
CrossTalkCrossTalk
April 2000 The Journal of Defense Software Engineering Vol. 13 No. 4

COST

ESTIMATION

COST

ESTIMATION

2 CROSSTALK The Journal of Defense Software Engineering April 2000

Future Trends, Implications in Software Cost Estimation Models
A major team effort was recently completed to re-engineer the original Constructive Cost Model (COCOMO)
for software cost and schedule estimation into a new model, COCOMO II.

by Barry W. Boehm, Chris Abts, Jongmoon Baik, A. Winsor Brown, Sunita Chulani,
Brad Clark, Ellis Horowitz, Ray Madachy, Don Reifer, and Bert Steece.

Software Estimation: Challenges and Research
This article reviews challenges of software estimation, and research under way to address them.

by Dr. Richard D. Stutzke

Does Calibration Improve Predictive Accuracy?
Many sophisticated parametric models exist; however, their predictive accuracy is questionable.

by Daniel V. Ferrens and David S. Christensen

Top 10 CrossTalk Authors—1999

Reducing Bias in Software Project Estimates
Biases in the estimating process contribute to poor estimates. How can they be reduced?

by David Peeters and George Dewey

Case Study: Automated Materiel Tracking System
The Automated Materiel Tracking System is a Web-based solution for real-time tracking of
materiel transferred between Air Force Materiel Command divisions and Defense Logistics Agencies.

by Jim Restel

Requirements Management as a Matter of Communication
Requirements specification must be supplemented by basic dialogue, including stated missions,
problem management, and understandable formalism for the system’s structure and behavior.

by Ingmar Ogren

4

9

14

18

20

Departments

On the Cover:
Cover artist Mark
Driscoll is a design-
er and technical
illustrator with a
background in
architecture and
museum exhibit
design. He is one of
the principals of
Driscoll Design Inc.
in Salt Lake City.

3

13

31

From the Publisher

Coming Events

13 E-mail Update Announcement

13 Quote Marks

27 DoD Conference Announcements

30 Cost Estimation Web Sites

BACKTALK

31 Subscription Request Form

25

28

H. Bruce Allgood

Reuel S. Alder

Lynn Silver

Kathy Gurchiek

Matthew Welker

Heather Winward

801-775-5555
801-777-8069
crosstalk.staff@hill.af.mil
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html
http://www.crsip.hill.af.mil

Subscriptions : Send correspondence concerning
subscriptions and changes of address to the follow-
ing address. You may use the form on page 31.

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, Utah 84056-5205

Article Submissions : We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Guidelines for CROSSTALK Authors, available upon
request. We do not pay for submissions. Articles published in
CROSSTALK remain the property of the authors and may be
submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
Coming Events : We often list conferences, seminars, sym-
posiums, etc., that are of interest to our readers. There is
no fee for this service, but we must receive the information
at least 90 days before registration. Send an announcement
to the CROSSTALK Editorial Department.
STSC Online Services: at http://www.stsc.hill.af.mil.
Call 801-777-7026, e-mail randy.schreifels@hill.af.mil.
Back Issues Available: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE
EDITOR/LAYOUT

ASSOCIATE
EDITOR/FEATURES

VOICE

FAX

E-MAIL

STSC ONLINE

CROSSTALK ONLINE

CRSIP ONLINE

CrossTalk

Estimation

Open

Software Technology

Forum

Engineering

Cost

April 2000 http://www.stsc.hill.af.mil 3

From the Publisher

Making an Educated Guess

What does estimation mean? Having spent 30 years as an engineer and manager
in the electronics and software marketplace, I thought, "Oh, that's easy! You simply
guess how long it is going to take you to do this job, based on your last experience
with the same or a similar job, and then double that guess."

Two things are clear with this oft-used algorithm. The first is that to have any
kind of chance to be in the ballpark, you need some knowledge or historical precedence for hav-
ing done something similar in the not-too-distant past. The second is a realization that the accu-
racy of any such estimate is not very good.

If your business success does not rely on the accuracy of this type of estimate, this algorithm
will probably continue to be used. Only when a business' existence and success rely on some-
thing a little more accurate is it likely a little more effort will be applied to make cost estimates
more realistic and reliable.

As readers will find in this month's CROSSTALK, cost estimation has become an essential fea-
ture of any successful software business development or sustainment venture. However, as quot-
ed in Reducing Bias in Software Project Estimates by David Peeters and George Dewey on page
20, some still believe that "software estimating is definitely a black art." The authors note that a
large percentage of software projects continue to finish behind schedule and over budget. The
article discusses some ways to identify and reduce biases in software cost estimation to help
make estimates more accurate.

The dramatic increase in the quantity and complexity of software that drives so many of
today's defense and consumer products is also a major driver in the need to develop more robust
estimation methodologies and tools. Barry Boehm and his co-authors write in Future Trends,
Implications in Software Cost Estimation Models on page 4 that software development trends have
turned from the Waterfall process model toward evolutionary, incremental, and spiral models. It
was found that the very useful Constructive Cost Model (COCOMO) estimation techniques
required some significant changes to keep pace with the changing nature of this software develop-
ment evolution. Product line management approaches to software reuse, and graphic user inter-
face builder tools that made traditional-size metrics such as source lines of code inappropriate are
examples of new software design methods that required new techniques. This article also discusses
how continuing development extensions are being made to COCOMO II to address emerging
trends such as Rapid Application Development and commercial-off-the-shelf integration.

We hope that readers will find these and the other articles in this month's CROSSTALK to be
valuable resources as they continually improve their organization's ability to accurately predict
project schedule and cost.

H. Bruce Allgood
Deputy Computer Resources Support Improvement Program Director

CROSSTALK welcomes Bruce Allgood, Deputy of the Computer Resources Support Improvement Program
(CRSIP) at Hill Air Force Base, Utah. Allgood replaces Lt. Col. Joseph Jarzombek (retired) as the CRSIP
sponsor of our journal. As a member of the Air Force Software Technology Support Center, Allgood has
supported software process improvement efforts throughout the Air Force and the Department of Defense.
He also represents the Air Force Materiel Command on the Practical Software Measurement Technical
Steering Group (PSM), the Office of the Secretary of Defense's Software Collaboration Team, and is a cer-
tified PSM trainer. He spent 20 years in various management and development roles at leading commer-
cial electronics and software corporations, including 11 years at IBM, two years at Hughes Aircraft, and
five years at Hewlett Packard. Allgood received his bachelor's degree in electrical engineering from the
University of Utah and a master's degree in electrical engineering from Colorado State University.

4 CROSSTALK The Journal of Defense Software Engineering April 2000

Cost Estimation

A major team effort was recently completed to re-engineer
the original Constructive Cost Model (COCOMO) for software
cost and schedule estimation into a new model, COCOMO II.
The overall COCOMO framework remained about the same,
but significant changes were found to be necessary to keep pace
with the changing nature of software development and evolu-
tion. These trends have included a move away from the Water-
fall process model toward evolutionary, incremental, and spiral
models; product line management approaches to software reuse;
applications composition capabilities; and graphic user interface
builder tools that made traditional size metrics such as source
lines of code (SLOC) inappropriate.

We have replaced the COCOMO development modes
(organic, semidetached, embedded) by a set of scale factors
(precedentedness, development flexibility, architecture and risk
resolution, team cohesiveness, and process maturity). These enable
project managers to control that which affects their project’s
economies and diseconomies of scale. We added some multiplica-
tive cost drivers (development for reuse, degree of documentation,
multisite development); dropped the Turnaround Time cost driv-
er; merged the Modern Programming Practices cost driver into
the process maturity scale factor, and changed the requirements
volatility cost driver into a size factor.

We changed the main size parameter from Delivered Source
Instructions to a user-determined mix of SLOC and function
points; changed to a more detailed nonlinear model of software
reuse effects; and provided a family of models (Applications
Composition, Early Design, and Post-Architecture) tuned to the
information available at different stages of the development
process. We developed a Bayesian approach to calibration of
COCOMO II to 161 projects from 18 organizations, resulting
in a model that estimates within 30 percent of the actual effort
75 percent of the time (80 percent of the time if calibrated to
the individual organizations’ data). A book describing the model
is to be released in June; it will include a CD with a USC
COCOMO II tool and demo versions of three commercial
implementations [1]. Further information about COCOMO II
is available at http://sunset.usc.edu/COCOMOII/suite.html

Rather than leaving the model as is for the next 18 years as
with the original COCOMO, we are determining extensions to
COCOMO II to address emerging trends such as Rapid Applica-
tion Development (RAD) and commercial off-the-shelf (COTS)
integration. This need to continually update your software esti-
mation capabilities also holds for most organizations. This paper
explores the reasons for this and some of the implications.

Trends in Software Productivity, Estimating Accuracy
In principle, your organization should be able to continu-

ously measure, recalibrate, and refine models such as COCO-

MO II to converge uniformly toward perfection in understand-
ing your software applications and in accurately estimating the
costs and schedules.

In practice, convergence toward perfection in estimation is
not likely to be uniform. Two major phenomena are likely to
interrupt your progress in estimation accuracy:

1. As your understanding increases about the nature of your
applications domain, you will also be able to improve your
software productivity and quality by using larger solution
components and more powerful applications definition
languages. Changing to these construction methods will
require you to revise your estimation techniques, and will
cause your estimation error to increase.

2. The overall pace of change via new technologies and
paradigm shifts in the nature of software products, processes,
organizations, and people will cause the inputs and outputs
of software estimation models to change. Again, these
changes are likely to improve software productivity and
quality, but cause your estimation error to increase.

Effects of Increasing Domain Understanding
Suppose you are entering a new applications domain,

(e.g., control of distributed, heterogeneous, real-time automated
agents for robotics devices). Your initial software productivity in
this domain is likely to be low, largely due to the effects of such
COCOMO II variables as precendentedness, architecture and
risk resolution, complexity, and applications experience. In par-
ticular, your understanding of the architecture for such systems
and your ability to reuse components will be low. And your
unfamiliarity with the domain will cause your cost and schedule
estimation errors to be relatively high.

As you increase your understanding of how to build such
systems and their components, both your productivity and your
estimation accuracy will improve. However, at some point you
will understand enough about the domain to begin developing a
product line architecture and reusable components to be used in
future products. At this point (point A in Figure 1), your pro-
ductivity will go up faster, as you will be reusing rather than
developing more and more of the software (in COCOMO II
terms, your equivalent SLOC will decrease for the same type of
project). However, at point A, your estimation error will go up,
as your previous cost driver ratings will be less relevant, and you
will be starting on the learning curve in rating your reuse
parameters. You will also find that reuse and product line man-
agement cause significant changes in your processes [2, 3].

As you improve your understanding of how to increase pro-
ductivity and reduce estimation error in using component-based
development, you will often find that other organizations in the
domain are doing so as well. Soon, some of the more general

Future Trends, Implications in Cost Estimation Models
The rapid pace of change in software technology requires everybody in the software business to continually rethink and update
their practices just to stay relevant and effective. This article discusses this challenge first with respect to the USC COCOMO II
software cost modeling project, and then for software-intensive organizations in general. It then presents a series of adaptive
feedback loops by which organizations can use COCOMO II-type models to help cope with the challenges of change.

components will be shared across organiza-
tions or offered as COTS products. With
their development and maintenance costs
amortized over more and more user organ-
izations, they become cheaper to employ
than some of your reusable components.
Again, using these COTS products or
shared components will increase your pro-
ductivity rate (point B in Figure 1).
Initially, you will find it harder to predict
the cost and schedule of integrating het-
erogeneous COTS components with your
components and with each other, and your
estimation error at point B will also go up.

VHLL’s and System of Systems
This scenario will generally repeat

itself at points C and D in Figure 1. At
point C, you and/or others will know
enough about how to compose domain
components to be able to automate their
composition, and to provide a domain-
specific Very High Level Language
(VHLL) with user-oriented terminology
to specify the particular application
desired. Productivity rates will increase
(in COCOMO II terms, via the need for
much fewer source lines of code), but
estimation errors also initially go up.

At point D, you will find that there
is a demand to closely integrate your
VHLL-driven robotic device systems for
subassembly manufacturing, for example,
with other VHLL’s and application gener-
ators for factory control systems and elec-
tronic commerce systems, into a total fac-
tory system of systems. Integrating the
systems will be more productive than
building a whole new factory system, but

your error in estimating cost and sched-
ule will be higher than for an individual
system. This is because of uncertainties
you will have in estimating the effort
required to reconcile the unpredictable
incompatibilities in interfaces, priorities,
assumptions, and usage conventions
among the subassembly manufacturing,
factory control, and electronic commerce
VHLL’s and systems [4].

Effects of Innovation, Change
Other sources of innovation and

change may cause changes in the nature
of your software projects’ product,
process, organization, and people. These
may improve your organization’s overall
productivity, but their effect on your
projects’ practice may again increase your
estimation error.

In the area of product technology,
such changes have included changes from
batch-processing to interactive systems,
and from single mainframes to distributed
and networked systems. Other product
technologies such as graphic user interface
builders will also increase productivity,
but estimation error increases because of
new challenges in determining what to
count as product size.

In the area of process technology, the
change from waterfall to evolutionary or
spiral development requires rethinking
the project’s endpoints and phases.
Incremental development, RAD, cost-as-
independent-variable (CAIV), or sched-
ule-as-independent-variable (SAIV) cause
further rethinking of process strategies,
endpoints, and phases. With CAIV or

SAIV, for example, you may specify and
design more product than you deliver
when you run out of budget or schedule.
Collaborative processes (Joint Application
Development, Integrated Product Team,
etc.) require involving users, operators,
and others in product definition. Should
their effort be included in the estimate?
To what extent will virtual-reality distrib-
uted collaboration technology improve
software costs and schedules?

With organizations and people,
changes in organizational objectives affect
products, processes, and estimation accura-
cy. One example is the increasing emphasis
on reducing schedule (time to market) in
order to remain competitive, rather than
minimizing cost. Another example is the
effect of increasing emphasis on software
quality as a competitive discriminator.

The effects of having tens of millions
of computer-literate people will also
change the nature of software products
and processes. Also, the increasingly criti-
cal nature of software to an organization’s
competitive success creates stronger needs
for integrating software estimates into
business-case and financial-performance
models. Trends toward human economics
will affect both software products’
required functions and user interfaces.

Estimation Accuracy:

The Bottom Line
If only our software engineering

domain understanding, product and
process technology, and organization and
people factors stayed constant, we could
get uniformly better and better at esti-
mating. But they do not stay constant,
and their changes are generally good for
people and organizations. The need to
continually rethink and re-engineer our
software estimation models is a necessary
price to pay for the ability to incorporate
software engineering improvements.

Coping with Change: COCOMO II
We are trying to ensure that COCO-

MO II will be adaptive to change by try-
ing to anticipate trends in software engi-
neering practice, as discussed in the
Introduction. The resulting three-stage
set of COCOMO II models (application
composition, early design, post-architec-
ture) anticipates some dimensions of

April 2000 http://www.stsc.hill.af.mil 5

Time, Domain Understanding

Unprece-
dented

Prece-
dented

Component-
based COTS VHLL

Systems of
Systems

A B C D

Relative
Productivity

Estimation
Error

Figure 1. Productivity and Estimation Accuracy Trends

Future Trends, Implications in Cost Estimation Models

6 CROSSTALK The Journal of Defense Software Engineering April 2000

Cost Estimation

future change. Other dimensions are
addressed by the new or extended cost
drivers such as process maturity, architec-
ture and risk resolution, team cohesion,
multisite development, use of tools, and
the various reuse parameters.

We are also attempting to anticipate
future trends via our overall Model-Based
(System) Architecting and Software
Engineering (MBASE) project. MBASE’s
key objective is to avoid harmful model
clashes by integrating a project’s product,
process, property, and success models [5].
The COCOMO II suite of models is our
main effort in the property model area.
Concurrently, we are integrating comple-
mentary research into product models
(domain, requirements, and architecture
models); process models (WinWin spiral
model, process anchor points); and suc-
cess models (stakeholder win-win, busi-
ness case analysis, I will know it when I
see it prototyping).

We have been trying to understand
and anticipate trends in software engineer-
ing product, process, property, and success
models via workshops with our affiliates,
via model research, and via model experi-
mentation with our annual series of digital
library applications projects using MBASE
[6]. For example, our initial formulation
of the Constructive COTS Integration
Cost Model (COCOTS) was based on an
affiliates’ workshop on COTS integration,
and our efforts to incorporate COTS
assessment and integration into MBASE
extensions of spiral process models and
object-oriented product models. Our
major refinement of COCOTS into a
family of four models was based on analy-
sis of COTS integration experience data
from the MBASE digital library projects.

Similarly, our formulation of the Con-
structive Rapid Application Development
Estimation Model (CORADMO) has
been based on an affiliates’ RAD work-
shop, and on integrating RAD process
models such as schedule-as-independent-
variable (SAIV) into MBASE. This was
done via RAD experimentation using the
digital library projects. These projects are
good RAD examples, as our semester con-
straints require them to be fully architect-
ed in 11 weeks, and fully developed and
transitioned in another 12 weeks.

