
CrossTalkCrossTalk
August 2000 The Journal of Defense Software Engineering Vol. 13 No. 8

New STSC Tech Reports Available

2 CROSSTALK The Journal of Defense Software Engineering August 2000

Factors Affecting Process Improvement Initiatives
Consider critical factors in starting a process improvement initiative.

by Tim Kasse and Patricia A. McQuaid

Software Best Practice Development—An Experience
How one group developed best practices and initiated process development.

by George Jackelen

Risk Management Fundamentals in Software Development
Effectively managing risks and challenges is critical in software development and engineering.

by George Holt

Development of Space Shuttle Telemetry Station Software
Collaborative software development and sustaining engineering resulted in reduced cost/schedule.

by Dr. David K. Mann

A New Application of CONOPS in Security Requirements Engineering
Using CONOPS to address a single aspect—in this case, security—in a large-scale Navy project.

by Darwin Ammala

Software Engineering Education: On the right Track
Real-time embedded software development courses should give the fundamentals and prepare students for the lab.

by John W. McCormick

Don’t Say the ‘P’ Word
A deconstruction of some of the arguments—both for and against—that have been posited on ‘process.’

by Lori Pajerek

4

9

12

15

Departments

On the Cover:
Larry W. Smith
brings it all to
the table with his
latest cover—he
is a graphic artist
as well as an
engineer for
the STSC.

3

31

From the Publisher

25 Coming Events

30 Extended Letter to the Editor

21 Quote Marks

BACKTALK

7 Letters to the Editor

8 Process Improvement Web Sites

19

26

22

H. Bruce Allgood

Reuel S. Alder

Lynn Silver

Kathy Gurchiek

Matthew Welker

Heather Winward

Abby Hall

801-775-5555
801-777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
Crosstalk/crostalk.html
www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address. You may use the form on page 31.

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, Utah 84056-5205

Article Submissions: We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Guidelines for CROSSTALK Authors, available upon request.
We do not pay for submissions. Articles published in
CROSSTALK remain the property of the authors and may be
submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
Coming Events: We often list conferences, seminars, sym-
posiums, etc., that are of interest to our readers. There is
no fee for this service, but we must receive the information
at least 90 days before registration. Send an announcement
to the CROSSTALK Editorial Department.
STSC Online Services: at www.stsc.hill.af.mil.
Call 801-777-7026, e-mail: randy.schreifels@hill.af.mil.
Back Issues Available: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was estab-
lished at Ogden Air Logistics Center (AFMC) by
Headquarters U.S. Air Force to help Air Force software
organizations identify, evaluate, and adopt technologies to
improve the quality of their software products, efficiency in
producing them, and their ability to accurately predict the
cost and schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING
EDITOR

ASSOCIATE
EDITOR/LAYOUT

ASSOCIATE
EDITOR/FEATURES

GRAPHIC
DESIGNER

VOICE

FAX

E-MAIL

CrossTalk

Software TechnologyEngineering

Software EducationEngineering

Process Improvement

Open Forum

August 2000 www.stsc.hill.af.mil 3

From the Publisher

What Makes Software Process Improvement Happen?

The Department of Defense spent an estimated $35.7 billion on software in 1995 and it will spend
$20 billion annually on embedded software alone beginning in 2002 [1]. When software process
improvement is applied to all software efforts, the savings could be $5 billion per year or better. This
is based on government and industry data collected over the past 10 years.

One example is the Software Engineering Division at Hill Air Force Base, Utah, which announced its
Level 5 Capability Maturity Model (CMM®) achievement and reported a 35 percent cost savings in its soft-
ware maintenance activities [2]. Industry and government sources have reported cost savings from 9 percent to
67 percent, reductions in software errors from 10 percent to 94 percent, and schedule compressions from 15
percent to 23 percent [3].

In addition to the primary benefits to process improvement there are significant secondary benefits.
These include improved employee morale, less overtime, fewer crises, less absenteeism and less attrition.
Less attrition can be a significant savings to software organizations that experience a 16 percent industry-wide
turnover rate, according to Boeing Information Systems data. Organizations with well-developed processes
show 3 percent attrition.

The business case for software process improvement is well established but how does it happen?
It must begin with top management sponsoring the effort. This means a commitment of management time
and corporate resources. A blessing by top management with a launch-and-forget mentality will fail. Process
improvement requires the time and attention of senior leaders. They must attend the planning sessions, the
report and review sessions, as well as the decision sessions.

They must approve the selection of the organization's best performers to conduct the improvement effort.
The quality of the individuals selected to staff technical working groups is a demonstration of management's
commitment to succeed by engaging those most likely to succeed. George Jackelen's article on page nine
addresses some of the issues about getting started. Participation was slow initially. A common understanding of
the project, the goals, and definitions were needed. It takes time to focus an organization on process improve-
ment. There is a period of buy-in where employees test management's resolve. The question weighing on their
minds is how serious is management. Is this just another quick fix, feel good activity that will pass is a few
days or months?

In addition to sponsorship, the culture and capabilities of the organization need to be considered.
Beginning on page four, Tim Kasse and Dr. Patricia McQuaid discuss many issues affecting process improve-
ment. Does the organization have a history of resistance to change? Do they have qualified human resources?
Process improvement is not a substitute for engineering capability. A Level 1 organization can at least deliver
software; they are just inefficient at doing it. Teaching those who are software illiterate the virtues of CMM is
entertaining but not productive.

There are cultural issues to change. Marriages between two cultures often fail. Neither partner has a basic
understanding of the other's needs. Organizations develop a cultural pattern. They have their unwritten rules
of order. When these rules are violated, change becomes difficult. When they are understood and applied,
change flows more quickly and efficiently.

Progress toward a goal is best achieved when the goal is known and improvements are measured. A
CMM-based Appraisal for Internal Process Improvement is an important milestone. A team of people com-
posed from inside and outside the organization conducts this assessment. What an organization learns from
this assessment will focus their efforts on what needs to be done.

Reuel S. Alder
Publisher

1. Sanders, Dr. Patricia. Improving Software Engineering Practice, CROSSTALK, January 1999, Vol. 12, No. 1.
2. Oldham, Leon, et al. Benefits Realized from Climbing the CMM Ladder, CROSSTALK, May 1999, Vol. 12, No. 5.
3. Griffin, Scott. Boeing's Continuous Improvement Journey, SEPG 2000.

CROSSTALK The Journal of Defense Software Engineering August 2000

Process Improvement

The Critical Factors Identified
When an organization is trying to establish its organization-

al process, there are many factors that must be taken into con-
sideration. We have identified the following factors that we
believe are critical for organizations that have started their
process improvement programs in the past 10 years, and will
discuss them throughout the remainder of this paper.
• History of previous process improvement programs

or quality improvement programs.
• Financial resources to fund the process improvement

initiative.
• Human resources that can be dedicated to process

improvement.
• Software engineering capability of the developers.
• Technology support available.
• Contractual obligations.
• Scope.
• Customs and culture of the organization.
• Standards (industry, corporate, organizational, project,

customer).
• Understanding and support from all levels of management

and practitioners.
• Corporate political pressure.
• Business objectives.
• Vision.

History
Knowing the history of previous process improvement or

quality improvement programs can help the process improve-
ment initiative an organization is about to undertake. After one
or two intitiatives associated with quality management or process
improvement have failed, an organization becomes disinterested
and cynical. Existing process improvement attempts, perhaps
scattered throughout the organization, should be examined to
determine if they could be used as a good starting base for this
new organizational process improvement effort. Looking at what
went right and what went wrong with past process and quality
improvement attempts can be very useful. If an approach or part
of an approach was successful, perhaps following that approach
will be successful again. If an approach was not successful, then

understanding what caused the failure could help avoid those
problems and negative feelings the next time. Understanding his-
tory can help ensure future success.

Financial Resources
Most organizations that get involved with process improve-

ment are in business to make a profit. Process improvement is
not free; it takes money, computer resources, human resources,
tools and techniques, training, and consulting support. It is
important to determine how much process improvement an
organization can afford. Regardless of what standard or model is
followed or what external pressure may be exerted on the organ-
ization, there is a real probability that it can only afford so
much process improvement. Even if the managers and practi-
tioners of the organization wanted to improve in multiple areas
at one time, they may be financially restricted to focus on a few
key areas and add others as they begin to show a measurable
return on investment.

Human Resources
When we speak of human resources, we must also state

that we are talking about qualified human resources. A process
improvement initiative that will be successful must be able to
assign or find qualified process improvement agents. Some of
the best candidates for the support of process improvement
may also be the key players in development or project manage-
ment. Senior, especially middle, management normally is not
happy to move these people out of their perceived strategic
positions and into process improvement. Finding qualified
process improvement agents to join an organization, to come
up to speed on its products and services, and to adapt to its
culture is also a difficult task. Process improvement requires
strong process improvement or change agents who can coach
and mentor others, allowing them to become comfortable with
the changes and even more productive. The process improve-
ment agents or Software Engineering Process Group members
need to understand senior management’s strategic direction, the
organizational structure, software support activities such as
Software Quality Assurance and Software Configuration
Management, modern software engineering techniques and
methods, and basic project management practices in order to
increase the likelihood of success. They also must be able to
work within the organizational culture, know how to manage
technology change, be able to apply team-building concepts,
and utilize collaborative consulting skills.

Factors Affecting Process Improvement Initiatives

When starting a process improvement initiative, it is imperative to determine the appropriate tasking and the scope
of the process improvement program. It is tempting for an organization to try to take on too much too fast, especially
if it feels that it must catch up to its competition. While it is natural to want to initiate a program quickly, it is
important for an organization trying to get a process improvement initiative started to be as realistic as possible in
these beginning stages. This paper will identify the critical factors to consider that have helped the authors’ clients.

This paper is based on the authors’ previously published,
“Entry Strategies Into the Process Improvement Initiative,”
Software Process Improvement and Practice Journal, Vol. 4,
Issue 2, pp.73-88, June 1998.

By Tim Kasse
Kasse Initiatives LLC

and Patricia A. McQuaid,
California Polytechnic State University

Understanding Software Engineering Principles
It is worth taking the time to understand the organization’s

comprehension of basic software engineering principles and
deciding how much training, coaching, and mentoring will be
necessary to support the process improvement initiative. It might
be wise to provide some basic software engineering training and
follow up with coaching and action planning as the organization-
al members realize what it is that they need to do to improve.

The Capability Maturity Model (CMM®) and the associat-
ed process improvement aids that the Software Engineering
Institute (SEI) supports assume that the organization has a sound
understanding of software engineering principles but does not
apply them very well. CMM Level 2 Key Process Areas focus on
project management practices to remind managers and developers
that they need to adhere to these project management practices to
properly manage and control their projects. The CMM is not a
Software Engineering Handbook. It does not describe the under-
lying software engineering principles, but assumes that they are
understood. Asking for an assessment and assuming the organiza-
tion can accept the assessment results, develop an action plan,
and start to implement it with positive measurable results can be
very risky! It is useful to determine the level of understanding of
software engineering at all levels of management, as well as to
determine the software developers’ level of experience and under-
standing of software engineering principles.

Technology Support
Another critical element is to determine the organization’s

attitude toward technology. It is important to ascertain whether
technology is sought after as the “silver bullet” or if it used to
support the process and make the developers more productive.
Where does the technology support come from now? Does an
in-house group provide it or is it provided by an outside vendor
with a long-term contract that is difficult to break or get
around? What budget is available for technology?

If management views technology as a quick answer for the
organization to get on with its important work, or sees technol-
ogy as a way to increase the developers’ productivity by 15 per-
cent to 20 percent without any other support, then it is impor-
tant to help management understand process improvement con-
cepts. However, if management’s attitude is that appropriate
technology should be used to support the process improvement
initiative and that both process and technology are needed to
allow workers to be as creative and productive as they can be,
then an emphasis on technology is desired.

Technology is necessary to support the managers and devel-
opers working on today’s complex systems. A quick glance at
the CMM might give one the impression that technology is not
thought about until Level 5, but of course that is not true.
Technology is required to support the managers and developers
at every level; however, the technology must complement the
process, not drive it. Any entry strategy into software process
improvement must take past, present, and future technology
into consideration.

Contractual Obligations
The talk about process improvement seems to indicate that

an organization needs merely to decide that it will undertake a
process improvement initiative and all other factors are inciden-
tal. However, some of the organization’s major projects may
have long-term contracts that can be viewed as blocking factors
to process improvement. Some or many of the process improve-
ment ideas may not be allowed to be implemented on those
projects without first obtaining permission from the customer.
This implies that either an understanding or an agreement must
be made with the customer for that existing contract or the
organization may be restricted in what it can realistically imple-
ment on such a project.

Scope
The term scope is most appropriately used when preparing

for an assessment or evaluation (audit). You must decide whether
the entire organization is to be examined or just a department or
even a project or two. It is entirely appropriate to think about the
scope when preparing for a process improvement initiative. Each
process improvement initiative must have a clearly defined scope.
Is it the intent to institutionalize the management practices of
Level 2 throughout the organization? From a political or strategic
point of view, is it more appropriate to focus on a product line?
What departments should be included in the process improve-
ment initiative? Are there specific projects that should spearhead
the process improvement effort and then gradually expand suc-
cessful concepts to the rest of the organization? The scope of the
process improvement initiative will also determine how many
resources are needed to support this effort. Resources include
people, money, equipment, tools, methods and techniques, train-
ing, and potentially outside support from consultants.

Customs and Culture
Culture may seem obvious to us, but it is subtle and can

have an enormous influence on the way that we think and go
about our daily lives. Organizational culture not only affects the
development and maintenance of software but also everyday
morale of the work force. Culture may come from the region of
the country or world that we are living and working in. The
culture of the European countries of France, Spain, and Italy is
very different from that of Germany, the Netherlands, and
Scandinavia. The culture of the southwest region of the United
States is vastly different from that of the East Coast. Some cul-
tures conduct meetings only to tell the participants what deci-
sions have been made, and others are so team oriented that an
answer given to an outsider is almost always the result of team
thinking. Some cultures are open and accept challenges and
innovations, whereas other cultures are closed and decisions
must come from the top.

Much of the process improvement thinking today seems
to support the idea that a strong process focus should transcend
the personalities of the top management of an organization. In
the authors’ experience it is more often that the senior manage-
ment team’s attitude toward quality and process improvement has
a strong influence in determining what the organization’s culture
will be. The organizational process improvement initiative must

August 2000 www.stsc.hill.af.mil 5

Factors Affecting Process Improvement Initiatives

The Capability and Maturity Model and CMM are registered trademarks
of the Software Engineering Institute and Carnegie Mellon University.

6 CROSSTALK The Journal of Defense Software Engineering August 2000

take into consideration the organization’s culture, if this initiative
is to have any chance of success.

Standards

The various standards established for software development
around the world have their own special effects on a process
improvement initiative. Department of Defense (DoD) stan-
dards such as MIL-STD-498 and previously MIL-STD-2167
and MIL-STD-2168 directed ways of approaching problem
solving, prescribed formats of documentation, and dictated soft-
ware life-cycle approaches that influenced many software sup-
port activities such as configuration management and software
quality assurance [1], [2], [3]. International Organization for
Standardization (ISO) standards such as ISO 9001, ISO 9004,
and ISO 9000-3 (TickIT) are a set of commonly talked about
international standards. They were intended to allow countries
to trade with one another and be able to expect a certain level
of quality [4], [5], [6], [7]. Instead, the pressure to be ISO certi-
fied pushed organizations to develop pages of documented
processes that were rarely known or used throughout the organ-
ization. Institute of Electrical and Electronics Engineers (IEEE)
standards provide templates and guidelines for organizations to
adapt to support their software development efforts [8]. The
Capability Maturity Model, developed at the SEI in Pittsburgh,
has become a de facto standard in the world [9], [10], [11].
Many companies, however, try to apply the CMM as an
absolute model rather than the roadmap or guide that it is.

Your organization’s requirements to adhere to a standard
and/or its reaction to standards can have a profound influence
on your process improvement initiative.

Understanding and Support from All Levels

of Management and Practitioners
From Dr. Edward Deming’s ideas on Total Quality

Management to the texts that are found today on quality man-
agement and process improvement, it is clear that management
understanding and cascading management support is critical for
the success of any process improvement initiative [12]. Without
senior management sponsorship, process improvement change is
slow at best. However, it is most frequently the middle man-
agers who become the blocking factors in any quality manage-
ment or process improvement effort. Middle managers today
are under tremendous pressure from multiple sources: they feel
pressure from the senior management team to produce products
better, faster, and cheaper; and they feel pressure from the devel-
opers and first-line managers to provide the latest in computers,
languages, methods, and techniques. Many of the middle man-
agers are not aware of the processes that their developers are fol-
lowing. As a result, they often resist process improvement initia-
tives due to this lack of awareness and to the pressures just
noted. Therefore, any process improvement initiative must take
these factors into consideration. The senior management team
must encourage, train, and support middle managers in process
improvement principles so they know what is in it for them
and, in turn, provide the necessary support from their level.

