
JJuunnee 22000000 TThhee JJoouurrnnaall ooff DDeeffeennssee SSooffttwwaarree EEnnggiinneeeerriinngg VVooll.. 1133 NNoo.. 66

CrossTalk

Keeping Time
with

PSP & TSP

Keeping Time
with

PSP & TSP

2 CROSSTALK The Journal of Defense Software Engineering June 2000

Building Productive Teams
It is not practical for one person to do an entire systems engineering job; hence, we need to build productive teams.

by Watts S. Humphrey

Managing Risk with TSP
The Team Software Process regarding risk has come in handy at Hill Air Force Base.

by David R. Webb

Making Quality Happen: The Managers’ Role
An Advanced Information Systems case study based on two projects in Chennai, India.

by Girish Seshagiri

PSP: Fair Warning
The Personal Software Process Course is difficult and time consuming. Students beware.

by Elizabeth Starrett

Statistical Process Control Meets Earned Value
Presenting an approach for software production management, i.e., cost and schedule control.

by Walt Lipke and Jeff Vaughn

What We Have Learned
From the four SEI core metrics a fifth is derived—productivity. All five are interrelated.

by Lawrence H. Putnam and Ware Myers

Proven Techniques for Efficiently Generating and Testing Software

This paper presents a proven process that uses advanced tools to design, develop and test optimal software.
by Keith R. Wegner

Large Software Systems—Back to Basics

Development methods that work on small problems seem to not scale well to larger, more complicated problems.
by John R. Evans

4

7

11

14

Departments

On the Cover:
Brandon Scott is a
graduate of Utah
Career College,
where he studied the
latest multimedia
techniques and soft-
ware programs. He
enjoys everything
from abstract design
to Web design.

3

10

31

From the Publisher

Coming Events

24 Web Addition

13 PSP/TSP Web Sites

BACKTALK

29 Letter to the Editor

31 Subscription Request Form

31 Call for Articles

16

25

29

21

H. Bruce Allgood

Reuel S. Alder

Lynn Silver

Kathy Gurchiek

Matthew Welker

Heather Winward

801-775-5555
801-777-8069
crosstalk.staff@hill.af.mil
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html
http://www.crsip.hill.af.mil

Subscriptions : Send correspondence concerning
subscriptions and changes of address to the follow-
ing address. You may use the form on page 31.

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, Utah 84056-5205

Article Submissions : We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Guidelines for CROSSTALK Authors, available upon
request. We do not pay for submissions. Articles published in
CROSSTALK remain the property of the authors and may be
submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
Coming Events : We often list conferences, seminars, sym-
posiums, etc., that are of interest to our readers. There is
no fee for this service, but we must receive the information
at least 90 days before registration. Send an announcement
to the CROSSTALK Editorial Department.
STSC Online Services: at http://www.stsc.hill.af.mil.
Call 801-777-7026, e-mail randy.schreifels@hill.af.mil.
Back Issues Available: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE
EDITOR/LAYOUT

ASSOCIATE
EDITOR/FEATURES

VOICE

FAX

E-MAIL

STSC ONLINE

CROSSTALK ONLINE

CRSIP ONLINE

CrossTalk

TSP

Open

Software Technology

Forum

Engineering

PSP/

June 2000 www.stsc.hill.af.mil 3

From the Publisher

PSP & TSP—The Necessary Approach

In the fall of 1996, approximately 20 software engineers from the Software Engineering
Division at Hill Air Force Base were trained in the “Personal Software Process (PSPSM).”
I was one of them. The division of approximately 500 scientists and engineers decided
to try a pilot course to see if there was value in PSP training. The course consists of a

very structured and disciplined approach for writing software. Ten computer programs and five
reports are assigned. The objective is to track time, lines of code used, defects inserted and
removed, and the process block where it occurred. PSP techniques reduce the number of defects
inserted into the code by using process reviews at early stages of computer programming and
closing the gap between estimates and actuals.

“It is better to eliminate the insertion of defects instead of using the compiler to catch prob-
lems in the code.” Sounds easy, right? This course is anything but easy. Among the 20 engineers
in the course, most had undergraduate and master's degrees in electrical engineering or comput-
er science. Most were leads of projects that required an enormous amount of time. Finally, most
of these engineers were helping define the processes used and needed for the division's work
into CMM Level 5. Those 20 agreed that it was the hardest course they had ever taken. The
PSP course consumed all other responsibilities and time. Elizabeth Starrett's article, PSP: Fair
Warning, on page 14 explains some of the difficulties in learning PSP.

After the grueling few weeks of the course, few were able to adopt the techniques taught in
PSP and most did not. I was able to use many of the concepts in my Software Quality
Assurance team. The PSP concepts were crucial for understanding CMM® Level 5 principles in
helping the division. Those who were not able to use PSP in their projects had a harder time
understanding true defect prevention and true teamwork.

Since the pilot, the division has trained many more engineers in PSP. The mission planning
software project, TaskView, has brought PSP-trained engineers together into a special team,
where the Team Software Process (TSPS M) is being used. In Managing Risk with the Team
Software Process on page 7, David Webb, the Technical Program Manager of TaskView, explains
how TSP is an effective method of managing software project risks by using a common-sense
approach with nearly defect-free code.

Great teams, whether in sports or in business, share common commitments and goals.
Teamwork is essential for most successful software engineering projects, as explained in Watts
Humphrey's article, Building Productive Teams, on page 4.

Being associated with a CMM® Level 5 organization, I believe that PSP and TSP are essen-
tial for understanding true Level 5 concepts. If your organization is striving for CMM® Level 5,
it should look into investing time, money, and effort into training key players in your organiza-
tion. At the very least, SEPG and SQA members should be trained in PSP and TSP.

Lynn P. Silver
Associate Publisher

SM The Team Software Process and TSP are service marks of Carnegie Mellon University.
® The Capability and Maturity Model and CMM are Registered in the U.S. Patent and

Trademark Office to Carnegie Mellon University.
SM The Personal Software Process and PSP are service marks of Carnegie Mellon University.

4 CROSSTALK The Journal of Defense Software Engineering June 2000

PSP/TSP

Teams are required for most engineering projects. While
some small hardware or software products can be developed by
individuals, the scale and complexity of modern systems is such,
and the demand for short schedules so great, that it is not prac-
tical for one person to do the entire job. Systems development is
a team activity, and the effectiveness of the team largely deter-
mines the quality of the engineering.

Modern systems are becoming increasingly sophisticated.
Aircraft, automobiles, computer printers, television sets, and
even electric razors contain software, often lots of software, and
the amounts of software have been rapidly increasing. The
design of such systems is vastly more complex than it was a few
years ago. While there are still many modest-sized systems, the
trend is for the software content of just about every product to
increase by 10 or more times every 10 years. This trend has
been more or less followed for several decades, and it appears
likely to continue for the foreseeable future.

While most large systems involve many technologies, it is
generally the software that integrates all the pieces into a cohesive
whole. The software engineers provide the glue that holds the sys-
tem together. It is critical that the software professionals use disci-
plined methods. If they do not, the integration job and the soft-
ware glue that binds the system will likely have quality problems.

While every technology is important, if the software people
do not properly plan and manage their work, the project will
almost certainly get into trouble. That is the reason that the
Software Engineering Institute (SEI) developed a framework and
a process structure for building and guiding integrated engineer-
ing teams. It is called the Team Software Process (TSPSM).

The TSP is one of a family of methods that can help engi-
neering teams more effectively develop and support software-
intensive systems. The Capability Maturity Model (CMM®) pro-
vides the overall improvement framework needed for effective
engineering work [1]. The Personal Software Process (PSPS M)
provides the engineering disciplines engineers need to consistently
use a defined, planned, and measured process [2]. The TSP cou-
ples the principles of integrated product teams with the PSP and
CMM® methods to produce highly productive teams.

A team is more than just a group of people who happen to
work together. Teamwork takes practice and involves special
skills. Teams require common processes; they need agreed-upon
goals; and they need effective guidance and leadership. The
methods for guiding and leading such teams are well known,
but they are not obvious. The SEI has developed the TSP to
guide engineers and their managers in using effective teamwork
methods.

This paper describes the principles behind the TSP’s develop-
ment. Starting with an overview of the characteristics of produc-

tive teams, the paper describes how organizations can build teams
that have these characteristics. Next, the paper describes the ways
the TSP process guides team formation. It closes with a summary
of the preparation required for TSP team members.

The Characteristics of Productive Teams
There are different kinds of teams. In sports, for example, a

basketball team’s positions are dynamic while baseball team
members have more static roles. In both cases, however, the
members must all work together cooperatively. Conversely,
wrestling and track teams are composed of individual competi-
tors who, while not dynamically interacting, support each other
socially and emotionally.

In engineering, development teams often behave much like
baseball or basketball teams. While they may have multiple spe-
cialties, all the members work toward a single objective. On sys-
tems maintenance and enhancement teams, however, the engi-
neers often work relatively independently, much like wrestling
and track teams. However, regardless of the team type, produc-
tive engineering teams have certain common characteristics.

A team is a group of people who share a common goal.
They must all be committed to this goal and have a common
working framework. The following definition for a team has
been adapted from Jean L. Dyer [3]:

– A team consists of at least two people.
– They work toward a common goal.
– Each person has been assigned specific roles.
– Completion of the mission requires some form of

dependency among the group members.

Conditions for Effective Teamwork
The four parts of this definition of a team are all important.

For example, it is obvious that a team must have more than one
member, and the need for common goals is also generally accept-
ed. It is not as obvious, however, why team members must have
roles. Roles are essential because they provide a sense of owner-
ship and belonging. They help guide team members on how to
do their jobs; they prevent conflicts, duplicate work, and wasted
effort; and they provide the members a degree of control over
their working environment. Such a sense of control is a funda-
mental requirement for motivated and energetic team members.

Interdependence is also important. This is where each team
member depends to some degree on the performance of the
other members. Interdependence improves individual perform-
ance because, with complementary skills, the members can help
and support each other. For example, design teams generally pro-
duce better designs than any individual member could have pro-
duced alone. Team performance is further enhanced by the social

Building Productive Teams
by Watts S. Humphrey

Software Engineering Institute, Carnegie Mellon University

The Software Engineering Institute’s (SEI) Team Software Process (TSPS M) is a framework and a process structure for building
and guiding integrated engineering teams, which are essential in development of today’s complex, increasingly sophisticated sys-
tems. This paper discusses characteristics of productive teams, how to build/launch such a team, and team member preparation.

support of membership. Human beings are social animals and
few people like to work entirely by themselves, at least not for
very long. Because of this social context, the members will make
a special effort to meet their obligations to the rest of the team.

Through mutual support and interdependence, teams
become more than just the sum of their members. As teams
build a trusting and cohesive relationship, they develop a spirit
and an energy that can produce extraordinary results.

Innovative Teams
Another characteristic of productive teams is their ability to

innovate. Innovation has been essential in the development of
modern society. Innovation is more than just thinking up bright
ideas, it requires creativity and a lot of hard work. Just about
every engineering task is part of an innovative endeavor. This is
true for the development, enhancement, and repair of complex
systems. These innovative teams must produce quality products
while using unfamiliar and often unproven tools and technolo-
gies. They often start projects with only partially defined needs
and they must be sensitive to the user’s evolving requirements.

Innovative teams must have skilled and capable people who
are highly motivated. They must be creative, flexible, and disci-
plined. They must strive to meet demanding schedules while
adjusting to changing user needs. They must also control costs
and schedules while keeping management informed of their
progress. In short, innovative teams have a great deal to do.

A Trusting Environment
To be creative and productive, engineering teams must

work in a trusting and supportive environment [4]. Engineering
teams are composed of extremely capable people who can
quickly sense a lack of trust. When managers do not trust their
teams to make aggressive schedules or to strive to meet these
schedules, the engineers will know it. When engineers do not
feel trusted and respected, they will feel antagonized and manip-
ulated. They will no longer feel loyal to the organization and
can easily lose their commitment to the team.

Since people are generally more productive when faced with
an important and meaningful challenge, it is appropriate for
management to challenge their teams with aggressive goals. But
when the teams respond to the challenge with a plan, manage-
ment must be willing to negotiate realistic commitments the
engineers believe they can meet. Few people will work diligently
to meet a seemingly hopeless project schedule.

Producing Productive Teams
In summary, the basic conditions for productive teams are

that the members have defined roles, their work is interdepen-
dent, they are skilled and highly motivated, and they work in a
trusting environment. To achieve these conditions, there are a
number of well-known methods [3, 5, 6, 7, 8, 9, 10]. The
team-building principles used by TSP are:

– The team members establish common goals
and defined roles.

– The team develops an agreed strategy.
– The team members define a common process

for their work.

– All team members participate in producing the plan
and they each know their personal roles in that plan.

– The team negotiates this plan with management.
– Management reviews and accepts this plan.
– The team members do the job the way they have

planned to do it.
– The team members communicate freely and often.
– The team forms a cohesive group, members cooperate,

and they are all committed to meeting the goal.
– The engineers know their status, get feedback on their

work, and have leadership that sustains motivation.
Effective team formation requires that the members truly

understand what they are supposed to do, agree on how to do the
job, and believe that their plan is achievable. These conditions
can all be established by involving the engineers in producing
their own plans. Then, assuming that their plans are competently
made, teams can almost always sell their plans to management.

While all these conditions are necessary for effective team-
work, the specific ways to establish these conditions are not
obvious. The TSP provides the explicit training and guidance
organizations need to build productive engineering teams.

Launching TSP Teams
TSP projects start with a four-day launch during which the

team members make a detailed plan for their project. A trained
coach leads the team through determining goals, assigning
member roles, making plans, and assessing project risks. By fol-
lowing the PSP planning process and using any available histori-
cal data, the engineers are able to make a realistic plan and
schedule for their work. Once the team members have built
team and personal plans, the team leader holds a management
meeting where the team presents the plan to senior manage-
ment and negotiates an agreed schedule commitment.

Cooperation, Cohesion, and Commitment
While most of the steps in the TSP process involve produc-

ing specific things, one condition does not. This is:
– The team forms a cohesive group, members cooperate,

and they are all committed to meeting the goal.
These team-member attitudes cannot be legislated, imposed,

or established by fiat; they must be created by the team itself. If
the team members do not want to cooperate, or if they do not
wish to act like a close-knit group, they will not, and telling
them to do so will not fix the problem. Commitment is an atti-
tude. When people are truly committed, they behave differently
than people who are merely following orders.

While it is clear that cooperation, cohesion, and commit-
ment are necessary, it is not obvious how to produce them.
The TSP approach for doing this involves all the team members
in producing their own plans and selling these plans to manage-
ment. People like to work together, they enjoy close-knit and
cohesive groups, and they respond to challenging goals and
objectives. Unless the working conditions actually block team
formation, and as long as the members do not have serious per-
sonal antagonisms or emotional problems, such teams will gener-
ally become cooperative, cohesive, and committed units.

June 2000 www.stsc.hill.af.mil 5

Building Productive Teams

6 CROSSTALK The Journal of Defense Software Engineering June 2000

PSP/TSP

Team Member Preparation
The first and most fundamental step in the teambuilding

process is to ensure that all the members are capable of doing
the job. This requires that they have proper skills and abilities
and a common set of processes, methods, and terminology. For
example, in forming a ball team, you would not pick players
from different sports. While they might all be outstanding ath-
letes, a ball team composed of football, baseball, basketball, and
soccer players would not likely win many championships. They
would not have the common language, agreed rules, or support-
ive skills to cooperate effectively. Just as on a ball team, TSP
team members need a shared process, supportive skills, and the
ability to work in an interdependent team environment.

In forming a TSP team, a key requirement is that all the
team members understand the principles behind the TSP meth-
ods. They must be able to plan and track their work and meas-
ure and manage the quality of their products. Training in the
Personal Software Process (PSP) provides team members with
such knowledge and skill. The major topics that team members
need to understand are the following:

• Project planning.
• Status reporting.
• Time, size, and defect measures.
• Quality planning and management.
• Design and design verification.
• Process definition, use, and improvement.

Managers also need to understand these items so they can
lead and guide their teams. If the managers are not PSP trained
or if the engineers do not know how and why to plan, there is
no point in trying to build the group into a cohesive team. The
TSP teambuilding process will not work. When the team mem-
bers do not know how to make plans, they cannot participate in
the planning. The team leaders and project managers must then
produce the plans. While these may be very good plans, the
engineers will not have been involved and they will not be per-
sonally committed to the plans.

Conclusions
While the PSP and TSP are relatively new, the experience

to date has been promising [11, 12, 13, 14]. The SEI and a
growing number of organizations are now qualified to assist
industrial and government groups in introducing these methods.
There are also an increasing number of universities that teach
PSP and TSP courses [2, 15, 16]. For further material on these
methods, see the other articles in this issue.

Acknowledgements
The work reported in this paper and several of the other papers

in this issue has been developed at the SEI with the support of the
Department of Defense. Many people have contributed to this work,
but I particularly thank those who reviewed and commented on this
paper: Eileen Forrester, Don McAndrews, Jim McHale, Julia
Mullaney, Mark Paulk, and Bill Peterson.

References
1. Paulk, Mark C. et al, The Capability Maturity Model: Guidelines for

Improving the Software Process. Reading, Mass. Addison Wesley, 1995.
2. Humphrey, Watts, A Discipline for Software Engineering. Reading,

Mass., Addison-Wesley, 1995.
3.Dyer, Jean L, Team Research and Team Training: a state-of-the-

art review, Human Factors Review, 1984, The Human Factors
Society Inc., pp. 286, 309.

4.Shellenbarger, Sue, To Win the Loyalty of Your Employees, Try a
Softer Touch, The Wall Street Journal, Jan. 26, 2000, page B1.

5.Cummings, Thomas G., Self-Regulating Work Groups: A Socio-
Technical Synthesis, Academy of Management, vol. 3, no. 3, July
1978, p. 627.

6.DeMarco, Tom and Lister, Tim, Peopleware, Productive Projects
and Teams. New York: Dorset House Publishing, 2nd. Ed. 1999.

7.Katzenbach, Jon R., and Douglas K. Smith, The Wisdom of
Teams. Boston, Mass. Harvard Business School Press, 1993, p. 3.

8.Mohrman, Susan Albers, Designing Team-Based Organizations,
New Forms for Knowledge Work. San Francisco: Jossey-Bass
Publishers, 1995, pp. 52, 176, 279.

9.Shaw, Marvin E., Group Dynamics, The Psychology of Small
Group Behavior. New York: McGraw-Hill, 1981.

10. Stevens, Michael J. and Michael A. Campion, The Knowledge,
Skill, and Ability Requirements for Teamwork: Implications for
Human Resource Management, Journal of Management, Vol. 20,
No. 2, 1994.

11. Ferguson, Pat, Watts S. Humphrey, Soheil Khajenoori, Susan
Macke, and Annette Matvya, Results of Applying the Personal
Software Process, IEEE Computer, Vol. 30, No. 5, pp 24-31,
May 1997.

12. Hayes, Will, The Personal Software Process: An Empirical
Study of the Impact of PSP on Individual Engineers, CMU/SEI-
97-TR-001.

13. Humphrey, Watts, Using a Defined and Measured Personal
Software Process, IEEE Software, May 1996, pp. 77-88.

14.Webb, Dave and Humphrey, Watts, Using the TSP on the
TaskView Project, CROSSTALK, Vol. 12, No. 2, February 1999.