Thus, the emerging extensions of
COCOMO II discussed in Chapter 5 of

Software Cost Estimation with COCOMO
II (COCOTS, CORADMO, Applica-
tions Composition, and other models)
represent hypotheses of how to model the
cost, schedule, and quality effects of cur-
rent and future trends in software engi-
neering practice. As we gather more data,
we will be able to test and refine these
models, and to identify further models or
extensions likely to be important for
future software engineering practice.

Coping with Change: COCOMO II

and Your Organization
COCOMO II can be a useful tool

for your organization to use in adapting
to future change, both at the project level
and at the organizational level.

Coping with Change
During Project Definition

Figure 2 shows how COCOMO II
can be used to help address issues of
change at the project definition level. You
can enter your organization’s customary
values via the COCOMO II parameters,
and indicate which ones will undergo
change. COCOMO II will estimate how
these changes will affect the project’s
expected cost and schedule, and will pro-
vide you and your stakeholders with a
framework for rescoping the project if esti-
mated cost and schedule are unsatisfactory.

Coping with Change
During Project Execution

Frequently, changes in project objec-
tives, priorities, available componentry, or
personnel occur during project execution.
If these are anticipated, COCOMO II can
support a variant of the project definition
process above to converge on a stakehold-
er-satisfactory rescoping of the project.

A more serious case occurs when the
changes are unanticipated and largely

unnoticed: via personnel changes; COTS
product, reusable component, or tool
shortfalls; requirements creep; or platform
discontinuities. In such cases, COCOMO
II phase and activity distributions can be
used to develop a quantitative milestone
plan or an earned-value system [7] for the
project, which enable plan deviations to be
detected, and appropriate corrective
actions to be taken (Figure 3) involving
COCOMO II in project rescoping.

Coping with Required
COCOMO II Model Changes

At times, unanticipated project
changes are indications that your COCO-
MO II model needs to be recalibrated or
extended. The more management data you
collect on actual project costs and sched-
ules, the better you will be able to do this
(see Figure 4).

Recalibration might be appropriate,
for example, if your organization is
acquired by or merged into an organiza-
tion with different definitions of project
endpoints, or with different definitions of
which types of employees are directly
charged to the project vs. being changed to
overhead. As described in Chapter 4 of
Software Cost Estimation with COCOMO
II, techniques are available to recalibrate
COCOMO II’s base coefficients and
exponents for cost and schedule estima-
tion. Some COCOMO II tools such as
USC COCOMO II and COSTAR, a
commercial product from SoftStar
Systems, provide such calibration features.

Extending the model will be appro-
priate if some factor assumed to be con-
stant or insignificant turns out to be a
significant cost driver. For example, the
COCOMO 81 TOOL Factor was not in
the original 1978 TRW version of
COCOMO, as previous TRW projects
had operated with a relatively uniform set
of mainframe tools. The TOOL Factor

Figure 2. Using COCOMO II to Cope With Change

Rescope

COCOMO IIProject Parameters:
 Personnel, team, sites, platform

System Objectives:
functionality,

 performance, quality

No

Yes

Cost,
Schedule,
risks

Corporate Parameters:
tools, processes, reuse

Ok?

April 2000 http://www.stsc.hill.af.mil 7

Proactive Organizational Change Management
Your organization will be much better off once it moves away

from reacting to change, and toward proactive anticipation and
management of change. This is what Level 5 of the SEI-CMM®
is all about, particularly the key process areas of Technical Change
Management and Process Change Management.

The COCOMO II model and parameters can help you
evaluate candidate change management strategies. For example,
investing in sufficient software tool acquisition and training to
bring your projects’ TOOL rating from nominal to high will
replace a 1.0 effort multiplier by an 0.90, for a 10 percent pro-
ductivity gain. Similar investments in improving process maturi-
ty, architecture and risk resolution, team cohesion, multisite

development, reuse, or any of the personnel factors can also
have significant benefits that can be investigated via COCOMO
II (See Figure 5). The cost, schedule, and quality drivers of
COCOTS and CORADMO can be used similarly.

An integrated capability for using COCOMO II and
CORADMO for evaluating the payoff of cost and schedule
improvement strategies is provided by the Constructive
Productivity Model (COPROMO) extension described in
Software Cost Estimation with COCOMO II. It enables you to
start from a current baseline of cost and schedule drivers from
either your own organization’s data or the COCOMO II data-
base; and to express candidate cost and schedule improvement
strategies in terms of achievable time-phased improvements in
cost and schedule drivers. COPROMO will generate the result-
ing estimates and provide time histories of cost and schedule
improvements for each of the candidate strategies.

Figure 4. Using COCOMO II to Cope With Change: III

System Objectives:
functionality,

 performance, quality

Rescope

COCOMO II
Project Parameters:

 Personnel, team, sites, platform

Corporate Parameters:
tools, processes, reuse

OK?

No

Cost,
Schedule,
Risks

Yes

Execute
project
to next

milestone

OK?

Done?

Milestone Expectations

Revise
milestones,

plans,
resources

Milestone Plans,
Resources

Milestone
Results

No

Revised
Expectations

End project

Yes

Yes

No

System Objectives:
functionality,

 performance, quality

Rescope

COCOMO II
Project Parameters:

 Personnel, team, sites, platform

Corporate Parameters:
tools, processes, reuse

OK?

No

Cost,
Schedule,
Risks

Yes

Execute
project
to next

milestone

OK?

Done?

Milestone Expectations

Revise
milestones,

plans,
resources

Milestone Plans,
Resources

Milestone
Results

No

Revised
Expectations

End project

Yes

Yes

No

Accumulate
COCOMO II
calibration

data

Recalibrate
or extend

COCOMO II

Future Trends, Implications in Cost Estimation Models

was added after TRW had completed some microprocessor soft-
ware projects with unexpectedly high costs. After investigation,
the scanty microprocessor tool support was the primary factor
that accounted for the extra project effort and cost. Subsequent
data from other organizations confirmed the validity of the
TOOL variable as a significant COCOMO 81 cost driver.

Similarly, several variables were added to COCOMO 81 to
produce COCOMO II, in response to affiliate indications of
need and our confirmation via behavioral analysis.

Figure 3. Using COCOMO II to Cope With Change: II

8 CROSSTALK The Journal of Defense Software Engineering April 2000

Put together, the four COCOMO II
feedback cycles in Figure 5 can enable
your organization to determine and
evolve a project-level and organization-
level set of project analysis, management,
and improvement strategies based on
your own quantitative metrics. These
strategies will enable you to determine
appropriate objectives and approaches for
each project, to manage projects to more
successful completion, and to improve
your organization’s software productivity,
speed, and quality by anticipating and

capitalizing on change rather than being a
reactive victim of change.

References
1. Boehm, B.; Abts, A.; Brown, W.;

Chulani, S.; Clark, B.; Horowitz, E.;
Madachy R.; Reifer, D.; and Steece, B.
Software Cost Estimation with COCOMO
II, Prentice Hall (to appear in June 2000).

2. Boehm, B.; Kellner, M. and Perry, D.
(eds.), Proceedings, ISPW 10: Process
Support of Software Product Lines, IEEE
Computer Society, 1998.

3. Reifer, D. Practical Software Reuse, John
Wiley and Sons, 1997.

4. Maier, M. Architecting Principles for
Systems-of-Systems, Systems Engineering
Vol. 1 No. 4 (1998), pp. 267-284.

5. Boehm, B. and Port, D. Escaping the
Software Tar Pit: Model Clashes and
How to Avoid Them, ACM Software
Engineering Notes, Jan. 1999, pp. 36-48.

6. Boehm, B.; Egyed, A.; Port, D.; Shah, A.;
Kwan, J.; and Madachy R., A Stakeholder
Win-Win Approach to Software
Engineering Education, Annals of Software
Engineering, Vol. 6(1998), pp. 295-321.

System Objectives:
functionality,

 performance, quality

Rescope

COCOMO II
Project Parameters:

 Personnel, team, sites, platform

Corporate Parameters:
tools, processes, reuse

OK?

No

Cost,
Schedule,
Risks

Yes

Execute
project
to next

milestone

OK?

Done?

Milestone Expectations

Revise
milestones,

plans,
resources

Milestone Plans,
Resources

Milestone
Results

No

Revised
Expectations

End project

Yes

Yes

No

Accumulate
COCOMO II
calibration

data

Recalibrate
or extend

COCOMO II

Evaluate
Corporate

SW
Improvement

Strategies

Cost,Schedule,
Quality Drivers

Improved
Corporate

Parameters

Figure 5. Using COCOMO II to Cope With Change: IV

Cost Estimation

About the Authors
Barry Boehm is the TRW
Professor of Software
Engineering and Director
of the Center for Software
Engineering at USC. He
was previously in technical
and management positions

at General Dynamics, Rand Corp., TRW,
and the Office of the Secretary of Defense
as the Director of Defense Research &
Engineering Software and Computer
Technology Office. Besides COCOMO, he
originated the spiral model of the software
process and the stakeholder win-win
approach to software management and
requirements negotiation.

University of Southern California
Center for Software Engineering
Los Angeles, Calif. 90089-0781
Voice: 213-740-8163
Fax: 213-740-4927
E-mail: boehm@sunset.usc.edu

Dr. Ellis Horowitz is professor of computer
science and electrical engineering at the
University of Southern California.He is also
Director of the Distance Education Network
in the School of Engineering. He was chair-
man of the Computer Science Department
at USC for nine years. He is the author of
10 books and more than 100 research arti-
cles on computer science subjects ranging
from data structures, algorithms, and soft-
ware design to computer science education.

Dr. Raymond Madachy is
an adjunct assistant profes-
sor in the computer science
and industrial and systems
engineering departments
and research collaborator
with the USC Center for

Software Engineering. He is also the manag-
er of the Software Engineering Process
Group at Litton Guidance and Control
Systems, which achieved SEI CMM Level 4
in December 1998. He completed his Ph.D.

in Industrial and Systems Engineering at
USC in 1994.

Chris Abts holds Bachelor’s
and Master’s degrees in
industrial engineering and
is a research assistant/
Ph.D. Candidate at the
USC Center for Software
Engineering. He has

worked as a lead systems engineer/analyst for
Logicon in the area of Mission Planning,
including development of automated mis-
sion planning tools, algorithm development,
mission scenario analysis, and simulation
modeling. His research interests have been in
software metrics and cost models, risk man-
agement, and systems architecting, including
the development of the COCOTS COTS
modeling extension to COCOMO II.

Information on other authors of this article
may be found at http://sunset.usc.edu/
Research_Group/People.html

April 2000 http://www.stsc.hill.af.mil 9

The Changing Nature of Software Development
There are now many ways to develop and sell software

products. This means that the scope of the estimation problem
is much larger now than it was in the early days of software
development. In the 1960s, all software was custom built.
Projects had dedicated staff. Companies were usually paid on a
level of effort basis (cost plus, or time and materials).

Today, there are many ways to build software (custom cod-
ing, integration of pre-built components, generation of code
using tools, etc.). The project environment is more varied as well.
Large, complex software products need a wider range of skills.
Organizational structures are flatter and more fluid. Workers are
often dispersed and may be hired only for short periods of time
when particular skills are needed. The business environment has
also become more complex. There are new ways of selling soft-
ware and data, increased liabilities for defective products, and new
accounting practices. The following paragraphs briefly describe
these areas. Each area presents challenges to software estimators.

The technology used to build systems will continue to
evolve rapidly. This technology includes hardware platforms,
operating systems, data formats, transmission protocols, pro-
gramming languages, methods, tools, and commercial off-the-
shelf (COTS) components. The half-life of software engineering
knowledge is typically less than three years.

Project teams will use new development processes such as
rapid application development (RAD) and COTS integration to
grow software systems. These processes will continue to evolve
rapidly as we learn. (Unless an organization is at Software
Engineering Institute Capability Maturity Model® Level 5, it
may not be able to evaluate and inject new technology at the
rate needed to keep up.) Such constant and rapid changes mean
that little relevant historical data will be available to help esti-
mate future software projects and to develop new cost estima-
tion models. This may challenge CMM® criteria relating to
estimating, planning, and tracking that require the use of histor-
ical data and assume a stable process.

Technology and processes alone do not determine how
businesses will develop software, license products, etc. There is
an interaction with the legal and business domains. For exam-
ple, Paul Strassman discusses possible ways of acquiring software
as summarized in Table 1. Strassman observes that outsourcing
or renting software (data processing) capability frees an organi-
zation from the details of business support functions, and allows
it to focus on business objectives and growth. For additional
information, see www.strassman.com

Scott McNealy of Sun Microsystems proposes putting
everyday applications on the Internet for all to use for free [1].
Such external influences will affect how software is built and sold.

Future software estimators will have to estimate the costs of trade-
offs between development, operating, and maintenance costs.
This will require more knowledge of financial practices such as
return on investment, discounted value, etc. Barry Boehm covers
such topics in Part III of his classic book [2].

Another factor that estimators must confront is the people
who will produce the software. Projects need experts in multiple
application and solution domains in order to build the large,
complex systems. They may also have to receive guidance from
experts in the legal, regulatory, and business domains. No single
person can understand all of these domains, nor can one individ-
ual keep up with them all. This means that development teams
will be more interdisciplinary. Because all of these experts are not
needed continuously, project teams (and possibly entire compa-
nies) may consist of a core of permanent experts and groups of
temporary workers hired just in time. The permanent staff would
include managers, project control, chief engineers, etc. The tem-
porary workers would include analysts, designers, engineers,
testers, support staff, and various domain experts. It will be chal-
lenging to assemble and manage such diverse, dynamic teams.
Advances in telecommunications, networking, and support soft-
ware (groupware) can help such teams function even though they
are geographically and temporally dispersed. Such organizational
structures affect estimators because they impact parameters such
as the average staff capability, experience, and turnover.

There will also be a growing need for estimates of quality
(defects), reliability, and availability, as well as the usual cost and
schedule estimates. Developers and customers will become more
interested in ensuring the safety and reliability of complex soft-
ware systems such as those used for financial and medical applica-
tions. Estimating such characteristics is especially challenging for
systems built using COTS components.

Promising Research
Several areas hold promise for coping with these challenges.

This section describes recent work.

Size

We measure size for many reasons. We use size to estimate
effort, to measure memory requirements, to estimate processing
or execution speed, etc. What we measure and the units we use
are determined by our intended use of the measure. The goal-
question-metric paradigm addresses this concept in detail [3]. The

Software Estimation: Challenges and Research
Software cost and schedule estimation supports the planning and tracking of software projects. Because software is
complex and intangible, software projects have always been harder to estimate than hardware projects. In this article,
we review challenges for software cost estimators, and describe research work under way to address these challenges.

• Build it yourself
• Hire a developer to build it
• Hire a firm to build, maintain, and operate it for you

(outsourcing)
• Purchase COTS products
• Rent pre-built, pre-tested functions

*Adapted from a talk presented in October by Paul Strassman.

Table 1. Ways to Acquire Software*

The Capability Maturity Model and CMM are registered in the
U.S Patent and Trademark office to Carnegie Mellon University.

10 CROSSTALK The Journal of Defense Software Engineering April 2000

usual goal of software cost estimators is to
determine the amount of effort and sched-
ule needed to produce a software product.
The amount of functionality in the prod-
uct is gauged in terms of size (measured in
Source Lines of Code, function points,
etc.). The estimator uses some productivity
model or cost estimating relation to com-
pute effort from the size. Schedule is often
computed from the total effort, possibly
modified by parameters such as the rate of
staff buildup, etc. (Interestingly, several
models for the development of new soft-
ware have schedule approximately propor-
tional to the cube root of the total effort.)

Size in SLOC clearly depends on the
choice of programming language. This
leads to difficulties in defining the true
amount of functionality in a software
product, and in measuring programmer
productivity. Capers Jones described these
in his recent Scientific American article [4].
Jones observes that the cost of developing
software is determined by more that just
the cost of the actual coding process.
Considerable effort is spent in designing,
documenting, and testing. Jones, and oth-
ers, advocates a size measure developed by
Allan Albrecht called function points [5].
Albrecht’s goal was to define a measure
that was independent of the implement-
ing technology and based on quantities a
user could understand. He used five quan-
tities: inputs, outputs, queries, internal
logical files, and external interface files.1

The International Function Point Users’
Group (IFPUG) is the custodian of the
official counting rules.2

Albrecht originally defined function
points only for Management Information
Systems. Since then, several workers have
extended the concept to address other
types of systems. For example, Charles
Symons has extended the concept to meet
the needs of transaction-based systems [6].
David Garmus discussed function point
counting in a real-time environment [7].

Alain Abran and his collaborators are
working to update the measures of soft-
ware size by extending function points to
create what they call full function points.
Full function points are based on a solid
theoretical foundation and will be vali-
dated using actual data from modern
projects. See [8] and [9]. Full function
points provide one way to measure the

size of the product.
Some authors are attempting to link

the products of analysis and design directly
to the size measured in function points, or
some variant thereof. Specifically, they
endeavor to tie the attributes of diagrams
of the Unified Modeling Language (UML)
to function points. Some recent references
are [9]3 and [10]. This will make counting
of software size more objective.