Although the CMM puts tremendous emphasis on

management practices, a successful process improvement initia-
tive must also have the practitioners’ support. Groups, managers,
and practitioners must be trained, mentored, and coached.

Corporate Political Pressure
While there may be companies that are unaware of the

CMM or do not care to use it as a guide for their process
improvement initiative, the political pressure to be CMM Level
2 or CMM Level 3 by a certain time is at epidemic proportions
throughout the world. Many large international companies have
edicts from corporate offices indicating that each business unit
must achieve SEI CMM Level 2 or SEI CMM Level 3 in 12
months or 18 months. The idea of process improvement fre-
quently gets lost. With at least a few of the large clients that the
authors are aware of, a vice president is offered an incentive of
$10,000 to $20,000 if his/her business unit achieves the CMM
level number. Some of these vice presidents have issued orders
to their process improvement managers to do whatever it takes
to get the certification of the needed level—process improve-
ment is secondary.

One European client felt this corporate pressure so badly
that the client abandoned its systematic approach of process
improvement and resorted to developing processes in isolation
from those who would use them, providing a two-hour
overview training, and declaring the practice to be institutional-
ized. The resentment to the process improvement effort and to
the CMM was the highest these authors have seen in 10 years.
The individual managers and practitioners could not see what
benefit they were getting if the only goal was to achieve a level.
Eventually the management team took a stand against the cor-
porate directive and backed a process improvement initiative
that would support the business and eventually result in a high-
er maturity level rating. Political pressure must be taken serious-
ly when starting a process improvement initiative.

Business Objectives

For a process improvement initiative to be successful, it is
imperative that it is tied to the organization’s business objec-
tives. Typical business objectives have included reducing time to
market, improving delivery-time accuracy, increasing the quality
of products, and increasing market share. It is important to
determine the organization’s highest priorities; the consequences
to business resulting from weak or ineffective processes, and the
action taken to correct the cause. You need to identify how the
process improvement initiative is seen to support the organiza-
tion’s business objectives, and how the process improvement ini-
tiative will tie in to the organization’s overall focus on Quality
Management. Only then can the management practices at
CMM Level 2 and the technical practices at CMM Level 3 take
on real meaning. For example, if a business objective is, “Find
and fix each problem once,” it can be shown that applying the
management practices of Software Configuration Management
will support this business objective.

By getting management to define the business objec-
tives, the process improvement initiative can be adapted to sup-
port those business objectives. By using the CMM as a

Process Improvement

August 2000 www.stsc.hill.af.mil 7

Factors Affecting Process Improvement Initiatives

roadmap, an organization can accomplish process maturity and
use this maturity to support the business objectives; otherwise
maturity levels are often useless. Be careful not to lose sight of
the business goals, thinking that you are going through the
process only to attain a certain level regardless as to whether
the process works for your organization.

Vision
Understanding senior management’s vision is a critical step

in establishing an organization’s process improvement initiative,
one whose value cannot be emphasized enough. In the past three
years, assessments have revealed that a lack of understanding of
the senior management’s vision has caused measurable lack of
motivation and productivity.

Where senior management thinks the organization will be
in the next year, and in the next two to five years, must be iden-
tified. Competitors and strategic alliance partners need to be
recognized. The technology changes that are expected and/or
will be required to support the vision should be addressed.
Determine the necessary organizational structure to support this
vision, as well as what the organizational culture must be. Only
then can you determine how a Process Improvement Initiative
will support this vision.

Conclusions

Getting involved with process improvement is essential for
companies that develop software today. However, deciding on
how to get started, how many resources to dedicate to this
effort, understanding how it supports the organization’s business
objectives, and many other factors, is not an easy task.

The factors that may affect a process improvement initiative
must be determined and used to guide the organization into
choosing the right entry strategy for it. One size does not fit all
and an assessment may not even be the right place to start! The
first step toward a successful improvement program is to choose
the appropriate process improvement entry strategy.u

References
1. MIL-STD-498, Software Development and Documentation,

May 12, 1994.
2. MIL-STD-2167A, Defense System Software Development,

Feb. 29, 1988.
3. MIL-STD-2168, Defense System Software Quality Program,

April 29, 1988.
4. ISO 9001:1994 Quality Systems—Model for Quality Assurance

in Design/Development, Production, Installation, and Servicing.
5. ISO 9000-3, Quality Management and Quality Assurance

Standards—Part 3: Guidelines for the Application of ISO 9001
to the Development, Supply, and Maintenance of Software.

6. ISO 9004-1:1994, Quality Management and Quality System
Elements—Part 1: Guidelines.

7. ISO 9004-4:1993, Quality Management and Quality System
Elements—Part 4: Guidelines for Quality Improvement.

8. IEEE, IEEE Standards Collection on Software Engineering,
1994 Edition, IEEE Inc.

9. Paulk, M.C., Curtis, B., Chrissis, M.B., Capability Maturity
Model for Software, Version 1.0, Software Engineering Institute,
CMU/SEI-91-TR-24, August 1991.

10. Paulk, M.C., Curtis, B. Chrissis, M.B, and Weber, C.V.,
Capability Maturity Model for Software, Version 1.1, Software
Engineering Institute, CMU/SEI-93-TR-24, February 1993.
[This report combined with 24 is referred to as the CMM
(version 1.1)].

11. Paulk, M.C., Weber, C.V., Garcia, S.M., Chrissis, M.B.,
Bush, M., “Key Practices of the Capability Maturity Model,
Version 1.1”, Software Engineering Institute, CMU/SEI-93-
TR-25, February 1993. [This report combined with 23 is
referred to as the CMM (version 1.1)].

12. Deming, W.E., Out of the Crisis, MIT Press, 1982.

About the Authors
Tim Kasse serves as the manager and principal
consultant of Kasse Initiatives LLC. Previously he
served as the Chief Executive Officer and Principal
Consultant for the Institute for Software Process
Improvement that he co-founded with Jeff Perdue
in 1991. His focus is on innovative solutions for

process improvement of business, systems, software, people, and
lifestyles. Kasse spent four years at the Software Engineering
Institute and was a major contributor to the development of the
Capability Maturity Model, which provides the framework for the
SEI’s assessments and evaluations.

Dr. Patricia McQuaid is an associate professor of
Management Information Systems at California
Polytechnic State University. She has taught a
wide range of courses in both the Colleges of
Business and Engineering, has industry experi-
ence, and is a certified Information Systems

Auditor (CISA). She is serving as the North, South, and Central
American Chair for the Second World Congress for Software
Quality, slated in Japan in September. Her research interests
include software process improvement, software quality, and
software testing.

Dr. Patricia McQuaid
California Polytechnic State University—MIS Area
College of Business, San Luis Obispo, Calif. 93407
Voice: 805-756-5381
Fax: 805-756-1473
E-mail: pmcquaid@calpoly.edu

United States
Kasse Initiatives, LLC.
30 West Sheffield Ave
Gilbert, Ariz. 85233
Voice: 602-855-1101
Fax: 602-855-1119
E-mail: kassetc@aol.com

Europe
Snijderstraat 23
5345 PC Oss,
The Netherlands
Voice: 31-412-692-444
Fax: 31-412-692-787
www.kasseinitiatives.com

I have used back issues of
CROSSTALK often in my soft-
ware process improvement
work both at Xerox and
Hughes. It is really helpful!

—Delores J Harralson, Hughes
Space and Communications

I’m having withdrawal . . . not
having CROSSTALK to read
since I left Puget Sound Naval
Shipyard! The hard copy will
be perfect to read on the Metro
on my way to and from work!

—Cathy Ricketts, NAVSEA

0Letters to the Editor0

8 CROSSTALK The Journal of Defense Software Engineering August 2000

www.sei.cmu.edu/publications/documents/96.reports/
96.ar.biblio.softproc.impr.html
This is a bibliography for software process improvement written by
Mark C. Paulk. The bibliography lists studies and experience reports on
the effects of software process improvement.

www.sei.cmu.edu/publications/documents/96.reports/96.hb.001.html
“IDEAL: A User’s Guide for Software Process Improvement (SPI)” by
Robert McFeeley describes “a SPI program model, IDEAL, which can be
used to guide development of a long-range, integrated plan for initiating
and managing a SPI program. The purpose of this document is to pro-
vide process improvement managers with a generic description of SPI.”

www.espi.co.uk
This is the ESPI Foundation’s site, which it says is “dedicated to con-
tinuous software process improvement and increased business
performance.” There are links to the European SEPGTM technical
workshop, and to SPIshare.

www.ispi.co.uk/ispi71.htm
This is the site for the Institute for Software Process Improvement,
with links to SEI CMM, SPI, and change movement. Web pages are
dedicated to such things as Process Impact—Software Process
Improvement Consulting and Education; and Software Process
Improvement and Change Management: Keys to Success.

www.sei.cmu.edu/collaborating/spins/spins.html
The Software Process Improvement Network is made up of individuals
who want to improve software engineering practice, and those individ-
uals are organized into regional groups called SPINS. This site links to
a directory of U.S. and international SPINs, announcements, and ways
to start or join a SPIN.

www.hio.hen.nl/~zielman/compsci/seng/spi.html
This site offers links to SPI, such as the Software Engineering Institute

home page, a critique of SEI’s CMM, the SPIDER project, and the
Managing Process Improvement Course.

http://web.mit.edu/lfm/www/working_papers/1998_abstracts/
cjohnson_abstract_1998.html
This site provides readers with an abstract written for a thesis on the
“Dramatic Improvement of a Mature Process: Proactive Process
Improvement.” There also is a link to the Class of 1998 theses list,
working papers, and a home page.

www.computer.org/software/so1997/s5075abs.htm
Readers will be linked to a site on “How Software Process
Improvement Helped Motorola.” The authors of this paper,
copyrighted in 1997 for the Institute of Electrical and Electronics
Engineers Inc., offer metrics and data that show the results of
Motorola’s usage of the Capability Maturity Model.

Other IEEE-copyrighted articles may be found at

www.computer.org/software/so1998/s1064abs.htm

www.computer.org/software/so1999/s3037abs.htm

IEEE Computer Society membership may be required to access.

www.sqi.gu.edu.au/spice/title.html
Welcome to the Web site by Software Process Improvement and
Capability dEtermination (SPICE). There are links to an abstract on
“Software Process Improvement in Web Time,” an introduction to
software process improvement, strategic business planning and process
improvement, and the Engineering Process Improvement Center of
Lockheed Martin Corp.

www.marotz.com/journal/dec98/links.htm
“Useful Process Improvement and Project Management Links” takes
readers to various newsletters as well as short courses curricula.

Process Improvement Web Sites

August 2000 www.stsc.hill.af.mil 9

Over the last several months, our prime contractor has been
working on an initiative to develop documented best practices
on how we do software Independent Verification and Validation
(IV&V). The scope was narrowed to our current work, e.g.,
document development, review of customer supplied docu-
ments, test witnessing.

This paper provides some information about the work and
decision making we do to get started and to develop a first set of
project-level best practices. For instance, do we use a top-down
approach (i.e., start with policies and work down to instructions)
or did we use a bottom-up approach (i.e., start with instructions
and work up to policies)?

The following describes some of the issues raised (not in
chronological or priority order) and the eventual decisions,
which could change. As with all decision-making efforts, the
results do not apply to every environment. In some situations
people may challenge a decision, but consensus and management
direction are often more important than the actual decision.

This paper does not mean the process work we started has
ended. It has just begun.

Getting Started
The IV&V Project Manager (PM) created a Process

Development Group (PDG) consisting of eight people: a PM-
appointed lead, a member from each organization, a person
with experience in procedure development and implementation,
and a person from the ISO 9000 development group. The PM
attended almost every meeting to facilitate the process. Once
the PDG created a Process Instruction (PI, described later), the
PI would be distributed among the organizational leads and
then to all the project members for comment and acceptance.
The following are some interesting PDG characteristics:

• During the first three months, only two members partici-
pated in more than 90 percent of the e-mail discussions on
how the Process Development Group should operate, the
format and style of the PIs, and comments on the first PI.
Attempts by the two members to insert controversial state-
ments did not invoke discussions.

• During the weekly meetings, four people provided more
than 90 percent of the discussion. When open-ended ques-
tions were asked to solicit opinions, the other four rarely
responded. However, when the PDG Lead met with indi-
viduals one-on-one and asked them questions, they would
respond, sometimes disagreeing with a meeting’s decision.
Many organizations use the following hierarchy to describe

their best practices: policies, procedures, work instructions, and
checklists to insure the procedures and work instructions are
implemented. Instead of developing one or more policies for
our group, we agreed to use the Annual Business Plan (ABP),

(an agreement between IV&V and our customer). This also
gave us flexibility since the ABP is revised annually to provide
direction for IV&V during the upcoming 12 months.

Another get-started issue was determining the level of detail
needed to provide direction to the project IV&V software engi-
neers. For instance, should we develop procedures and work
instructions? Part of the discussion resulted in the need to
define the difference between procedures and work instructions.
Some believe procedures are developed to provide process
instructions stating what needs to be done to satisfy group
interfaces; work instructions provide directions to individuals on
how to implement their part of the procedures. Others believe
there is no difference. Due to the engineers’ talent, the decision
was made to only develop PIs—a compromise between proce-
dures and work instructions—and to provide just enough
instructions for the engineers to know what to do, allowing
them to provide the details. This provides flexibility and reduces
the need for too many procedures and related documents.

Glossary and Terminology
Some people wanted each PI to contain the definitions it

used. The consensus was to have a Process Dictionary for all
terms and abbreviations. PIs would be allowed to modify a term
in this list to satisfy their particular needs. PIs could also include
terms not provided in a Process Dictionary. Definitions of terms
normally found in a dictionary would not be part of a glossary.
Draft PIs would include terms, definitions, and abbreviations
not found in the Process Dictionary; before a PI was finalized,
there would be a decision to add new terms to the Process
Dictionary or leave them in the PI.

Terminology was a related issue. For instance, some people
did not know the difference between a report (a document on
results of an analysis or assessment) and a plan (a document
describing methodologies, schedules, resources, etc., to be imple-
mented). Another example was the belief that a walkthrough was
the same as a review. Also, people did not realize they had differ-
ent definitions of “peer group.” These issues reinforced the need
for a common documented set of terms and definitions.

Configuration Control
Discussion included the need to control the PIs, e.g., distri-

bution of the latest version. The agreement was to have each PI
maintained (responsible for creation, modification, and termi-
nation) by a maintainer/process owner. The process owner (the
preferred name) would ensure each PI version was coordinated
with the PM and all organizations involved with the PI. A new
version would be published when there was a major change to a
PI or the PI’s process owner changed (e.g., a change in person-
nel). This would ensure that the new process owner was aware

Software Best Practice Development—An Experience
By George Jackelen

EWA Inc.

A Level 3 process capability requirement includes having documented software processes (best
practices)[1]. This paper addresses an experience of initiating a process development effort.

10 CROSSTALK The Journal of Defense Software Engineering August 2000

Process Improvement

of the PI and provided a chance for the new process owner to
coordinate any changes he wanted to implement).

PI Format
The following summarizes discussion about the PI format:
• Title of the process owner and date of implementation for

this PI version would be at the top of page one.
• The header would contain the PI’s title.
• Footer:

–A PI identification number would include a version iden-
tifier. We agreed to use the document identification num-
ber to control the draft PI version. The PI identification
number format would be “X.Y,” where X is the approved
version number and Y is the sequential draft number.

–Page number to consist of “Page X of Y,” where X =
current page number and Y = total page count.

• PI date. The discussion was what this date represents. The
decision was that this would be the date of first implemen-
tation of this PI, immaterial of how many revisions occur.
For draft PIs this would represent the date of the draft.

• Purpose would be the first PI section, describing (normally
in one to three sentences) the purpose of the PI.

• A scope section defines the limitations/boundaries of the PI.
• A glossary section would only define terms not provided in

the central glossary, or a term to be modified for this PI.
• References would be next and provide references for higher-

level PIs, lower-level PIs and PIs at the same level as this PI
that a person may need to know about to understand it. As
needed, references include textbooks, forms, etc.

• Dependencies follow and identify any activities, products, or
services outside the control of this process, and not covered
in the reference section, to which the success of this process
is linked. For instance, if a PI required a template, the tem-
plate’s path name would be provided. If another PI needed
to be implemented, that PI would be identified here.

• The participants section created discussion about what the
paragraph title should be (e.g., roles, participants) and the
need for this section if the responsible roles are identified in
the procedure steps. The PM’s preferred term, participants,
was used. This section identifies personnel by title; organi-
zations or groups participating in the given process; a brief
description, if not already in the Process Dictionary; and a
list of duties/roles for the PI. The purpose of this section is
to provide an overview of roles and responsibilities.

