme.

Please follow the Guidelines for
CCRROOSSSSTTAALLKK Authors, available on the
Internet at http://www.stsc.hill.af.mil.
Send submissions to:

Ogden ALC/TISE
ATTN: Heather Winward
7278 Fourth St.
Hill AFB, Utah 84056-5205

You may e-mail articles to
features@stsc1.hill.af.mil.
or call 801-775-5555 DSN 775-5555.

Contact the authors of this article at
http://satc.gsfc.nasa.gov/personnel/index.html

Call for Articles

12 CROSSTALK The Journal of Defense Software Engineering February 2000

Our conclusion is that the problem
does not appear to be in the body of
knowledge, but in project management
training. Our solution is to introduce
“crisis” into the training process. The
result is that risk is always present; bad
events occur. Risk management is part of
every project manager’s daily repertoire of
project management skills. The key is to
train project managers on the determina-
tion, assessment, and quick resolution of
the unexpected event that creates the
disruption.

The Age Old Problem—

Software Projects Fail
How many times have you been part

of this scenario? Your boss informs you
that, with no apparent warning, the soft-
ware project will be months late, cost
more than twice the budget, not meet the
required performance, perform an unnec-
essary task, or be scrapped because it can-
not be finished.

The fact that there are software prob-
lems is a given. The realization of how
poorly we deal with them is of great con-
cern to all of us in the software engineer-
ing business. Software problems result
because there are always risks involved in
the design, creation, and implementation
of software. Risks result from incomplete
understanding of the project during the
initial project planning. Other risks arise
from events that occur as projects progress.

Let us consider a simplified scheme of
each project. The project management
process involves balancing of the three key
project components: performance specifi-
cations; resources, which include people,
technology and dollars, and schedule.
Each project manager has the balancing
act of assuring that performance can be
achieved with resources at the project’s dis-
posal and within the time allowed for
completion. The project planning process
is to carefully review each component to
assure compatibility. During this planning
process, any change in one of the three key

project components requires re-evaluation
and realignment of the other two.

The Project—The Balancing Act
Project managers are usually trained

with the implicit assumption that the
world is fully understood and predictable.
They are taught to develop their plans as
if project specifications are fixed and well-
defined; resources needed are understood,
and once-specified, constant; and the
agreed-upon schedule will not change.
This is a perfect world.

Unfortunately, we in software engi-
neering do not see this perfect world in
the projects we encounter. We live in a
world where frequent change is required
in the scope of a project. Resources we
had counted on do not materialize or are
inappropriate. The initial schedule is
accelerated as the project becomes critical
to the firm’s success. We must analyze
and plan for risk. Substantial risk man-
agement literature has developed that dis-
cusses ways to manage risk.

Literature on Software

Engineering Risk Management
As software engineering practices

have matured, there has been great
improvement in available tools. The
Software Engineering Institute (SEI) at
Carnegie-Mellon University has developed

the Software Capability Maturity Model
to use as a guide for good practices. The

Project
Management
Institute has pub-
lished the Body
of Knowledge for
Project
Management
that can be uti-
lized in software
engineering.
While there are
several method-
ologies that can
be adapted to
any project, the
question remains,
“Are these

methodologies sufficient to offset the risk
found in software engineering?” Growing
literature on risk management tells us no.

Three publications stand out as cen-
tral to the body of knowledge for software
engineering risk management:
1. SEI’s Continual Risk Management

Guidebook [1].
2. Tutorial: Software Risk Management by

Barry W. Boehm [2].
3. Software Engineering Risk Management

by Dale W. Karolak [3].

These authors would generally agree
on the following definitions:

Risk—The possibility that a development
project incurs a loss as a result of inade-
quate quality of final system, higher costs,
schedule delay, or total failure.

Risk Management—The discipline to
discover and eliminate software engineer-
ing risk, so that it ceases to threaten the
success of a software project.

Boehm’s book contains a chapter by
Tom Gilb, “Principles of Software
Engineering Management” with some
provocative quotes on why risk manage-
ment is important:

Integrating “Crisis” into Project Management Training
Risk management is, and should be, a hot topic in software engineering, given the frequency and severity
of the failed and badly delivered software projects. Though more literature is being published on the topic,
the frequency of software delivery problems does not appear to be dropping. In this article we review a few
of the best software risk management literature and software tools.

Project
Performance

Specifications

Schedule
Resources

People
Technology

Dollars

The Capability Maturity Model and CMM are
registered in the U.S. Patent and Trademark office
to Carnegie Mellon University

February 2000 CROSSTALK The Journal of Defense Software Engineering 13

RRiisskk MMaannaaggeemmeenntt——IInntteeggrraattiinngg ““CCrriissiiss”” iinnttoo PPrroojjeecctt MMaannaaggeemmeenntt TTrraaiinniinngg

“The risk principle: If you do not
attack the risks, they will actively
attack you.”
“The risk prevention principle:
Risk prevention is more cost-effec-
tive than risk detection.”
“The risk sharing principle: The
real professional is one who knows
the risks, their degree, and their
causes, and the action necessary to
counter them, and shares this knowl-
edge with his colleagues and clients.”
“The asking principle: If you do
not ask for risk information, you
are asking for trouble.”
“The principle of risk exposure: The
degree of risk, and its causes must
never be hidden from decision-makers.”

SEI’s Continual Risk Management
Guidebook is a helpful volume that pro-
vides an extensive and disciplined proac-
tive decision framework to:

1. Assess continuously what could go
wrong (risks).

2. Determine which risks are important
to deal with.

3. Implement strategies to deal with
those risks.

Tutorial: Software Risk Management
develops Boehm’s framework for software
engineering risk management by present-
ing a set of methods around risk assess-
ment and control.

Risk Assessment
Risk Identification
Risk Analysis
Risk Prioritization

Risk Control
Risk Management Planning
Risk Resolution
Risk Monitoring

Software Engineering Risk Management
by Karolak uses an interview technique to
develop software risk metrics. He presents
six risk management activities:

Risk Identification
Risk Strategy and Planning
Risk Assessment
Risk Mitigation/Avoidance
Risk Reporting
Risk Prediction

The SEI, Boehm and Karolak models
are quite similar in their general approach.
They treat software engineering risk as a

planned process. They all have a risk man-
agement process that contains a set of
repeated steps. These steps focus on risk
identification and risk analysis with a clear
risk-reporting process, which serves as a
means to communicate risks to individu-
als and organizations involved. Both the
SEI and Karolak frameworks contain a
risk taxonomy and risk metrics.

While these three frameworks are
extremely helpful, they present a more
predictable world than the one we en-
counter in software engineering profes-
sional careers. It is almost always the
unexpected that creates the crisis and
generates the project risk.

We have found that it is impossible
to provide a list or description of the risks
that we might encounter. And when we
have, what turns out to be the killer risk
was not on the list: a key employee leaves
unexpectedly, the client changes the scope
without warning, the technology we
thought would work does not, a corpo-
rate crisis results in a dramatic reduction
in the project’s resources, the project
schedule is shortened because of changing
corporate strategy.

The risk first looms as a crisis that the
project team is ill-prepared to handle. The
SEI, Boehm, or Karolak frameworks are
excellent, but we argue that they are not
enough for two reasons. First, many risks
will not be definable until a crisis hits.
Second, we need to train project managers
to be reactive problem solvers as well as
thorough risk planners.

Risk Training—Project Planning

Simulated Crisis
Introducing crisis into the formal

project management training works. Let
us move away from the view of project
management dealing with a known and
predictable world as we introduce indi-
viduals to principles of project manage-
ment. Let us face up to the complexity of
the world of software engineering,
whether dealing with the development of
a new system or the upgrade of an exist-

ing one. Risks that create the project cri-
sis are never fully predictable.

Moving to a project management
training that introduces the unexpected in
the training project or simulation prepares
the future project managers for real world
reality. Project managers in training are
forced to confront the three key project
components—performance specifications,
resources, and schedule—and rebalance
them given the crisis situation. You deal
with the actual or potential crisis recog-
nizing that it is a normal and an expected
aspect of the project management process.
The project management training sessions
provide actual training experience on the
second aspect of the SEI, Boehm, or
Karolak frameworks. You incorporate a
crisis in the learning situation that forces
the participants to solve an actual problem
(risk) that has occurred.

Conclusion

Software engineering contains and
will be fraught with risk through the fore-
seeable future. Risk management provides
a useful preplanning perspective.
Unfortunately, with the creation of a soft-
ware engineering project plan, risk fre-
quently cannot be specified during early
stages of a project. Learning how to quick-
ly and appropriately respond to an unex-
pected major alteration in performance
specifications, resources, or schedule needs
to be instilled into the project manager
through training. Training project man-
agers with random crisis situations in
course projects works. The training cur-
riculum may be more difficult to create,
but the value in developing project man-
agers who can successfully cope and
understand risk is worth the effort.!

References
1. Dorofree, Audrey J.; Walker, Julie A.;

Alberts, Christopher J.; Higuera,
Ronald P.; Murphy, Richard L.; and
Williams, Ray C.; Continuous Risk
Management Guidebook. Carnegie-
Mellon University, 1996.

2. Boehm, Barry W. Tutorial: Software
Risk Management. IEEE Computer
Society Press, 1986.

3. Karolak, Dale W. Software Engineering
Risk Management. IEEE Computer
Society Press, 1996.

We live in a world where
frequent change is required
in the scope of a project.

14 CROSSTALK The Journal of Defense Software Engineering February 2000

About the Authors
Dr. Kenneth Knight is professor of information
systems management at Seattle Pacific
University. Knight has been active as an author,
professor, manager, and consultant in the infor-
mation systems area for 35 years. His previous
academic positions were in the School of
Business at The University of Texas at Austin
and Stanford University.

Seattle Pacific University
3307 3rd Ave.West
Seattle,Wash. 98119
Voice: 206-281-2906
Fax: 206-281-2733
E-mail: kknight@sup.edu

Darrell Corbin is an associate technical fellow
in Companywide Software Engineering at the
Boeing Co. with more than 31 years experience
in business and engineering information sys-
tems. He provides Boeing-wide support in soft-
ware methodologies and software process
improvement. He also conducts reviews and

evaluations of IS suppliers, projects, and organizations. He has
bachelor’s and master’s degrees in economics from Washington
State University, and is a Certified Computing Professional.

Russ Hamerly is project manager in Distributed
Computing Program Integration at the Boeing
Co. He has more than 25 years experience in
electronic switching, networking, and comput-
ing systems. He provides Boeing-wide support
in program management, system management,
and emerging workstation technologies. He is a
subject matter expert for the SRP web site. He has a bachelor’s
degree from the University of Washington and a master’s degree
in business administration from the University of Notre Dame.

Roger Cox is a senior manager in engineering
information systems at Boeing Commercial
Airplanes. He has more than 32 years of infor-
mation technology experience, including the
last 20 years at Boeing. Cox also serves as an
adjunct professor of software engineering at
the University of Washington and an adjunct

professor of information systems in the graduate program in the
school of business at Seattle Pacific University. Cox holds bache-
lor’s degrees in engineering physics, mathematics, and computer
science, and master’s degrees in physics and computer science, is
doing doctoral studies in computer science, and holds an
advanced management certificate. Cox is a retired Lt. Col. in the
Air Force, where he served in various manugacturing, engineer-
ing, and information technology organizations.