This increased objectivity and preci-
sion comes at a price: we cannot count
the size until after some analysis has been
done. Such a sizing method, while more
precise, could affect how software is pro-
cured. Perhaps it will be more like the
way that buildings are purchased. The
architect works with the user to define
the building. All stakeholders must agree
on the building’s purpose, architectural
style, types of rooms and their juxtaposi-
tion, overall size, and types of building
materials. Sometimes there are additional
constraints such as zoning laws, building
codes, and available funding. Once every-
one agrees, the architect draws up
detailed plans and proceeds to cost the
project (The detailed plans for software
products could perhaps be UML dia-
grams.). The architect receives a fee com-
puted as some percentage of the total cost
of the building. Another approach is to
fund the early stages of requirements
analysis and product design as level-of-
effort tasks. Once the team reaches prod-
uct design review (PDR)4 a binding pro-
duction contract can be negotiated. This
will also affect which phases and activities
are covered by the estimation models.

Size is also difficult to define for pre-
built components. In many cases, the
developer does not even have the source
code, so measures such as SLOC are not
feasible. In addition, the developer needs
to understand, integrate, and test only
the portion of the component’s interfaces
and functionality that is actually used.
The size needs to reflect only this portion
for the purpose of estimating the devel-

oper’s effort.
Still other size measures are needed

for software maintenance. Lines of code
are of little use. Some possible size meas-
ures are the number of change requests,
and the number of modules affected by a
particular change request. Lack of time
prevents us from discussing this topic fur-
ther here.

Standardized Process Milestones
Software is seldom built using the

Waterfall Model. Still, we need some sort
of milestones to be able to define the
scope of project activities covered by
effort and schedule estimation models.
Boehm has proposed “process anchors” as
one way to standardize the description of
the production process [11]. These are
points where significant decisions or
events happen in a project. Table 2 lists
an extension of these. The milestones
shown in Table 2 are adapted from the
Model-Based (System) Architecting and
Software Engineering (MBASE) life cycle
process model [12] and [13], and the
Rational Unified Process (RUP) [14],
[15] and [16]. I have added the Unit Test
Complete milestone.

The life cycle concept objectives
(LCO) milestone defines the overall pur-
pose of the system and the environment
in which it will operate. The operational
concept indicates which business or mis-
sion functions will be performed by the
software and which will be performed
manually by the operators. The stakehold-
ers agree on the system’s requirements and
life cycle. The design team has identified a
feasible architecture. The information
defined at LCO is critical to guide design-
ers and programmers as they refine, elabo-
rate, and implement the system.

The life cycle architecture (LCA)
milestone confirms the top-level structure
for the product. This further constrains
the choices available to the designers and
implementers. The unit test complete
(UTC) milestone occurs after LCA. Even
for rapid development, there should come
a time when a component is considered
finished. (This point is also called “code
complete” by some authors. This name
apparently arose at Microsoft [17].
Rational Corp. has also defined an equiva-
lent milestone.) The UTC milestone

Cost Estimation

“Software is seldom built using
the Waterfall Model. Still, we need
some sort of milestones to be able
to define the scope of project activ-
ities covered by effort and sched-
ule estimation models.”

April 2000 http://www.stsc.hill.af.mil 11

occurs when the programmers relinquish
their code because they sincerely believe
that they have implemented all the
required features, turning it over to the
formal configuration control process. For
large military projects, the UTC milestone
occurs after unit testing when approxi-
mately 60-70 percent of the total effort
has been expended. The initial operational
capability (IOC) is the first time that the
system is ready for actual use.

Theoretical Productivity Models
We need models that tell us how

product size relates to the effort (and
schedule) required to build the product.
For example, Shari Pfleeger describes mod-
els of software effort and productivity [18].

Unfortunately, there no longer seems
to be a good measure of effort since the
effort required is not a linear function of
the size. Software development requires
the engineer to manipulate and connect
many mental models. Since information is
only communicated via voice and dia-
grams, there is inefficiency in transferring
knowledge about the system between peo-
ple on the team. This means that having
fewer people reduces the amount of com-
munication effort and also the amount of
distortion introduced by the loss and
noise associated with the imperfect com-
munications channel. (Standardized dia-
grams such as UML and formal methods
attempt to improve the precision and effi-
ciency of communication.)

Larger groups of people work more
inefficiently. The main causes for this dis-
economy of scale are the need to commu-
nicate complex concepts and mental mod-
els between the workers, and the need to
coordinate the activities of a group of
workers who are performing a set of com-
plex, interrelated tasks. If a project has N
workers who must all communicate with
one another, the number of possible com-
munication paths is N(N-1)/2. Managers
create hierarchical organizations to reduce
the number of direct interactions. Some-
times, however, software products are so
complex that it is not easy to partition the
tasks. Samuel Conte and his coworkers
discuss this topic in some detail [19]. They
also define the COoperating Programming
MOdel (COPMO) model to explicitly
compute such effects. Basically, they com-

pute the total development effort as the
sum of two terms. The first term is the
effort required by individuals working
independently on modules. The second
term is the effort required to coordinate
the activities of the team.5 Other existing
parametric models also attempt to account
for the diseconomy of scale.

Parametric Models
An earlier CROSSTALK article

described the emergence of parametric
models [20]. Barry Boehm originally
defined the Constructive Cost Model
(COCOMO) in 1981. During the 1990s
Boehm and his collaborators have worked
to modernize COCOMO. See [21].
Basically, they have defined a family of
estimation models to address different

types of development processes. Their
family presently includes:
• COCOMO–Constructive Cost Model.
• COQUALMO–Constructive QUALity

Model.
• COCOTS–Constructive COTS model.
• COSSEMO–Constructive Staged

Schedule and Effort Model.
• CORADMO–Constructive Rapid

Application Development Model.
• COPROMO–Constructive

Productivity Improvement Model.6

Although most of the past work
defined models for cost and schedule esti-
mation, some work on models to esti-
mate software reliability and defect densi-
ties has also been done. As the impor-
tance of reliability increases, improved
versions of such models will be needed.

Software Estimation: Challenges and Research

Inception Readiness Review (IRR)

• Candidate system objectives, scope, boundary defined
• Key stakeholders identified

Life Cycle Objectives Review (LCO)

• Life Cycle Objectives (LCO) defined (key elements of Operational Concept,
Requirements, Architecture, Life Cycle Plan)

• Feasibility assured for at least one architecture
• Acceptable business case
• Key stakeholders concur on essentials

Life Cycle Architecture Review (LCA)

• Life cycle Architecture (LCA) elaborated and validated
• Product capabilities defined by increment (build content)
• Key stakeholders concur on essentials
• All major risks resolved or covered by risk management plan

Unit Test Complete (UTC)

• All identified components completed and unit tested
• All associated engineering documentation updated
• Code and engineering documentation delivered to Configuration Management

(The component is complete and ready to be integrated.)

Initial Operational Capability (IOC)

• Operational and support software built, integrated, and tested.
• Appropriate documentation completed
• Operational data prepared or converted
• Necessary licenses and rights for COTS and reused software obtained
• Facilities, equipment, supplies, and COTS vendor support in place
• User, operator and maintainer training and familiarization completed

Transition Readiness Review

• Plans for full conversion, installation, training, and operational cutover complete

Product Release Review (PRR)

• Assurance of successful cutover from previous system for key operational sites

Table 2. New Process Milestones

12 CROSSTALK The Journal of Defense Software Engineering April 2000

Back to Basics
Planners and estimators need ways to

address these challenges today. I think that
there are three things we can do. First, we
need to measure our projects, products,
and processes. To reduce measurement
costs, we need to collect and analyze data
based on our goals. The goal-question-
metric (GQM) model is one way to attack
this. Second, we should use updated esti-
mation models as they become available.
We should also use our metrics to formu-
late simple estimation models that are bet-
ter suited to the new project types and
development processes. Because all models
are only approximations, we should never
rely on a single model for our estimates.
Instead we should compare estimates from
two or more models. Third, we must be
prepared to change our metrics and mod-
els as we gain new understanding of the
new development processes, technologies,
and tools. This will continue to be a very
dynamic and exciting area of research as
we enter the new millennium.

References
1. McNealy, Scott, Stop Buying Software,

Dot Com Perspectives. See www.sun.com/
dot-com/perspectives/stop.html.

2. Boehm, Barry W., Software Engineering
Economics, Prentice-Hall, 1981.

3. Basili, V.R. and D.M. Weiss, A Method
for Collecting Valid Software Engineering
Data, IEEE Transactions on Software
Engineering, vol. 10, no. 6, pages 728-
738, 1984.

4. Jones, Capers, Sizing Up Software,
Scientific American, December 1998,
pp. 104-109.

5. Albrecht, Allan J., Measuring
Application Development Productivity,
Proceedings of the Joint SHARE, GUIDE,
and IBM Application Development
Symposium, October 14-17, 1979.

6. Symons, Charles, Software Sizing and
Estimating: Mark II Function Points
(Function Point Analysis), John Wiley &
Sons, 1991, ISBN 0-471-92985-9.

7. Garmus, David, Function Point Counting
in a Real-Time Environment, CROSSTALK,
Vol. 9, No. 1, January 1996, pp. 11-14.

8. Abran, Alain and P.N. Robillard, Func-
tion Point Analysis: An Empirical Study
of Its Measurement Processes, IEEE
Transactions on Software Engineering, vol.
22, no. 12, December 1996, pp. 895-909.

9. IWSM’99, Proceedings of the Ninth
International Workshop on Software
Measurement, Lac Supérieur, Québec,
Canada, 8-10 Sept. 8-10, 1999.

10.Stutzke, Richard D., Possible UML-
Based Size Measures, Proceedings of the
18th International Forum on COCOMO
and Software Cost Modeling, Los Angeles,
Calif., Oct. 6-8, 1998.

11.Boehm, Barry W., Anchoring the
Software Process, IEEE Software, Vol. 13,
No. 4, July 1996, pages 73-82.

12.Boehm, Barry W., D. Port, A. Egyed,
and M. Abi-Antoun, The MBASE Life
Cycle Architecture Package: No
Architecture is an Island, in P. Donohoe
(ed.), Software Architecture, Kluwer, 1999,
pp. 511-528.

13.Boehm, Barry W., and Dan Port,
Escaping the Software Tar Pit: Model
Clashes and How to Avoid Them, ACM
Software Engineering Notes, January
1999, pp. 36-48.

14.Royce, Walker E., Software Project
Management: A Unified Framework,
Addison-Wesley, 1998.

15.Kruchten, Philippe, The Rational
Unified Process: An Introduction,
Addison-Wesley, 1999.

16.Jacobson, Ivar, Grady Booch, and James
Rumbaugh, The Unified Software Devel-
opment Process, Addison-Wesley, 1999.

17.Cusumano, Michael A. and Richard W.
Selby, Microsoft Secrets: How the World’s
Most Powerful Software Company Creates
Technology, Shapes Markets, and Manages
People, The Free Press, 1995. Page 195
describes the code complete concept.

18.Pfleeger, Shari Lawrence, Model of
Software Effort and Productivity,
Information and Software Technology,
vol. 33, no. 3, April 1991, pp. 224-
231.

19.Conte, Samuel D., H.E. Dunsmore,
and V.Y. Shen, Software Engineering
Metrics and Models,” Benjamin/
Cummings, 1986. Section 5.8 describes
task partitioning and communications
overhead. Section 6.7 describes COPMO.

20.Stutzke, Richard D., Software Estimating
Technology: A Survey, CROSSTALK, vol. 9,
no. 5, June 1996, pages 17-22.

21.Boehm, Barry W, Bradford Clark, Ellis
Horowitz, Chris Westland, Ray Madachy
and Richard Selby, Cost Models for
Future Software Life Cycle Processes:
COCOMO 2.0, Annals of Software
Engineering, Special Volume on Software
Process and Product Measurement, vol. 1

no. 1, pages 57-94. J. C. Baltzer AG
Science Publishers, Amsterdam, The
Netherlands, 1995. See http://manta.cs.
vt.edu/ase/vol1Contents.html.

Notes
1. The files may actually be collections of

physical files, database tables, etc. These
collections are perceived externally as
single entities.

2. The IFPUG web site is http://ifpug.org
3. Accessible online at: www.lrgl.uqam.ca/

iwsm99/indes2.html. Three papers
dealing with UML-based size measures
were presented by Stutzke, Labyad et. al.,
and Bévo et. al.

4. I use the phrase product design review
deliberately. There is nothing preliminary
about it for software projects. Once PDR
occurs you have defined the form into
which the programmers start to pour
concrete. After PDR, changes become
very expensive for software!

5. There are some challenges with calibrat-
ing and using this model for prediction.
See their book.

6. For more information on these models
see the COCOMO II web site at http://
sunset.usc.edu/COCOMOII/suite. html

About the Author
Dr. Richard D. Stutzke
has more than 40 years
of experience developing
software. He established
and led the Corporate
Software Process Group
for Science Applications
International Corp.

(SAIC) for its first two years. For the past
seven years, he has been a principal mem-
ber of two Software Engineering Process
Groups: one at the Army Aviation and
Missile Command's Software Engineering
Directorate and one at SAIC's Applied
Technology Group. Both organizations
have achieved SEI CMM Level 3. Dr.
Stutzke has written dozens of papers in the
field of software cost estimation and is
writing a book for Addison-Wesley,
Software Estimation: Projects, Products,
Processes, that will appear this fall.

Dr. Richard D. Stutzke
Science Applications International Corp.
6725 Odyssey Drive
Huntsville, Ala. 35806-3301
Voice: 256-971-6624 or 256-971-7330
Fax: 256-971-6550
E-mail: Richard.D.Stuzke@saic.com

Cost Estimation

April 2000 http://www.stsc.hill.af.mil 13

April 11-14
Infosecurity 2000

http://www.infosec.co.uk/page.cfm

April 15-18
ACM International Conference on Management of Data

http://www.seas.smu.edu/sigmod2000

April 18-20
FOSE

www.fedimaging.com/conferences

April 24-28
Software Engineering Australia Conference (SEA 2000)

E-mail for information: johnl@sea-act.com.au

April 30-May 4
The 12th Annual Software Technology Conference
http://www.stsc.hill.af.mil/STC/stcdesc.asp

May 30-June 2
Thirteenth International Software Quality and Internet Quality Week (QW 2000)

http://www.soft.com/QualWeek/QW2K/index.html

May 22-23
6th Annual Montgomery Golf Outing and Information Technology Partnership Day

http://web1.ssg.gunter.af.mil/partnership

June 4-11
22nd International Conference on Software Engineering

http://www.ul.ie/~icse2000

June 4-7
9th Biennial IEEE

http://cefc2k.aln.fiu.edu

June 5-7
2000 IEEE International Interconnect Technology Conference

http://www.his.com/~iitc

June 10-14
ISCA2000: 27th International Symposium on Computer Architecture

http://www.cs.rochester.edu/meetings/ICSA2K

June 18-22
ICC 2000—IEEE International Conference on Communications

http://www.icc00.org/

July 11-13
5th Annual Conference on Innovations and Technology in computer Science Education

http://www.cs.helsinki.fi/events/iticse

July 16-18
7th IEEE Workshop on Computers in Power Electronics

http://www.conted.vt.edu/compel.htm

July 16-19
Congress on Evolutionary Computation

http://pcgipseca.cee.hw.ac.uk/cec2000

August 6-11
6th Annual International Conference on Mobile Computing and Networking

http://www.research.telcordia.com/mobicom2000

Coming Events

“I used to think that cyberspace
was 50 years away. What I
thought was 50 years away was
only 10 years away. And what I
thought was 10 years away . . . it
was already here. I just wasn’t
aware of it yet.”—Bruce SterlingBruce Sterling

Quote Marks

“I think computer
viruses should count

as life. I think it says
something that the
only form of life we
have created so far is
purely destructive.
We’ve created life in
our own image.”

Instant NotificationInstant Notification

Would you like to be notified
when the online version of
CROSSTALK becomes available?
Take a moment to link to the
new e-mail update form acces-
sible from www.stsc.hill.af.mil
to ensure we have accurate, up-
to-date information from you.

CROSSTALK online is available
before the printed version, and
you do not want to miss those
early downloads from upcom-
ing issues on the F-22, CMMI
part I and II, Network Security,
Software Acquisition, Project
Managment, and many more.

Software costs continue to rise in the
Department of Defense (DoD) and other
government agencies. To better understand
and control these costs, agencies often use
parametric cost models for software devel-
opment cost and schedule estimation.
However, the accuracy of these models is
poor when the default values embedded in
the models are used [1]. Even after the
software cost models are calibrated to
DoD databases, most have been shown to
be accurate to within only 25 percent of
actual cost or schedule about half the time.
For example, Robert Thibodeau [2]
reported accuracy of early versions of the
PRICE-S and SLIM models to be within
25 and 30 percent, respectively, on mili-
tary ground programs. The IIT Research
Institute [3] reported similar results on
eight Ada programs, with the most accu-
rate model at only 30 percent of actual
cost or schedule, 62 percent of the time.