15. Humphrey, Watts, Introduction to the Personal Software Process,
Addison-Wesley, Reading, Mass., 1997

16. Humphrey, Watts, Introduction to the Team Software Process,
Addison-Wesley, Reading, Mass., 2000.

About the Author
Watts S. Humphrey joined the Software
Engineering Institute (SEI) of Carnegie Mellon
University after his retirement from IBM in 1986.
While at the SEI, he established the Process
Program, led initial development of the Software
Capability Maturity Model®, and introduced the
concepts of Software Process Assessment and

Software Capability Evaluation. Prior to joining the SEI, he spent
27 years with IBM in various technical executive positions such as
management of IBM commercial software development, including
the first 19 releases of OS/360. He holds graduate degrees in physics
from the Illinois Institute of Technology and business administration
from the University of Chicago. He is an SEI Fellow, an ACM
member, an IEEE Fellow, and a past member of the Malcolm
Baldrige National Quality Award Board of Examiners. He has pub-
lished several books and articles, holds five patents, and received an
award for SPI leadership and innovation from the Boing Corp.

SEI, Carnegie Mellon University
4500 5th Ave.
Pittsburgh, Pa. 15213-2612
E-mail: watts@sei.cmu.edu

June 2000 www.stsc.hill.af.mil 7

Dozens of books address the concept
of software risk management and, it
seems, there are even more software tools
than books on this topic. Risk manage-
ment tools can be as simple as a list of
risks brainstormed during the start of a
project and reviewed occasionally. They
can also be as complex as a 100-page Risk
Management Plan with risks and their
associated prioritization, likelihood,
impacts and mitigation strategies, along
with a Web-based risk browser to track
the plan. Still, the basic approach for all
of these methods is the same: risks are
identified early in the project, planned
for, monitored, and handled. TSP takes a
middle-of-the-road approach to risk man-
agement, doing what makes sense for the
project with as little paperwork and tool
upkeep as possible. Although the
approach was originally designed for
teams of fewer than 20 people, the prin-
ciples can be applied to much larger
groups, with equally effective results.

Identification
The TSP handles a project the way

you eat an elephant—one bite at a time.
The TSP team estimates projects in a top-
down approach, using overall size and
average team productivity to determine
overall schedule. This schedule is broken
into manageable phases and the phase cur-
rently being worked is thoroughly estimat-
ed and tracked using a bottom-up
approach wherein each engineer estimates
his or her own schedule using individual
data. Each time a phase begins, whether at
the start of the project or at the transition
from one phase to the next, there is a
project launch (Figure 1). At these launch-
es, the tasks for the current phase are thor-
oughly defined and each task is estimated
using the rigorous methods of the Personal
Software Process (PSPSM). These estimates
are used to produce a detailed next phase
earned value plan, against which the proj-
ect will be tracked and managed. Project
goals, quality criteria and risks are also
identified during the launches.

A portion of each launch is dedicated
to brainstorming risks the project may
face. These sessions can last from a dozen
minutes to a few hours, depending upon
the size of the project and the team’s
knowledge and maturity. The risks that
are identified are serious problems that
may occur during the life cycle of the
project, not just a list of all maladies that
are possible. For example, it makes little
sense to manage the risk of your software
being destroyed by a bomb or abducted
by aliens unless, of course, you work for
Special Agents Fox Mulder and Dana
Scully. Barring that circumstance, most
projects make a list of all the real-life
problems that can be foreseen. Some com-
mon risks identified during these meetings
include a lack of proper documentation, a
development environment that may not
support the size or type of program being
developed, an impossible schedule or

inadequate computer, office, or personnel
resources. Each risk is assigned a likeli-
hood of occurrence, a severity if it does
occur, and a person responsible to moni-
tor the risk. The TSP team assigns each
member a role, such as Design Manager,
Planning Manager, Implementation
Manager, Customer Interface Manager,
Quality Manager, Process Manager,
Support Manager, Test Manager, or Team
Leader. Typically, the team member with
the appropriate role is assigned to monitor
a risk. For example, a risk involving nego-
tiations with the customer would be
assigned to the Customer Interface
Manager. This information is documented
so that it can be regularly referenced.

Review and Mitigation
The TSP requires a weekly status

meeting where team progress is compared
to the team plan in terms of earned value
and quality. If there are deviations from
the plan, the reasons for these deviations
can be determined and actions taken to
bring the team’s performance in line with
the plan. It is also during these weekly
meetings that the team reviews the risks
brainstormed during the launch. The team
removes risks from the list that no longer
pose a threat, while the assigned engineers
report on those that are still potential
problems. If the mitigation strategy for a
risk has failed and the risk has occurred, or
is likely to occur soon, the risk is renamed
an “issue” and immediate action is taken
to address it. The risk list subsequently
becomes a living, breathing document that
changes size and shape each week. It also
becomes a used document that helps the
team focus on risks that need to be
addressed when they need to be addressed.

Risks That Are Not
Three of the most common risks to

any project are schedule overruns,
requirements creep, and quality problems.

Managing Risk with TSP
by David R. Webb

Hill Air Force Base

One of the most important aspects of applying the Team Software Process (TSPSM) to software projects of any size is the
increased success of identifying, tracking, and mitigating risk. The Mission Planning Software Section of the Software
Engineering Division of Hill Air Force Base (TISHD), has found the TSP’s simple strategy for identifying, tracking, and
handling risks to be extremely effective. In fact, many common software project risks are managed purely by adopting the TSP.

Figure 1. Risks are identified at each TSP launch.

Launch

Relaunch

Relaunch

Relaunch

Postmortem

Initial Phase
(e.g. Requirements, Build 1)

Second Phase
(e.g. Design, Build 2)

Third Phase
(e.g. Code, Build 3)

Final Phase
(e.g. Acceptance Test)

•
•
•

•
•
•

8 CROSSTALK The Journal of Defense Software Engineering June 2000

A project properly using the TSP already
has the tools to handle these risks.

A TSP team determines its own
schedule and coordinates it with manage-
ment, marketing, and the customer, as
appropriate. While outside influences
may have strong impacts on the delivery
date of any piece of software, the TSP
team knows its productivity rates, has a
rigorous estimating process, and can con-
fidently tell management how much can
be accomplished within a given time
frame. The TSP launch is not successfully
concluded until the team and manage-
ment agree upon a list of requirements
and a schedule that is satisfactory to both
parties. Once this realistic schedule has
been determined, it is used as the basis
for measuring personal and team-earned
value and is tracked daily at the personal
level and weekly at the team level (Figure
2). Any deviations from the plan are
identified early in the project and are
dealt with by negotiating with manage-
ment and the customer. The TSP virtual-
ly eliminates schedule risks.

The TSP also requires replanning, or
at least updating, a project when the basic
assumptions of the plan change. This
means that when (not if) the requirements
change during the course of the project,
the team renegotiates schedule, delivered
functionality and, if appropriate, cost. This
becomes the new plan that the team tracks
and the requirements creep risk is effec-
tively dealt with, if not completely elimi-
nated. Another great thing about this tech-
nique is that it ensures management and
the customer are involved every step of the
way so that no one is surprised by the pro-
ject’s performance, least of all those who
are anticipating the product.

Finally, problems with quality can,
over time, be virtually erased using the
TSP. Since the quality methods used by
the TSP are based upon the strict quality
processes of the Personal Software Process,
individual engineers perform their own
extensive reviews of both detailed design
and code prior to exhaustive team inspec-
tions. Defect densities at personal reviews,
team inspections, compile and unit test,
are used as yardsticks to determine if the
finished code is of high enough quality to
be passed on to integration and system
test, or if the code should be pulled back
and reinspected or rewritten. This ensures

the quality of the code, but not always the
quality of the requirements upon which
the code is based. Often, requirement
problems are uncovered during acceptance
testing. When such defects are discovered,
the TSP team adds them to team and per-
sonal review checklists to ensure such
problems are never allowed to pass
through the process again. An experienced
TSP team can, therefore, eliminate virtu-
ally all quality risks, particularly expensive
defects found during qualification and
acceptance testing.

Some Examples in TISHD
TISHD has trained nearly 20 engi-

neers in the PSP and has launched three
separate mission planning projects using
TSP version 0.3. These projects are an Air
Tasking Order parser named TaskView [1],
an A-10 Aircraft/Weapons/Electronics
(AWE) software program, and an F-16
Block 30 AWE program. Of these three
projects, TaskView and A-10 AWE have
been using the TSP long enough for us to
draw some conclusions about the useful-
ness of the TSP and the success rate of
using the TSP risk management strategy.

TaskView
The TaskView project was the first

TISHD group to pilot test the TSP. Just
prior to the initial launch, the TaskView
customer decided to participate in an Air

Force Expeditionary Force Experiment
(EFX). This new goal required the
TaskView 3.0 product to be delivered one
month earlier than originally planned.
The team added this risk to its risk list
and assigned it to the Planning Manager.
With this in mind, the team adjusted the
plan to meet the new schedule.

As work progressed, the team-earned
value projected that TaskView 3.0 would
be delivered more than a month earlier
than anticipated, even with the new
schedule. At this point, the first risk was
closed out and another risk—that of
being too early and losing revenue—was
added to the list and assigned to the
Customer Interface Manger. The cus-
tomer was approached with the option of
receiving the product early and getting a
refund, or adding new capability to
TaskView 3.0. The customer was delight-
ed with this information and chose to
keep the current level of funding and add
in new capabilities to the software. Even
with the new functionality, TaskView 3.0
was delivered well within time to partici-
pate in the EFX experiment.

TaskView has also experienced a sig-
nificant reduction in the risks associated
with defects, as a result of adopting the
TSP. TaskView has had three major releas-
es since TISHD started working on the
project in 1997. TISHD has added new
capability and robustness to each release,

PSP/TSP

Figure 2. TSP Team Earned Value for TISHD A-10 AWE

June 2000 www.stsc.hill.af.mil 9

at times rewriting major portions of the
code to do so. Compared to data from
similar projects completed in the past
(using the TISHD CMM Level 5 organi-
zational process), the TaskView projects
have seen a substantial decrease in defects
and test time (see Figure 3 and Figure 4).

One interesting outcome of the
defect data analysis was the increase in
defect density experienced by the
TaskView 3.1 project. Although the defect
density found during Customer
Acceptance Testing was steadily decreas-
ing, defects found in earlier test phases
increased. This was of some concern to
the team, until it began to filter the list by
defect priority (Figure 4). Once that was
done, it was obvious that the TaskView
team, as it had grown more confident in
the use of the TSP, had begun to record
more development defects than ever
before; remember, TSP teams count every
defect found in every development and
test phase, including compile. However,
despite this increase in defect recording,
high-priority defects became nonexistent

using the TSP. This does not mean that
no issues were discovered during customer
acceptance testing, but the issues dealt
almost exclusively with the addition of
new requirements and limitations of the
operational environment, and were not
defects in the delivered code. Note also
that TaskView 3.1S (a special project
developed in support of another mission
planning tool) had zero high-priority
defects at every test phase.

As most software project managers are
well aware, the greatest risk to any pro-
ject’s schedule is the risk of finding defects
during test, especially final or customer
acceptance testing. The causes of these
defects are often difficult to trace and fix
and can cause significant slips in schedule.
In order to eliminate this risk, test time
needs to be reduced and become more
consistent. Although TISHD was already
seeing very low test days/thousand lines of
code rates using its Level 5 process, the
adaptation of the TSP reduced the test
time further and made the variation much
smaller (see Figure 5).

A-10 AWE
While the TaskView project was still

evaluating the effectiveness of the TSP, the
A-10 AWE team decided to use some of
the concepts (planning, tracking, weekly
updates) without employing the rigorous
techniques of the Personal Software
Process. Each A-10 AWE engineer was
provided a spreadsheet for each code
change he or she was working. These
spreadsheets covered the estimate of size
(lines of code or LOC) and time (days) as
well as the actuals for LOC and time.
Time was measured at distinct milestones,
such as inspections, unit test, and code
check-in. An earned value plan was created
from the estimates provided by the engi-
neers and used to refine the schedule.
Although the engineers were not required
to be PSP trained, all any engineer had to
do, after estimating, was to check a box on
the tracking spreadsheet once a milestone
was reached. The spreadsheet would calcu-
late how long the tasks took and export
that data to the earned value tracking tool.

Sounds like a good plan, right? It did
not work very well.

Estimates were often wildly inaccu-
rate. Tracking was not consistent. Entire
new capabilities would move from 0 per-
cent complete to 100 percent complete
overnight. All of these problems gave the
team a false impression of the team-earned
value. The earned value was, therefore, not
trusted and soon ignored by most of the
team members. The team reverted to the
higher-level tracking process used by non-
TSP projects in TISHD, which were suffi-
cient to prevent the team from missing
schedule. (Note that TISHD is part of a
SW-CMM® Level 5 organization, and
typically meets cost and schedule estimates
anyway.) However, any advantage of using
the TSP-like process disappeared.

The one thing that did work, was
risk identification and tracking, the
process that we copied directly from the
Team Software Process.

For example, the A-10 AWE team
determined that a required piece of core
software, developed by a third-party ven-
dor, might not be released in time to
meet schedule. This risk was assigned a
high likelihood and a high impact. A mit-
igation plan of reverting to an earlier
release of the core was determined and an
engineer was assigned to track the status

Managing Risk with the Team Software Process

Figure 3. TISHD Total Defect / Non-TSP Projects vs TaskView

Figure 4. TISHD High Priority Defects / Non-TSP Projects vs TaskView

10 CROSSTALK The Journal of Defense Software Engineering June 2000

of the core software. As it turned out, the
third-party software did slip its schedule
by several months, which would have, in
turn, caused our software to slip its
release date had we not planned for this
risk early in the program. Due to early
risk identification, planning and tracking,
the A-10 AWE was able to mitigate this
risk and revert to the earlier version of
the core software.

One risk that was not identified was
the hazard of using the TSP-like process,
instead of the TSP. During project post-
mortem, it was determined that the reason
the modified process did not work as well
as a traditional TSP team was that the
engineers were not PSP trained and did
not understand how the data they were
collecting was being used. At that point,
we determined to use TSP on the next A-
10 AWE project and immediately sched-
uled a PSP course for those engineers.

The results in earned value tracking
alone were astounding (see Figure 3).
Code was accurately estimated and
tracked; it was very easy to see how close to
our schedule we were running. TISHD
learned an important lesson: TSP does not
work well without the proper data, and
that data is almost impossible to gather
without the rigors of the PSP. That is one
risk TISHD has completely eliminated.

Conclusion
While there are many tools for soft-

ware risk management, TISHD has
found that utilizing the planning, track-
ing, and defect prevention techniques of
the Team Software Process is a simple and
effective way to identify, track, and miti-
gate most software project risks. In

TISHD we have learned that, over time,
TSP teams become experts at risk mitiga-
tion and management; they also become
very good at writing code that is nearly
free of defects, and that TSP is a risk mit-
igation strategy any software project
should strive to adopt.

Reference
1. Webb, David and Humphrey, Watts S.

Using the TSP on the TaskView Project,
CROSSTALK, February 1999, pp. 3-10.

PSP/TSP

Figure 5. TISHD Test Duration / Non-TPS vs TaskView

About the Author
David R. Webb is a
Technical Program
Manager for the Mission
Planning Software sec-
tion at Hill Air Force
Base, Utah, and a part-
time visiting scientist for

the Software Engineering Institute (SEI).
He is a member of the Software Division
of the Technology and Industrial Support
Directorate (TIS), which was assessed a
CMM® Level 5 organization in July
1998. He has 12 years of technical and
program management experience with
software in the Air Force. Webb also has
spent five years as a software test engineer,
two years as a software system design engi-
neer, and three years as a member of TIS’s
full-time Software Engineering Process
Group (SEPG). He is a SEI-certified PSP
instructor. He received a bachelor’s degree
in electrical and computer engineering at
Brigham Young University.

OO-ALC/TISHD
6137 Wardleigh Road
Hill Air Force Base, Utah 84056
Voice: 801-775-2916 DSN 775-2916
E-mail: david.webb@hill.af.mil

Coming Events
June 4-7

9th Biennial IEEE
http://cefc2k.aln.fiu.edu

June 4-11
22nd International Conference on Software

Engineering
www.ul.ie/~icse2000

June 5-7
2000 IEEE International Interconnect

Technology Conference
www.his.com/~iitc

June 10-14
ISCA2000: 27th International Symposium

on Computer Architecture
www.cs.rochester.edu/meetings/ICSA2K

June 18-22
ICC 2000—IEEE International
Conference on Communications

www.icc00.org/

July 11-13
5th Annual Conference on Innovations and
Technology in computer Science Education

www.cs.helsinki.fi/events/iticse

July 16-18
7th IEEE Workshop on Computers in

Power Electronics
www.conted.vt.edu/compel.htm

July 16-19
Congress on Evolutionary Computation

http://pcgipseca.cee.hw.ac.uk/cec2000

August 6-11
6th Annual International Conference on

Mobile Computing and Networking
www.research.telcordia.com/mobi-

com2000

August 7-8
IEEE Workshop on Memory Technology

Design and Testing
http://pcgipseca.cee.hw.ac.uk/cec2000

August 17-19
Designing Interactive Systems (DIS)

September 10-12
Collaborative Virtual Environments (CVE)

September 10-14
Very Large Databases (VLD)

Visit www.acm.org/events for infor-
mation on VLD, DIS, & CVE 2000.

April 29-May 3, 2001
STC 2001: The Premiere Department of
Defense Software Technology Conference

www.stc-online.org

June 2000 www.stsc.hill.af.mil 11

Advanced Information Services Private Ltd. is the Indian sub-
sidiary of Advanced Information Services Inc. of Peoria, Ill. This
case study is based on data from two projects executed by the sub-
sidiary company in Chennai, India. Engineers in both projects
have been trained in the PSPSM. They used PSP methods to plan
the critical design/implementation/test phases of the projects.

Project Domain, Technical Environment,

and Engineers’ Qualifications
The projects’ mission is to build Personal Productivity

System (PPS), a commercial tool to automatically log time, track
defects, maintain data, do calculations, and simplify routine tasks.
Personal Planning Assistant (PPA 1.0), and Personal Quality
Assistant (PQA 3.0) are two subsystems described in this article.

The target environment is a two-tier client server architecture
with a Visual Basic client application for Windows 95, 98, NT,
and SQL Server (under Windows NT) for the server.

The engineers’ experience level ranged from one to two years.
Project managers had three to five years’ experience. All have a
master’s degree in computer science or computer applications. All
are trained in PSP, software inspections, managing the software
process, and requirements engineering—the required software
engineering training for AIS engineers.

Development Strategy
Following the requirements and high-level design phases,

PPA 1.0 had 13 components to be developed and PQA 3.0 had
four components.

PPA 1.0 was divided into three incremental development
phases. A project manager and three engineers participated in
Increment 1 development. Two more engineers were added for
Increment 2. A project manager and three engineers participated
again in Increment 3 development. PQA 3.0 team consisted of a
project manager and three engineers.

All engineers were responsible for creating PSP plans for their
components. Project managers also participated in development.

The sizes of all 13 modules of PPA 1.0 are given in Table 1.