The Boeing Co.
P. O. Box 3707
Seattle,Wash. 98124-2207
Voice: 206-655-2121
Corbin’s e-mail: darrell.s.corbin@boeing.com
Hamerly’s e-mail: russell.p.hamerly@boeing.com
Cox’s e-mail: roger.l.cox@boeing.com

March 6-8
13th Conference on Software Engineering

Education and Training CSEET&T
http://www.se.cs.ttu.edu/CSEET2000

March 6-10
Software Management/Applications of Software

Measurement SM/ASM 2000
http://www.sqe.com/smasm/2000/

March 13-17
6th International Conference on Practical Software Techniques

http://www.softdim.com

March 20-22
5th Annual Association for Configuration & Data Management

Technical Conference
http://www.acdm.org

March 20-23

12th Software Engineering Process Group Conference

SEPG 2K

http://www.sei.cmu.edu/products/events/sepg/

April 11-14

Infosecurity 2000

http://www.infosec.co.uk/page.cfm

April 18-20
FOSE: Leading-Edge Technology for Leaders in Government

http://www.fedimaging.com/conferences

April 24-28
SEA 2000, held in Canberra, Australian Capital Territory

E-mail for information: johnl@sea-act.com.au

See page 20 for STC 2000, April 30-May 4

June 20-22
Product Focused Software Process Improvement PROFES 2000

http://www.ele.vtt.fi/profes2000

August 28-31
1st Software Product Line Conference SPLC1
http://www.sei.cmu.edu/plp/conf/SPLC.html

Coming Events

Alan Turing, who in the 1930s developed what
became known as the Turing Machine, died in
1954. Influential Men and Women of Software, in
the December issue was, regrettably, in error.

w
i
r
e
s

crossed

February 2000 CROSSTALK The Journal of Defense Software Engineering 15

Software risk management, if practiced properly, is a set of
continuous activities for identifying, analyzing, planning, track-
ing and controlling risks, which is conducted in the context of
daily project management. A project planner’s first reaction may
be to avoid risks all together, but relying strictly on avoidance as
a risk mitigation technique is usually inadequate.

Project success primarily depends on the ability to manage
the delicate balance of opportunities and risks. Unfortunately,
when all risk goes away, so does opportunity. Since risks ulti-
mately manifest themselves incrementally as unexpected cost
elements, risk management can also be viewed as a way to
dynamically handle the cost/benefit analysis of a project. While
techniques for risk identification are usually handled separately
from software cost estimation, cost aspects of risks can be used
as a communication vehicle during risk prioritization. It has also
been determined that parametric cost estimation models are
well-suited for risk evaluation [1].

The term parametric refers to the fact that the cost is deter-
mined via the use of algorithms operating on the parameters of
mathematical equations. This structure makes parametric mod-
els the prime candidates for carrying out rapid, what-if sensitivi-
ty analysis of the cost drivers. Due to their inherent characteris-
tics, nonparametric or nonalgorithmic models, such as expert
judgment or estimation by analogy, are not well fitted for sensi-
tivity analysis. This leads to our main proposal, i.e., making the
connection between an established risk assessment tool (SRE)
and an industry-wide accepted parametric software cost model
and estimation tool (COCOMO II).

Risk Management
Based on Barry Boehm’s work [2], the risk management

steps are outlined in Figure 1.

This paper focuses on the connection between software risk
identification and cost-model based risk analysis, using risk
exposure as a prioritization tool. (The taxonomy based ques-
tionnaire, which will be discussed in detail later, is basically a
checklist.). Please note that this approach permits the determi-
nation of cost ramifications of risks only in the software devel-
opment domain. Other very quantifiable business risks, such as
loss of market opportunity, and loss of sales, can be determined
from software development data, but cannot be automatically
computed. Similarly, tools can provide quantification of risks,
but the overall prioritization and resolution has to be done in
the full context of project management.

Risk Taxonomies
Generally defined, software risk taxonomy1 provides a basis

for systematically organizing and analyzing risks in a software
project. Risk Taxonomies, is intentionally plural, because in addi-
tion to describing the importance of a specialized risk taxono-
my, we also want to note a level of what we consider undesired
proliferation of software risk taxonomies.

Overview of Risk Taxonomy Related Articles
Without assuming completeness, a brief description of cur-

rent articles follows, where overt or covert development2 of risk
taxonomies plays a role:
• The SEI report lays the foundation of the development of

the SEI taxonomy, and discusses the basic concepts of risk
taxonomies [3].

• In P.R. Garvey’s presentation, the risk elements are described
in risk templates, and the taxonomy is implemented via web-
based links [4].

• T. Moynihan chose to elicit constructs from experienced
managers to determine how they assess risk, after deciding that
the taxonomies published in the literature were inadequate [5].

• H. Barki et al. conducted a wide review of the literature and
determined 35 variables that were used as taxonomy for risk
assessment [6].

• R.J. Madachy developed an extensive rule-based system
(identifying 600 risk conditions), where rules were structured
around COCOMO cost factors, reflecting an intensive analysis
of the potential internal relationships between cost drivers [7].

• K. Känsälä built his tool around 15 risk items he identified
as critical, after filtering the data received from 14 selected
companies [8].

• E.H. Conrow and P.S. Shishido documented experiences on
large projects at TRW, and defined taxonomy consisting of 17
software risk issues [9].

• At Xerox, the SEI-developed taxonomy and the SRE method
[10] was evaluated and used in five major projects. While the
taxonomy does not provide a complete coverage for all

A Practical Approach to Quantifying Risk Evaluation Results
There is a vast literature documenting approaches and tools that address risk assessment and mitigation. In this
paper, “hard” and “soft” classifications are introduced, that are based on either the mathematical rigor describ-
ing the development of the model or the mathematical rigor expected from the user during the use of the tool.
The goal is to present a simple, practical approach to risk analysis, combining the identified benefits, without
suffering from the known liabilities. The solution presented here is a combination of the Software Engineering
Institute/Software Risk Evaluation (SEI/SRE) method, and Constructive Cost Model (COCOMO).

RISK ASSESSMENT
 RRiisskk IIddeenntt iiff iiccaatt iioonn
 Checklists
 Decomposition
 Decision Driver Analysis
 Assumption Analysis
 RRiisskk AAnnaallyyssiiss
 Performance Models
 Cost Models
 Network Analysis
 Decision Analysis
 Quality Factor Analysis
 RRiisskk PPrriioorriitt iizzaatt iioonn
 Risk Exposure
 Risk Leverage
 Compound Risk Reduction

RISK CONTROL
 RRiisskk MMaannaaggeemmeenntt PPllaannnniinngg
 Buying Information
 Risk Avoidance
 Risk Transfer
 Risk Reduction
 Risk Element Planning
 Risk Plan Integration
 RRiisskk RReessoolluutt iioonn
 Prototypes, Simulations
 Benchmarks
 Staffing
 Analysis
 RRiisskk MMoonniittoorriinngg
 Milestone Tracking
 Top-10 Tracking
 Risk Reassessment
 Corrective Action

Figure 1. Risk Management Steps

Risk Class and Element from Issues and Concerns Risk Magnitude Rating
Taxonomy Based Questionnaire Recorded during the SRE sessions A B C Team
Program Constraints/Resources Currrent Plan is schedule driven 6 9 9 8.0
Program Constraints/Resources Bottom-up plans do not support the schedule 6 9 9 8.0
Development Environment/Management Process Management is not ready to reconcile the differences 9 6 9 8.0

between the engineering plan and the business plan
Program Constraints/Resources Top-level plan is unrealistic, and it is not based on 6 6 9 7.0

past track-record and experience
Development Environment/Management Process Inability in estimating effort due to the lack of 4 6 9 6.3

experience with the new technology

Program Constraints/Resources Lack of confidence in the current plans 4 6 6 4.6

16 CROSSTALK The Journal of Defense Software Engineering February 2000

situations, combining it with a customized SEI Taxonomy-
based Questionnaire (TBQ) makes it the preferred tool for
assessing risks in the majority of software projects [11].

We found that all authors decided that the introduction of
new risk categories, or the creation of a whole new taxonomy,
was needed. In our opinion, this is not always justified. During
the pilot of the SRE method at Xerox, the SEI taxonomy was
criticized in two areas. In large software projects, respondents
complained that TBQ terms and language did not always map
to local terminology (for example, the classification of contrac-
tor relationships). Second, respondents from firmware develop-
ment projects stated that in their work the distinction between
hardware and software was somewhat blurred, and consequently
their risk issues were not always adequately covered.

Conclusion Drawn from the Literature Review
It seems that the application of any risk taxonomy always

requires a certain level of customization before use, and the quest
for the perfect taxonomy, consequently the perfect risk manage-
ment tool, is fruitless. Also, in the case of actual, computer-based
tools, eventually the taxonomy ends up hard-coded into the tool.
Instead of further specialization, the approach should be exactly
the opposite; we should step back and find a framework that is
applicable for a large class of projects, with the understanding
that a certain level of customization will take place. As stated
earlier, the SEI taxonomy satisfied this requirement.

Cost Estimation with COCOMO II
Xerox is interested in the application of COCOMO for

software cost estimation, and participates in the University of
Southern California/Center for Software Engineering
(USC/CSE) Industrial Affiliates Program. At this time 27
industrial affiliates provided data or input to enhance and fine-
tune the COCOMO II model (as seen in Figure 4).

Here we provide a conceptual introduction to COCOMO.
For up-to-date details, see the appropriate materials on the web
site, http://sunset.usc.edu, or in hard copy format [12] for an
introduction. (Please note that since publication of that article,
the model was renamed to COCOMO II from COCOMO 2.0.)

The COCOMO II model uses 161 data points from
affiliates’ databases, and is the enhanced version of the earlier
COCOMO 81, which was developed using only 64 data points
from TRW. Besides refining the model, the university also pro-
vides MS/Windows, Sun, and Java versions of the tool, based

SEI Software Risk Evaluation Method
The scope of the SRE method is identification, analysis,

and preliminary action planning for mitigation. The software
risk taxonomy (See Appendix) provides a consistent framework
for risk management. It is organized on the basis of three
major software risk classes: product engineering, development
environment, and program constraints.

Risk elements of these classes are identified at the next
level, which are further decomposed into risk attributes. SEI
also developed a taxonomy-based questionnaire to carry out
structured interviews by an independent assessment team. A
sample, customized segment of the TBQ is shown in Figure 2.
(The numbering of the questions refers to the original num-
bering in the full, complete SEI documentation).

Risks are identified and recorded in interviews. After inter-
views, based on perceived severity and probability of occur-
rence, the assessment team determines risk magnitude ratings.
(Figure 3.)

Note that the relevance of the shaded rows is explained
later, when this risk report sample is used to demonstrate the
new process. First the assessment team will filter, consolidate
and interpret the results. Every risk item is rated separately by
the assessment team members (A, B and C in the example),
using the risk magnitude matrix (Figure 6.) Severity and proba-
bility are separately rated on a scale from one to three, and risk
magnitude is computed as severity times probability. This
results in a one to nine numerical rating, where one represents
improbable and marginal risks, and nine represents risks consid-
ered very likely and catastrophic.

Figure 3. Sample Record of Risk Issues during an SRE

RRiisskk MMaannaaggeemmeenntt

Figure 2. Taxonomy Based Questionnaire Sample

Development Environment/Development Process Feedback from implementers to architects takes 4 9 6 6.3
too long, and there is no closure on certain issues

Development Environment/Development System Capacity limitaions of the development system (network 6 6 6 6.0
bandwidth and the speed of compilation) impact schedule

Development Environment/Development System Lack of availibility of adequate number of software licenses 3 4 4 3.6

CCllaassss:: A. Product Engineering
EElleemmeenntt:: 2. Design & Implementation
AAttttrr iibbuuttee:: d. Performance
__

SSttaarrtteerr qquueessttiioonn:: [22] Are there any problems with performance?

CCuueess:: Throughput
 Scheduling asynchronous events
 Real-time responses
 Impact of hardware/software partitioning

SSttaarrtteerr qquueessttiioonn:: [23] Has a performance analysis/simulation been done?

FFoollllooww--uupp qquueessttiioonnss:: (YES) (23.a) What is your level of confidence in the results?
 (YES) (23.b) Do you have a model to track performance?