• PI diagrams (process mappings) were a management require-
ment. A kind of diagram-style chart was agreed upon. The
basic format would be input, process, and output (going
top to bottom of a page). Each box, decision diamond, etc.,
would include a number(s) pointing to the related proce-
dure step(s), identifying the participant for the action, and
the action to be performed. If a diagram was to take several
pages, it could be moved to an appendix. One person men-
tioned that diagrams are needed since, “A picture is worth a
thousand words.” A counter statement was, “But which
thousand words?” A diagram must have the same meaning
for everyone and clearly represent the intent of the text.
PI diagrams are now required for all drafts.

• Procedure steps would be a numbered list of action steps,
with one or more participants. The major discussion was to
organize the steps along a time line or by each participant.
We decided to use a time line, especially since the partici-
pant paragraph summarizes the participants’ roles. A short
discussion on the need to number procedure steps ended
when the following illustration was given: Without num-
bering, how does a step refer to a previous or later step?
During development of the first PI, a situation arose where
a step was a lead-in sentence to a list (e.g., the statement
“Identify topics”) followed by some substeps. The agree-
ment was that in this type of situation the substeps would
be separately numbered procedure steps, but indented. It
turned out that this became a popular PI style.

• Using checklists brought up various discussions, e.g., use
table formats (which may have a psychological image of
limiting checklist comments). Most people preferred not
having a PI checklist. The issue was discussed as to how to
show each process has been followed; for example, is a PI
necessary to show that a PI has been properly implemented.
The final decision was to use a checklist only when needed
(“when needed” was not defined). As of this writing, this
section was known as results and only one PI had an entry
(a form to report peer review comments).

• As part of our process, required forms had to be attached to
the back of the PI. An exception to this was the use of a
reference if a form was part of another PI. If a form was a
template, the template would not be part of an appendix,
but identified in the reference section with its path name.

• Because some PIs overlap organizational lines, we discussed
the need for management-level PIs. These would address
processes not covered by lower-level organizations or that
crossed organizations. In our situation, we saw no need for
management-level PIs since the only formal prime-contrac-
tor company relationship we had was financial, contractual,
and status reporting. If needed, the process owner could be
the PM. This decision reduced the number of needed PIs.

Prioritizing the Processes
Since agreement had been reached on PI format and style,

the next issue was the order in which PIs needed to be developed.
Each organization developed a list of possible PIs and the organi-
zation’s recommended priority. From this the PDG agreed on an
IV&V priority list. A schedule was developed, along with a list of
PI authors from the PDG. It was also agreed that the schedule
would be a guideline rather than a mandatory requirement.

Process Instructions (PIs)

After the administrative details were worked out, the PDG
started writing the PIs. The first PI was peer review. Part of the
main discussion was:

• Will this be a peer review of documents we developed or a
peer review of the comments on the documents that our
customer wanted us to review?

• The answer to the above question would also address
whether “the peers would be people with the same
knowledge as the author, or a real management review.”

August 2000 www.stsc.hill.af.mil 11

Software Best Practice Development—An

For this PI, the peer review process would be the review of
IV&V-generated documents by people with the same knowl-
edge as the author. Similarities of this PI to a future PI for the
review of external documents would be addressed when the
review of externally generated documents became the focus.

Process for Creating PIs
After the PI format, schedule, etc., had been agreed upon,

the general PI development process was:
1. The PDG tasks someone (e.g., an author) to write a PI.
2. The PI is submitted to the PDG for review.
3. The PDG convenes, discusses changes, and generates

comments.
4. The author makes designated modifications and resubmits

the PI to the PDG.
5. The author distributes the draft PI to the organizational

leads for their comments.
6. After the author addresses the organization leads’ comments,

the PDG addresses these changes.
7. Upon completing its work, the PDG distributes it to all

project members for their comments.
8. The PDG and the author address each project member’s

comment. If needed, the PI returns to the project members
for more comments.

9. Upon PDG approval, the PI goes though a coordination
process (i.e., signing by the Process Owner) and goes to the
PM for final approval.

10. The approved PI goes to the IV&V librarian for incorpora-
tion into the project library.

11. The IVV librarian notifies the project members of the new
or revised PI.

Process Improvement
About two weeks after the first PI (peer reviews) was

approved and implemented, the author of the second PI (a sta-
tus report) ran into problems. The Peer Review PI did not
account for the customer providing inputs to the draft docu-
ments under review. Allowing for the parallel processing of Peer
Review and customer comments was seen as causing problems.
Receiving customer comments and initiating the Peer Review PI
would cause too much of a delay, i.e., we could not meet our
deadline. The Peer Review PI also assumed it would initiate the
distribution of documents to the customer. The second PI need-
ed the author of the document to initiate distribution of the sta-
tus report, again due to customer requirements not addressed by
the Peer Review PI. Thus, the scope of the Peer Review PI had
to be reduced, which resulted in rewriting the Peer Review PI.

This problem with the Peer Review PI also made the
Process Development Group rethink the identification of PIs to
be developed and how they would be developed. It was decided
to develop a scheme to introduce new/modified business activi-
ties and how to associate these activities into PIs. As of this writ-
ing, this process had not been finalized, but an approach was
developed and is awaiting approval.

Conclusion
The Mars Climate Orbiter (MCO) spacecraft, the first

interplanetary weather satellite, failed on September 23, 1999
due, in part, to one group using metrics and another group using
the English measurement system per the National Aeronautics
and Space Administration (NASA). As stated by NASA,

“. . . sufficient processes are usually in place on projects to catch
these mistakes before they become critical to mission success.
Unfortunately for MCO, the root cause was not caught by the
processes in place in the MCO project” [2].
Besides the root cause, eight contributing causes were also

identified, including [3]:
• The system engineering process did not adequately address

transition from development to operations.
• Inadequate communications between operations and

project management. This is illustrated by the following:
“Although the navigators [those who controlled MOC’s approach
to Mars] continued to express concern about the spacecraft trajec-
tory, NASA’s [Arthur] Stephenson explained why there had been
no concern shown by management. “[Navigators] did not use the
existing formal process for such concern,” he stated. JPL [Jet
Propulsion Laboratory] has a special form to invoke a so-called
incident surprise and analysis procedure, and the navigators did
not follow the rules about filling out that form to document their
concerns” [4].

• The Verification and Validation process did not adequately
address ground software.
Even though this paper provides an example of how a

group began developing its best practices, the above illustrates
the importance of ensuring that interfaces between groups are
addressed and implemented. The work to document best prac-
tices has little value if the follow through is totally or partially
ignored.

Remember: Best practices do not necessarily result in good
products or services.u

References
1. Humphrey, Watts S., A Discipline for Software Engineering,

Addison-Wesley Publishing Co., Reading, Mass., 1995.
2. NASA News Release: 99-134, Mars Climate Orbiter Failure

Board Releases Report, Numerous NASA Actions Underway in
Response, Nov. 10, 1999.

3. NASA, Mars Climate Orbiter Mishap Investigation Board Phase I
Report, Nov. 10, 1999.

4. Oberg, James, Why the Mars Probe Went Off Course, IEEE
Spectrum, December 1999.

About the Author
George Jackelen works for EWA Inc., and has many
years of experience in the Air Force and industry,
having worked all aspects of systems and software life
cycles. He has a bachelor’s degree in mathematics
from St. Cloud University and a master’s degree in
computer science from Texas A&M University.

1000 Technology Drive
Fairmont, W. Va. 26554
Voice: 304-367-8252
Fax: 304-367-0775
E-mail: gjackele@ewa.com

12 CROSSTALK The Journal of Defense Software Engineering August 2000

Software development and engineering is a rewarding endeavor, but not without risks and challenges. Efficiently
managing these risks is critical and requires that all parties, including researchers, engineers, developers, programmers,
and project managers keep the fundamentals of sound application development top-of-mind. Staying focused on the
basics is an essential part of minimizing risks and ensuring the success of even the most challenging and complex devel-
opment projects. Periodic review of these principles and practices is valuable for even the most experienced developer.

Risk Management Fundamentals in Software Development
By George Holt

Materials, Communication and Computers Inc.

The Challenge
Developing software is seldom an easy

task. Each project entails unique demands,
challenges, and problems. Failure to pre-
dict and prevent risks can lead to costly
delays, revenue loss, increased stress on
team members, a lesser product—even
project failure.

The Solution
Although each project has its own

requirements, the characteristics of effec-
tive risk management remain the same. By
identifying risks and developing solutions
before and during the development
process, you maximize the team’s efficien-
cy and the quality of the finished product.

First Line of Defense:
Strong Fundamentals

Careful evaluation of potential risks,
and solutions to address them, is only the
first step. Recognizing that sound applica-
tion development principles are central to
effective risk management and that the
risk-management process is ongoing is
the key to maximizing the team’s efficien-
cy and ability to create excellent software.

Flexible Planning
First, remain flexible. Giving team

members the freedom to make decisions
as new information becomes available
enables them to react quickly; inflexible
plans and schedules impede the ability to
deal with new challenges.

Inflexible schedules also present team
members with a tainted view of the pro-
ject’s progress. While plans and schedules
are necessary to measure progress and
meet deadlines, they cannot be too rigid.
Promoting flexibility in the initial stages
of the project encourages proactivity,
positions the team to meet the challenges
that undoubtedly arise, and also makes
them better prepared to maintain realistic
schedules as the project progresses.

The importance of flexible planning is
particularly important during the creation
of the software development plan—the
road map that guides the team’s efforts.

Sound Development Principles
During the development phase,

important unknowns critical to success
will unfold as the project proceeds. These
unknowns are often risks. The key to acco-
modating these unknown factors is to rec-
ognize that you cannot know everything
that may happen. It is important to breed
a healthy respect for lucid ignorance, par-
ticularly at the beginning of a new project
and to guard against individuals who pre-
tend they know all of the answers.

It is often tempting to place too much
emphasis on pseudo-order to balance this
uncertainty. Reports are completed, meet-
ings are attended, and schedules are met,
but few realize how much progress is being
made or what risks are increasing in scope.
Recognize that the final goal of software
development and risk management is
excellent software. Do not get so wrapped
up in reports and schedules that they
become the key area of concern.

One key sound development princi-
ple is to reduce the complexity of your
code and to modularize common func-
tions. Segregate code modules that will
not be shared with all target platforms or
operating systems. Make sure the remain-
ing code is common. This optimizes your
efforts and lays the groundwork for easy
fixes down the road as well as efficient
reuse of software on future products.

Integrated Product Teams (IPTs)
Forming IPTs is another valuable

approach to containing costs and reducing
risks, especially those that might effect
scheduling. The IPT facilitates problem
solving, enables the team to rapidly
respond to changing requirements, and
prompts everyone to work on schedule.

IPTs are also an excellent way to keep
the customer, in most cases the govern-
ment, up-to-date on how changing
requirements will effect the cost and
scheduling of a project, or present the
team with additional risks to consider.
This is particularly true if the customer
plans to add additional features. Most
importantly it helps you, the developer,
appraise risks and provide acceptable
solutions as the customer raises questions.

Prototyping
Exploratory prototyping is the first

step toward avoiding the costs of full
research and development. It also is an
excellent strategy if project requirements
are ill defined or likely to change before
project completion. In addition, explorato-
ry prototyping is an excellent way to clari-
fy requirements, identify desirable features
of the target system, and promote the dis-
cussion of alternative solutions.

Prototyping should answer two ques-
tions that are fundamental to software
development and risk management—“Is
the concept sound?” and “Is it worth pro-
ceeding further?” If the answer is not a
clear “yes,” you may be setting yourself
up for failure. More importantly, without
this insight, you will give the customer a
false sense of what can be accomplished.
Better to know this up front. Sometimes
the most important risk management
action you will take is to ask these funda-
mental questions.

If the answers and the risks are satis-
factory, you can move on to evolutionary
prototyping, which offers several benefits.
It enables your team to quickly and effi-
ciently build on proven aspects of the
software. In addition, it enables end users
to better define the remaining require-
ments. As a result, the core of the soft-
ware’s foundation is tested and proven
early in the project, significantly reducing
exposure to unknowns.

August 2000 www.stsc.hill.af.mil 13

Risk Management Fundamentals in Software Development

Process Improvement
Improving processes should be ongo-

ing throughout the project. It is impor-
tant to continually ask, “Is there a better
way to get the job done?” Improving the
way you do things cannot be done in a
vacuum—communication at all levels is
critical. Participate with your customers
in IPTs and system management teams.
In addition, be sure to meet with the
teams’ engineers on a regular basis for
focused, but informal, discussions. While
these meetings are exceptionally valuable,
guard against extended meetings that cut
into your teams’ work time.

One alternative to lengthy meetings
is to develop and distribute weekly status
reports. These give each member insight
into the progress of the entire project and
a clear view of the big picture. Remember
that you can have the best processes in
place and still fail miserably in software
development. A motivated, goal-oriented,
and knowledgeable workforce will suc-
ceed even when the process is lacking.

Quality Management
The best quality management

approaches use empowerment, owner-
ship, and consensus to minimize risks
and maximize productivity of the pro-
ject’s workforce.

Empowering your team members
enables them to be their best. All devel-
opment teams are concerned with giving
their engineers the tools they need to suc-
ceed, but many fail to provide them with
the freedom to use them. Even the most
prepared project will suffer if the team is
bound by extensive rules and regulations.
Do not stifle initiative and creativity.

Always allow the team to propose
solutions or actions without the fear of
undue punishment and ridicule. Empow-
ering the members of your team improves
efficiency, encourages exchange of ideas,
and increases the intellectual capacity of
the group. In the end, the customer reaps
the benefits of this increased expertise.

As in all things, ownership is a key
component of success. People care more
about the things they own, and software
development projects are no exception.
Fostering a team-wide sense of ownership
makes each member accountable for the
success of the project. In addition, mem-
bers who feel they own their work are

much more receptive to constructive cri-
tique of their decisions.

Developing consensus at the begin-
ning of a project is also a key aspect of
quality management. From the beginning,
allocate sufficient time for everyone to
agree on the functionality of the end prod-
uct and the development of the theme.
The theme should describe the purpose of
the product rather than technical details.

Teams that lack this consensus and a
clear-cut theme for the software often
place too much emphasis on additional
features and technical aspects. These fea-
tures, although nice to have, usually do
not contribute to the basic functionality
of the software and tend to lengthen the
development process. A good theme
guides the order of development and pro-
vides the team with a focus that is sup-
ported by all involved.

Third Parties: A Mixed Blessing
If a product does fail, it is common

for many developers to blame the pro-
ject’s failure on third parties. In some
cases they are correct. At times you will
have no choice but to elicit their help.
The key is to minimize how much you
depend on them.

Anytime you rely on a product or
service from someone outside of your
group your risk of failure or delay increas-
es. Your team may do everything right, but
if a crucial third party does not, your work
may be in vain. To illustrate this, consider
the risks you assume by depending on
three crucial components of your project
from start to finish. Assume each product
has an 80 percent chance of arriving on
time and fully functional. The probability
of success for all three combined is not 80
percent, it is .80 x .80, x .80 or 51 per-
cent. In other words, your project now has
a 50-50 chance of failing.

Implementing Effective

Risk Management
Now that we have reviewed the first

line of defense against risks in the devel-
opment process, let us look closer at risk
management techniques you can use in
your own projects.

An effective risk-management pro-
gram is dynamic and ongoing throughout
the development process and requires the
participation of everyone involved. First,

remember it is an idealized process. Do
not follow it lockstep for each and every
development undertaking. Modify the
process depending on the type of work to
be performed and the members of your
team. For example, software rehosting or
software block updates may not require
the same degree of discipline as a new
development effort.

To implement an effective risk-man-
agement program requires careful review
of risk assessment and risk control.

Be Prepared: Risk Assessment
Carefully assessing challenges inher-

ent in any project is the first step in
implementing a successful risk-manage-
ment program. Risk assessment includes
three key processes: risk identification,
risk analysis, and risk prioritization.
Focusing on each ensures the successful
application of risk control tactics.

Risk Identification
Identify the risks most likely to occur

in the project and pay particular attention
to those created by changes in customer
requirements or target systems. Develop a
checklist of the risks that may arise and
include input from each team member.

Risk Analysis
Once you know what risks you face,

it is important to analyze each one in two
ways; first, the chance of the risk occurring
and second, the consequences if it does.
Looking at each risk and answering each
question enables you to determine which
risks require focused attention. Modeling
techniques can be helpful in determining
the odds of each risk occurring, but each
team member’s input is essential in deter-
mining potential consequences.

Risk Prioritization
Developing a plan and determining

which risks you need to deal with first is
critical. Prioritize your risks based on
your analysis of the risk’s chance of
occurring and the potential conse-
quences. Risks that pose the greatest dan-
ger to the project must be dealt with first.