PPA1.0 Increments 1 and 2 — Delivery Commitment
What must happen and What will happen

The Chennai team had committed to deliver PPA 1.0
(Increments 1 and 2) to the AIS Development Group in the
U.S. by Aug. 1, 1999—four weeks prior to the SEI Symposium.
The AIS Development Group had planned to demonstrate the
PPS product (PPA1.0 Increments 1 and 2 and PQA3.0) at the
Symposium.

PPA 1.0 Increment 1 was completed four weeks behind
schedule against a planned schedule of 16 weeks. Analysis of the
Increment 1 Defects by Process chart (See Figure 1.) showed that
engineers found and fixed more defects through team inspections
and test than through personal reviews.

Planned test defects/KLOC were high for PSP trained engi-
neers; actual test defects/KLOC were even higher (see Table 2).

About half of the slippage in schedule was directly the result
of engineers spending more time than planned in test and
rework. Their plans simply did not include enough time for early
defect removal through personal design reviews, code reviews, and
team inspections.

The engineers’ PSP Plan Summary indicated that they had
spent time on post-mortem when their modules were completed.
Asked what they did in the post-mortem phase, the engineers said
that they only had time to gather the PSP data for inclusion in
the organization database, and that they did not have time to ana-
lyze the data and adjust the plans for Increment 2.

As the acting Development Manager, I reviewed the plans for
Increment 2. I realized that the plans were based on the team’s
perception of what must happen (i.e. we must ship by August 1).
It was obvious that if the team planned Increment 2 similarly as
in Increment 1, what would happen is that the schedule would
slip again and we would likely miss our dates.

Engineers Not Using Known Effective Methods

Clearly, the engineers were not using the disciplined methods

Making Quality Happen: The Managers’ Role
Girish Seshagiri

Advanced Information Services (AIS)

When managers insist that their professional employees rigorously apply the recognized disciplines of their fields, they will
do better work [1]. In this paper, we provide data from two AIS projects, Project A and Project B, that demonstrate how
managers profoundly affect the way their engineers behave and how managers can motivate the engineers to apply the
disciplined methods they have learned. Project B data is used here as control data. We conclude with lessons learned.

Table 1. Module Size

Table 2. Defects/KLOC

Module Name Module Size (Lines of Code)
Estimate Size 2107
PROBE 2043
Plan Summary 1 1738
Plan Summary 2 1154
Track Time 1914
Track Size 4250
Size Range 965
Object Data 1123
Standards & PQA Update 1286
Interruptions & Tool Bar 403
Defect Analysis 850
Plan Analysis 532
Quality Analysis 714

Test Phase Plan Actual

Unit/Integration/System 4.8 6.2

Acceptance 0.7 1.4

12 CROSSTALK The Journal of Defense Software Engineering June 2000

they learned in the PSP training. They knew that the PSP Plan
Summary gave them useful data on their performance and they
should spend time in post-mortem to improve the process and set
personal goals.

They knew that they should strive for at least 80 percent
yield, and Appraisal/Failure Ratio (A/FR) should be greater than
1.5 and close to 2.0. [2]. Yet, their planned A/FRs were less than
1.0. (See Table 3 for definition of PSP quality measures.)

The engineers were also aware of AIS Chennai’s business
goals of defect-free delivery of the PPS product on time.

Changing the Engineers’ Behavior

I realized that I must direct the change in the engineers’
behavior. I must insist that they rigorously apply known PSP
principles in their work. If I did not, nobody else would. In a
team meeting I reviewed the PSP data for size, appraisal hours,
failure hours, and test defects for each of the four modules in
Increment 1. I used charts showing relationship of yield and
Lines of Code (LOC)/hour (Figure 2) and A/FR and test defects.
(Figure 3). It was not possible to draw statistically valid conclu-
sions with only four data points. It was not necessary. The engi-
neers got my message. Schedules were important. But a quality
process is how we measure our success.

Goal Setting

I involved the project manager and engineers to set process
quality goals for Increment 2:
Goal 1: Reduce test defects/KLOC

Plan for A/FR between 1.5 and 2.0
Goal 2: Increase effectiveness of design and code reviews

Plan for reviews of 100–150 LOC/Hour
Goal 3: Increase process yield

Plan for yields greater than 80 percent

PPA1.0 Increments 2 and 3 — Quality is free
The engineers revised their plans. They planned for more

appraisal time and less failure time. They increased their post-

mortem time for analysis and process improvement. They
increased total development staff hours by less than 10 percent.

Increment 2 was completed on schedule. The team analyzed
the data at the conclusion of Increment 2. Process data showed
improvement in measures such as yield, A/FR, and test
defects/KLOC. Cost of quality remained nearly the same.

The team set more aggressive goals for Increment 3. They
planned for A/FRs greater than 2.0, process yield greater than 90
%, and test defects/KLOC less than 1.0. Process data showed fur-
ther improvements in quality measures. Cost of quality declined.

We present the results in charts that accompany the Web
version of this paper. The data in the charts are averages of four

PSP/TSP

Table 3. Definition of PSP Quality Measures

Defects Found by Process
PPA Incr 1

0

5

10

15

PS
P

De
sig

n
Re

vie
w

De
sig

n
Ins

pe
cti

on

PS
P

Co
de

Re
vie

w

Co
m

pil
e

Co
de

Ins
pe

cti
on

Un
it (

Co
mp

)
Te

st

Int
eg

ra
tio

n
Te

st

Sy
ste

m
Te

st

Ac
ce

pta
nc

e
Te

st Po
st

De
liv

er
y

Life Cycle Phases

To
ta

l D
ef

ec
ts

/K
 L

O
C

Yield Vs A/FR

66

68

70

72

74

76

78

80

0 0.2 0.4 0.6 0.8 1

A/FR

Yi
el

d(
%

)

A/FR Vs Test Defects

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

A/FR

Te
st

 D
ef

ec
ts

 /
KL

O
C

Figure 1

Figure 2

Figure 3

Measure Formula

Failure Hours Total time spent in test (compile time

not applicable in Visual Basic)

Appraisal Hours Total time spent in design and code,

personal reviews and design, and code

team inspections

Failure Cost of Quality 100 × (Failure hours)/Total development

hours

Appraisal Cost of Quality 100 × (Appraisal hours)/Total development

hours

Total Cost of Quality Appraisal COQ + Failure COQ

A/FR Ratio Appraisal COQ/Failure COQ

Overall Process Yield 100 × (defects removed before test)/

(defects injected before test)

Personal Review Yield 100 × (defects removed in personal

reviews)/(defects removed in personal

reviews + escaping from personal reviews)

vs.

vs.

June 2000 www.stsc.hill.af.mil 13

modules in Increment 1, six in Increment 2, and three in
Increment 3 of PPA 1.0 and four modules in PQA 3.0.

PQA 3.0 is used as control group since it did not have the
same executive leadership to direct and change engineers’ behav-
ior by defining criteria for success and setting aggressive individ-
ual and team goals.

Lessons Learned
1. When engineers use PSP on a real project following classroom

training, their plans continue to rely on what they are most com-
fortable with. More time for test and rework and less time for
reviews and inspections for early defect removal.

2. Management support is most critical during the transition from
classroom to actual industrial use of the PSP.

3. Management support should include active participation in data
analysis, goal setting, and process improvement.

4. Schedules dictate what must happen. Engineers’ personal data
show what will happen.

5. Managers and engineers should jointly make commitments based
on what will happen and learn to manage by data.

6. For incremental development to be effective, managers and
engineers should spend post-mortem time to adjust and improve
the process.

7. PSP Cost of Quality measure provides compelling evidence that
quality is free.

8. PSP enables alignment of engineers’ personal goals with business
goals for defect-free software delivery on time.

9. For quality to happen, managers and engineers must have mutual
trust.

10. Engineers tend to improve their performance over time when
they use a disciplined process and management is supportive.

11. We still have a long way to go to realize the full human
potential in software development.

Acknowledgments
Special thanks to the AIS Chennai software engineers Antony

Sudhakar, D. Giridharan, R. Kailasam, K. Manicavel, Paul Jaison,
R. Suresh B. Sivapriya and AIS Chennai project managers M.
Jeyalakshmi, and S. Srinivas. Thanks also to R. Soudarsanan in
Chennai for document preparation and Rafiuddin Syed in Peoria
for review of the draft.

References
1. Humphrey, Watts S. Managing Technical People, Addison-Wesley,

Reading, MA, 1997.
2. Humphrey, Watts S. A Discipline for Software Engineering,

Addison-Wesley, Reading, MA, 1995.
Please refer to the Web version of this paper [available at

www.stsc.hill.af.mil] to see the complete set of module charts.

Making Quality Happen: The Managers Role

About the Author
Girish Seshagiri is the CEO of Advanced Information Systems
Inc., a winner of the 1999 SEI/IEEE Computer Society Software
Process Achievement Award. He is also the acting Executive
Director and co-founder of The Watts Humphrey Software Quality
Institute (SQI) located in Chennai, India. He received his master’s
of science degree in physics from the University of Madras and his
master’s degree in business administration in marketing from
Michigan State University.

Advanced Information Services Inc.
1605 W. Candletree Drive, Suite 114
Peoria, Ill. 61614
Voice: 309-691-5175, ext. 217
Fax: 309-691-5440
E-mail: girish@advinfo.net

http://stsc.hill.af.mil/ptech/pt_art.asp
This site by the Software Technology Support Group features its Process
Team's favorite CROSSTALK articles. It links readers to such articles as Process
Assistance Visit: A Tool for Process Improvement; Software Process Automation: A
Technology Whose Time has Come; Air Force Policies on Attaining SEI CMM
Levels; and Continuous Process Improvement for Software: Data Definition.

www.sei.cmu.edu/publicaitons/documents/97.reports/97tr001/97tr001a
bstract.html
Personal Software Process: An Empirical Study of the Impact of PSP on
Individual Engineers. This report documents the results of a study that
examined the impact of the PSP on the performance of 298 software engi-
neers. The report describes the effect of PSP on key performance dimen-
sions of these engineers, and discusses how improvements in personal capa-
bility also improve organizational performance in several areas.

www.cs.usak.ca/grads/vsk719/academic/856/project/project.html
The Personal Software Process in Meta-CASE CMPT 856 Project by Vive S.
Kumar has links to PSP-related topics such as an Overview of PSP
Principles of Meta-CASE Systems, How to Incorporate PSP in Meta-
CASE, and Metrics for PSP.

http://archives.distance.cmu.edu/psp/pre_May
The Personal Software ProcessSM: A Practitioner's Starter Kit is a course
intended for practicing software engineers and their managers. It intro-
duces the highest-leverage metrics of PSP. Students watch nine lectures,

do seven programming problems, four reports, and read selected chapters
from Watts Humphrey's book, A Discipline for Software Engineering.

http://psp.distance.cum.edu/oct/resource/online.html
This site offers a list of online readings related to PSP.

www.sei.cmu.edu/psp/Results.htm
This is a Software Engineering Institute site with links to sites such as
Defects vs. Experience (programs 1 and 10), Yield vs. Program Number,
and Lines of Code per Hour Improvement.

http://emhain.wit.ie/!doconnor/lectures/se3/project/team14/
slides/psp1.htm
This gives an introduction and the seven progressive steps of PSP, such as
Baseline Personal Process, and Personal Quality Management.

www.computer.org/computer/co1997/r5924abs.htm
This is an article by Pat Ferguson, Watts Humphrey, Soheil Khajenoori,
Susan Macke and Annette Matvya that appeared in the May 1997 issue of
Computer magazine. The article is “Results of Applying the Personal
Software Process.”

www.acm.org/pubs/citations/proceedings/cse/273133/p322-hou/
This takes visitors to the proceedings of the 1998 SIGCSE technical sym-
posium on computer science education, and to the paper, “Applying the
PSP in CSI: An Experiment.”

PSP/TSP Web Sites

FThe Software Quality Institute in Chennai, India was
recently named after Watts S. Humphrey.

So, you want to take a course on the
Personal Software Process (PSP). Or, you
do not want to take a course on PSP, but
your management is forcing you. Either
way, there are some things you should
know before taking the course.

Definitions
PSP is a combination of personal

software development processes as well as
data collection and use suggestions
intended to help the programmer develop
software with better quality and pre-
dictability. TSP is a series of processes
that incorporate the ideas of PSP into a
team environment.

Prerequisites
First, make sure you are familiar with

several basic functions that your develop-
ment system provides. You will need to
know how to code or call typical math
functions such as square roots and natural
logarithms. You will also need to be able to
create, open, close, and access files; write
to the computer monitor, and read from
the keyboard. Make sure you know how to
create and use linked lists. Using linked
lists is a requirement dropped by some
instructors who allow students to use
arrays instead. Not all teachers are so
lenient; mine was not. There is also a small
group of people who prefer self-torture
and will not use the equations provided by
the teachers on blind faith. If you fall into
this group and need to understand and
believe the equations before using them,
your preliminary knowledge will also
require a basic understanding of statistics
and its notation and calculus' concept of
numerical approximation to integration.

Lots of Time
The next point—and probably the

biggest—is the amount of time the course
will take. There are different ways of for-

matting the course. The course is usually
taught in two, one-week sessions. The first
week of this format requires about 4.5
hours of lecture each day and the develop-
ment of six programs, a coding standard, a
Line of Code (LOC) counting standard,
and a mid-term report. The second week
requires about 4.5 hours of lecture each
day as well as the development of four
programs and a final report for the course.

If you are lucky enough to arrange a
more lenient format, the homework will
be the same, but the lecture time might
be reduced to about three hours per day
and there will be more days available to
do the homework. My class was broken
into four sessions. The first session was
three days, the second and third sessions
were four days, and the fourth session
was three days (14 days vs. 10 days).

Maybe you are the brightest person
and best programmer in your group. If
you are, you can probably plan on
attending the lectures and completing
most of your programming homework in
close to the same amount of time you
would typically spend at work. You will
probably need extra time for developing
the coding standards, writing the sixth
program, and writing the reports. One of
my colleagues, whom I would put in this
category, estimates he spent about eight
total extra hours.

If you are one of the average program-
mers in your group, the amount of extra
time you spend at work will depend on
the amount of time your instructor spends
on the lectures. Our lectures typically took
about three hours each day. The time
spent on just the 10 programs was an aver-
age of 62.6 hours per student. Add an
average of 6.26 hours for each program to
the lecture and you are putting in a lot of
extra hours. Bear in mind that this docu-
mented time is only the task time and
does not include times for interruptions

such as taking phone calls, using the rest
rooms, getting a drink, etc. You can typi-
cally plan on doubling the task time to get
the overall time spent. Some programs are
harder and some easier than others are, so
the time you spend each day will vary. I
was an average student and I spent about
30 extra hours working on the programs.
However, I was not average on my time
spent for the reports. My background is in
the metrics arena, so I spent more than
average time looking at all my data and
trying to draw different conclusions for
my reports. My mid-term report took
about six total hours and the final report
took about 20 total hours. (I also had 14
days to do this. If your course is taught in
10 days, the amount of extra time required
will probably increase by about 32 hours.)

The programmer who has not been
doing much programming lately or just is
not that comfortable with it might want
to avoid this class. Instructors have told
me that they have had classes where at
least one student spent months trying to
develop the programs. The homework is
not easy.

Implementation
After the course is over and the class

has graduated, the process does not roll
simply into the work environment. My
class finished in November 1999, and four
months later most of the students were
still struggling to implement PSP and TSP
into their newest project. My organization
even has an internal tool that we devel-
oped to help automate the process, but the
tool often creates as many headaches as the
manual process. There have been numer-
ous discussions on how work breakdown
structures should be organized and how
they should be used with the tool. Also,
the tool merges with another SEI PSP tool
and between the two of them, data is often
lost and/or misrepresented.

PSP: Fair Warning
by Elizabeth Starrett

Air Force Mission Planning System

The Personal Software Process (PSP)SM Course is difficult and time consuming. I started working in a group that had
already been trained on PSP and was using the Team Software Process (TSP)SM. I attended the PSP training with a
second group from my section that had not had the training and was supposed to start implementing PSP and TSP
on its upcoming project. This article discusses some of the difficulties the students experienced during and after taking
the course. It also discusses the results experienced by my group already using TSP and the hope that life can get better.

14 CROSSTALK The Journal of Defense Software Engineering June 2000

Without TSP, PSP is not likely to be institutionalized. Six
months after PSP was first taught in my organization, the
instructor called all the students to see who was using it. Only
one student was still using it. When the instructor called SEI
asking for suggestions on how to institutionalize PSP, my current
work group became a beta test site for TSP. The test results were
impressive; both PSP and TSP are institutionalized in my group.

Results
After all this struggle and all this work, do the PSP and TSP

processes really help? Opinions vary. Several in the group that
took the class with me agree the process portion of PSP is useful,
but they do not agree all the data are useful and certainly not
worth the effort to collect and try to use. This might be because
they are not used to using the tools and will become accustomed
to them with more time. Then again, they might not.

Figure 1 is a technology adoption curve that shows produc-
tivity decreases as any change is implemented. Learning a new
way of doing things takes time. However, the theory is that a
worthwhile change will cause productivity to increase to a point
that overcomes the initial loss in productivity. Will the group
now starting PSP make great and glorious gains? I do not know.

My work group is one of the first to implement the TSP
and it received the division's quality award for the excellent
results of the software released on budget, on schedule, and with
minimal defects found in test. My group believes in using PSP,
but opinions differ on the usefulness of some of the data. As
time goes on, we may stop collecting some of the PSP measure-
ments that we are not finding useful. My group agrees that the
data collection process needs some sort of automation because a
manual process is too cumbersome.

While the initial implementation of PSP is expensive, there is
the hope that maintaining the PSP process will cost much less.
Before coming to work in my group, I had already taken the PSP
Executive Course (about eight hours) and understood the PSP
concepts. I was able to walk into my current group and start
using its process, with a few minor errors along the way. As I took
the full PSP course, it became obvious that since I had already
had the Executive Overview (so I understood why I did what I

did) and I was already living the PSP process, I really did not
need this course. I could have acquired the same knowledge with
a brief course on the size- and time-estimating method and tool
used by PSP (PROxy-Based Estimating [PROBE] method). After
an organization’s initial training and adoption into daily business,
new people can be given the PSP executive overview, about two
hours PROBE training, and a written process to follow to have
what they need to use PSP with the rest of the group. This is
assuming the rest of the group outnumbers the new people, so
the experienced people can reasonably provide assistance. Main-
tenance has a much lower cost than the initial implementation.

Conclusion
I came to work in my current group after not developing

software for 6.5 years. I came with an open mind and a desire to
learn how to develop software using Level 5 processes. I was pro-
vided a written script of my group's software development
process and support from my team. As a result, I have enjoyed
developing code here much more than with my previous organi-
zations and I have much more confidence in the code I am
releasing to our customers. My opinion is that we are doing
wonderful work, our customers are happy, and PSP is worth-
while; but I did not pay for it either.

Notes
1.The automated PSP tool developed and used by my organization

is open source and freely available to anyone interested. The only
payments requested are feedback from the users and the sharing
of any improvements made to the software. The point of contact
for further information on this tool is Ken Raisor (E-mail:
ken.raisor@hill.af.mil).

2.There is a third group in my section that was already operating
at a Level 5 before taking the PSP course. After taking the
course, the group elected to continue using its old process
instead of adopting PSP. However, the group’s development
processes are very similar to PSP.

