
September 2000 ��������	
�����
���	��������
����	��	����	� Vol. 13 No. 9

INSIDE THIS ISSUE
Interview with

Microsoft VP
Paul Maritz

2 CROSSTALK The Journal of Defense Software Engineering September 2000

Up Close With Microsoft’s Paul Maritz
Paul Maritz of Microsoft discusses commercial off-the-shelf products, open systems, quality,
and Microsoft’s software development culture.

by Kathy Gurchiek

An Activity Framework for COTS-Based Systems
Activities and practices to follow for development and lifetime support of COTS-based systems.

by Lisa Brownsword, Patricia Oberndorf, and Carol A. Sledge

Supporting Commercial Software
Commercial and Nondevelopmental Items can cause problems. Here are some ideas on
how to plan for and resolve them.

by Lt. Col. Lionel D. Alford

Evaluating COTS/GOTS Software: Functional Test Criteria
As government moves toward commercial off-the-shelf (COTS) and goverment off-the-shelf
(GOTS) software, it realizes that vendor descriptions are not always sufficient.

by William H. Dashiell and Phil Brashear

Implementing COTS Open Systems Technology on AWACS
Lessons learned from the U.S. AWACS Step 1 Mission Computing Upgrade Program.

by Lt. Col. Michael K.J. Milligan

Creating an Integrated CMM for Systems and Software Engineering
Description of what the CMMI Product Suite is designed to provide for enterprise-wide process improvement.

by Mike Phillips and Sandy Shrum

The Demarcation Zone: Surviviving a CMM Assessment
What is the role of the Site Coordinator and the team in undergoing a CMM assessment?

by Deb Jacobs

4

8

13

17

Departments

On the Cover:
Kent Bingham,
Digital Illustration
and Design, is a
self-taught
graphic artist/
designer and
freelances both
print and Web
design projects.
His portfolio is at
www.adobe.com/
eportfolio/
kentbingham
[Thanks to 1st Lt.
Clint Stinson for
being the model].

3

31

From the Publisher

16 STC Call for Speakers

20 Coming Events

BackTalk

21

28

26

Field

Software Technology

Report

Engineering

COTS

LLtt.. CCooll.. GGlleennnn AA.. PPaallmmeerr

RReeuueell SS.. AAllddeerr

LLyynnnn PP.. SSiillvveerr

PPaamm BBoowweerrss

MMaatttthheeww WWeellkkeerr

HHeeaatthheerr WWiinnwwaarrdd

AAbbbbyy HHaallll

801-586-0095
801-777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
Crosstalk/crostalk.html
www.crsip.hill.af.mil

SSuubbssccrriippttiioonnss: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address.You may use the form on page 31.

Ogden ALC/TISE
5851 F Ave., Bldg 849, Rm B-04
Hill AFB, Utah 84056-5713

AArrttiiccllee SSuubbmmiissssiioonnss:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Guidelines for CROSSTALK Authors, available upon
request.We do not pay for submissions. Articles published in
CROSSTALK remain the property of the authors and may be
submitted to other publications.
RReepprriinnttss aanndd PPeerrmmiissssiioonnss:: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
TTrraaddeemmaarrkkss aanndd EEnnddoorrsseemmeennttss:: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center.All product names referenced in this issue
are trademarks of their companies.
CCoommiinngg EEvveennttss: We often list conferences, seminars, sym-
posiums, etc., that are of interest to our readers.There is
no fee for this service, but we must receive the information
at least 90 days before registration. Send an announcement
to the CROSSTALK Editorial Department.
SSTTSSCC OOnnlliinnee SSeerrvviicceess:: at www.stsc.hill.af.mil.
Call 801-777-7026, e-mail: randy.schreifels@hill.af.mil.
BBaacckk IIssssuueess AAvvaaiillaabbllee:: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
TThhee SSooffttwwaarree TTeecchhnnoollooggyy SSuuppppoorrtt CCeenntteerr was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SSPPOONNSSOORR

PPUUBBLLIISSHHEERR

AASSSSOOCCIIAATTEE PPUUBBLLIISSHHEERR

MMAANNAAGGIINNGG EEDDIITTOORR

AASSSSOOCCIIAATTEE
EEDDIITTOORR//LLAAYYOOUUTT

AASSSSOOCCIIAATTEE
EEDDIITTOORR//FFEEAATTUURREESS

GGRRAAPPHHIICC DDEESSIIGGNNEERR

VVOOIICCEE

FFAAXX

EE--MMAAIILL

CCRROOSSSSTTAALLKK OONNLLIINNEE

CCRRSSIIPP OONNLLIINNEE

CrossTalk

CROSSTALK would like to welcome
new Managing Editor Pam Bowers,
who replaces Kathy Gurchiek.

September 2000 www.stsc.hill.af.mil 3

From the Publisher

COTS: The Ideal World

Sit back, relax, and enjoy a ride in the ideal world as seen through the eyes of a software
engineer. You wake up at 9 a.m. and get ready for your three hours of work. Breakfast
consists of ham, eggs, toast, and a glass of milk; a breakfast that has no fats, no cholesterol,
and will help you live another 200 years. You step to your spaceport and fly your car to
work. When you arrive, your car folds into your briefcase. Finally, you are ready for three

hours of monitoring the company computer as you wonder how your grandfather worked an eight-
hour workday. And of course, every organization is CMM Level 5.

Sounds too good to be true, right? I consider commercial off-the-shelf (COTS) products to be
like the ideal world for many system program offices and program managers; however, this is not
the real world and COTS is not the silver bullet for software. Paul Maritz's interview on page 4
explains how Microsoft evaluates, selects, and integrates COTS software into its process. He states
that it is important for Microsoft and their customers to use “standardized building blocks” for the
products that they use and sell. However, any cost savings with using an “off-the shelf” product can
easily be evaporated when layers of customization are included. He also gives some lessons learned
to those interested in using COTS, especially to those in the government. Make the decision to use
COTS a “top-down decision” so that the whole organization is using the same basic products, he
advises, “Be willing to re-engineer your processes, if need be, to fit within the bounds of the capa-
bilities of the software you are buying.”

Fortunately, the government has seen some benefit in using COTS-based products, and is
using Carnegie Mellon University's Software Engineering Institute to study ways in developing
and supporting COTS-based systems (CBS). Lisa Brownsword, Patricia Obendorf and Carol A.
Sledge's article, An Activity Framework for COTS Based Systems on page 8 summarizes the essential
factors that distinguish CBS and describes a preliminary framework that captures new and changed
activities necessary for a CBS approach and describes a suitable migration path.

Unfortunately as government agencies start using COTS and government off-the-shelf
(GOTS) products, the program managers must realize the insufficient information and usage on
the products' capability. Dr. William H. Dashiell and Phil Brashear's article, Evaluating COTS/
GOTS Software: Functional Test Criteria on page 17 paints a scenario between a program manager
and a testing expert and how they determine the importance of developing and writing testable
requirements for the program.

Finally, this issue of CCRROOSSSSTTAALLKK should enlighten readers of the shortfalls and benefits of using
a COTS-based system for software. As the Department of Defense idealistically prepares for the
future, it must come to understand the best way to travel there and how to make the pieces fit.

Lynn P. Silver
Associate Publisher

CCRROOSSSSTTAALLKK welcomes Lt. Col. Glenn Palmer, Director of the Computer Resource Support Improvement Program
(CRSIP), Hill Air Force Base, and Utah. As CRSIP Director, Lt. Col. Palmer directs the transition and adoption of
technologies by Air Force organizations to enhance their ability to acquire, develop, manage, and support mission-
critical, software-intensive systems. Lt. Col. Palmer moves to Hill from Lockheed Martin in Ft. Worth, Texas where
he served as Defense Contract Management Agency Program Integrator for the F-22 fighter program. He has 18
years experience in Air Force maintenance, engineering, and program management positions. He received his bach-
elor’s degree in Mechanical Engineering from the University of Kentucky, a master’s degree in Operations Research
from the University of Northern Colorado, and a Masters of Business Administration from Creighton University.

Up Close with Microsoft’s Paul Maritz
CrossTalk had the opportunity to speak with Paul Maritz of Microsoft about commercial off-the-shelf products,
open systems, quality, and Microsoft’s software development culture. He is vice president of Microsoft’s Developer Group,
which includes platform technologies, development tools, and database products as well as providing support programs for
the developer community. He is a member of the Microsoft Business Leadership Team, which shares responsibility with
Microsoft CEO Bill Gates for the company’s broad strategic and business planning. Maritz joined Microsoft in 1986 and
has managed such software product groups as Networking, and Windows operating system and application units. He spent

five years at Intel Corp. before joining Microsoft. He also worked for Burroughs Corp. and at the University of St. Andrews in Scotland. He
is a graduate of the University of Cape Town and the University of Natal, South Africa where he studied computer science and mathematics.

CrossTalk: How does Microsoft determine whether to build or
buy software?

Maritz: You have to decide first whether you want to do some
unique things in the software. It is really a decision between
what you want to achieve with the software; do you want to have
a unique proposition for your customers? Secondly, if it is some-
thing you think is a standard piece you want to have inside your
environment, are there such products available? Are they of suffi-
cient quality? What are the business terms under which you can
acquire them? All those things have to be thought through.

We do buy or license software in many cases. Over time,
though, we tend to license them under scheme-ware by which
we can put them through the same quality cycle, the same main-
tenance and support cycle. We are in the business ourselves of
providing standard building blocks and our customers expect to
see no difference between a piece of software that we built our-
selves and one that we acquired. They do not want to be both-
ered by us saying ‘we can support this one but we cannot sup-
port that one.’ They want them to have the same level of quality.

We tend to look at situations where we have the opportuni-
ty to acquire software because in general it is a lot more efficient
to acquire it because you do not have to do the development
work yourself; however, you have to factor in:

• Do you want to have a unique value proposition?
• How are you going to support it?
• What quality level is it up to?
• The degree you want to integrate it into the rest of

your environment.
In a lot of our cases you cannot buy an operating system

with a full environment off the shelf, so we look to acquire ele-
ments of that and engineer it to certain quality levels and inte-
grate it into the environment.

You cannot generalize too much in the decision criteria that
we would go through as compared to a customer or user soft-
ware. There is a different environment, although perhaps with
some of the embedded systems or mission-critical systems in the
Department of Defense (DoD) they would have to go through a
similar set of criteria. You probably are going to have a differenti-
ated competency or functionality vs. your enemy. It does not
help you to have exactly the same software system as your enemy.
You are going to want to make some changes to it, and you are
going to want to customize it; you are going to want to engineer
it to a certain level and support it over a period of time.

I think the first decision you have to make is what role is the
software going to play in the environment? Then go from there.

CrossTalk: How does Microsoft evaluate, select, and integrate
commercial off-the-shelf (COTS) software into its processes?
Understand, this is a big issue in the military.

Maritz: We are in the business of trying to buy standardized
building blocks that other people can use. While Microsoft will
buy software for our products, we tend to buy them in the con-
text of how we integrate them with the building blocks that we
are going to supply. Another way you can look at it is how we
use commercial software in the running of our company? We
have made some very strong moves to get onto standardized soft-
ware. Looking at our own internal financial and accounting soft-
ware, if you go back five years, we had a hodgepodge of systems
that we had taken and customized. We needed a good, efficient
accounting system. We put ourselves through a very rigorous
process of moving to the Systems, Applications, and Products in
Data Processing (SAP) R/3 system; that was a three-year process,
but it was a top-down decision. Today we are able to turn reports
dramatically more quickly than in the past.

CrossTalk: That is very insightful. What you are saying is you
do not create all of your own software.

Maritz: Absolutely. We want to focus our software development
efforts on the things that will make us unique as a company and
take effort off the things that will not make us unique. I think
any entity has to think about those two things very carefully.
The hard thing about getting in the areas that are not critical and
[where] you do not have to be unique—it requires an explicit
top-down decision. It really has to be a business decision; if you
leave it to the technology people, there will always be 15 reasons
why you cannot move.

CrossTalk: Do you have a percentage as to how much is
COTS and how much is your own software that you use?

Maritz: Our software efforts fall into three categories:
Areas where we decide to build software products—

operating systems, personal productivity tools, development
tools. In those areas, we do buy the software; we tend to buy it
and integrate it into our process. The goal is when it reaches the
software it is indistinguishable from our other pieces of software.

Areas where we act as a consumer of our own product—
wherever possible, we should be using the same products that we
sell to our customers. We use Exchange as our messaging system;
that was not always the case. There was a time when we had our
own home-brewed, internal electronic mail system.

Areas where we decide not to build software products—
there is a lot to be gained by leveraging the research and develop-

CCOOTTSS

4 CROSSTALK The Journal of Defense Software Engineering September 2000

ment that SAP does across a variety of industries rather than try-
ing to have unique software for our environment.

The hard thing is you have to strike the right balance
between being willing to change your internal ways of working
and processing, and getting the software customized. If you take
the off-the-shelf product and decide that you are not going to
change the way you work, you run the risk of writing a layer of
customized software that puts you back in the situation where
you were before—having unique, expensive software that you
have to maintain.

You have to be willing when you go to a COTS environ-
ment, to look at your business processes and be willing to re-
engineer them. Most companies that are really successful realize
the value of that and are willing to do business process and re-
engineering in parallel to putting the standardized software in.

There has to be a balance between getting the software to do
what you want it to do and working within the bounds of the
software. Otherwise you can quickly evaporate any cost savings.

CrossTalk: Do you have any lessons learned from working
with COTS products?

Maritz: There are really two key lessons:
[1] You want to make it a top-down decision. Typically you

want to get all of your organization to use the same basic,
underlying products; you do not have multiple relationships,
multiple learning. Approach it as an important philosophical or
business strategy decision and be prepared to put the willpower
and effort to see it all the way through.

[2] Being willing to re-engineer your processes, if need be, to
fit in the bounds of capabilities of the software you are buying.

CrossTalk: The DoD is developing a common operating
environment to improve interoperability. Microsoft seemed to
develop a common operating environment in Windows for com-
mercial use. Do you have any advice to the DoD in its endeavor?

Maritz: Be pragmatic about things. It is unlikely that the world
is ever going to move to one operating environment. There are
always going to be three or four commonly used operating envi-
ronments. The critical thing for the DoD is to be able to leverage
the research and development that went into each of those envi-
ronments. If you get too far ahead of industry, what happens is
that in order to get products for a common operating environ-
ment, you end up being the one who has to fund the new devel-
opment for it. You can get in the situation where the DoD has to
pay for vendors to adapt their products to a common operating
environment, which is not a good situation to be in either.

Having standards is very important. You do not want to
have whole parts of your organization going in different direc-
tions without being able to reuse and leverage your investment.

The other thing is to recognize that most important stan-
dards in the industry have evolved in a de facto way out of exist-
ing products, rather than in a top-down way. The real challenge
is to have a balance of bottom-up and top-down, recognizing
what is working in the industry and being willing to adapt your
framework standards to take advantage of those.

Do not get caught in the trap of doing standards for stan-
dards’ sake. Otherwise you could end up funding it all, which is
not what you want to do. What you want to do is leverage other
people’s investment.

CrossTalk: If Apple OS9 represents a closed operating system
and Linux represents an open operating system, where is
Windows NT on this continuum?

Maritz: Is Linux an open operating system? You have free access
to the source but is there any official standard party that controls
the interfaces to Linux? No. Is that an open process or not? I do
not know.

We do not think of [Windows NT] either as a closed or
open operating system. We think of it as basically as a system
designed to solve computing problems for a wide variety of users.

CrossTalk: How do you maintain interoperability among
third-party application developers?

Maritz: We do this by maintaining a complete set of compatible
Windows-based interfaces that we maintain on a generation-to-
generation basis.

We are also very careful not to break compatibility when we
release new versions of Windows. There are literally hundreds
of man-years that go into preserving that application invested by
third-party developers. We literally have to test thousands of
applications to make sure that in each application, third-party
investment by those who have written the applications, can be
leveraged in going forward.

On the other hand, we also provide standard interfaces, such
as the Internet set of interfaces (HTML, XML, etc.), that people
have invested [in] that are in or around those interfaces.

We have a responsibility to the Windows developer commu-
nity, which is a very large, very important community. And we
have a responsibility to try and provide the other important stan-
dards that are in the industry.

CrossTalk: On your third-party developers, you do not set
any kind of process standards or testing standards?

Maritz: We have to walk a fine line between not trying to tell
other entities how they should run their businesses, and providing
some guidance to customers as to what they can expect from an
application. We do have a certification program where people can
certify that the applications have a certain characteristic but we
cannot be in the position of determining other companies’ fate by
blessing or not blessing their applications. We have to provide the
tools that enable people to write good applications, but we cannot
be the ones to be the arbiter of their business success.

CrossTalk: The SEI Capability Maturity Model (CMM®)
has a strong influence on defense software development. Does
Microsoft use the CMM? Why or why not?

Maritz: We do not use the CMM directly. We use common ideas
from the CMM and again, this is an issue of looking at the differ-
ent environments that we operate in. There are both similarities
and differences when you are developing software basically as a
component for some larger system. You are developing software
that has to be sold as a product in millions of units. I think there

UUpp CClloossee wwiitthh MMiiccrroossoofftt’’ss PPaauull MMaarriittzz

September 2000 www.stsc.hill.af.mil 5

“Great software design is being able to strike the
right balance between the right granularity in terms
of your design, and the practicality of really using
your resources, CPU, and memory efficiently.”

is a common element, which is discipline and maturity. Those
are, without any question, key characteristics. We use different
mechanisms to assure discipline and maturity in our process,
which do not fit into exactly the same terminology or sequence
that CMM does. But the goal is the same.

We have different issues that come into play. Typically in a
CMM model, it is understood that the requirements are well
understood up front. We operate in an environment where you
know there are certain basic requirements you understand up
front, but you really do not know what is going to be required
until you can get the product in use by users. People are going
to use this product in many, many different ways. We have to
have a different methodology that gets user feedback much ear-
lier into our cycle.

I think one of the major differences between our process
and a traditional Waterfall software process is that we use what
we call a milestone methodology. Essentially you release the
product in a series of releases; typically, anywhere from two to
four releases occur. You try to build a base set of functionality
and try to subset that functionality so you can get it useable by a
certain critical mass of users as early as possible in the cycle. That
is important for two reasons:

[1] You cannot anticipate how people might react to the
product. It is very important how the end users are going to
react. Are the dogs going to eat the dog food?