February 2000 CROSSTALK The Journal of Defense Software Engineering 17

on the current version of the model. Due to the model’s popu-
larity, a number of industrial tool vendors incorporated the
COCOMO II model into their software cost estimation tool
offerings.

Size is the main driver of cost, so the first step of cost esti-
mation is to provide proper size estimation for the project.
COCOMO II accepts source line of code (SLOC) and function
point input. During the estimation process, the estimator deter-
mines the value of scaling constants and cost drivers, using the
supplied rating tables, and enters the value in the appropriate
screen of the tool. An example based on the COCOMO Model
Definition Manual for the cost driver rating guideline is shown
in Figure 5.

SCED (required development schedule) belongs to the group
of cost drivers that characterize the project to be estimated, and it
measures the schedule constraint imposed on the project team.
The ratings are defined in terms of percentage of schedule stretch
or compression with respect to a nominal schedule for a project
requiring a given amount of effort. Compressed or accelerated
schedules tend to produce more effort in later phases of develop-
ment because more issues are left to be determined and resolved.

“Hard” and “Soft” Approaches
As indicated previously, we classify the different risk analy-

sis approaches based on the mathematical rigor required. The
first example of a hard approach is offered by Madachy, where
he creates the risk taxonomy outright, around the COCOMO
cost drivers. This impressive system uses knowledge-engineering
methods to refine the risk quantification scheme [7].

In the second example, Känsälä uses Madachy’s basic
approach, but instead of working around a particular cost esti-
mation tool, he derives his own risk database using risk ques-
tionnaires and historical project data. Experimental integration
of this risk front-end, RiskMethod, was carried out with three
different cost estimation tools [8].

The underlying principle in both cases is the use of regres-
sion analysis to determine the model’s internal coefficients. The
approaches require extensive calibration to achieve acceptable
results. Finally, the authors’ initial objective was not only to
assess and prioritize, but also to quantify software risks.

Känsälä also provides the first example of a soft approach.
In this TRW approach, the author defines a list of specialized
risk issues that could be viewed as a one-level risk taxonomy.
This taxonomy is used by internal risk review boards to assess
risks via intensive monthly sessions with key representatives of
functional and support areas. No particular efforts are made to
quantify the impact of identified risks.

Conrad and Shishido give a second example, in which a
more complex taxonomy is used by a combined external-inter-
nal assessment team in a single assessment. For several days the
team formally interviews a cross-section of the development
organization for several days. The interviewees are not necessari-
ly key representatives, and they represent a vertical sample of
people in the development organization. Nonattribution is a key
guiding principle during the sessions, and the names of those
raising concerns are kept confidential [9].

Calibration
Feedback

Commercial Industry (10): C-Bridge, EDS, Hughes, Lucent,
Microsoft, Motorola, Rational, Sun, Telcordia, Xerox

Aerospace (9): Boeing, GDE Sy stems, Litton, Lockheed Martin
Northrop Grumman, Ray theon/East, Ray theon/West, SAIC, TRW
Gov ernment (4): FAA, USAF Rome Lab, US Army TACOM,

FFRDC’s and Consortia (4): IDA, MCC, SEI, SPC

Effort, Schedule

Size

COCOMO IICost and Scale Drivers

US Army Research Labs,

Figure 5. COCOMO Rating Guidelines for SSCCEEDD

Actual
Rating

Entry
for the tool's
screen

Very
Low

Low Nominal High Very
High

Rating
Guidelines

Relationship
to
nominal

75% 85% 100% 130% 160%

Figure 4. COCOMO II Software Cost Estimation Model

A Practical Approach to Quantifying Risk Evaluation Results

PROBABILITY
SEVERITY

Improbable Probable Very Likely

Catastrophic 3 6 9

Critical 2 4 6

Marginal 1 2 3

Figure 6. Risk Magnitude Matrix

CCooccoommoo IIII CCoosstt aanndd SSccaalliinngg DDrriivveerrss

Cost Drivers
ACAP Analyst Capability

AEXP Applications Experience

CPLX Product Complexity

DATA Database Size

DOCU Documentation to match lifecycle needs

LTEX Language and Tool Experience

PCAP Programmer Capability

PCON Personnel continuity

PEXP Platform Experience

PVOL Platform Volatility

RELY Required Software Reliability

RUSE Required Reusability

SCED Required Development Schedule

SITE Multi-site operation

STOR Main Storage Constraint

TIME Execution T ime Constraint

TOOL Use of Software Tools

Scaling Drivers
PREC Precedentedness

FLEX Development Flexibility

RESL Architecture/Risk Resolution

TEAM Team Cohesion

PMAT Process Maturity

18 CROSSTALK The Journal of Defense Software Engineering February 2000

RRiisskk MMaannaaggeemmeenntt

The common theme in both cases is the use of interviews
and guided discussions, with no provisions for risk quantification.

Xerox used the SEI approach, and the following two, main
advantages were identified:
• The taxonomy was broad, but also proved to be detailed

enough to carry out efficient interviews.
• The nonattributional approach was useful in uncovering well-

known risks obvious to the developer community, but due to
lack of trust or broken communication, unacknowledged by
management.

It had become obvious that the ability to quantify is helpful
in prioritizing and presenting the risks to the decision authority.

These experiences led us to recognize that it would be useful
to combine the best of both worlds: keep the SEI method as a
risk front-end and use COCOMO for quantification. The bene-
fit is that we maintain flexibility and easy customization at the
front-end, while using an already calibrated COCOMO model
to quantify the results. We did not perceive the benefit of an
expert-system approach, because it introduced a complicated and,
in our opinion, unnecessary calibration and learning process.

Using COCOMO II To Quantify Software Risk

Evaluation Results
On a conceptual level, the task can be phrased as a m:n

mapping from the risk taxonomy into the COCOMO scale and
cost-driver taxonomy. This complexity resulted in indentifying
nearly 600 risk conditions in Madachy’s tool. While the precise
mapping and the identification of all possible combinations are
necessary to create a knowledge-management tool, we found
that the goal is never fully accomplished, and customization has
to take place before use anyway. The steps of the recommended
soft approach are:
1. Carry out an SRE. Do this by using the detailed guidelines

of Sisti et. al. [10] To prepare for sessions, the assessment
team has to customize the TBQ before and, to some extent,
during the interviews to concentrate on the appropriate TBQ
subset. An example for customization is shown in Figure 2.
Impact of hardware/software partitioning was added to the
standard TBQ questionnaire to accommodate special Xerox
requirements.

2. Map risks into COCOMO. Mark
the relevant COCOMO drivers on
the worksheets. Figure 7 shows the

relevant fragment of the sample risk record, mapped to the
SCED cost driver. All the shaded rows on Figure 3 are
removed, since they do not map into SCED.

3. Determine baseline estimates. Execute COCOMO
estimation with baselined scale and cost factors. For
example, COCOMO II would give 16.8 person/month
effort estimation for a 5000 SLOC program, where for sake
of simplicity nominal values were used for all cost and scale
drivers. Please note that this baseline reflects typical, but
hypothetical, project conditions fitting the average profile
of COCOMO industrial affiliates. For more accurate
estimations, the model has to be calibrated with local
organizational data, and the drivers have to be set according
to the organization’s own, original planning conditions.

4. Determine risk-adjusted estimates and compare results.
The main objective is to execute COCOMO estimation
with risk-adjusted scale and cost factors and determine the
difference between baselined and risk-adjusted estimates. In
the simple case we present, this means determing the model’s
sensitivity to SCED cost-driver changes. Figure 8 shows
mapping of the risk magnitude into the cost-driver rating.

Note that the mapping is not automatic, and done for all drivers
separately, based on their specifics. In case of SCED, for example,
the issue from risk identification point of view is forced schedule
compression, so there is no point in analyzing effects of a high or
very high rating representing a relaxed, instead of compressed,
schedule. Applying the risk adjusted value of very low for the
SCED cost-driver, COCOMO II at this time would give 21.6
person/month effort estimation for the same 5000 SLOC pro-
gram. Again, note that all other cost and scale drivers are set to
nominal. The demonstrated what-if scenario shows, that in case
of a 5000 SLOC program, the impact of a roughly 75-85 percent
schedule compression would be a 28 percent increase in effort.

Summary
Risk management is one of the most critical and most diffi-

cult aspects of software project management. It is evident, that
SEI/SRE as a risk identification method yielded better, more
detailed, and more relevant risk items than any input processes

Figure 7. Worksheet to facilitate mapping

Risk Magnitude from SRE 1 2 3 4 5 6 7 8 9

SCED Rating for COCOMO NOMINAL LOW VERY LOW

Figure 8. Mapping Risk Magnitude into Cost Driver Rating

9

Risk Class and Element from Issues and Concerns COCOMO Team Risk
Taxonomy Based Questionnaire Recorded during the SRE sessions Driver Mapping Magnitude Rating
1 Program Constraints/Resources Current plan is schedule driven SCED 8.0
2 Program Constraints/Resources Bottom-up plans do not support the schedule SCED 8.0
3 Development Environment/ Management is not ready to reconcile the differences SCED 8.0

Management Process between the engineering plan and the business plan
4 Program Constraints/Resources Top-level plan is unrealistic, and it is not based on SCED 7.0

past track record and experience
5 Development Environment/ Inability in estimating effort due to the lack of experience SCED 6.3

Management Process with the new technology
6 Program Constraints/Resources Lack of confidence in the current plans SCED 4.6

Subtotal for SCED 41.9
Average for SCED 6.5

February 2000 CROSSTALK The Journal of Defense Software Engineering 19

A Practical Approach to Quantifying Risk Evaluation Results

customarily used with hard risk assessment tools. This is a pre-
ferred lightweight approach, because it uses established, familiar,
and well-tested tools. Customization and calibration are always
needed, even when comprehensive and sophisticated knowl-
edge-engineering-based tools are used. Therefore, we conclude
that applying customization effort to existing tools in a light-
weight setup is a more efficient approach than purchasing and
implementing new, complex tools.!

References
1. Voldese, I. S. Risk Analysis Using Parametric Cost Models,

Proceedings of the ISPA/SCEA First Joint International
Conference, Toronto, Ontario, Canada, June 16-19, 1998,
pg. 1382-1409.

2. Boehm, Barry W. Software Risk Management.
IEEE Computer Press, 1989.

3. Taxonomy-Based Risk Identification. Technical Report
CMU/SEI-93-TR-16.

4. Garvey, P.R. A Risk Management Information System
Concept for Systems Engineering Applications. Leesburg,
Va.. 28th Annual Department of Defense Cost Analysis
Symposium, September 1994.

5. Moynihan, T. Inventory of Personal Constructs for Risk Resear-
chers. Journal of Information Technology, Vol. 6, No. 4, 1996.

6. Barki, H., Rivard, S., and Talbot, J. Toward an Assessment of
Software Development Risk.
Journal of Management
Information Systems, Vol. 10,
No. 2, 1993.

7. Madachy, R.J. Heuristic Risk
Assessment Using Cost Factors.
IEEE Software, May/June 1997.

8. Känsälä, K. Integrating Risk
Assessment with Cost
Estimation. IEEE Software,
May/June 1997.

9. Conrow, E.H., and Shisido.
P.S. Implementing Risk
Management on Software

Intensive Projects. IEEE
Software, May/June 1997.

10. Sisti, F.J., Joseph, S. Software
Risk Evaluation Method,
Version 1.0. Technical Report
CMU/SEI-94-TR-19.

11. Hantos, Peter. Experiences with
the SEI Risk Evaluation
Method. Portland, Oregon.
Pacific Northwest Software
Quality Conference, 1996.

12. Boehm, Barry W., Clark, B.,
Horowitz, E., Westland, C.,
Madachy, R., and Selby, R.
COCOMO 2.0 Software Cost
Estimation Model. American
Programmer, July 1996.