Take Action: Risk Control
To implement a successful risk man-

agement effort requires continuous assess-
ment. Risk control includes three key
processes: risk management planning, risk

14 CROSSTALK The Journal of Defense Software Engineering August 2000

Process Improvement

resolution, and risk monitoring.

Risk Management Planning
Risk-management planning is based

on the likelihood and consequences of a
risk occurring as determined by risk
analysis in the assessment phase. Reacting
to risk requires resources and time. Always
evaluate whether the costs incurred by
implementing risk control outweigh the
benefits. This enables the team to plan its
risk management efforts rather than
respond to each risk as it occurs.

Risk Resolution
Once you identify the risks in a devel-

opment project, the next step is to resolve
or reduce them. Employ staffing decisions,
cost/schedule estimates, quality monitor-
ing, new technology evaluation, prototyp-
ing, scrubbing requirements, benchmark-
ing, and simulation/modeling to react to
these risks. Remember, in most projects,
20 percent of identified risks account for
80 percent of potential for project failure.

Focus on the 20 percent with the
most likelihood of causing problems.
Employ early prototyping and frequent
functional system builds to determine if
the steps you took to resolve the risks
were successful.

Risk Monitor ing
It is important to continually moni-

tor your risk control efforts and the
appearance of new risks as a result of
prior fixes. As the key to your risk moni-
toring efforts, insist that the program
manager, the technical lead, and each
developer are able to state their top three
risks at any time. These are by their
nature dynamic and will change.

Risk Tracking Tool: Risk Radar© is a
useful tool to track, manage,
highlight, and contain risks, especially
those that lay on a critical path. It does
not attempt to replace professional judg-
ment, but it is a straightforward, easy-to-
use tool for tracking, prioritizing, and
communicating project risks. It focuses
on ease of use by displaying important,

fundamental risk data and provides a
graphical display of risks by probability of
exposure and has extensive reporting fea-
tures. It is free and can be found at
www.spmn.com/rsktrkr.html

Summary
Software development will always

include risks, but none are insurmount-
able if you are prepared to face them at
the start. Risk management is an excel-
lent way to prepare for daily challenges.

A viable risk management plan can
mean the difference between success and
failure. It should, above all else, be flexi-
ble and encourage initiative. Remember
to always look ahead, use rapid prototyp-
ing if necessary, follow a defined program
to minimize and manage risks, use a good
set of metrics, keep the customer in the
loop, and always follow the fundamentals
of sound application development.
Following this risk management approach
will not guarantee excellent software

Project managers and developers should collect
and monitor metrics that give a picture of the
project’s progress. If the results of these metrics
suggest that a change in process is required, the
development practices will need to be modi-
fied. Some metrics that pay big dividends are:

REVIC/COCOMO II: These models esti-
mate the cost of software projects and have
very good predictive capabilities if environ-
mental factors are carefully estimated and
applied to the models.

Schedule Adherence Measures: Use this
metric to plot the progress of the project
against your planned progress for all major
and subtasks.

McCabe’ s Cyclomatic Complexity Metric:
This tool measures the complexity of single-
code modules.

Fan Out: This model measures system or
structural intermodule complexity. Measuring
such factors as fan out, or the number of
modules called by any given module, will
show the direct correlation of overall system
complexity and development defect rate.

Software Cleanroom Process: The clean-
room software process stresses proof of cor-
rectness in the design and coding phase of
development.

Readiness, Maturity, Growth Model: This
model provides management with a quick
look at the state of the software development
effort. It is very useful to determine when
software is ready for formal qualification
testing.

Curvilinear Relationship between Defect
Rate and Module Size: This metric provides
the optimum size of modules to minimize
overall defects.

Ear ly Defect Removal: Software engineers
should concentrate heavily on early defect
removal in the design and coding phases of
software development. It has a substantial
impact on reducing program costs. It is also
important during development to conduct
informal analyses to eliminate processes that
cause errors.

SW Error/Fix Ratio and Defect Removal
Efficiency: This measure is used to gain
insight into the software team’s proficiency in
resolving errors, or bugs, in a timely fashion.

Software Lines of Code (SLOC) Tracking by
Functional Builds: Compares the actual vs.
estimated SLOC per build.

About the Author

George Holt is a vice
president of Systems
Development Division of
MATCOM Inc. He has
developed software for
more than 15 years, rang-

ing from military tactical systems to simu-
lators to computer-based tutorials. His divi-
sion recently rehosted 180,000 lines of
Army tactical software to a nonproprietary,
open-architecture, Pentium-based system
for which it received the Department of
Defense Standardization Award. He also
managed the Digital Fire Control System
prototype for the Lightweight Howitzer,
which was successfully fielded in six
months. He is the author of many maga-
zine articles, technical publications, and
co-author of the book, Strategy: A Reader.

1050 Waltham St.
Lexington, Mass. 02421
Voice: 781-862-3390
Fax: 781-402-1515
E-mail: gholt@lexma.meitech.com

Transition is difficult . . . Change is tough . . . Growth is Grand

With this in mind, CROSSTALK would like to thank Larry W. Smith for designing the back cover
ad on this and the previous three issues (in addition to the current and several previous covers).

August 2000 www.stsc.hill.af.mil 15

Daniel Golden, NASA Administrator, in his strategic outlook
for 1999 [1] provides a statement of strategic intent for the
agency. In this statement he outlines a three-part mission in
which “Technology Development and Transfer” is a cornerstone
of the mission for the agency in 2000. This is consistent with the
1999 external assessment [2] in which the administration places
priority on the promotion of “high technology for economic
growth through effective partnerships.” The prime Space Flight
Operations Contract, SFOC (reference: Contract NAS 9-20000)
awarded to United Space Alliance, section G-14 and G-15,
requires the contractor to provide a portion of the contract funds
to small business and to support the “Government’s Technology
Transfer Program.” This new development method is an example
of how USA is exploring new ways to increase the marketability
of technology developed on the space program while decreasing
Space Shuttle Program development and operating costs.

This new collaborative development method involves
adopting a software application counterpart available in indus-
try to provide baseline functionality and developing additional
capabilities required for the upgrade or replacement system in
collaboration with the software vendor. Applying this new
development method more effectively leveraged technology and
expertise available in industry to reduce initial software acquisi-
tion cost and time to market, while providing a superior prod-
uct to space shuttle operations. Also, the technology developed
is built on the state-of-the-art rather than reinventing the state-
of-the-art, making the technology developed more valuable to
industry and the American public.

The project defined a software development turnaround in
terms of key project management metrics (i.e. cost, schedule, and
technical). Turnaround was defined as a 50 percent reduction in
anticipated software development labor and time to market. The
improvement in the technical merit was a little harder to quanti-
fy. Two surveys were performed as part of a comparative analysis.
Three key technical categories were defined and a turnaround
was defined as a marked improvement in two of the three. The
categories were marketability, software product quality, and main-
tainability. Attributes were defined within each category. The first
survey was designed to determine the importance of the attrib-
utes within each category. The second survey was performed after
software development was completed and scored the delivered
product against the most likely outcome of continued develop-
ment on the custom code. The results of these surveys were
organized and presented in a Kepner Tregoe decision matrix for

comparative analysis [3]. A marked improvement was defined as
100 percent improvement in absolute score within a category.

Development Method Genesis

and Vendor Selection Process
A detailed estimate to complete the project, assuming con-

tinued status quo software development was performed, pro-
vides a baseline for evaluating improved project performance
after the change in direction. This estimate was based on a
functional analysis of the custom code under development
against the functional requirements for the upgrade.

Functionality was divided into three categories for this
analysis: telemetric, station management, and data products and
tools. Telemetric functionality was defined as the capabilities
to acquire measurement data from the PCM or FM carriers,
route this data to a location on the ground station, and capture
the data in a file for production of data products. Station

management functionality was defined as the capability to set
up and manage data acquisition as well as monitor real-time ele-
ments status. Data product and tools were defined as the capa-
bility to process the raw data acquired into data products.

Figure 1 is a summary of these analyses. The entire pie in
each category represents the functionality required for the
upgrade in each category. The three slivers contained in the
“Functionality Addressed in the Custom Software” regions repre-
sent capability outlined in the custom code. The two black slivers
in this region represent the capabilities inherent in the first two
releases of the custom code. The third shaded slice in this region
represents outlined but not functional capabilities. The slices
remaining outside the “Functionality Addressed in Custom
Software” region represents functionality required by the Shuttle
Telemetry Station that was not anticipated during the custom
development to date. The analysis revealed that approximately
one-third of the telemetric, three-quarters of the station manage-
ment, and two-thirds of the data products and tools capabilities
required new development assuming continued status quo soft-
ware development. Project leadership and management derived
an estimate to complete for the custom software. This estimate
was based on a detailed knowledge of the functionality required
(function point analysis), performance histories of the developers
involved, and developers’ estimates. It was estimated that com-
pleting the custom code would require an additional 20 man-
years of productive software development effort over five years

Development of Space Shuttle Telemetry Station Software
by Dr. David K. Mann

United Space Alliance

This paper reports on the space shuttle telemetry ground station development project turnaround brought about through collabo-
rative software development and sustaining engineering. The application of this new project and software development method-
ology to the development resulted in several positive effects over the standard development method. These include a reduction in
the initial software development costs, a reduction in the software time to market, improved marketability of the software tech-
nology developed, improved product quality, improved maintainability, and technology transfer. This collaboration between the
United Space Alliance (USA) telemetry station development team and APLabs Inc., resulted in software innovations in
Frequency Modulation (FM) and Pulse Code Modulation (PCM) processing software, as well as station management software.

Software Engineering Technology

16 CROSSTALK The Journal of Defense Software Engineering August 2000

with a probable growth of 20 percent in
manpower and schedule.

An industry survey, coupled with a
series of product evaluations, was per-
formed to determine if a commercial off-
the-shelf (COTS) product that met the
functional requirements for the upgrade
was available. The survey revealed that no
COTS package met the upgrade require-
ments. There were, however, several close
functional counterparts—Veda Systems,
Huerikon, Harris, Metraplex, APLabs Inc.,
Avtec and Acromag. Hardware for the
upgrade project had been purchased and
major change to the hardware architecture
was cost prohibitive. As product and ven-
dor investigations progressed, it became
apparent that general-purpose telemetry

software packages were coupled to particu-
lar hardware architectures. Of course, any-
one can do a port, but the challenges asso-
ciated with developing additional capabili-
ties concurrent with a port to new hard-
ware architecture was an approach deemed
to have excessive risk. In addition, the ven-
dor selected had to provide development
and licensing flexibility, which will be dis-
cussed later. These factors lead to a single
viable vendor and product combination.
APLabs Inc. wrote VMEwindow to a
hardware architecture similar to the one
that was in storage for the upgrade and
provided the flexibility to complete the
project. A functionality assessment, similar
to the one performed above, was done in
order to scope the software development

effort required and justifies the change in
strategic direction to management.

Collaborative Development
Collaborative software development

started the second week of March 1998.
The first order of business was to train
USA developers in the VMEwindow
development environment. Systems engi-
neering was performed to identify the
system level requirements and identify
gaps in functionality between the baseline
VMEwindow product and the required
upgrade ground station. Although there
were many minor modifications, the col-
laboration resulted in four software prod-
ucts, with innovators from USA and
APLabs Inc.

These were submitted to NASA for
Technology Transfer. Software develop-
ment was completed the second week in
November 1998. These software products
represent modification to existing technol-
ogy to improve and expand the capabilities
of the baseline product. Figure 2 is a block
diagram of the upgrade ground station
architecture and is referenced in the fol-
lowing discussions on the software devel-
oped. The hardware architecture consists
of Sun workstations connected to multiple
PCM and FM processing VME chassis
that use reflective memory as a real-time
data transport mechanism. The chassis use
Motorola processors and SBS Berg teleme-
try System cards. The software architecture
consists of the VxWorks operating system,
VMEwindow, Matlab, Dataviews,
PVWave. The software products developed
for the project and submitted to NASA for
technology transfer are described below.

Sbus SCRAMnet Interface for
VMEwindow

A reflective memory network shown
in the center of Figure 2 is the primary
data transport vehicle for raw data from
the PCM Processors (PCMPs) to the
Digital to Analog Programmable
Converters, User and Station Controller
Workstations. The VMEwindow ground
station telemetry package did not support
a SBus Shared Common RAM Network
(SCRAMnet) interface required to get
data to the workstations. The challenge
was to develop an application using the
VMEwindow development environment
that would provide the capability to

Telemetric Station Management Data Products and Tools

Functionality Addressed
in Custom Software

Functionality Addressed
in Custom Software

Functionality Addressed
in Custom Software

- Available and Functional in First Two Releases
- Available or Outlined in Code But Not Functional
- Not Addressed in Software

Figure 1. Evaluation of the Custom Code Revealed Large Gaps in Functionality

Figure 2. Ground Station Overview

FMP PCMP

D/A
Processor/
Converter

Data Network, Reflective Memory

Print Server

Station Controller
Workstations

Data Base
Host

Laser PrinterColor Plotters Line Printers

Signal Patch
Equipment

Set Management / Control Network (802.3)

Strip Chart
and Thermal
Array Recorders

FM Switch

Recorders/
Player

Station Input

GPIB
Converter

PCM SwitchTime Switch

GPIB
Converter

GPIB
Converter

 Router

User
PC

Set B

User Analysis
Workstations

S oftware Engineering Technology

August 2000 www.stsc.hill.af.mil 17

Developm ent of Space Shuttle Telem etry Station Software

acquire and display data at a single SBus workstation from mul-
tiple real-time telemetry processors in a deterministic manner
with minimal latency. The code needed to be integrated within
the VMEwindow environment, providing the operator with a
consistent interface. It was decided that a derivative work could
be produced from the code already available for interface to the
VME version of the SCRAMnet card. It was negotiated that AP
Data System would perform code modification and initial devel-
opment testing and USA would provide the reflective memory
topology, memory offset and data requirements in addition to
concurrent code review, integration, and testing.

Stream Definition Flat File Import Capability
for VMEwindows

This software provides the capability to automatically load
telemetry stream definition. This capability was seen as critical to
the design because of the thousands of measurements that must
be loaded to support each mission. Space Shuttle PCM downlink,
data location, and unit information is contained in a database.
Baseline VMEwindow provides a manual utility to load this infor-
mation into a stream definition but did not provide the capability
to automatically load stream definition. The software product
developed provides the capability to create an ASCII flat file from
a SQL database and import this flat file into the VMEwindows
stream definition. This capability not only reduces time required
to set up to support a mission, but also improves the reliability of
the software load by cutting down on input errors. The user is
prompted for parameters to define a PCM stream and accepts
lists of measurement names read from an existing file and accesses
the database to create an ASCII flat file. The generated file con-
tains all of the information necessary to define PCM stream and
populate the stream definition in VMEwindows.

GPIB Board Setup and Control
for FM Snapshots and Calibration

This software provides the capability to set up and control
the NI1014 General Purpose Interface Bus (GPIB) board for spe-
cialized FM functions. Although a generic GPIB interface capa-
bility was available in the baseline VMEwindow environment, it
did not meet the requirements of the project. The system uses a
Metraplex digital discriminator and a Keithly switcher. The setup
and control software allows individual control of both the dis-
criminator and the switch and automated control of report gener-
ation. The setup functions were integrated into the ground sta-
tion software as a newly developed VMEwindow icon. Board
level control is provided using existing APLabs Inc. driver soft-
ware. The software provides a calibration and FM Snapshot capa-
bilities. A FM test signal that shifts the frequency over the band-
width to represent five levels between -5V to 5V is input to the
digital discriminator. The calibration software provides an average
of five samples at each of these data levels. Once the set is cali-
brated, a snapshot can be produced providing the average, mini-
mum, and maximum values for 100 samples of real-time data.

Datel 622 Digital-to-Analog Driver, Setup, Control
This software product provides the ability to produce ther-

mal array charts of data with loss of signal event indicators. The

driver and control software provides the capability to set up and
control the digital-to-analog conversion functions of the board.
This capability was not available in the baseline VMEwindow
environment. The setup functions were integrated into the
groundstation software as a newly developed VMEwindow icon.
The control software provides the capability to select data chan-
nels to be output, select event indicators for edge trace output,
scale processing, and calibration functions.

Collaborative Support, Development,
and Licensing Agreement

There are several challenges facing successful application of a
collaborative software development on a project in support of
shuttle operations. Some challenges stem from the perception
that the ability to support operations is somehow compromised.
Others are from the notion that derivative or new software tech-
nology developed adjunct to a baseline application is not trans-
ferable to NASA and industry. Another argument in favor of in-
house custom software development is that developers often are
most qualified to troubleshoot and repair time-critical bugs dur-
ing processing. Additionally, if the vendor was to go out of busi-
ness or drop the product, the space program would run the risk
of losing support for operational software. The project had to
ensure that each of these issues was addressed and equal or supe-
rior capability would be available after the upgrade was complete.