PSP: Fair Warning

Productivity

Time

Change
Implemented

Adjusting
to change

Productivity
Increase

Figure 1

June 2000 www.stsc.hill.af.mil 15

About the Author
Elizabeth C. L. Starrett has been a member of the
TaskView development team for the past year, sup-
porting the Air Force's Mission Planning System.
Prior to this, she was a software process improve-
ment consultant for the Software Technology
Support Center (STSC), where her duties included

leading the STSC Measurement Team. Starrett has spoken at the
Software Technology Conference, and at the Data Reduction and
Computer Group Conference, and been previously published in
CrossTalk. Prior to joining the STSC, she developed, documented,
and tested data analysis and test support software for radar and the
Peacekeeper missile, working for the Air Force and its supporting
contractors. Starrett has a bachelor's degree in electrical engineering
from Utah State University.

OO-ALC/TISHD
6137 Wardleigh Road
Hill AFB, Utah 84056
Voice: 801-775-2838 DSN 775-2838
Fax: 801-775-2541 DSN 775-2541
Internet: beth.starrett@hill.af.mil

16 CROSSTALK The Journal of Defense Software Engineering June 2000

The Test Program Set and Industrial Automation Branches
of the Oklahoma City Air Logistics Center, Directorate of
Aircraft Management, Software Division achieved Level 4 of the
SEI CMM®)on November 7, 1996. At that time, and continu-
ing today, this software group applies several measures in the
control of its process and product output. The measures relate
to financial health, project management, workload and labor,
and process improvement (rework and productivity).
Rudimentary SPC has been applied to the measures for some
time in the form of run charts [1 and 3] (i.e., charts that graph-
ically portray measured results in chronological sequence).

Run charts are fine, they provide trend information. But in
the traditional quality application, what is expected are control
charts [1 and 3]. From classes [2 and 4], conference presentations
[5], and books [1 and 3], it is implied that you are not really apply-
ing SPC unless you are using control charts. Here is where six sigma
originates. The predominant thought is you cannot have six sigma
(translation: really good) quality unless you know the process is in
control. Understanding whether or not the process is in control
comes from the use of control charts, thus, the impetus to apply
this SPC technique to software quality control. It is our under-
standing that the software organizations attempting to apply SPC
are using data taken from product reviews, predominantly direct-
ed to the coding portion of the process. They are using defects
identified in relation to effort expended, or lines of code or func-
tion points as data for the control charts.

The application of SPC Control Charts in this article does
not focus on analysis of software defects. The following discus-
sion will illustrate how SPC can be coupled to Earned Value
indicators to provide information about the quality of project
performance. The use of SPC Control Charts then becomes a
tool in the control of software project cost and schedule.

Earned Value
The indicators from Earned Value (EV) Management,

which directly relate to efficiency of project execution, are the
Cost Performance Index (CPI) and the Schedule Performance
Index (SPI). Their definitions are:

CPI = BCWP/ACWP (where BCWP is the budgeted cost of
work performed, and ACWP is the actual cost of work performed).
SPI = BCWP / BCWS
(where BCWS is the budgeted cost of work scheduled).

For additional information and explanation concerning
these formulas and terms, please refer to [6].

These two indicators, taken together, can be used to man-
age project performance [7]. They can provide very insightful

information for managers regarding the status of their project.
As described in the referenced article [7], when the inverse val-
ues of CPI and SPI (CPI-1 and SPI-1) are compared to their
respective cost and schedule ratios and the results are paired,
one of nine recommended management actions is determined
(see Table 1). As discussed in the article [7], the management
actions are related to four possible strategies:
• Adjusting overtime or number of employees.
• Realigning employees to increase efficiency.
• Reducing performance requirements.
• Negotiating additional funding or schedule.

With this background, the Earned Value indicators, CPI-1

and SPI-1, were chosen for SPC application. One very good fea-
ture of these EV indicators is they are normalized. Regardless of
software project conditions (e.g., size of project, experience of
staff, software engineering environment, programming language,
etc), their ideal value is 1.0. Because they are normalized, many
of the issues with applying SPC to software, such as variability
and homogeneity of the data, are avoided.

Statistical Process Control
Software project managers normally assess their project sta-

tus on some periodic basis. In our organization, we perform
project reviews monthly. The project data for CPI and SPI is
aggregated from the individual developers, then computed,
charted and analyzed monthly along with several other indica-
tors. Because the set of project data for analysis of each indica-
tor (CPI-1 and SPI-1) has only one data point per month, the
type of SPC Control Chart selected is XmR, or individuals and
moving range [1 and 3].

Statistical Process Control Meets Earned Value
by Walt Lipke and Jeff Vaughn

Oklahoma City Air Logistics Center

Levels 4 and 5 of the Software Engineering Institute Software Capability Maturity Model (SEI CMM®) imply the applica-
tion of Statistical Process Control (SPC) to software management. SEI staff members have published a book [1], and are
teaching a course [2] on the subject. Several software organizations are trying to apply SPC to quality control. This article
expands the area of application. It presents an approach for software production management (i.e., cost and schedule control.)

Table 1. Management Actions

CR vs. SR vs.
CPI - 1 SPI- 1 Management Actions

Green Green Reward Employees

Green Yellow Increase OT

Green Red Increase OT or People

Yellow Green Decrease OT

Yellow Yellow Review & Adjust Assignments

Yellow Red Adjust Assignments; Consider Negotiation (Schedule)

Red Green Decrease OT or People

Red Yellow Adjust Assignments; Consider Negotiation (Funding)

Red Red Negotiation (Funding/Schedule/Rqmts); Fire Manager

Software Engineering Technology

June 2000 www.stsc.hill.af.mil 17

For this control charting method, the individual values of
monthly project performance are plotted in their sequential
order. The average of all the values is calculated and, likewise,
shown. upper and lower natural process limits (UNPL and
LNPL) are also shown as distinctive lines on the chart. These
lines are computed to be the six sigma limits of the process
under review. Statistical theory provides methods to calculate
the UNPL and LNPL based upon the dispersion of the moving
range (mR) [1 and 3]. For the application of SPC presented
here, the differences between the successive monthly values for
CPI-1 and SPI-1 become the data for the mR analysis.

Just as for X, the moving range is graphed. Data points are
plotted in proper monthly sequence, with the computed average
value of mR. As with UNPL and LNPL lines shown on the
Individuals chart, the UCL and LCL are displayed as lines on the
mR chart. As for UNPL and LNPL, statistical theory provides
computational means for determining UCL and LCL values.

The formulas for calculating the process, or control, limits
(the six sigma values) of the XmR charts are available in the cited
text references. In our application, because the adjacent X data
points are paired to form the mR data, the subgroup size (n) is
said to be two. Knowing n=2, the values of the constants
required by the formulas are determined from the control chart
tables [1 and 3]: d2 = 1.128, D3 = 0, D4 = 3.268.

An example of the XmR chart is illustrated by Figure 1.
Note, on the Individuals chart there is another line in addition
to those for the average value of X, UNPL and LNPL. This line
is labeled USL (i.e., the Upper Specification Limit). The USL is
not derivable from the data; it is a performance value, or con-
straint, that the process is not to exceed. A considerable amount
of subsequent discussion concerns USL and its value in relation
to “X-bar,” or the average value of X, and the UNPL.

Analysis/Interpretation
The successful project manager must continually ask, “Can

the project be completed if it continues performing as it has?”
SPC application to CPI-1 and SPI-1 can help answer the ques-
tion. Comparing the X-bar values of these EV indicators to the
planned performance (i.e., to the value of 1.0) provides infor-
mation about current and future performance for the project. If
the value is 1.0 or less, then the project is performing well and
can be expected to complete within its planned cost and sched-
ule. If it is greater than 1.0, then there may be trouble requiring
management attention.

Now we are ready to discuss the upper specification limit,
or the process constraint, mentioned earlier. The USL for cost is
the cost ratio (CR), while for schedule it is the schedule ratio
(SR). The cost ratio is defined as the total funding available for
the project divided by the planned value (in EV terminology,
budget at completion, or BAC). The schedule ratio definition is
the negotiated period of performance divided by the planned
period of performance. The value of both ratios may exceed 1.0;
the portion of the ratio in excess of 1.0 establishes the amount
of management reserve available for handling project risks [7].

Comparing the appropriate X-bar value to its respective USL
(i.e., CPI-1 to CR, and SPI-1 to SR) provides information to the
project manager as to whether or not the project is executable if

present performance continues (see Figure 2). This comparison is
akin to the SPC analysis of process capability. In the manufactur-
ing application, if UNPL and LNPL are within the USL and
LSL, the process is said to be capable. If the USL, or LSL, are
within the UNPL, or LNPL, calculations can be made to deter-
mine the probability of producing defective products. Corrections
to the process are sought to minimize the output of defectives.

The interpretation of the SPC application of process capa-
bility to software project management, and the EV indicators
CPI-1 and SPI-1, is somewhat different from the description
given for manufacturing (see Figure 3). The project can have
defective monthly performance results and still be in good shape.
The process can be expected to achieve satisfactory results if the
average value of CPI-1, or SPI-1, is less than the USL (cost or
schedule ratio). Besides determining process capability, there is

Statistical Process Control Meets Earned Value

months

months

CPI-1

or
SPI-1

Moving
Range

Individuals (monthly data) UNPL (value)

 (value)

LNPL (value)

UCL (value)

mR (value)

Adjacent values |xi - xi-1| (monthly data)

i=1
i=k

i=k

i=2

USL (value)

x

Figure 1. XmR Example

– Can the Process
Do the Job?

– What’s the
probability of
failure?

– What’s the
expected monthly
performance
extreme?

x LNPLUNPLUSL

(CPI -1 & SPI -1)

3σ 3σ

Normal Distribution

m
on

th
s

1.0
(Cost & Schedule Ratio)

Figure 2. Process Capability

SAFE SAFE, But …
Greater dispersion
means must have
more reserve
to be safe.

RISK

Is Risk
Acceptable?

3σ
3σ

3σUSL (Ratio) = UNPL = UNPL

= UNPL

x
x

x

Risk

Figure 3. SPC Analysis/Interpretation

18 CROSSTALK The Journal of Defense Software Engineering June 2000

PSP/TSP

other interesting and useful information from the SPC analysis;
the probability of project failure can be determined, along with
the expected monthly performance extreme. The UNPL value is
the expected performance extreme. The portion of the normal
distribution that exceeds the USL quantifies the risk of failure.

A few other observations concerning Figure 3 can be made.
If UNPL equals USL, the project performance could be termed
safe (i.e., the risk of failure is nil). If 3 sigma is large with respect
to X-bar, then there is a large amount of dispersion (mR) in the
monthly performance. To be safe with large dispersion requires a
greater amount of management reserve. To be competitive, it is
very advantageous to minimize the UNPL and move it towards
perfection (i.e., the value 1.0). The risk, or probability, of non-
performance should be minimized. By decreasing risk and, thus,
management reserve, a company can decrease its bid price, and
increase its chance of contract award. Also, risk can be planned
for a project. The project can be managed to that amount of
risk. Often that is what is done to win the bid. But, without
using SPC, the bidder does not know his chance of failing. If
the bidder plans no Management Reserve, his probability of achiev-
ing the project plan is only 50 percent. This point is easily seen
from Figure 3 by lowering USL until it equals the planned per-
formance of CPI-1 or SPI-1 (i.e. 1.0). Even if the developer has a
very good process and the process variability is minimal, with-
out planned reserve, his chance of achieving cost and schedule is
only 50 percent. Fifty percent is not very good odds if the com-
pany wants to stay in business and make money.

Project Manager Use
Earlier, we alluded to the application of SPI and CPI in

building a project plan. Past statistical performance can be used
to build a risk strategy leading to the requirement for manage-
ment reserve. The following discussion, however, will focus on
project performance instead. Project performance evaluation is
simple and is very similar to the description given in reference
[7]. The evaluation for the SPC application to the inverse of
CPI and SPI is a comparison of the average values to the
planned value (1.0) and the USL (cost and schedule ratios). The
evaluation criteria are shown in Table 2. If the X-bar value is less
than or equal to 1.0, the project can be expected to complete as
planned. If the value is greater than 1.0, but less than or equal
to the USL, then the project can be expected to complete with-
in its allocated cost and schedule. Of course, in this range of
performance some of the management reserve is being con-
sumed by execution inefficiency. Finally, if the X-bar value is
greater than the USL, project failure can be expected. For ease
of recognition, the status can be color coded green, yellow, or

red. Green indicates the project can complete within the plan,
while yellow means the project can be completed within the cost
and schedule allocations (i.e., within the plan plus management
reserve), and red says failure is to be expected.

Once the color status has been determined for cost and
schedule performance, Table 1 can be used to determine needed
management action. Getting to corrective action in Table 1 is a
fairly simple matter. Red performance status requires management
attention. If the project is not performing well, something must
be done; corrective action is needed. Eyebrows will raise when
yellow occurs, but a more in-depth look should be made before
any correction is made. Evaluating the performance of CPI-1

and SPI-1 using statistical methods leads to appropriate actions.
Beyond understanding what to do to bring the project back

in line, software project managers need to know the extent of
correction necessary. Specific areas in which SPC can be used to
quantify correction are adjustments to overtime and staffing,
and funding and schedule negotiations. If the project manager
has resigned himself to negotiation for correcting the project’s
ills, the amount of overrun of funding or schedule with respect
to the customer agreement can be easily determined. Overrun is
found by simply multiplying the difference between the X-bar
value and its respective USL times the BAC for funding, or
planned period of performance for schedule. The quantity cal-
culated is the amount needed to raise the probability of meeting
these revised performance requirements to 50 percent, thus, the
minimum amount to be pursued in the negotiation. Additional
funding or schedule must be added to the minimum value if the
desire is to provide some amount of management reserve for the
remaining portion of the project. In general, these negotiations
are not easy. The developer has a tendency to understate real
needs of the project. By not coming to terms with actual per-
formance, he settles for less than the full amount needed to suc-
cessfully deliver the product, and ends up having to negotiate
again. Generally, the second negotiation is considerably more
unpleasant than the first. Unless there is no other source for the
products or services, the software organization will not likely be
awarded another contract by the customer.

The corrective action concept for adjusting overtime and
staffing is illustrated by Figure 4. If efficiency has been poor,
something must be done for the remainder of the project to raise

UNPL

RATIO RATIO RATIO

UNPL

= UNPL

3σ
3σ

3σ

1.0 1.0 xp =1.0

x

x
´

∆´

∆

∆´

∆

Possible
Overrun

NOW NEEDED OUTCOME

BCWP BAC - BCWP NO RISK = SAFE

NOTE: (1) Assumes dispersion is invariant to changes in x
(2) Example assumes no Risk was planned

Figure 4. Project Manager Application

x < 1 GREEN Project can be completed as planned

1 < x < USL YELLOW Project Manager and Employees get to keep their jobs

x > USL RED A bad situation for those involved

Table 2. Evaluation criteria for X-bar cost and X-bar schedule

GREEN

RED

Project can be completed as planned

A bad situation for those involved

Project Manager and employees
get to keep their jobs

June 2000 www.stsc.hill.af.mil 19

the efficiency so the project completes within allocated cost and
schedule. The possible overrun is symbolized in the figure by ∆
(delta), and the amount of correction needed for the remainder of
the project is symbolized by ∆’ (delta/prime). The ∆ condition
has existed over a portion of the project (i.e., BCWP, the earned
value for the tasks completed or in work). The ∆’ condition will
need to occur over the project remainder (BAC – BCWP) to
bring the overall performance to the desired state. Figure 4 illus-
trates the theory; however, it implies that poor performance can
be corrected to the ideal performance condition. Please disregard
the implication. Corrective action is not free. It is achieved at the
expense of cost or schedule. You may be able to correct schedule,
but it will be at the increase of cost. Unless true efficiency gains
are achieved, management reserve is expended for the corrections.

The method for calculating the X-bar value needed for
achieving project cost and schedule requirements is simple, and
based upon the same concept as the To Complete indices used in
EV Management [6]. The calculation method is depicted in Table
3. The result of the correction X-bar (‘, X-bar/prime) is used in
the overtime and staffing equations shown in Table 4. The strate-
gy for recovery can be banded by recalculating X-bar/prime, using
total funding available in place of BAC. Recalculating the over-
time and staffing adjustments with the extreme X-bar/prime value
determines the minimum adjustments the project can make and
still achieve its negotiated cost and schedule.

Project Changes
Legitimate questions regarding this application of SPC are

“What happens when the project is replanned?,” and “Can the
data from the XmR chart prior to the replan be used with the
data obtained afterwards?” Obviously, the answers come from
the changes caused by the replan to the software project’s EV
system. If (think of this as a manufacturing example) the only

change is in the quantity of products, it follows, there will be no
adjustments made to the work breakdown structure (WBS) or
the earned value of the tasks. For this type of replan, the old
data can be used with the new. If, however, the WBS or the task
values are changed by the replan, then the remainder of the
project must be treated as though it is a new start.

Application
In our organization, projects have been managed using the

cumulative values of SPI and CPI for some time. Actual project
monthly data is plentiful and readily available to create and test
the SPC application described. One project’s data is exhibited in
Figures 5 and 6, the XmR charts for CPI-1 and SPI-1, respectively.
Although not shown, the histograms prepared from the perform-
ance results for both CPI-1 and SPI-1 approximate normal distri-
butions. Although there are SPC experts who will argue that not
having a normal distribution of the data does not invalidate the
use of Control Charts, some confidence is created in this applica-
tion when it is seen that the distributions appear normal.