[2] No matter how much effort we put into writing software
test suites—we literally have one developer writing test code for
every developer writing code to begin with—you cannot predict
all the ways the product is going to be used. The product is
always going to be used in unexpected ways that are not covered
by your test suites. It is not enough to have a product that passes
your test suites. This is something we learned in the 1980s,
together with IBM, when we were applying traditional software
methodologies to developing commercial software. We got in sit-
uations where we would parcel our test suites and release the
product and people would say, ‘that product is terrible.’ You have
to strike a balance between different techniques for assuring
quality. Quality comes from design discipline and formal soft-
ware verification via test suites, and actual product usage. It is
really the union of those things that we have found [is] what
gives a good product.

We have a different way of trying to inject discipline and
maturity into our process, but the goal is the same. It takes time.
We found it takes awhile for a team to develop that can both
formally meet the criteria and informally function well enough
as a team to deliver on that.

CrossTalk: How does Microsoft assure software quality?

Maritz: We try [to] put a net together of well thought-through
designs, and use design quality checks such as design walk-
throughs, peer code reviews, etc.

We write an extensive amount of software that we use to test
our own software. In addition to that, one of the things we have
found over the years developing very large pieces of software is
that you have to be constantly measuring yourself as to where
you really are. Also, [we follow] this notion of exposing yourself
early to end-user testing.

We typically look at a software project and we have found
there are several questions you can ask a team. They will sure tell
you whether they are out of control and have bad quality. How
regularly is the whole team putting the software together? What
we have found is that no matter how good a design is and how
well you have decomposed the problem, nobody is ever perfect in
their design and how all the pieces are going to splice together. If
you have a team that is not mature, and not functioning well, it
tends to leave that very late in the cycle. It is a real effort to put
all the pieces together and integrate them on a regular basis.

One of the disciplines we use is insisting on regular integra-
tions. If a team cannot integrate all its pieces, on a weekly basis,
that is a warning signal. It means it really does not have the
right contract between design elements in place. Because our
software methodologies are good at describing structural aspects
of software, we do not have good theoretical tools for predicting
performance in terms of software design. Unless a team has
written tests to measure its performance as being rigorous about
measuring itself and performance, that can be a warning signal.
In many cases, having too many layers and too many interfaces
militates against performance.

Great software design is being able to strike the right balance
between the right granularity in terms of your design, and the
practicality of really using your resources, CPU, and memory
efficiently. Forcing yourself to be honest about where you are in
terms of performance is another key issue.

Another issue is your bug backlog. No team can recover if it
lets its bug backlog, its performance backlog, or its design backlog
get too far out of hand. What we try and do is structure our life
cycle to say you really are going to release this product three or
four times and you need to have an audience and a set of criteria
of quality and performance associated with each of those releases.

You have got to be very disciplined about treating each of
them as a release. When you hit a milestone, you have got to say
‘we have formally met our quality criteria, we have formally met
our performance criteria, and here is this set of people, outside of
the team, that says ‘Yes, this is usable, you are on the right track.’

One of the key things important for people to internalize is
that quality is an absence of bugs, it is the right performance,
and it is the right set of features. Anyone of those three things
can lead a product to have a bad reputation.

CrossTalk: What standards are used by Microsoft to assure
product quality? How are they created? How are they enforced?

Maritz: The key is to get people to be honest in articulating up
front the criteria they are going to use. Realize that you also have
to revisit your criteria at each milestone, because you will learn
when you reach a milestone about the nature of the software you
are building. It is OK to revise your criteria, but only when you
get to a milestone. When you get to a milestone, there are two
things you learn—if you met your original set of criteria, and if
you should revise your criteria for the next milestone?

CrossTalk: But is that difficult to do? Change is always
difficult, you have a process and sometimes you get so wedded
to the process.

Maritz: Exactly. Often there is a lot of pride involved and

CCOOTTSS

6 CROSSTALK The Journal of Defense Software Engineering September 2000

people like to kind of fudge on the milestones. That tends to be
pennywise, pound-foolish. You are much better off forcing issues
out earlier in the cycle.

CrossTalk: What is the single most important aspect to assur-
ing the quality of Microsoft software?

Maritz: It is hard to say the single most important aspect. We
try to use a network of different techniques and ways of looking
at the problem. You cannot simply say formal methods alone
will do it for you. Formal methods will get you some of the way.
However, informal methods tend to be very important because
they ultimately tell about you whether it is the right product or
not, but they can be very difficult and expensive to use.

It is basically a toolbox of techniques that we have learned
over the years. The thing that is most emblematic of our process
is this notion of milestones. You try and decompose the product
—not just breaking it into subsystems, but equally important,
breaking it into releases where each release has been chosen to
have a certain level of functionality that you can get objective,
formal testing on and objective user-testing on. Both are needed
to prevent situations where you get products that go out of con-
trol and you find out too late in the cycle.

CrossTalk: How does Microsoft attract and retain good
software developers and managers?

Maritz: With difficulty, like everyone else. You try and create a
culture where those people believe they are valued. You try and
create a culture where they believe they can do interesting and
important work. You balance that with the fact that you cannot
be doing interesting and important work all the time. There has
to be a balance between inspiration and creativity, and plain old
hard work and slugging through it.

We try to create an environment where software engineers
know they are at the core of what we do. They are valued as indi-
viduals. If they put in hard work they will be rewarded by being
treated well, being compensated well, and getting the opportunity
to do interesting work. They can continue to grow as individuals.

Most people who do software development do it only partly
as a way of earning a living. They do it because they have a pas-
sion for it and they get a lot of satisfaction out of doing it.

CrossTalk: It is something that the DoD struggles with,
attracting and retaining that intellectual resource.

Maritz: Are you putting enough attention into structuring so
that these people have an interesting career path and get to work
on interesting problems? I think there should be no shortage of
[interesting software problems] in the Department of Defense,
balancing that with the fact that every job in life has a certain
amount of plain old hard work associated with it.

The world is becoming a software world. There is no aspect
of life that does not have software in it these days. Consequently,
there is tremendous demand for these people. These people are a
scarce resource and have to be compensated accordingly.

CrossTalk: Do hotshot software engineers make good soft-
ware managers?

Maritz: Not necessarily, but some of them do. There are certain
hotshot software engineers who have no interest in being a man-

ager, will be bad managers, and you have to construct a career
path so those people can advance and be valued by the organiza-
tion without having to become a manager. In many cases that
means teaming them up with somebody who is a good manager.

We have a distinguished engineer program, where some-
body can rise up where essentially they are compensated as a
senior executive of the company would be compensated.

You need both. You need great architects and great software
managers. Finding those people who have the right characteristics
—their level of maturity and their propensity to want to work
with other people—and encouraging them is very important.

The best software managers are those who also have a good
understanding of what their people are doing. They do not have
to be expert, but they have to have a good appreciation for what
people are doing. Software engineers do not have a lot of respect
for their leadership unless they know their leadership has a basic
understanding of what their issues are and have sympathy for the
challenges that they face. [Knowing] if some critical decision has
to be made that that decision will not be made randomly. The
manager will have enough background to know whom to ask
and get good advice.

The key is to get the individual to recognize which track he
is on. It is, in many cases, convincing people who are on a tech-
nical track or management track to be comfortable with which
track they are on, accept that, and realize that they do not have
to be the other in order to get where they want to go.

CrossTalk: What qualities that are rare among software engi-
neers do you look for in a good software manager?

Maritz: When you become a manager, you can never be the
expert in all areas. You are somebody who has to show leader-
ship by absorbing a lot of good ideas and advice from other
people. Those people who tend to do that are more secure in
themselves. They are able to take feedback. They are not afraid
to appear to be dumb by asking questions and learning. They
tend to be people who can get honest feedback. They are people
who have a lot of self-confidence with a small ‘s’ and a small ‘c.’
I’m not talking about braggadocio. And [they] also have a good
appreciation for what it is the team is trying to do. You are lead-
ing technical people. You have to make it a point to know the
problems that people are facing. You do not have to come up
with the answers, but you have to know enough to realize when
somebody is trying to put one over on you, when somebody is
lying, or when people are in need of help.

CrossTalk: What does Microsoft do to encourage long-term
employment and loyalty from productive software developers?

Maritz: It is a combination of three things:
[1] Making them feel very good about working in an envi-

ronment that values and respects them—they feel they are mission
critical. Nobody wants to work long-term for an organization
where you think you are in a secondary or under-appreciated role.

[2] Making sure that they can work on things that engage
them—every job has its element of tedium associated with it,
but you have to make sure there are enough interesting and
exciting things that people can feel engaged and challenged.

[3] Compensating them.�

UUpp CClloossee wwiitthh MMiiccrroossoofftt’’ss PPaauull MMaarriittzz

September 2000 www.stsc.hill.af.mil 7

8 CROSSTALK The Journal of Defense Software Engineering September 2000

Many government and industry pro-
grams are discovering difficulties that can
accrue in creating a COTS-based system
[1, 2, 3]. Some are starting to describe
new processes and procedures [4, 5]. But
none of this work brings together a des-
cription of all of the activities—engineer-
ing, business, contractual, and manage-
ment—that are new or changed as a result
of using COTS products and technology.

The basis of our work is more than
30 medium and large projects, ranging
from business information management
systems to embedded weapon and mili-
tary command and control systems. We
have captured information about the prac-
tices that did and did not work. This
information has been analyzed to under-
stand and characterize the common points
of success and failure. This resulted in
identifying the process changes required
to address these real-life lessons and the
articulation of a framework for organizing
the new and changed process elements.

In this article, we will summarize the
essential factors that distinguish COTS-
based systems (CBS) and describe a pre-
liminary framework that captures new
and changed activities necessary for a CBS
approach. It is drawn from the collective
experience of the members of the CBS
Initiative at the SEI and studies undertak-
en in the context of working with individ-
ual organizations on their systems [6], [7].
In many instances the strawman frame-
work describes parts of approaches that
have been used by organizations. To date
no one organization has consciously pur-
sued their work according to this set of
ideas. The framework and its contents can
be used by projects in several ways: to
determine what practices are required for
effective leverage of the COTS market-
place, to identify the difference between
their existing practices and those required,
or to determine a suitable migration path.

CBS Process Drivers
Many software practitioners today

are unfamiliar with CBS development,
potentially involving a dozen or more
COTS products1 and custom or legacy
components that provide system func-
tionality. A philosophy and process that is
different from that familiar to custom
developers is needed for COTS-based sys-
tems. New process drivers flow from the
definition of a “COTS product” and
from the consequences of assembling
things from purchased parts:
• CBS development is an act

of composition.
• CBS development is shaped by realities

of the COTS marketplace.
• CBS development occurs through the

simultaneous definition and tradeoffs
of the COTS marketplace, your
architecture, and your system context.2

CBS Development as
Act of Composition

The first driver holds that the devel-
opment of a custom system is essentially
an act of creation, whereas the develop-
ment of a COTS-based system is ultimate-
ly an act of composition and reconcilia-
tion. Custom development starts with the
system requirements and creates a system
that meets them—we are producers.
However, CBS development starts with a
general set of requirements and then

explores the offerings of the marketplace
to see how closely they match the needs—
we are consumers who must integrate the
products we buy into a system that meets
the need. The nature, timing, and order of
activities done and the processes used dif-
fer accordingly.

CBS Development Shaped by
Realities of COTS Marketplace

Eight inherent marketplace character-
istics help determine the nature and evolu-
tion of a COTS-based system endeavor:
• There is frequent, continuous change in

COTS products and the marketplace.
• The marketplace, noth the needs of

any particular system, drives COTS
products.

• Products have built-in assumptions
about how they will be used; these
might not match the system users’
processes, resulting in clashes.

• Licensing and data rights will affect
cost, architecture, and data processes.

• Projects have limited control over a
COTS product’s release frequency or
content.

• Projects have limited visibility into
COTS products’ source code and
behavior.

• Products are built on architectural
assumptions that can vary across sys-
tem components and could conflict
with an evolving system architecture.

• COTS products have interdependencies.

An Activity Framework for COTS-Based Systems
Lisa Brownsword, Patricia Oberndorf, and Carol A. Sledge

Software Engineering Institute, Carnegie Mellon University

As use of commercial technology and products in systems becomes increasingly popular, particularly for government organi-
zations, a new understanding of the dynamic principles of system creation is needed. However, there is little information on
how using commercial off-the-shelf (COTS) products affects existing system development practices or what new processes are
needed to be successful with COTS products. As part of the COTS-Based Systems Initiative at Carnegie Mellon University’s
Software Engineering Institute (SEI), we are studying this new software development process and have started to articulate
some of the activities and practices that can be followed for development and lifetime support of COTS-based systems.

Traditional
Development Approach

System
Context

Architecture &
Design

Implementation

Required COTS Approach

Marketplace

System
Context

Architecture
& Design

Simultaneous
Definition

and Tradeoffs

Figure 1. Traditional vs. COTS-Based Approach

September 2000 www.stsc.hill.af.mil 9

CBS Development Through
Simultaneous Definition/Tradeoffs

The last driver of CBS processes is
really a consequence of the previous two:
there is a fundamental change required in
the approach to system development for
COTS-based systems, as pictured in
Figure 1. On the left is a traditional cus-
tom-development approach in which
requirements (referred to as system con-
text) are identified, then an architecture
defined, and finally (custom) implemen-
tation is undertaken.

But if this is applied to CBS, it is
unlikely that the marketplace will yield
any products that fit the a priori require-
ments and architecture. Instead, with
CBS it is necessary to consider system
context, architecture, and the marketplace
simultaneously, as pictured on the right of
Figure 1. Any of the three may have
impacts on the other two; none can pro-
ceed without knowledge and accommo-
dation of the other two. Further, the
activities that are performed for CBS sys-
tems are cyclic in nature; these tradeoffs
will be repeated frequently throughout
the lifetime of the system. This funda-
mental change not only necessitates
changes in the engineering processes but
also in the processes used to acquire and
manage the construction of such systems.

CBS Activity Areas
To understand the process changes

generated by the use of COTS products,
we identify activities that are either new
for COTS-based systems or were present
in custom development but change for
CBS development. These activities are
grouped into four major activity areas in
Figure 2: Engineering, Business, Program-
wide, and Contract. Engineering and
Business activity areas are straightforward.
The Contract activity area covers issues
involved in contracting with vendors and
integrators. The Programwide activity area
accounts for activities that are not con-
tained in one area but span multiple areas.

Within each of these activity areas,
the new and changed activities are catego-
rized into a number of activity sets, repre-
sented as blocks in Figure 2. Each set of
activities operates continuously. There is
no implied sequence within an activity
area. Rather, the activity sets represent
categories of related activities. For each
activity set, we have identified its scope,
the activities, and usage guidance or tips
to consider in defining and applying the
activities.

Our goal is to emphasize the differ-
ences from traditional custom develop-
ment processes. Sometimes the differ-
ences are not in what is done but rather
how or when or with what marketplace
considerations the activity is done. For
example, the activities in the CBS Risk
Management activity set are the same
activities used in any form of risk man-

agement. The difference derives from the
nature of COTS risks associated with the
use of COTS products that have not been
encountered before and the diversity of
the mitigations that are required.

The activity areas and their activity
sets are a preliminary notional model that
would be used to guide the detailed plan-
ning of a specific program. Depending on
the particular needs of a program, some
activity sets would have greater emphasis
than others. The identified activity sets
apply not only to new programs but also
to existing programs.

In the sections that follow, each activi-
ty area is summarized indicating some
implications of the CBS process drivers,
some of the interrelationships among the
activity sets, and a tabular illustration of
an activity set to indicate the type of infor-
mation we have gathered. A more com-
plete treatment of each activity area and its
associated activity sets is provided in [8].

Engineering Activity Area
The Engineering Activity Area, as

shown in Figure 2, is associated with the
technical conceptualization, construction,
and maintenance of a system. To a large
extent these activity sets operationalize
the CBS approach indicated on the right
side of Figure 1. Activities in one set are
done concurrently with and with mutual
cognizance of other activity sets.

System Context Activity Set (an
extract is shown in Table 1).. Mismatches
between end-users’ processes and the
processes embodied in COTS products
will occur, and these differences will con-
strain the system context and the pro-
gram’s ability to leverage the marketplace.
Late discovery of these mismatches has
been the foremost COTS issue for many
projects we studied. Combined with other
features of the CBS process drivers, these
mismatches demand early and continual
involvement of the program’s stakeholders
across all engineering activity sets. Their
help is needed in deciding the potential
tradeoffs between requirements and avail-
able COTS products and technologies;
things move too fast to recover if their
input is sought too late.

Marketplace Activity Set. COTS-
based systems are by their nature highly
evolutionary. This derives in part from
the usual changes in end-user needs. But
new CBS process drivers show that the

AAnn AAccttiivviittyy FFrraammeewwoorrkk ffoorr CCOOTTSS--BBaasseedd SSyysstteemmss

Business Activity Area

COTS
Business Case

Vendor
Relationships

COTS
Cost Estimation

Intergovt Supplier
Relationships

Contract Activity Area

Contract
Requirements

 Contract Tracking
 & Oversight

Solicitation

License
Negotiation

Program-Wide Activity Area

CBS
Strategy

CBS Risk
Management

Cultural
Transition

CBS Tradeoffs

Information
Sharing

Engineering Activity Area

System
Context

Construction

Architecture
and Design

Configuration
Management

Marketplace

Evaluation

Deployment
and Sustainment

Figure 2. COTS-Based Systems Activity Areas

marketplace creates a new source of evolutionary demands,
based both on the natural ebb and flow of products and tech-
nologies and on end-user discovery of new capabilities that have
emerged in the marketplace.

Architecture Activity Set. The evolutionary nature of the
marketplace has a particularly strong impact on the system archi-
tecture and design, as both must now be devised to withstand
years, if not decades, of change. An architecture that allows a
system to evolve efficiently is a strategic asset for CBS—it is the
only thing the project owns.

Construction Activity Set. COTS product modification is
often a temptation. Avoid it; if it cannot be avoided, successful
projects go into it with a clear understanding of what it will
mean in the future. “Modified COTS” is an oxymoron; once
you have modified a COTS product for a specific use or system,
it is no longer COTS. System lifetime costs of COTS product
tailoring or modification must be taken into account as part of
architectural and product selection decision-making.