Furthermore, the level of accuracy
reported by these studies is likely overstat-
ed because most studies have failed to use
holdout samples to validate the calibrated
models. Instead of reserving a sample of
the database for validation, the same data
used to calibrate the models were used to
assess accuracy [4]. In a study using 28
military ground software data points,
Gerald Ourada [5] showed that failure to
use a holdout sample overstates a model’s
accuracy. Half of the data was used to cal-
ibrate the Air Force’s REVIC model. The
remaining half was used to validate the
calibrated model. REVIC was accurate to
within 30 percent, 57 percent of the time
on the calibration subset, but only 28 per-
cent of the time on the validation subset.

Validating on a holdout sample is
clearly more relevant because new pro-
grams being estimated are, by definition,
not in the calibration database. The pur-
pose of this project was to calibrate and
properly evaluate the accuracy of selected
software cost estimation models using
holdout samples. The expectation is that

calibration improves the estimating accu-
racy of a model [6].

The Decalogue Project
This paper describes the results of a

long-term project at the Air Force
Institute of Technology to calibrate and
validate selected software cost estimation
models. Two Air Force product centers
provided software databases: the Space
and Missile Systems Center (SMC), and
the Electronic Systems Center (ESC).
The project has been nicknamed the
“Decalogue project” because 10 masters’
theses extensively document the proce-
dures and results of calibrating each soft-
ware cost estimation model.

The Decalogue project is organized
into three phases, corresponding to when
the theses were completed. Five theses
were completed in 1995; two theses were
completed in 1996; and three theses were
completed in 1997. Lessons learned dur-
ing each phase were applied to the next
phase. A brief description of each phase
and its results follows.

Phase 1
Each student calibrated a specific

software cost model using the SMC soft-
ware database. The models were the
Revised Enhanced Intermediate Version
of the Constructive Cost Model (COCO-
MO) (REVIC), the Software Architecture
Sizing and Estimating Tool (SASET),
PRICE-S, SEER-SEM, and SLIM. The
government owns REVIC and SASET.
The other models are privately owned.

Management Consulting and
Research developed the SMC database,
and it contains detailed historical data for
more than 2,500 software programs. The
database includes inputs for REVIC,
SASET, PRICE-S, and SEER-SEM for
some of the 2,500 projects, but none
specifically for SLIM.

The details of each thesis project are
described in the separate thesis reports [7,

8, 9, 10, 11]. Each is available from the
Defense Technical Information Center.
Additional detail is also available from the
authors of this article [12, 13]. Here,
only the highlights of the results of the
five studies are provided.

Calibration rules. The five models
were calibrated to a portion of the SMC
database. The database was divided into
subsets: military ground, avionics,
unmanned space, missiles, and military
mobile. The military ground subset was
further divided into command and control
programs and signal processing programs.
Each subset was divided into calibration
and holdout samples using three rules:
1. If there were less than nine data points,

the subset was considered too small for
a holdout sample and could not be
validated.

2. If there were between nine and 11 data
points, eight were randomly selected for
calibration and the rest were used for
validation.

3. If there were 12 or more data points,
two-thirds were randomly selected for
calibration and the rest were used for
validation.

The accuracy of each model was eval-
uated using criteria proposed by Samuel
Conte, et al. [14] based on the following
statistics:
(1) Magnitude of Relative Error (MRE) =

| Estimate – Actual | / Actual
(2) Mean Magnitude of Relative Error

(MMRE) = (MRE) / n
(3) Root Mean Square (RMS) = [(1/n)

(Estimate – Actual)2]½

(4) Relative Root Mean Square (RRMS) =
RMS / [(Actual) / n]

(5) Prediction Level (Pred (.25)) = k/n
For Equation No. 5, n is the number

of data points in the subset and k is the
number of data points with MRE # 0.25.
According to Conte, et al. [14], a model’s
estimate is accurate when MMRE < 0.25,
RRMS < 0.25, and Pred (.25) > .75.

Results. Table 1 summarizes the
results of Phase 1. Due to an oversight,

Does Calibration Improve Predictive Accuracy?
There are many sophisticated parametric models for estimating the size, cost, and schedule of software proj-
ects; however, the predictive accuracy of these models is questionable. Several authors assert that a model’s pre-
dictive accuracy can be improved by calibrating (adjusting) its default parameters to a specific environment.
This article reports the results of a three-year, 10-study project that tests this assertion. Results show that cali-
bration did not improve the predictive accuracy of most of the models we tested. In general, the accuracy was
no better than within 25 percent of actual development cost or schedule, about one half of the time.

14 CROSSTALK The Journal of Defense Software Engineering April 2000

not all five theses reported RRMS. Thus,
only MMRE and PRED (.25) are shown.
Validation sample size is the number of
data points in the holdout sample used
for validation. For some models, the mili-
tary ground subsets (signal processing and
command and control) were combined
into an overall military ground subset to
obtain a sufficiently large sample size for
validation.

As shown in Table 1, most of the cali-
brated models were inaccurate. In the two
instances where the calibrated models met
Conte’s criteria, only one data point was
used for validation. Thus, these results are
not compelling evidence that calibration
improves accuracy. In some cases the cali-
brated model was less accurate than the
model before calibration.

These results may be due in part to
the nature of the databases available to
DoD agencies. In the SMC database, the
developing contractors are not identified.
Therefore, the data may represent an
amalgamation of many different develop-
ment processes, programming styles, etc.,
which are consistent within contracting
organizations, but vary widely across con-
tractors. Also, because of inconsistencies in
software data collection among different
DoD efforts, actual cost data and other
data may be inconsistent and unreliable.1

Phase 2
In 1996 two additional models,

SoftCost-OO and CHECKPOINT, were
calibrated by two master’s students.
CHECKPOINT is unique among the
models calibrated in this study because
the internal algorithms are based on func-
tion points instead of lines of code.2

Details are provided in their thesis reports
[15,16]. A brief description of each
model, the calibration procedures, and
the results of Phase 2 follow.

Calibration rules. With a few excep-
tions related to the subsets to calibrate and
the holdout sample rules, the two models
were calibrated and validated using the
same methods that were used in Phase 1.
A seventh subset of the SMC database,
ground in-support-of-space (“Ground
Support” in Tables 2 and 3) was used for
both models. For SoftCost-OO, three
additional subsets for European Space
Agency programs were added, since Soft-
Cost-OO is used extensively in Europe.

REVIC, SASET, PRICE-S, SEER-SEM, AND SLIM CALIBRATION RESULTS (1995)

Model
 Data Set

 Validation
 Sample Size

 Pre-Calibration
 MMRE PRED (.25)

 Post-Calibration
 MMRE PRED (.25)

REVIC Military Ground 5 1.21 0 0.86 0
Unmanned Space 4 0.43 0.50 0.31 0.50

SASET Avionics 1 1.76 0 0.22* 1.00*
Military Ground 24 10.04 0 0.58 0

PRICE-S Military Ground 11 0.30 0.36 0.29 0.36
Unmanned Space 4 0.34 0.50 0.34 0.50

SEER-SEM Avionics 1 0.46 0 0.24* 1.00*
Command and Control 7 0.31 0.43 0.31 0.29
Signal Processing 7 1.54 0.29 2.10 0.43
Military Mobile 4 0.39 0.25 0.46 0.25

SLIM Command and Control 3 0.62 0 0.67 0
* Met Conte’s criteria

SOFTCOST CALIBRATION RESULTS (1996)

 Data Set
 Validation
 Sample Size

 Pre-Calibration
 MMRE RRMS PRED (.25)

 Post-Calibration
 MMRE RRMS PRED (.25)

Ground Support 15 2.73 3.13 0.13 1.80 1.96 0.20
Ground Support (Europe) 25 3.05 3.61 0.08 0.67 0.84 0.36
Unmanned Space 5 0.56 1.05 0.20 0.48 0.92 0.20
Unmanned Space (Europe) 7 1.79 0.79 0.14 1.27 0.84 0.14
Avionics 5 0.71 0.76 0.20 0.85 0.56 0.20
Command and Control 6 1.90 3.43 0.17 0.52 0.87 0.50
Signal Processing 9 0.43 0.61 0.11 0.28 0.64 0.44
Military Mobile 5 0.63 0.51 0.20 0.42 0.40 0.20

CHECKPOINT CALIBRATION RESULTS (EFFORT, 1996)

 Data Set
 Validation
 Sample Size

 Pre-Calibration
 MMRE RRMS PRED (.25)

 Post-Calibration
 MMRE RRMS PRED (.25)

Effort – Function Points
MIS – COBOL 6 0.54 0.10 0.67 0.02* 0.01* 1.00*
Military Mobile - Ada 4 1.38 0.41 0.25 0.19* 0.06* 0.75*
Avionics 4 0.82 0.68 0.50 0.16* 0.11* 0.75*

Effort – SLOC
Command and Control 6 0.19* 0.14* 0.50 0.16* 0.16* 0.50
Signal Processing 10 0.09* 0.08* 1.00* 0.09* 0.08* 1.00*
Unmanned Space 5 0.05* 0.05* 1.00* 0.04* 0.06* 1.00*
Ground Support 4 0.05* 0.06* 1.00* 0.05* 0.06* 1.00*
COBOL Programs 4 0.05* 0.05* 1.00* 0.05* 0.05* 1.00*

* Met Conte’s Criteria
CHECKPOINT CALIBRATION RESULTS (1997)

 Data Set
 Validation
 Sample Size

 Pre-Calibration
 MMRE RRMS PRED (.25)

 Post-Calibration
 MMRE RRMS PRED (.25)

Ada Language 8 1.21 1.34 0.00 1.70 2.54 0.50
Assembly Language 11 0.83 1.44 0.09 2.05 1.20 0.18
FORTRAN Language 12 0.73 1.12 0.17 0.70 2.31 0.17
JOVIAL Language 7 0.71 1.22 0.00 0.44 0.68 0.43

Contractor B 4** 0.60 0.74 0.13 0.64 0.49 0.25
Contractor J 11 0.69 0.91 0.18 1.33 1.43 0.18

Ada and Contractor R 5** 0.59 0.57 0.05 0.39 0.72 0.45
CMS2 and Contractor M 5** 0.91 1.13 0.00 0.69 0.64 0.10
FORTRAN and Contractor A 7 0.82 0.84 0.00 0.44 0.88 0.29
JOVIAL and Contractor J 6 0.80 1.42 0.00 0.37 0.70 0.33
** Resampling Used for This Set

SAGE CALIBRATION RESULTS (1997)

 Data Set
 Total
 Sample Size

 Pre-Calibration
 MMRE RRMS PRED (.25)

 Post-Calibration
 MMRE RRMS PRED (.25)

SMC – Avionics 9 0.45 0.54 0.21 0.39 0.52 0.24
 Command and Control 10 0.23* 0.23* 0.70 0.29 0.30 0.45
 Signal Processing 16 0.39 0.43 0.44 0.50 0.54 0.20
 Unmanned Space 7 0.66 0.69 0.14 0.59 0.88 0.30
 Ground Support 14 0.32 0.44 0.43 0.32 0.44 0.43
 Military Mobile 10 0.37 0.47 0.29 0.41 0.52 0.36
 Missile 4 0.66 0.89 0.00 0.67 0.44 0.24

ESC – Contractor A 17 0.48 0.57 0.17 0.41 0.40 0.31
 Contractor J 17 0.37 0.47 0.33 0.47 0.57 0.14
 Contractor R 6 0.32 0.36 0.32 0.21* 0.23* 0.54
* Met Conte’s Criteria

COCOMO II CALIBRATION RESULTS (1997)

 Data Set
 Total
 Sample Size

 Pre-Calibration
 MMRE RRMS PRED (.25)

 Post-Calibration
 MMRE RRMS PRED (.25)

Command and Control 12 0.39 0.49 0.30 0.33 0.53 0.40
Signal Processing 19 0.45 0.63 0.33 0.38 0.53 0.40
Ground Support 15 0.71 1.16 0.07 0.66 0.95 0.20
Military Mobile 12 0.79 0.95 0.10 0.68 0.74 0.00

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Does Calibration Improve Predictive Accuracy?

April 2000 http://www.stsc.hill.af.mil 15

16 CROSSTALK The Journal of Defense Software Engineering April 2000

For CHECKPOINT, the missile sub-
set was not used, and no European pro-
grams were used. In addition, data were
obtained on Management Information
System programs written in Common
Business-Oriented Language (COBOL)
from a local contractor, and a subset for
COBOL programs was added to deter-
mine if stratification by language would
provide better results. Finally, the rules to
determine the sizes of the calibration and
holdout samples were changed to avoid
the problem of single-point validations
experienced in Phase 1. If there were eight
or more data points in a subset, half were
used for calibration, and the other half for
validation. If there were fewer than eight
data points, that subset was not used.

Results. Table 2 and Table 3 show
the results of calibrating each model for
development effort. For SoftCost-00
(Table 2), calibration almost always
improved the accuracy of the model,
although none of the subsets met Conte’s
criteria. For CHECKPOINT, all but one
subset met the criteria when predicting
development effort (Table 3).

Since CHECKPOINT uses function
points as a measure of size, they were used
when sufficient data points were available
for the subsets; otherwise, source lines of
code (SLOC) were used. For three func-
tion point effort subsets, there was sub-
stantial improvement in accuracy after the
model was calibrated for other programs
in these subsets, especially for the Manage-
ment Information System COBOL subset.
Except for the Command and Control
subset, the SLOC effort subsets met
Conte’s criteria before and after calibra-
tion. Although calibration did not signifi-
cantly improve accuracy for these subsets
(primarily because SLOC are an output,
not an input, to CHECKPOINT), the
accuracy was good even without calibra-
tion. CHECKPOINT results for effort
estimation are especially noteworthy as
inputs for this model were not considered
when the SMC database was developed.

Although these results were promis-
ing, it should not be assumed that
CHECKPOINT will do as well in other
environments. The best results for the
CHECKPOINT model were for the
Management Information System
COBOL data set, which was obtained

from a single contractor. Data from mul-
tiple contractors, which often characterize
DoD databases, are more difficult to cali-
brate accurately. Furthermore, CHECK-
POINT is a function point model. If the
user wants to input size in SLOC, which
is usually the case, the user or model
must first convert the SLOC to function
points. Unfortunately, the conversion
ratios are sometimes subject to significant
variations. Thus, the SLOC effort results
for CHECKPOINT may not work out as
well elsewhere.

Phase 3
In 1997 three models (COCOMO II,

SAGE, and CHECKPOINT) were cali-
brated. COCOMO II, the successor to
Boehm’s COCOMO model [1], was cali-
brated to the SMC database. The SAGE
model, a commercial model developed by
Randy Jensen, was calibrated to the SMC
and ESC databases. Finally, CHECK-
POINT was calibrated to the ESC data-
base to determine whether the unusually
high accuracy reported by Karen Mertes
[15] could be achieved on a different data-
base. As before, the details are documented
in the 1997 thesis reports [17,18,19].
Only the highlights are described here.

The ESC database contains informa-
tion on 52 projects and 312 computer
software configuration items [18], and
contractor identifiers and language, but
does not contain information on applica-
tion type. It also contains inputs for the
SEER-SEM model for which it was origi-
nally developed. The ESC database was
initially stratified by a contractor as it was
thought that a model could be more
accurate when calibrated for a specific
developer [6]. For CHECKPOINT, the
ESC database was also stratified by lan-
guage, and by contractor and language.

Calibration rules. The techniques
used to calibrate the models were signifi-
cantly improved over those used in the
earlier phases. In the past, small data sets
reduced the meaningfulness of the calibra-
tion. Making statistically valid inferences
from small data sets of completed software
projects is a common limitation of any cal-
ibration study. To overcome this limita-
tion, each model was calibrated multiple
times by drawing random samples from
the data set. The remaining holdout sam-

ples were used for validation. Averages of
the validation results became the measure
of accuracy. This “resampling” technique is
becoming an increasingly popular and
acceptable substitute for more convention-
al statistical techniques [20].

The resampling technique is flexible.
For CHECKPOINT, resampling was used
on only the small data sets (eight to 12
data points). Four random samples from
the small sets were used to calibrate and
validate the model. For COCOMO II,
only data sets of 12 or more data points
were used, and resampling was accom-
plished on all sets by using 80 percent of
the randomly selected points for calibra-
tion, and the remaining 20 percent for val-
idation. The process was repeated five
times, and the results were averaged. For
the SAGE model, all data sets having four
or more points were used with an even
more comprehensive resampling proce-
dure. Simulation software, Crystal Ball,
was used to select two data points for vali-
dation, and the rest for calibration. Instead
of limiting the number of runs to four or
five, all possible subsets were run.

Results. Table 4 shows the results of
the CHECKPOINT calibration using the
ESC database. Unlike the results reported
by Mertes [15], none of the data sets met
any of Conte’s criteria, even those for a
single contractor. This may be due in part
to the lack of function point counts in the
ESC database; only SLOC are provided
for all data points. However, since Mertes’
results using CHECKPOINT for SLOC
were also good, it is difficult to account
for differences between the results of
Mertes [15] and Thomas Shrum [19].

Table 5 shows the results for
COCOMO II, where calibration slightly
improved the model’s predictive accuracy,
but none of the subsets met Conte’s crite-
ria. It is possible that better results may
be attained when the online calibration
capability is incorporated into the model.