To begin the SPC analysis, refer first to Figure 5 for the dis-
cussion of the CPI-1 Control Charts. As can be seen, the process
can be said to be reasonably well controlled; the average value of
mR is fairly small (0.2652). Even so, the variance is large enough
to place the computed value of UNPL above the cost ratio (USL).
Recalling the earlier analysis/interpretation discussion, when
UNPL is greater than USL, there is a computable probability that

• Schedule Recovery (Reserve Funding is possibly used)

• Cost Recovery (Schedule Reserve is used)

• Band the Recovery Strategy
– Substitute Total Funding Available for BAC in the ∆' calculation

ESR = (1 / x'SCHED) • EP
 where EP = planned number of employees

OTSR = (1 / x'SCHED) • (1 + OTP) -1
 where OTP = planned overtime rate

ECR = (x'COST) • EP

OTCR = (x'COST) • (1 + OTP) -1

Table 4. Adjusting Overtime and Staffing

• For Schedule or Cost “curve shifting”:

∆ = x - 1.0

∆´ = ∆ •

x´ = 1.0 - ∆´

BCWP
BAC-BCWP

shift away from plan

performance correction to
achieve plan

required performance index
for remainder of project

Table 3. Performance Correction Index

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Nov
-96

Ja
n-9

7

Mar-
97

May
-97

Ju
l-9

7

Sep
-97

Nov
-97

Ja
n-9

8

Mar-
98

May
-98

Ju
l-9

8

Sep
-98

Nov
-98

Ja
n-9

9

Mar-
99

May
-99

Ju
l-9

9

Sep
-99

CPI-1

Moving
Range

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Oct-
96

Dec
-9

6

Feb
-9

7

Apr
-9

7

Ju
n-9

7

Aug
-9

7

Oct-
97

Dec
-9

7

Feb
-9

8

Apr
-9

8

Ju
n-9

8

Aug
-9

8

Oct-
98

Dec
-9

8

Feb
-9

9

Apr
-9

9

Ju
n-9

9

Aug
-9

9

UNPL (1.6974)

LNPL (0.2867)

x (0.9920)

USL (1.1200)

UCL (0.8667)

mR (0.2652)

GREEN: x < 1

Figure 5. Software Development Project CPI-1 Data

SPI Data

SPI-1

Moving
Range

0.00

0.40

0.80

1.20

1.60

2.00

2.40

Oct-
96

Dec
-9

6

Feb
-9

7

Apr
-9

7

Ju
n-9

7

Aug
-9

7

Oct-
97

Dec
-9

7

Feb
-9

8

Apr
-9

8

Ju
n-9

8

Aug
-9

8

Oct-
98

Dec
-9

8

Feb
-9

9

Apr
-9

9

Ju
n-9

9

Aug
-9

9

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Nov
-96

Ja
n-9

7

Mar-
97

May
-9

7

Ju
l-9

7

Sep
-97

Nov
-97

Ja
n-9

8

Mar-
98

May
-9

8

Ju
l-9

8

Sep
-98

Nov
-98

Ja
n-9

9

Mar-
99

May
-9

9

Ju
l-9

9

Sep
-99

UNPL (1.9187)

LNPL (0.3886)

x (1.1536)
USL (1.00)

UCL (0.9400)

mR (0.2876)

RED: x > USL

Figure 6. Software Development Project SPI-1 Data

Statistical Process Control Meets Earned Value

20 CROSSTALK The Journal of Defense Software Engineering June 2000

the project will exceed its allocated cost. Performing the mathe-
matics, and using the normal distribution table [8], the probabili-
ty of overrunning the cost ratio is determined to be 29.3 percent.
Observed directly from the CPI-1 graph, worst expected monthly

performance (UNPL) is 1.694. The average value of CPI-1 (X-
bar) is seen to be less than the cost ratio, so the process can be said
to be capable. Likewise, X-bar is less than 1.0 and, thus, the status
indicator color is green. The project manager can expect the proj-
ect to be completed within its planned cost. With very good
numbers, the project manager does not have much worry here.

Let us shift our attention to Figure 6. The control of sched-
ule is not as good as for cost. The average value of mR (0.2876)
is somewhat larger, and, correspondingly, the value for UNPL
(1.9187) is computed to be larger than for the CPI-1 Control
Charts. The average value of SPI-1 is greater than one, and
greater than USL, a red status condition. Here is something to
worry about—not meeting the customer’s schedule. Using the
schedule ratio and the average value of SPI-1, and the normal dis-
tribution table [8], the probability of failure is found to be 72.7
percent. This is definitely not good; the condition needs man-
agement action. Before the recommended action is described, a
few observations can be made. This project planned no manage-
ment reserve for schedule (USL=1.0). The only way this project
can correct its poor schedule performance, other than having a
miraculous improvement in schedule efficiency, is through the
use of the cost reserve. It is always better to have reserve in both
cost and schedule.

Returning to Figure 6, focus on the last three data points
(May, June, and July ’99) of the SPI-1 graph. They are especially
interesting. These points, which hover around UNPL, are anom-
alous. The probability of these data points occurring is infinitesi-
mal. Their existence is virtually impossible. From SPC theory, this
behavior leads the analysis to seek an assignable cause [1 and 3],
some influence outside of the system. Reviewing the same
months on the CPI-1 graph, the data appears to be reasonable.
From EV analysis, we know, if CPI performance is good and SPI
is poor, then the project is likely suffering from a manpower
shortage. Actually, the project had several software engineers hired
away (by a single employer) in those months and, corresponding-
ly, the manager was unable to hire a sufficient number of replace-
ment employees. Also, we found there were other significant con-
tributors to the poor schedule performance: the impact of the
huge Oklahoma City tornado that affected many of our people
from May through July; unplanned Air Force-driven training;
and, a computer security alert that required the staff’s attention.
In proceeding with the analysis, a decision should be made as to
whether to include the data attributable to an assignable cause.
Because our purpose is merely to demonstrate the calculations, we
have chosen to retain the data.

From Table 1, management’s correction strategy is increase
overtime or staffing. Next, the schedule recovery formulas of
Table 4 are used to quantify the necessary increases. The formu-
las require the value of the schedule correction index, X-bar
/prime. Knowing the values for X-bar (1.1536), and BCWP/
BAC (.617), the completed portion of the project, X-bar/prime
is computed to be 0.7526 from the equation given in Table 3.
Having the value for X-bar/prime, we can determine if the

schedule correction can be accomplished by simply increasing
overtime. For the completed portion of the project, the effective
overtime rate is 7 percent. The rate required for the remainder
of the project is determined to be nearly 42 percent. Working
employees at 42 percent overtime for very long is not advisable.
Doing so will likely increase the loss of employees and worsen
the problem. More employees are needed. Dividing the effective
number (59) of employees for the completed portion of the
project by X-bar/prime (0.7526) yields 78, the number of
employees needed for the remainder of the project. It is interest-
ing to note that the project manager, in his effort to determine
the corrective action, reported the same number of employees
after spending two days manipulating a commercial project
scheduler. Certainly, this single correspondence with a commer-
cial project scheduler is not enough evidence to say the methods
described here will always provide good management informa-
tion, but it does greatly increase the level of confidence. Also,
the 10 minutes we spent making the estimate compares very
favorably to the two days needed by the project manager to
come to the same result.

Summary
The concepts of statistical process control, specifically control

charts, have been discussed with respect to software project man-
agement of cost and schedule. SPC Control Charts are shown to
have a practical application to the EV indicators, Cost and
Schedule Performance Indices. SPC can be easily utilized by soft-
ware projects using Earned Value Management. Furthermore,
example results discussed indicate this application of SPC can be
useful. It appears that coupling SPC Control Charts to EV has
the potential to be extremely powerful. The methods and tech-
niques described can be used for:
• Quantifying Problems.
• Process Capability.
• Probability of Failure.
• Worst Expected Monthly Performance.
• Developing Recovery Strategies.
• Overtime.
• Staffing.
• Negotiation Values.
• Project Planning.
• Quantifying Risk.

Final Thoughts
Beyond project planning and control application described in

this article, implicit in SPC is process improvement. An example of
assignable cause was provided in the discussion, but just as impor-
tant is the improvement of common cause entities [1, 2]. Improve-
ment to common causes reduces variability of the process and,
thus, risk. For the software development organization, the reduc-
tion of risk leads to decreasing the requirement for management
reserve, thereby making the organization more competitive. And
for the customer, reduced variability in the software developer’s
process means lower prices and greater probability of achieving
cost and schedule. Everyone wins—it is powerful stuff.

8This article is continued on page 28.8

PSP/TSP

June 2000 www.stsc.hill.af.mil 21

Lesson 1. Conventional productivity is deceptive.
Productivity in most manufacturing operations is linear; that

is, when a cobbler worked longer hours, he produced more shoes.
When he hired an assistant, he doubled production. Naturally,
this frame of mind carried over into software development.
Software managers adopted the linear expression, source lines of
code (SLOC) per person-month, as their gauge of productivity.

This is not the correct frame of mind. When we examined
the actual data, source lines of code and person-months on thou-
sands of completed projects, we found two facts to the contrary:
• It takes more effort per source line of code to build larger

systems than to build smaller systems. Another way of putting
this is to say if effort per SLOC were the same at all system
sizes, the relationship would be linear. Since effort per SLOC
is not constant at all sizes, the relationship is nonlinear.

• Moreover, at any one system size, the effort required to build
it differs widely. For example, in the project data we have
collected at a size of 100,000 SLOC, effort ranges from a
low of 10 person-months to a high of 2500 person-months.
The extent of the effort is equally great at other system sizes.
These facts should not be unexpected. Large systems gener-

ally are more complex than small systems. The relationships
between their parts are more intricate. Larger teams of develop-
ers complicate their interactions, as compared to small teams,
and so on. Similarly, with respect to the second fact, there are
great differences in system complexity between developments in
different application areas. Experience tells us, for instance, that
real-time systems take far more work than business systems of
the same size in lines of code.

This nonlinearity of the relationship between SLOC and
effort means that the conventional productivity a software
organization derives from its experience on one size or applica-
tion type is not a reliable guide to estimating the next system of
a different size or application type.

Let us bring in a second core variable, time. Again, we see
the same nonlinearity.
• Development time per SLOC increases with system size.
• Development time varies widely at each system size. For

instance, at about 10,000 SLOC, development time ranges
from about two months to 80 months.
We learned that measuring software productivity in the con-

ventional way, SLOC/person-month, is deceptive. Software pro-
ductivity is more complicated than that.
• Productivity is affected, not only by effort, but also by time.
• The relationship of the three metrics—size, effort, time—is

nonlinear.
The true relationship is a nonlinear version of SLOC/

(person-monthsa × calendar monthsb) The exponents, a and b,
represent nonlinearity. We call the result process productivity.

Lesson 2. There is a minimum development time.
There is always pressure on development organizations to get

the system out faster. This is quite understandable. We live in a
competitive society. Faster is better. As we examined the recorded
metrics of hundreds of systems over these 25 years, however, we
came upon an interesting reality—no one had ever completed a
system in less than a certain minimum development time.

We came upon this fact in the course of the studies that led
to Lesson 1. There were no data points below a certain value of
schedule time and they were mighty sparse just above that value.
There are no data points for a simple reason. No one has been
able to do a system in that short a time.

Of course, one has to define what the system is. It is a speci-
fied collection of requirements or features at a quality level. If
you sacrifice some of the features, you have less work and you
can proportionally reduce the minimum time. If you sacrifice
quality, for instance, by abbreviating system test, you can ship a
little sooner. To complete the originally intended system, how-
ever, takes a certain minimum amount of time. You cannot beat
that minimum time simply by adding more people.

Knowing what the minimum development time of the pre-
scribed system is, based on hard metrics, can be a great comfort
when you are standing before the decision-makers. Contrariwise,
when the decision-makers are contemplating a set of bids, they
can use that same knowledge to throw out the bidders who do
not understand metrics. The low bidder is not always a bargain.

Lesson 3. You can trade off time and effort.
The minimum development time sets a lower limit. At this

limit, effort (or staff, or cost), and defects are at a maximum. You
may not be happy about operating at minimum time. After all,
cost and quality are important values, too. By extending develop-
ment time, you can reduce effort and defects. The upper time
limit is a matter of judgment, but it is around 130 percent of the
minimum time. Beyond that point, further reductions in effort
and defects are small. Within that time range, you can balance
time, effort, and defects to fit your business pressures.

Lesson 3a. Small is better.
Other things being equal, a small staff is more efficient than

a large staff. It is more efficient because there are fewer inter-
faces between project members. Staff spends less time commu-
nicating, but keep better informed.

What We Have Learned
by Lawrence H. Putnam and Ware Myers

Quantitative Software Management Inc.

In all the changes in the software field in the last quarter century, one solid element has been the SEI core
metrics: functionality (usually expressed as a measure of size), schedule time, effort (convertible to cost), and
defect rate. From these four metrics, we derive a fifth, productivity. These five are related to each other.
From these relationships, we derive a number of lessons, which it is the business of this article to identify.

22 CROSSTALK The Journal of Defense Software Engineering June 2000

PSP/TSP

Our metric observations have established the reality of small
being better all along, but a couple of years ago we obtained
data on 491 medium-sized projects. The two- to five-person
teams completed projects of comparable size with about one-
third of the effort of the seven- to 14-person teams.

Lesson 3b. Fewer defects are better.
There is also a time-quality tradeoff. When you extend your

development time beyond the minimum, you score fewer defects.
Sophisticated users are noticing that the first product to market
generally tries their patience.

Lesson 4. You can live with uncertainty.
When we collected data on hundreds of projects1, the uncer-

tainties in any core metric were balanced by offsetting uncertain-
ties in other metrics. As an individual, you are dealing with one
project at a time, yet the data you must work with is uncertain.
For example, in estimating time and effort, you start with values
for system size and your project team's process productivity. At
the time you have to bid, both the system size and the process
productivity of the team that you will assemble for that project
are uncertain. By uncertain we mean that you cannot pinpoint
the value. You estimate the size, for instance, to be 77,000 SLOC,
plus or minus 11,500 SLOC.

The method of statistical simulation, summarized in the side-
bar, enables you to cope with these uncertainties. Briefly, this
method enables you to translate the uncertain values of your
input values into the probability that you can successfully com-
plete your project at the values of schedule and effort that you
select. You have to select values, of course, within the range of
what is possible.

Without the benefit of this kind of analysis, management is
often tempted to go with the low bid. Granted, it is important to
win contracts. It is also important to complete projects successful-
ly and make a little money while doing so. It is also important to
stay in business. This type of analysis gives you the opportunity to
gauge your chances.

Lesson 5. You can control a project under way.
Our study of completed projects reveals that key ongoing

metrics, such as the amount of effort, the number of staff, func-
tions completed, or defects detected, fall along a Rayleigh curve,
as diagrammed in Figure 2. Great! All you have to do is figure
out a way to project the likely occurrence of each of these vari-
ables. (Hint: The methods are available.) Moreover, since these
methods are statistical, you can project control bands, also
shown on the figure.

That provides the control side for statistical control. The
other side is to plot actuals week by week on the control dia-
gram. If the actuals are falling within the inner control band,
work is progressing as expected. If the actuals begin to veer out
of the control band, something has gone wrong. You have early
notice of trouble.

Before we leave this lesson, let us note a frequent exception to
the Rayleigh pattern. It is staffing. If management staffed a proj-
ect in accordance with the needs of the project, staff would build

Deal with Uncertainty Statistically
Statistical simulation, summarized in Figure 1, provides the

means of dealing with the uncertainties of your input values.

Looking at Figure 1 in terms of seven successive concepts
makes it easier to understand. We have to admit that the figure
can be a bit awe-inspiring at first glance, so do not glance at it.
Study it one concept at a time.
1.The diagonal line labeled “Size and PI” (process

productivity) symbolizes the location of your possible oper-
ating points somewhere between the minimum development
time (a bit to the left of the circle of data points) and 130
percent of it (to the right of the data points).

2.Let us say the center of the circle of dots is the operating
point you have chosen, that is, a particular length of schedule
and amount of effort.

3.You then have a statistical program on your computer calcu-
late schedule and effort a thousand times, leading to a thou-
sand values of effort and schedule, symbolized by the circle
of dots.

4. For each computation, the statistical program selects input
values from a statistical distribution range around the values
of size and process productivity you are using. Since the
input values of size and process productivity vary, the output
values of time and effort also vary. This variation is symbol-
ized by the distribution of dots in the output circle. If we
were to show a thousand output data points, we would find
that they follow a probability distribution, heavy toward the
center of the circle of dots, light toward the circumference.

5.Next we project the data points to the two axes. The most
likely values of effort and time are the ones at the peak of
each curve. In terms of probability, the chance is 50 percent
that the project can be accomplished at those values.

6.Selection of a longer schedule (to the right on the schedule
curve) increases the probability of project success, while at
the same time reducing the effort needed within the limits
that the two curves provide, of course.

7.Selection of a shorter schedule, however, reduces the proba-
bility of project success while increasing the effort needed.

S i z e & P I Expected Values are

a t the Center of the

Distr ibution - 50%

Probabi l i ty Values

5 0 %5 0 %

5 0 %

5 0 %

L o g o f E f f o r t

L o g o f S c h e d u l e

M a p p i n g I n p u t U n c e r t a i n t y
t o E f f o r t a n d S c h e d u l e

Figure 1. Computing your project estimate a thousand times
provides a thousand possible answers, symbolized by the black
dots. Projecting the thousand data points to the two axes enables
you to find the probability that any one answer will work out.

June 2000 www.stsc.hill.af.mil 23

Reducing Bias in Software Project Estimates

up over a period of time as the small initial
staff sorted out tasks to occupy more and
more people. At some point as tasks in
work reached a peak, so would staff. As
the project wound down, so would staff.

Rayleigh staffing, however, takes con-
tinuous management attention, moving
people from declining to growing projects.
Management often prefers level staffing,
assigning full staff at project initiation,
and maintaining it until completion. In
the all-too-common disaster scenario
where risks and defects are left until inte-
gration or system test, full staff and more
are needed right up to the release bell. To
the extent that considerations other than
task needs dictate the staffing pattern, it
may not follow the Rayleigh curve.

Lesson 6. You can replan

a project midway.
In spite of the best-laid plans, projects

often go astray. Moreover, in software
development, the plans may not be laid all
that well. If we are accumulating metrics
as we go along, we can use them to project
a new schedule and effort to completion.

The new plan is likely to extend the
schedule and perhaps to call for more
staff than the budget can afford. In that
event, you can cut features to meet the
schedule required or the budget available.
Metrics, as such, cannot tell you what to
do. It can provide you with the informa-

tional means to do what your circum-
stances require of you.

Lesson 7. You can monitor

process improvement.
With the introduction of the Unified

Process about a year ago, many organiza-
tions have more management attention
focused on process improvement than
ever before. Management attention is a
scarce resource; managers have a score of
urgent matters clamoring for attention. It
helps to focus their attention by having a
metric cross the desk periodically. In the
realm of process improvement, such a
metric is process productivity.

We derive process productivity by for-
mula from the size, time, and effort met-
rics of each project. Hence, it is a definite
number. In an organization with many
projects, it is also a frequent number. It
was originally usedfor project estimation,
but you can use it to pursue other goals
as well:
• If the average process productivity of

projects completed this year exceeds that
of last year, you are making progress.
Moreover, the difference between the
two numbers indicates your rate of
progress. You can be satisfied, or you
can be dissatisfied and take action.

• The average process productivity of the
organizations reporting data to our
database has improved for the last two

decades. You can project a comparable
improvement rate and plan the actions
it will take to achieve it.

• You can compare your level of process
productivity with other divisions within
the same corporate structure or with
industry-wide averages we maintain.

• You can evaluate the process productivi-
ty level of subcontractors on whom you
have some leverage, such as a $1 million
contract to bestow.

One use of process productivity we
urge you not to employ is evaluating a
particular project, its project manager, or
its staff for personnel-type purposes. Soft-
ware metrics are too important for all
these broader management purposes to
risk muddying them to assess individuals.

Lesson 8. You can profit

from experience.
No individual has more usable experi-

ence than he or she can cram into that
famous little black book. Often it is as lit-
tle as two or three projects. Work done
long ago in a chaotic process on a prehis-
toric operating environment may no
longer be relevant. Yet the agency or cor-
poration in which you labor may have
completed scores of projects in the last
few years, if only you could get your
hands on that experience.

Obviously, you do not have time to
dig through the written records in hun-
dreds of file drawers, perhaps scattered
around the globe, perhaps in dusty dead-
record warehouses. The answer in the
personal computer age is a metrics data-
base accessible from your desk or laptop.

The general answer, the metrics data-
base, is easy to give. Making it work is a
little more difficult. Your organization has
to decide what metrics to store, but start
with size, time, effort, and defects—the
SEI core metrics. It has to define those
metrics so that they mean pretty much the
same thing from project to project and
from location to location. It has to insti-
tute the discipline that it takes to collect
data from not-too-enthusiastic sources, at
least in the beginning. In time, everyone
will glory in the ready availability of good
metrics.