Configuration Management Activity Set. Configuration
management is still critical, but there are additional demands.
Product versions and product dependencies on specific versions
of other products must be tracked. License information and
management (in the Contract activity area) may need to be
accommodated as well.

Deployment and Sustainment Activity Set. The traditional
separation of development and sustainment blur and become
indistinguishable. Sustainment events, such as product upgrades,
will occur before initial delivery of the system, and construction
activities such as product selection, test, and integration will be
necessary during sustainment. This impacts many other activities,
such as budgeting, staffing, and contracting, and holds true from
the purchase of the first product until retirement of the system.

Evaluation Activity Set. Evaluation of products and tech-
nologies begins from the moment the initial idea for a system is
conceived, permeating and underlying all the other activities
continuously throughout the CBS lifetime. This suggests dedi-
cated evaluation resources (people, software, hardware, and
facilities) as the useful half-life of market information is very
short—about six months—and product information may not
be valid for significantly longer periods of time.

Business Activity Area
The Business Activity Area (refer to Figure 2) is associated

with developing the business case and cost estimates, and man-
aging vendor and other supplier relationships. COTS product
and technology decisions are not just engineering decisions,
they are also business decisions. Many activities in the business
activity area require information from the engineering activity
area and vice versa. For example, to create a COTS business
case requires detailed COTS product information derived from
the Marketplace and Evaluation activity sets plus architectural
and design prototypes from the Architecture activity set.

CCOOTTSS BBuussiinneessss CCaassee AAccttiivviittyy SSeett (an extract is shown in
Table 2).. Making a COTS product purchasing decision in most
cases is more than buying a commodity. A program’s potential
success may now be tied to a critical component from the vendor,
requiring an effective long-term business relationship. The pur-
pose of the business case is to analyze the alternatives to find the
one with the best return on investment, total cost of ownership,
and risk profile that best fits the requirements across the life of
the system. Business decisions made regarding COTS products
and technologies must incorporate the total cost of ownership
across the system life, not just initial purchase costs. A key part of
constructing the COTS business case is gathering information
from such sources as market research and trend analysis, gap
analysis between the product and your requirements, investiga-
tions of vendor health and practices, and detailed product usage
through prototypes, demonstrations, and pilots.

COTS Cost Estimation Activity Set. The CBS process
drivers are felt as strongly in the business activity area as in engi-
neering. CBS cost estimation must account for all the differences
for CBS implied by the CBS process drivers. In addition to
many traditional costs, a CBS may incur costs for reacting to
new product releases and marketplace changes (including “end-
of-life” events), technology refresh, continuous evaluation, mar-
ketplace and technology watches, licensing, (re)integration, etc.
Development of new publicly available COTS cost estimation
techniques and models is in its infancy.

Vendor Relationships Activity Set. A vendor relationship is
the means of partnering with a vendor that is important to your

10 CROSSTALK The Journal of Defense Software Engineering September 2000

CCOOTTSS

COTS Business Case: Provides the basis for “make vs. buy” decisions for
an entire system or an individual component. Covers the information
gathering and analyses necessary to reach a recommendation regarding
which of several alternative COTS or custom solutions to choose. Uses
many of the other engineering and business activity sets.

Activities
• Determine CBS success factors.
• Conduct preliminary study of feasibility of a solution using COTS

products.
• Identify key COTS-related assumptions.
• Articulate alternatives to be analyzed.
• Formulate CBS strategic plans.
• Analyze financial implications (costs, CBS risks, costs for risk

mitigation).
• Analyze (COTS and non-COTS) alternatives and determine

recommendation(s).
• Revisit the business case periodically and at key reassessment events.

Tips
• Information gathering is key. Beware of the very short half-life of the

information due to marketplace volatility. Beware that comparisons are
not usually of the “apples to apples” variety.

Table 2. Extract from COTS Business Case Activity Set
Table 1. Extract from System Context Activity Set

System Context: Encompasses considerations that define, prioritize, and
constrain the CBS to be fielded, such as functional/nonfunctional require-
ments, end-user operations, business drivers, operational environment, and
constraints such as schedule and budget.

Tips
• Requirements analysis is still a

necessary activity, although a
new process is required to deal
with simultaneous tradeoffs.

• Leverage prototypes to gain
sufficient product insight to
understand the extent of match
with the end-user processes.

• End users tend to consider cur-
rent processes and preferences
to be non-negotiable.

• Engage all appropriate stake-
holders early and often.

Activities
• Determine and prioritize the nego-

tiable/non-negotiable elements of the
system context.

• Understand the essential elements of
the business processes and identify
process/product mismatch before
committing to the marketplace.

• Re-engineer business processes in light
of knowledge of available products.

• Negotiate system context changes as
part of COTS-based tradeoffs.

• Dynamically reflect results of COTS-
based tradeoffs in the system context.

• Re-examine COTS products for
opportunities to optimize user
processes.

system. The relationship relies on a cooperative exchange that
explores current and future vendor and government plans. Such
relationships provide insight into product releases, and represents
a means for the government to influence vendor plans or direc-
tions. The type and depth of vendor relationship is dependent on
the importance of the COTS product to the system and the
importance of the program as a customer of the vendor.

Intergovernmental Supplier Relationships Activity Set.
For DoD programs, another DoD organization may be the sup-
plier of a nondevelopmental item that is incorporated into your
system. The other DoD organization is not a vendor but is a sup-
plier who exhibits both similarities as well as differences from
how a commercial vendor would operate. A program needs to
cultivate and nurture a relationship with these suppliers

Contract Activity Area
The Contract Activity Area, indicated in Figure 2, is associ-

ated with the contractual aspects of creating and monitoring
relationships with integration contractors and vendors. The first
three activity sets focus on the contract relationship with an
integration contractor. They emphasize the aspects that are dif-
ferent for a CBS contract, so they are not a complete guide to
the contract effort for a CBS. The license negotiation activity
set covers the contractual relationship with vendors.

Contract Requirements Activity Set. Contract require-
ments define the scope of the contract effort for CBS integra-
tion. They are developed with stakeholders, including potential
bidders and suppliers. Contract requirements need to be flexible,
traceable and verifiable, and address the system service lifetime.
Contract requirements should accommodate CBS issues such as
(but not limited to) technology refresh, version upgrade plans,
market and technology watch groups, evolvable architecture, and
supplier support.

Solicitation Activity Set. Look for CBS contractors who
show successful previous CBS experience and knowledge of the
COTS marketplace relevant to your domain. Consider carefully
that their engineering and management practices provided in
their proposals address the CBS issues and the risks specific to
your program. Realistic demonstrations should be a key part of
the contractor selection process in many situations.

Contract Tracking and Oversight Activity Set. Execution
of activities for this activity set requires government skill and
experience in such areas as COTS cost estimation, oversight of

contractor’s iterative development, relevant marketplace trends,
evolving the system architecture, and product upgrades and
technology refresh issues.

License Negotiation Activity Set (partial extract shown in
Table 3). License agreements lay the foundation for and embody
the program’s vendor relationships. They must withstand many
changes to a vendor’s product and must be carefully considered.
In particular, the program must be sensitive to their impact on
program costs and potentially on the system architecture.

Programwide Activity Area
The Programwide Activity Area (shown in Figure 2) covers

the activities that span the Engineering, Business, and Contract
Activity Areas in order to develop and sustain a CBS.

CBS Strategy Activity Set (extract shown in Table 4). The
CBS strategy sets the stage for how a project will conduct all other
activities. For example, the CBS strategy governs to what depth a
COTS business case will be done, what investment will be made in
vendor relationships, and what development approach will best
support a CBS approach. Due to the continual changes in the
COTS marketplace, a program will need to re-evaluate its CBS
strategy periodically and adjust its plans and actions accordingly.

CBS Risk Management Activity Set. The goal of risk man-
agement for CBS is to identify COTS risks as early as possible,
adjust the strategies and plans to manage those risks, and develop
and implement a COTS risk management process as an integral
part of an organization’s overall CBS approach. Given market-
place volatility, COTS risks are likely to change more rapidly than
the typical risks associated with custom systems. Examples of
common COTS risks include a key vendor going out of business
or an engineer’s inability to integrate two selected products.

CBS Tradeoffs Activity Set. Engineering has always been
an exercise in tradeoffs. With CBS, new tradeoff considerations
arise, such as products that do not meet requirements, effects of
licenses on design decisions, a vendor’s or supplier’s market
share, architectural mismatch among components, long-term
viability of a technology, product, or vendor, and the
(mis)match of COTS product processes and existing end-user
processes. Compounding the tradeoff issues is a program’s lack

September 2000 www.stsc.hill.af.mil 11

AAnn AAccttiivviittyy FFrraammeewwoorrkk ffoorr CCOOTTSS--BBaasseedd SSyysstteemmss

TTiippss
• License agreements may be

used to describe the relation-
ship with the vendor, incor-
porate nonstandard provi-
sions such as vendor commit-
ment, inclusion of modifica-
tions into the next commer-
cial product release , and the
kind and degree of integra-
tion support the vendor will
provide.

AAccttiivviittiieess
• Investigate licensing alternatives

and costs; capitalize on enter-
prise licensing opportunities.

• Incorporate nonstandard
provisions, such as vendor
commitment to inclusion of
modifications, integration
support, notification of product
splits, and license transfer.

• Negotiate licenses.

LLiicceennssee NNeeggoottiiaattiioonn:: Looks at what the vendor offers with respect to
terms, conditions, and costs for a given product for use in an organization
over a particular period of time. Based on the situation and needs of the
organization, negotiates the license(s) that best suits both parties.

Table 3. Extract from License Negotiation Activity Set

Table 4. Extract from CBS Strategy Activity Set

Activities
• Identify CBS goals, constraints, and

assumptions.
• Identify COTS-related risks.
• Identify relevant market segments.
• Identify alternative COTS-based

solutions.
• Reassess CBS strategy as necessary.
• Assess/evaluate/tradeoff alternative

COTS-based solutions.
• Recommend an overall CBS strategy.
• Create a corresponding CBS plan,

including contingency plans.
• Reassess and revise CBS strategy as

necessary.

Tips
• Because of the presence of

COTS products, the acquisi-
tion strategy/plan must be
flexible enough to respond
to changing circumstances.
This requires, among other
things, an understanding of
how unprecedented your
system is with respect to
what the marketplace pro-
vides and with respect to
what combinations have
been successfully fielded for
your application area in gen-
eral and by your contractor.

CCBBSS SSttrraatteeggyy:: Seeks to derive an approach to COTS-based system devel-
opment that will meet CBS objectives within program constraints over
the life of the system. Provides for formulating, conducting and docu-
menting planning activities for a CBS, providing one aspect of an overall
system strategy. Factors in the realities about the COTS marketplace and
the challenges that result into the system planning.

12 CROSSTALK The Journal of Defense Software Engineering September 2000

of control over many of these sources of contention and an
inability to compensate by modifying COTS products.

Cultural Transition Activity Set.. COTS-based systems
represent a change for everyone in an organization, not just
technical personnel. New roles and skills are required. Failing to
pay attention to the cultural transition issues could result in a
potentially insurmountable barrier to CBS success. The more a
program already uses sound system engineering practices, the
easier it will be to transition to a CBS approach.

Information Sharing Activity Set. Information sharing can
help save others from repeating known mistakes. When the pace
of change accelerates, as with COTS products and technologies,
flexibility becomes a business imperative. A program does not
have the time to dig itself out of problems that could be avoided.

Future Directions
These results are preliminary. They require a great deal of

application to validate and tune. We plan to use applicable
activity sets with our customers, and we invite readers who
choose to work with some or all of the activity sets, as described
more fully in [8], to share their results with us. We expect to
apply those results to evolve this preliminary framework.�

References
1. Boehm, Barry and Abts, Christopher, COTS Integration: Plug

and Pray? IEEE Computer, Vol. 32, No.1, Jan. 1999, pp. 135-138.
2. Brownsword, Lisa; Carney, David; and Oberndorf, Tricia, The

Opportunities and Complexities of Applying COTS Components,
CCRROOSSSSTTAALLKK, April 1998, pp. 4-6.

3. Garlan, D.; Allen, R.; and Ockerbloom, J., Architecture
Mismatch: or Why It’s Hard to Build Systems Out of Existing
Parts, Proceedings of the International Conference on Software
Engineering, Seattle, 1995, pp. 179-185.

4. Fox, Greg, Marcom, Steven, and Lantner, Karen. A Software
Development Process for COTS-Based Information System
Infrastructure, CCRROOSSSSTTAALLKK, May 1998, pp. 20-25.

5. Reifer, Donald, Product Line Management: Best Acquisition
Processes/Practices, July 30, 1999, Southern California
Software Process Improvement Network (SPIN), University
of California at Irvine, Irvine, Calif.

6. Sledge, Carol and Carney, David, Case Study: Evaluating COTS
Products for DoD Information Systems. CBS monograph series.
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University (www.sei.cmu.edu/cbs/monographs.html) June 1998.

7. Hissam, Scott and Plakosh, Daniel, COTS in the Real World: A
Case Study in Risk Discovery and Repair, SEI Technical Note
CMU/SEI-99-TN-003, Carnegie Mellon University, June 1999.

8. Oberndorf, Patricia; Brownsword, Lisa; and Sledge, Carol, An
Activity Framework for COTS-Based Systems, SEI Technical
Report CMU/SEI-2000-TR-010, to be published.

Notes
1. A COTS product is a product that is sold, leased, or licensed to

the general public; offered by a vendor trying to profit from it;;
supported and evolved by the vendor, who retains the intellectual
property rights; available in multiple, identical copies; and used
without modification of the internals.

2. The term system context is used to ensure inclusion of requirements
in the context of their end-user processes and other constraints
such as cost and schedule—not just functional requirements.

CCOOTTSS

Lisa Brownsword is a senior
member of the technical staff
in the CBS Initiative at the
SEI. Before joining the SEI,
she was employed at Rational
Software Corp., providing

consulting to managers and technical practi-
tioners in the use of and transition to soft-
ware engineering practices, including
CASE, architecture-centered development,
product lines, and object technology.

Software Engineering Institute
4301 Wilson Blvd, Suite 902
Arlington,Va. 22203
Voice: 703.908.8203
Fax: 703.908.9317
E-mail: llb@sei.cmu.edu

Patricia Oberndorf is a
senior member of the tech-
nical staff at the SEI. She is
a part of the CBS Initiative
and concentrates on the
investigation of acquisition,

management, and open system issues. Prior
to coming to the SEI, she was with the
Navy for more than 19 years, working on
CASE environments.

Software Engineering Institute
4500 Fifth Ave.
Pittsburgh, Pa. 15213-3890
Voice: 412.268.6138
Fax: 412.268.5758
E-mail: po@sei.cmu.edu

Carol A. Sledge, Ph.D., is
a senior member of the
technical staff at the SEI.
She is a member of the
CBS Initiative at the SEI
and concentrates on open

systems and acquisition and management
issues of COTS-based systems. Sledge has
22 years of experience, primarily acquiring,
developing, and supporting large, multi-
platform product line systems.

Software Engineering Institute
4500 Fifth Ave.
Pittsburgh, Pa. 15213-3890
Voice: 412.268.7708
Fax: 412.268.5758
E-mail: cas@sei.cmu.edu

About the Authors

The Guidelines for Successful Acquisition and Management of Software Intensive Systems (GSAM) is available
free on the CD-ROM distributed by the Software Technology Conference 2000 only to those people who
attended the conference. Others may purchase the CD for $50 from Utah State University. For a copy, contact
Vivian Johnson at (435)797-0424 or vivian@ext.usu.edu.

The GSAM is also available on the Software Technology Support Center’s web site at www.stsc.hill.af.mil,
and will be included in a future release of the Defense Acquisition Deskbook. No hard copies will be available.

GSAM

U
P
D
A
T
E

September 2000 www.stsc.hill.af.mil 13

To take advantage of the fast pace of
technological advances in industry, the
Department of Defense (DoD) is acquir-
ing commercial products and compo-
nents, called CANDI, for use in military
systems. CANDI provides the DoD with
numerous potential benefits.

Primarily, commercial purchases allow
military acquisition to incorporate new
technology into military systems more
quickly than typical developmental pro-
grams. CANDI also can reduce research
and development costs. Even more impor-
tantly, the DoD has looked to commercial
purchases to help reduce operations and
support costs for military systems. Figure
1 shows why the DoD finds this highly
desirable; the cost of operations and sup-
port is almost three-quarters the overall
cost of a typical system. What could be
the worst misfortune to befall software
procured as CANDI—that the software
changed and the original version was no
longer available commercially? What if the
commercial replacement would no longer
work in the military system for which it
was procured? The absolute worst misfor-

tune that incorporates both of these prob-
lems is if the software were to suddenly
become government-unique—no replace-
ment was available commercially.
Becoming government-unique would not
entirely defeat the purpose of a commer-
cial software acquisition, but it would sig-
nificantly affect support, the longest tail
and as shown in Figure 1, the greatest cost
in the acquisition life cycle. This misfor-
tune could never affect our commercial
procurement, or could it? When you have
finished this article, you will realize that
not only can it affect your commercial
procurement—if you are acquiring soft-
ware, it probably already has. In any com-
mercial acquisition, the acquirer needs to
plan for this eventuality. This article will
show you how to prepare for and give you
ideas on how to constrain this problem.

An item is “government-unique”
when the government is the only source of
the item—this is the conceptual opposite
of a commercial item. In terms of logisti-
cal support, an item is a discrete unit that
can be individually acquired for the logis-
tical support of a system. Software, in this

definition, is an item while a system is the
higher-level mission component the item
is procured to support. For example, an
aircraft and its support equipment are a
system; a radio installed in the aircraft is
an item, and the software that integrates
the radio into the aircraft is an item.
Whenever a manufacturer discontinues or
makes a change to a commercial item, the
item can become government unique.
When the manufacturer changes the item,
if the government does not acquire the
variant or does not reflect the change in
the systems incorporating the item and the
systems’ documentation, the original
becomes government unique. After a man-
ufacturer makes a change to an item, the
government might be able to purchase and
use the new variant without any negative
effect to the system. In this case, although
the original item is now government
unique, the change did not affect the
form, fit, interface, or mission characteris-
tics of the device. Unfortunately, manufac-
turers’ changes routinely affect form, fit,
interface, and mission characteristics, and
the effects of these commercial item
changes for systems incorporating them
are significant. The problems of changing
form, fit, and interface should be obvious;
if the variant item is to be installed and
operate correctly, these characteristics can-
not change. To accommodate form, fit,
and interface changes, the acquirer must
make modifications to the system. Modi-
fications are costly and usually result in the
original item becoming obsolete. Changes
to mission characteristics do not necessari-
ly result in system modifications, but if
they affect the overall ability of the system
to perform, they can cause significant
problems. For example, if the new soft-
ware version incorporates undocumented
features or unnecessary compatibility, the
entire system’s security could be at risk.