Table 6 shows the results for SAGE
on both databases. Although calibration
sometimes resulted in improved accuracy,
only a few sets met Conte’s criteria. This is
somewhat surprising for the ESC data sets,
where individual contractors are identified
by a code letter, and the model should be
consistent for a company. It may be that
even within a single company software

Cost Estimation

April 2000 http://www.stsc.hill.af.mil 17

programs are developed differently. Also, it
is possible that if the simultaneous effort
and schedule calibration capability that is
now integrated into SAGE was used, the
results would be better.

Conclusion
Calibration does not always improve a

model’s predictive accuracy. Most of the
calibrated models evaluated in this project
failed to meet Conte’s criteria. According
to Mertes, the one exception was the cali-
bration of CHECKPOINT to the SMC
database, where almost all of the calibrated
data sets met Conte’s criteria for function
point and SLOC applications. Unfortu-
nately, Shrum could not replicate this
result on the ESC database using a superi-
or validation technique. Overall, none of
the models was shown to be more accurate
than within 25 percent of actual cost or
effort, one half of the time.

This does not mean the Decalogue
project was done in vain. Much was
learned about the models, their strengths
and weaknesses, and the challenges in cali-
brating them to DoD databases. One
major insight is that the use of a holdout
sample is essential for meaningful model
calibration. Without a holdout sample, the
predictive accuracy of the model is proba-
bly overstated. Since all new projects are
outside of the historical database(s), valida-
tion is much more meaningful than the
more common practice of analyzing with-
in-database performance. The calibrations
performed in 1997 also developed and
applied resampling as a superior technique
to use in validating small samples. It is
better than just using one subset of data
for a holdout, and can be done easily with
modern software, such as Excel and
Crystal Ball. Hopefully, the findings of the
Decalogue project will inspire additional
effort in the area of model calibration, and
more promising results will be obtained.

References
1. Boehm, Barry W. Software Engineering

Economics. Englewood Cliffs, N.J.,
Prentice-Hall (1981).

2. Thibodeau, Robert. An Evaluation of
Software Cost Estimating Models.
Huntsville, Ala., General Research Corp.
(1981).

3. IITRI. Test Case Study: Estimating the
Cost of Ada Software Development.
Lanham, Md., IIT Research Institute
(1989).

4. Ourada, Gerald L. and Daniel V. Ferens.
Software Cost Estimating Models: A
Calibration, Evaluation, and Comparison.
Cost Estimating and Analysis: Balancing
Technology and Declining Budgets. N.Y.,
Springer-Verlag, pp. 83-101 (1992).

5 Ourada, Gerald L. Software Cost
Estimating Models: A Calibration,
Evaluation, and Comparison. Master’s
thesis. Dayton, Ohio, Air Force Institute
of Technology (1991).

6. Kemerer, Chris F. An Empirical
Validation of Software Cost Estimation
Models. Communications of the ACM,
pp. 416-429 (May 1997).

7. Galonsky, James C. Calibration of the
PRICE-S Model. Master’s thesis. Dayton,
Ohio: Air Force Institute of Technology
(1995).

8. Kressin, Robert K. Calibration of the
Software Life Cycle Model (SLIM) to the
Space and Missile Systems Center Software
Database (SWDB). Master’s thesis.
Dayton, Ohio, Air Force Institute of
Technology (1995).

9. Rathmann, Kolin D. Calibration of the
System Evaluation and Estimation of
Resources Software Estimation Model
(SEER-SEM) for the Space and Missile
Systems Center. Master’s thesis. Dayton,
Ohio, Air Force Institute of Technology
(1995).

10. Vegas, Carl D. Calibration of the
Software Architecture Sizing and
Estimation Tool (SASET). Master’s
thesis. Dayton, Ohio,: Air Force
Institute of Technology (1995).

11. Weber, Betty G. A Calibration of the
REVIC Software Cost Estimating Model.
Master’s thesis. Dayton, Ohio, Air
Force Institute of Technology (1995).

12. Ferens, Daniel V., and David S.
Christensen. Software Cost Model
Calibration, An Air Force Case Study.
Journal of Cost Analysis and Management,
pp. 43-46 (Fall 1997).

13. Ferens, Daniel V., and David S.
Christensen. Calibrating Software Cost
Models to DOD Databases—A Review
of 10 Studies. Journal of Parametrics 14:
33-52 (Spring 1999).

14. Conte, S.D., Dunsmore, H.E., and
Shen, V.Y. Software Engineering Metrics
and Models. Menlo Park, Calif.:
Benjamin-Cummings (1986).

15. Mertes, Karen R. Calibration of the
CHECKPOINT Model to the Space and
Missile Systems Center (SMC) Software
Database (SWDB). Master’s thesis.
Dayton, Ohio, Air Force Institute of
Technology (1996).

16. Southwell, Steven V. Calibration of the
SoftCost-R Software Cost Model to the
Space and Missile Systems Center (SMC)
Software Database (SWDB). Master’s
thesis. Dayton, Ohio, Air Force
Institute of Technology (1996).

17. Bernheisel, Wayne A. Calibration and
Validation of the COCOMO II Cost/
Schedule Estimating Model to the Space
and Missile Systems Center Database.
Master’s thesis. Dayton, Ohio, Air

Force Institute of Technology (1977)
18. Marzo, David B. Calibration and Valida-

tion of the SAGE Cost/Schedule Estimating
System to United States Air Force Databases.
Master’s thesis. Dayton, Ohio, Air Force
Institute of Technology (1997).

19. Shrum, Thomas C. Calibration and
Validation of the CHECKPOINT Model
to the Air Force Electronic Systems Center
Software Database. Master’s thesis.
Dayton, Ohio, Air Force Institute
of Technology (1997).

20. University of Maryland. The Resampling
Project. College Park, Md. (1997).

21. Albrecht, A.J. and J.E. Gaffney.
Software Function, Source Lines of
Code, and Development Effort
Production: A Software Science
Validation. IEEE Transactions on
Software Engineering. Volume SE-9
(November 1983).

Notes
1. This problem was addressed in Phase 3

of the Decalogue project, where the ESC
database was used. The ESC database
contains an identifier for each contribut-
ing contractor.

2. Function points are weighted sums of
five attributes or functions of a software
program (inputs, outputs, inquiries,
interfaces, and master files). Based on
their analysis of more than 30 data pro-
cessing programs, Allan J. Albrecht and
John Gaffney[21] report that function
points may be superior to SLOC as
predictors of software development cost
or effort.

See p. 24 for author information.

Does Calibration Improve Predictive Accuracy?

18 CROSSTALK The Journal of Defense Software Engineering April 2000

Congratulations to CROSSTALK Top 10 Authors of 1999
CROSSTALK would like to single out its Top 10 authors of the past year for their contribution to the Department
of Defense's premier software engineering journal. The authors, and the name of those articles that received
the highest Web hits, can be accessed at http://www.stsc.hill.af.mil by clicking on past issues of CROSSTALK.

10Software Mini-
Assessments: Process
and Practice by Gary

Natwick, Geoff Draper, and
Lennis Bearden [October 1999].
Gary Natwick is the metrics
leader for the Engineering
Process Group (EPG) responsi-
ble for advancing the Harris
Information Systems Division to
SEI SW-CMM Level 4.
Previously, he was the leader of
the SEPG advancing the HISD
software process maturity to SEI
SW-CMM Level 3. He has
more than 25 years of software

engineering experience (manage-
ment, development, and process
improvement) with Harris
Corp. and the Air Force. He
earned a bachelor of science
degree in electrical engineering
from the University of Miami.
Natwick is a member of the
Institute of Electrical and
Electronics Engineers and the
Association for Computing
Machinery and is an Authorized
Lead Assessor in the SEI Cost
Benefits Analysis-Internal
Process Improvement method.
E-mail: gnatwick@harris.com

Geoff Draper is the software
focus leader of the EPG respon-
sible for HISD software process
definition and improvement.
He has more than 15 years
experience with Harris Corp. in
various software development
and leadership positions.
Draper earned a bachelor's
degree and a master of science
degree in computer science
from the University of Illinois
and Florida Institute of
Technology, respectively.
E-mail: gdraper@harris.com

Lennis Bearden was the leader
of the EPG responsible for all
HISD engineering process
improvements. He has more
than 25 years experience cover-
ing all aspects of system develop-
ment, including hardware, soft-
ware, system engineering, and
program management. His
interests are software processes,
systems engineering process, and
systems architecture. Bearden
earned a bachelor's degree and
master of science degree in elec-
trical engineering from the
University of Tennessee.

9Structured Approaches to Managing Change, by Mark C. Paulk [November 1999]. Paulk is a senior member of the
SEI technical staff. He has been with the SEI since 1987 and initially worked on the Software Capability
Evaluation project. He has worked with the Capability Maturity Model® project since its inception and was the

project leader during the development of v. 1.1 of the CMM®. He is a contributor to the International Organization
for Standardization's Software Process Improvement and Capability Determination (SPICE) project, which is develop-
ing a suite of international standards for software process assessment. Prior to his work with the SEI, Paulk was a senior
systems analyst for System Development Corp. (later Unisys Defense Systems) at the Ballistic Missile Defense

Advanced Research Center in Huntsville, Ala. He is a senior member of the Institute of Electrical and Electronic Engineers and a senior
member of the American Society for Quality Control. Paulk has a master's degree in computer science from Vanderbilt University and a
bachelor's degree in mathematics and computer science from the University of Alabama in Huntsville. E-mail: mcp@sei.cmu.edu

8Improving Software Engineering Practice" by Patricia Sanders [January 1999]. Sanders is the director of test, sys-
tems engineering, and evaluation for the Department of Defense (DoD), where she is responsible for ensuring
effective integration of all engineering disciplines into the system acquisition process, including design, produc-

tion, manufacturing and quality, acquisition logistics, modeling and simulation, and software engineering, with
emphasis on test and evaluation as the feedback loop. She also oversees the DoD's Major Range and Test Facility Base
and development of test resources such as instrumentation, targets, and other threat simulators. She has more than 24
years experience. She holds a doctorate in mathematics from Wayne State University and is a graduate of the Senior

Executive Fellow Program, John F. Kennedy School of Government, Harvard University. E-mail: zetterbt@acq.osd.mil

716 Critical Software Practices for Performance-Based Management, by Jane T. Lochner [October 1999]. Lochner is a
1984 Naval Academy graduate. She served aboard USS Norton Sound (AVM-1) and USS Cape Cod (AD-43). She
was selected to the Engineering Duty community in 1988. She has extensive experience with developing and field-

ing complex, real-time combat systems on aircraft carriers and large-deck amphibious ships. She is assigned to the Office
of the Assistant Secretary of the Navy for Research, Development, and Acquisition working command, control, commu-
nications, computers, intelligence, surveillance, and reconnaissance and interoperability issues. She holds a bachelor's
degree in marine engineering, a master's degrees in logistics, applied physics, and computer science, and is a graduate of
the Defense Systems Management College Program Manager's course. E-mail: lochner.jane@hq.navy.mil

6Influential Men and Women of Software, by Kathy Gurchiek [December 1999]. Gurchiek is the Managing Editor of
CROSSTALK: The Journal of Defense Software Engineering. She has been a journalist for nearly 20 years. She has
worked as a reporter and editor for newspapers in Indiana, Illinois, and Georgia. She has served as an adjunct col-

lege instructor of communications in Salt Lake City, and her free-lance writing experience includes working for regional
magazines, The Chicago Tribune, the Salt Lake bureau of The Associated Press, the Salt Lake Tribune, and the former
CompuServe Wow! online magazine. She holds a master's degree in journalism from Columbia College in Chicago.

E-mail: kathy.gurchiek@hill.af.mil

April 2000 http://www.stsc.hill.af.mil 19

5High-Leverage Best Practices—What Hot Companies are Doing to Stay Ahead and How DoD Programs can
Benefit, by Norm Brown [October 1999]. Brown is the founder and executive director of the Software
Program Managers Network, a member (ex officio) of the DoD Software Management Review Board,

and executive director of the DoD Software Acquisition Best Practice Initiative. Brown has a bachelor's
degree in electrical engineering from Pratt Institute, a master's degree in electrical engineering from Rutgers
University, and a doctor of laws from American University. He is a member of IEEE and ACM.
E-mail: spmn@aol.com

4Earned Value Project Management: An Introduction by Quentin W. Fleming and Joel M. Koppelman [July
1999]. Fleming is a senior staff consultant to Primavera Systems Inc. and has more than 30 years industrial
project management experience. He held various management assignments with the Northrop Corp. from

1968-91, served on an earned value corporate review team, and wrote the corporate policy directive on scheduling.
He was president of the Orange County Project Management Institute (PMI) chapter and developed and taught
four PMI Project Management Professional tutorial courses covering scope, cost, time, and procurement manage-
ment. He has a bachelor's and a master's degree in management and is the author of seven published textbooks,
including Earned Value Project Management, with Koppelman. E-mail:QuentinF@Primavera.com
Joel M. Koppelman is president of Primavera Systems Inc., which provides a family of project management
software products. Before co-founding Primavera in 1983, he spent more than 12 years planning, designing,
and managing major capital projects in the transportation industry, including duties as vice president and
chief financial officer for Transportation and Distribution Associates Inc. Prior to that, he was affiliated with
the management consulting firm of Booz Allen Hamilton Inc. Koppelman is a registered professional engi-
neer with a bachelor's degree in civil engineering from Drexel University and a master's degree in business
administration from the Wharton School of the University of Pennsylvania. He is a frequent speaker at uni-
versities and for international management organizations. E-mail: JKoppel@Primavera.com

3Confusing Process and Product: Why the Quality is not There Yet, by David Cook [July 1999]. Cook is a
principal member of the technical staff, Charles Stark Draper Laboratory, and working under contract to
the Software Technology Support Center. He has more than 25 years experience in software development

and has lectured and published articles on software engineering, requirements engineering, Ada, and simulation.
He has been an associate professor of computer science at the Air Force Academy, deputy department head of
software engineering at the Air Force Institute of Technology, and chairman of the Ada Software Engineering
Education and Training Team. He has a doctorate in computer science from Texas A&M University and is a
SEI-authorized PSP instructor. E-mail: cookd@software.hill.af.mil

2CCB—An Acronym for Chocolate Chip Brownies? by Reed Sorensen [March 1999]. Sorensen is on the
technical staff at TRW and was under contract to the STSC at the time this article appeared. He has
more than 20 years experience developing and maintaining software and documentation of embedded

and management information systems, providing systems engineering and technical assistance to program
offices, and consulting with many DoD organizations regarding their software configuration management
and documentation needs.

E-mail: Reed.Sorensen@cti-net.com

1Configuration Management: Coming of Age in the Year 2000 by Clive Burrows [March 1999]. Burrows
is principal evaluator of configuration management products for Ovum in London, England. He is
the author of four Ovum reports on this subject, the most recent was Ovum Evaluates: Configuration

Management published June 1998.

E-mail: clive_burrows@compuserve.com

CROSSTALK Top 10 Authors of 1999

CROSSTALK will honor its Top 10 Authors of 1999 during the Software Technology Conference

in Salt Lake City, Utah. Please join us at STC 2000, scheduled for April 30-May 4, when these

authors are singled out for their contribution to CROSSTALK: The Journal of Defense Software

Engineering. For more information on the conference, please see http://www.stc-online.org

20 CROSSTALK The Journal of Defense Software Engineering April 2000

Nearly every software development
estimate has been, or will be, biased.
Biases in the estimating process con-
tribute to poor estimates, which can
affect the success or failure of a project.
To understand the psychological impact
of bias in developing software project task
level effort estimates is essential for infor-
mation technology Project Managers and
their teams. The key questions become:

1. How do biases affect bottom-up
task level effort estimates for soft-
ware development?

2. What bias-reduction strategies can
you employ to improve the quality
of your estimates?

In spite of impressive advances in
processes and tools, software project esti-
mating remains more of an art than a sci-
ence. Software projects continue to finish
behind schedule and over budget, if they
finish at all. According to a recent study,
only 37 percent of software projects are
completed on time and only 42 percent
are completed within budget [1]. This is
due in part to the difficulties in acquiring
accurate estimates of software develop-
ment effort.

“The subject of software estimating is
definitely a black art,” says Lew Ireland,
former president of the Project Manage-
ment Institute. Furthermore, understand-
ing the role of judgment and bias in soft-
ware estimating is even more elusive. An
extensive literature search yielded virtually
no research and few articles dealing with
the topic. Therefore, we applied Amos
Tversky and Daniel Kannamen's seminal
research done in the areas of judgment
and bias to the topic of software project
estimating [2].

The Judgement-Bias Curve
One of the most widely used meth-

ods of estimating software development
tasks from a bottom-up or task-level
approach is expert judgment, sometimes
known as a “best guess” [3]. Expert judg-
ment, although a very valuable method,
is subject to human biases. Biases are
more pronounced in the development of
bottom-up estimates because expert judg-

ment, by its very nature, is a very subjec-
tive estimating method. The estimates are
most often developed through the use of
best guesses due to the relative immaturi-
ty of software development as an engi-
neering discipline. In many cases, the
expert judgment estimate is produced by
team members experienced in the work at
hand, but not necessarily experienced in
estimating techniques.