In other words, we have learned that
metrics has day-to-day value only if they
can be readily accessed.

Reliability Modeling
Real Data - Actual vs. Planned

Defects, beginning w/ Code
Total Defect Rate

0

2

4

6

8

10

12

14
S 75421
S 421

De
fec
ts

1 5 9 13 17 21 25 29 33 37 *
2/4
'95

3/4 4/1 4/29 5/27 6/24 7/22 8/19 9/16 1 0 / 1 4

Actua l

In terpo la ted
P lan

G r e e n C B
Y e l l o w C B

 S = S ta r t

 1 = R B

 2 = D D
 4 = S IT

 5 = U O S T
 7 = F O C

Figure 2. The solid curve is the projected defect rate. The little squares are the number of defects discov-
ered each week. The band above and below the solid curve represents the allowable tolerance around
the defect-rate curve. In week 24 the number of defects peaked, but the project manager got right on it!

24 CROSSTALK The Journal of Defense Software Engineering June 2000

Lesson 9. You can master plan.
There is a level of activity above the

project. With our strong tendency to
focus on the problems of the project, we
overlook the fact that most organizations
have a number of projects under way at
the same time. They are not all at the
same process phase. Their need for
resources differs.

If you have common metrics, if the
metrics for each project is in your com-
puter, you can master plan the allocation
of resources over time to each project.
You can prioritize your projects to match
your resources, or with the advance
notice that the master plan provides, you
can build up your resources to meet com-
ing needs. In reverse, if the master plan
forecasts a lull six months hence, you can
slow down hiring or bid new work a bit
more aggressively.

As component-based development
gets more play, the source of these com-
ponents comes into focus. That source,
wherever it is, is outside the usual project
emphasis. You may have a supraproject
group developing common architecture,
standardizing interfaces, and developing
components for a whole range of proj-
ects. You may be obtaining components
from vendors. You may be charging one
of your own projects with generalizing a
component it needs for its own applica-
tion for broader use. You need metrics on
the master-plan level to facilitate compo-
nent-based development.

Wrapping It All Up
Underlying these nine lessons is the

software equation. We will not go into its
details here. What we learned from it is
that schedule time and effort-cost play a
simultaneous role in software develop-

ment. The two are irretrievably linked.
You cannot have one without the other.
Trying to play them separately is what
has led to a lot of the trouble that has
beset the field.

The software equation is also at the
heart of the idea of calibration. To know
what you have to do to get to where you
want to go, you first have to know where
you are. That is what we mean by calibra-
tion. The software equation provides that
means.

For example, from the software equa-
tion we derive process productivity.
Knowing the productivity of our process
is a key ingredient of planning and esti-
mating. During a project we can find out
if we are getting the process productivity
we originally estimated. If we are, that is
good. If we are getting something less, we
can replan the remaining work before it is
too late. Finally, process productivity pro-
vides the basis for evaluating productivity
between projects and over time. It is the
beacon light for your process improve-
ment activity. Process improvement is
what keeps you in business in these
tumultuous times.

Further Information
The Web site qsm.com lists about 40

articles, explaining the lessons of this arti-
cle at greater length. In addition, Putnam
and Myers are authors of three books:

Measures for Excellence: Reliable Software on
Time, Within Budget, Prentice-Hall, 1992;

Industrial Strength Software: Effective
Management Using Measurement, IEEE
Computer Society Press, 1997;

Executive Briefing: Controlling Software
Development, IEEE Computer Society
Press, 1996.

Note
1. Now the number of projects is over 5,000.

PSP/TSP

“What we learned . . . is that
schedule time and effort-cost
play a simultaneous role in
software development. The
two are irretrievably linked.” About the Authors

A graduate of West Point,
Lawrence H. Putnam
spent 25 years on active
duty, including tours in the
Office of the Director of
Management Information

Systems and the Assistant Secretary of the
Army, Financial Management. There he
viewed the problems of software develop-
ment from a top-management perspective.
In 1978 he founded Quantitative Software
Management Inc. in McLean, Va., and
continues today as its president.

Quantitative Software Management Inc.
2000 Corporate Ridge, Suite 900
McLean, Va. 22102
Voice: 703-790-0055
Fax 703-749-3795
E-mail: Larry_Putnam_Sr@qsm.com

Ware Myers graduated
from Case Institute of
Technology, and earned a
master's degree from the
University of Southern
California. As a contribut-

ing editor of Computer magazine, he helped
Putnam in 1981 with his first tutorial book
for the IEEE Computer Society, the start of
a long writing collaboration.

1271 North College Ave.
Claremont, Calif. 91711
Voice: 909-621-7082
Fax: 909-948-8613
E-mail: myersware@cs.com

The V Model
The author of this article, which may be found in the online edition of CROSSTALK, is the
technical project officer for the Data Exchange Agreement for Software Technology between
the United States and Germany. It was in this capacity that he became aware of the German
software standards, known as the V Model, for the German Federal Armed Forces. The stan-
dards are published in three volumes and can be tailored to fit officially sponsored work. In
this Web Addition, the author introduces these standards to give readers a flavor for them and
to encourage learning more about software standards used by a political and military ally.

by Morton Hirshberg
Army Research Laboratory

Web Addition

June 2000 www.stsc.hill.af.mil 25

The MATLAB programming language is quickly and unob-
trusively becoming a primary prototype and analysis tool at
Northrop Grumman Electronic Sensors & Systems Sector (ESSS)
as well as at other engineering entities the world over. Its value to
both systems and software engineers has been well demonstrated
on many programs at ESSS, including Comanche, and it is espe-
cially well-suited to effectively support the corporate Integrated
Product Team (IPT) concept. Engineers desiring to be technolog-
ically competent and efficient may soon find a solid foundation
in MATLAB to be almost indispensable. Its application is
becoming pervasive within systems engineering groups, and it is
rapidly spreading to other disciplines, such as software, rapid pro-
totyping, and financial analysis. On a similar note, MathCAD is
routinely used in the systems engineering disciplines to perform
detailed algorithm analysis and development. Although not as
well-suited for large, elaborate simulations as MATLAB, this tool
excels in performing symbolic manipulations and in developing
and documenting detailed mathematical derivations. It is espe-
cially renowned for its representation of equations using succinct,
precise mathematical notation. Systems engineers are routinely
using both MathCAD and MATLAB to develop and capture
their design documentation in Mode (MDD) and Function
(FDD) Description Documents. Thus, software engineers with a
working knowledge of MathCAD and MATLAB will be well
positioned to much more efficiently develop software products by
bridging the gap from systems MDDs and FDDs to embedded
software. These two tools are especially powerful when applied to
processes that are inherently mathematical, such as stochastic
processes, image and signal processing, inertial navigation, etc.

This paper describes informal techniques developed and
successfully applied by the author, within the governing soft-
ware process, on the Comanche program at ESSS to produce
robust, optimal software directly from a systems FDD captured
in a MATLAB simulation. In this process, MathCAD was first
used to quickly generate the algebraic equivalent of involved
Kalman filtering matrix equations expressed in MATLAB. These
expanded representations were then coded and tested in MAT-
LAB before being translated into the target Ada programming
language using available text-editing tools. MATLAB was exten-
sively used to rigorously unit test the deliverable Ada software
product. This deceptively simple process allowed the author to
design and develop large, efficient amounts of code in a very
short time. Furthermore, the final software was found to be vir-
tually error free, making the successful unit testing of code so
developed almost a foregone conclusion.

Background
The Comanche program's Target Acquisition System

Software (TASS) contains a number of Computer Software
Configuration Items (CSCIs), one of which is the Target Threat
Manager (TTM) CSCI. This CSCI maintains tracks of various
fidelities on numerous targets detected by assorted sensors from
different sources. As such, it contains an association component
that attempts to correlate new detections with established track
files maintained in a target threat database (TTDB). A number
of Kalman filtering algorithms implemented in the Target State
Estimator (TSE) component initialize and update entries in the
TTDB. These algorithms provide for 3, 6 or 9 states, with inde-
pendent or partially correlated measurements, depending on the
operational mode and the target type. Video TV and FLIR sen-
sors, for example, can be scanned or operated in a 30Hz stare
mode, resulting in different measurement dependencies. After
performing detailed timing analyses on the target processor
hardware, it was determined that the Kalman algorithms
should, for example, be optimized by eliminating loops to mini-
mize floating point operations (FLOPs). To this end, an effi-
cient mechanism for optimizing the many mathematical opera-
tions inherent in Kalman filtering and coordinate transforma-
tion operations was developed.

Initially, the TTM systems engineering design was captured
using traditional word processing and drawing tools, such as
Microsoft PowerPoint and Microsoft Word. The supporting sys-
tem simulations were developed in the Ada and C programming
languages. However, due to the author's influence, the advan-
tages of MATLAB over Ada and C for developing and main-
taining the systems simulations were quickly realized, and a
TTM systems simulation was subsequently developed entirely
in the MATLAB programming language. It was soon quite
obvious that modules of the well-documented MATLAB simu-
lation code, supplemented by other descriptive documents as
necessary, were, in effect, equivalent to an FDD. At this point,
the author developed the techniques described in this paper to
generate optimal, virtually error-free, Ada software directly from
the MATLAB simulation/FDD.

Process Description
The overall process, as depicted in Figure 1, is described as

follows: Given what in MATLAB is a concise, mathematical
expression, use the symbolic capabilities of MathCAD to alge-
braically expand or "unfold" the operation. This is typically done,
for example, to eliminate inefficient looping operations in multi-
ple matrix multiplications or inversions. The expanded
MathCAD results are coded in MATLAB. MATLAB is used
instead of other higher-order languages because it is interpretative

Generating reliable, error-free software on time and within budget is becoming ever more important as competition increases and pro-
curement budgets shrink. In response, software engineers are continuously striving to develop and implement processes that more effi-
ciently bridge the gap from system analysis and design to embedded systems. This paper presents a proven process that uses advanced,
commercially available, MathCAD® and MATLAB® tools to design, develop and test optimal, error-free embedded software.

Proven Techniques for Efficiently Generating and Testing Software
by Keith R. Wegner

Northrop Grumman Corp.

MathCad is a registered trademark of MathSoft Inc.
MATLAB is a registered trademark of The MathWorks Inc.

26 CROSSTALK The Journal of Defense Software Engineering June 2000

Software Engineering Technology

and results can be quickly confirmed using well-established,
embedded routines, and diagnostic techniques are easily applied.
Once the expanded algorithm is available in MATLAB, its results
are verified by comparison with those of the original, concise
code segment from the FDD. Test data, vectors, matrices, etc. are
easily generated in MATLAB to expedite this process. When both
versions of the algorithm generate equivalent results, thereby vali-
dating the expanded algorithm, traditional code editing tools are
used to copy the expanded algorithm and paste it into an appro-
priate file for the target programming language. For the
Comanche TTM application, Ada was the target language, but
any other higher-order language could have been used. That file is
edited to conform to conventions of the target language as well as
applicable program coding standards. This final step is the key.
Very little new code is generated and perturbations to and modi-
fications of the expanded and already tested MATLAB code are
minimized. The bulk of the expanded algorithm is simply tailored
to conform to the semantic requirements of the target language.
Generally, this involves little more than global find-and-replace
operations. For example, if the target language is Ada, the MAT-
LAB “=” is replaced with Ada’s “=”. Since MATLAB is interpreta-
tive, any implicit objects that it uses must be explicitly defined in
the target language. Although this overall process may at first
seem to be fairly elaborate and perhaps even unnecessary, an
attempt to manually optimize even mildly complex 6-by-6, let
alone 9-by-9, matrix and vector operations will quickly demon-
strate the limitations of pencil and paper. The described process
has been found to generate very reliable code, equivalent to the
original algorithm segment as specified in the MATLAB FDD.

The advantages do not stop there. When it comes to the
unit testing of elements generated by following the above process,
MATLAB again excels. The author has developed and successful-
ly applied an automated MATLAB-based process, as outlined in
Figure 2, to generate repeatable, self-documenting unit tests. To
summarize, the unit test process employs a MATLAB script file
that executes the succinct code segment copied from the MAT-
LAB FDD to generate expected results. The required unit test
data is either generated internally by the MATLAB script or read
from a previously prepared input file. That script writes the
equivalent unit test data to a file to be input by the Ada unit test

driver software. The MATLAB script then calls the executable
Ada test driver that reads in the test data and exercises the ele-
ment under test. When finished, the Ada test driver writes the
results generated by the Ada element under test to a file for input
by the MATLAB script. The MATLAB script resumes execution,
reads in the data from the Ada test driver, and compares that data
to its previously generated expected results. Finally, it saves test
results to a unit test data file for permanent documentation and
reports its findings to the console. The entire sequence is repeat-
able and can easily be tailored to perform multiple iterations over
different random or predefined sets of test data.

Example
To demonstrate the techniques without overwhelming the

reader or exceeding the physical capacity of this paper, an exam-
ple of a portion of a simple 6-by-6 covariance matrix extrapola-
tion extracted from a typical Kalman filtering application is
demonstrated. For readability, the addition of the state noise
covariance matrix is omitted. The equation to be developed, in
any dimension, is Ρ = ΦΡΦΤ where Φ is the state transition
matrix, ΦΤ is its transpose, dt is the sampling interval and P the
symmetric covariance matrix. This is almost exactly how it
appears in the MATLAB simulation. As shown below, the sym-
bolic capabilities of MathCAD are used to generate the algebra-
ic equivalent of this equation. The inherent symmetry of P is
exploited in both the MathCAD derivation and the subsequent
translation into MATLAB.

This last matrix result, which is symmetric, is now
expressed in a MATLAB m-file that compares the expanded
solution with the simple ΦΡΦΤ matrix product. Although at
first this may appear to be a somewhat daunting task, close
examination reveals significant symmetry and repetition, except
for indices, that greatly simplifies the MathCAD-to-MATLAB
translation effort. Following is an example of a MATLAB m-file
that implements and verifies the above MathCAD ΦΡΦΤ result.

Extract MATLAB FDD Simulation
Algorithm Segment to be Coded

Ensure Expanded MATLAB and
Simulation Segment Results Agree

Generate or Input Test Data

Read Ada Test Results from File

Return Control to MATLAB Script

Execute Ada Unit Under Test

Input MATLAB Test Data from File

Write Test Data to File for Ada Test
Driver

Execute FDD Algorithm in MATLAB
Generating Expected Results

Pass Control to the Ada Unit Test
Driver

Write Ada Test Results to File for
MATLAB Script

Compare MATLAB Expected Results
to Ada Unit Results

Save Test Results to File and Report
Pass/Fail to Console

Expand Algorithm Using Symbolic
Capabilities of MathCAD

Code Expanded Algorithm in
MATLAB

Compare Expanded MATLAB
Algorithm to Simulation Segment

Translate Expanded MATLAB
Algorithm into Ada, C, etc.

(copy, paste, and edit)

Figure 1. An Efficient Process Generates Optimal Code

Figure 2. MATLAB Script Efficiently Unit Tests Ada Element

MATLAB Script

Ada

June 2000 www.stsc.hill.af.mil 27

Proven Techniques for Efficiently Generating and Testing Software

% Define the number of test iterations and
% an acceptable tolerance for this test
Num_Iterations = 1000 ;
Tolerance = 1e-014 ;

% Define 3x3 matrices and the sampling interval
I3 = eye(3) ; % identity
Z3 = zeros(3) ; % zeros
dt = 1/30 ; % 30Hz

% Reset generator to initial state for repeatability
rand('state', 0) ;

% Define Phi, the 6x6 state transition matrix
Phi = [I3 I3*dt

Z3 I3] ;

for Iteration = 1:Num_Iterations

% Define a new random symmetrical 6x6 covariance matrix
P = rand(6) ; % random 6x6
U = triu(P,1) ; % upper triangular above

main diagonal
P = U + U' + diag(diag(P)) ; % symmetric 6x6

% Execute the simple form
flops(0) ; % reset flops counter
P_Simple = Phi*P*Phi' ;
Simple_flops = flops ; % accumulate flops

% Execute the expanded form
flops(0) ; % reset flops counter

dt2 = dt*dt ;
P_Expanded(1,1) = P(1,1) + 2.0*P(1,4)*dt + P(4,4)*dt2 ;
P_Expanded(1,2) = P(1,2) + (P(1,5) + P(2,4))*dt +

P(4,5)*dt2;
P_Expanded(1,3) = P(1,3) + (P(1,6) + P(3,4))*dt +

P(4,6)*dt2;
P_Expanded(1,4) = P(1,4) + P(4,4)*dt ;
P_Expanded(1,5) = P(1,5) + P(4,5)*dt ;
P_Expanded(1,6) = P(1,6) + P(4,6)*dt ;

P_Expanded(2,1) = P_Expanded(1,2) ;
P_Expanded(2,2) = P(2,2) + 2.0*P(2,5)*dt + P(5,5)*dt2 ;
P_Expanded(2,3) = P(2,3) + (P(2,6) + P(3,5))*dt +

P(5,6)*dt2;
P_Expanded(2,4) = P(2,4) + P(4,5)*dt ;
P_Expanded(2,5) = P(2,5) + P(5,5)*dt ;
P_Expanded(2,6) = P(2,6) + P(5,6)*dt ;

P_Expanded(3,1) = P_Expanded(1,3) ;
P_Expanded(3,2) = P_Expanded(2,3) ;
P_Expanded(3,3) = P(3,3) + 2.0*P(3,6)*dt + P(6,6)*dt2 ;
P_Expanded(3,4) = P(3,4) + P(4,6)*dt ;
P_Expanded(3,5) = P(3,5) + P(5,6)*dt ;
P_Expanded(3,6) = P(3,6) + P(6,6)*dt ;

P_Expanded(4,1) = P_Expanded(1,4) ;
P_Expanded(4,2) = P_Expanded(2,4) ;
P_Expanded(4,3) = P_Expanded(3,4) ;
P_Expanded(4,4) = P(4,4) ;
P_Expanded(4,5) = P(4,5) ;

P_Expanded(4,6) = P(4,6) ;

P_Expanded(5,1) = P_Expanded(1,5) ;
P_Expanded(5,2) = P_Expanded(2,5) ;
P_Expanded(5,3) = P_Expanded(3,5) ;
P_Expanded(5,4) = P_Expanded(4,5) ;
P_Expanded(5,5) = P(5,5) ;
P_Expanded(5,6) = P(5,6) ;

P_Expanded(6,1) = P_Expanded(1,6) ;
P_Expanded(6,2) = P_Expanded(2,6) ;
P_Expanded(6,3) = P_Expanded(3,6) ;
P_Expanded(6,4) = P_Expanded(4,6) ;
P_Expanded(6,5) = P_Expanded(5,6) ;
P_Expanded(6,6) = P(6,6) ;

Expanded_flops = flops ; % accumulate flops

% Compare approaches
Diff = P_Simple - P_Expanded ;

% Ensure MATLAB and Ada implementations are equivalent
if find(abs(Diff) > Tolerance)

disp('Expanded implementation is not correct.')
Diff % display differences
keyboard % debug mode on error

end

% Ensure expanded implementation enforces symmetry of P
if find(abs(P_Expanded - P_Expanded') > Tolerance)
disp('The expanded implementation violates symmetry of P')
P_Expanded % display the covariance matrix
keyboard % debug mode on error

end

% Report flop results to console
disp(['Iteration #', num2str(Iteration)])
disp([' Simple flops = ' num2str(Simple_flops)])
disp([' Expanded flops = ' num2str(Expanded_flops)])
disp(' ')

end % loop

In this sparse matrix example, for each iteration, MATLAB
reports 864 FLOPs before the expansion and 49 FLOPs after, for
a 17.6 : 1 savings in FLOPs!