Although software configuration
changes can cause havoc in any program,
the most devastating cause of government

Supporting Commercial Software

Commercial and Nondevelopmental Items (CANDI) has become a byword for acquisition reform, but there are significant
risks associated using CANDI products in military systems. These risks are especially acute for software. This paper explains
how CANDI can negatively affect military acquisitions and gives ideas on how to plan and resolve CANDI-caused problems.

Lt. Col. Lionel D. Alford
United States Air Force

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Years

Pe
rc

en
t

72%

20%8%
0 I II III

Life Cycle Cost

Research &
Development

Production

Operation & Support

System Acquisition

Figure 1. Typical Cost Distribution1

CCOOTTSS

14 CROSSTALK The Journal of Defense Software Engineering September 2000

uniqueness occurs when a manufacturer
discontinues an item. Figure 2 shows that
this is inevitable for a large number of
commercial acquisitions. The life of a typ-
ical military acquisition exceeds 20 years,
yet the life of a typical civil product, espe-
cially in electronics is much less. This
example is for hardware, but the critical
integration of most of our modern hard-
ware systems is via software. Not only
does the software have to change to
accommodate changing items, but as
hardware improves software must contin-
ue to increase in capability. Through expe-
rience with computer hardware, we know
an “ancient” Z80-based computer is
almost impossible to purchase, but now
the IBM 1750 chipset, a 5 MHz Z80 gen-
eration processor, lives on in the Air
Force’s AP-102 computer. The critical dif-
ference with software is that although the
IBM 1750 still powers the AP-102, the
software that interfaces and operates the
AP-102 has changed almost yearly since
the first fielding of the AP-102.

The above concepts provide the
definitive framework under which com-
mercial software must be understood:
without notice, the manufacturer is free
to make changes to or discontinue the
manufacture of the commercial item and
its supporting software. As long as the
manufacturer’s item changes do not affect
form, fit, interface, or mission character-

istics the acquirer has no problem. The
problem is that the acquirer has no con-
trol over these changes, and when
changes do affect form, fit, interface, or
mission characteristics, these changes
become a significant problem for any
commercial acquisition. This is especially
true for aviation CANDI.

The effects of a manufacturer’s
changes to aviation CANDI can be boiled
down to two specific difficulties—airwor-
thiness and forced modifications.
Airworthiness is the primary safety charac-
teristic of any aircraft. It is the primary
element proven in the testing of the air-
craft. The FAA certifies the airworthiness
of commercial items for aircraft, and these
items must be certified in the system as
well as individually. In addition, certifica-
tion is an inherent governmental responsi-
bility that cannot be delegated to a con-
tractor [1]. Because of this, military sys-
tem certification, except for FAA-certified
aircraft, is accomplished wholly by the air-
craft’s configuration management (CM)
authority. In the Air Force this authority is
the Single Manager (SM). What this
means for CANDI software is that a sim-
ple change of mission characteristics,
including improved functionality, will
always drive a recertification of the air-
craft. This recertification can range from a
paper review to full flight test. The rate of
change in commercial items can be signifi-

cant. This is especially true for aviation
CANDI. Considering the rate of change
of commercial items, frequent recertifica-
tion is a daunting prospect for the CM
authority. In addition, commercial item
changes also can drive changes to the spec-
ifications and technical data of any system
on which these items are installed, a
daunting prospect.

Forced modifications are the other
difficulty for aviation CANDI that also
affects any system. A forced modification
is a system’s modification caused by the
change of form, fit, interface, function, or
mission characteristic of the item. When a
change affects a mission characteristic, the
acquirer must support the discontinued
item or find a replacement. The later may
force a modification. More common in
aviation CANDI is a FAA-directed
change to an item called an airworthiness
directive (AD) [2]. Airworthiness direc-
tives are Federal Aviation Regulation-
based orders that mandate a change to an
aviation item or system. These directives
are regulatory in nature and “no person
may operate a product to which an air-
worthiness directive applies except in
accordance with the requirements of that
airworthiness directive [2].” The manu-
facturer has two choices in implementing
the AD: discontinue the product or make
the required change. The user of the item
also has two choices: find a replacement
product, if available, or make the changes
required by the directive. When the
change affects the form, fit, or interface of
the item, an AD forces a modification to
the system to accommodate the item. For
FAA-certified aircraft, the FAA must also
certify the system for flight. For govern-
ment-certified aircraft, the CM authority
must modify the system and certify air-
worthiness in order to comply with an
AD. However, the government is under
no obligation to change its commercial
items to accommodate an AD. If the gov-
ernment does not change a commercial
item to comply with an AD, the item
becomes government unique. Because the
government self-certifies, commonly, non-
FAA certified government aircraft do not
make AD directed changes. Further,
because in many cases the government
does not subscribe to technical changes
from manufacturers, the CM authority
may not be aware of ADs to a system’s

Time

N
um

be
rs

 o
f U

ni
ts

Military Requirement

Commercial Requirement

Introduction Growth Maturity Saturation Obsolescence

Beginning of
Military Use

Peaking
Military Use

Dropping
Supply

No Part
Source

Figure 2. COTS Obsolescence2

September 2000 www.stsc.hill.af.mil 15

components or software. This problem is exacerbated when the
SM has established a depot for a commercial acquisition and is,
in that case, supporting the component without knowledge of,
or real commonality with, the original item. ADs are not an iso-
lated or uncommon problem. Typically on well-established
airvehicles, ADs normally occur more than once per year, and
thousands of ADs may affect a single aircraft model.

All this boils down to the fact that, for aviation, a commer-
cial item will become government unique in a very short period
of time—from a few months to a year following the acquisition
of the item. Government uniqueness means forced review, modi-
fication, support changes, and recertification when the change is
recognized, or blissful ignorance and risk if the change is not
recognized.

Change to aviation CANDI is not the only certification
problem that confronts the SM or Designated Approval
Authority (DAA). Communication and intelligence C2 software
and hardware systems require their own item and system certifi-
cations. The terms “networthiness” and “infoworthiness” are
beginning to come into their own. These terms refer to the
security of hardware and software systems connecting commu-
nication and intelligence infrastructures. Any changes to an
item or software requires recertification of the system for securi-
ty. For communication and intelligence C2 software and hard-
ware systems this is the DAA’s responsibility. In all other cases,
the CM authority must certify the security of the software.

Commercial Support Strategies

What can be done to prevent these problems for software
systems specifically and all systems generally? One solution has
been hinted at, and this solution has been accomplished with
varying degrees of success since the first acquisition of commer-
cial items.

Organic Support
This approach is the acknowledgment of an item’s potential

government uniqueness before the manufacturer makes any
changes. In this strategy, the acquirer purchases spares and builds
a government depot activity to support the item. This solution
does take advantage of the original commercial item develop-
ment, but the overall cost savings may not be significant because
the longest tail—the support tail, is at least as long as any normal
government item development. In fact, the support tail may be
costlier because the government has not been involved in the
item development. Many programs use this strategy; the C-130
improved auxiliary power unit program is one example.

Lifetime Spares
Another similar solution is to purchase enough spares for the

total life of the system and item. The AP-102 computer program
used this strategy to ensure sufficient IBM 1750 chipsets to sup-
port the life of the system. Again, this is not an optimum solu-
tion because it usually increases the item’s logistics tail. In this
case, if the item’s life expectancy is less than predicted or the
item’s life is extended, the government has no other recourse than
to entirely replace the item or to develop a support capability.
Further, although lifetime buys might seem to freeze software

changes, as the example of the AP-102 computer shows this is
rarely the case.

These two solutions, government organic support and life-
time spares buy, prevent forced modifications and subsequent air-
worthiness certification requirements, but as discussed above,
they also can introduce risk. They also defeat two major potential
advantages of CANDI—the ability to reduce the support tail and
the ability to take advantage of future commercial developments
in the item.

There are four other solutions that take full advantage of the
possibilities of commercial acquisition, but they are each fraught
with their own risk. Each of these four solutions is a variant of
what is commonly known as Contractor Logistics Support
(CLS). In this context CLS does not refer to basic maintenance
support but rather to data and software support of modifications
to support changes to commercial items.

Purchase Technical Information
In the first alternative, the acquirer can purchase the manu-

facturer’s servicing information support. This allows the CM
authority to make decisions based on changes to the item. If the
CM authority knows of a manufacturer’s changes to an item,
they can choose to acquire a replacement or modify the system as
required to allow continued use of the variant item. The SM has
three options:

• First, when an item changes, if it is decided to replace the
item, the SM must acquire and certify the new item.

• Second, if the item is retained with changes, the SM must
certify and possibly modify the system.

• Third, if it is decided to not make any changes to the item,
the SM must set up government-unique support.
The advantages of retention or replacement (Options 1 and

2) are the continued commercial logistics tail and guaranteed
item certification. The SM must still recertify the system. If the
item is retained in its original configuration (Option 3), the deci-
sion to support a now government-unique item leads to a typical
high-cost government logistics tail. To my knowledge, this pick
and choose method of systems support has not been used inten-
tionally; however, after a manufacturer has made unexpected
changes to a commercial component, many programs have found
themselves in this situation.

Purchase Manufacturer Support
The second CLS alternative is that the acquirer can purchase

manufacturer support for the item. The risks are similar to pur-
chasing servicing information support; however, the manufactur-
er has potentially greater incentive to keep the item within form,
fit, and interface configuration for the system. When changes in
the system are required to support changes in the item, the man-
ufacturer can aid the CM authority. This is a common method
used to support CANDI.

Purchase Manufacturer Modification Support
In the third alternative, the acquirer can purchase the full-inte-

grated support of the manufacturer. This allows the manufacturer
to make changes to the system along with changes to the item. The
contractor may have some Total System Performance Responsibility
(TSPR), but the CM authority must still recertify the system. The

SSuuppppoorrttiinngg CCoommmmeerrcciiaall SSooffttwwaarree

16 CROSSTALK The Journal of Defense Software Engineering September 2000

AC-130U is using this method to manage CANDI in its new
Integrated Weapon System Support Program. This is the most suc-
cessful method used today to support commercial items and sys-
tems through CLS; however, it requires a continuing commitment
to the manufacturer and to support funding.

Purchase Full Manufacturer Support
Fourth, the acquirer can purchase full system support that

would allow an integrator to automatically make the necessary
changes to the system to accommodate any item changes. In
this scenario, the contractor would have TSPR and a govern-
ment agency other than the military (the FAA, for example)
would certify the weapon system. This option is used now pri-
mary to support FAA-certified government aircraft. It could
potentially be used to support any government aircraft or sys-
tem incorporating commercial items. A problem with this
method of support is that FAA certification of aviation systems
may not fulfill military requirements. In addition, the DAA or
SM must still certify system security.

Conclusion

The message should be plain. Commercial acquisitions lead
the acquirer down two support paths: the government unique
high-cost logistics trail and the commercial manufacturer support
trail. Both involve risk and guarantee future costs for any system
incorporating commercial items. The potential of commercial
acquisitions is embodied in a lower cost development, initial
acquisition, and support costs, but that potential must be bal-
anced with the knowledge that commercial acquisitions will force
modifications and recertifications or lead to a typical government
unique logistics tail.

CANDI software is a viable method of military acquisition,
but it is not a simple solution. It requires careful planning and
forethought that must be incorporated into any program con-
templating a commercial acquisition.�

References
1. Office of Federal Procurement Policy. (Sept 92). OMB Policy

Letter 92-1, Inherently Governmental Functions. OFPP
Pamphlet No. 6 (Revised), Fourth Edition, December 1992.
Washington, DC: Government Printing Office.

2. Federal Aviation Administration. (Feb 1996). Part 39—
Airworthiness Directives, Federal Aviation Regulations.
Washington, DC: Government Printing Office.

Notes
1. Source for figure is Defense Systems Management College.

(December 1997). T5-610 Acquisition Logistics and Systems
Engineering, Technical Perspective: Logistics Management.

2. Source for figure is Obsolescence Crisis. Joint Stars: Joint
Surveillance Target Attack Radar Briefing.

About the Author
LLtt CCooll LLiioonneell DD.. AAllffoorrdd,, JJrr.. is the Aeronautical Test
Policy Manager for Air Force Materiel Command,
Wright-Patterson Air Force Base, Ohio. He is an
Air Force experimental test pilot with over 3,600
hours in more than 40 different kinds of aircraft
and is a member of the Society of Experimental

Test Pilots. He has served as the Chief, Special Operations Forces
Test and Evaluation Division at Wright-Patterson, Chief, Testing
Commercial Aircraft for Military Acquisition Office at Edwards Air
Force Base, Calif., holds an Airline Transport Pilot license, and was
the chief test pilot for a number of Air Force acquisitions. He is a
graduate of Defense Systems Management College Advanced
Program Management Course. He has a master’s degree in mechani-
cal engineering from Boston University and a bachelor’s degree in
chemistry from Pacific Lutheran University.

Lt. Col. Lionel D.Alford Jr.,
USAF, HQ AFMC/DOP
Bldg. 262, Room S143, 4375 Chidlaw Road
Wright-Patterson AFB, Ohio 45433-5006
Voice: 937-257-8496
Fax: 937-656-1246
E-mail: Pilotlion@aol.com,

Lionel.alford@wpafb.af.mil

CCOOTTSS

See www.safetydata.com for an example of Airworthiness Directives.

The USAF Software Technology Support Center
(STSC) announces the Thirteenth Annual Software
Technology Conference (STC 2001) to be held April 29
— May 4 2001 at the Salt Palace Convention Center in
Salt Lake City, Utah.

The theme for STC 2001 is 2001 Software Odyssey:

Controlling Cost, Schedule, and Quality. STC is co-spon-
sored by the Departments of the Air Force, Army, and
Navy, the Defense Information Systems Agency, and
Utah State University Extension. With more than 100
presentation tracks in areas such as software devel-
opment, data management, e-commerce, CMM,
CMMI, and XML, it is the premiere software techno-
logy conference in the Department of Defense.

The conference draws an average of 3,000 partici-
pants annually from the military services, government
agencies, defense contractors, industry, and academia.

The accompanying trade show provides an oppor-
tunity for 180 exhibiting organizations to demonstrate

cutting-edge technology, proven solutions, and partic-
ipate in the exhibitor track presentations.

The official Call for Speakers and Exhibitors was
mailed to prospective speakers and exhibitors on July
26. Submittal of abstracts began August 1 and will
continue through September 15 with speakers being
notified of their acceptance beginning November 15.
Exhibitor registration opened August 1. Booth space is
available on a first-come, first-served basis in 10’ x 10’
increments, with early registration discounts available
to those who register on or before February 15, 2001.
Housing reservations may be made online using the
Passkey system. Complete conference and trade show
information, including abstract submittal and housing
information, is available at www.stc-online.org�

September 2000 www.stsc.hill.af.mil 17

Planned and scheduled software testing—whether unit testing,
integration testing, conformance testing, etc.—is a basic element of
risk reduction in software acquisition. When software testing is
viewed as unsuccessful, it often turns out that fundamental sup-
porting concepts have not been fulfilled. Contributing factors to
unsuccessful testing include:
1. Mistaken concepts of software testing definitions, objectives, or

applications
2. Disagreements with customers or users regarding methodology,

standards, or interpretation of results
3. Budget reductions or insufficient budget to support the

required testing effort
4. Conflicts between testing schedule and product acquisition

schedule. Too often the product acquisition schedule wins this
conflict.
More and more agencies are discovering the need for carefully

inspecting functional requirements and formal testing products for
conformance to these requirements.

In the following scenario, we meet Pete Anthony, a PM
assigned to acquiring a COTS or GOTS Financial Accounting
Package. Some problems have arisen, and it has been recommended
that he consult with Tom Edward, a contractor Testing Expert
(TE) who had completed other software testing for the group. The
scenario begins with the arrival of the TE at the PM’s office.

Introduction to the Problem
PM: Good morning, Tom. Thanks for coming by.
TE: Glad to be here, Pete. What can I do for you?
PM: You know that my Personnel Management System acquisi-

tion went well, so I was tasked with acquiring a Financial
Accounting Package. That did not go so well.

TE: What do you mean?
PM: Initially, I talked with prospective users of the package and

formed a Product Selection Team (PST) to develop the selec-
tion requirement, selection process, and selection schedule.
We interviewed users and managers, reviewed literature from
various vendors, and wrote our selection requirements. Based
on these requirements, the product literature, and user com-
ments we invited five vendors to give demonstrations. The
demos indicated that several of the products met our selec-
tion requirements. One product appeared to be outstanding
in terms of functionality and cost.
Linda, one of the PST members, had recommended that we
include an in-house testing process to reduce our risk of
wrongly selecting a product. We followed her recommenda-
tion and included testing in the selection process and sched-
ule. After the demos, another member raised a serious ques-
tion. Everything we had done so far had taken a little longer
than planned. Would we be able to have the new system
running by the planned operational date? To put our prob-
lem another way, which was the greater risk, failing to meet
the delivery schedule or selecting an inadequate product?

This started us thinking about the testing process again. We
discussed it at some length, and finally concluded that the
cost/benefit ratio did not justify testing. The vendors’ litera-
ture and the demos showed that the remaining candidates
would meet our needs, so there was no significant risk.

TE: Uh-oh.
PM: Exactly. That was a mistake. What we thought was a small

risk, was not.
I directed the Contracting Officer to finalize the contract
with the selected vendor, and the vendor arranged for instal-
lation. I notified the potential users of the installation, train-
ing, and data migration schedule, and told them that the
COTS Financial Accounting Package would be operational
in 60 days.
The vendor came in to install the software. After five days
without success, the vendor pointed out that the contract
called for payment of $150 per person per day to complete
the installation. I was upset and demanded to know what
was wrong. After all, the demo was perfect! The vendor rep-
resentative explained that the demo was performed on a dif-
ferent hardware and operating system environment. The
product was not really ready to operate on our LAN, which
has servers running Linux and clients running Windows NT.