These issues were addressed in several ways. First, in-house
software developers were trained and certified as VMEwindow
developers. This provided us the capability to collaborate on the
development of required new capabilities and sustain the soft-
ware after the upgrade was complete. Second, we negotiated a
“Collaborative Support, Development and Licensing
Agreement” with the vendor. This agreement has several clauses
designed to address the concerns above. Rights to the source
code for the purposes of Research and Professional Services’
shuttle processing and technology transfer to NASA were
secured in a “Project Buyout License” clause. This eliminated
the need to escrow source code with a third party and enabled
ad hoc modification of the baseline product during mission sup-
port without infringement concerns. Acquiring special user and
software developer support, ensuring that immediate attention
is paid to software issues during critical processing times in col-
laboration with in-house developers, addressed operational sup-
port concerns. A product upgrade cycle is defined in the agree-
ment where new version software is provided, along with user
documentation and installation assistance. This ensures that we
have the ability to stay current while minimizing configuration
management costs. The software development collaborations
were so successful that special provisions were negotiated to
ensure future endeavors would adopt a similar course.
Subsequently, two new software innovations have been devel-
oped and will be written for technology transfer.

Findings

Software development cost savings are derived by compar-
ing the actual resources expended to the estimated resources
required to complete the custom code, assuming continued sta-
tus quo development. The cost associated with purchasing the

18 CROSSTALK The Journal of Defense Software Engineering August 2000

S oftware Engineering Technology

COTS software and development services is conservatively con-
verted to equivalent manpower and added to the actual in-
house labor expended to complete the software. The resulting
figure is 6.6 man-years; when compared to the estimate to com-
plete the custom code, the figure shows savings of 13.4 to 17.4
man-years. Converting this to equivalent dollars shows more
than $800 thousand to $1 million savings.

The software development was complete the second week in
November 1998. This meant that the software development took
eight months rather than the five to six years estimated to com-
plete the custom code. This represents an 86 to 89 percent reduc-
tion in the anticipated software development time to market.

A comparative analysis was performed, designed to deter-
mine the relative technical merit of the delivered software to the
most probable product assuming continued work on the custom
code. Expert engineering judgment is relied upon as the basis for
this analysis through two surveys. The first column of Table 1
lists the categories defined to represent technical merit for the
purposes of this analysis. Subindentures under each of the three
categories (i.e. Marketability, Software Product Quality and
Maintainability) are category attributes. All responses were nor-
malized, averaged, and reported on a 1-to-10 scale where 10 was
the most important or best. The second column represents the
results of the first survey. This survey was designed to determine
the relative importance of the attributes within a category from
the perspective of the management. The third and fourth
columns represent the results from the second survey.

The respondents scored the delivered software and the most
probable outcome of continued status quo development. The
additional costs associated with COTS software procurement
and development was converted to equivalent manpower and the

respondents were asked to estimate, assuming these additional
resources were brought to bear on the custom software develop-
ment. The fifth and sixth columns list the absolute scores for the
custom and delivered product, respectively. These figures are
totaled for each category to obtain an absolute relative score for
each of the alternative methods. Comparing absolute scores
reveals a three- to four-fold improvement in absolute score in
every category.

Conclusions

Comparing the actual project performance and the project-
ed performance, assuming continued development of the cus-
tom code, reveals that cost and schedule were reduced. The
technical evaluation of the product delivered revealed a marked
improvement in every attribute within all three categories evalu-
ated. Several additional benefits included technology transfer,
continued collaborative enhancement of the product, and the
ability to combat obsolescence.

This methodology represents significant improvement over
the status quo and should be evaluated for implementation on
future and ongoing NASA software development projects. It is
the author’s considered opinion that the results warrant applica-
tion of this methodology where close counterparts are available
in industry. Strong close technical counterparts for data ware-
housing, recording, retrieval, command, control, data monitor-
ing, network traffic generation, and system administration func-
tions can be found in industry.u

Acknowledgments
The author gratefully acknowledges Jonathan Morsics,

Steven Prenger, Steve Gills, Andy Mason, Richard Price, Tom
Perez, Earl Johnson, Bruce Chamberlain, the Integrated Data
Systems Management Team and the Record and Playback
Subsystem Upgrade development team.

This work was performed under the auspices of the Space
Flight Operations Contract (SFOC, NAS 9-2000).

References
1. Reference: http://hq.nasa.gov/office/nsp/outlook.htm

About the Author

Dr. David Mann resides on Merritt Island, Fla.
with his wife and two daughters. He works for
United Space Alliance on space shuttle telemetry
and computer systems as a project lead. He has 15
years of systems engineering, design, and project
management expertise obtained on NASA and

Department of Defense-related programs. Mann graduated with
his engineering degree in 1985 and was recently awarded a doc-
torate in engineering management.

United Space Alliance
Launch Processing System Engineering
8550 Astronaut Blvd., Miss., USK-489
Cape Canaveral, Fla. 32920-4304
Voice: 407-861-7234
Fax: 407-861-7473
E-mail: David.k.mann@usago.ksc.nasa.gov

2 3 4 5 6

1 A
ve

ra
ge

 N
or

m
al

iz
ed

W

ei
gh

t

A
ve

ra
ge

 P
ro

ba
bl

e
C

us
to

m
 P

ro
du

ct
 S

co
re

A
ve

ra
ge

 S
of

tw
ar

e
P

ro
du

ct
 D

el
iv

er
ed

 S
co

re

A
bs

ol
ut

e
S

co
re

 P
ro

ba
bl

e
C

us
to

m
 P

ro
du

ct

A
bs

ol
ut

e
S

co
re

 o
f

S
of

tw
ar

e
D

el
iv

er
ed

 Marketability
Value to Current Customer 7.78 1.67 9.33 13 73

Value to Other NASA Projects 4.70 2.50 8.50 12 40

Value to Industry 2.22 2.67 8.33 6 18

Value to Future Shuttle Customers 6.38 2.00 9.00 13 57
Value to American Public 3.92 4.17 6.83 16 27

Total = 60 215

 Software Product Quality

Usability 5.07 2.67 8.33 14 42

Reliability 8.26 1.83 9.17 15 76
Functionality and Versatility 4.57 1.83 9.17 8 42
Extensibility 2.09 1.50 9.50 3 20

Total = 40 180

 Maintainability
Training Programsg g 5.24 2.33 8.67 12 45

Availability of Trained Personnel 3.69 2.83 8.17 10 30

Ability to Enhance Software 5.55 1.67 9.33 9 52

Documentation 3.42 2.00 9.00 7 31
Configuration Management 7 097.09 3 583.58 7 427.42 2525 5353

Total = 64 211

Table 1. Method Comparison Matrix

August 2000 www.stsc.hill.af.mil 19

The IEEE CONOPS document [1]
will gain in popularity, once the software
engineering community discovers its flexi-
bility, extensibility, and versatility. This
paper summarizes a recent case of employ-
ing the CONOPS document to describe
the desired multilevel security, and high-
performance computing infrastructure
characteristics to be included in the Navy’s
next generation combat vessels. The
DD21 (21st Century) land attack destroy-
er is one such ship undergoing design
competition. The Navy’s Small Business
Innovations Research solicitation topic [2]
identified this vessel as a candidate for the
most advanced multilevel security in a
computer-intensive environment.

User Requirements
Traditionally, the Software Require-

ments Specification (SRS) has been devel-
oped as the primary document for stating
user requirements. The SRS usually is
produced by the developing organization
following discussions with the potential
user of the system and analysis of the
requirements gleaned from these discus-
sions. This document is well suited for
use by its authors, but may be of less
value to others, such as when users are
presented the document for their com-
ment. Users do not express their require-
ments at the level of specificity found in
completed SRS documents.

An ideal SRS for a software-intensive
system can be characterized as having
requirements that completely capture a
problem, is devoid of design evidence, and
has succinctly stated requirements. This
type of document would generally over-
whelm the user in the sheer density of
detail, repetitiveness of the language, and
the total number of requirements stated.
Most users would not be readily able to
determine if the system described in this
manner would truly address their original
needs. The user’s confidence in the devel-
opment process can be fortified if he can

see steady transitions of requirements from
his expressed concepts, to requirements to
specification, to code, to product.

People are most comfortable with
describing things in the language of their
problem domain. The primary objective
of software engineering is to build the
product that the user needs (validation);
after this is to build that product correctly
(verification). A high priority should be
placed on allowing the user to directly
express desires and ideas for needed capa-
bilities of the expected system. The user
may also provide some insight into specif-
ic testing criteria to be considered. Early
attention to testing is also relevant during
concept definition, as the system testing is
a peer off-core development activity in the
software development life cycle [3].

Security Requirements
A compounding requirement prob-

lem arises when security requirements are
considered along with functional require-
ments. The area of Systems and Software
Systems Security underwent growth dur-
ing the 1990s. The Internet’s emergence
spurred numerous e-companies to rapid
growth and success, while the field of
electronic commerce remains in its infan-
cy. Like all software, security-relevant soft-
ware often is designed and released with
latent defects. With the user community’s
heightened awareness of security, the
developer community will observe a raised
concern for sound, functional security
within the software products that they are
hired to produce.

Developers of these products employ
disparate development life-cycle approach-

es, many of which are described by Hassan
Gomaa[4] Barry Boehm[5], Alan M.
Davis [6], et al. These authors do not sin-
gle out security development practices per
se, but one can infer that a definable
development process is followed. With the
new Unified Modeling Language now
standardized, convergence of development
methods is more likely. From a security,
software, development perspective, this
could improve the state of software securi-
ty engineering.

Users, in most cases, have only rudi-
mentary knowledge of security, and thus,
are less likely to be able to help articulate
their concerns in a language other than
that of their native domain. The user is
less likely to understand documents, such
as an SRS, written by a developer com-
munity having security domain knowl-
edge due to the specialized jargon. Terms
such as mandatory access control, nonrepu-
diation, and ubiquitous login capability are
far from everyday usage.

This leads us to conclude that per-
haps security-relevant software engineer-
ing would benefit from a more thorough
and well-understood collection of
requirements. This would ensure that the
right product is being built correctly. The
CONOPS document written in user lan-
guage is an ideal vehicle for this purpose.

CONOPS Overview
A CONOPS is a user-oriented docu-

ment that describes system characteristics
for a proposed system from the users’
viewpoint [7]. The CONOPS document
is written in order to communicate overall
quantitative and qualitative system charac-
teristics to the user, buyer, developer, and
other organizational elements. It describes
the existing system, operational policies,
classes of users, interactions among users,
and organizational objectives from an
integrated systems point of view [1].

The CONOPS is intended to aid in
requirement capture and communication

A New Application of CONOPS in Security Requirements Engineering
by Darwin Ammala

MPI Software Technology Inc.

The Concept of Operations (CONOPS) document, IEEE Standard 1362-1998, is a powerful tool for communi-
cating a customer’s vision for a new system. Normally used for describing full systems, CONOPS can also be used
to address one single aspect—such as security in a large-scale project. This paper reports on a recent Navy contract
effort, which demonstrated this use of the CONOPS. This paper will describe and analyze the results of this effort.

“With the new Unified Modeling
Language now standardized, conver-
gence of development methods is
more likely. From a security, software,
development perspective, this could
improve the state of software security
engineering.”

20 CROSSTALK The Journal of Defense Software Engineering August 2000

Software Engineering Technology

of need to the developing organization.
Posing the problems to be solved in the
user’s language ensures that the user can
more accurately express the problem. The
developers then have a good basis to
begin the requirements refinements, and
initial design of the system.

Bringing different communities of
people together (users in their domain,
and software developers in theirs) implies
that communication will be a critical issue.
The IEEE CONOPS standard does not
stipulate whether the user or the developer
must write the document [7]. There are
tradeoffs in every scenario—whether the
user or developer writes the document.
Users will better articulate the desired
capability in terms of their domain situa-
tion, while developers are more likely to be
familiar with current computing technolo-
gy, and would express the required capabil-
ity in terms of technology. [7].

Once a draft CONOPS is written, it
is presented to the user and developer
organizations for review and comment.
Ideally, the user should write the
CONOPS; however, the user must first
be taught the intentions, and guidelines
for doing so. Thus, collaboration between
the user and developer is paramount until
the user organization has mastered the
techniques. The IEEE standard for the
CONOPS document [1] does a good job
of explaining the purpose for each sec-
tion. Additionally, not all sections of the
document are required. An agreement
between the user and developer can
establish sections that are needed, and
which ones could be omitted. In practic-
ing due diligence, each of the sections
addresses unique aspects of the system life
cycle and should be addressed.

A Security CONOPS
This paper now turns to the case

study of the use of the CONOPS to artic-
ulate the security relevant portion of a pro-
posed new ship-based computing facility.

Need and Solicitation
The overarching requirement came

from an SBIR Phase 1 solicitation [2]:
Problem: The Navy’s new ships

require the most advanced technology
and security services, adaptable to quickly
changing conditions, and functional at

new levels of efficiency while carrying
fewer sailors to operate them.

Objective: To develop techniques to
address multilevel security in a complex,
software-intensive system. Of particular
concern is maintaining multilevel security
while supporting a robust ability to mi-
grate and reallocate tasks through a com-
plex computer network architecture [2].

Successful Proposal
The approach to this problem was

to propose a business process review dia-
logue with the sponsor that would elicit
the requirements—both computing sys-
tem, and computing system security—to
produce a security-specific CONOPS
document. The anticipated interplay was
for the developer to produce the initial
draft of the CONOPS, and allow the
user representative an opportunity to
comment upon and edit the draft.

This approach rationalized that in
light of the great complexity of a modern-
day destroyer; the security should receive
early, concentrated focus.

Delivery
The contract team met with the

sponsors, and learned that this system
effort was the first to employ a revised
procurement procedure within the Navy.
In prior procurements, the developer was
given statements of work and statements
of requirements that were refined and
worked with the contractor to produce
the requirements baseline documents,
including the SRS.

The new procurement model
employed by the Navy places more
degrees of freedom on the developing
organization to develop the product in the
way it does best, while working with the
sponsor. We learned that little informa-
tion was available on specific DD21
requirements, primarily because the com-
petition phase between the two project
teams was under way and 18 months
from completion. These factors gave us
incentive to be creative in general com-
puting capabilities, and concentrate on
developing an adaptable computer-inten-
sive environment that also employs suffi-
cient security to meet mission require-
ments. This gave the CONOPS a tech-
nology-oriented composition.

The work from this contract served a

bilateral purpose. The prime focus was to
define security and system functionality
requirements for the customer’s new class
of ships. The secondary focus was to ini-
tiate the users to the use of a specialized
CONOPS document. Since the develop-
er derived the requirements, the user’s
true requirements can be obtained only
from the user community’s review and
modification of the document

Analysis

Computer-intensive environments,
particularly those that must also provide
multilevel security protection and services,
are software-intensive systems. Building
such software systems requires the proper
employment of requirements engineering
practices and tools. Among these practices
are requirements elicitation and refine-
ment. In cases where the developer has
limited access to the users, the developer
can offer a preliminary CONOPS docu-
ment. This preliminary CONOPS will
encourage the users to comment, clarify,
or produce a response document, which is
determined to reflect their views of what is
needed. Once each side has had a chance
to contribute to the requirements concept,
a round of more probing analysis and
questioning should follow. Employing an
interviewing technique along the format
described by Joseph Groguen and
Charlotte Linde [8] to isolate areas of
requirements that need more clarification
would be an efficient use of time. This
type of zooming in isolates a specific topic
deemed critical in the new system, and
allows detailed exploration of the problem
and requirements related to it.

The security requirements were select-
ed as the focus of initial operational con-
cept. This was based on existing best prac-
tice in computing and information sys-
tems security that the system’s security is
designed prior to the production [9, 10].
Not doing so would entail retrofitting
security into a complex software system,
which if inadequately designed would be a
precursor to failure. In the military
domain, it is critical that security is imple-
mented correctly and completely. This gets
us back to understanding and capturing
security requirements. Studies have proven
that the developing organization’s lack of
understanding of the requirements is the

August 2000 www.stsc.hill.af.mil 21

"Some day, on the corporate balance sheet, there
will be an entry which reads, "Information"; for
in most cases, the information is more valuable
than the hardware which processes it."

— Adm. Grace Murray Hopper,
co-inventor of COBOL

Quote Marks

A New Application of CONOPS in Security Requirem ents

leading cause of project failure [3].
Our CONOPS document presents

the general concepts for the type of com-
puter-intensive control system that would
be needed to meet the Navy’s stated
requirements for system resilience under
dynamically changing conditions. The
security CONOPS is the first document
in the system’s development life cycle. It is
conceivable that many parts or subparts
would have similar CONOPS documents
written to describe them. The full system
can be decomposed into mission or func-
tional entities, each of which would have a
CONOPS written to describe it, e.g.,
command and control, radar/sonar, fire
control, general information technology
support, etc. This full collection of
CONOPS documents would represent the
user requirements for the entire system.
With this full set of documents, refining
requirements and creating the System
Requirements Specification, or Software
Requirements Specification, could begin.