Although the above example is quite simple and is almost as
easily developed using pencil and paper, one quickly becomes
severely entangled in tedious algebra when attempting, for exam-
ple, to manually derive the Kalman gain matrix from
Κ = PHT[HPHT + R]-1 for even six states. (Here H is 3×n, P is
n×n, R is 3×3 and K is n×3, where n is the number of states.)
It is for examples similar to this that the power and value of the
process are quickly substantiated. This is true even when the
capabilities of MathCAD to display symbolic results are exceeded.
In such cases, one simply subdivides the process into manageable

ΦPΦT =

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

dt

0

0

1

0

0

0

dt

0

0

1

0

0

0

dt

0

0

1

p11

p12

p13

p14

p15

p16

p12

p22

p23

p24

p25

p26

p13

p23

p33

p34

p35

p36

p14

p24

p34

p44

p45

p46

p15

p25

p35

p45

p55

p56

p16

p26

p36

p46

p56

p66

.

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

dt

0

0

1

0

0

0

dt

0

0

1

0

0

0

dt

0

0

1

T

. =

p11 2 dt. p14. dt
2

p44.

p12 dt p24. dt p15. dt
2

p45.

p13 dt p34. dt p16. dt
2

p46.

p14 dt p44.

p15 dt p45.

p16 dt p46.

p12 dt p24. dt p15. dt
2

p45.

p22 2 dt. p25. dt
2

p55.

p23 dt p35. dt p26. dt
2

p56.

p24 dt p45.

p25 dt p55.

p26 dt p56.

p13 dt p34. dt p16. dt
2

p46.

p23 dt p35. dt p26. dt
2

p56.

p33 2 dt. p36. dt
2

p66.

p34 dt p46.

p35 dt p56.

p36 dt p66.

p14 dt p44.

p24 dt p45.

p34 dt p46.

p44

p45

p46

p15 dt p45.

p25 dt p55.

p35 dt p56.

p45

p55

p56

p16 dt p46.

p26 dt p56.

p36 dt p66.

p46

p56

p66

MathCAD’s
Symbolic
Evaluation

MATLAB
code to be
translated
into Target
Language

28 CROSSTALK The Journal of Defense Software Engineering June 2000

portions. In the above Kalman gain equa-
tion, for example, intermediate expressions
for PHT are computed first, followed by
[HPHT + R]. Then [HPHT + R]-1 is
derived and that result premultiplied by
the PHT term that was already expanded.
Although this requires somewhat more
work due to the maintaining of intermedi-
ate results, overall savings and code genera-
tion metrics are still very impressive.
Depending on the particular implementa-
tion and the correlation of the measure-
ments, FLOP savings on the order of 4:1
to 6:1 and more have been tabulated.
These savings were achieved with signifi-
cantly less effort and higher reliability than
the manually tedious and error-prone tra-
ditional approach.

A process similar to the above is then
used to unit test the algorithm in the tar-
get language. A test driver is created that
executes the unit under test. Its executable
image is called in place of the expanded
code bracketed in the example m-file
above. The MATLAB script and the tar-
get language test driver must both provide
for the reading and writing of data files to
effect the transfers of test data and results.
The author has elected to mechanize these
transfers in IEEE 64-bit binary format to
take full advantage of the numeric capa-
bilities of MATLAB. An outline of the
MATLAB script was shown in Figure 2.

Although applications vary enormous-
ly in complexity, the author has experi-

enced estimated savings from 40 to almost
80 percent in development and testing
time (including debugging effort). For
example, it took approximately 20 hours
to manually develop and test code to
decrement a 6-state covariance matrix and
about 16 hours for the 6-state Kalman
gain matrix. Applying the techniques out-
lined in this paper reduced these efforts to
approximately 12 and eight hours, respec-
tively. Without manually deriving corre-
sponding 9-state equations, a fairly daunt-
ing task, extrapolations from actual 6-state
manual results and other similar experi-
ence were used to estimate the level of
effort that would be required for the man-
ual derivation of 9-state equations. The
following table summarizes and compares
both approaches.

Summary
The use of commercial tools, such as

MATLAB and MathCAD, can dramatical-
ly improve the efficiency of the software
development process as well as the reliabil-
ity of the final embedded product. Since

systems engineering groups are increasing-
ly using these tools to develop and docu-
ment their products, it is becoming imper-
ative that software engineers acquire the
necessary proficiency to use and integrate
these products into their processes. This is
especially critical as contractors strive to
remain competitive while meeting exigent
schedules and maintaining budgetary con-
straints. Although not a panacea for all
that is ailing in the software development
process, the logical application of available
commercial tools can have a significant,
positive impact on that effort. This paper
outlines such a process that the author has
successfully applied on a current develop-
ment program.

Pencil &
Paper

MathCAD
&

MATLAB
Estimated
Savings

Decrement Covariance
[I-KH]P[I-KH]

T
 + KRK

T

6-State 20 12 40.0%
9-State 56* 16 71.4%

Compute Kalman Gain
PHT[HPHT + R]-1

6-State 16 8 50.0%
9-State 42* 10 76.2%

* Extrapolated from similar 6-State experience

About the Author
Keith R. Wegner is a Fellow
Engineer in the software
engineering group at
Northrup Grumman
Corporation’s Electronic
Sensors and Systems Sector

in Baltimore. He has a master’s degree in
electrical engineering from the Johns
Hopkins University with emphasis in signal
processing and control systems. He has used
MATLAB for approximately 14 years.

Northrup Grumman Corp.
P.O. Box 746, MS-429
Baltimore, Md. 21203
Voice: 410-765-4664
Fax: 410-765-1492
E-mail: keith_r_wegner@mail.northgrum.com

References
1. Florac, William A., and Anita D.

Carleton, Measuring the Software Process,
Addison Wesley, Reading, Mass., 1999.

2. Pitt, Hy, SPC for the Rest of Us, Addison-
Wesley, Reading, Mass., 1995.

3. Software Engineering Institute Course,
Statistical Process Control for Software,
July 1999.

4. Software Productivity Consortium Course,
Statistical Process Control and Quality
Management Techniques, August 1998.

5. Radice, Ron, Statistical Process Control
for Software Projects, 3rd Annual Software
Metrics Conference, December 1997.

6. Fleming, Quentin W., Cost/Schedule Con-
trol Systems Criteria, The Management
Guide to C/SCSC, Probus, Chicago, 1988.

7. Lipke, Walter H., Applying Management
Reserve to Software Project Management,
CROSSTALK, March 1999.

8. Crow, Edwin L., Davis, Francis A.,
Maxfield, Margaret W., Statistics Manual,
Dover Publications, New York, 1960.

Notes
1. To remove any confusion, by monthly

performance values, we mean the values
include only the performance occurring
during the month.

2. The application of Table 1 in [7] required
CPI-1 and SPI-1 to be cumulative values.
For this application, CPI-1 and SPI-1 are
average values of the monthly data.

3. The assumption in overtime and staffing
equations is that the plan is being execut-
ed; i.e., the overtime rate and the staffing
employed is in agreement with the project
plan. If the effective values for either differ
from the plan, it is recommended to use
those values in the equations.

4. See the Table 1 management action

description for the condition: cost com-
parison green, schedule comparison red.

About the Authors
Walt Lipke is the deputy
chief of the Software
Division at the Oklahoma
City Air Logistics Center,
which employs approximate-
ly 600 people, most of whom

are electronics engineers. He has 30 years of
experience in the development, mainte-
nance, and management of software for
automated testing of avionics. In 1993, with
his guidance, the Test Program Set and
Industrial Automation (TPS and IA) func-
tions of the division became the first Air
Force activity to achieve Software
Engineering Institute Capability Maturity
Model (SEI CMM®) Level 2. In 1996,
these functions became the first software

Software Engineering Technology

Table 1. Estimated Effort to Code and Test (hours)

8Statistical Process Control Meets Earned Value, by Lipke/Vaughn, continued from page 208

June 2000 www.stsc.hill.af.mil 29

Our computer hardware is growing in power exponentially. We naturally expect to use
this power on larger, more complicated problems. There is a problem, however. Soft-
ware development methods that worked fine on small problems seem to not scale well.

The Problem and Partial Solution
Today when we launch a software project, its likelihood of success is inversely propor-

tional to its size. The Standish Group reports that the probability of a successful software
project is zero for projects costing $10 million or more [1]. This is because the complexity
of the problem exceeds one person’s ability to comprehend it. According to The Standish
Group, small projects succeed because they reduce confusion, complexity, and cost. The
solution to the problem of building large systems is to employ those same techniques that
help small projects succeed—minimize complexity and emphasize clarity.

The goals, constraints, and operating environment of a large software system, along
with its high-level functional specification, describe the requirements of the systems.
Assuming we have good requirements, we can decompose our system into smaller subsys-
tems. Decomposition proceeds until we have discrete, coherent modules. The modules
should be understandable apart from the system and represent a single idea or concept.
When decomposition is finished, the modules can be incorporated into an architecture.

Frederick P. Brooks said that the conceptual integrity of the architecture is the most
important factor in obtaining a robust system [2]. Brooks observed that it can only be
achieved by one mind, or a very small number of resonant minds. He also made the point
that architectural design must be separated from development. In his view, a competent
software architect is a prerequisite to building a robust system.

An architecture is basically the framework of the system, detailing interconnections,
expected behaviors, and overall control mechanisms. If done right, it lets the developers
concentrate on specific module implementations by freeing them of the need to design and
implement these interconnections, data flow routines, access synchronization mechanisms,
and other system functions. Developers typically expend a considerable amount of energy
on these tasks, so not doing them is a considerable savings of time and effort [3].

A robust architecture is one that is flexible, changeable, simple yet elegant. If done
right and documented well, it reduces the need for interteam communication and facili-
tates successful implementation of complex modules. If done well, it is practically invisible;
if done poorly, it is a never-ending source of aggravation, cost, and needless complexity.

Architecture flows from the requirements and the functional specification. The
requirements and functional specification need to be traced to the architecture and its
modules, and the modules in the architecture should be traced to the requirements and
functional specification. The requirements must necessarily be correct, complete, unam-
biguous, and, where applicable, measurable. Obtaining requirements with these qualities is
the responsibility of the architect. It must be his highest priority. He does this by interact-
ing closely with the customers and domain experts. If necessary, he builds prototypes to
validate and clarify the requirements The architect acts as the translator between the cus-
tomers and the developers. The customers do not know how to specify their needs in the
unambiguous language that developers need, and the developers do not always have the
skills to do requirements analysis.

The architect communicates his desires to the developers by specifying black-box
descriptions of the modules. Black boxes are abstract entities that can be understood, and
analyzed independently of the rest of the system. The process of building black-box models
is called abstraction. Abstraction is used to simplify the design of a complex system by
reducing the number of details that must be considered at the same time, thus reducing
confusion and aiding clarity of understanding [4]. For safety-critical, military-critical, and
other high-integrity sytems, black boxes can be specified unambiguously with mathemati-
cal logic using formal methods. Supplemented with natural language descriptions, this is

Open Forum

Large Software Systems—Back to Basics
by John R. Evans

SPAWAR Systems Center

Letter to the Editor
Dear CROSSTALK:

Ever since I've been a CROSSTALK

reader, which has been around four to
five years, I look forward to the next
issue. CROSSTALK is one of the best, if
not the best, publications in the software
process improvement (SPI) arena. There
are always practical lessons learned in the
wide variety of articles, something I have
been able to use in my work. In addition,
CROSSTALK now includes Web links to
many valuable sources of information.

As a former government employee
and government contractor, I have been a
frequent beneficiary of sharing informa-
tion. Just because something was devel-
oped by the government does not mean it
can not be used in private industry and
vice versa. There is no sense in making
the same mistakes. CROSSTALK is a great
help in sharing lessons learned in areas of
value to our company—risk manage-
ment, managing change, project manage-
ment, and others related to SPI. Also, the
CROSSTALK staff has always been a pleas-
ure to work with and has a positive, can
do attitude. Thanks for helping those of
us in the SPI trenches.

Darrell Corbin
The Boeing Company

✐

activity in federal service to achieve SEI
CMM® Level 4 distinction. The TPS
and IA functions, under his direction,
became ISO 9001/TickIT registered in
1998. These functions were honored with
the 1999 IEEE Computer Society Award
for Software Process Achievement. Lipke
is a professional engineer with a master’s
degree in physics.

Jeff Vaughn is the Metrics
and Financial Analyst of
the Oklahoma City Air
Logistics Center’s Software
Division. He has 13 years
experience in Avionics

Test Program Set Development and
Maintenance. He managed one of the
first organizations in the Software
Division to utilize EV Management
techniques to manage projects. He has a
bachelor’s degree in electrical engineering.

OC-ALC/LAS
Tinker AFB, Okla. 73145-9144
Voice: 405-736-3335
Fax: 405-736-3345
E-mail: wlipke@lasmx.tinker.af.mil

jvaughn@lasmx.tinker.af.mil

30 CROSSTALK The Journal of Defense Software Engineering June 2000

probably the safest way to specify a system. It is usually more
expensive and time consuming, as well. In the future, however, all
software architects should know how to mathematically specify a
module.

A robust architecture is necessary for a high-quality, depend-
able system. But it is not sufficient. A lot depends on how the
developers implement modules handed to them by the architect.

The Rest of the Solution
Developers need to build systems that are dependable and

free from faults. Since they are human, this is impossible.
Instead they must strive to build systems that minimize faults
by using best practices, and they must use modern tools that
find faults during unit test and maintenance. They should also
be familiar with the concepts of measuring reliability and how
to build a dependable system. (A dependable system is one that
is available, reliable, safe, confidential, has high integrity, and is
maintainable [5].) In order for the system to be dependable, the
subsystems and modules must be dependable.

Fault prevention starts with clear, unambiguous require-
ments. The architect should provide these so the developer can
concentrate on implementation. If the architecture is robust, the
developer can concentrate on his particular module, free of
extraneous details and concerns. The architect’s module descrip-
tion tells the developer what to implement, but not how to
implement it. The internals of the implementation are up to
him. To ensure dependability, the developer needs to use sound
software engineering principles and best practices, as these are
his chief means of of minimizing complexity. Two best practices
are coding standards and formal inspections.

Coding standards are necessary because every language has
problem areas related to reliability and understandability. The best
way to avoid the problem areas is to ban them, using an enforce-
able standard. Les Hatton describes why coding standards are
important for safety and reliability and how to introduce a coding
standard [6]. A key point he stresses is to never incorporate stylis-
tic information into the standard. It will be a never-ending source
of acrimony and debate. Such information, he says, should be
placed in a style guide. Coding standards can be enforced with
automatic tools that check the code, and by formal inspections.
The benefits of formal inspections for defect prevention are well-
known and well-documented. They are also invaluable for clarify-
ing issues related to the software.

Developers need to measure their code to ensure its quality.
This provides useful feedback to the developer on his coding
practices, and it provides reassurance to the system’s acquirers and
users. Many static metrics can be used to assess the code. Among
these are purity ratio, volume, functional density, and cyclomatic
complexity. As a doctor uses a battery of tests to gauge a person’s
health, relying on more than one metric and covering all his
bases, a developer using static analysis tools can do the same [7].

A good metric, for example, is cyclomatic complexity. A large

value is a sign of complex code, which may be an indication of
poor thought given to the design and implementation. It is also
a sign that the code will be difficult to test and maintain.

Fault detection by proper unit testing is vitally important.
To be done right, it requires the use of code coverage and path
analysis tools. Unfortunately, this type of testing is usually over-
looked. Many managers say they cannot afford them. Somehow,
though, they can afford to fix the problems after the software
has been fielded. This is penny-wise and pound-foolish. It is
axiomatic that fixing software faults after the code has been
deployed can be up to 100 times more expensive than finding
and fixing the fault during development [8].

Besides path analysis and code coverage tools, automatic test-
ing tools should be used. Human testers cannot hope to match
the computer on indefatigability or thoroughness. In large sys-
tems, if testing is not automated, it is not done, or done rarely.
For example, regression testing, used in systems undergoing mod-
ification and evolution, is essential to ensure that errors are not
injected into code undergoing change, a very common problem
in complex systems. Without automation, the process is onerous
and time consuming. It rarely gets done, if at all.

Developing quality code is not simple or easy. It requires dis-
cipline and rigor, state-of-the-art tools, and enlightened managers
willing to support developers by paying up-front costs, such as
giving developers more time to automate and test their code.
Developers take pride in their work. When they get the support
they need, they know that their managers want them to produce
quality code. This makes the work satisfying and rewarding.

Summary
Managing and limiting complexity and promoting clarity is

fundamental to developing large software systems. The key
ingredient is a robust architecture. The conceptual integrity of
the architecture, its elegance and clarity, depends on a single
mind. Developers build upon the architecture and ensure its
robustness by rigorous application of basic software engineering
principles and best practices in their code development.

References
1. Johnson, J., Turning Chaos into Success, www.softwaremag.com/

archive/1999dec/Success.html, Dec. 1999. Standish Group.
2. Brooks, F. P., The Mythical Man-Month: Essays on Software

Engineering, Anniversary Edition. Addison-Wesley, 1995.
3. Bass, L., P. Clements, and R. Kazman, Software Architecture in

Practice. Addison-Wesley, 1998.
4. Berzis, V., and Luqi, Software Engineering with Abstractions.

Addison Wesley, 1991.
5. Lyu, Michael R., Editor, Handbook of Software Reliability

Engineering. IEEE Computer Society Press, 1995.
6. Hatton, L., Safer C, Developing Software for High-Integrity and

Safety-Critical Systems. McGraw-Hill International Series in
Software Engineering, McGraw-Hill International, 1995.

7. Drake, T. Measuring Software Quality: A Case Study, IEEE
Computer, Nov. 1996.

8. Boehm, B. W., Software Engineering Economics. Prentice Hall,
1981.

Open Forum

“A key point [Hatton] stresses is to never incor-
porate stylistic information into the standard.”

Processes are a good thing. I am a PSP instructor, and appreciate how
a good process can make my work habits more productive and increase
personal quality. In fact, I was discussing with my lovely and charming
wife about my idea to create a Personal Garden Planting Process (PGPP).
She was quite amused with my PGPP, but pointed out that the process
was quite useless.

“Never,” I countered to this heresy. I had considered everything from
soil moisture to length of the grass. She pointed out that there were sever-
al inches of snow in the yard—my process had neglected to consider the
uselessness of planting a garden in the middle of winter. Good process—
poor timing and implementation. Which brings us to Mr. Adams, Mr.
Baker, and Mr. Charles

Mr. Adams, Mr. Baker and Mr. Charles were three software engineers
in a particular Department of Defense agency who suddenly found them-
selves without a job. It seems the agency, after doing an A-76 study, con-
tracted out the work and transferred all but these three software develop-
ers to other jobs.

Unfortunately, these men were within three months of retirement.
Management, the big softies, arranged to have them perform other chores
within the organization for three months, and then take retirement. Mr.
Adams, Mr. Baker, and Mr. Charles were offered the job of site beautifica-
tion. Their job was to plant shrubbery around the various buildings.