Reducing Risk with Software Testing
TE: What did you do?
PM: I had to cut my losses. I directed the Contracting Officer to

cancel the contract, notified the team and my supervisors of
the cancellation and the reasons for it. My supervisors were
pleased that I had stopped the process before any more dam-
age was done, and asked me to pick up the pieces and restart.
The first thing I did was call Linda, who recommended test-
ing in the first place to ask for advice. We discussed how test-
ing should have caught the problems and that neither of us
knew enough about testing to do it right. She suggested I call
you to see what pointers you could give me.

TE: Sounds like what we need to talk about is conformance test-
ing against your requirements.

PM: I am not sure that I know exactly what you mean by confor-
mance testing. Could you be more specific?

TE: Conformance testing is simply formal testing of a product
against a set of conditions to which it must conform. For
example, my organization tests compilers for programming
languages, display software for Computer Graphics Meta-file
(CGM), and other products. The conformance requirements
are provided by international standards, and our testing is
highly formalized, using extensive suites of tests that have
been validated by experts in the various fields.

PM: Why would anyone need that level of formality? Is it not
enough that the supplier implemented ISO standard C++ in
his compiler or that his CGM interpreter is widely used in
industry? If more assurance is required, can we just verify
that the compiler processes our own programs correctly, or

Evaluating COTS/GOTS Software: Functional Test Criteria

As government agencies move toward commercial off-the-shelf (COTS) and goverment off-the-shelf (GOTS) software, they
realize that vendor descriptions don't always give sufficient information about the products' capabilities. Program Managers
(PMs) need to consider not only functionality of software for satisfying user needs, but also compatibility and performance in
the program's environment. Unfortunately, PMs responsible for acquiring software, although quite good at developing screen-
ing requirements, are often not experienced in writing testable requirements. This paper is addressed to people in that position.

Dr. William H. Dashiell
DoD National Imagery and Mapping Agency

Phil Brashear
EDS Conformance Testing Center

18 CROSSTALK The Journal of Defense Software Engineering September 2000

that the CGM interpreter properly displays the pictures that
we care about?

TE: In this information age, we have come to depend on software
to create, process, transmit and store critical information. Our
missions live and die on the correctness and reliability of such
software. Just consider the rapid growth of electronic com-
merce in both the government and commercial worlds. For
instance, the Department of Defense (DoD) has hundreds of
sites all over the world that are processing contract data. They
rely on the correct behavior of the software to keep that data
correct, secure, and synchronized. Airframe manufacturers
depend on CGM interpreters to display design diagrams in
hard copy and on screens; if those diagrams are not correctly
rendered, costly errors can result. Weapons systems depend on
software for targeting, for vehicle control, and for stores man-
agement. If a compiler does not translate the programmer’s
intent correctly, warfighter and civilian lives can be threatened.

PM: OK, I can understand the importance for high-risk situa-
tions, but is conformance testing really needed for my
Financial Accounting Package? When I buy a television set, I
do not subject it to all sorts of tests.

TE: That is because first of all, you know that if it does not work
correctly, you can get satisfaction from your warranty. You
might miss a football game or episode of JAG, but no long-
term damage is done. However, can you afford the loss or
corruption of your Financial Accounting Package data? Can
you afford the down time when payroll checks are due? If
the information is important enough to be managed, then it
is too important to risk. The consequences of nonconfor-
mance for your Financial Accounting Package may not be
life-threatening, but the inconvenience could be pretty
severe. You apparently have already experienced the problem
when you could not install the selected software package.

PM: That is true. I agree that conformance testing is what I need.
We already have our selection requirements, so all we need
to do is develop tests.

Reducing Risk—Defining Test Requirements
TE: What are some of your requirements?
PM: Here are a few examples: One of our data requirements is

that the product must provide a flexible and common track-
ing numbering system. Under security requirements, it must
support multiple levels of administrative access to the data.
Finally, one of our interface requirements is that the product
must be able to export data in a format readable by a spread-
sheet program. What do you think?

TE: To be polite about it, I think they need work.
PM: Why? Aren’t they sufficient to separate sheep from goats?
TE: Exactly, but I could not build a test for any of them. They are

screening requirements, not testable requirements. They are at
a pretty high level of abstraction. The granularity of your
requirements is too large to allow me to detect the differences
we need to detect if we are to see the risks for each choice we
may take. You will need to develop testable requirements
based on your screening requirements.

PM: Screening requirements, testable requirements. What is the
difference?

TE: Screening requirements help to identify software that offers
functionality similar to what you need; that is, separate the
sheep from the goats. You have that. What you need now is
assurance that this functionality performs as advertised and
that your needs are really met. That requires more detail. I
would expect each screening requirement to lead to several
testable requirements, each addressing a specific facet of the
screening requirement.

Look at these one at a time. Your first requirement calls for a
“flexible and common” numbering system. The first thing
that I notice is ambiguity. Do you mean that the numbering
system must be common to multiple features, or that the
product must allow the use of a numbering system that is
commonly used in your organization’s tracking? If the latter
is what you want, then what are the candidates? How can we
define flexibility? What kind of flexibility do you need, and
to what degree? Finally, what kinds of entities need to be
numbered? The test team has to know exactly what you
want in order to produce satisfactory tests.

PM: I think I see what you want. We need to specify this require-
ment more carefully. I could start with something like this:
The product must provide a system of numbering data
items that allows association of expenses and revenues with
projects, bids and proposals, training efforts, and other
activities. The numbering system must be multilevel and
must be consistent across all uses; for example, the first por-
tion of the identifier might be used to identify the category
(service project, bid/proposal, training, etc.) while the sec-
ond might be used to distinguish expenses and revenues.
The product must allow the agency to define the number
of levels and the meaning and format of each.

TE: That is a good start. I still cannot write tests based on this
requirement, but you have removed a good deal of the ambi-
guity. Let’s use your second requirement to illustrate what is
still needed.

PM: That is the security requirement. We want multiple levels of
data access.

TE: Yes, but how many levels do you want? How do you want
the access levels to be determined? The problem is that the
requirement is at a high level of abstraction. The granularity
is too large to allow us to detect the differences that indicate
the risks for each choice we may take.

PM: What do we need to do to this requirement?
TE: We need to apply an iterative process, breaking it down into

more specific requirements, then breaking each of those
down again, repeating until we reach individually testable
requirements. The first breakdown might include:

• Distinguishing among no access, read-only access, and write
access.

• Determination of access rights by user ID and password.
• Determining access rights by project, determining by expense

items vs. revenue items, or by forecast vs. actual.
• Giving the system security manager the ability to change

access rights by individuals or groups of users.
PM: It is a matter of specificity vs. generality?
TE: Correct. Eventually, we must have requirements such as,

“The product shall permit the system security manager to
change a user’s level of access to the revenue data for an
existing project, from any level to any level, while the user is
viewing such data.”

PM: Is that possible for most database applications?
TE: I am not proposing this as an actual requirement, but giving

it as an example of a testable requirement. You have to
decide whether it is a requirement.

PM: There is clearly a lot of work to do; what about the interface
requirement?

TE: That is not really a conformance requirement, but more of
an interoperability requirement. You might require that the
product is able to export selected data in a particular format;
you cannot require that another product, such as a spread-
sheet program, accept that format. The way your require-
ment is stated, you are trying to do both.

CCOOTTSS

September 2000 www.stsc.hill.af.mil 19

Interoperability Testing vs. Conformance Testing
PM: Isn’t interoperability testing part of conformance testing?
TE: It can be, depending on how you view the system. If you are

merely interested in the functional requirements of the
Financial Accounting Package, the answer is no.
Interoperability testing focuses on the interfaces among dif-
ferent products, so the functionality of other products comes
into play. If you view a collection of products as a complete
system, and your functional requirements are stated for the
entire system, the components’ interoperability is part of
conformance testing. Otherwise, I think of interoperability
testing as a separate activity.

PM: Is any part of the interface requirement related to confor-
mance testing?

TE: I think so. For example, most spreadsheet programs have the
capability of reading textual tables of data where the column
entries are separated by commas or by tabs. You can require
that your package is able to output comma-delimited text
files representing tables of data (although you would need to
state it with more specificity). We could develop a confor-
mance test for such a requirement. It is the spreadsheet pro-
gram’s ability to accept the comma-delimited format that we
cannot handle as a conformance issue.

PM: I think I see where to go with the interoperability issue. Now
let’s focus on conformance testing of the single product. You
have implied that it might need to be pretty extensive. How
do I find the time and money?

Risk of Not Testing
TE: The question is whether you can risk skipping conformance

testing. You are looking at a major investment in this
Financial Accounting Package. You have seen the conse-
quences of trying to save money and time up front at the
risk of spending more money and more time later on. Never
mind the other consequences of corrupted or lost data. It is
like a design-and-build activity; investment of resources early
in the process mitigates against risks later, when costs and
consequences are more significant. I strongly recommend
including requirements development and testing in your
budget and schedule.

PM: It is clear to me that this conformance testing is beyond my
level of expertise. Where do I go to get help?

Software Test Team
TE: That depends on your organization. There might be a suit-

able testing group within your agency. On the other hand,
you might want to bring in a non-government group. You
should expect better results if the test team has no interest in
the outcome. You want a test team that has no legal or
financial ties to the prospective suppliers or to your acquisi-
tion effort. You are trying to reduce risk, and that means you
want the most objective viewpoint possible.

PM: What services should I expect from a testing group?
TE: First, it should work with you to derive functional require-

ments from your screening requirements. At each stage of
this iterative process, it should work to ensure that its under-
standing of the requirements is the same as yours.
Second, it should decompose the functional requirements
into individual test cases, with pass/fail criteria for each case.
Third, it should perform the actual testing, using the deploy-
ment system or an exact replica of it. Fourth, it should pro-
duce the required deliverable products

PM: Your first expectation relieves my mind. I was worrying
about this process of deriving testable requirements, but you
are saying that is one of the test team’s jobs, working with

us. That is the source of expertise that I am missing.
TE: Yes, this is the point where cooperation is the most impor-

tant. The test team has the expertise to derive testable
requirements, but only your organization can say, “Yes, that
is what we really want.”

PM: What are the deliverable products that I should ask for?

Software Testing Deliverables
TE: First and foremost, a complete test plan. This document

would probably be delivered several times, and would even-
tually include the original requirements, the functional
requirements with traceability to the screening requirements,
the test cases, procedures for executing the test cases, and a
complete schedule for the testing effort.
Second, a test log should be provided documenting the steps
as actually performed. Each individual tester should keep a
complete diary of his or her testing activities. The test log
should be constructed by integrating these individual testing
diaries. The test report should have an executive summary
providing enough information to allow informed decision
making.

PM: Have we covered everything? Is there anything else I need to
consider?

TE: There is one thing you should be prepared to face. It is quite
possible that none of the candidate products will pass every
test case. You should consider some prioritization or some
plan for providing missing functionality if no product has
absolutely everything that you need. That is a knotty prob-
lem, and its solution is not exactly in the center of my area
of expertise.

PM: Tom, I appreciate your advice, and I think I have no choice
but to accept it. If we decide to look to an outside organiza-
tion for testing services, I will certainly include your compa-
ny on the list. Thanks again for coming by.

TE: Thanks, Pete. See you later.

Summary
Why do I need conformance testing? In the world of elec-

tronic commerce, we are totally reliant upon software to create,
process, transmit, and store critical information. We must be able
to trust this software to correctly and reliably provide the required
functionality.

Why are my preliminary screening requirements unsatisfac-
tory? Screening requirements help to identify software that offers
functionality similar to what is required, but we need assurance that
the offered functionality performs as designed or as advertised to sat-
isfy our needs. Screening requirements are given at a high level of
abstraction, such as “The product shall be Y2K compliant.” Testable
requirements are derived from screening requirements, often with a
testing team’s help, and address specific items (e.g. “The product
must accept Feb. 29, 2000 as a valid date and must reject with a
warning message Feb. 29, 1900.”)

Is interoperability testing part of conformance testing?
Whereas conformance testing attempts to determine whether a prod-
uct meets its functional requirements, interoperability testing focuses
on the interfaces among different products. If a collection of prod-
ucts is viewed as a complete system, and functional requirements are
stated for the entire system, interoperability of the components is
part of conformance testing. Otherwise, we view interoperability
testing as a separate, related, activity.

How do I find the time and money for conformance test-
ing? In the case of a major investment of COTS software, you
must consider the consequences of not doing conformance testing.

EEvvaalluuaattiinngg CCOOTTSS//GGOOTTSS SSooffttwwaarree:: FFuunnccttiioonnaall TTeesstt CCrriitteerriiaa

20 CROSSTALK The Journal of Defense Software Engineering September 2000

If your agency discovers that an already purchased product does not
meet the agency’s needs, money and time have been wasted. Recovery
from this situation is likely to cost far more money and take far more
time than would have been consumed by testing. Requirements devel-
opment and testing must be planned as part of the acquisition cycle.

How do I acquire conformance testing services? That depends
on your organization. The conformance testing team should be a third
party, not associated with the acquisition group or the vendor.
Conformance testing could be performed by a team outside the organi-
zation or from a separate division of the acquiring agency. It is impor-
tant that the testing team have no financial, legal, or other dependence
upon the acquisition team.

What services should I expect from my testing organization? It
should help derive functional requirements from the screening require-
ments, ensure that its understanding of these requirements is the same
as that of the acquisition team, decompose functional requirements into
individual test cases, identify pass-fail criteria for each test case, perform
the testing, and produce the required deliverable products.

What deliverable products should I expect from testing? The test
team should provide a complete test plan, including requirements, test
cases, test products, and schedule; a test log documenting the steps per-
formed; a test report showing the individual pass/fail reports; and an exec-
utive summary sufficient for the acquisition team to make a decison.�

William H. Dashiell is a computer scientist at the DoD
National Imagery and Mapping Agency. He has worked
on the development of software testing by statistical meth-
ods using bionomial models, coverage designs, mutation
testing, and usage models. He has contributed to the
development of conformance and testing protocols for

federal, national, and international information technology standards. He
has a bachelor’s degree in business administration and in education, a
master’s degree in education technology, and a doctorate in mathematics
education from the University of Maryland. He also has a master’s degree
in computer science from Hood College in Maryland.

William H. Dashiell, Ph.D.
U.S. Government; NIMA
Voice: 703-874-8219
Fax: 703-874-8841
Adwd@netkconnect.net

Phil Brashear is a senior systems engineer at EDS in
Dayton, Ohio, where he leads the EDS Conformance
Testing Center and Performance Software Quality
Assurance on various DoD projects. He directed compiler
testing efforts and test suite maintenance at CTA Inc.
from 1989-97. He performed compiler validations and

directed test suite enhancements at SofTech Inc. from 1986-89. Prior to
that, he was a member of the mathematics and computer science facul-
ties at Eastern Kentucky University. He has a bachelor’s degree in mathe-
matics education from the University of Kentucky, a master’s degree in
mathematics from Northwestern University, and completed course work
and exams for a doctorate in mathematics at the University of Georgia.

EDS Conformance Testing Center
P.O. Box 24593
Dayton, Ohio 45424-0593
Voice: 937-237-4510
Fax: 937-237-4660
Internet: www.eds-conform.com

About the Authors

CCOOTTSS

September 18-19
The Internet Challenge—The Utility Response to a .Com

World www.tdworld.com/marketing/interchall.htm

September 26-28
2nd Computer Security & Information Assurance Conference

www.certconf.org

October 15-19
Object Oriented Programming Systems Languages

and Applications Conference (OOPSLA 2000)
www.acm.org/events

October 23-25
Symposium on Operating Systems Design and Implementation

www.usenix.org/events/osdi2000

October 30-31
3rd International Conference on Practical Aspects

of Knowledge Management (PAKM 2000)
www.do.isst.fhg.de/workflow/events/index_e.html

November 10
Infomation Outlook 2000 (Australian Computer Society)

www.acs.org.au/act/events/io2000/index.html

November 16-17
ACM Conference on Universal Usability

www.acm.org/sigchi/cuu

December 4-7
International Conference on Power System Technology

www.ee.uwa.edu.au/~aips/powercon

December 11-13
Global Development Network Conference

www.gdnet.org

January 18-19
Measurement Science Conference

www.msc-conf.com/findex.html#cfp2001.html

January 25-27
21st Annual National CSIE Conference

www.ryerson.ca/~csie/2001/engindex.html

January 30-February 2
CIEC 2001 Odyssey: Industry & Education Engineering

www.asee.org/conferences/html/ciec2001.htm

February 7-9
Network and Distributed System Security Symposium

www.isoc.org/ndss01/call-for-papers.html

April 29-May 3
Software
Technology
Conference

www.stc-online.org

Coming Events

September 2000 www.stsc.hill.af.mil 21

The purpose of this paper is to share
experiences the AWACS development
team encountered during the integration
of COTS technology into the legacy E-3
weapon system. Sharing these lessons with
similar programs may be helpful in avoid-
ing some of the problems the AWACS
team experienced.

The mission computing upgrade pro-
gram was initially conceived in the Fall of
1995 as a result of the System Program
Office's and Air Combat Command's
desire to fix critical maintainability short-
falls and at the same time, get three critical
operational capabilities aboard AWACS.
These capabilities were required to
enhance operational situational awareness,
and include a more accurate tracker (fus-
ing radar and IFF data), improved symbol
definition, and more detailed (and useful)
map displays.

Due to the high operations tempo
and funding constraints, the acquisition
approach used in the mission computing
modernization effort injects technology in
two fundamental steps, U.S. Step 1 and
U.S. Step 2. Step 1 injects fundamental
open systems technology, migrating the
mission computing system from a vendor
unique or closed legacy system to an open
architecture and provides a path for future
migration and growth. Step 2 completes
the modernization effort. An open system
implies that the system interfaces are pub-
lic domain, so the selection and integra-
tion of components should be analogous
to the concept of plug-and-play. Open sys-
tems provide cost savings by allowing a
number of vendors to compete for the var-
ious hardware and software components in
the broader commercial market. The
AWACS architecture will no longer be tied
to a specific vendor selling unique compo-
nents built to proprietary or closed inter-
face standards. By opening the architec-
ture, future upgrades and new mission
capabilities may be integrated with mini-

mal integration and testing requirements.
The computer modernization devel-

opment program was a joint effort among
the AWACS System Program Office,
Hanscom AFB; Air Combat Command/
552 ACW and Air Logistics Center, Okla.;
MITRE Corp., Lockheed-Martin Federal
Systems, Boeing Space and Defense
Systems, and GEC-Marconi Hazeltine.
Many COTS vendors also participated.