Notes
1. “Covert” taxonomy means that the risk sources and their struc-

ture are not visible, and they are embedded in the tool. In case
of “overt” taxonomy there is an explicit reference to the descrip-
tion of the risk hierarchy.

2. From Webster’s Dictionary: tax-on-o-my (tak-’sän—me)
n. 1: the study of general principles in scientific classification.

About the Author
Peter Hantos is department manager at Xerox,
in charge of Software Quality Assurance, SPI,
Product Quality Assurance, and Reliability.
Previously, he was principal scientist of the
Xerox Corporate Software Engineering Center,
where he developed the corporate software
development standard and the software tech-

nology readiness processes. He holds a master’s and a doctorate
degree in electrical engineering from the Technical University of
Budapest, Hungary. Dr. Hantos is a senior member of the Institute
of the Electrical and Electronics Engineers, and a member of ACM.

Xerox Corporation
701 South Aviation Blvd., MS: ESAE-375
El Segundo, Calif. 90245
Phone: 310-333-9038
Fax: 310-333-8409
E-mail: peter.hantos@usa.xerox.com

SEI Software Risk Taxonomy

A. PRODUCT ENGINEERING B. DEVELOPMENT ENV. C. PROGRAM CONSTRAINTS

1. Requirements 1. Development Process 1. Resources
a. Stability a. Formality a. Staff
b. Completeness b. Suitability b. Budget
c. Clarity c. Process Control c. Schedule
d. Validity d. Familiarity d. Facilities
e. Feasibility e. Product Control
f. Precendented
g. Scale

2. Design and 2. Development System 2. Contract
a. Functionality a. Capacity a. Type of contract
b. Difficulty b. Suitability b. Restrictions
c. Interfaces c. Usability c. Dependencies
d. Performance d. Familiarity
e. Testability e. Reliability
f. Hardware Constraints f. System Support
g. Non-Development Software g. Deliverability

3. Code and Unit Test 3. Management Process 3. Program Interfaces
a. Feasibility a. Planning a. Customer
b. Testing b. Project Organization b. Associate Contractors
c. Coding/Implementation c. Management Experience c. Subcontractors

 d. Program Interfaces d. Prime Contractor
e. Corporate Management
f. Vendors
g. Politics

4. Integration and Test 4. Management Methods
a. Environment a. Monitoring
b. Product b. Personnel Management
c. System c. Quality Assurance

 d. Configuration Management

5. Engineering Specialties 5. Work Environment
a. Maintainability a. Quality Attitude
b. Reliability b. Cooperation
c. Safety c. Communication
d. Security d. Morale
e. Human Factors

Appendix SEI Software Risk Taxonomy

“Software and Systems—
Managing Risk, Complexity,
Compatibility and Change”

is the theme for the Software Technology Conference (STC
2000), set for April 30-May 5 in Salt Lake City, Utah.

As we sit on the cusp of a new millennium, the Information
Technology (IT) industry offers a wider and more dynamic range
of IT solutions than ever before. Compounding the software pro-
fessional's dilemma is the speed at which evolutionary as well as
revolutionary change occurs. In what direction do we go? Which
technology to buy? Can we facilitate the flow of information and
still maintain security? No one possesses unlimited budgets or
has a crystal ball; making the right choice the first time will be
difficult but essential to the success of your enterprise. You, the
developers, acquirers, integrators, and users of software are essen-
tial to the creation of a successful future. Only through a collec-
tive exploration can it be achieved. STC 2000 will provide an
excellent forum to discuss, contemplate, and explore the myriad
of solutions that our industry has to offer.

Sponsors, General Session
The U.S. Department of the Air Force, Department of the Army,
Department of the Navy, and the Defense Information Systems
Agency (DISA), have again joined forces to co-sponsor STC
2000, the premier Software Technology Conference in the
Department of Defense. Once again Utah State University
Extension is the conference nonfederal co-sponsor. We anticipate
more than 3,500 participants from the military services, govern-
ment agencies, contractors, industry, and academia.

The government co-sponsors are Lt. Gen. David J. Kelley,
Director, DISA; Lt. Gen. William Campbell, Director of
Information Systems for Command, Control, Communications,
and Computers, U.S. Army; Dr. Donald Daniel, Deputy
Assistant Secretary of the Air Force for Science, Technology, and
Engineering, U.S. Air Force; and Rear Adm. Kenneth D. Slaght,
Chief Engineer, Space and Naval Warfare Systems, U.S. Navy.

The general session will be held May 1. Speakers will
include high-level officials representing government, industry,
and academia. In addition, the co-sponsors will host a question-
and-answer general session on May 2. Conference attendees are
encouraged to turn in their questions to conference manage-
ment prior to the conference or to the on-site control room on
May 1. This is a great chance to get answers from our senior
leaders on important issues.

Special Sessions
Sponsored presentation tracks will be provided by DISA, Real-
time Defense Information Infrastructure Common Operating
Environment (DII COE), Software Productivity Consortium,
Data & Analysis Center for Software, Army Cost Estimation,
Institute of Electrical and Electronics Engineers (IEEE),
International Conference of Software Engineering, National
Security Agency (NSA) & DISA-Intel Classified, Office of the
Secretary of Defense-Software Collaboration, and the Software
Technology Support Center.

A special classified intelligence meeting, in conjunction
with the conference, is planned for May 3. Top secret Special
Intelligence/TK clearances will be necessary for this one-day
track. Details are in the registration brochure.

Side Meetings, Workshop
One of the biggest benefits of STC is the great networking
opportunity. Side meetings and birds-of-a-feather meetings will
be available. If you are interested in reserving a time for one of
these meetings, please call us at 801-777-9828. We will be glad
to schedule a meeting for you.

Take advantage of IEEE's one-day workshop on May 5,
Guide to the Software Engineering Body of Knowledge (SWE-
BOK): Overview and Applications. This guide should be useful
in developing software-engineering curricula, accrediting curric-
ula, licensing examinations, and describing and certifying com-
petencies. The workshop is included in your conference fee.

20 CROSSTALK The Journal of Defense Software Engineering February 2000

12th Annual Software Technology Conference

Presentation tracks include, but are not limited to:
• Capability Maturity—Models, Assessments, Evaluations
• Capability Maturity Model Integration
• Collaborative Engineering
• Defense Information Infrastructure Common Operating

Environment (DII COE)
• Distributed Computing
• Education and Training
• Electronic Commerce
• Emerging Technologies
• Internet/Intranet
• Interoperability
• Knowledge Management
• Measurement
• Modeling and Simulation
• Network Centric Systems

• Object-Oriented Technology and Languages
• Open Systems and Architectures
• Process Improvement
• Project Management
• Quality Assurance
• Real-Time DII COE
• Re-engineering
• Risk Management
• Software Acquisition
• Software Architecture
• Software Cost Estimation
• Software Implementation
• Software Policies and Standards
• Software Testing
• System Requirements
• Total Cost of Ownership

On the Agenda

February 2000 CROSSTALK The Journal of Defense Software Engineering 21

Reservations, Registration, Exhibit Booths
The Salt Lake Convention and Visitors Bureau (SLCVB) is tak-
ing hotel room reservations. To reserve a room, fill out the form
in the registration brochure and fax it to the SLCVB Housing
Bureau at 801-355-0250. There will be buses during conference
hours for transportation between the Salt Palace and city center
hotels. Government-rate rooms go quickly, so do not delay.
The conference fee structure:
Discounted registration fee paid by April 3, 2000

Active Duty Military/Government $540*
Business/Industry/Other $665

Regular registration fee paid after April 3, 2000
Active Duty Military/Government $600*
Business/Industry/Other $750
*Military rank (active duty) or government GS rating
or equivalent is required to qualify for these rates.

The official STC 2000 registration brochure was mailed
early last month. Send in your registration forms, with your
credit card number now, and it will not be charged until April
10. You do not have to wait until May to register.

Registration and the layout of the exhibition area can be
found in our brochure, which is available on the Internet at
http://www.stc-online.org. Vendor information also is available
at this address. Space rental rate is $1,375 per 10-foot by 10-
foot booth. Late registration received after Feb. 18, should
space be available, will rent for $1,575. Please write to us at
stcexhibits@ext.usu.edu, or call 435-797-0047 for more infor-
mation about the exhibition.

Contact Us
If this issue of CROSSTALK was mailed to you, you are on our
mailing list. If you had to borrow a copy, please contact us to be
added to our mailing list. You may use our web site at
http://www.stc-online.org/ for further information about STC.

Dana Dovenbarger, Conference Manager
Lynne Wade, Assistant Conference Manager
Software Technology Support Center
OO-ALC/TISEA
7278 Fourth St.
Hill AFB, Utah 84056-5205
Voice: 801-777-7411 DSN 777-7411
Voice: 801-777-9828 DSN 777-9828
Fax: 801-775-4932 DSN 775-4932
E-mail: dana.dovenbarger@hill.af.mil

lynne.wade@hill.af.mil

Abelia Corp.
AccessData Corp.
Ada Core Technologies Inc.
Aonix
As-One Inc.
AXENT Technologies Inc.
BMC Software Inc.
Computer Sciences Corp.
Concurrent Computer Corp.
DDC-I
Defense Acquisition Deskbook
Defense Information Systems Agency
Document Automation & Production
EDS
Engineering Systems Solutions
Enterworks Inc.
Federal Data Corp.
Forte Software Inc.
General Services Administration Federal
Technology Service
Gensym Corp.
GRC International Inc.
Green Hills Software Inc.
IBM Corp.
IIT Research Institute
Information Resources Management College
Informix Software Inc.

Integrated Chipware
Integrated Computer Engineering Inc.
Integrated System Diagnostics Inc.
International Function Point Users Group
JOVIAL ITS Program Office
Logicon Inc.
Lotus Development Corp.
Management Concepts Inc.
McCabe & Associates Inc.
MERANT
Micron Government Computer Systems Inc.
Microsoft Corp.
Mobius Management Systems Inc.
National Security Agency
Northrop Grumman Corp.
Novell
Objective Interface Systems Inc.
Onix Networking
OO-ALC/TIST
Oracle Corp.
PEO STAMIS
PeopleSoft Inc.
pragma Systems Corp.
Quality Checked Software
Quality Systems & Software
Rational Software
Real-Time Innovations Inc.

RS Information Systems Inc.
Science Applications International Corp.
Software Configuration Solutions Inc.
Software Productivity Consortium
Software Technology Support Center
SPAWAR
Sun Microsystems
Sybase Inc.
Template Software Inc.
TeraQuest Metrics Inc.
The MathWorks
TimeSys Corp.
Tivoli Systems Inc.
TSI Software
United Defense
U.S. Air Force
U.S. Army
U.S. Army Information Systems

Engineering Command
U.S. Army CECOM, Software

Engineering Center
Utah State University Extension
Vitech Corp.
Weapon Systems Technical Working
Architecture Working Group
WR-ALC/LYS Software Engineering Div.
Z Microsystems Inc.

STC 2000 Exhibiting Organizations (As of 11/29/99)

Salt Palace Convention Center, Site of STC 2000

22 CROSSTALK The Journal of Defense Software Engineering February 2000

DoD organizations increasingly oper-
ate as partnerships: government program
managers and contractors are responsible
for producing sophisticated and complex
systems through integration of capabilities
to deliver program results. The pressures
that affect the DoD community also
impact the NRO. This organization expe-
riences the additional challenges of meet-
ing mission requirements that integrate
DoD and security missions. The organiza-
tion faces a combination of new technolo-
gies, system complexity, tight schedules,
and often-unstable requirements. With
increased congressional oversight and pub-
lic awareness, the NRO is experiencing
pressure to deliver more complex and
accelerated security programs than ever
before.

