

2 CROSSTALK The Journal of Defense Software Engineering December 2000

Project Clarity Through Stakeholder Analysis
Meeting the needs and expectations of anyone with an interest in your project requires careful up-front analysis
and solid communications routes.

by Larry Smith

Software Project Planning, Statistics, and Earned Value
Using statistical representation of earned value goes beyond projecting cost and completion date to indicating
the management reserve required for acceptable risk.

by Walt Lipke and Mike Jennings

Leverage an Estimating Model to Climb the CMM Ladder
The language and framework of a software-estimating tool can progressively provide valid and useful comparisons
at all levels of process maturity.

by Arlene F. Minkiewicz

Assessing Software Risk
Thorough hazard evaluation can make it possible to develop software risk-management mechanisms to monitor
undesirable conditions and prevent problems.

by Louis A. Poulin

Is Ada Dead or Alive Within the Weapons System World?
These study results are published to help shed light on the long-term viability and staying power of Ada.

by Donald Reifer, Jeff Craver, Mike Ellis, and Dan Strickland

Reaching Level 3 Is Like Traveling a Wide Sea
Key actions from management and the software engineering process group make for smoother sailing to Level 3.

by Paul J. Kimmerly

CrossTalk Article Index 2000

4

10

15

Departments
3

28

31

From the Publisher

9 Quote Marks

18 Call for Articles

Coming Events

25 PM Web Sites

BackTalk

19

26

29

22
Open

Software Technology

Forum

Engineering

ManagementProject

LLtt.. CCooll.. GGlleennnn AA.. PPaallmmeerr

RReeuueell SS.. AAllddeerr

EElliizzaabbeetthh SSttaarrrreetttt

PPaamm BBoowweerrss

MMaatttthheeww WWeellkkeerr

HHeeaatthheerr WWiinnwwaarrdd

AAbbbbyy HHaallll

801-586-0095
801-777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
Crosstalk/crostalk.html
www.crsip.hill.af.mil

SSuubbssccrriippttiioonnss: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address. You may use the form on page 31.

Ogden ALC/TISE
5851 F Ave., Bldg 849, Rm B-04
Hill AFB, Utah 84056-5713

AArrttiiccllee SSuubbmmiissssiioonnss:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
CrossTalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property of
the authors and may be submitted to other publications.
RReepprriinnttss aanndd PPeerrmmiissssiioonnss:: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
TTrraaddeemmaarrkkss aanndd EEnnddoorrsseemmeennttss:: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
CCoommiinngg EEvveennttss: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the information
at least 90 days before registration. Send an announcement
to the CROSSTALK Editorial Department.
SSTTSSCC OOnnlliinnee SSeerrvviicceess:: at www.stsc.hill.af.mil.
Call 801-777-7026, e-mail: randy.schreifels@hill.af.mil.
BBaacckk IIssssuueess AAvvaaiillaabbllee:: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
TThhee SSooffttwwaarree TTeecchhnnoollooggyy SSuuppppoorrtt CCeenntteerr was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SSPPOONNSSOORR

PPUUBBLLIISSHHEERR

AASSSSOOCCIIAATTEE PPUUBBLLIISSHHEERR

MMAANNAAGGIINNGG EEDDIITTOORR

AASSSSOOCCIIAATTEE
EEDDIITTOORR//LLAAYYOOUUTT

AASSSSOOCCIIAATTEE
EEDDIITTOORR//FFEEAATTUURREESS

GGRRAAPPHHIICC DDEESSIIGGNNEERR

VVOOIICCEE

FFAAXX

EE--MMAAIILL

CCRROOSSSSTTAALLKK OONNLLIINNEE

CCRRSSIIPP OONNLLIINNEE

CrossTalk

Due to a printing error, some of Dave
Putnam’s article Avoid Self-Inflicted
Wounds … in the October 2000 issue
was lost. The complete version can be
found on the Web at www.stsc.hill.af.mil

w
i
r
e
s

crossed

December 2000 www.stsc.hill.af.mil 3

From the Publisher

Other Disciplines Lend Ideas to Project Management

Most CROSSTALK readers have acquired years of school learning to respect the struc-
ture provided by the academic subjects that underpin software development. As

Einstein said, “You remember the magnificent structure, on the lofty staircase of which
you were chased about for uncounted hours by conscientious teachers.” Like Einstein’s
departure from Euclidean geometry, the articles in this edition depart from conventional

approach, and show how techniques developed in other disciplines can be adapted to software
project management.