Being trained software engineers, the three men got together and
came up with a process. Every evening, they ran the automatic sprinkler
system to soften the ground. Early in the morning, Mr. Adams would
start digging the holes for the shrubs. Mr. Baker would follow him,
spreading fertilizer and inserting the shrubbery. Finally, Mr. Charles
would cover the roots with dirt.

One day while parking his car, the big boss was puzzled to see Mr.
Adams busy digging holes that Mr. Charles immediately filled with dirt.
He expressed his amazement, only to be told that Mr. Baker was ill that
day. But as Mr. Adams and Mr. Charles explained, “There's no reason to
abandon our process just because one person isn't following it.”

It is important to have a process—it serves as a road map. It lets you
know how to get to where you are going. If you don't know where you
are going, no matter how good the road map is, it doesn't help. It is
important to understand the purpose of the road map, your goals, and the
rationale of your process. Know when to follow the process—and know
when the process will not work. When it does not work, it is time to
modify the process. Processes are important. So is common sense.

—Dave Cook, Draper Laboratories Inc.

Common Sense—Can You Dig It?

June 2000 www.stsc.hill.af.mil 31

Give Us Your Information, Get a Subscription
Fill out and send us this form for a free subscription.

OO-ALC/TISE
7278 Fourth Street

Hill AFB, Utah 84056-5205
Attn: Heather Winward

Fax: 801-777-8069 DSN: 777-8069
Voice: 801-775-5555 DSN: 775-5555

Or use our online request form at www.stsc.hill.af.mil

FULL NAME:____________________________________

RANK OR GRADE:_______________________________

POSITION OR TITLE:_____________________________

ORGANIZATION OR COMPANY:____________________

ADDRESS:______________________________________

BASE OR CITY:______________ STATE:______

ZIP:____________

VOICE: COMMERCIAL______________________

DSN______________________

FAX: COMMERCIAL______________________

DSN______________________

E-MAIL: ___________________@___________________

BACK ISSUES MAY BE AVAILABLE

(PLEASE INDICATE THE MONTH(S) DESIRED.)

BACKTALK
About the Author

John Evans is a software engineer at
SPAWAR Systems Center in San Diego
(SSC-SD), where he has worked for the last
16 years. His job is to improve the software
processes of projects within the Intelligence,
Surveillance, and Reconnaissance

Department (D70), and help the Software Engineering
Process Office (SEPO) of SSC-SD improve the center’s
software maturity. He received his master’s degree in soft-
ware engineering from the Naval Postgraduate School in
1997 via distance learning, and SSC-SD sponsorship. He
is now working on his doctorate in software engineering,
under the same auspices.

SPAWARSYSCEN D73C
53570 Silvergate Ave., Room 1047
San Diego, Calif. 92152-5182
Voice: 619-553-5479
Fax: 619-553-5499
E-mail: evansjr@spawar.navy.mil

CALL FOR ARTICLES
software acquisition Submit by July 1, 2000
project management Submit by Aug. 1, 2000
modeling & simulation Submit by Sep. 1, 2000
configuration management Submit by Oct. 1, 2000
measures & metrics Submit by Nov. 1, 2000
requirements management Submit by Dec. 4, 2000

E-mail submissions to features@stsc1.hill.af.mil
Author Guidelines may be found at www.stsc.hill.af.mil

Overall Process Yield

0
10
20
30
40
50
60
70
80
90

P
P

A
 1

.0
In

cr
1

P
P

A
 1

.0
In

cr
2

P
P

A
 1

.0
In

cr
3

P
Q

A
 3

.0

Y
ie

ld
 in

 (%
)

Yield

Higher Yields

A/FR

0
0.5

1
1.5

2
2.5

3
3.5

4

P
P

A
In

cr
1.

0

P
P

A
In

cr
2.

0

P
P

A
In

cr
3.

0

P
Q

A
3.

0

A
/F

R A/FR

Greater A/FR

A/FR Vs Test Defects

-5.0

0.0

5.0

10.0

15.0

20.0

0 2 4 6

A/FR

D
ef

ec
ts

 /
K

LO
C

A/FR Vs. Test Defects

A/FR Vs Yield

0

20

40

60

80

100

120

0 2 4 6

Yi
el

d

A/FR

A/FR Vs. Yield

Cost of Quality

0

10

20

30

40

50

60

P
P

A
In

cr
1.

0

P
P

A
In

cr
2.

0

P
P

A
In

cr
3.

0

P
Q

A
3.

0

C
O

Q COQ

Cost of Quality Declined

Inspection Defects

0
2
4
6
8

10
12
14
16
18
20

P
P

A
 1

.0
In

cr
1

P
P

A
 1

.0
In

cr
2

P
P

A
 1

.0
In

cr
3

P
Q

A
 3

.0

D
ef

ec
ts

 /
K

LO
C

Insp. Defects

Fewer Defects found in Team Inspections

Test Defects

0

2

4

6

8

10

12

P
P

A
 1

.0
In

cr
1

P
P

A
 1

.0
In

cr
2

P
P

A
 1

.0
In

cr
3

P
Q

A
 3

.0

D
ef

ec
ts

 /
K

LO
C

Test Defects

Fewer Test Defects

Personal Review Defects

0
2

4
6

8
10

12
14

16

P
P

A
 1

.0
In

cr
1

P
P

A
 1

.0
In

cr
2

P
P

A
 1

.0
In

cr
3

P
Q

A
 3

.0

D
ef

ec
ts

 /
K

LO
C

Review Defects

More Defects found in Personal Reviews

Defects by Process

0

2

4

6

8

10

12
P

S
P

 D
es

ig
n

R
ev

ie
w

D
es

ig
n

In
sp

ec
tio

n

P
S

P
 C

od
e

R
ev

ie
w

C
om

pi
le

C
od

e
In

sp
ec

tio
n

U
ni

t (
C

om
p)

Te
st

In
te

gr
at

io
n

Te
st

S
ys

te
m

 T
es

t

A
cc

ep
ta

nc
e

Te
st

P
os

t D
el

iv
er

y

Phases

De
fe

ct
s/

KL
O

C PPA Incr3.0

PPA Incr2.0

PPA Incr1.0

PQA 3.0

Defects by Process

Customer Expectations Exceeded

It is not the author’s intention to contrast the V Model
with U.S. standards and directives, nor to comment about their
use by the German Federal Armed Forces. The characteriza-
tions, such as strengths, are loosely quoted from summaries
written by Herr Fritz Haertel, one of the architects of the V
Model. They do not necessarily reflect the author’s viewpoint.

The V Model
The V Model is a series of General Directives (250, 251,

and 252) that prescribe or describe the procedures, methods to
be applied, and the functional requirements for tools to be used
in developing software systems for the German Federal Armed
Forces.

General Directive 250. August 1992.
Software Lifecycle Process Model.

The objective of this directive is to regulate the software
development process by a uniform and binding set of activities
and products that are required during software development
and its accompanying activities. Use of the V Model helps to
achieve:

1) Improvement and warranty of software.
2) Reduction of software costs for the entire life cycle.
3) Improvement of communications among the different

parties as well as the reduction of the dependence of the
customer upon the contractor.

The V Model deals with procedure, method, and tool
requirements. Its main advantage is that it can be generally
applied. It fits into the international picture by fulfilling require-
ments of NATO standards, ISO 9000 technical standards, and
the structure of the EURO-METHOD. None of these is dis-
cussed here, but they could be featured in subsequent articles.

The V Model organizes all activities and products and
describes activities and products at different levels of detail.
In the V Model, products take on one of four states:

1. Planned: the initial state of all products
2. Processed: either in private development or under

the control of the developer
3) Submitted: completed and now ready for quality

assessment. It can be returnedto the processing stage if
rejected or advance to accepted for release.

4) Accepted.
While seemingly prescriptive, the V Model allows for

tailoring throughout the product life cycle. That is one of its
strengths. The V Model is composed of four submodels:

software development, quality assurance, configuration manage-
ment, and project management.

The submodels are closely interconnected and mutually
influence one another by exchange of products and results. The
software development submodel develops the system or software.
The quality assurance submodel submits requirements to the
other submodels and test cases and criteria to assure the products
and the compliance of standards. The configuration manage-
ment submodel administers the generated products. The project
management model plans, monitors, and informs the other sub-
models. Each can be further decomposed. For instance, the soft-
ware development submodel can be broken down as follows:
• System requirements analysis and design.
• Data processing requirements analysis and design.
• Software requirements analysis.
• Preliminary design.
• Detailed design.
• Implementation.
• Software integration.
• Data processing integration.
• System integration.

The directive contains very detailed information (rules) on
the activities of each submodel showing product flow, handling,
and, if warranted, recommendations. For example, in the plan-
ning stage the product flow is from an external specification to a
submitted state. Handling consists of organization planning, cost
and scheduling, resource planning, and risk considerations.

There may also be peculiarities that need to be addressed.
Recommendations that might be considered are:
• Use of matured resources and an experienced staff.
• Correct membership participation in cost and planning
• Scheduling.
• Consideration of alternative problem solutions.
• Knowing how to handle unexpected events
• Considering costs for management activities and

coordination activities.
Occasionally, the directive also includes further explanations.

It should be noted that prototyping can be used to verify
and detail requirements. Prototyping allows for early comple-
tion, as an aid in refining requirements, feasibility, and testing.

Each directive has a set of appendices containing definitions,
a list of abbreviations, a list of illustrations, a bibliography, a char-
acterization of the roles of the products, a list of activities to be
performed, a list of products, an index and annexes. Directive
250 has two annexes.

The V Model
by Morton Hirschberg

Formerly of the Army Research Laboratory

The author is the technical project officer for the Data Exchange Agreement for Software
Technology between the United States and Germany. It was in this capacity that he became aware
of the German software standards, known as the V Model, for the German Federal Armed Forces.
The standards are published in three volumes and can be tailored to fit officially sponsored work.
In this Web Addition, the author introduces these standards to give readers a flavor for them and
to encourage learning more about software standards used by a political and military ally.

The purpose of Annex 1 is to provide explanations of the
application of the V Model. It is to support the user and is not
of a binding nature. The objective of the V Model is to submit
the products created during software development, mainte-
nance, and modification to certain standards. This is to guaran-
tee a minimum quality of the results and to make it easier to
control the product stages from requirements definition to the-
final product itself. The V Model offers support as a guide, as a
checklist, and for the quality goal definition. The V Model
allows for tailoring, defines required products, and establishes
criteria for assessment.

Two kinds of applications have been intended for the V
Model—as a basis for contracts and as a development guide.
The V Model makes provisions for the use of commercial, non-
developed items, and commercial off-the-shelf software. It also
provides for information technology projects.

Annex 1 also provides the elements that may be deleted
from the model.

Annex 2 is an explanation of the products. It deals with
reports and software to be produced. This includes requirements,
architectures, and design. It covers user, diagnostic, and operator
manuals. It also is broken down by the same four submodels.

General Directive 251. September 1993.
Methods Standard.

The objective of this standard is to set down all the tasks
and results ofthe software development process. Standardization
is done on three levels: procedure, methods to be applied, and
functional requirements on tools to be used. While the V Model
answers what is to be done, the Methods Standard answers how
it is to be done.

More than 30 basic methods or categories of methods are
listed in the standard. These are, for example, bar charts, tree
diagram, decision table techniques, E(ntity)/R(elationship)
modeling, normalization, object design technique, simulation
models, and structured design.

The Methods Standard includes allocation tables listing
those basic methods that are best suited to realize certain activi-
ties or to develop products according to the latest state of the art
and by observing the criteria of quality improvement, economy,
and maintainability. For each method referenced in the alloca-
tion tables, the standard describes the features that an applied
method must include to reach the standard. In many instances a
complex method may be required. This may represent a well-
defined combination of several basic methods. Basic methods
really refer to procedures that describe a special, limited aspect of
a system such as, functionality, data orientation, analysis, prelim-
inary design, or one of the activities—quality assurance, configu-
ration management, or program management. Complex meth-
ods usually cover several aspects of a system.

Basic methods must be applied unless, by limiting condi-
tions, they make applying the method impractical, or there are
arguments against the method or for an alternative method in a
special case. Each method listed includes identification/defini-
tion, characteristics, limits, specification, interfaces, and a list of
references. The Methods Standard is not meant to be a methods
manual. Regarding tools, a method may be applied in different

versions depending upon the manufacturers. For this reason,
tool-independent definitions are set up.

Allocation tables exist for software development, quality
assurance, configuration management, and project management.

The Methods Standard can be made modified by a Change
Control Board that meets annually and is made up of industry
and government. Besides the main part of the Method Standard,
there are two annexes.

Annex 1 provides an explanation of the methods; the
method interfaces including a characterization of the interface,
an example of the interface, tool support, relevant literature, and
a description of the methods. The methods explanation contains
information about technical and operational software inspection
and walkthroughs.

Annex 1 addresses object design technique and configura-
tion management. It further contains a section on estimation
models (function point method, constructive cost model), simu-
lation models (continuous and discrete—time-controlled, event-
driven, activity-oriented, process-oriented, or transaction-orient-
ed), system behavior models (Petri networks, state charts, specifi-
cation and description language),and reliability models (statistic
[Okumoto, execution time, Logarithmic Poisson, Jelinski-
Moranda, and Schick and Wolverton], and error seeding).

Annex 2 helps when applying complex methods in connec-
tion with the software development standard. This annex
describes the most important methods for application in
German national projects. The methods are:

1) Graphical Engineering System (GRAPES)
2) Information Engineering Method (IEM)
3) Integrated Software Technology (ISOTEC)
4) The quality management system of the CAP Gemini

Group (PERFORM)
5) Structured Analysis and SA with Real Time Extensions

(SA & SA/RT)
6) Specification and Design Language (SDL)
7) Software Engineering Technology (SEtec)
8) Structured Systems Analysis and Design Method(SSADM)

For each of the above, a brief description, tabular compari-
son with the basic methods, specification of the allocation, and
relevant literature is given.

General Directive 252. September 1993. Functional
Tool Requirements (Standardized Criteria Catalogue).

The goal of this standard is to constrain the variety of applied
methods and tools that can be employed during the software life
cycle. While theV Model answers what is to be done and the
Methods Standard answers how it is to be done, the Functional
Tool Requirements answers with what it is to be done.

The standard increases the guarantee for software quality
(higher quality products, lower risk), minimizes software cost for
the entire life cycle, imposes communication among the different
parties, and reduces dependence of the customer on the contrac-
tor. The latter is accomplished through its recommendations,
focused approach, and required prescriptions.

The standard introduces the software development environ-
ment (SDE) reference model where SDE is defined as “the totali-
ty of all technical resources utilizedfor the professional software

development.” A tool is defined as “a software product supporting
the generation or maintenance or modification of software.”

The structure of the SDE reference model is:
• User interface.
• Work flow management.
• Security and integrity requirements.
• Software development.
• Quality assurance.
• Configuration management.
• Project management.
• Object management.

The description of the fundamental units or criteria—or
service units, as they are referred to in the standard—are laid
out as allocation to the V Model and Methods Standards, brief
characteristics, and finally, requirements.

The reference model puts all the technical data processing
services offered into a basic schema. Fifty-eight service units are
defined and explained. A service unit can cover exactly one
method or several methods. It should be noted that a method
can be covered by one or more service units or not covered at
all. In addition, there may be other requirements that are not
based on a method. Finally, the Methods Standard may not sug-
gest a method for the item under consideration. Some examples
of service units are:
• From the user interface—help functions.
• From software development—generating databases,

compiling, and debugging.
• From quality assurance—static assessment of the code.
• From project management—cost estimation.

An example of a service unit schema for cost estimation is
allocation—planning, detailed planning, and estimation models;
brief characteristics—requirements on tools to support the cost
estimation realized by basis of already available empirical values
from earlier projects, project specific marginal conditions, and by
assumptions of future developments. For requirements—granu-
larity, input and output interfaces to other service units, estima-
tion models for fixed and variable costs, and other requirements
such as an experience database.

The standard has an appendix and two annexes. An impor-
tant part of the appendix is the relationship between the V
Model and the European Computer Manufacturers Association
(ECMA) Reference Model. The services in the ECMA Reference
Model are:
• Object management.
• User interface.
• Process management.
• Policy enforcement.
• Communication.

Tools per se are not further specified in the ECMA
Reference Model. There is no strict one-to-one correspondence
between the V Model and the ECMA Reference Model.

Finally, Annex 1 supports the user in his work with func-
tional tool requirements by means of tabular overviews and
applications scenarios. The latter covers the definition of the
functional requirements on a tool, the selection of tools for set-
ting up a SDE, tool evaluation, and the tool environment in a
customer/contractor relationship.

Annex 2 is a used as an introduction into the basics of SDE
data management and to offer an overview of standards for the
integration of tools with regard to data, control information, and
user interface. Data management is handled through the use of
data models. The real world is first portrayed in a conceptual
design from which a logical design of relevant features is devel-
oped. Annex 2 provides definitions of a data dictionary, reposito-
ry, and development data base.

Finally, the appendix deals with standards. Not all require-
ments can be met by a single tool, so a SDE is only possible if
tools can be integrated into a uniform environment. Such integra-
tion has three aspects: data integration, control integration, and
uniform user interface. The concentration is on data integration.

Several standardization efforts in the DP industry are dis-
cussed, including those of the Object Management Group.

Model Summary
The V Model, Methods Standard, and Tool Standard pres-

ent complete coverage of the functional areas sSoftware develop-
ment, quality assurance, configuration management, and project
management), provide concrete support, is sophisticated, yet
flexible and balanced, has a wide spectrum, and is publically
controlled under the supervision of a Change Control Board.
Improvements as well as corrective changes are handled through
the Control Board.

The advantages are improved communications among proj-
ect members, uniform procedures, guarantee of a better product,
productivity increases, better choice of methods, adaptability,
reduced risk, lowered training costs, anddecreased maintenance.

Conclusion
It is my hope that the models presented can serve as a cata-

lyst and framework for discussion of standards methodologies for
the Department of Defense. It should be noted that the German
Ministry of Defense, while similar to the Department of
Defense, is much more homogeneous. Perhaps this is a major
contribution to the use of their V Model.

Contact Information
Morton Hirschberg
207 Briarcliff Lane
Bel Air, Md. 21014-5524
E-mail: mortfran@aol.com

CrossTalk
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

BBUULLKK RRAATTEE
UUSS PPOOSSTTAAGGEE PPAAIIDD

PPeerrmmiitt NNoo.. 448811
CCeeddaarrbbuurrgg,, WWII

PPuubblliisshheedd bbyy tthhee
SSooffttwwaarree TTeecchhnnoollooggyy

SSuuppppoorrtt CCeenntteerr

Sponsored by the
Computer Resources

Support Improvement
Program (CRSIP)

	Cover
	Index
	From the Publisher
	Building Productive Teams
	Managing Risk with TSP
	Coming Events
	Making Quality Happen: The Manager's Role
	PSP/TSP Web Sites
	PSP: Fair Warning
	Statistical Process Control Meets Earned Value
	What We Have Learned
	Proven Techniques for Efficiently Generating and Testing Software
	Large Software Systems-Back to Basics
	Letter to Editor
	BackTalk
	Call for Articles
	Web Addition: The V Model