In 1999, after approximately three
years of development, the U.S. Step 1 pro-
duction program was cancelled in favor of
a larger, more comprehensive upgrade pro-
gram. This program would continue devel-
oping the same technologies and COTS
strategies as Step 1 while expanding the
overall effort. There are many useful les-
sons learned during development and test-
ing of the U.S. Step 1 program that can be
applied to future modernization programs
within the defense community.

COTS Considerations
With the introduction of COTS into

the E-3, several aspects of traditional mili-
tary weapon system design were modified
or eliminated. Key areas include physical
and environmental characteristics of the
various COTS hardware components.

COTS hardware used in the U.S.
Step 1 architecture is not specifically
designed to operate in an airborne envi-
ronment. In order to take full advantage
of COTS, the design team needed to
determine if certain components could be
used. For example, the temperature range
specified in the original AWACS system
specification required that all electronics
operate within the operating range of -
55°C to +85°C (-67°F to +185°F). After
flying the E-3 more than 20 years, Air
Combat Command determined that such
a wide operating temperature range was
not necessary in most cases.

The requirement was modified to
specify use in the 0°C to +50°C range

(typical for most COTS electronics) and
included changes to some existing opera-
tional procedures. This modification to
environmental requirements provided the
opportunity for use of an increased num-
ber of hardware components from various
vendors. COTS hardware used in the U.S.
Step 1 architecture includes single board
computer cards, graphics accelerator cards,
power supplies, cabinets, VERSA Module
Eurocard (VME) enclosures, network
interface cards, network switches, fiber
optic cables, SCSI disk drives, 1553 I/O
cards, and solid state memory devices. In
addition, several COTS software compo-
nents are used, including a real-time
UNIX compliant operating system, map
generation software, compilers, graphical
user interface generators (X-Windows, for
example), debuggers, and network inter-
face software drivers. In addition to the
many COTS components, some custom
hardware and software was required to
interface the U.S. Step 1 architecture to
the remaining legacy system.

Legacy Software
In terms of life-cycle costs, software

upgrades and maintenance are the most
expensive component of the overall mis-
sion computing architecture. The current
mission software consists of a single com-
puter program called the Airborne
Operational Computer Program
(AOCP), which consists of approximately
370,000 lines of code written in Jovial
and assembly language. The AOCP is
responsible for all functions, including
basic operating system services, timing
and scheduling, and all applications,
including weapons control, surveillance,
display control, communications, internal
simulation and system maintenance.
Since the AOCP is based on a complex
cyclic executive, any changes or upgrades
made to the AOCP requires exhaustive
functional and temporal testing to ensure

Implementing COTS Open Systems Technology on AWACS
By Lt. Col. Michael K. J. Milligan

U.S. Air Force

The U.S. Airborne Warning and Control System (AWACS) E-3 weapons system required a modernization program for its aging
mission computing system. Due to the significant technological and cost advantages of using commercially available hardware
and software, a distributed, object-oriented, open systems, commercial off-the-shelf (COTS) approach was taken. This article pres-
ents lessons learned from the development and preproduction of the U.S. AWACS Step 1 Mission Computing Upgrade Program.

Field Report

FFiieelldd RReeppoorrtt

22 CROSSTALK The Journal of Defense Software Engineering September 2000

new functions operate correctly—logical-
ly and within specific timing constraints.

Mission Computing Hardware
The U.S. Step 1 Mission Computing

Hardware Architecture is shown in Figure
1. The shaded areas indicate those compo-
nents being added or modified. As illus-
trated, there will be a mix of new and lega-
cy hardware. The new architecture is
designed as a client-server network, dis-
tributing functions among a number of
processing nodes. Each node consists of a
processor, Local Area Network (LAN)
Interface Cards (NIC), and other special-
ized cards. All are based on the industry
standard VME bus design. The processor
family of choice is PowerPC due to its per-
formance, support of real-time operating
systems, and large market share for
embedded real-time applications. The
LAN protocol chosen is switched Fibre
Channel, based on bandwidth and real-
time support requirements.

One of the key differences between
the legacy system and the new U.S. Step 1
design is the use of a client/server architec-
ture. Client/server is a relationship between
processes running on separate machines
(processors). The server process is a provi-
der of services, while the client is a con-
sumer of services. In essence, client/ server
provides a clean separation of functions
based on the idea of service [1]. The over-
all goal of this new architecture is to ensure
the ability to provide inexpensive, timely
upgrades and/or modifications to any
hardware or software component without
directly affecting the overall architecture.

U.S. Step 1 Software
Due to the many limitations and

costs associated with development, main-
tenance, and testing legacy software, a
modern software design consisting of a
three-layered, object-oriented architecture
was chosen for the U.S Step 1 Program.
This new architecture is designed to allow
migration of new software applications to
a completely object-oriented design. The
Distributed Software Infrastructure (DSI)
is designed to isolate the application soft-
ware from the operating system and allow
encapsulation of all applications. This
eliminates any application program
dependencies (data or timing) on the
operating system or specific hardware,

and allows software to be developed and
tested independently. This middleware is
built according to open industry stan-
dards, ensuring that all present and future
applications will communicate directly
without any special, unique code
changes. These open interface standards
are called Application Programming
Interfaces (APIs) and are based on the
Object Database Management Group's
(ODMG)'s Common Object Request
Broker Architecture (CORBA) standards.
By adhering to the ODMG's defined
APIs, code developers can ensure their
applications will interface correctly in any
CORBA compliant environment.

The architecture supports this
approach by being implemented as a col-
lection of objects, and providing a frame-
work in which objects can be shared
among the distributed components of the
AWACS computer system. For example,
the display system application interacts
with the tracker application by invoking
well-defined methods on the tracker's
interface. This hides the details of the
complex tracking subsystem to the rest of
the system. Most importantly, these inter-
faces are defined by an Interface
Definition Language (IDL) that gets pre-
compiled, enforcing the interface defini-
tion and allowing large amounts of auto-
matic code generation. By communicat-
ing via these well-defined interfaces, all
dependencies of the display on the track-
er (and vice versa) are eliminated [2].

Figure 2 illustrates the software archi-
tecture. It is divided into three distinct
layers: a real-time UNIX POSIX compli-

ant commercial operating system,1 soft-
ware middleware (the DSI—information
manager, encapsulated scheduler, and real-
time database), and encapsulated applica-
tions layer. This design isolates all applica-
tions from the underlying operating sys-
tem and any hardware dependencies,
thereby ensuring platform independence
for all applications. The DSI performs
three vital functions:

1. It acts as communication pipeline,
transferring objects between various
component applications and database.

2. It schedules processes according to
a priori priorities and pre-empts any
lower priority processes if necessary.

3. It provides a real-time database.
A modified AOCP, with reduced

functionality) continues to execute on
the CC-2E (IBM 370) computer.

This software architecture is based on
the philosophy of incorporating real-time
design attributes into the architecture at all
levels. The attributes of a real-time system
may be characterized by the predictable
response times; priority-based scheduling,
and pre-emptive control. These three “P's”
of real-time design allow the developer a
great deal of control and flexibility, critical
in designing today's complex real-time sys-
tems. Predictable response times under all
load conditions ensure that applications
respond to external events in a predictable
fashion, regardless of what other tasks the
system is handling. It requires consistent
and prompt priority-based scheduling of
time-critical tasks and low system overhead
[3]. Pre-emptive control ensures deadlines
are met by allowing lower priority process-

TADIL A/C

Sensors/Communications

CC-2E (IBM 370)

Bubble
Memory

Monolithic
Memory

.

.

.
 LAN
 (Fibre Channel)

STCP
(New Tracker)

I/O

Radar

IFF
Navigation

Etc

Workstation
 Electronics

(PowerPC)AOCP
(mission program)

CAU

RDMX
(DMX Emulator,

SCSI

SDC #1

A
3

SDC #3

SDC #4

SDC #5

SDC #14

Disk
Drives

DDI #1

DDI #2

MSC

Memory Bus

HSC

Printer
MSC

SDC #2

.

.

.

15534

Memory Bus

Sensors/Communications

PowerPC)

(PowerPC)

W/S

W/S

W/S

W/S

W/S

A
3

A
3

A
3

A
3

A
3

Figure 1. U.S. Step 1 Hardware Architecture (Functional Diagram)

September 2000 www.stsc.hill.af.mil 23

es or threads to be pre-empted by high pri-
ority ones. The operating system, includ-
ing the kernel, must also be able to be pre-
empted. All three "Ps" are a function of
the underlying operating system chosen to
support the real-time applications [4].

Lessons Learned
There were many technical and

programmatic lessons learned that can
be derived from the U.S. Step 1 develop-
ment program.

User buy-in to use of COTS is crucial.

While recognizing the implementa-
tion of COTS-based systems as an enabler
to modernization, AWACS operational
users are extremely cautious of COTS in
their day-to-day operations because the
hardware was not designed to harsh envi-
ronments. To ensure program success, it
was critical to have their full support of
the program and participation on a regular
basis to ensure operational requirements
were understood and met. There were
many opportunities during program devel-
opment for the users to partner with the
developers to devise a solution, and their
commitment to a COTS-based solution
was critical. Educating the user and sup-
port community also was important. Since
the operational user is not normally in the
business of developing technology, there
were many opportunities for misunder-
standing, especially in the area of acquisi-
tion reform. This bold DoD initiative
blends COTS-based solutions with
streamlined management to produce supe-
rior products within tight fiscal and sched-
ule constraints. Since the user and support
depot were not necessarily current on this
acquisition philosophy, conflicts often
arose over development practices and per-
ceived shortcuts. Some caution is also
advised in the requirements area, since
heavy user involvement at all stages of the
program provides the opportunity for
some requirements growth. This can lead
to attempts to specialize the COTS away
from the pure COTS baseline. Critical
requirements must be solid.

Establish a baseline with COTS.

Since the COTS market is fast mov-
ing and ever changing, it was difficult to
establish baseline architecture with COTS
components if the program development
schedule was longer than 18 months.2

New products are introduced every six to
18 months, and often components chosen
for the AWACS upgrades were phased out
or no longer supported. As a result, it is
critical to team with COTS vendors to
ensure that the components chosen will
last as least as long as the program's devel-
opment and preproduction phases. This
problem was especially apparent in the
software area, where frequent new releases
aimed at solving a select set of problems
often produced new ones. Also, there was
minimal documentation available from
one software release to the next, so appli-
cation developers had little insight into
changes until anomalies were discovered.

Transitioning contractors is not simple.

Teaming with contractors with vast
AWACS experience is vital to the success
of any E-3 upgrade program. They have
made a long-term commitment of build-
ing a specialized team of engineers, soft-
ware specialists, and managers to support
the unique requirements of a custom hard-
ware and software system based on propri-
etary designs and technologies. However,
object-oriented design techniques and
implementation of COTS-based technolo-
gy demands a change in design philoso-
phy, subject matter expertise, and in many
cases management structure. It was diffi-
cult for some contractors to effectively
change and adapt in a timely manner. This
was especially apparent in the software
development area, where object-oriented
software engineering techniques were not
always well understood or implemented.
This was primarily due to the nonavail-
ability of modern software engineering and
management skills within the company.
Some contractors found it very difficult to
hire new software engineers who possessed

the necessary skills, due to the general
market shortage of software professionals.
The net effect was that software develop-
ment and integration took longer than
anticipated, which in turn severely impact-
ed the overall development schedule.

Be on the leading edge, but not the leader.

More often than not, modern weapon
system development is associated with
leading edge technology. In the COTS-ori-
ented world, while it is desirable to take
advantage of the latest products, it is often
painful to be one of the first users of a par-
ticular technology. You become the de facto
beta tester of a product. Oftentimes, even
if you are not the first user, you may
become the first to stress the product's
capabilities, sometimes discovering subtle
deficiencies. This translates to additional
time and money to troubleshoot and inte-
grate. It is best to use COTS products that
have some level of demonstrated maturity.

Carefully investigate tool availability.

The U.S. Step 1 program is based
around the use of three programming lan-
guages: C, C++, and Ada. While imple-
menting these languages for different parts
of the design is not a problem, availability
of advanced development tools was a chal-
lenge. For instance, since C and C++ are
widely used, there are numerous software
tools readily available to the software devel-
oper. However, while Ada was widely
adopted by primarily government contrac-
tors over the past 15 years, other commer-
cial developers did not embrace the use of
Ada. As a result, development of advanced
software tools for Ada lagged behind its C
and C++ counterparts. During the devel-
opment of the U.S. Step 1 program, there
was only one vendor that offered a devel-
opment suite (compiler, debugger, etc.) for

Figure 2. U.S. Step 1 Software Architecture

COTS Real-Time POSIX Operating System (e.g.LynxOS)
COTS Hardware

Encapsulated
Scheduler

(ES)

Developed Software

Distributed
Software

Infrastructure (DSI)

Information
Manager

(IM)

Real
Time

Database

Component
1

Component
2

Component
3

Component
4

IImmpplleemmeennttiinngg CCOOTTSS OOppeenn SSyysstteemmss TTeecchhnnoollooggyy oonn AAWWAACCSS

24 CROSSTALK The Journal of Defense Software Engineering September 2000

Ada 95. When problems, or suspected
problems, occurred with the development
suite, there were no alternative software
tools to use. This was especially frustrating
when the team was in the process of opti-
mizing the software. There were no other
compilers against which the efficiency of
compilation could be compared.

Interfaces are not guaranteed compatible.

One of the primary advantages of
using COTS is the adherence of industry
standard interfaces. However, often a large
integration effort is required—in some
cases, larger than would typically be the
case for custom solutions. The develop-
ment team found that the compatibility of
vendors' products depended heavily upon
their implementation. For example, a
Single Board Computer (SBC) drives the
workstation displays with graphics support
via a dedicated graphics accelerator.
During the selection process, several ven-
dors offered both products, but the team's
assessment showed that the best perform-
ing SBC and best performing graphics
card were offered by different manufactur-
ers. The team did not see this as a problem
since their electrical and mechanical inter-
faces were dictated and followed by indus-
try standards. However, when assembled
together in their intended configuration,
the combination SBC-graphics card did
not work. The compatibility problems
were eventually resolved, but it involved
intense and diligent efforts over a six-week
period by a large team of engineers. Each
vendor's implementation of the industry
standards was slightly different, causing
the unintentional conflicts.

Consider a COTS subsystem approach.

Choosing multiple vendors to supply
common parts is good for competition.
However, any advantage can quickly be
erased by increased costs due to additional
integration and debugging efforts. By
choosing a solution based on a developed
and tested product subsystem (for exam-
ple, the SBC-graphics accelerator pair), the
majority of the risk of integrating the sub-
system is assumed by the vendor. In choos-
ing this path, the AWACS team would
likely save significant schedule and cost.

Model subsystems to understand systems.

Early in the design process, decisions
must be made regarding the capabilities
and performance of various components

(i.e., computational efficiency, LAN band-
width, etc.). Although product decisions
are usually made after a system design is
complete, our experience shows that a sys-
tem model in early stages of development
would have had a significant benefit in
product selection, system architecture, and
overall cost and schedule. Unfortunately,
with most new COTS products, function-
al models (including performance infor-
mation) do not exist. In addition, since the
development team does not have insight
into the internal architecture of the various
COTS components, it is very difficult for
them to develop their own models for
such components. This modeling is critical
to prove out the design. It is worth the
additional time required upfront to either
work with the vendors to help develop
models or their components, or take the
additional time required to measure the
COTS product's performance in critical
areas and characterize it.

Thorough market research is important.

Adaptation to the COTS world
means market research is required—some-
times extensively. One of the problems
with leading-edge COTS products is the
lack of good, objective benchmark data. It
often is inadequate or does not exist. This
makes the selection process much more
difficult. It would be wise to develop a set
of benchmark programs that exercise all
critical attributes of the desired system,
and independently run those on products
under consideration. Only then can one
vendor's product be fairly judged against
another. During development of the U.S.
Step 1 program, this type of assessment
would have likely led to the choice of
alternate components.

An example involves the choice of
Fibre Channel as the LAN for the U.S.
Step 1 network architecture. When the
decision was made, it appeared that Fibre
Channel was making serious inroads into
the LAN market, and would fit the per-
formance requirements dictated by the
U.S. Step 1 architecture. Unfortunately, a
key requirement—the need to operate in
Class 1 Mode (dedicated data transfer
path)3—was available through only one
vendor, which decided to exit the Fibre
Channel market in the middle of the U.S.
Step 1 development effort. More extensive
research, coupled with asking the right

questions, may have averted some prob-
lems experienced on the AWACS program.

Choose vendor as carefully as technology.

All COTS vendors are not alike, and
their commitment to the program and
their defense contractor partners vary. For
example, some vendors excel at providing
timely technical support, assist in trou-
bleshooting problems, and provide early
insight into new products. Others have a
take-it-or-leave-it approach. Based on
more than three years of working with
various vendors, the AWACS team devel-
oped a list of highly desirable qualities for
COTS vendors.

1. Choose vendors that have prior
military experience. Those with some
experience working with defense
contractors were more likely to
understand the unique customer
requirements. They also were more
likely to support the program for the
long haul, as this is typical of existing
defense programs.

2. Choose vendors that want to be on
the team. For high volume manufac-
turers, the AWACS business represents
a small portion of their market, so it
is often difficult to receive adequate
technical support on a timely basis.

3. Choose vendors that are committed
to the market. Experience showed
that some vendors would quickly
change their business strategy regard-
less of any existing customer commit
ments. It is best to try and select a
vendor who plans on staying in their
current market for the foreseeable
future (if they are willing to share
their corporate vision with you).

Partner with COTS vendors, meet regularly.

A formal face-to-face meeting on a reg-
ular basis with the contractors, vendors,
and government provides a great opportu-
nity to exchange ideas, concerns, and
future plans by the government and ven-
dor, etc. It gives all parties a comfortable
sense of their current and future role in the
program. It was during such meetings that
the Fibre Channel vendor discussed their
intent to exit the Fibre Channel switch
market. Similar sessions with the other
vendors allowed the government, prime
contractors, and vendors to express their
concerns on every issue ranging from man-
ufacturing capability and schedules to
future roadmaps for continued AWACS
modernization.