In Project Clarity Through Stakeholder Analysis, Larry Smith of the Software Technology
Support Center describes the need for stakeholder analysis and illustrates techniques with case
studies. Successful management of software projects requires a keen awareness of the environment,
selection of the right tools and team for the situation, and leadership that aligns project objectives
and activities with stakeholder expectations.

Walt Lipke and Mike Jennings of the Oklahoma City Air Logistics Center merge techniques from
statistical process control and earned value data to analyze project performance and improve cost and
schedule estimates. Arlene Minkiewicz, provides a primer on software estimating basics then shows
how software cost estimating tools can help an organization mature project planning, process focus,
and quality management key process areas. Louis Poulin, president of GrafP Technologies Inc., applies
system safety engineering principles to anticipate problems and prevent them from occurring in infor-
mation technology projects. Each of the above borrows concepts from more traditional disciplines to
develop methods to improve software project management.

Donald Reifer, Jeff Craver, Mike Ellis, and Dan Strickland address the question of the year
in their article, Is Ada Dead or Alive Within the Weapons System World? They summarize the results
of a study to shed light on the long-term viability and staying power of Ada. Comparisons of Ada
and C/C++ compiler/tool availability and training support are shown along with discussion of
current trends.

Paul Kimmerly then describes the leadership required to keep the “wind in the sails” while on
the journey from the project centered CMM® Level 2 view to the broader organization-wide view
of a Level 3.

Finally, in BACKTALK, Dr. Dave Cook and Les Dupaix combine the art of poetry with science
of software development for a humorous look at the world of defense acquisition programs.

Collectively this month’s articles communicate the need to go beyond the basics to creatively
use fundamental principles from a variety of disciplines optimized for the situation. As director of
the Air Force’s Computer Resources Support Improvement Program, I am privileged to work with
software professionals exploring new approaches to development, maintenance, and management of
software intensive systems. Their creativity and intellect has paid off—more mature organizations,
efficient tools, and a better bottom line. Air Force process improvement has delivered a return on
investment on the order of 15:1 while improving quality. I hope this CROSSTALK spawns ideas that
help make your software project successful.

Lt. Col. Glenn A. Palmer
Director, Computer Resources Support Improvement Program

® CMM and Capability Maturity Model are registered trademarks of The Software Engineering Institute and Carnegie Mellon University.

Project Clarity Through Stakeholder Analysis
Larry W. Smith

Software Technology Support Center

Understanding, extracting and solidifying documented proj-
ect requirements is one of the most difficult tasks. Often the cus-
tomer must first be taught how to give clear requirements. Project
managers and personnel frequently compound the issue by auto-
matically assuming requirements will change; yet, they fail to plan
for, or proactively anticipate changes.

Requirements go beyond hard and fast product technical
specifications. It is equally tough to satisfy each end user’s defi-
nition of functionality in delivered products. Also, often forgot-
ten project requirements dealing with “softer,” human-oriented
needs and expectations have the potential to make or break a
project. For example, a technical sponsor may insist that certain
information be relayed to them at definite times in a specific
format during the project life cycle. Or, a project manager may
need to fulfill requirements with key players outside of the pro-
ject’s environment. These are examples of a derived requirement
that is primarily communications oriented. Not surprisingly,
project managers spend a significant amount of time clarifying
requirements for a variety of project participants and customers.

Each project has many interested internal and external par-
ties or customers. Often these individuals change, or their inter-
ests change during different phases of the project. This may
cause other technical requirements—assumed to be stable—to
likewise change. Interestingly, there are a number of nontechni-
cal requirements that usually never change, but are forgotten.
For example:
• Each team member is required to know the project goals and

their individual, specific role throughout all project phases.
• A financial sponsor assumes up front that his money will be

effectively spent and that information of the project’s progress
at milestones will be communicated to them as requested.