In December 1995, the Undersec-
retary of Defense, Acquisition and Tech-
nology issued a memorandum, Reducing
Life Cycle Costs for New and Fielded
Systems. It acknowledged that “There are
risks to be taken and risks to be avoided.
When risks are taken, we will put in
place appropriate risk management and
contingency plans” [1]. The most recent
guidance, released in May 1999, Risk
Management Guide for DoD Acquisition,
strengthens this policy. Risk management
is defined as “an integral component of
policy and strategy to develop and field
systems responsive to user needs” [2].

NRO leadership has also directed that
risk management is a critical element for
program success. In fact, NRO Directive
7 of policy document NRO Acquisition
Management emphasizes:

“Effective acquisition planning and
aggressive risk management by both gov-
ernment and industry are essential for
success. Program decisions and resource
commitments must be based on consider-
ation of executable options and plans for,
and progress in, controlling risk” [3].

The Catch-22 in today’s context is

that, while risk management is more nec-
essary than ever, finding time and
resources to install a sound program cre-
ates a need to prove real and lasting
value. As many who have tried to install
risk management in their programs know,
expanded awareness of its importance,
and guidance on desired results, do not
necessarily translate into effective, interac-
tive processes that provide desired results.

For the past two years, the imagery
intelligence (IMINT) organization at
NRO, in partnership with the Software
Engineering Institute (SEI), created and
installed a risk management process that
became an integrated aspect of program
operations. The full story of this risk man-
agement initiative is available in Rollout
and Installation of Risk Management at the
IMINT Directorate, National
Reconnaissance Office, a December 1999
technical report published by SEI [4].
Three critical success factors in this pro-
gram installation were:
1. Visible and committed sponsorship.
2. Culture change that supported open

communication for the surfacing and
mitigation of risks.

3. A disciplined, forward-looking, contin-
uous risk management, infrastructure,
and rational, well-thought-out installa-
tion process.

These three critical success factors are
interlocking and mutually reinforcing.
Each of these was present and engaged at
NRO, as described below.

Committed, Visible Sponsorship
“Leaders do not have a choice about
whether to communicate,” says Edgar
Schein, professor at the MIT Sloan School
of Management. “Leaders send messages
whether they wish to or not. People in
organizations are constantly looking to
their leaders for cues about what is accept-
able behavior. And it is not merely public
statements that people hear and believe; it

is the entire range of messages sent
through behaviors and their consequences,
organizational mechanisms, and events
that have impact” [5].

The original pilot Risk Management
program was undertaken by the
Command and Control Division (CCD)
at IMINT. This was the first NRO pro-
gram to engage in a full-scale risk man-
agement program [6].

This pilot project was not without its
challenges. The initial reaction by CCD
participants was a measure of skepticism
coupled with clear expression of their
expectations.

“We were not interested in just learn-
ing a new vocabulary,” said one area
manager, “if risk management did not
help us get our jobs done every day, then
we were not interested. Risk management
needs to show value by providing cost-
efficiences, better scheduling, and techno-
logical capability.”

The CCD division chief, and his area
manager that he charged with risk man-
agement, decided that their best opportu-
nity to achieve results with risk manage-
ment would require a unified, coherent,
disciplined process that involved all divi-
sion staff. Accordingly, the division held a
risk clinic to create its focused process.
Once the decision was made to build a
risk management infrastructure and
process, the CCD division chief decided
it was important that he be present at all
critical meetings. The division chief inte-
grated risk management into technical
assessments, program reviews, and the
monthly joint government/contractor
meetings to manage joint risks, the Team
Risk Reviews (TRRs).

As a result, the government program
managers and contractor managers creat-
ed a dialogue that, over time, opened
communication to a level of candor that
provided technical, schedule, and cost
mitigations. An example of an early suc-

Risk Management Rollout and Installation at the NRO
Acquisition reform provides government program managers and their contractors more opportunities than ever before, but
it also greatly increases risk. It is no surprise that Department of Defense (DoD) organizations face reduced resources,
deplenishment of critical skills, increased congressional and public scrutiny, and a demand for streamlined operations and
quality program results. The need for risk management is becoming apparent. But how? When program managers are
under pressure to meet accelerated schedules and within budget, can risk management be integrated into already-burdened
programs? This article shows how the National Reconnaissance Office (NRO), an organization with a dual DoD and
security mission, introduced a disciplined risk management process that has provided significant cost-benefits.

February 2000 CROSSTALK The Journal of Defense Software Engineering 23

cess resulted from identifying a risk in the
methodology by which the program
planned to manage its Operations and
Maintenance (O&M) process. Up to this
point the O&M activities and the devel-
opment activities were separated into dif-
ferent organizational elements under dif-
ferent contracts.

Due in part to this segregation, the
processes were inherently expensive and
made it easy for deplenishments in func-
tionality to occur. The risk mitigation
strategy was development of the Integrated
Development and Maintenance Organiza-
tion (IDMO). The IDMO absorbed the
maintenance functions traditionally man-
aged by the operational site and integrated
them into the development organization.
The goal was to gain synergy through a
single reduced staff that would manage a
consolidated maintenance and develop-
ment effort.

The sponsorship factor is undeniable:
both government and contractor managers
exhibited clear support for necessary
changes to achieve constructive outcomes.

Once the pilot program had proved
the value and efficacy of risk management
to the satisfaction of this division and to
Al Krum, the system program director, he
decided to install risk management at the
system level.

Recognizing the importance of focus
on the entire program, he confirmed that,
for risk management to be successful,
“Management commitment is invaluable.
Managers cannot assign risk management
leadership to individual contributors; risk
management will not be taken seriously
without appropriate and visible leadership”
[4].

As evidence of his commitment to
risk management throughout his system,
Krum launched the Executive System-
level Risk Management Team (ESRT),
that included all division chiefs, to lead
the way for risk management by other
divisions across the system. Next, he
directed that each division would under-
go training in risk management processes
and procedures, to develop a common
language and set of tools to use within
divisions and across the system.

In addition to authorizing a rollout
and installation process across the organi-
zation, Krum “walked his talk.” During

development of the risk management
process, division chiefs continued to
question the durability of sponsorship for
risk management. Although Krum had
clearly stated his sponsorship for risk
management, there were mixed views
regarding management’s seriousness about
the initiative. To reinforce his commit-
ment, he used various forums to present
his vision for the risk management effort
and his expectations for coherent, consis-
tent communications up the chain to
management. The result was strengthened
support of risk management by most
division chiefs, as well as evolving prac-
tices within the divisions.

To further clarify the seriousness of
risk management at the system level, the
program manager led the division chiefs
to define the level of risks appropriate for
system-level discussion. Accordingly, the
ESRT defined its criteria for system-level
risks as follows:
• Impact on program commitments.
• Risks deemed as priority due to being

on the program’s critical path or on any
division’s critical path.

• Exceeded planned schedule slack, and
those that resulted in a negative margin
(seriously eroded management reserve).

• Cost impact exceeds planned budget.
• Impact on program interfaces, internal

or external to the program.
System risk management allowed the

program, for the first time, to analyze and
work together on interdependencies at the
system level. Through the division risk
management processes and the ESRT, a
consistent system process was installed. As
divisions installed their own process, they
were increasingly able to communicate
mission-critical risk management concerns
to their contractors.

Culture Change to Support Open
Communication, Risk Mitigation

The 1999 DoD Risk Management
Guide emphasizes a risk management
approach that is disciplined, forward look-

ing, and continuous [2]. “Our goal,” pro-
gram director Krum said in describing
IMINT’s aim of risk management, “was to
build a system in which people would
think ahead, mitigate risks, and reduce the
likelihood of system delays, depletion of
management reserve, and system failures.

“To accomplish this, we knew that
risk management would require a culture
change to one where people would openly
discuss those very areas that are most like-
ly to be uncomfortable. We wanted to
build program success on a platform
where leaders and contributors put their
cards on the table” [4].

NRO had undergone a number of
studies that analyzed specific cultural barri-
ers to effective program functioning. In
particular, a study by Malcolm Baldridge
in 1996 pointed to a need for NRO to
move from a culture of risk avoidance to
the kind of open communications that
elicit widespread knowledge and informa-
tion sharing [7]. Risk management, in par-
ticular, requires early and open exchange
of key information to allow for timely mit-
igation. Several studies have shown that, in
the great majority of program failures, one
or more key technical project staff knew in
advance there was a serious risk of failure.

The forums established at IMINT
provided for this kind of discussion.
Krum said, “Risk management forums at
both system and divisional levels are not
so much a place where you ‘don’t shoot
the messenger’ as one where ‘there is no
messenger to shoot because there is not a
crisis yet.’” [4]

In the example cited above, the
advent of an IDMO organization was not
readily embraced by the O&M organiza-
tion. O&M members thought that it
took away some of their flexibility to uti-
lize level-of-effort resources to address the
new approach, and required a scheduling
discipline that was contrary to the organi-
zation’s existing business practices. In
addition, the maintenance budget would
be turned over to development.

Open-forum discussions established
in the monthly team risk review meetings
allowed identification of a potential
budgetary risk in the newly configured
approach. The risk was that the original
O&M program might not have budgeted
sufficient resources to support new archi-

RRiisskk MMaannaaggeemmeenntt RRoolllloouutt aanndd IInnssttaallllaattiioonn aatt tthhee NNRROO

A risk management infra-
structure is essential to sup-
port the kinds of communica-
tion necessary for effective
risk management.

24 CROSSTALK The Journal of Defense Software Engineering February 2000

tecture being delivered.
As details of the risk were developed

and discussed openly between govern-
ment and contractor, it turned out that
there was a budget shortfall. With this
early identification, the management team
could provide a budget wedge and secure
necessary funding to acquire key resources
and meet availability requirements.

To arrive at this level of candor and
critical information exchange, leaders set
the tone. Contributors and others must
accept accountability to support the
effort. A risk management infrastructure
is essential to support the kinds of com-
munication necessary for effective risk
management.

Of course, all government organiza-
tion, including NRO, have grown
change-weary. To foster acceptance of risk
management, a building of trust in the
process was necessary, so that it would
not be seen as the change process du jour.
The risk management infrastructure sup-
ported the growth of trust in the process.

Risk Management Process
and Infrastructure

To leverage a lasting risk management
process across a complex system, where
the pressure of current crises can erode the
best intentions, a sturdy yet streamlined
infrastructure is essential. For new initia-
tives that create a culture change, building
a solid, well-designed infrastructure to
support the change may initially seem
burdensome. However, the infrastructure,
if well-planned, can become a support for
ultimate efficiencies and integration across
system program management. The infra-
structure further supports an alert, contin-
uous process of risk management watchful
for emerging and changing risks over a
program life cycle.

A key driver behind the installation
process at IMINT was to support division
leaders who could provide sponsorship,
model risk management behaviors, and
act as in-house mentors for the process
over time. Another critical element was to
install a smoothly functioning operational
infrastructure (teams, processes, practices,
and information resources) to leverage
continuous risk management and
improvement of the process.

The infrastructure installed at

IMINT included the following:
• Conducting software risk evaluations

with government and contractors for
the pilot program to identify initial
program risks and plan mitigation
strategies.

• Establishing divisional risk manage-
ment practices, which include regular
forums where risks are identified,
planned, tracked, and controlled—in
staff meetings, program review sessions,
or specified risk reviews.

• In some cases, establishing goverment/
contractor integrated product and
process team-type TRRs for monthly
identification, planning, tracking, and
control of joint risks.

• Establishing the system-level risk man-
agement team, where division chiefs
and the program director or his deputy
meet monthly to discuss and monitor
system-level risks.

• Designing a communications architec-
ture that provides clear guidelines to all
staff members on roles and mechanisms
for communicating and working risks.

• Developing consistent, system-wide
risk information documents, tracking
charts, and a custom-tailored risk man-
agement tool initially designed by the
CCD pilot program, eventually lever-
aged for system-wide use.