Conclusion

Complex software-intensive systems
must have a thoroughly understood and
soundly engineered set of requirements,
which can be used along with best analysis
practice to contribute to an effective
design and ultimate implementation. The
requirements are the foundation for the
entire project, and must be understood
precisely and managed diligently because
changes are inevitable. It is advantageous
to ensure that the real users of the systems
are offered an opportunity to share their

views and visions based on their working
experience with the strengths, and weak-
nesses of their existing systems. Traditional
software projects have been undertaken
with less than complete understanding of
requirements. The CONOPS document is
a stride toward allowing the user’s views to
be heard, and allowing the developer to
demonstrate to the users that their needs
are understood and acknowledged.u

References
1. Institute for Electrical and Electronics

Engineers, IEEE Guide for Information
Technology-System Definition-Concept of
Operations (CONOPS) Document. IEEE
Std 1362-1998, IEEE Computer Society
Press, 1998.

2. Department of Defense, Topic N991-
079 Multi-Level Security for Computer-
Intensive Environments, 1999 DoD
SBIR/STTR Program Solicitation, U.S.
Government Printing Office, 1999.

3. Forsberg, K. and H. Mooz. System
Engineering Overview. Software
Requirements Engineering. 1996.
IEEE Computer Society Press.

4. Gomaa, H. The Impact of Prototyping
on Software System Engineering. In
System and Software Requirements
Engineering. R. Thayer and M. Dofrman,
eds. IEEE Computer Society Press. 1990.

5. Boehm, B. A Spiral Model of Software
Development and Enhancement, in
Thayer ed. Tutorial: Software Engineering
Project Management IEEE Computer
Society Press, 1988.

6. Davis, A. E. Bersoff, and E. Comer. A
Strategy for Comparing Alternative Soft-

ware Development Life Cycle Models.”
IEEE Transactions on Software Engineering.
IEEE Computer Society Press. 1988.

7. Fairley, R. and R. Thayer, The Concept
of Operations: The Bridge from
Operational Requirements to Technical
Specification, Software Engineering,
M. Dorfman, and R. Thayer, eds.
IEEE Computer Society Press. 1996.

8. Groguen, J. and C. Linde. Techniques
for Requirements Elicitation. Proceedings
of the International Symposium on Require-
ments Engineering. IEEE Press, 1993.

9. Ford, W. Computer Communications
Security Principles, Standards, Protocols,
and Techniques, PTR Prentice Hall, 1994

10. Pfleeger, C. Security in Computing,
PTR Prentice Hall, 1996.

About the Author
Darwin E. Ammala is a
senior-level software engi-
neer with MPI Software
Technology Inc., which has
performed contract work for
the National Science

Foundation, Navy, Department of Energy,
and NASA JPL. Previously, he was a senior
computer scientist with 14 years of experi-
ence at Fort Mead, Md. He is pursing a
master’s degree in science from Mississippi
State University, with an emphasis in secu-
rity in high-performance and distributed-
cluster computing.

MPI Software Technology Inc.
101 South Lafayette ST.
Starkville, Miss. 39759
Voice: 662-320-4300, ext. 11
Fax: 662-320-4301
E-mail: dammala@mpi-softtech.com

22 CROSSTALK The Journal of Defense Software Engineering August 2000

Nearly all modern devices contain embedded software.
Even a few years ago, the typical new car from General Motors
contained $675 of steel and nearly $2,500 of electronics,
including a dozen or so embedded microprocessors. Often, the
software in these embedded systems must execute in real-time
for the equipment to function correctly. Despite the need for
skilled real-time embedded software developers, there is little
attention paid to this area of software development in the
undergraduate computer science curriculum.

An introductory undergraduate course in real-time embed-
ded software development should acquaint students with the fun-
damental scientific issues of real-time computing and practical
skills in software development. While the theoretical issues can be
covered without a laboratory, real-time embedded programming
skills require the experiences that a laboratory provides. A major
problem is finding equipment suitable for teaching these skills.

Simulators are commonly used to give students experience
with real-time programming. Typically these simulators do not
provide many of the frustrating problems associated with physi-
cal systems. Hardware and software development are parallel
activities in many embedded systems projects. Gathering evi-
dence for the determination of whether a fault is in the hard-
ware or the software is an important skill for the embedded sys-
tems programmer. Lack of experience with real systems is one
reason cited by engineers who would exclude computer science
graduates from their development teams.

For more than a decade I have used a computer controlled
model railroad in my real-time embedded systems course. Some
advantages of using a model railroad in the laboratory are that:

• Model railroad equipment is readily available and priced
well below typical laboratory equipment.

• Model railroads provide a wealth of problems from
both the discrete and continuous real-time domains.

• The electronics are easily understood by most undergraduate
computer science students.

• Students are highly enthusiastic about writing software to
control a model train layout.
As a direct result of presentation and publication of previ-

ous work [1], [2], [3], [4], more than 50 organizations have
requested detailed specifications of the laboratory. All but three
were discouraged by the amount of effort (500-plus hours)
required to assemble the necessary interface electronics. With
the support of the Maytag and Rockwell Foundations, I am
implementing an affordable real-time embedded systems labora-
tory that other institutions can easily duplicate.

The Real-Time Systems Course
The computer science curriculum at the State University of

New York (SUNY) at Plattsburgh includes a specialized track,
Computer Controlled Systems. This track was developed for
students interested in the specification, design, and implemen-
tation of real-time embedded software. In addition to the typi-
cal courses in a computer science curriculum, this track includes
more courses in continuous mathematics, physics, and electron-
ics. The departments of computer science and industrial tech-
nology at the University of Northern Iowa (UNI) are designing
a joint computer controlled systems curriculum.

The real-time systems course serves as the curriculum’s cap-
stone course. To perform well in this course, students must inte-
grate knowledge from their previous work in computer science,
electronics, English, mathematics, and physics. Students are
exposed to the fundamental scientific issues in real-time com-
puting and gain practical skills of software development. A
major goal is to train software engineers capable of working as
members of an interdisciplinary development team. Many top-
ics are covered at a survey level. For example, students in the
course learn just enough of the basic concepts of control theory
to be able to communicate with a control engineer and to
implement a simple control algorithm. Feedback from employ-
ers in a wide range of domains, including avionics, communica-
tions, manufacturing, and medical instrumentation has been
extraordinarily positive.

Laboratory Assignments
The four credit-hour course has three 50-minute lectures

and a three-hour laboratory session each week. The early labora-
tory sessions are used to review (or learn) and practice with the
features of the implementation language that are important for
the completion of their project. These include data modeling,
encapsulation and reuse, concurrent programming, and excep-
tions. Later laboratory sessions are devoted to developing code
that will be directly applied to their projects, including polling
and interrupt-based device drivers, implementation of a whistle
class, and implementation of a turnout class

Turnouts are electromechanical devices that sometimes fail
to operate correctly. The software must detect and correct turn-
out failures. Students derive their code from state machines they
develop in one of the lecture sessions.

Course Project
Students are divided into teams of three or four students to

complete a substantial (12K–15K lines) project. Teams are free to

An introductory undergraduate course in real-time embedded software development should acquaint students
with the fundamental scientific issues of real-time computing and practical skills in software development. While
the theoretical issues can be covered without a laboratory, real-time embedded programming skills require the
experiences that a laboratory provides. A major problem is finding equipment suitable for teaching these skills.

Software Engineering Education: On the Right Track
By John W. McCormick

University of Northern Iowa

Software Engineering Education

August 2000 www.stsc.hill.af.mil 23

Software Engineering Education: On the

formulate their own projects. Minimum project requirements are:
• Running multiple trains.
• Having at least one train controlled by a human engineer.
• Experiencing no collisions.
• Detecting and recovering from hardware failures, such as

turnouts, sensors, lost cars, and devious professors.
Over the years, train races, train wars, and scheduling prob-

lems have been the most popular project themes. Deliverables
for the project have included:

• A system concept document.
• A detailed user’s manual.
• Object Modeling Template documents.

– Object model diagrams.
– Dynamic model diagrams.
– Functional model diagrams.
– Data dictionary.

• Compiled class specifications.
• Unit (class) test plans.

These deliverables are used as milestones throughout the
course to help ensure that students keep up with the demanding
schedule necessary to complete the project. One of my major
tasks is to work with teams on their systems concept document
to reduce overly optimistic proposals into ones that can be com-
pleted. Students are aware of the completion rates of past teams
(presented later in this paper) so they understand that they can
complete the project by the end of the semester.

Student teams do exhaustive module testing where behavior
of a particular object (a turnout or locomotive) is well under-
stood. Integration testing is bounded by the end of the semester.

The Laboratory
My first model railroad laboratory was constructed in 1983

at SUNY Plattsburgh. Construction of a new railroad layout at
the University of Northern Iowa is under way.

Railroad Hardware
The model railroads are HO scale.1 While smaller scales

would permit more equipment in the laboratory, they are more
expensive, more difficult to maintain, and less readily available.

To run multiple trains on their layouts, model railroaders tra-
ditionally divide the track into electrically isolated sections called
blocks. Many toggle and rotary switches are used to connect a
particular power supply (called a cab) to a group of track blocks
beneath each train. In our layout, the computer controls the volt-
age and polarity applied to each of the blocks. Our current UNI
layout design has 40 blocks. Today’s model railroad enthusiasts
often use more modern direct digital control of locomotives to
solve the problem of multiple train control. We have rejected this
approach as it provides fewer software development problems to
our students and less experience with analog electronics.

Turnouts are controlled by gear- and screw-driven switch
machines. The computer can determine and modify the state of
each turnout. Our current UNI layout design has 26 turnouts.

In order to do closed loop control, it is necessary to obtain
feedback on the process being controlled. For the model train this
feedback consists of the trains’ locations as a function of time.
This information is obtained from:

• Hall effect sensors installed on the track. These are triggered
by small magnets attached to the front of every locomotive
and to the rear of each caboose.

• A radio link installed in a box car that sends a pulse with
every wheel rotation.
Our UNI layout design has 55 Hall effect sensors. The radio

link allows us to determine a train’s position information to with-
in about 1 centimeter. From the data obtained from the link we
can also calculate the train’s speed. Currently there are two prob-
lems associated with the radio link. The wheels on the boxcar slip
on the track as the car moves, thus the calculated distance moved
by the train is less than the actual distance. This error increases
with time. This problem is a good problem as students can easily
correct for the slippage by using the positions obtained from the
fixed sensors. The second problem is a result of recycling radio
transmitters from very inexpensive toys. The transmitters broad-
cast over a large portion of the frequency spectrum, making it
impossible to use multiple transmitters at the same time. We are
working on a design to replace the radios with an infra-red link.

A final piece of railroad hardware is a hand-held control cab.
This is a small box with buttons, knobs, and toggle switches that
a human engineer can use to control a train. Typical student proj-
ects assign knobs for train throttles, buttons for whistles and
brakes, and toggle switches for train direction (forward or reverse)
and for setting the next turnout ahead of the train (left or right).

Computing Hardware
A number of different hardware configurations have been

used over the long history of this project. In our first laboratory,
students developed their control software on a Digital Equipment
Corporation PDP 11/24. They used a serial link to download
executable programs to a PDP 11/23 computer. In 1989 I
received a laboratory improvement grant from the National
Science Foundation (NSF) enabling me to replace the 11/24 with
a microVAX II and the 11/23 with an rtVAX (optimized for real-
time). The system now under design at UNI uses PCs for soft-
ware development. Two or three inexpensive networked micro-
computers will boot and execute the software students developed.

Interface Hardware
The interface hardware connects the control computers to

the railroad hardware. Figure 1 is a diagram showing the layers
in the system. One or more CPUs are connected to commercial-
ly available analog-to-digital converters (ADC), digital-to-analog
converters (DAC), TTL level digital I/O (DIO), and counter/
timers. The connection may be made through any of a number
of different buses such as ISA, EISA, PCI, GPIB, CAN, USB,
and even standard serial or parallel ports. We use custom hard-
ware to connect these devices to the railroad layout. In the past,
this interface layer was handbuilt on wire wrapped and soldered
prototyping boards. It took considerable effort to construct it.
With the support of the Maytag Foundation and Rockwell, we
are designing and manufacturing circuit boards that will make
this aspect of building the laboratory much easier for us and
other schools that wish to duplicate our efforts. The interface
hardware consists of three subsystems (block control, turnout
control, and train sensors) detailed in the following sections.

24 CROSSTALK The Journal of Defense Software Engineering August 2000

Block Control

The block control subsystem controls the voltage and polar-
ity applied to each track block in the railroad layout. Figure 2
shows a single track block circuit.

The two analog outputs are connected to the rails of a track
block to supply power to the train on that block. Each circuit has
four digital inputs and eight analog inputs. Three of the digital
inputs (cab select) are used to select which of the eight analog
inputs will be used to power the track block. The remaining digi-
tal input is used to select the polarity of the voltage applied to the
track. The analog inputs (cab voltages in Figure 2) may be sup-
plied by digital-to-analog converters or by programmable count-
er/timers. The latter uses pulse width modulation to control the
speed of a train. We expect that each of our block control boards
will contain six- or 12-block control circuits.

Turnout Control

This circuit controls a Tortoise brand switch machine. These
switch machines take three to five seconds to change the direction
of a turnout. There are four possible states for a turnout: left,
right, moving left, and moving right. Each circuit uses one output
bit to set the direction of the turnout. Rather than use two input
bits to determine the state of the switch machine we use the out-
put bit in combination with one input bit that reports whether
the turnout has reached the desired direction.

Train Sensors

This circuit connects the Hall effect sensors on the track to
a DIO board with interrupt capabilities. We place these sensors
on the boundaries between track blocks. When a locomotive is
detected, the software must power up the next block before the
wheels bridge the gap between blocks. This is a hard real-time
deadline in the system as the block power supply fuse will blow
if the software fails to power the next block in time .

Software

During the first six years that the real-time systems course
was offered, students developed their control code in C. As
shown in Figure 3, no team successfully implemented minimum
project requirements when the C language was used. To ease stu-
dent and teacher frustrations I made an increasing amount of my
solutions available to the teams. Figure 3 shows that even when I
provided nearly 60 percent of the project code, no team was suc-

cessful in implementing the minimum requirements.
Along with the new hardware provided by the NSF funding

was a collection of DEC compilers. Thinking that the low level of
tasking provided through semaphores was the major contributor
to the problem, I selected a language with a much higher level of
tasking abstractions—Ada. I expected a disaster the first year with
the new equipment and new language. As in a real-life embedded
systems project, I was building the hardware while my students
were writing the software. I finished the hardware with only four
weeks remaining in the semester. But to my amazement, nearly
50 percent of the student teams had their projects working before
the end of the semester. I had only supplied them with two sam-
ple device drivers. As shown in Figure 4, when I supplied some
additional software components (simple window packages not rel-
evant to the real-time aspect of the project), more than 75 percent
of my teams routinely completed their projects.

Why Ada succeeds where C fails.
The only difference between the years in which teams suc-

ceeded in implementing their projects and those in which no
team succeeded was the implementation language. The project
specification, design, and unit testing techniques did not vary.
While the new computing hardware the Ada teams used was
more modern (faster and fewer breakdowns), it provided no sig-
nificant implementation advantages. Upon reading the project
listings and team member diaries, I concluded that the major
advantages of Ada for these students were, in order of importance:

• Modeling of scalar objects.
– Strong typing.
– Range constraints.
– Enumeration types.

• Parameter modes that reflect the problem rather than the
mechanism.

• Named parameter association.
• Arrays whose indices do not have to begin at zero.

Figure 1. Hardware layers connecting the control computers to the model railroad

Figure 2. Track Block Control Circuit

Figure 3. C Language: Completion Rate (zero) and Amount of Code Supplied

Figure 4. Ada Language: Completion Rate and Amount of Code Supplied

100

80

60

40

20

0

1 2 3 4 5 6 7

YEAR

Groups Completing Project Code Supplied

Software Engineering Education

100
90
80
70
60
50
40
30
20
10
0

1 2 3 4 5 6

YEAR
Groups Completing Project Code Supplied

Cab Voltages

Cab Select

Polarity
Track

CPUs Buses

ISA
PCI

GPIB
CAN

USB, etc.

Devices

DAC
ADC
DIO

Counter/
Timer

Maytag
Rockwell
Custom
Interface
Boards

Railroad
Layout

Blocks
Turnouts
Sensors

Cabs

August 2000 www.stsc.hill.af.mil 25

• Representation clauses for device registers (record field
selection rather than bit masks).