• A functional manager must provide an expert for strategic
planning activities who can be used in cost and schedule
estimating activities.

These requirements ensure that project goals and individu-
als’ roles are clear. They lend confidence to completing project
objectives, fulfilling communication needs, and following prior-
ities. Experiences have shown that when these requirements are
not met, the project could possibly be terminated or suffer.

How can you reach an understanding on these types of
requirements? The answer lies in discovering and then aligning
project requirements with the communicated and non-commu-
nicated derived requirements of all parties interested in the proj-
ect. Fulfilling project management requires focus.

“Project management is the application of knowledge, skills,
tools, and techniques to project activities in order to meet or

exceed stakeholder needs and expectations from a project. Meeting
or exceeding stakeholder needs and expectations invariably
involves balancing their competing demands among:
• Scope, time, cost, and quality.
• Stakeholders with differing needs and expectations.
• Identified requirements (needs) and unidentified requirements

(expectations).” [1]
To manage and balance competing needs and expectations,

we must first know what they are or from whom they come.

What Is a Stakeholder?
Used as a general term, stakeholder describes individuals,

groups, or organizations that have an interest in the project and
can mobilize resources to affect its outcome in some way. A for-
mal definition of a stakeholder is: “Individuals and organiza-
tions who are actively involved in the project, or whose interests
may be positively or negatively affected as a result of project
execution or successful project completion.” [4] Project stake-
holders usually include the project manager, the customer, users,
team members within the performing organization, and the
project sponsor. However, there are more than just these few.

If we expand our perspective to include those that can make
a claim—any claim—on attention or resources, now and in the
future, that list can become quite large. Some can become win-
ners or losers as a result of the project, or participate as intermedi-
aries in project execution or product development. These stake-
holders can hold individual views and objectives, which may dif-
fer and conflict with those of other stakeholders.

Not meeting the needs or expectations of just one influential
and powerful stakeholder at a critical time can possibly ruin a
project. Who is that stakeholder, and when is that critical time?
Typically, very little time is taken to:
• Clarify who are the project stakeholders.
• Discover and align stakeholders’ expectations and individual

impact on the project.
• Outline requirements change processes knowing that

requirements (i.e., needs and expectations) will likely change.
• Relate needs and expectations to risk planning and risk

response activities.
• Conscientiously plan project communication strategies.

If this information is available and documented, it can be
monitored and revisited as necessary throughout the project to
diminish the tendency to focus solely on moving forward; thus,
we forget that project expectations change, and that communi-
cation habits may need to be altered. Stakeholder analysis is a
method that can help us tackle these issues.

Project Management

4 CROSSTALK The Journal of Defense Software Engineering December 2000

A project is more likely to be successful if it begins well. A good beginning includes time at the outset to discuss project stake-
holders’ key needs and expectations. This should be augmented with a documented plan to meet these requirements, deal with
potential risks, and define project information communication routes to stakeholders. This paper outlines a simple stakeholder
analysis method, describes specific case studies, and discusses additional project activities that benefit directly from the analysis.

Importance of Stakeholder Analysis
Stakeholder analysis typically refers to the range of techniques

or tools used to identify and understand the needs and expecta-
tions of major interests inside and outside the project environ-
ment. Understanding the attributes, interrelationships, and inter-
faces among and between project advocates and opponents assists
in strategically planning the project. Herein lies a large portion of
project risk and viability, and ultimately the support that must be
effectively obtained and retained.

On significant projects this endeavor requires a certain level
of political astuteness or street smarts. You need an understand-
ing of the internal project environment along with the entities
and including interfaces extending into the external environ-
ment. This requires multiple skills to discriminate among proj-
ect groups, help develop potential support coalitions, or if nec-
essary, reduce the impact of unseen opposition. For example,
during times of limited supply computer component vendors
must be savvy when multiple buyers are competing against each
other for a high market position.

Projects typically require human solutions to reach comple-
tion. Using the metaphor of a stage production, consider the ben-
efit of visualizing not only the actors on the stage, but also the
producers, financiers, stagehands, marketers, benefactors, and the
ultimate customer—the audience that we wish to return night
after night. The ultimate for our project would be to design a
similar script and accompanying choreography to outline policy,
identify existing and potential interactions among players, design
interventions and negotiations, accurately predict risks and
thresholds, and anticipate sources of conflict and cooperation.