When estimating, our judgment has
a fairly large degree of uncertainty associ-
ated with it. By incorporating the bias-
reduction techniques outlined in this
paper you can increase the level of cer-
tainty inherent within your estimates,
move down the judgment-bias curve, and
ultimately improve the quality of your
estimates (See Figure 1.). Software esti-
mating is more of an art than a science,
and inherently more prone to the nega-
tive aspects of human biases.

Description of Bias, Example,

and Bias-Reduction Strategies
The mental shortcuts, or heuristics,

we use to solve complicated, uncertain
problems, like estimating software devel-
opment work effort, are subject to biases.
A bias is a partiality, or prejudice, under-
lying the decision-making process (the
bias emanates from the heuristic) [4].
Some biases that have an impact on the
development of task-level software project
estimates, particularly when derived from
expert judgment, are:

• Availability bias.
• Representative bias.
• Overconfidence bias.
• Confirmation bias.
• Insufficient anchor-adjustment bias.
• Prudence bias.

Availability Bias
This reflects our unconscious attempts

to predict the future based on memories of
the past. The fact that our memory is
marked by more vivid or recent experi-
ences allows the availability bias to skew
our judgment. A common example is the
tendency for individuals to overestimate
the occurrence of a more memorable or
graphic cause of death, such as a plane
crash, rather than a less memorable event,
such as a car crash.

Estimates are also subject to our own
bounded rationality [5]. The first reason-
able number that seems to make sense is
often used as the starting point for an ini-
tial estimate, which often acts as an anchor
(See insufficient anchor adjustment bias).
The search for information on which to
base this estimate is less than rigorous and
often subject to mental shortcuts.

Software estimates based on expert
judgment are often derived from estimat-
ing by analogy, either formally through the
use of historical data or informally from
past experience. Many experienced soft-
ware engineers use completed projects,
particularly projects they have worked on
in the past, as a heuristic for current soft-
ware development estimates. The availabil-
ity bias predicts that information recalled
from memory that is used to develop task-
level estimates is most likely the very best
or the very worst memories of completed
tasks or projects, since these experiences
would be most readily remembered. Vivid,
compelling, or otherwise interesting
instances from past projects can bias the
estimate for the project or task.

Availability Example

Consider the case of Alex. He works
on your project team, but spends most of
his time talking about the Kennedy assas-
sination and the Challenger disaster. He
also refers to the last project he worked on

Reducing Bias in Software Project Estimates
“It’s tough to make predictions, especially about the future.” – Yogi Berra

Figure 1. The Judgement-Bias Curve

Certainty

Bias

April 2000 http://www.stsc.hill.af.mil 21

as the “best darn project ever done on
time and under budget.” Alex uses his
experience on his last project as an analo-
gy to come up with his task-level esti-
mates for your project, which is good
news. The bad news is that the estimate
may be biased due to the fact that a cross-
section of projects was not used.

Bias-Reduction Strategies

There are tactics you can use to stress-
test Alex’s estimates:

1. Ask him what assumptions were
used, and whether they make sense.
Basing the estimate on a similar task
completed for a past project where
everything (or nothing) went well is
a recipe for disaster. Not only should
the task be similar, but the project
should be, too.

2. Encourage Alex to adjust his initial
estimate so it is based on historical
data or metrics such as productivity
rates and size measures, if available.
The objective is to use more than
one project as a reference.

3. Discuss Alex’s estimate as a team.
Groups have been shown to exhibit
less of an availability bias than
individuals [6].

Representative Bias
The representative bias is most often

expressed in software estimating as insensi-
tivity to base-rate data. We can think of
base-rate data as existing metric data from
past projects. Individuals may tend to
ignore metric data in assessing their esti-
mates when other anecdotal information is
available, even if the anecdotal informa-
tion is irrelevant [7]. The representative
bias predicts that even if we have extensive
metric data, our teammates may not be
inclined to consider it when coming up
with their estimates. Under this bias, the
estimate is probably constructed using
information with a higher degree of uncer-
tainty than would have been the case had
we used the existing metric data.

Representative Example

Ralph has just joined your project
team from another organization that did
not have historical data or metrics. He
avoids metrics like the plague and points
out that “past experience is a poor indica-

tor of future results.” To no one’s sur-
prise, Ralph does not use historical proj-
ect data or other metrics to derive his
task-level estimates for your project.

Bias-Reduction Strategies

As the project manager, you are ulti-
mately responsible for the accuracy of
Ralph’s estimates. To ensure you will not
be in a soup line any time soon:

1. Encourage Ralph to use any and all
historical data and metric informa-
tion available. While intuition is
good, so are data.

2. At the very least adjust Ralph’s esti-
mate in the direction of the histori-
cal average. We are more likely to
perform closer to the average on
subsequent trials. Statisticians call
this “regression to the mean.”

3. Make sure Ralph does his homework
before presenting this estimate to the
team. Groups generally show a higher
rate of representative bias than indi-
viduals. In other words, groups are
less likely to use available data and
metrics [6].

Overconfidence Bias
This bias (sometimes referred to as

the optimistic bias) demonstrates that we
tend to overestimate our abilities and
underestimate the effort involved in com-
pleting a difficult task, particularly when
we are completing the task ourselves.
Studies have shown that the more diffi-
cult and uncertain a task, the more preva-
lent the overconfidence bias [7]. In other
words, individuals tend to drastically
underestimate large, complex tasks when
using expert judgment as an estimating
method.

Overconfidence Example

Olive is assigned to the coding
changes for your high-profile project.
When asked about the amount of work
involved in completing her tasks, she
often prefaces her response with phrases
like, “This is a piece of cake,” and “No
problem.” Even you, the project manager,
are taken aback by the aggressiveness of
Olive’s schedule. Ironically, the more dif-
ficult the task the quicker she plans to get
it done. “No problem” might end up
being a big problem.

Bias-Reduction Strategies

There are ways to decrease the risk of
having an estimate that reflects reality in
only the most fortunate of situations.
May luck be your constant companion,
but just in case, you can:

1. Encourage Olive to develop a range
instead of a point estimate. Make
sure she considers the worst case,
Murphy’s Law-type of scenario for
the high-end of the range (a pes-
simistic estimate).

2. Ask Olive on what assumptions this
estimate range is based. If the
answer is “We will have two fully
dedicated clairvoyants developing
the requirements,” adjust the esti-
mate upward.

3. Gather information from a variety
of sources to get a broader picture of
what needs to be done.

4. Tell the team that you are not
interested in best-case estimates, but
realistic estimates. Some studies have
shown this will help; some have
shown it will not matter, but it
cannot hurt.

Remember—studies show our estimates
are even more optimistic the more com-
plex and difficult the task [7].

Confirmation Bias
This is in effect when people search

for information that supports their idea
and ignore information that does not sup-
port their idea. An analyst who develops a
task-level estimate may consider informa-
tion supporting the estimate, and ignore
information that the task at hand may be
significantly larger or smaller than that
initial estimate indicates.

Confirmation Example

Cathy is a perfect example. She tends
to stick to her guns, and can be narrow-
minded. She tends to start estimating her
work effort with an estimate in hand and,
after limited research, usually concludes
she was right in the first place.

Bias-Reduction Strategies

Cathy can be helped. Here is how:
1. Encourage her to research historical

data and metrics, and ask other
experienced team members for help.
It is important to get her to look at

Reducing Bias in Software Project Estimates

22 CROSSTALK The Journal of Defense Software Engineering April 2000

Cost Estimation

a variety of information, not just
data to support her initial estimate.

2. Play devil’s advocate. Question her
sources and assumptions.

3. Most importantly, ask if she adjusted
her initial estimate based on informa-
tion she found after her research.

Insufficient Anchor
Adjustment Bias

This occurs when an initial estimate
is made (the anchor), and upon re-esti-
mating the effort, insufficient adjust-
ments are made from that anchor. It does
not matter if the initial estimate is
derived from historical data, parametric
modeling tools, or a random number
generator.

Insufficient Anchor Adjustment Example

The task of creating a test plan falls to
Alice, who likes to get other team mem-
bers’ opinions on how much effort they
think the task entails. She hates a blank
sheet of paper. Someone estimates the task
at 25 effort hours. After assessesing the
available information, she determines that
25 hours seems low, and decides to double
the estimate to 50 hours based on limited
research. Chances are this adjustment is
insufficient, simply because it is based on
the initial anchor of 25 hours. The task
turns out to require 250 effort hours. This
is the danger of the anchoring bias.

Bias-Reduction Strategies

There are methods you can employ
as a project manager, or conscientious
team member, to try and avoid the nega-
tive aspects of the anchor bias:

1. Encourage Alice to research the
problem and really dig into it.

2. Ask her to specify a range rather
than a point when researching the
effort required. This will denote the
uncertainty involved and reduce the
tendency to insufficiently adjust
subsequent estimates. Stating the
estimate as about 40 to 80 effort
hours is less specific and probably
easier to adjust, than an early esti-
mate of 52 hours. It pays to be
approximately accurate, rather than
precisely inaccurate.

3. Do not ask leading questions when
inquiring about an estimate. Avoid
saying, “Alice, what do you think? Is

this about 50 hours?” Or, “Can we
get this done by my birthday next
week?” Let Alice do her homework
and then negotiate.

Prudence Bias
When faced with high-profile tasks,

or the first few times accountability is used
in the same sentence as task-level estimates,
team members may respond by coming up
with over-cautious estimates [8]. Padding
task estimates can be just as dangerous as
wildly optimistic low-ball estimates.

Prudence Example

Paul follows all the rules, but you do
not want to get behind him on the free-
way if you are in a hurry. He takes it pret-
ty slow to be safe, and also pads his task-
level estimates to be safe. If several team
members follow Paul’s lead, the result can
be a wildly over-cautious project estimate.
Have you heard of of Parkinson’s Law?

Work expands to fill the amount of time
available for completion

Bias-Reduction Strategies

Paul is an asset; he realizes the need
to take a closer look at the estimating
process. In order to get a more accurate
estimate, however, try these techniques:

1. Ask him if he added a cushion or
padded his estimate. Pad the project
estimate, not each task estimate.

2. Emphasize the need for accurate
effort estimates at the task level and
show how padding each task will
inadvertently lengthen the critical
path.

3. Olive the optimist and Paul probably
do not have a lot to talk about, but it
is a good idea to have them review
each other’s estimates.

See Table 1 for a summary of the
biases that impact software development
task-level estimates.

Bias Description Bias Reduction Strategies

Availability Vivid or graphic events

overshadow objectivity

• Challenge the assumptions of the

estimate.

• Use more than one project/task as a

reference.

• Discuss the estimate as a team.

Representative Not using base rate data or

metrics

• Use data as well as intuition.

• Adjust estimate toward the mean.

• Formulate estimate before

discussing as a team.

Overconfidence Too optimistic • Use an estimate range vs. a point

estimate.

• Challenge the assumptions.

• Use more than one source of

information.

• Set expectations for realistic

estimates.

Confirmation See what you want to see • Use historical data and metrics.

• Play devil’s advocate.

• Stress the importance of adjusting

the estimate.

Anchor

Adjustment

Insufficient adjustment of

subsequent estimates

• Foster a research-based estimate.
• Use an estimate range vs. a point

estimate.
• Do not ask leading questions or

throw out a guess.
Prudence Too pessimistic • Pad the project estimate, not the

task estimates.
• Discuss the estimate as a team.

Table 1. Summary of the Biases and Bias Reduction Strategies

April 2000 http://www.stsc.hill.af.mil 23

Reducing Bias in Software Project Estimates

General Bias-Reduction Strategies
It is virtually impossible to eliminate

the impact of human biases on software
project estimating. Biases are by defini-
tion subconscious. The same psychologi-
cal mechanism that creates the bias works
to conceal it [4].

The first and most important step is
awareness that human biases impact deci-
sion-making, particularly decisions with
uncertainty—like task-level estimating in
software development. If the project team
can anticipate, identify, and minimize the
negative impact of biases in the software
estimating process there will be greater
certainty in the validity of the project esti-
mate. General strategies will help reduce
the human biases in software project esti-
mates. These strategies are:
• Provide feedback on the accuracy of

the estimates.
• Collect data to provide rules of thumb.
• Challenge team members to defend

and justify their estimates.
• Emphasize the importance of estimating.
• Use more than one estimating method.

Provide Feedback on

the Accuracy of the Estimates

Compare the actual effort hours
logged on each task to the current esti-
mate. That way the team member knows
where he or she is vs. where he or she
should be, and can make adjustments
accordingly. Do not discount the team
member’s perception of what work
remains or how far along he or she is, but
do not rely on that information alone. It
is also a good idea to collect data across
several completed projects to use as start-
ing points for future estimates. In addi-
tion, be sure to collect the original esti-
mate as well as the actual effort required
to complete the task [9].

Collect Data to Provide Rules of Thumb

In addition to the original estimate
and actual hours logged, other data are
useful to provide a history of a project
task. At a minimum collect data related to:
• The source of the estimate (best guess,

past projects, etc.).
• The activity driver (number of installs,

number of requirements, lines of code).
• The assumptions used (especially skill

level, resource dedication, requirements
volatility).

Let us take Alice's test plan as an
example. She should document where she
collected the information for the task-level
estimate, the activity driver for the task
(perhaps the number of test cases), and
her assumptions. This data will be very
useful the next time she or anyone else
develops a task-level estimate for a test
plan. Over the course of many projects, it
may be found that given this type of proj-
ect and testing environment, it takes
approximately four hours per test case to
complete the test plan. If she estimates she
will have about 50 test cases, her initial
effort estimate might be around 200
hours. Of course the estimate should be
adjusted (and perhaps not insufficiently),
but the data collected provides an excel-
lent place to start, and a handy rule of
thumb. It also provides a repeatable
process, which can be improved upon.

Challenge Team Members to Defend,

Justify their Estimates

Estimates are based largely on uncer-
tainty. The more information you can
find related to the task at hand, the less
uncertainty is involved. Question and
challenge the estimates, the source of the
data, and the assumptions. The adage of
garbage in, garbage out applies here.

Emphasize the Importance of Estimating

To paraphrase President Eisenhower,
estimates are nothing, estimating is every-
thing. Discourage the path of least resist-
ance or the permanent sacrifice of accura-
cy for a temporary reduction in effort.
Do not just settle for an estimate, but

encourage estimating. The real expert in
the expert judgment approach is home-
work, not just experience, and the team
needs time to do it right.

Use More Than One Estimating Method

Use a variety of estimating methods
and sources of information. Use historical
data (if you do not have any, start collect-
ing it), industry statistics, estimating tools,
organizational metrics data, experienced
team members, best guesses, and even
intuition. Comparing multiple estimates
lets you know if your team is really getting
a handle on the project. For example, it is
always a good idea to compare the phase-
level estimates from a top-down approach,
using a parametric modeling tool, to the
aggregated task-level estimates from a bot-
tom-up approach. If they are close, you
know you are talking apples and apples.

Imagine being dropped off in a
remote location. Being lost is a lot like
coming up with an estimate. You are not
sure where you are, but you have to know
before you can figure out where to go.
Imagine you reach in your pocket and
find a hand-held global positioning sys-
tem. Things are looking up. You hit a but-
ton and find out where you are. However,
that estimate of your location is not based
on one satellite (a single source of data); it
is based on two or three, as your team’s
estimates should be. Estimating is like
putting together the pieces of a puzzle.
There is no answer, just indicators that
need to be analyzed and managed. See
Table 2 for a summary of the general bias-
reduction strategies and examples.

General Bias Reduction Strategies Example

Promote awareness Talk about the impact of biases on estimates

Provide feedback on the accuracy of

estimates

Track and report estimates to actuals for tasks

Collect data to provide “rules of

thumb”

Record estimates, actuals, assumptions, and

size measures for future reference

Challenge team members to justify

their estimates

Document and question assumptions and

sources

Use more than one estimating method Combine task level estimates and compare to

phase estimates

Emphasize the importance of

estimating

Give team members the opportunity to research

their estimates – encourage estimating

Table 2. Summary of General Bias Reduction Strategies

24 CROSSTALK The Journal of Defense Software Engineering April 2000

Conclusion
Human biases influence and general-

ly have a negative impact on the develop-
ment of task-level estimates. Although it
is impossible to obviate these biases,
awareness, understanding, and the incor-
poration of bias-reduction strategies can
help mitigate their negative impact.

We have taken a step back to discuss
what we feel to be the root cause of poor
task-level estimates using the expert judg-
ment approach during bottom-up esti-
mating. The expert judgment method is
viable, and likely to remain one of the
most popular methods of developing soft-
ware project estimates for some time. The
next step will be determining to what
extent these biases impact software proj-
ect estimates, and where information

technology project managers should focus
their efforts to reduce the negative conse-
quences of bias in the software estimating
process. Our hope is that the suggestions
we have provided here can help you and
your team develop better task-level soft-
ware project estimates.

References
1. Godson, Philip. To Err is Human, to

Estimate Divine. InformationWeek,
January 18 ,1999, pp. 65-72.

2. Kahneman, Daniel, and Tversky, Amos
The Framing of Decisions and the
Psychology of Choice. Science, Vol. 211
No. 30, January 1981, pp. 453-458.