These streamlined infrastructure ele-
ments supported the risk management
process at IMINT, and in turn are increas-
ingly supported by the expanding risk
management community. The contribu-
tors at IMINT found a return on invest-
ment in risk management that ranged
from such subtle changes as “awareness has
increased; we no longer just look at today’s
problems” to major crisis-averting risk
management. IMINT still bears fruit.

As a final example, a mission-critical
risk identified early on during one of the
original IMINT risk assessments in 1997
was a portfolio of related risks involving
scheduling and specifics of system-level
testing, which were key to successful pro-
gram delivery. In response to this major
risk, an integrated set of mitigation strate-
gies were translated into a mitigation
plan. The mitigation plan received clear
guidance from the government sponsor,
with collaborative input from government
and contractor TRR team members. With

close monitoring at the monthly TRRs
and ESRT sessions, and with instantiation
of several contingency actions, the pro-
gram delivery was not only on time, but
successful in all defined aspects.

Conclusion
While risk management program inte-

gration is almost never easy, as an IMINT
contractor said, “It is important to do the
hard right thing than the wrong easy
thing.” By applying the three key success
factors outlined above—committed spon-
sorship, a culture moving toward more
open communication, and a reliable infra-
structure to support continuous risk man-
agement—IMINT achieved successful risk
management results in support of mission-
critical programs into the new century.!

References
1. Reducing Life Cycle Costs for New

and Fielded Systems, Undersecretary of
Defense (Acquisition and Technology)
Memorandum, December 1995.

2. Risk Management Guide for DoD
Acquisition, DoD Test, Systems
Engineering and Evaluation, Defense
Acquisition University, and Defense
Systems Management College, Defense
Systems Management College Press,
Fort Belvoir, Va., May 1999.

3. NRO Acquisition Management
Directive 7 (NROD 82-2, OPR (P&A),
National Reconnaissance Office, Aug. 6,
1997. Available on the web at
http://www.dsmc.dsm.mil/pubs/gdbks/
risk_management.html

4. Loveland Link, Jo Lee, Rick Barbour, Al
Krum, and August C. Neitzel, Rollout
and Installation of Risk Management at
the IMINT Directorate, National
Reconnaissance Office, CMU/SEI-99-T
R-009, ESC-TR-99-009, SEI Technical
Report, December 1999.

5. Schein, Edgar H., Organizational
Culture and Leadership, Jossey-Bass
Business and Management Series,
San Francisco, 1997.

6. Neitzel, August C., Jr., Managing Risk
Management, CROSSTALK: July 1999.

7. IMINT Malcolm Baldridge National
Quality Award Assessment Consolidation
Report, National Reconnaissance Office,
May 1996.

RRiisskk MMaannaaggeemmeenntt

February 2000 CROSSTALK The Journal of Defense Software Engineering 25

About the Authors
August Neitzel is Director, EIS Ground Group,
responsible for system delivery. During the period
of risk management rollout and installation, he
was division chief of IMINT's command and
control acquisition effort. In this capacity, he led
the pilot program for the initial IMINT risk man-
agement initiative. In addition, he served as the

contracting officer's technical representative for the command and
control acquisition contract. Neitzel joined the CIA in 1975. In
1982, he began working for the NRO. His career there has spanned
the SIGINT program and virtually all aspects of the IMINT pro-
gram. Neitzel earned a master’s degree in electrical engineering from
Drexel University after completing a tour of duty with the Air
Force. He is a member of Eta Kappa Nu and the Institute of
Electrical and Electronic Engineers. He is certified as a Level III
COTR, and received the CIA Intelligence Commendation Medal.

NRO
4101 Pleasant Valley Road
Chantilly,Va. 20151
Voice: 703-808-2038

Jo Lee Loveland Link is a visiting scientist at SEI,
with more than 20 years of providing guidance for
strategic direction of government, military, and
private sector organizations. For the past six years,
she has worked with technical programs to estab-
lish strategy and infrastructure for process improve-
ment and risk management initiatives. With

Richard Barbour, she provided risk management rollout and installa-
tion services across this IMINT organization. She has participated on
Capability and Maturity Model -based assessment teams and teach-
es several SEI workshops, including Managing Technological
Change, Consulting Skills, and customer-tailored Risk Management.
A certified Senior Organization Development and Change Specialist
with post-graduate work in applied behavior science, Loveland Link
has a bachelor’s degree in organization behavior/adult education, and
is author of more than 30 publications on strategic planning, man-
agement, and corporate culture.

Software Engineering Institute
4301 Wilson Blvd., Suite 910
Arlington,Va. 22203
Voice: 703-709-9217 or 703-908-8232
Fax: 703-904-8330
E-mail: jll@sei.cmu.edu

Richard E. Barbour is a senior member of the
technical staff at CISE. For the past year, he has
provided software capability evaluations (SCEs) to
international software companies. In 1998-99,
Barbour was instrumental in SCE assessments for
the NRO future imagery architecture program.
Prior to joining CISE, he was in the SEI software

engineering process management program as the acquisition
improvement project leader, serving as lead for the SEI-NRO risk
management initiative. He had been in the SEI Process Program,
developing and implementing Capability Maturity Model -based
appraisals for internal process improvement and software capability
evaluations. He also spent a year with the SEI Transition Partner,
Integrated System Diagnostics Inc., developing the SCE v. 3.0
method. Barbour has more than 24 years of experience in managing
and acquiring software systems, and is a retired Navy Commander
from the antisubmarine warfare, patrol squadrons (P-3) community.
His last assignment was as deputy program manager for the Next
Generation Computer Resources program with the Space and Naval
Warfare Systems Command. He also was deputy program manager
for the Software Technology for Adaptable, Reliable Systems pro-
gram. He received a bachelor’s degree in business management from
the University of South Carolina, and a master’s degree in computer
systems management from the Naval Post-Graduate School.

CISE
4516 Henry Street, Suite 205
Pittsburgh, Pa. 15213
Voice: 412/268-4312
Fax: 412-268-6369
E-mail: reb@cise.cmu.edu

Al Krum is Director, Systems Engineering Sector, IMINT, NRO.
At the time of the Risk Management Rollout and Installation, he
was Program Director, Enhanced Imagery System (EIS), IMINT.

www.eas.asu.edu/~riskmgmt This is Arizona State University's
(ASU’s) software risk management home page. Links include an
introduction to software risk management, risk identification ques-
tionnaire, and a risk management expert system.
www.infc.ulst.ac.uk/informatics/ise/se/re/serum.html Software
Engineering Risk: Understanding & Management (SERUM) site.
www.ida.liu.se/labs/aslab/people/joaka/risk_bib.html Software risk
management bibliography with a compilation of software risk man-
agement articles by Barry Boehm, R.N. Charette, R. Fairle, et. al.
www.esi.es/Information/Collections/SoftRisk/tools.html Software
Risk Management: Tools, including links to risk track, NASA
Software Risk Management Database, Software Acquisition Capabi-
lity Maturity Model , v. 1.01, and Risk Management Tutorial.
www.spmn.com Software Technology Conference '99 presentations,
May 3-6, allows users to download .ppt files on 16 Practices for
Improving Software Project Success by Jane Lochner, and Software
Process Improvement at PMW-163 by Frank Doherty. Also includes
Software Program Managers Network quick links.

www.sei.cmu.edu/legacy/risk/kit/metrics.html This focuses on
conveying software development risk status without sending upper
management into a panic.
www.rollanet.org/~asemmsd/em-handbook/Abstracts/rsk_tool004.html
Abstracts on risk management
www.sea.net.au/project_management/risk_management
International links on:
• Software risk evaluation service and risk management overview

from the Software Engineering Institute.
• ASU's software risk management home page.
• Cost of Risk Analysis System by International Security

Technology Inc.
• Mesa/Vista Risk Manager, a collaborative web environment

that provides the foundation to support a structured risk
management process.

• Department of Defense Data Analysis Center for Software site
with case studies, resources, training, discussion groups, software
tools, and FAQs.

Risk Management Web Sites

26 CROSSTALK The Journal of Defense Software Engineering February 2000

Today many organizations are
attempting to reduce software develop-
ment effort and schedule by purchasing
off-the-shelf solutions rather than building
them in-house. This strategy can be very
cost effective if the COTS solution meets
customer requirements. Unfortunately,
COTS solutions have often proven to be a
great disappointment. This is largely due
to poor fit in meeting the required func-
tionality. The result is a major COTS
enhancement project comparable to a cus-
tom-developed solution in terms of overall
project schedule and cost. In one such sit-
uation, it was found that the COTS solu-
tion fit only 2 percent of the requirements.
Ninety-eight percent of the solution would
have to be delivered as new development
and enhancements to the COTS package.
Luckily, in this situation the problem was
identified early in the process and the pro-
posed COTS solution was rejected.

The situation described above and
similar experiences highlight how impor-
tant it is to conduct a complete and accu-
rate assessment of how a COTS solution
fits the requirements and does not rely on
vendor claims of high compatibility. This
article discusses a technique that has been
successful for projects in evaluating the
compatibility of COTS products to cus-
tomer requirements. The technique,
called function fit analysis, is based on
function point analysis. Function point
analysis is the decomposition of an exist-
ing or planned system based on the user’s
perspective of functional requirements.
Function points can be used to evaluate
various COTS solutions, select the best
solution, and determine the degree of
enhancement work necessary to meet cus-
tomer requirements.

Function fit analysis provides the
ability to:
• Document functional requirements

in terms understandable to users and
technicians.

• Identify the functional gap of the
COTS products.

• Quantify the effort necessary to
enhance the COTS package.

• Provide input into the make vs. buy
decision making process.

Since function points are a key ele-
ment to this process, it is important to
understand their definition. “Function
points are a measure which represents the
functional size of application software” [1].
Function points are a unit of measure that
represent the work products of software
developers. They quantify the deliverables
of the software development process.
When combined with other data, such as
effort and defects, metrics can be devel-
oped to aid in planning and managing
software projects. Function points were
originally developed as a communication
tool for defining functional requirements
in nontechnical terms. To accomplish this
they describe functionality from the end
user’s perspective of how it supports one’s
business functions.

To count function points it is neces-
sary to understand the counting rules as
well as the user requirements of the proj-
ect or system being assessed. For that rea-
son, it is important to have knowledgeable
participants and supporting documenta-
tion available when conducting the count.
The function point process as defined by
International Function Point User Group
follows.

Function Point Analysis Process
There are three types of function

point counts:

1) Development project count.
2) Enhancement project count.
3) Application count.

Determining which count to be produced
is the first step in the process. The differ-
ent types of counts and how they are used
in the function fit analysis process are
described below.

Development project counts are used
to size projects with totally new function-
ality and include all functions being devel-
oped. In function fit analysis, the develop-
ment project count would compare to the
custom-developed alternative. Enhancement
projects are modifications to existing sys-
tems and include application functions
that are added, changed, or deleted. This is
the type of count used when evaluating
specific COTS alternatives in the function
fit analysis process. It identifies enhance-
ments necessary in the COTS product for
it to meet customer needs. The final type
of count is an application count. This is
the function point count of any installed
system. Once a system exists, this is the
function point count of all functions pro-
vided to the user regardless of how they
were delivered (i.e. developed vs. COTS).

To complete a function point count,
user recognizable functions are identified
and evaluated. From a user’s perspective, a
computer application assists him in doing
his job by providing five basic functions.
Two of these capabilities address the data

Evaluating COTS Using Function Fit Analysis
Software Engineering Technology

This article presents function fit analysis (FFA), a methodology proven to be successful in evaluating commercial off-the-shelf
(COTS) products as they relate to meeting customer requirements. The steps of this function point-based process are discussed to
show the benefits of providing this information to the decision-making process for the use of COTS as a development solution.