FFiieelldd RReeppoorrtt

September 2000 www.stsc.hill.af.mil 25

A careful approach to DMS is required.

The use of COTS provides many tech-
nological advantages, but it also introduces
new challenges. One of the most challeng-
ing tasks is that of logistical support of the
fielded system. For example, numerous
versions of COTS products may be identi-
fied with the same part number, but it is
likely that the exact configuration of parts
is not identical. One of the great advan-
tages of using COTS is that you do not
necessarily care about what is on the
inside, as long as the device performs satis-
factorily. Unfortunately, it has been deter-
mined from experience that this is not
always the case, especially with respect to
firmware. Since COTS technology
changes at a very rapid pace, a philosophy
must be developed that allows an afford-
able, flexible process with the potential to
grow as COTS technology progresses.

Proactively plan technology insertion.

Although not implemented, the pre-
liminary strategy planned for the AWACS
computer modernization is centered on
planned technology insertion. For exam-
ple, the installation of production kits into
operational aircraft was scheduled to take
between five and six years. As a result, it is
very likely that unless a lifetime buy of
production hardware and software was
made, different components would be
installed within the fleet of 32 aircraft.
Since a lifetime buy was not desirable
from either a technology or cost-effective-
ness point of view, the AWACS team
needed to devise a strategy to address this
issue. This strategy involved appointing a
single manager take charge of tracking
COTS, and making recommendations on
product choices. This is a multifaceted
project involving a number of specialized
areas: market research, hardware evalua-
tion, software evaluation, systems integra-
tion, etc. The manager would maintain a
laboratory and cadre of people dedicated
to tracking product changes and improve-
ments, assessing new technologies and
market trends. They would evaluate new
hardware and software or updated ver-
sion/releases in the system integration lab-
oratory to determine compatibility, qualifi-
cation testing, etc. Since COTS design
information is generally proprietary, ven-
dors are hesitant to provide detailed design
data for performance assessment or debug-
ging. Properly managing this effort

requires working closely with manufactur-
ers and vendors, and involves using
nondisclosure agreements and other legal
and managerial arrangements to ensure the
project manager was well informed of any
projected changes to the manufacturer's
product line. Final approval for introduc-
ing new products/technology would
involve the use of a configuration control
board process specifically designed to
address COTS integration.

Conclusion
The E-3 AWACS System Program

Office attempted to incorporate COTS
technology into a legacy weapon system. A
brief overview of the existing mission com-
puting system and upgrade program were
given, along with specific considerations
associated with COTS equipment on the
E-3. Several challenges arose during devel-
opment, including:
• Building user support for the COTS

approach.
• Establishing baseline architecture with

specific COTS components.
• Working with defense contractors

transitioning from proprietary
practices to the open systems approach.

• Availability of robust software
development environments.

• The advantages of using entire COTS
subsystems.

• Compatibility problems associated with
commercially accepted interfaces.

• The need for modeling COTS behavior.
• Rapidly changing market dynamics.
• Choosing the right vendors.

Although this upgrade program did
not lead to production, many valuable les-
sons were learned.�

Acknowledgements
I would like to thank Thad Russell, MEI

Technology; Elise Locker, Enterprise Systems
Incorporated; and Joseph Bradley, Enterprise
Systems Inc. for reviewing the original draft
of this paper and providing comments.

References
1. Orfali, Robert; Harkey, Dan; Edwards,

Jeri, Essential Client/Server Survival Guide,
John Wiley & Sons, New York, 1994.

2. DSI User’s Manual, Lockheed Martin
Federal Systems—Owego, N.Y., 1997.

3. Sohal, Vik and Bunnel, Mitch, A Real
OS for Real Time, Byte, vol. 21, no. 9,
September 1996, pp. 51-52.

4. Milligan, Michael K., U.S. Mission
Computing Modernization Program 1998.

Notes
1. POSIX is an industry standard that

defines the interface between program
code and the operating system. By
adhering to the POSIX standard, prog-
ram code is more portable—thereby
avoiding many dependencies on specific
operating systems or target hardware.

2. An additional constraint was the long
deployment cycle into the field, since
only about five aircraft (out of a fleet of
32) could be modified with U.S. Step 1
in any one year.

3. Fibre Channel defines three different
classes of service—1, 2, and 3. Class 1 is
a circuit switched connection in which
an end-to-end data patch must be estab-
lished before any data transfer can begin.
When two devices are using Class 1, that
path is dedicated to those devices and is
not available otherwise. As a result,
access (times) between those devices are
guaranteed without any unpredictable
interruptions. Class 2 and 3 are also
switched services, but without first estab-
lishing dedicated paths. In the Class 2
and 3 configurations, data may flow
between any two nodes, but the physical
path is unknown (and therefore transfer
times not predictable).

About the Author
Lt. Col. Michael K. J.
Milligan is an assistant pro-
fessor of electrical engineer-
ing at the U.S. Air Force
Academy, Col. He previ-
ously served as lead engi-

neer and program manager of the AWACS
U.S. Step 1 Computer Modernization
Program at Hanscom AFB, Mass. He holds
a doctorate degree from the University of
Texas at Austin, a master of science degree
in electrical engineering degree from the
University of Massachusetts-Lowell, and a
master’s degree of business administration
from Western New England College. He
also has a bachelor of science degree in elec-
trical engineering from Michigan State
University. His primary research interests
include high-performance computer archi-
tecture and real-time systems.

Lt. Col. Michael K.J. Milligan
Department of Electrical Engineering
USAFA/DFEE
2354 Fairchild Hall, Suite 2F6
U.S.Air Force Academy, Colo. 80840
Voice: 719-333-6766 DSN 333-6766
Fax: 719-333-3756, DSN 333-3756
E-mail: michael.milligan@usafa.af.mil

IImmpplleemmeennttiinngg CCOOTTSS OOppeenn SSyysstteemmss TTeecchhnnoollooggyy oonn AAWWAACCSS

Creating an Integrated CMM for Systems and Software Engineering
By Mike Phillips and Sandy Shrum

Software Engineering Institute

The Office of the Secretary of Defense (OSD) joined with the National Defense Industrial Association (NDIA) in 1997
to sponsor the creation of a Capability Maturity Model®-Integrated (CMMISM). It would bring together the best fea-
tures of the Software Capability Maturity Model (SW-CMM) Version 2.0 Draft C, the Systems Engineering Capability
Model (SECM) Electronic Industries Association Interim Standard 731 (EIA/IS 731), and the Integrated Product
Development Capability Maturity Model (IPD-CMM v0.98). This article describes the CMMI Product Suite that has
resulted and what it is designed to provide to the engineering community for enterprise-wide process improvement.

In 1997 the OSD joined with the
NDIA to initiate a project that would inte-
grate process improvement models that
would build on the success of the Software
Engineering Institute’s (SEI’s) Software
CMM. The Software CMM began as the
SEI’s answer to a challenge by the Air Force
to find a set of key questions about a com-
pany’s software processes that would guide
their selection of the most competent—or
mature—software developer. Over several
years, that set of questions grew to become
the now familiar SW-CMM v1.1.

The systems engineering community
had created two models for improvement:
the SE-CMM by Enterprise Process
Improvement Collaboration (EPIC) and
the Systems Engineering Capability
Assessment Model (SECAM) by the
International Council on Systems
Engineering (INCOSE). Those models
were later merged successfully to form
EIA/IS 731. The two CMMI sponsors
agreed that CMM integration would
enable the software and systems engineer-
ing communities to capitalize on the simi-
larities of their approaches to product
engineering process improvement. It also
would eliminate some of the differences
between the models that had increased the
effort—and expense—required to pursue
improvement with stovepipe models.

A steering group was formed in 1998.
The OSD provided representatives from
each of the military services and from the
FAA to represent the government. NDIA
provided four senior members to represent
industry and the SEI provided two man-
agers to round out the team.

Jack Ferguson of the SEI led the
Product Development Team (PDT) that
was populated with representatives from
government, industry, and the SEI. Initially
the PDT lacked commercial and interna-
tional industry participation, but that was

remedied later that year. An initial determi-
nation to exclude providers of CMM
assessments and training because of poten-
tial conflicts of interest remained until the
draft material was released for public review
in August 1999. Since then, participation
has been open to these providers.

The initial concept of the CMMI
project was that integrating the three
source models—SW-CMM v2.0 draft C,
EIA/IS-731, and IPD-CMM draft v0.98—
would involve little more than combining
the practices of the three into a single doc-
ument. That led to the expectation that the
project could be completed in six months.
Project members expected that some chal-
lenges would result from the differences in
scope and life cycle that the models repre-
sented and the different approaches to
model coverage. However, the team soon
found that true integration meant that they
had to deal with differences of terminology
and model construction as well. EIA/IS-
731, for example, contains a large number
of practices that define the systems engi-
neering environment for product develop-
ment. These practices are all considered
normative because they must be performed
by the engineering organization. The SW-
CMM, however, contains a mix of norma-
tive and informative elements, including
activities and illustrative information (e.g.,
subpractices).

Compromises were required in order
to integrate these two models. The CMMI-
SE/SW that was released for public review
reflects the efforts to find common ground.

Probably the project team’s most con-
troversial decision was to maintain two rep-
resentations of each model. Early efforts
moved toward a hybrid approach similar to
the FAA’s choice in the iCMM product.
However, the systems engineering and soft-
ware engineering communities, which had
lived with two very different architectures

for the two models, thought it best to
maintain a continuous approach from the
EIA/IS 731 heritage and the staged
approach familiar to SW-CMM users.

Challenges Ahead

Releasing the first version of the com-
bined model this summer does not end the
development effort. This release was inten-
ded to provide an initial operational capa-
bility (IOC) for organizations ready to
begin the evolution to a more broadly capa-
ble model for enterprise process. We will
seek feedback from early adopter organiza-
tions to gather the lessons learned from
using version 1.0 of the CMMI models, as
well as the return on investment experi-
enced from institutionalizing the more
robust practices that populate the com-
bined model.

Adapting the model to address the par-
ticular challenges of working in the inte-
grated product and process development
(IPPD) environment has led to a variant
(CMMI-SE/SW/IPPD) that better meets
the needs of organizations in that domain.
Initial work to add the acquisition disci-
pline into the model is under way as well.

While the IOC version of the CMMI
models will provide the needed markers for
beginning the transition from source mod-
els to the CMMI models, we know that the
model is still in its youth. Until Lead
Assessors have had an opportunity to wres-
tle with the assessment differences between
the source models and the CMMI models;
we anticipate differences in interpretation,
particularly on the more revised practices.
As a result, we advise government organiza-
tions seeking to use this latest model for
assessing the capabilities of potential suppli-
ers to advance carefully.

26 CROSSTALK The Journal of Defense Software Engineering September 2000

® CMM and The Capability Maturity Model are
registered in the U.S. Patent and Trademark Office
to Carnegie Mellon University.

Software Engineering Technology

September 2000 www.stsc.hill.af.mil 27

Experience also will instruct us as to
how to best address the always-contentious
area of “tailoring criteria.” The current text
adds new information to clarify tailoring as
an activity at the project level, working
with the organizational standard processes.
Historically, the challenge has been seen as
organizations wrestle with the applicability
of various process areas as they seek to
demonstrate a maturity level. We expect
organizations to give us feedback to get user
perspectives on the subject.

We think that the model is in excel-
lent condition for its intended role as a
tool to stimulate enterprise-wide process
improvement. Nevertheless, we recognize
that there remains a need to use such
process tools to benchmark organizational
capability or maturity. We expect that
refinements from actual use will need to
be made to the model, just as refinements
were made to the Software CMM when it
was introduced. Thus, our plans include a
v1.1 in about a year that will be designed
to capture needed improvements and rec-
ognize the need to evaluate as well as
assess—to benchmark for source selection
discrimination as well as plan the course
toward continuous improvement.

Another new challenge not initially
anticipated was to accommodate industry’s
interest in providing guidance through an
acceptable standards approach. That think-
ing was best represented by creating the
SECM as an Interim Standard, using the
stakeholder balloting process to meet the
requirements of the American National
Standards Institute. The recommendation
to merge the EIA/IS 731 material into
CMMI meant that we must consider offer-
ing the CMMI model and method as a
potential replacement standard.

That possibility drove the need to
develop a new appendix that contains
required and exacted practices of CMMI
models without the explanatory material
familiar to users of the SW-CMM. As
experience builds with CMMI-SE/SW
v1.0, we expect to introduce CMMI mate-
rials for consideration first as a national
standard and then possibly internationally.

Our Approach

While we have highlighted some key
outcomes in the history, in this section we
would like to give you a feel for the
processes—they were not always as “high

maturity” as we might have liked. Creating
the Product Development Team was a spe-
cific attempt to include diverse representa-
tives from government and industry with
the SEI. Organizations were asked to pro-
vide team members rich in experience with
the source models and their training and
appraisal methods. In many cases, the
members had authored portions of the
source models, and were seldom shrinking
violets about the strengths and weaknesses
of the sources and related reference models
and directives. One member noted that in a
given meeting, one could estimate the
number of opinions by counting the num-
ber of members in the room and adding at
least one. Decisions that favored one
model’s features over another always had to
be sought by building team consensus. This
led to creating the first version, v0.1, which
was released to a stakeholder/reviewer
group in late 1998. Difficulties were point-
ed out in the size and complexity of the
model, and the team sharpened its pencils
to better integrate the material. It was a
major step when the team, which had
focused on the CMM’s engineering por-
tion, determined that the expanded practice
areas inherited from the systems engineer-
ing discipline could represent a more com-
plete evolution of the significant portion of
product development represented by a sin-
gle Key Process Area in the SW-CMM,
Software Product Engineering.

The release of v0.2 for public review at
the end of August 1999 started another
round of improvement. By the close of the
review period in November, there were
about 2,500 change requests. In addition,
offerings of the draft Introduction to the
CMMI course training were coupled with
focus group sessions the following day.
Workshops in technology change manage-
ment and high maturity practices provided
similar change recommendations for con-
sideration. Each of the pilots designed to
exercise the model and the appraisal
method also provided opportunities for
feedback and improvement. The Editor
Team, led by Drs. Dennis Ahern and Mike
Konrad, determined which changes could
be accommodated in time to maintain a
summer delivery of the product suite, and
those that would not be pursued or would
be deferred for consideration.

The quality of thoughtful comments
made the choices difficult. In some cases

the need to maintain consistency between
continuous and staged representations
caused some constructions that appeared
confusing to the readers. We sought to
clean up these for v1.0, but we know there
will be room for improvement.

As v0.2 was beginning the review
process, the Undersecretary of Defense
(Acquisition, Technology, and Logistics)
signed a policy recognizing the value of
process maturity for the Department of
Defense’s developers of software intensive
systems. This led to the need to clarify that
the CMMI Product Suite was not devel-
oped for source selection. We thought that
even though the model represented a
broader look at engineering development
than with any of the earlier source models,
the CMMI Product Suite would need mat-
uration to assure comparability of appraisals
before it might reasonably be used by the
government for evaluative comparison.�

About the Authors
Mike Phillips is the SEI’s Director of Special
Projects, a position created to lead the
CMMI project for the SEI and the Steering
Group. He was previously responsible for
Transition Enabling activities at the SEI.
Prior to his retirement as a Colonel from the
Air Force, he managed the $36 billion devel-
opment program for the B-2 in the B-2 SPO
and commanded the 4950th Test Wing at
Wright-Patterson AFB, Ohio. In addition to
his bachelor’s degree in astronautical engi-
neering from the Air Force Academy, Phillips
has master’s degrees in nuclear engineering
from Georgia Tech, in systems management
from the University of Southern California,
and in international affairs from Salve Regina
College and the Naval War College.

Sandy Shrum is a member of the CMMI
product-development team and has been a
senior writer/editor at the SEI since 1995.
Before joining the SEI, she spent eight years
with Legent Corp., where she was a senior
information developer, a member of a soft-
ware-development team, and a member of
Legent’s Information Technology organiza-
tion. She has a master’s degree in professional
writing from Carnegie Mellon University and
a bachelor’s degree in business administration
and marketing from Gannon University.

Software Engineering Institute
Pittsburgh, Pa. 15213-3890
Voice: 412-268-5800
E-mail: customer-relations@sei.cmu.edu
Internet: www.sei.cmu.edu/cmm/cmms/
cmms.integration.html

CCrreeaattiinngg aann IInntteeggrraatteedd CCMMMM ffoorr SSyysstteemmss aanndd SSooffttwwaarree EEnnggiinneeeerriinngg

28 CROSSTALK The Journal of Defense Software Engineering September 2000

The Demarcation Zone: Surviving a CMM Assessment
By Deb Jacobs

Priority Technologies Inc.

A much ignored subject is the preparation for and conduct of CMM®-Based Appraisal for Internal Process
Improvement (CBA-IPI) for an organization, referred to in this article as a CMM assessment. That awareness was
emphasized while conducting a mini-assessment. There were many weaknesses identified for the organization, but
the underlying reason for these weaknesses and inaction to correct them rested directly on the Site Coordinator and
the team preparing for the assessment. This team is critical to the success of an assessment. These are the people that
are at the line of demarcation or on the front lines fighting to make the organization the best it can possibly be.

When an organization prepares for and conducts a SW-
CMM CBA IPI-type of assessment, there must be someone in
the driver’s seat. Each organization has definitions and roles
defined for its process improvement efforts, including a Site
Coordinator or lead process engineer. This is the person typical-
ly behind the steering wheel.

This role will be referred to as the Site Coordinator
throughout this article. Each organization’s terminology may
differ but the intent is the same. The Site Coordinator is
responsible for leading a team of organizational staff members
in preparing for an upcoming CMM assessment.

External vs. Internal Assessments
The rules under which a CMM assessment is conducted are

open to tailoring by each organization. Some choose to conduct
their assessment using a team composed of mostly internal
members of the organization, others prefer using members who
are outside of the organization. The Software Engineering
Institute’s (SEI’s) Technical Report concerning CBA-IPI [1]
states several alternatives to building an assessment team, “as
one team member is from the organization being assessed.”

There are advantages and disadvantages to using a method
where most of the team is external or most of the team is inter-
nal. The following figure lists some of the advantages achieved
from both methods. An organization must decide which of
these are important to its organizational goals.