3. Hughes, Robert T. Expert Judgement as
an Estimating Method. Information and
Software Technology, Vol. 38, 1996 pp.
67-75.

4. Jones, Morgan D. The Thinker’s Toolkit,
1998, Random House, Inc.

5. Simon, Hervert A. Psychology Review,
Vol. 63, p. 129, 1956.

6 Lim, Lai-Huat., and Benbasat, Izak. A
Framework for Addressing Group
Judgment Biases with Group Technology.
Journal of Management Information
Systems, Vol. 13, No. 3, Winter 96-97,
pp. 7-24.

7. Bazerman, Max. H. Managerial Decision
Making, 2nd Ed., 1990. John Wiley &
Sons, Inc.

8. Hammond, John. S. Keeney, Ralph. L.,
Raiffa, Howard. The Hidden Traps in
Decision Making. Harvard Business
Review, Sept.-Oct. 1998, pp. 47-58.

9. Demarco, Tom Controlling Software
Projects, Yourdon Press Computing Series,
1982.

About the Authors
David Peeters is a project manager in the
Information Services Division at American Family
Insurance in Madison, Wis. He has more than 10
years experience in application development, proj-
ect planning, and project management. Peeters has
a bachelor’s degree in computer information sys-
tems from Southwest State University and a mas-

ter’s of business administration from Illinois State University.

David Peeters
American Family Insurance
6000 American Parkway
Madison, Wis. 53783
Voice: 608-242-4100 ext. 31348
Fax: 608-243-6558
E-mail: DPeeters@AmFam.com

George Dewey is President of Pathfinder Global
Group Inc. He is a certified Project Management
Professional, with more than 20 years of experi-
ence in corporate planning, project scheduling,
cost control, estimating, and management with
numerous consulting firms and client organiza-
tions. Dewey holds a bachelor’s degree in indus-

trial engineering from North Dakota State University and a mas-
ter’s of business administration from Virginia Polytechnic Institute.

George Dewey
Pathfinder Global Group Inc.
5358B N. Lovers Lane #113
Milwaukee, Wis. 5225
Voice: 713-827-4481
Fax: 414-464-3005
E-mail: GDewey_PGGI@MSN.com

Cost Estimation

Daniel V. Ferens is a corporate affordability officer
at the Air Force Research Laboratory at Wright-
Patterson AFB in Dayton, Ohio. He is also an
adjunct associate professor of software systems
management at the Air Force Institute of
Technology (AFIT), Graduate School of Logistics
and Acquisition Management, at Wright-Patterson

AFB, where he teaches courses in software estimation and software
management in general. He was the advisor for the 10 theses
described in this paper, is an active member of the Society of Cost
Estimating and Analysis, and a lifetime member of the International
Society of Parametric Analysts. Ferens has a master’s degree in electri-
cal engineering from Rensselaer Polytechnic Institute, and a master’s
degree in business from the University of Northern Colorado.

AFRL/IFSD, Bldg 620
2241 Avionics Circle, Room S1Z19
Wright-Patterson AFB, Ohio 45433-7334
Voice: 937-255-4429, ext. 3558
FAX 937-255-4511
E-mail: daniel.ferens@sn.wpafb.af.mil

David S. Christensen is an associate professor of
accounting at Southern Utah University. He was
the reader for the 10 theses described in this paper.
He received his doctorate degree in accounting
from the University of Nebraska-Lincoln in 1987,
and has published more than 50 articles in the
area of defense cost management. He taught cost

management topics at the Air Force Institute of Technology from
1987-97. He is a member of the American Accounting Association,
the Institute of Management Accountants, and the Society of Cost
Estimating and Analysis.

Southern Utah University
College of Business
351 West Center St.
Cedar City, Utah 84720
Voice: 435-865-8058
Fax: 435-586-5493
E-mail: ChristensenD@suu.edu

About the Authors of Does Calibration Improve Predictive Accuracy?, continued from page 17

April 2000 http://www.stsc.hill.af.mil 25

Software Engineering Technology

The Automated Materiel Tracking
System (AMTS) had to offer end users
what technology has always promised:
cost-effective, easy, real-time access to a
myriad of time-sensitive and detail-specif-
ic information. AMTS needed to func-
tion as the technology bridge between
different operating systems and data
structures, and allow access to an incredi-
ble amount of data from multiple virtual
sites and geographical locations with a
seamless interface, so the user need only
point and click to obtain needed infor-
mation. AMTS had to level the playing
field by offering a way for simplistic,
complex and legacy systems to communi-
cate with each other, allowing end users
to quickly and easily extract data as
usable information employing various
hardware input and output options.

Myron Anderson, OO-ALC/LGN,
sponsored the prototype of the AMTS
solution, which was successfully imple-
mented in the summer of 1999 at Hill
Air Force Base Within days of the proto-
type deployment, end users were able to
provide empirical data on the timeliness
of the receipt of the materiel. Collected
date and time stamps could prove when
an item was ordered, readied for ship-
ping, and delivered to a specific location.
Part of the project’s success is its ability
to access and manipulate Web-enabled
information from the desktop, as well as
on handheld scanning units used in the
field via wireless local area network
(LAN) and Internet technologies. AMTS
is projected to go online simultaneously
at Tinker and Warner Robbins in the
first quarter of 2000. Although the proj-
ect began for Air Force use only, the
Navy has expressed interest in imple-
menting AMTS at its depot locations.

AMTS Development Research
The project began as a way to track

all materiel movement activities between
AFMC divisions and a Defense Logistic
Agency (DLA). It expanded to track the
actual delivery sites within each AFMC
division. The AMTS’ expanded project
scope included Hill Air Force Base with
approximately 30 delivery sites, handling
approximately 700 transactions daily;
Tinker Air Force Base with approximately
100 delivery sites, handling approximately
2,000 transactions daily; and Warner
Robbins Air Force Base with approximate-
ly 150 delivery sites, handling approxi-
mately 3,000 transactions daily.

The original AMTS required distinc-
tions in individual process steps involved in
a materiel delivery transaction, including:
• Receipt of the requisition by the DLA’s

Depot Supply System.
• Material picking process.
• Packing process.
• Transporting and shipping.
• Final receipt of the materiel by the

maintenance customer.
The main challenge presented for the

project was to find a way to determine
and track if and at what time a materiel
order was involved in each step of a deliv-
ery transaction. Although the materiel
shipping and delivery movements were
tracked on paper manifests, discrepancies
were common regarding the requested
delivery time and location vs. the actual
delivery time and location. Delivery
urgency specifications (needed within two
or four hours, etc.) usually dictated the
final transportation cost of an item; the
exact time between order acceptance and
final delivery needed to be tracked in a
way that could satisfy shipping and receiv-
ing parties of the transaction.

The original paper-based manifest
system required data entry of a 14-char-
acter alphanumeric string package identi-
fication code at each point along the
delivery route. This process was very
labor-intensive and prone to data entry
errors. Quantitative metric data was diffi-
cult to compile and, once compiled, not
always accurate or reliable. As a solution,
hand-held laser bar code scanners became
an intrinsic portion of AMTS, signifi-
cantly reducing data entry errors.

AFMC and DLA staff members
identified specific features and benefits:
• Conversion of several legacy data

information systems.
• Point-and-click ease of use (for access,

query, input, assessment report
functions).

• Online help features.
• Standardized, customizable tracking

procedures and reporting functions.
• Easy, low complexity updating

procedures.
• Lower costs and time required to

manually investigate a shipping
discrepancy.

• Information protection on the client
intranet with client-designated levels of
authorization.

• Overall system security (to prevent
malicious and accidental breaches).

• Ability to utilize wireless portables for
use in tracking purposes and Internet
access over a wireless LAN for dynamic
data access and manipulation

• Designed to be as lightweight as
possible and work on a desktop
computer with performance as low as
486/33MHz with no appreciable
performance hit.

Additional requested enhancements
to the original system included tracking

The Automated Materiel Tracking System is a Web-based solution created for real-time tracking of more than 1 million materiel
pieces transferred between Air Force Materiel Command (AFMC) divisions and the Defense Logistics Agencies at Hill Air Force
Base, Utah; Tinker Air Force Base, Oklahoma; and Warner Robbins, Georgia. It works equally well on traditional and wireless
local area networks, and was created to replace the present manual data entry and paper-based tracking system, which was labor-
intensive, error-prone, and difficult and cumbersome to gather and extract reliable, useful data. The replacement system needed to
not only track where and when a material order was placed and delivered, but also act as an efficient data-sharing bridge between
intercompany departments. The new system had to provide full-database interfaces over a variety of operating systems and environ-
ments and dynamically manipulate legacy and newly gathered data utilizing existing standard office suite software. Data had to be
Web-accessible from mid-tier, desktop-level hardware as well as from the hand-held, radio frequency-based computers in the field.

Case Study: Automated Materiel Tracking System

26 CROSSTALK The Journal of Defense Software Engineering April 2000

Software Engineering Technology

depot maintenance items returning to the
supply system, clearing of in-transit
records, tracking of issues from other sup-
ply systems, and developing a series of
analysis tools to ensure peak performance
and continual improvement.

AMTS Development Process
Bar Coding Challenges

Untethered mobility is a major
requirement for the project. Having a
scanning terminal physically connected to
a LAN would severely hamper productivi-
ty. In addition to substantially decreasing
data entry errors, the portable computers’
wireless LAN technology complemented
the AMTS solution. And, the wireless
capability also allows for Internet access,
using any Web browser (i.e. Netscape or
Explorer), and allows easy access to AMTS
information for immediate use in the field.

To begin a transaction within AMTS,
a bar coded manifest is generated from the
DLA Depot Supply System. This physical
manifest accompanies the materiel order as
it flows through individual steps within
the shipping and delivery process. At each
step in the delivery process, the bar code is
scanned and logged into AMTS to track
its progress and timing, and the data are
then recorded with time and date stamp
verifications. The system allows for data
capture of the following data elements:

• Item(s).
• Shipping and delivery locations.
• Ordering and delivering parties.
• Receiver of goods.

As data reliability was a major issue,
standard and specialized business and logic
rules were implemented in the design to
ensure data integrity, with data elements
routinely checked for appropriateness in
fields and string length. Additionally,
tables were put in place to either allow or
deny a transaction. For example, if an
item’s destination was scheduled for ware-
house A but was delivered to warehouse B,
AMTS would produce an appropriate
error message so the problem could be
investigated and corrected.

Data Structure Challenges

Although the legacy information sys-
tems were developed using leading-edge
technology at the time, they were original-
ly developed and populated before the
desktop PC became available. There were

also several versions of systems, each writ-
ten in its own flavor of database language.
Additionally, the legacy reports and query
capabilities were very elementary in nature
due to the archaic database design struc-
ture, and data access was difficult due to
mainframe architecture. In essence, AFMC
had legacy data only, and it needed search-
able, formattable, information, which
could be accessed and manipulated in real
time, merged with new AMTS data, and
used in statistical and accountability
reports in standard existing commercial
off-the-shelf software, such as Microsoft
Access, Excel, and PowerPoint.

Although the AMTS prototype was
developed in Access and Excel, releases of
the software are also available in two other
versions to meet existing standardized
environments or preferences:

• Oracle 8i with a Visual Basic interface.
• SQL with a Visual Basic interface.

AMTS also uses Microsoft’s remote
scripting technique to create a dynamic,
Web-based user interface. Utilizing their
Internet Information Server, Scripting
Engines 5.0, and Internet Explorer 5.0,
this technique allows for HTML-based
Web pages to interact with the server
without having to reload the page with
each transaction.

Remote scripting uses client-side
VBScript, Jscript, or JavaScript on the
Web page for data verification and rapid
data entry. The client-side script then
calls methods through Microsoft’s
Remote Scripting Jscript Applet that
refers to procedures and functions coded
in server-side VBScript or JavaScript on
an Active Server Page. These procedures
and functions interact with server compo-
nents via .dll files developed in Visual
Basic. The .dll files interface with the
Oracle 8 database through ODBC con-
nectivity to access, update, and retrieve
data. Data are then returned to the .asp
page and manipulated further if necessary
before being returned to the client-side
script on the .htm page where the data
can be dynamically displayed without
reloading the entire page. The effect is a
seamless, active user interface much like a
Visual Basic form on an Internet browser.

Due to security concerns with Java
and ActiveX applications’ open-ended
environments, Visual Basic was designat-
ed as AMTS’ programming language.

The main interface of AMTS is Web-
enabled; if a user were to exit AMTS to
access another site, he or she could intro-
duce a hostile application back into the
host network, posing security and data
integrity risks. This was a major concern.

Again, AMTS utilizes any Web editor
or browser to capture, query, and display
information. The ability to use existing,
industry-standard software allows for
quick, cost-effective use of AMTS at the
desktop level or in the field, regardless of
database interface.

Bridging the Technology
Not only does AMTS level the play-

ing field and provide full database inter-
face with any operating system environ-
ment; it also acts as a technology bridge
between intercompany departments or
distinct companies or entities.

During beta testing at Hill Air Force
Base, AFMC and DLA personnel com-
mented that the user-friendly graphical
interface design and online help functions
allowed them to sit down and begin
using the AMTS software immediately. In
just a few days after implementation, end
users were able to extract data elements
from their legacy systems and combine it
with current AMTS data and produce
reliability reports using existing off-the-
shelf database software.

Conclusion
AMTS is a synthesis of advanced

automated data input, proven database
technology, and malleability offered by a
Web interface. All this is brought togeth-
er in a single application set that provides
realistic information from reams of data.
AMTS is available now and is in daily
use, supplying timely and reliable infor-
mation while providing cost-effective and
hard empirical metrics.

Various Operating Systems, Data Warehouses, Environments

NT
UNIX

Alpha Win 95 Oracle
Legacy

The Internet

Division or Company A Division or Company B

April 2000 http://www.stsc.hill.af.mil 27

About the Author
Jim Restel is working with Productive Data Systems on a Web-
enabled OO-ALC/LA Supervisor’s handbook and AMTS for
OOALC/LGN. He is a Defense Infomation Systems Agency
Information Warfare Staff Officer, and was the first reservist
assigned to Automated Systems Support and Information Security
Team (ASSIST)/DoD-Computer Emergency Response Team
(CERT). He is a technical advisor to the DoD Joint Web Risk
Assessment Cell. Restel has also been a Contingency Plans Staff
Officer at the Ogden ALC Readiness Center and a War Plans
Officer in Germany and Texas.

Jim Restel, Systems Engineer
Productive Data Solutions
1572 N. Woodland Park Drive, Suite 510
Layton, Utah 84041
Voice: 801-779-2070/
Fax: 801-779-2075
E-mail: jamesrestel@sprintmail.com

Defense@E-Business

April 24-25, 2000

Crystal City Hilton

Arlington, Va.

Distributed Networked Computing for a Secure Defense

The Office of the Secretary of Defense
(OSD C3I) is hosting a Distributed Networked
Computing Forum called DEFENSE@E-BUSI-
NESS on April 24-25, 2000 in Arlington, Va. at
the Crystal City Hilton. DEFENSE@E-BUSINESS
is a two-day best practices forum specifically
designed for the needs of enterprise system
designers, architects, CIOs, and CTOs.

Government IT leaders, integrators,
industry practitioners and industry groups will
collaborate in sharing lessons learned in devel-
oping secure and interoperable frameworks for
E-business. You are invited to participate in this
annual industry-specific forum and help usher
in "Distributed Networked Computing for a
Secure Defense."

Confirmed Speakers Include
Dr. V Garber, OSD C3I
Dr. Susan Gragg, ICON
Amy Robinson, Discovery
Paul Kendall, DOJ
Larry Cogut, PTO
General Anthony Bell, Air Force
Tony Scott, GM
Terry Santaviccia, NSA

Registration and Hotel Information
Register online at www.theotg.com
Registration fees are as follows:

Commercial $395
Government $295
Meals are an additional charge of $50
Reserve your room at the Crystal City
Hilton by calling (703)418-6800

Conference information is available at
www.theotg.com

Sixth Annual Joint Aerospace Weapon Systems

Support, Sensors, and Simulation Symposium

and Exhibition (JAWS S3) is scheduled for

June 25-30 in San Antonio, Texas

Over the years, this event has
addressed target acquisition, the dirty
battlefield, the electromagnetic spectrum
and its impact on smart and brilliant
weapons, and a host of other relevant
topics.

This year's conference will feature
dialogue up and down the "defense
system RDT&E food chain" between the
labs and the theaters of operation.

JAWS S3 will focus on the connectivity
of various levels of modeling and simula-
tion and their connectivity in support of
this mission. JAWS S3 2000 will feature
senior-level decision-makers, who are in a
position to impact the directions on these
important defense issues, sharing their
insights.

— Jim O'Bryon, Deputy Director, Operational
Test and Evaluation/Live Fire Testing,
Office of the Secretary of Defense

Contact Dr. Asha Varma via electronic mail at
varmaa@navair.navy.mil for more information.

28 CROSSTALK The Journal of Defense Software Engineering April 2000

Open Forum

Once there was a buyer (end user)
who asked a producer, “Can you sell me
this and that and what is your price?”
Alternatively the producer could ask a
buyer, “Do you want to buy this and that
at this price?”