Determine
Type of
Count Count

Data Function Types

Count
Transactional

Function Types

Determine
Unadjusted

Function Point
 Count

Determine
Unadjusted

Function Point
 Count

Determine
Value

Adjustment
Factor

Calculate
Final Adjusted
Function Point

Count

Identify
Counting

Scope and
Application
Boundaries

Identify
Counting

Scope and
Application
Boundaries

Figure 1. The Function Point Analysis Process

February 2000 CROSSTALK The Journal of Defense Software Engineering 27

requirements of the business and are
referred to as data functions. Data func-
tions consist of internal logical files and
external interface files. Three of these
capabilities address the user’s need to
access and manipulate data stored on the
files and are referred to as transactional
functions. Transactional functions consist
of external inputs, external outputs, and
external inquiries.

The Five Components of Function Points
Data Functions

1. Internal Logical Files
2. External Interface Files

Transactional Functions
3. External Inputs
4. External Outputs
5. External Inquiries

The first data function allows users to uti-
lize data they are responsible for maintain-
ing. For example, a user may be responsi-
ble for adding, changing, and deleting
employee information on the employee
master file. Therefore, the user is responsi-
ble for maintaining the file. Logical
groupings of data that are maintained by
an end user of an application are referred
to as internal logical files (ILFs).

The second function of an application
provided to an end user is also related to
logical groupings of data. In this case, the
user is not responsible for maintaining the
data, which resides in another application
and is maintained by another user. The
user of the application being counted
requires the other application’s data for ref-
erence purposes only. For example, a user
may require the ability to access security
information from the security application.
The user does not have the responsibility
for updating security information but
must reference it to complete his or her
job. Groupings of data from another appli-
cation used only for reference purposes are
defined as external interface files (EIFs).

The remaining functions address the
user’s capability to access the data con-
tained in ILFs and EIFs. This capability
includes maintaining, inquiring, and out-
putting of data, referred to as transaction-
al functions.

The first transactional function
allows a user to maintain ILFs through
the ability to add, change, and delete the

data. For exam-
ple, a user can
add, change, or
delete employee
information on
the employee
master file. In
this case, the user
is utilizing a
transaction
referred to as an
external input.
An external input
gives the user the
capability to
maintain data on
ILFs through
adding, changing,
or deleting its
contents.

The next function gives the user the
ability to produce outputs that contain
calculations. For example, a user may
require a report that contains expense data
with derived information. The report is
produced using maintained and refer-
enced information. In function point ter-
minology, the resulting report is called an
external output.

The final capability provided to users
through a computer application addresses
the requirement to display specific data
from files. In this situation there is no
manipulation of the data, it is a direct
retrieval of information contained on the
files. For example, a user can inquire on
employee data by inputting a Social
Security number and retrieving informa-
tion. These transactions are referred to as
external inquiries.

Two adjustment factors are applied to
calculate the function point count. The
first adjustment, functional complexity,
assigns weights to each functional compo-
nent based on data elements and process-
ing logic. The second adjustment, the
value adjustment factor, evaluates the
operational complexity of the application.

Function points are just one piece of
information that is used in the function

fit analysis process. The function fit analy-
sis process consists of five primary steps.

Function Fit Analysis Process
Step 1: Requirements
Function Point Analysis

This step is used to identify and doc-
ument exactly what functionality is neces-
sary to meet the customer needs. This
assessment should be completed early in
the development life cycle to provide
insight into the scope of the project. It
can be completed early because it is based
on what functions are to be delivered, not
how they are to be delivered. During this
step, a function point count is completed
based on documented functional require-
ments, or by analyzing the functions of
an existing system to be replaced. It is
important to focus on the to be version of
the system and to identify all of the func-
tions necessary to meet the users’ needs.

The analysis should only focus on
quantifying user requirements, not on
potential COTS solutions. The result is a
development function point count and a
detailed listing of the functions necessary
to meet the requirements. For example, a
course registration application may con-
tain the following user functions:

Add training course information
Modify training course information
Display training course information
Establish training sessions
Add participants to training sessions

Requirements
Function Point

Analysis
COTS

Functional
Evaluation

Functional GAP
Analysis

Project
Estimates

Make/Buy
Analysis

1
2

3

4

5

Figure 2. Function Fit Analysis Process

. . . [Function fit] analysis
should only focus on quanti-
fying user requirements, not
on potential COTS solutions.

EEvvaalluuaattiinngg CCOOTTSS UUssiinngg FFuunnccttiioonn FFiitt AAnnaallyyssiiss

Fit

28 CROSSTALK The Journal of Defense Software Engineering February 2000

SSooffttwwaarree EEnnggiinneeeerriinngg TTeecchhnnoollooggyy

Step 2: COTS Functional Evaluation
This involves reviewing the various

COTS choices and comparing their func-
tionality to the requirements documented
in Step 1. From a function point perspec-
tive, this is an enhancement project count,
as we are starting with a system and identi-
fying changes necessary to meet the func-
tional requirements. Using the function
point count from Step 1 as a guide, each
database and panel in a COTS alternative
is reviewed to identify functions that:
1. Exist in the COTS with no change

required [Unchanged].
2. Exist in the COTS but require

enhancements to meet the require-
ments [Change].

3. Need to be added to the COTS
product [Add].

4. Exist in the COTS but are unrelated
to the requirements and will not be
used [Unused].
The resulting enhancement function

point count summarizes how well the
COTS product matches the functional
requirements. Using the example functions
from above, the COTS evaluation func-
tion point count contains the following:
User Function Enhancement Activity
Add training Unchanged
course information
Modify training Change
course information
Display training Change
course information
Establish training sessions Add
Add participants to Add
training sessions

The COTS enhancement project
function point count will include func-
tions that are being added and changed.
The first analysis of results should com-
pare the function point size of the COTS
enhancement project to the function point
size of the custom-developed solution. If
the enhancement function point size is
not significantly less than the custom-
developed solution, then the COTS solu-
tion might not be the best fit. The second
step of the analysis is to evaluate the
unchanged functions since this represents
what portion of the solution fits the user
requirements. The unused functions show
how much of the COTS product is unus-
able and unrelated to the requirements.

Step 3: Functional Fit Analysis
This step is used to apply a percentage

to the fit between the requirements and
the COTS product. By comparing the
function point counts from the previous
two steps a fit can be determined. One of
the first tasks is to define what fit means in
the minds of all those involved in the
assessment. There are different ways of
looking at fit depending on the approach
used. In function fit analysis, fit is defined
as the amount of out-of-the-box function-
ality that can be utilized without any mod-
ifications. Using this definition, a compari-
son of the requirements function point
count to the COTS function point count
will result in calculating the fit percentage
of the COTS (FFA fit = unchanged FPs ÷
total FPs from Step 1).

In addition to the fit calculation,
analysis of the percentage of added and
changed functions is also useful. These
percentages can be calculated by identify-
ing the added and changed functions from
Step 2, calculating a function point count,
and evaluating it against the total function
point count from Step 1.

The added function point count will
show the amount of user requirements
that are not supported at all in the COTS
product. Obviously, if this is a large num-
ber, it may be better to look at a different
alternative or consider a custom-developed
solution.

Identifying changed functions is help-
ful in evaluating whether to enhance the
COTS to meet the business requirements,
modify the business process to meet the
COTS, or a combination of both. This
analysis provides an opportunity to revisit
certain functions with the users to see if
the requirements are flexible.

Table 1 details added, changed, and
unchanged function points for a project.

Identifying and quantifying the
unused functions in the COTS product
can be helpful in a couple of ways. They
are used to determine how much of the
purchased COTS solution will not be uti-

lized. Also, reviewing these functions
with users may help to generate ideas on
how to improve the business process in
the future.

Knowing the fit numbers is one piece
of information that is helpful in the make/
buy decision. The other piece of informa-
tion is the estimate to deliver the functions
in the various options, which leads us to
the next step, project estimates.

Step 4: Project Estimates
The function point data from the pre-

vious steps is used to develop the project
estimates in Step 4, which uses a top-down
approach to estimate effort, staff, and
schedule for each alternative under review.
The first is for the custom-developed alter-
native. Two components are used to devel-
op an effort estimate: project size, which is
the function point count from Step 1 of
the function fit analysis process, and an
evaluation of the project attributes, factors
that, in addition to project size, influence
software development productivity. Four
major attribute categories are evaluated:
1. Personnel and Management—focuses

on knowledge and experience of
information systems and end user
personnel involved in the project.

2. Process and Methods—focuses on
what development and project man-
agement methods are used and the
extent the methods are followed.

3. Technology and Tools—evaluates the
technology being utilized and the
effectiveness of the tools available to
the developers.

4. Environment and Support—evaluates
the development environment in
terms of computer resources, admin-
istrative resources, and overall work-
ing environment.

Once the size and the project attrib-
utes are determined, an effort estimate can
be developed. This can be done using vari-
ous industry tools, industry benchmark
data from external consultants, or organi-
zation-specific historical data. The estima-

Total Project Added Changed Unchanged Total AFP
System A 750 350 100 1,200
System B 800 250 50 1,100
Total 1,550 600 150 2,300
Percent of
Total
Project

67% 26% 7% 100%

Table 1. Added, Changed, and Unchanged COTS

February 2000 CROSSTALK The Journal of Defense Software Engineering 29

tor selects the appropriate productivity rate
to use based on the development project
function point size and the project attrib-
utes. To calculate the effort estimate, the
function point count is divided by the
productivity rate (project effort = custom
developed project size ÷ function points/
hour). Schedule and staffing estimates are
derived from the project effort incorporat-
ing organizational constraints, e.g. staff
limitations and preset schedules.

A similar process is followed for each
COTS option under review. For this
analysis, the project size is based on the
enhancement-function point count com-
pleted in Step 2 of the function fit analy-
sis process. Project attributes should be
reviewed to see if the previously complet-
ed assessment applies to the COTS alter-
natives. Enhancement productivity rates
differ from development productivity
rates depending on project size, so the
effort estimates for the COTS alternatives
may not use the same productivity rate
(function points/hour) as the custom
development option.

Now there is enough measurement
data about the functional requirements to
feed to the make/buy decision step.

Step 5: Make/Buy Analysis
The function point information and

estimate data from Steps 1-4 is used in
Step 5, the make/buy analysis. The
make/buy analysis is the decision-making
process to determine whether to imple-
ment a COTS solution or build a custom
one. The following are some initial deci-
sion points based on information from
previous steps:

Buy AAss IIss if:
1. The users are prepared to live with

the COTS functionality.
2. The users are willing to change their

business processes to adapt to the
COTS application.

3. The sensitive schedule is an overrid-
ing factor. This means delivering the
functionality in a certain time frame
takes precedence over how the users
would like the business process to be.
The schedule is the highest priority
and it drives the decision.

4. Development and future maintenance
funding is limited. If there is not
going to be any money available to

maintain or enhance a modified or
developed system, then it may be best
to rely on the COTS provider for en-
hancement and maintenance support.

CCuussttoommiizzee COTS if:
1. The cost to customize the COTS

product is more viable than building.
Development costs as well as ongoing
support and operation costs should
be included.

2. Minor customization is necessary to
meet the user requirements.

3. The schedule is relatively sensitive. If
developers can take advantage of
existing COTS functionality and
modify a minimal number of func-
tions, then the development time
frame will be shorter. If a short sched-
ule is a requirement, then business
functions should be evaluated to
determine if they could be changed
to utilize the COTS functionality,
therefore limiting the customization.

CCuussttoomm DDeevveelloopp (no COTS) if:
1. A significant number of requirements

are not available. If the user require-
ments are specific and cannot be
changed to use the existing COTS
functionality, then building them
from scratch is the best option.

2. Initial cost of the COTS, including
enhancement and support dollars, is
higher than developing and support-
ing the application in-house.