It is critical that an organization weighs the pros and cons
of each approach. They will vary with each organization. The
key is to recognize the organization’s true culture.

Some argue that a strong assessment lead, Process Asset
Library, and organized evidence with a well-versed staff will alle-
viate many of these problems. That is true to a degree, Even
when following a model such as the SW-CMM an organization
can implement the various elements in a multitude of different
ways. There is only so much time to conduct an organization’s
assessment. There is not enough time for one or two people to
fully understand the organization in order to adequately advise
as to how to improve that organization’s processes. A good
process mentor who works with the organization closely build-
ing up to the assessment would help, but he or she must be
careful not to become so close to the organization that the men-
tor overlooks something.

There is a potential for a software capability evaluation
(SCE) for organizations working government contracts. In that
case, an organization would rely on an external team of assessors
to ensure preparedness for a potential SCE.

Most of this author’s experience is based on using an exter-
nal team; this article is written with that premise in mind.

What a Site Coordinator Does
The Site Coordinator is responsible for leading a team of

organizational staff members in preparing for an upcoming
CMM assessment. This team is typically called the SEPG. For
one organization, it was called the Process Group since responsi-
bilities included more than software and engineering. It includ-
ed all of the processes by which the organization operated or at
least a tailored version of the overall organization’s processes.
The Site Coordinator, along with one or more other team mem-
bers, normally participates as a member of the assessment team.

The Process Group is the team responsible for all aspects of
the assessment, from helping the organization prepare for the
assessment to working with the assessment team to ensure that
it understands how the organization operates based on the SW-

Advantages of INTERNAL Team
• Lessons learned from the experience are invaluable
• Able to fully understand what needs to be done to correct

problems encountered
• Less costly than bringing in external members
• Less coordination required to bring the team together
• Decreased preparation time for assessment since members

familiar with the organization and the process
• More trained staff members in assessing the organization

Advantages of EXTERNAL Team
• No preconceived notions concerning the organization and

normally, few or no preconceived notions concerning
implementation of the model

• Complete independence from organization - no vested
interest or threat of negative consequences based on results
of the assessment

• Ability to better prepare the organization for outside
assessment by the customer (e.g. SCEs)

• For a service organization, provides more credibility to
findings in many customer’s view

• Can provide the organization with several best practice
perspectives based on their various areas of their expertise

• Many times internal members are too close to the prob-
lems to see them where an external team would much
more likely be able to readily spot problems

September 2000 www.stsc.hill.af.mil 29

CMM. The Site Coordinator and designated team members
prepare the engineers and managers for interviews, as well as the
reams of evidence to verify an organization’s CMM-related capa-
bilities in addition to other logistical tasks needed for conduct-
ing the assessment.

The Site Coordinator and designated team members will
explain, define, and at times defend the organization to the
assessment team. This is especially true when evidence or
processes are not apparent or well understood. In an ideal
world, this would not be necessary but experience tells us that
the world is not ideal.

The SEI for CMM assessments specifically defines a Site
Coordinator’s role. The SEI’s Technical Report concerning
CBA-IPI describes it as:

“The individual responsible for handling the logistics of the assess-
ment. The site coordinator is responsible for developing the schedule,
notifying the assessment participants of the schedule, making sure
that adequate rooms have been reserved for both the pre-onsite and
onsite periods, making and distributing copies of the schedules, mak-
ing sure that all necessary supplies and equipment are available when
needed, scheduling contingency interviews, requesting additional doc-
umentation, and ensuring that meals are taken care of. The site coor-
dinator needs to be a member of the assessment team [1].”

This description is accurate for most organizations, but
many times the role entails much more that this addresses.
According to Ken Dymond in The Assessment Coordinator’s
Handbook, “The Site Coordinator is the person whose efforts
are invisible if the assessment goes well and the person blamed if
even the smallest planning item, in all the closely scheduled
moments of the on-site period, is wrong. Success is transparent,
but failure stands out [2].” This is so true. There is so much
information to prepare but even the most minute of details can
get you in trouble.

Collecting artifacts, also known as evidence, is a daunting
task. Many times an organization takes it too lightly. An organi-
zation may be fully prepared and in line with all aspects of the
SW-CMM Level it is targeting but it must be able to demon-
strate that to others—an assessment team. Demonstrating it to
others is the tricky part.

Importance of the Site Coordinator’s Role
There are numerous key roles in attaining process maturity.

These include, but are not limited to senior management, spon-
sors, middle management, assessment team lead, process
improvement mentors, and the Site Coordinator.

In preparing for and during the assessment, especially when
most of the team members are external, the Site Coordinator
and designated process group team members can make or break
an assessment. It is extremely difficult for four to 10 people
unfamiliar with an organization to come in and assess where
they stand. The Site Coordinator is key to helping them under-
stand how an organization fits into the SW-CMM framework.
They must be able to explain to an assessment team how an
organization is compliant with a method that is open to many
different interpretations due to its very nature.

The SW-CMM was written to provide a guide for an
organization, not to tell them how to do it. It describes the

characteristics of successful software processes; hence, the varied
ways of implementing the SW-CMM are infinite. Guiding the
assessment team in understanding the organization’s way of
doing business is critical. Some assumptions the team makes
without that guidance may not be accurate, due to a lack of
understanding the organization’s culture.

Makeup of a Successful Site Coordinator
Mark Paulk, of the SEI, listed several proverbs in his article

Software Process Proverbs, including “Competence: The compe-
tence of the people who do the work is crucial to project per-
formance and organizational success [3].” We have all heard the
saying “one bad apple spoils the batch.” That works the other
way as well. One good apple can bring more to an organization
than a dozen without the proper attributes and skills.

A critical task an organization will face when attempting
process improvement is selecting the right person as the Site
Coordinator. It is not easy to find people with the attributes nec-
essary to be a successful Site Coordinator. This is not intended to
discredit the tried and tested CBA IPI assessment approach,
which is valuable. However, this author has seen how an unpre-
pared, unorganized organization can fail with even the most expe-
rienced assessment team trying to help the organization improve.

It takes a special attitude to be a successful Site
Coordinator, so organizations must be cognizant of whom they
select. Conversely, the person must be sure that he or she is up
to the challenge, since it will mean many long, sleepless nights
and weekends. The frustration level will be so great at times that
they will want to throw their hands in the air and leave. All of
that frustration is worth it, but the Site Coordinator must
understand what he or she is “volunteering” to do.

There are many attributes that make for a good Site
Coordinator, but what is good for one organization and assess-
ment team may not be for another. The following table lists the
most critical attributes necessary for a successful Site
Coordinator, but there may be many more depending upon an
organization’s unique circumstances. These attributes also can
encompass an entire team rather than one person.

Makeup of a Successful Site Coordinator
• Confident without huge ego.
• Proactive and willing to take reasonable chances when

necessary.
• Organized/ability to organize without over-organizing (avoid

bureaucracy).
• Visible, respected member of the organization.
• Easygoing but not so much that things do not get done.
• Ability to communicate at all levels, from managers

to practitioners.
• Ability to interpret explanations made by both management

and practitioners (assessment team to interviewee(s) and
interviewee(s) to assessment team).

• Nonargumentative.
• Detail oriented.
• Good listener, open to others’ opinions.
• Strong without being overbearing.
• Willing to bend when necessary, knowing when it is necessary.

TThhee DDeemmaarrccaattiioonn ZZoonnee:: SSuurrvviivviinngg aa CCMMMM AAsssseessssmmeenntt

30 CROSSTALK The Journal of Defense Software Engineering September 2000

• Totally committed to process improvement, the organization.
• Immense drive/motivation and ability to drive others.
• Ability to work in stressful situations.
• Able to withstand criticism from levels internal and external

to the organization.
• Ability to keep a proper perspective (does not get angry).
• Focused Adaptable—be able to roll with the punches.
• Never lose sight of goals.
• Creditability with senior management [1] and, even more

importantly, with practitioners.
• Ability to maintain confidentiality.
• Ability to lead and follow, depending on circumstances

(must recognize when each is appropriate).
• Ability to become an expert in many different areas not their
normal field of expertise—may have to be self-taught.

If an organization finds a person with many of these attrib-
utes, the rest will be learned along the way if an organization is
to be successful. This person must be committed, proactive,
open minded, and hardworking with the appropriate authority
to make things happen. It will be a wonderful, irreplaceable
learning experience.

Sharing Site Coordinator Responsibilities
It may be necessary to have more than one Site

Coordinator to share the responsibilities, depending on the
organization’s size and the assessment’s scope. It is absolutely
necessary that these individuals are compatible. They must work
cohesively. This was a glaring error this author discovered while
performing a mini-assessment of another organization. There
was so much dissention between the co-Site Coordinators as
well as the entire team preparing for the assessment that it was
amazing that they proceeded with the formal assessment.

Not surprising, the result was SW-CMM Level 1. Much of
this was due to the team preparing for the assessment, especially
the Site Coordinators. Even though they shared a common goal,
their methods of achieving it were diametrically opposed. It is
critical that the process engineering team is synergistic. It does
not matter who is right or wrong, only that the team communi-
cates openly and cordially with a common vision.

What a Site Coordinator Must Know
The Site Coordinator’s knowledge base grows increasingly

large as he or she prepares for an assessment. Since that person
will be in the line of fire, he or she must become expert or close
to expert, with as many elements as possible within the organi-
zation. There will normally be others to search out for specific
answers but the Site Coordinator must know whom else to seek
out when necessary.

The site coordinator must: know every piece of paper in
every file, know where the bodies are buried, know an organiza-
tion inside and out, know and fully understand SW-CMM and
as many interpretations of it as possible, be able to explain, and,
when necessary defend, evidence without being argumentative,
be able to explain and, when necessary, defend the organization’s
programs methods without being argumentative. Normally, the
Site Coordinator—along with the process team—is the one who
collects or leads the collection of evidence. This is not always

the case, so he must know all of the evidence and how it applies
to the SW-CMM. This will enable the Site Coordinator to
understand the organization’s method of meeting each practice
for the SW-CMM.

It is equally important to understand the SW-CMM and its
many interpretations, since by its very nature it is open for
interpretation. Many times an organization will have alternate
practices that meet the intent of a SW-CMM practice. The Site
Coordinator must understand these and how they fit. There will
be wording and terminology differences between SW-CMM,
the assessment team members, and the organization. Terms
must be clearly explained to the assessment team, including how
they relate to the SW-CMM—the Site Coordinator sometimes
needs to tie it together for the team.

The Assessment or the Organization:

What is Your Real Role?
As an assessment team member, the Site Coordinator and

any other internally designated assessment team members must
be able to objectively judge the organization as an outsider. This
can be difficult since there may be so much at stake for those
involved. With government contracts, a future or imminent
project may depend upon an assessment’s outcome.

Even when not the case, an organization invests a great deal
of money in process improvement and fully expect to see suc-
cessful results. Many times reputations and future opportunities
are based upon the outcome of a CMM Assessment. One Site
Coordinator said that his next promotion depended upon the
results of the CMM Assessment.

The Site Coordinator has an obligation to the organization.
It is essential to strike a balance between these two goals. The
Site Coordinator must be able to act objectively as an assess-
ment team member and as part of the organization at the same
time. What a challenge! There are many human aspects that you
must work out. It can be challenging, exhilarating, and painful
at the same time.

Bottom Line
It is easy to underestimate how difficult it is to attain a spe-

cific process maturity level, regardless of the methodology select-
ed. It is a daunting undertaking. As one who has been at the
demarcation zone, it may be the most challenging thing under-
taken in a person’s entire career.

If asked to be a Site Coordinator, ask yourself what it takes
to push your comfort level. Remember the satisfaction and
rewards gained are well worth any pain endured.�

References
1. Dunaway, Donna K., and Masters, Steve. Technical Report

CMU/SEI-96-TR-007 ESC-TR-96-007, CMMSM-Based
Appraisal for Internal Process Improvement (CBA-IPI):
Method Description, pp. 7-8, 14, 38.

2. Dymond, Kenneth M., Assessment Coordinator’s Handbook:
Planning for a Well-Orchestrated Software Appraisal, Process
Transition International Inc., 1997.

3. Paulk, Mark C., Software Process Proverbs, CROSSTALK,
January 1997.

SSooffttwwaarree EEnnggiinneeeerriinngg TTeecchhnnoollooggyy

About the Author
Deb Jacobs leads the Project Engineering
Management Group at Priority Technologies.
She has 26 years of experience working in the
Information Technology industry. She began
her career in the Air Force as a technician
working with computers on B-52’s and KC-
135s. After completing her bachelor’s degree in
computer science she continued working with
the information technology industry in a broad
range of areas, including software engineering,
process engineering, and project management.
One of her most notable successes was leading
the team responsible for achievement a rare
CMM Level 3 rating in record time. Jacobs is
chairwoman for the CERT Conference
Committee; is newsletter editor/originator of
the Omaha SPIN Newsletter, SPINOUT; and
works with the SEI on the integrated
Capability Maturity Model.

Priority Technologies Inc.
1508 JF Kennedy Drive, Suite 101
Bellevue, Neb. 68005
Voice: 292-1212
Fax: 292-1215
E-mail: djacobs@prioritytech.com

Incredible Suckers
After wrestling for supreme control of the remote the other night, I sat down

for some nightly entertainment with my son Matthew. Jumping from channel to
channel we searched for a program we both liked. He tossed out “Behind the
Music” and I eliminated “The Wild Thornberrys.” He scoffed at “SportsCenter”
and I vetoed “Doug.” We both gagged on “Friends.” Finally we hit PBS as the host
of “Nature” introduced the program:

“A decade of discoveries has revealed the extraordinary possibility that the prime
intelligences in the ocean may not be the swimming mammals (whales and dolphins),
but instead a race of “incredible suckers, the cephalopods.”

A bag of pretzels, a drink, and suckers . . . count me in. Venturing into the
world of chambered nautilus, cuttlefish, octopus, and squid we had found a
common interest—gooey squishy things that think.

Halfway through the program and the bag of pretzels, a marine biologist intro-
duced the blue ring octopus, one of the smallest but most deadly of the cephalo-
pods. There was a ring of familiarity as he described the effects of the blue ring’s bite.

“The bite of the blue ring is not much of a bite at all. In most cases you don’t
even know you have been bitten. It is rare to find a puncture wound or the site of the
wound. It is almost like they force or inject toxin through the skin. However it admin-
isters the toxin, it is effective.

The symptoms of the bite of the blue ring octopus are incredibly consistent. First you
feel a kind of numbness around your mouth and lips. Then it becomes very difficult to
breathe, followed by a general paralysis of your body. Your knees wobble, you collapse,
and you lay on the ground with your eyes fixed and dilated, totally unresponsive to
everything around you. You cannot move a muscle. The weird thing, though, is that your
mind remains relatively clear. You can hear, understand, and remember what everyone
around you is saying. It probably does not help to hear things like, ‘that chap’s had it.’”

Having never encountered a blue ring octopus, I was curious as to why the
symptoms of the blue ring bite were so familiar. Unsuspecting bite, numbness
around the mouth, difficult to breathe, paralysis, eyes fixed and dilated, yet your
mind remains clear? Staff meeting!

That’s it, he’s describing the symptoms of a staff meeting—not just any staff
meeting but the dreaded Blue Ring Meeting (BRM). The BRM is a gathering with
no purpose, leadership, control nor participation. A rendezvous in which otiose
information, that could be sent in a quick e-mail message, is stretched over hours
of excruciating tedium. A parley for colleagues to out-feign each other's interest in
such tedium. It is an event in which you commonly sight lockjaw, doodling, drool-
ing, and the amazing vertical snooze.

They appear to be like any other meeting. You seldom feel the sting, but once
bitten it is over. Your mind is clear but you can not move a muscle. Thoughts run
rampant. You devise little games to maintain a sense of coherent understanding
but it is a losing battle. Try to take some action or cut the meeting short and the
BRM embraces you with its tentacles and sucks the life out of you.

If you survive the dreaded BRM, which most of us do, there is one terrible
side effect. You start holding your own Blue Ring Meetings. Even though you
despised the experience, the helplessness, and the pain you pass the experience of
the BRM on. It is a vicious cycle. It is a horror of all horrors. BRMs propagate
themselves.

How can we stop this malignant tryst? Many have tried, and there is a pletho-
ra of books, videos, and seminars on the subject. Maybe we should organize. Join
SWEABRM—Software Engineers Against Blue Ring Meetings. We could organize
a Million Engineer March. My advice, when your boss asks you how the meeting
went, answer: “Incredible Sucker.”

—Gary Petersen, Shim Enterprise Inc.

BACKTALK

Get Your Free Subscription
Fill out and send us this form.

OO-ALC/TISE
5851 F Ave., Bldg 849, Rm B-04

Hill AFB, UT 84056-5713
Attn: Heather Winward

Fax: 801-777-5633 DSN: 777-5633
Voice: 801-586-0095 DSN: 586-0095

Or use our online request form at
www.stsc.hill.af.mil

NAME:_________________________________

RANK/GRADE:_________________________

POSITION/TITLE:_______________________

ORGANIZATION

OR COMPANY:_________________________

ADDRESS:_____________________________

BASE/CITY:__________________________

STATE:______ ZIP:____________

VOICE: ______________________

FAX:__________________________

E-MAIL: ______________@________________

BACK ISSUE(S) REQUESTED

September 2000 www.stsc.hill.af.mil 31

CrossTalk / TISE
5851 F Ave.
Bldg. 849, Rm B04
Hill AFB, UT 84056-5713

PRSRT STD
U.S. POSTAGE PAID

Kansas City, MO
Permit 34

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

SecureSTSC Services
NOW

SecureSTSC Services
NOW

We’re only a MIPR away. . .
Offering capability assessments, workshops,

and hands-on consulting
Software Technology Support Center
OO-ALC/TISE • 7278 4th Street • Hill AFB, UT 84056
801-775-5555 • FAX 801-777-8069 • www.stc.hill.af.mil

	Cover
	Index
	From the Publisher
	Up Close With Microsoft's Paul Maritz
	An Activity Framework for COTS-Based Systems
	Supporting Commercial Software
	STC Call for Speakers
	Evaluating COTS/GOTS Software: Functional Test Criteria
	Coming Events
	Implementing COTS Open Systems Technology on AWACS
	Creating an Integrated CMM for Systems and Software Engineering
	The Demarcation Zone: Surviving a CMM Assessment
	BackTalk