This was a long time ago, before the
days of complex systems, when both buy-
ers and producers understood the mean-
ing and the use of this and that.

Today, with complex systems, the sit-
uation has become more complicated:
• The buyer is not always the end user

since the end user needs help from
acquirers and contractors who under-
stand more about bargaining and con-
tract issues than end users’ real needs.

• The seller is not always the producer
since the producer needs to take help
from marketing and sales people, who
understand more about marketing
than about the product.

• Nobody involved really understands
this and that, because the product sold
is a new, complex system, which was
not seen until delivery.

The basic questions above are still
asked, but the complicated situation
makes the answers somewhat hazy, leading
to a situation where requirements specifi-
cations and management are needed.

Today’s Situation
We are in a situation where too often

a system project runs like this:
• The end user and the acquirer put

together a requirement specification.
They get help from one or more
consultants to make it complete and
correct. The result is a specification,
which requires considerable work just
to be read and understood.

• The acquirer asks for proposals based
on the specification.

• Several vendors look into the specifica-

tions, with various reactions, such as:
– We can do it, but we do not have the

time to analyze these requirements
until we get the contract proposal of
$40 million.

– This looks interesting, but these
requirements need to be analyzed.
Advance us $3 million to analyze the
requirements and build a first model
of the system.

– We do not understand these require
ments, but we desperately need busi-
ness. We will accept a proposal of
$20 million, with 30 percent in
advance.

• The acquirer interprets the acquisition
regulations and awards the contract to
the third vendor as it had the best
price.

• A couple of years pass, and the vendor
tries to understand the requirements
and build a system in accordance with
this understanding. During the process
of understanding, the vendor will find
a number of inconsistencies, contradic-
tions and gaps in the requirements.

• The vendor runs out of money and
returns to the acquirer and says, “There
are some problems with this contract
that need to be sorted out. We need an
additional $20 million or we cannot
complete it.”

• The acquirer is left with two
alternatives:
1. Not paying extra, not getting a

system, and possibly causing the
vendor to go bankrupt.

2. Paying extra and getting a system
that is probably late and not equal
to the true needs since the end
users’ understanding of needs has
grown during system development.

The Need for Dialogue
As previously discussed, there are

obvious problems. If you talk to people
involved in building military software sys-
tems, for example, you will get some clear
opinions about what causes the problems:
The military end user: “These keyboard
monkeys do not understand a thing
about military needs. They do not even
understand that you cannot put an M317
backward on an A32!”
The programmer: “These brass hats do
not understand a thing about their own
systems. They try to express accuracy per-
centage in inches.”

This may seem humorous, but as
long as the most important players in sys-
tem production (the end user and the
producer) talk about each other instead of
to each other, the prognosis for the sys-
tem to be produced is not very good.
What is needed is dialogue and . . .
• Understanding—in a language, which

is common to everyone involved.
• Respect—for others’ professional com-

petence, with no name calling.
• Courage—to speak up whenever some-

one says or writes something you do
not understand.

Take Care of Knowledge Growth
If you start a dialogue between end

users and producers in a complex system
development project, it is inevitable that
knowledge grows among those involved.
Knowledge growth may reveal fundamen-
tal glitches in the original specification
and/or the original proposed solution.

If you have a fixed contract with
negotiated deliveries and payments, the
best thing about the situation is that it is a
real challenge to the contractors, who may
not understand there is a problem.

What you need is a work principle,
which anticipates that knowledge will
grow during system development and
that this new knowledge will change the

Requirements Management as a Matter of Communication
Requirements work started as a dialogue between a vendor and an end user. Today this dialogue has been
complicated through introduction of marketing and acquisition personnel. This has led to introduction of
requirements specifications, but the need for a basic dialogue is still there since a specification cannot cap-
ture the increase of knowledge that will always take place during development. An efficient dialogue must
not only include requirements, but also stated missions, problem management and understandable for-
malism for the system’s structure and behavior. Further study of the dialogue shows that requirements
management must be managed as a process in parallel with processes for development and verification.

April 2000 http://www.stsc.hill.af.mil 29

direction and content of the development effort. To find a con-
tract form that considers growth of knowledge is the real chal-
lenge for contractors.

Requirements on the Dialogue, Its Language
Besides the obvious need for mutual respect, the dialogue and

its language require that:
• The dialogue must use a language that is readily understand-

able by end users and developers without much training
in the language used.

• The language used must be formal in order to avoid
misunderstandings.

• The language must be able to describe objects to be managed
by the system under development.

• The language must describe system performance precisely.
• For critical systems, the dialogue must support discussion of

fault-tolerance issues, including unexpected operator behavior.
• The dialogue must include definition, discussion, and

decision on problems, which will surface during development
of any nontrivial system.

• The dialogue must anticipate that knowledge will grow
during system development and allow this knowledge to
influence requirements and design solutions.

• The dialogue must accept that requirements management,
development, and verification are three parallel processes
during a systems engineering effort.

Elements of a Solution Alternative
As understood from the aforementioned reasoning, there is

more to requirements management than writing and accepting a
requirements specification. The following are some aspects to be
used as the basis for necessary dialogue.

Missions and Scenarios
To the end user, a system’s missions are often so obvious that

he does not even state them. Instead, he defines a set of scenarios
that may or may not cover the complete mission space. On the
other hand, the developer will interpret the specification and cre-
ate a number of use cases, which may or may not cover the mission
space.

To create understanding, it is necessary that the end user
state the missions clearly as they constitute the foundation of
requirements and design. Scenarios can be added to clarify the
missions’ meaning. The missions are fundamental.

One way to express missions is as mission objects, which are

supported by other objects used to complete the mission at hand.
Original requirements are often stated in a requirements

specification. They may also be found in published standards and
regulations. Railway systems, for example, are heavily regulated.

To make it possible to work with the original requirements,
you need a database. Many system engineering tools offer such a
database where you can insert the requirements by copying and
pasting from a document or even having the original document
parsed automatically for requirements. One can also use com-
mon office tools like Word or Excel to get a low-cost require-
ments database.

However, doing requirements insertion manually is strongly
recommended in order to check uniqueness, testability, contra-
dictions, etc. These checks give valuable understanding of any
problems pertaining to the original requirements.

Derived Requirements.
As knowledge grows during development and design deci-

sions are taken, new requirements will surface. These are called
derived requirements, and should be put in the requirements
database as derived.

Compositive Structure Allocation
Provided the system under development is modeled as a

compositive structure, allocation of requirements is simple. A
compositive structure is where the system is composed from
objects and connected through their interfaces in such a way
that it is always obvious which objects depend on other objects
to complete their action. The compositive structure makes it
possible to float requirements downward through the structure
until you find the object, which the requirement should be test-
ed with. The requirement becomes the fulfillment requirement
of that object.

Problem Management
Management of problems or issues is a very important part

of the dialogue during system evolution. Problems inevitably sur-
face; most of them require a combined effort from end users and
developers to find a feasible solution.

This means that the dialogue must include problem man-
agement, including:

• Problem statements with category and priority.
• Problem headings and numbers.
• Solution alternatives.
• Solution decisions.
It is possible to manage this with an ordinary word proces-

sor, but a tool that supports at least numbering of the problems
is preferable.

Understandable Formalism
An end user who has expressed himself in clear English,

with diagrams, would normally believe he has made himself
completely clear. That will often be the case, but it is amazing
how such clear requirements are transformed into software and
hardware that does unanticipated things.

It is doubtful that you would try to make the end user
write formal specifications, since the necessary knowledge is
normally not available when the specification is written.

You could, however, provide a formal representation as part

Requirements Management as a Matter of Communication

Figure 1: Successive Deliveries with Parallel Processes

Requirements
management

Development

Verification
with test

30 CROSSTALK The Journal of Defense Software Engineering April 2000

of the design effort with the objective to:
1. Get a reconfirmation from the end user

that the specification is understood in
an acceptable way.

2. Give a detailed and formal basis for
the implementation work, be it hard-
ware, software, or an operator role.

One way to get this formal descrip-
tion is to use formalized English, a sim-
plified language containing:

• Variables of defined types.
• Control structures.
• Comments.

Test Specifications
Requirements are not much good

unless they can be tested. If they are dis-
tributed to design objects as fulfillment
requirements, you can design test cases
for each object to test that they are met.

To ensure a correct set of test cases
has been written, they should be reviewed
by the end user. It is helpful if test cases
are presented together with the require-
ments they are intended to verify. One
way to do this is to produce a require-
ments/test case matrix.

Conclusions
There are several aspects of require-

ments management. The most important
issue is to establish a dialogue between
end users and producers of a system.

It has also been found that the
original requirements specification is only
part of the information required for suc-
cessful requirements management.

It is a necessity to make requirements
documentation understandable both to the
end user and to the developers concerned.

Since the dialogue results in more
information than can be comfortably
managed manually, computer-based sup-
port tools will be helpful.

Furthermore, there is a need to create
work situations where everyone involved
communicates and respects the profession-
al competence of others involved.

Finally, you cannot do the require-
ments in the beginning of a project, but
you must establish a requirements man-
agement process in parallel with processes
for development and verification as visu-
alized in Figure 1.

http://www.computer.org/tse/ts/s1997/e0485abs.htm
This site connects to a paper written by members of the

Institute of Electrical and Electronics Engineers. The authors pro-
pose the use of a model they say considerably improves early pre-
diction over the Putnam model An analytic proof of the model's
improved performance also is demonstrated on simulated data.

http://www.jsc.nasa.gov/bu2/PCEHHTML/pcehfc.htm
This online version of NASA's second edition of the

Parametric Cost Estimating Handbook contains seven chapters,
and seven appendices, one of which is the parametric estimating
system checklist.

http://www.eng.hmc.edu/courses/E180b/software.htm
This is a listing of professional societies and their links

relating to software cost estimation. Among the links are the
Software Technology Support Center, Defense Information
Systems Agency, NASA Software Engineering Laboratory, and
the Software Engineering Institute.

http://renoir.csc.ncsu.edu/SP/HTML/cost.html
The North Carolina State University Software Engineering

Resource Center site has a tutorial on software cost estimation,
and tools.

http://xanadu.bmth.ac.uk/staff/kphalp/students/bsi/predict/tsld
002.h tm

This shows slides on software cost estimation, including

newer approaches to Boehm's Constructive Cost Model (COCO-
MO), such as function points and Estimation by Analogy.

http://www.concentricmc.com/toolsreport/5-4-2tools1.html
This tools list on cost estimation has related links to com-

mercial tools, tools used by government departments, and tool
reviews and comparisons.

http://www.cpsc.ucalgary.ca/~adi/621/essasy_outl.htm
This site contains an essay on software size estimation,

based on references that include the STSC Metrics Service,
Watts Humphrey, Capers Jones, and the International Function
Point Users Groups.

http://cse.usc.edu/TechRpts/Papers/usccse98-506/usccse98-
506.html

This is a report from the Computer Science Department at
the University of Southern California's Center for Software
Engineering. The report appendices includes a COCOMO II
Cost Estimation Questionnaire and COCOMO II Delphi
Questionnaire, Defect Removal Model Behavioral Analysis.

http://irb.cs.tu-berlin.de/~zuse/metrids/History_00.html
This is a history of software measurement by Horst Zuse.

http://cse.usc.edu/COCOMOII/cost_bib.html
This is a general bibliography on cost estimation, updated

in November.

Cost Estimation Web Sites

About the Author
Ingmar Ogren gradu-
ated with an master’s
degree in science
(electronics) from the
Royal University of
Technology in Stock-
holm in 1966; his

final project was connecting a fighter aircraft
training simulator with a sector operation
center. He worked with the Swedish Defense
Material Administration and various con-
sulting companies until 1989 in systems
engineering areas such as communications,
aircraft, and command and control. Ogren
chairs the board and holds majority owner-
ship in two companies: Tofs, which produces
and markets the Tool For Systems software,
and Romet, which provides systems engi-
neering consulting with the Objects For
Systems method as its main product.

Ingmar Ogren
Romet Corp.
Fridhem2
SE-76040 Veddoe
Sweden
Internet: www.toolforsystems.com

Open Forum

You've heard the state of the union but what about the state of the software
industry? Maybe we should tap the wit and wisdom of those who founded,
fathered, and led this nation. Here is my interview with George Washington,
John Adams, Benjamin Franklin, Thomas Jefferson, and Abraham Lincoln.

Q: Gentlemen, what are your impressions of this industry we call software?

George: Software [Discipline] is the soul of an organization [army]. It makes
small numbers formidable, procures success to the weak, and esteem to all.

Abe: I could as easily bail out the Potomac River with a teaspoon as attend to all
the details of software [the army].

John: I am well aware of the toil and blood and treasure, that it will cost us to
maintain software [this Declaration].

Q: What are your thoughts on the Microsoft Antitrust Suit?

Thomas: I am mortified to be told that, in the United States of America, the sale of
software [books] can become a subject of inquiry, and criminal inquiry, too.

Ben: A nerd [countryman] between two lawyers is like a fish between two cats.

Q: The Internet revolutionized the way we do business. Why is it so influential?

Thomas: We hold these truths to be self-evident: that all men are created equal; that
they are endowed by their creator with certain unalienable rights; that
among these are life, liberty, and the pursuit of the Internet [happiness].

John: The Internet [Liberty], according to my metaphysics, is a self-determining power
in an intellectual agent. It implies thought, choice and power.

Q: Do you have any advice for those climbing the ladder to CMM level five?

Ben: Never confuse motion with action.
George: I know the CMM [patriotism] exists, and I know it has done much in the

present contest. But a great and lasting software organization [war] can
never be supported on this principle alone. It must be aided by a prospect of
interest, or some reward.

Ben: The CMM [U.S. Constitution] doesn't guarantee success [happiness], only the
pursuit of it. You have to catch up with it yourself.

Q: Why is Dilbert the industry's poster boy?

John: In every society where software [property] exists there will ever be a struggle
between management [rich] and engineer [poor].

Abe: Nearly all men can stand adversity, but if you want to test a man's character,
give him power.

Ben: To be humble to superiors is duty, to equals courtesy, to inferiors noble.

Q: Why are so many projects over budget and behind schedule?

Abe: We must not promise what we ought not, lest we be called on to perform what
we cannot.

Ben: In short, the way to a successful project [wealth], if you desire it, is as plain as
the way to market. It depends chiefly on two words, industry and frugality;
that is, waste neither time nor money, but make the best use of both.

Q: What is your advice for software engineers?

Thomas: Nothing gives one person so much advantage over another as to remain
always cool and unruffled under all circumstances.

Abe: Always bear in mind that your own resolution to success is more important than
any other one thing.

John: La molesse est douce, et sa suite est cruelle.
[Idleness is sweet, and its consequences are cruel.]

– Gary Petersen, Shim Enterprises

Editor’s Note: A continuation of this interview will appear in our May issue.

State of the Software Industry

April 2000 http://www.stsc.hill.af.mil 31

Give Us Your Information,

Get a Free Subscription
Fill out and send this form to us

for a free subscription to CROSSTALK.

OO-ALC/TISE

7278 FOURTH STREET

HILL AFB, UTAH 84056

ATTN: HEATHER WINWARD

FAX: 801-777-8069 DSN: 777-8069

Or use our online subscription request form at
http://www.stsc.hill.af.mil/request.asp

FULL NAME:____________________________________

RANK OR GRADE:_______________________________

POSITION OR TITLE:_____________________________

ORGANIZATION OR COMPANY:____________________

ADDRESS:______________________________________

BASE OR CITY:____________________ STATE:______

ZIP:____________

VOICE: COMMERCIAL______________________

DSN______________________

FAX: COMMERCIAL______________________

DSN______________________

E-MAIL: ___________________@___________________

THE FOLLOWING BACK ISSUES ARE AVAILABLE

(INDICATE THE MONTH(S) DESIRED.)

MARCH 1999_____________CONFIGURATION MGMT.

APRIL 1999______________SQA

MAY 1999_______________CMM LEVEL 5

JUNE 1999______________MEASURES AND METRICS

JULY 1999_______________PROJECT MANAGEMENT

AUGUST 1999____________SOFTWARE ACQUISITION

SEPTEMBER 1999_________D II COE

OCTOBER 1999___________BEST PRACTICES

NOVEMBER 1999_________CHANGE MANAGEMENT

DECEMBER 1999_________SOFTWARE EVOLUTION

JANUARY 2000___________LESSONS LEARNED

FEBRUARY 2000__________RISK MANAGEMENT

MARCH 2000_____________EDUCATION & TRAINING

BACKTALK

CrossTalk
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

BULK RATE
US POSTAGE PAID

Permit No. 481
Cedarburg, WI

Sponsored by the
Computer
Resources
Support

Improvement
Program
(CRSIP)

	Cover
	Index
	From the Publisher
	Future Trends, Implications in Cost Estimation Models
	Software Estimation: Challenges and Research
	Does Calibration Improve Predictive Accuracy?
	Top 10 CrossTalk Authors - 1999
	Reducing Bias in Software Project Estimates
	Case Study: Automated Material Tracking System
	Requirements Management as a Matter of Communication
	Coming Events
	E-mail Update Announcement
	Quote Marks
	DoD Conference Announcements
	Cost Estimation Web Sites
	BackTalk