• Higher level of abstraction for tasking (rendezvous rather
than semaphores).

• Exception handling.
• A compilation model that detects obsolete units.

I found my original hypothesis, that the major problem was
C’s low-level tasking mechanism, to be incorrect. While Ada’s
high level of abstraction for tasking was helpful to the students,
it was the accurate modeling of scalar quantities that contributed
the most to Ada’s success in this course. This is consistent with
studies done on the nature of wicked bugs in software [5] where
nearly 80 percent of programming errors in the C/C++ programs
studied were a result of problems with scalars.

Conclusions

The model railroad provides an exciting environment for
teaching a course in real-time embedded systems. With the sup-
port of the Maytag Foundation and Rockwell, we are develop-
ing the interface hardware to allow us and other schools to easi-
ly connect a variety of computers to a model railroad at mini-
mal cost. UNI will make the interface boards we design and
manufacture available to all. Contact me for details.u

References
1. McCormick, J.W. (1988). Using a Model Railroad to Teach

Digital Process Control. SIGCSE Bulletin, 20, 304-308.
2. McCormick, J.W. (1991). A Laboratory for Teaching the

Development of Real-Time Software Systems. SIGCSE Bulletin,
23, 260-264.

3. McCormick, J.W. (1992). A Model Railroad for Ada and
Software Engineering. Communications of the ACM, 35, 68-70.

4. McCormick, J.W., Kudrle, J., & Poulin, J.M. (1994) Ada,
Objects, and Model Trains. The Proceedings of the Eighth Annual
Software Engineering Education and Training Symposium,
Albuquerque, N.M., 8, 29-33.

5. Eisenstadt, M. (1997). My Hairiest Bug War Stories.
Communications of the ACM, 40, 30-37.

Note
1. HO scale [half + O (gauge)] is a scale of 3.5 millimeters to

1 foot used especially for model toys (as automobiles or trains).

About the Author

John McCormick is professor and head of the com-
puter science department at the University of
Northern Iowa. Previously, he was professor of com-
puter science at the State University of New York at
Plattsburgh, where he received the Chancellor’s
Award for Excellence in Teaching. He is the author of

two Ada-based textbooks for introductory computer science courses.
He received his bachelor’s degree from Pennsylvania State University
and his doctorate from the University of California at Los Angeles.

University of Northern Iowa, Computer Science Department
Cedar Falls, Iowa 50614-0507
Voice: 319-273-2618
Fax: 319-273-7123
E-mail: mccormick@cs.uni.edu

August 6-11
6th Annual International Conference on

Mobile Computing and Networking
www.research.telcordia.com/mobicom2000

August 7-8
IEEE Workshop on Memory Technology Design and Testing

http://pcgipseca.cee.hw.ac.uk/cec2000

August 17-19
Designing Interactive Systems (DIS)

September 10-12
Collaborative Virtual Environments (CVE)

September 10-14
Very Large Databases (VLD)

www.acm.org/events has information on DIS, CVE, and VLD.

September 18-19
The Internet Challenge—The Utility Response to a .Com World

www.tdworld.com/marketing/interchall.htm

September 26-28
2nd Computer Security & Information Assurance Conference

www.certconf.org

October 15-19
Object Oriented Programming Systems Languages and

Applications Conference (OOPSLA 2000)
www.acm.org/events

October 23-25
4th Symposium on Operating Systems Design and Implementation

www.usenix.org/events/osdi2000

October 30-31
3rd International Conference on Practical Aspects

of Knowledge Management (PAKM 2000)
www.do.isst.fhg.de/workflow/events/index_e.html

November 10
Infomation Outlook 2000 (Australian Computer Society)

www.acs.org.au/act/events/io2000/index.html

November 16-17
ACM Conference on Universal Usability

www.acm.org/sigchi/cuu

December 4-7
International Conference on Power System Technology

www.ee.uwa.edu.au/~aips/powercon

December 11-13
Global Development Network Conference

www.gdnet.org

April 29-May 3, 2001
Software Technology Conference 2001

www.stc-online.org

Coming Events

26 CROSSTALK The Journal of Defense Software Engineering August 2000

The problems linked to software
development have retained their challenge
since they were first documented by
Frederick Brooks in the Mythical Man-
Month [1]. Then as now, software-inten-
sive development projects have been
plagued by lack of predictability, schedule
and cost growth, failure to meet require-
ments, and as a direct result of these, low
customer satisfaction. We see numbers
quoted that show how dismal the state of
the art is; that the vast majority of software
projects are failures [2]. We have searched
for solutions to these problems, seemingly
ever since the days of Ada Lovelace.

There has been no lack of proposed
solutions. Alan Davis chronicled a list of
fads that have appeared on the software
scene every few years since the 1970s [3].
Structured programming, object orienta-
tion, reuse, commercial off-the-shelf
(COTS) products and others have had
their day in the sun. Each has been herald-
ed as a silver bullet, which none has been.
This is not to say these ideas have no
value; rather, that one must separate the
substance from the hype. We incorporate
what is valuable and make it standard
practice. Each is recognized as one piece of
the puzzle, not the whole solution.
Progress is achieved slowly, small gains are
made with each step. Because the prob-
lems remain largely unsolved, and because
each of these doctrines is introduced with
such fanfare, we are repeatedly seduced by
the promise of a Holy Grail. Davis catego-
rizes process maturity as one of these fads.

When Sarah Sheard writes about the
Frameworks Quagmire [4], she is reflect-
ing some of the frustration of those
attempting to comply with a confusing
and sometimes conflicting set of process
dictates. One look at her pictorial repre-
sentation (see Figure 1) is enough to make
us say that this has gone too far. The word

‘quagmire’ evokes the feeling by many
that they are drowning in too much
process. Other writers note that there is a
growing body of opinion that the prac-
tices that the Software Engingeering
Institute’s Capability Maturity Model
(SEI CMM®) advocate are justified only
for large and complex projects [5]. I can
hear the debate now. Let’s listen:

The Debate

Devil’s Advocate: Process champions
are quick to cite data to support the con-
tention that organizations that adopt bet-
ter processes produce better software.
However, this is far from proving a cause-
and-effect relationship between the two.
The data put forth as evidence would
never hold up against the standards
applied to hard science. Statisticians know
that there is a big difference between
demonstrating a statistical coincidence

and proving cause and effect. Because two
phenomena coincide in a statistically sig-
nificant sample does not necessarily mean
that one causes the other.

Statistical coincidence is never
accepted as proof of cause and effect.
There must be additional empirical evi-
dence to prove that one thing is the direct
cause of another. Organizations that have
good processes and also produce good
software may be a coincidence, and may
be due to a third factor, such as excep-
tionally good software engineers. Davis
makes the point that with the right peo-
ple you can succeed without process
maturity, but that the best process in the
world will not make you successful if you
have the wrong people. It seems likely
that if an organization is blessed with
good engineers, it will be able to create
good processes as well as good products.
Or perhaps it is because companies that

Don’t Say the ‘P’ Word
By Lori Pajerek

Lockheed Martin Federal Systems

Process maturity has been extensively analyzed and codified, and the goal of process maturity has become pervasive
throughout industry, government, and academia. The Software Engineering Institute estimates that there are more
than 30 process maturity models and more are being developed. ‘Process’ has been a buzzword for a long time,
and it may seem at times that more attention is paid to the process used to produce a product than to the product
itself. This article examines the background experiences that led to developing process maturity models, decon-
structs some of the arguments that have been posited—both for and against—and discusses some lessons learned.

SW-CMM
MIL-Q
-9858

Trillium Baldrige

IEEE Stds. 730,828
829, 830,1012,1016

1028,1058,1063ISO
15504*
(SPICE)

People
CMM

IPD-
CMM*

DOD
IPPD

SECAM
AF IPD
Guide

SDCCR

SCE

NATO
AQAP1,4,9

 BS
5750

MIL-STD-
498

DOD-STD
 -2167A

DOD-STD
-7935A

MIL-STD
-499B*

ISO/IEC
12207

IEEE
1220 ISO 10011

SDCE

 SE-CMM
SECM
(EIA/IS 731)

EIA/IS
632

ISO 9000
Series

EIA/IEEE
J-STD-016

IEEE/EIA
12207

EIA 632

MIL-STD-1679

IEEE
1074

TickIT
SSE-
CMM

ISO 15288*

EQA

* Not yet released

CMMI*

PSP

SA-CMM

Q9000

DOD-
STD-
2168

Copyright 1998, Software Productivity
Consortium, NFP, Inc. Used with permission.

FAA-
iCMM

DO-
178B

SW-CMM

Figure 1. The Frameworks Quagmire

Open Forum

August 2000 www.stsc.hill.af.mil 27

Don t Say the P Word

make good software also make money—
enough money to support the overhead
of process management.

The Rebuttal

Process Advocate: Unfortunately, we
probably can not expect ever to have the
kind of data that would satisfy a scientist.
How could you ever really trace the good-
ness of a certain piece of software back to
first causes with any certainty? You can
only observe the statistical coincidences
and draw inferences. Is that not good
enough? If the two things go hand-in-
hand, is it unreasonable to think that
obtaining one of the two will increase your
chances of obtaining the other? Remember
Jay Forrester’s warning that “intuitive
judgments about cause-and-effect relation-
ships may not be effective in complex
feedback systems . . . with their multiple
feedback loops and levels. Complex sys-
tems have a multitude of interactions, not
simply cause-and-effect relationships.
Causes may not be proximate in time and
space to effects [6].” Certainly this com-
ment applies to the complex relationships
inherent in a development process.

Good software may be developed
without a good process—once. That is an
accident. Good processes help ensure that
good software can happen more than
once. A smart hacker can write a killer
application, and undoubtedly makes some
mistakes along the way. To an individual,
those mistakes may not matter very much.
Time and effort wasted are probably of lit-
tle consequence. But in an organizational
environment, mistakes do matter, because
they consume valuable resources. Nobody
ever sees software scrap, but it affects the
bottom line as surely as hardware scrap.
Can you imagine any manufacturing man-
ager tolerating the amount of scrap com-
ing off his production line as is routinely
accepted in our software factories? Soft-
ware scrap may not represent an expense
in raw materials, but costs are incurred in
terms of labor and schedule time, both of
which are usually in short supply.

Devil’s Advocate: I will acknowledge that
software scrap is bad, but what makes
you sure that process maturity will reduce
it? Many companies are investing large
amounts of money to raise their CMM
maturity level, but do they really know if

they will get the expected payoff? They
will at least get bragging rights to a high
SEI rating, which will probably be an
indirect cause of increased revenue. But it
may be that they would get a better value
by using that money to hire the best
engineers they can. It is hard to say,
because we can not be sure which is the
cause and which is the effect.

Process is merely a means to an end.
It actually is a combination of ends: tech-
nical, quality, cost, and schedule perform-
ance, that will ultimately lead to cus-
tomer satisfaction. There is evidence that
companies with mature processes do
indeed achieve these objectives. But even
accepting the inference of a cause-and-
effect relationship between the two, you
must still consider whether there might
have been another way to meet that goal.
This is not to suggest that process matu-
rity is bad, but that you should think
about why each process step exists, and
whether there is a better (i.e., easier or
more cost-effective) way to achieve the
same end. Furthermore, organizations
can not afford to lose sight of the fact
that achieving the highest levels of quality
and customer satisfaction may not be the
pre-eminent goals. They must also make
enough profit to stay in business.

Process Advocate: You are right,
process exists as a means to an end.
Individual process steps exist for a variety
of reasons —technical, cost, schedule,
legal. Some steps are recommended as
best engineering practices; they are there
to promote technical quality. Other steps
within the same process are there only for
management reasons. If we pretend that
we have infinite time and money to com-
plete a project, we would not have to
employ a lot of management controls.
Since that situation never occurs, we have
to find ways to optimize technical quality
while maintaining some schedule and
cost limits. Because these controls have to
be embedded in the engineering tasks,
our engineering processes contain a mix-
ture of management and technical proce-
dures. The advent of initiatives like
Integrated Product Development have
intertwined them even more, making it
harder to separate the strands.

Software has given us the capability to
build systems that are far more complicat-

ed than before its advent, and they are
becoming more complicated all the time.
Now that we are building systems contain-
ing millions of lines of code, development
must be parceled out. Process is what
makes this division of labor succeed; just
being smart does not carry it off any more.
Documented processes become the reposi-
tory for an organization’s collective wis-
dom and experience—lessons learned
about what works and what does not.

Devil’s Advocate: You agree, then, that
less process is needed for small programs.
Many organizations recognize this fact
intuitively, and let smaller programs off
the hook. That helps relieve the burden,
but it does not help them figure out what
is appropriate for programs their size.
Even for large programs, one of the
process mantras is that “the process must
be tailored for your program.” Practical
tailoring guidance is hard to come by and
difficult to apply.

Process Advocate: Yes, many of the
sub-processes of systems engineering are
really systems management. They exist,
like the science of systems engineering,
because of the need to manage large,
complex efforts that involve many com-
ponents, interfaces, people, sites, compa-
nies, etc. They are needed to keep a large
project organization moving in sync
towards a single goal at the right time.
These subprocesses are more easily
waived when you have a small team and a
short schedule.

One mental exercise that can help is
to assess each process step against the fol-
lowing questions:
• Would I do this if I were building this

product by myself?
• Why is this process step here; is it for a

technical or a managerial reason?
This will help to identify and segre-

gate the steps that exist primarily to serve
management goals. Those may be nego-
tiable on small projects. For example,
process steps that require completion of
checklists, preparation of status reports,
or multiple levels of approval to do things
can probably be simplified or eliminated.

People fear that processes are going to
tell them how to work. The most impor-
tant processes for an organization to
mature do not prescribe how to work but
how to coordinate. No one minds being

28 CROSSTALK The Journal of Defense Software Engineering August 2000

told how to get others to do what they
want them to do. That is the function of
most good processes. A newly minted
engineer may not initially understand why
he has to follow the process—he never
had to do this in college. Eventually he
sees the value when he realizes he is no
longer working by himself, and his success
is dependent on what others do.

When Bad Things Happen

to Good Engineers
It must be understood that process

maturity can not be realized by the efforts
of engineers alone. As Watts Humphrey
has noted, poor project management will
defeat good engineering, and is the most
frequent cause of project failure [7]. When
managers insist that engineers shortcut the
best engineering practice due to schedule
or budget pressures, process maturity fails.
These managers are often responding to
inflexible contract demands to which their
company committed in order to win a
competitive bid. The procurement process
encourages bidders to submit proposals
that set unrealistic schedule and cost tar-
gets. Hence, while the customer commu-
nity may be professing the desirability of a
contractor’s high level of process maturity,
the incentive to industry promotes the
exact opposite result. Thus, another pre-
requisite for a mature development process
to thrive is the co-existence of a mature
procurement process on the customer’s
part [8]. Even then, reality has a way of
subverting the best intentions. Although
everybody wants to accrue the benefits of
capable processes, managers often experi-
ence ‘sticker shock’ that causes them to cut
corners.

A hallmark of a mature development
process is emphasis on early requirements
analysis and up-front planning. This
requires program schedules and budgets to
be more heavily loaded on the front end.
Despite having heard the caution, “Pay me
now or pay me later,” some program man-
agers think they can get away with not
paying at all. This includes managers in
both customer and contractor organiza-
tions. Budgets and schedules are drawn up
optimistically, trusting in a best-case sce-
nario. This is rarely the scenario that
unfolds, and the fact that it does not is
largely a self-fulfilling prophecy.

Spending a lot of time and money up

front is an expression of faith. It manifests
the belief that heavy investment in thor-
ough requirements analysis, trade studies,
etc. will prevent problems later, and that
the cost of fixing those problems would be
greater than the initial investment. But it
is difficult to quantify the cost of problems
that never happen, so it is hard for pro-
gram managers to commit to spending lots
of resources early, when the payoff is so
intangible. Despite numerous studies to
support its validity, few programs are
scheduled and budgeted this way. There is
never sufficient time and money to do all
the tasks that engineering best practice
would dictate, i.e., to follow the process!
Projects seem to be programmed for fail-
ure before they even start. Once the
inevitable problems occur, projects revert
to crisis management mode, which is not
noted for its high level of process maturity.

While engineers working in the real
world are told to follow best practices, cir-
cumstances often make it difficult for
them to do so, and they are blamed when
they fail. Is it any wonder they become
annoyed and think that the Process Police
issue lofty dictates from the ivory tower,
while they struggle in the trenches to get
the product out the door? Who can be
surprised that engineers fighting daily fires
do not want to hear the ‘P’ word? They
want to do the right thing, but it seems as
if their hands are tied when, for example,
they have six months worth of require-
ments analysis activity to squeeze into the
four weeks allotted in the schedule. Watts
Humphrey also states that if engineers can
reasonably defend their plans, manage-
ment should respect these plans and not
override them with schedule edicts. Too
often, this caution is ignored.