3. Ongoing upgrades are cost prohibi-
tive. This point considers the cost of
implementing future upgrades to the
COTS product. If installing the
upgrades requires rework of the cus-
tomizations, then it is possible that
significant development effort would
be incurred each time an upgrade is
installed. If this situation occurs, it
would not be cost-effective.

In addition to evaluating the develop-
ment effort the following factors should
be included in the make/buy analysis:

COTS costs
Make sure to include all the costs associat-
ed with the COTS product. This would
include evaluation costs, initial purchase
costs, seat or site license costs, and annual
support and operation costs.

Access to package specifics
Discuss with the COTS vendor what

technical components of the product will
be available to the in-house developers.
For example, will they have access to the
data model or process model? What hooks
are available to the developers for adding
custom code? Is there a coding standard
the COTS provides to ensure custom-
built components will have the same look
and feel as the core product?

Ownership of customized software
Once the COTS solution has been pur-
chased and customization is completed,
there may be a gray line defining who
owns what. Make sure you understand
the rules up front.

Customization responsibility
Determine at the start who will make the
changes to the COTS, and what the asso-
ciated costs will be. This may also dictate
who owns the customized code.

Existing database structure
Some organizations have strict guidelines
on naming conventions and structures. It
is beneficial to examine the COTS data-
base structure to see if it can easily comply
with your organization. If it does not, a
decision can still be made to change the
organization rules to meet the COTS.

Existing computing architecture
This will be important if the COTS
product needs to communicate with
other in-house, non-COTS, applications.
The compatibility should be examined to
determine the amount of work necessary
to integrate multiple systems.

Once the above information is gath-
ered and analyzed, the function fit analy-
sis process is complete, and an appropriate
make/buy decision can be made. The data
and findings from the process should be
documented and stored in a repository for
reference. This information may be help-
ful in future analyses of this kind.

Summary

There is a great deal of information
that is necessary to make an informed
decision as to whether to utilize COTS in
development efforts. The function fit
analysis process provides an excellent
framework for information gathering,
evaluation, and decision making. It com-
municates functional requirements in
objective terms, so the COTS can be
evaluated from a fit perspective and iden-

EEvvaalluuaattiinngg CCOOTTSS UUssiinngg FFuunnccttiioonn FFiitt AAnnaallyyssiiss

New CMMI Requirements for

Risk Management
A new risk management process area

is one of the changes proposed in the
new Capability Maturity Model
Integration (CMMI) product suite. For
some, this is long overdue in the software
community; for others, this is a new and
potentially difficult requirement.

The purpose of risk management is
to identify potential problems before
they occur, so that risk-handling activi-
ties may be planned and invoked to mit-
igate adverse impacts on achieving objec-
tives. Risk management is a continuous,
forward-looking process, integral to both
business and technical management.
It encompasses:

• Defining a risk management strategy.
• Identifying and analyzing risks.
• Developing and implementing risk

mitigation plans.

In Software CMM v. 1.1, risk man-

agement was identified as a key practice
in Software Project Planning, Software
Project Tracking and Oversight, and
Integrated Software Management.

At Maturity Level 2, projects identi-
fied, assessed, documented, and tracked
software risks. At Maturity Level 3, proj-
ects were expected to actively manage the
software risks in a more proactive and
integrated fashion.

In practice, many current software
projects give lip service to risk manage-
ment in the CMM by listing a vague set
of nonspecific risks (e.g., inability to
meet schedule). Projects fail to identify or
quantify project-specific risks or mitiga-
tion plans, or to continuously manage
them throughout the project life cycle.
Often, practitioners think that risk man-
agement is a systems engineering func-
tion, outside software’s responsibility.

In creating the CMMI-SW/SE v. 0.2
maturity model, risk management was ele-
vated to a process area, with a full set of

required goals and expected practices that
apply to software. This structure follows
the System Engineering maturity models,
where risk management has always been
handled at the process area level.

In addition to specific project activi-
ties, risk management must be institu-
tionalized through written organizational
policies, plans, allocated resources,
assigned responsibilities, training, config-
uration management of work products,
quality audits, and management reviews.

Some organizations have already
reaped the benefits of a mature, proac-
tive, software risk management process.
Resources include the SEI’s Software Risk
Taxonomy and Team Risk Management
process, the Software Project Manager
Network’s Risk Radar tool , and
numerous books and training courses.

tifies functions to evaluate for possible business process re-engi-
neering efforts.

As function fit analysis provides a size metric for the develop-
ment options, it enables estimates to be made in terms of effort,
staff, and schedule. Without knowing what needs to be delivered,
it is impossible to determine a good estimate of how long it will
take to deliver it. Function fit analysis gives us the what.

In today's world of providing things better, faster, and
cheaper, it can be difficult to determine the best option. The use
of COTS products has been touted as a faster and better
method for software development, but that is not always the
case. Function fit analysis is a valuable technique to help evalu-
ate purchased/customized solutions and make the best and most
appropriate decision for each organization and project.!

Reference
1. IPFUG Counting Practices Manual v. 4.1.

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering February 2000

About the Author
Lori A. Holmes is a Senior Management Consultant with Q/P
Management Group, specializing in Total
Quality Management, software measurement,
and process improvement. Prior to joining
Q/P, she spent nine years at First Data Corp.
in Omaha, Neb. as Quality Assurance
Manager and Applications Programming
Manager. Holmes received a bachelor’s degree
in business administration, business information systems focus, from
Illinois State University in 1984, and is a certified function point
specialist and a quality analyst.

Q/P Management Group Inc.
15539 Burdette St.
Omaha, Neb. 68116
Voice: 402-493-0228
Fax: 402-493-0506
E-mail: lholmes@QPMG.com

Web Addition

A Ship Cost Agent for Pier and Port Management

Contributed by Rick Hefner, Ph.D, TRW
Co-Chairman

CMMI Assessment Methodology Team
rick.hefner@trw.com

Agent-based collaborative decision support is a methodology utilizing a domain specific intelligence system
to partner with human decision makers to reach a consensus solution to a complex problem. This paper
describes the cost agent and its deployment within a collaborative planning facility management tool
designed to support Navy pier and port management, the Collaborative Infrastructure Asessment Tool .

Find this article on the Internet at http://www.stsc.hill.af.mil/crosstalk/2000/feb/sena.asp

James A. Sena
College of Business, California Polytechnic State University

Got an idea for BACKTALK? Send an e-mail to backtalk@stsc1.hill.af.mil

BACKTALK

Gosh, monkeys sure are dumb. Here is a case in point:
Five monkeys were in a room that contained a table in one corner, and a banana hanging from a string in the middle of the

room. The monkeys figured out that if they dragged the table to the middle of the room, they could climb up and grab the banana.
So they did. As one of the monkeys quickly hopped up and reached for the banana, hidden compartments in the walls suddenly
opened, releasing high-pressure cold water that knocked the monkey off the table and drenched the other four monkeys.

They quickly learned that whenever one of them climbed on the table, all of them were soaked with cold water. They realized
climbing on top of the table was a bad idea. Unbeknownst to the monkeys, the high-pressure cold water hoses were disconnected
and removed.

The next week, one of the five monkeys was removed from the room and replaced by a new monkey. The new monkey saw the
table and the banana dangling from the ceiling. Realizing that the banana was there for the taking, the monkey headed for the
table. But fearful of being drenched by the high-pressure cold water, the other four monkeys pounced on the newcomer and beat
the tar out of him. Every time the new monkey got near the table, the others beat him up. Soon the new monkey no longer went
near the table.

By the third week, another of the original five monkeys was replaced by a new monkey. And like the monkey the week before,
the newest member of the group tried to get near the table to move it over to the banana. Once again, the others beat up the
newest member of the group. Even the first new monkey joined in.

Each successive week, one more of the original monkeys was replaced. The same thing happened every time; when the newest
monkey attempted to get near the table, the others joined in to discourage him.

By the sixth week, not a single monkey was left from the original group. Not one remained that had been squirted with cold
water. But when the newest monkey headed toward the table and tried to reach the banana, the other four monkeys "trained" him
by beating the tar out of him.

If you could ask each monkey why it was beating up the new monkey, each probably would say, "I don't know, that is just the
way we do things around here."

Pitiful, isn't it? Imagine a bunch of dumb primates that not only refuse to try new techniques, but attack, ridicule, or other-
wise discourage other primates who try new things. Their only possible defense is that when they tried new techniques, somebody
attacked, ridiculed, or otherwise discouraged them. So they continue doing things the old-fashioned way.

Gosh, monkeys sure are dumb. Imagine being unable to take a calculated risk and break an old behavior pattern to try new things!

—Dave Cook, C. S. Draper Laboratory Inc.

Thank Goodness We’re Not Dumb Animals

February 2000 CROSSTALK The Journal of Defense Software Engineering 31

Give us your information—get a free subscription
Fill out and mail this form to us for a free subscription to CROSSTALK.

7278 FOURTH STREET, HILL AFB, UTAH 84056 ATTN: HEATHER WINWARD

Or save a stamp and subscribe online at http://www.stsc.hill.af.mil/request.asp

FULL NAME:___

RANK OR GRADE:___

POSITION OR TITLE:__

ORGANIZATION OR COMPANY:__

ADDRESS:___

BASE OR CITY:____________________ STATE:____________ ZIP:____________

VOICE: COMMERCIAL______________________ DSN:_______________________

FAX: COMMERCIAL______________________ DSN:_______________________

E-MAIL: ________________________@_________________________

1999 BACK ISSUES AVAILABLE (CHECK THE BOX OF THE MONTH(S) DESIRED.)

JANUARY FEBRUARY MARCH APRIL MAY JUNE

JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER

Get some information from the STSC
The Software Technology Support Center (STSC)
offers a large selection of software engineering doc-
uments and tool and technology reports online.
The STSC also specializes in fee-for-service con-
sulting services with expertise in areas such as

• Measurement
• Project Management
• Re-engineering
• Process Improvement
• Acquisition/SA-CMM
• Peer Reviews and

Defect Prevention
• CMM Assessments
• Documentation and

Standards
• Configuration

Management

• Object-oriented
Development

• Personal Software
Process

• Software Quality
Assurance

Contact Rudy Alder
at 801-777-2750
DSN 777-2250 or e-mail
rudy.alder@hill.af.mil
for more information

For those of you who wrote to remind us that our
references to the end of the millennium in the
December issue were premature if we believe the
math instead of the marketing, thank you, and
please visit these sites: www.enigmar.com/2001
www.astronet.com/features&fun/millennium.html
www.georgian.net/rally/madness.html

CROSSTALK

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

BBUULLKK RRAATTEE
UUSS PPOOSSTTAAGGEE PPAAIIDD

PPeerrmmiitt NNoo.. 448811
CCeeddaarrbbuurrgg,, WWII

PPuubblliisshheedd bbyy tthhee
SSooffttwwaarree TTeecchhnnoollooggyy
SSuuppppoorrtt CCeenntteerr

Sponsored by the
Computer Resources

Support Improvement
Program (CRSIP)

“Software and Systems—Managing Risk,
Complexity, Compatibility and Change”
April 30-May 5, S.L.C., Utah
See page 20 for details.

STC 2000

	Cover
	Index
	From the Publisher
	Both Sides Always Lose: Litigation of Software Intensive Contracts
	Quote Marks
	Continuing Risk Management at NASA
	Call for Articles
	Letters to the Editor
	Integrating "Crisis" into Project Management Training
	Coming Events
	A Practical Approach to Quantifying Risk Evaluation Results
	12th Annual Software Technology Conference
	Risk Management Rollout and Installation at the NRO
	Risk Management Web Sites
	Evaluating COTS Using Function Fit Analysis
	New CMMI Requirements for Risk Management
	BackTalk