Where Process Models Fall Short
Investing time and money up front

should not require a leap of faith. We
ought to be able to draw up a front-
loaded schedule and budget with a rea-
sonable degree of certainty that we can
shorten the back end without undue risk.
We can not do this today because of defi-
ciencies in our process models and our
base of collected measurement data. The
reason we create models is to validate
designs by varying operational parameters
and conditions, and observing the results.
Engineers trust their models because they

trust the data that goes into them.
Program managers, however, can not
place the same level of trust in process
models because we lack the abundance of
hard data to substantiate them.

Many current process models are defi-
cient because they do not always view the
processes as systems. The process is the
system an organization uses to generate all
its other systems, i.e., its products.
However, few organizations apply the
same engineering rigor to creating their
development processes that they apply to
the systems developed for external cus-
tomers. A properly engineered develop-
ment process would be modeled in such a
way that managers could accurately foresee
the outcomes of various hypothetical
actions. What happens to Integration and
Test (I&T) time if we cut the Require-
ments Analysis time in half? Who knows
for sure? We can probably guess correctly
that it will increase, but by how much?
Ideally, we could vary these parameters in
a formula to find the optimum balance.

An example discussed previously pro-
vides a further illustration of this point.
We have all seen empirical data to sup-
port the premise that the cost of correct-
ing system defects increases as the system
development progresses into later phases.
But process models have not fully instan-
tiated this data to the point where we can
quantitatively predict the downstream
effects of qualitative changes to the
process. In an ideal model, you would be
able to calculate how much time devoted
to requirement reviews or design inspec-
tions is required to remove a certain per-
centage of defects, and at what point the
law of diminishing returns indicates that
the I&T savings no longer offset the cost
of additional up-front reviews. The accu-
racy of such a model depends on having a
substantial amount of validated measure-
ment data, something that few organiza-
tions possess today. It is essential that we
collect this data if we are to arrive at the
point where our process models can be
sufficiently calibrated to perform these
sophisticated what if analyses.

Integrated Product Development
notwithstanding, few process models in
use today are truly integrated. Even with
the best intentions, organizations tend to
quickly decouple constituent subprocesses
as they descend through a top-down

Open Forum

August 2000 www.stsc.hill.af.mil 29

decomposition of their development
process. Except for time sequence depen-
dencies, the system-wide effects of chang-
ing one subprocess are unknown. Practi-
tioners still operate within their traditional
stovepipe processes, even though their
command media and their management
structure may proclaim them integrated.

Another shortcoming in current
process models is that the rationale for
each process step is rarely captured. If it
were, this type of data could be of great
value when attempting to tailor or re-
engineer a process. People are often afraid
to change or eliminate a process step if
they do not know why it is there. Worse,
more aggressive individuals may rashly
eliminate steps because they do not
immediately see their value. If they were
aware of the possible consequences, they
could at least take the risk knowingly.
While some organizations collect histori-
cal lessons learned information, it is often
poorly organized, difficult to access, and
not kept up-to-date. Most signficantly, it
is not tied directly to the process model.
A good process model would have links
to these lessons learned to show when a
process step was changed, added, or
deleted as the result of a lesson learned.
We often maintain rationale for other
engineering decisions, why not for
processes? Capturing rationale for techni-
cal decisions is another one of the tenets
of a mature engineering process. This is
just another example of how we need to
engineer the development process with
the same rigor we engineer other systems.

Taking the Long View
Continuous Process Improvement

(CPI) sounds like a good thing, and it is.
The point is not that CPI is an impossi-
ble or unworthy goal, but that like the
process, CPI is a means to an end. There
may well be alternative routes to the same
end. Organizations pursue CPI because
they believe it will increase productivity
and quality while reducing the cost of
doing business. However, even the
authors and champions of maturity mod-
els admit, when questioned, that there is
no hard data to quantify the return on
investment (ROI) in process maturity.
Unless the goal is to achieve a CMM
Level 5 rating for its own sake, it is valid
to suggest that money spent on CPI may

be better spent elsewhere in pursuit of the
same goals. We should not forget that the
law of diminishing returns will apply to
CPI just as it does to any other invest-
ment. CPI requires a significant capital
investment, with a promise of return on
that investment. As with many corrective
actions, the biggest ROI on CPI is
achieved by a few heavy hitters. This is
embodied in the well-established theory
of Pareto analysis. For this reason, many
practitioners believe that the difference
between a Level 3 organization and a
Level 1 organization is probably greater
than the difference between a Level 5
organization and a Level 3 organization.

Once an organization has achieved a
high level of process maturity, it is valid
to question whether the ROI on contin-
ued improvement is sufficient to justify
the investment. The gains will become
smaller and smaller, and there may be a
point where the investment is larger than
the payback. Most organizations are still
at relatively immature levels of process
capability, and there are many valuable
gains to be made. In this current state, it
is hard to imagine that someday we will
be at the point where all the low-hanging
fruit has been picked. When that day
arrives, we will have to take a hard look
at the received value of pursuing CPI.

Also, there is a danger of confusing
continuous improvement of the process
with improving the process deployment.
Deploying any reasonably adequate pro-
cess rigorously and uniformly is of greater
value than having a perfect process on
paper, but not enforcing it effectively. An
organization’s priority, therefore, might be
to ensure that a majority of programs
within the organization are performing at
Level 3 (for example), before investing in
advancing to Level 5 for a limited num-
ber of programs.

The bottom line is that process matu-
rity is only one of many factors that con-
tribute to the ultimate success or failure of
any project. There is no doubt that per-
sonal attributes such as education, train-
ing, and work ethic of the individuals exe-
cuting the process will also have an effect.
Likewise, the finest engineers can not per-
form up to their potential if not given an
adequate working environment with suffi-
cient resources of time, money, and tools.
Finally, even the best engineers with the

most ample resources may still fail if the
project is badly managed in other ways.
Process is just one ingredient in the mix.u

References
1. Brooks, Frederick, The Mythical Man-

Month, Addison-Wesley, 1975.
2. Alder, Rudy, Instead of the Wrecking

Ball, CROSSTALK, May 1998.
3. Davis, Alan, Software Lemmingineering,

IEEE Software, September 1993.
4. Sheard, Sarah, The Frameworks

Quagmire, A Brief Look, Proceedings of
the Seventh Annual International
Symposium of the International Council
on Systems Engineering, August 1997.

5. Hadden, Rita, How Scaleable Are CMM
Key Practices?, CROSSTALK, April 1998.

6. Hughes, Thomas P., Rescuing Prometheus,
Pantheon, 1998.

7. Humphrey, Watts S., Three Dimensions
of Process Improvement Part I: Process
Maturity, CROSSTALK , February 1998.

8. Courteney, H. and Ruston, S., Mature
Procurement of Large Scale Systems: A
Better Way to Buy, Proceedings of the
Seventh Annual International Symposium
of the International Council on Systems

Don’t Say the ‘P’ Word

Additional Reading
Gundrum, Valerie, Architecture for a Process
Meta-System, Proceedings of the Seventh Annual
International Symposium of the International
Council on Systems Engineering, June 1999.

About the Author

Lori Pajerek is an Advisory
Systems Engineer at
Lockheed Martin Federal
Systems in Owego, N.Y.
Her current assignment in
the Systems Engineering

Technology department includes surveying,
evaluating, selecting, and deploying Systems
Engineering tools. With more than 15 years
experience in systems and software engineer-
ing for defense-related industries, her areas
of interest and expertise is requirements
engineering and management. She has a
bachelor of science degree in mathematical
sciences from Binghamton University, and is
a member of the International Council on
Systems Engineering (INCOSE).

Lockheed Martin Federal Systems
1801 State Route 17C
Maildrop 0210
Owego, N.Y. 13827
Voice: 607-751-6226
Fax: 607-751-6025
E-mail: lori.pajerek@lmco.com

30 CROSSTALK The Journal of Defense Software Engineering August 2000

Dear Editor:
I must disagree with the premise of the December 1999

article 21st Century Engineer on the grounds that good manage-
ment, the most important productivity and quality driver, has
been ignored. The concept of teams of good people using good
tools within a good process (defined as gold collar workers) is
commendable; however, the article’s message implies that devel-
opment technology alone is necessary for high performance
teams. The following illustrates the point.

Defense industry software development productivity (aver-
age), measured from start of development through final qualifi-
cation test, has grown almost linearly from 1960 through the
present. A simplified (smoothed) productivity growth curve in
the figure to the rightS shows this growth. The result, smoothed
or not, shows a growth of software development productivity
less than one source line per person-month per year over the
entire 30-year period. During that time, each new technology
has assured us the productivity problems of the past have been
solved.

C. C. Tonies defined an effectiveness formula1 that describes
the net effect of an individual’s effort in a software development
environment. The effectiveness expression, E = C[M(CS)], where
E is the net individual effectiveness, C accounts for communica-
tion skills (0-1), M ranks management concept awareness (0-1),

and CS ranks computer science technical ability (0-1).
B. W. Boehm suggested in Software Engineering Economics

that poor management can increase software costs more rapidly
than any other cost factor2. Boehm omitted management-related
factors from the Constructive Cost Model (COCOMO) by
assuming project management was uniform, constant, and good.
In reality, management since 1970 has been uniform, not good,
and unchanging.

G. M. Weinberg groups Boehm's cost impacts to illustrate
the relative importance of each group. Figure 2 presents
Weinberg's results emphasizing the importance of management
in projecting software costs.

Contact Information
Dr. Randall W. Jensen, President
Software Engineering Inc.
660 North Highland Blvd.
Brigham City, Utah 84302
E-mail: seisage@aol.comz

References
1. Jensen, Randall W. and Tonies,

Charles C. Software Engineering.
Englewood Cliffs, N.J.:
Prentice-Hall, 1979), pp. 8-9.

2. Boehm, Barry W. Software
Engineering Economics
(Englewood Cliffs, N.J.:
Prentice-Hall, 1981),
pp. 486-487.

3. Weinberg, Gerald M. Quality
Software Management, vol. 3:
Congruent Action (New York,
N.Y.: Dorset House Publishing,
1994), pp. 15-16.

P
R
O
D
U
C
T
I
V
I
T
Y

100

90

80

70

60

50

1960 1970 1980 1990
YEAR

Ada

 OOD

Structured Analysis

Structured Design

Process Maturity

 PWB

Structured Programming
3rd Gen Languages

lppm

Figure 1. Average software development productivity growth 1960-1990

Don’t Forget About Good Management
By Randall W. Jensen

Software Engineering Inc.

TOOLS

PEOPLE

SYSTEM

MANAGEMENT

3 11 17 64

Figure 2. Relative impact of COCO-
MO software cost driver groups

GSAM Available on Software Technology Support Center Web Site
The Guidelines for Successful Acquisition and Management of Software Intensive Systems

(GSAM): Weapon Systems, Command and Control Systems, and Management Information
Systems, Version 3.0 May 2000, is available on the Software Technology Support Center's Web
site at www.stsc.hill.af.mil. No hard copies will be available.

The GSAM also will be included in the CD-ROM distributed by the Software Technology
Conference 2000, that took place April 30-May 4 in Salt Lake City. Contact Vivian Johnson
at Utah State University to request a copy. She can be reached at 435-797-0424 or
vivianj@ext.usu.edu. Interested persons can also obtain the GSAM in a future release of the
Defense Acquisition Deskbook.

Letter to the Editor

August 2000 www.stsc.hill.af.mil 31

Get Your Free Subscription
Fill out and send us this form.

OO-ALC/TISE
7278 Fourth Street

Hill AFB, Utah 84056-5205
Attn: Heather Winward

Fax: 801-777-8069 DSN: 777-8069
Voice: 801-775-5555 DSN: 775-5555

Or use our online request form at
www.stsc.hill.af.mil

NAME:______________________________

RANK/GRADE:_______________________

POSITION/TITLE:_____________________

ORGANIZATION

OR COMPANY:_______________________

ADDRESS:___________________________

BASE/CITY:__________________________

STATE:______ ZIP:____________

VOICE: ______________________

FAX:__________________________

E-MAIL: _____________@_______________

Plan ahead to submit articles to be
published in CROSSTALK in the next
(we mean it this time) millenium.

January 2001 Modeling & Simulation
Deadline: September 01, 2000

February 2001 Configuration

Management
Deadline: October 02, 2000

March 2001 Measures & Metrics
Deadline: November 01, 2000

April 2001 Requirements Management
Deadline: December 04, 2000

May 2001 Process Improvement
Deadline: January 02, 2001

June 2001 Software Testing
Deadline: February 01, 2001

July 2001 Software Quality
Deadline: March 01, 2001

August 2001 DII-COE
Deadline: April 02, 2001

A Tale of Two Monoliths
“Forcing Microsoft to include Netscape’s competing software in our operating system is like requir-
ing Coca-Cola to include three cans of Pepsi in every six-pack it sells.” —Bill Gates, Microsoft

Like Microsoft, Coca-Cola has recently fallen on some relatively hard times. Not to
shed a tear for either organization–both are still No. 1 in the world at what they do. But
being the frontrunner increasingly has its drawbacks. Upon reaching the pinnacle the
only way to go is down. Perhaps in today's world it is better to be a comfortable No. 2.

The results of the Microsoft antitrust litigation have been well publicized; Coke's
travails over the past year or so, however, are less well known. In the words of stockbro-
ker Roy Burry, “Coca-Cola, more than any other company, demonstrates what was so
wonderful and now is not so wonderful.” In the spirit of misery [or in this case, miser-
ly] loves company, Coke losing its fizz is parallel to Microsoft being down to two bytes.

Coke's longtime CEO, Roberto Goizueta, retired. Perceived by many to be a mir-
acle worker, he had increased Coke's market value from $4 billion to $145 billion dur-
ing his reign. Even seeming disasters like New Coke were massaged into success by
raising Coke Classic from its ashes. His successor, former Coca-Cola CFO Doug
Ivester, cared more about numbers than about people. When contaminated Coke sick-
ened consumers in Belgium in 1999, his apology was late and deemed insincere.
African-American employees in Atlanta sued Coke for discrimination. Newly devel-
oped markets in Brazil and Russia failed to pay off because of poor market conditions.
Chinese students and French café owners, angry at U.S. trade policy, boycotted efforts
to purchase rival companies in Europe that were blocked for antitrust reasons.

Bill Gates retired as CEO, replaced by Steve Ballmer. Subsequently, the company lost both
an antitrust suit and billions of dollars. Is there a connection?

Pepsi and new beverages such as SoBe carved into Coke's market share at home.
Long a strength, Coke's ad campaigns seemed lackluster. The expensive practice of sub-
sidizing retailers for shelf space was beginning to take its toll. Coke's relationship with
Disney was jeopardized after cozying up to Universal, Disney's biggest rival. After a
profit of $32 million on bottling in 1998, which was a 79 percent decrease from the
1997 level, Coke lost $184 million in 1999, the worst returns in more than 40 years.
Ivester resigned.

Microsoft is dead! Long live Microsoft!

The new CEO and aptly named Douglas Daft immediately took steps to decen-
tralize U.S. operations, downsizing 6,000 jobs (20 percent of the workforce). This still
failed to get Coke out of its slump. The market still listed it a risk, and Standard &
Poor's threatened to lower Coke's credit rating. Pepsi-Cola, meanwhile, was rated a
buy. Mountain Dew, a software engineer staple, is a Pepsi product.

Wouldn’t you like to own an iMac too?

One new idea that has come from Coke is a machine that would automatically
raise the price of beverages as the temperature climbs. Something tells me consumers
will be steamed over this. Their full-scale launch of Dasani bottled water has only one
problem-it tastes terrible. They recently gave their employees Friday afternoons off and
another paid holiday (Coca-Cola’s Birthday). That’s what I call project management.

Which do you prefer—New Windows or Microsoft Classic?

Compared with Coke, Microsoft does not have it so bad. The Coca-Colans suffer
because of something sweet and sparkling. Perhaps they should follow the path of
John Sculley, formerly of Pepsi, whom Apple's Steve Jobs recruited with the question,
"Do you want to spend the rest of your life selling sugar water, or do you want to
come with me and change the world?"

The future again belongs to the savvy bridesmaids of the market. Or maybe not.

—Matt Welker

BACKTALK

Call for Articles

CrossTalk
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

BULK RATE
US POSTAGE PAID

Permit No. 481
Cedarburg, WI

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Cover
	Index
	From the Publisher
	Factors Affecting Process Improvement Initiatives
	Letters to the Editor
	Process Improvement Web Sites
	STSC Technical Reports
	Software Best Practice Development
	Risk Management Fundamentals in Software Development
	Development of Space Shuttle Telemetry Station Software
	A New Application of CONOPS in Security Requirements Engineering
	Software Engineering Education: On the Right Track
	Coming Events
	Don't Say the "P" Word
	Don't Forget About Good Management
	BackTalk