Organizational and Project Spotlight on Stakeholders
Stakeholder analysis is often considered the first step in

strategic planning activities on an organizational level. Here we
allow (or force) our minds to layout a future business concept
considering all parties’ needs in addition to our own. If stakehold-
er analysis is a valued and consistent activity at the organizational
level, then its thrust can be felt on the project level. Attitudes and
results can also filter down and be applied to multiple projects.

Stakeholder awareness and the need for analysis is prevalent
among project management principles and accompanying arti-
facts. For example, its application is found throughout every proj-
ect management knowledge area of a leading, industry-accepted
project management standard, A Guide to the Project Management
Body of Knowledge (referred to as the PMBOK Guide®), published
by the Project Management Institute (PMI®). Table 1 outlines
some of the definitions of terms or processes within the PMBOK
Guide® showing the need for proper stakeholder awareness.

It becomes obvious that an understanding of stakeholders’
needs and expectations is crucial to success. “The project man-
agement team must identify the stakeholders, determine what
their needs and expectations are, and then manage and influ-
ence those expectations to ensure a successful project.”[3]

Stakeholder Analysis Approach
When should stakeholder analysis be accomplished and by

whom? Although worthwhile throughout the project to reassess
key issues, particularly when the project is in trouble, stakeholder
analysis is best accomplished before a project is initiated or at
some beginning phase. The team should be aware of sensitive

PPrroojjeecctt CCllaarriittyy TThhrroouugghh SSttaakkeehhoollddeerr AAnnaallyyssiiss

December 2000 www.stsc.hill.af.mil 5

Table 1. Prevalence of the need for stakeholder analysis in the PMBOK Guide®, a standard of the American National Standard Institute (adopted
September 21, 1999) and an IEEE Adopted Standard (IEEE 1490-1998). Note that all references are from [1] and italics added in some cases.

information and maintaining confidences.
Team members should be trustworthy and
careful in dealing with information.

The following sections outline a sim-
ple stakeholder analysis approach. The
first few stages may be sufficient for small
projects with few stakeholders. Time spent
doing the analysis should match project
type and complexity. A few hours may be
sufficient to clarify project objectives, key
assumptions, and risks.

1. Identify project stakeholders. To be
classified as a stakeholder, the person or
group must have some interest or level of
influence that can impact the project.
Stakeholder interests must be understood,
along with understanding potential proj-
ect impact if a need is not met.

The first effort should be a brain-
storming activity with appropriately
selected members and an optional facili-
tator. All stakeholders should be initially
considered and possibly dropped in later
stages of the analysis. It is often difficult
to force classifications into groups and
determine who is considered truly inside
and outside the project context. To gain a
more powerful understanding of needs
and expectations, it is usually helpful to
identify these stakeholders by name
rather than generic terms such as cus-
tomer, owner, sponsor, etc. Figure 1
depicts an example of this high-level
analysis using a notation similar to [3].

2. Identify stakeholders’ interests,
impact level, and relative priority. To
refine the previous stage, stakeholders
should be listed in a table or spreadsheet
along with their key interests, potential
level of project impact, and priority in
relation to other stakeholders. Be careful
to outline multiple interests, particularly
those that are overt and hidden in rela-
tion to project objectives.

The key is to keep in mind that iden-
tifying interests is done with stakeholders’
perspective in mind, not your own. This is
difficult as interests are usually hidden and
may contradict openly stated aims. Each
interest should be related to the appropri-
ate project phase; that is, interests change
as the project moves from beginning to
ending phases. With some stakeholders it
may be crucial to extract interests by for-
mally asking them questions such as:
• What are your project expectations?
• How do you benefit from successful

project completion?

• Which stakeholders do you believe are
in conflict with the project interests?

• Do stakeholders have contradictory
interests?

Once major interests are identified, it
is also useful to outline how the project
will be impacted if these are or are not
met. In most cases, a simple annotation of
positive (+), negative (-), or unknown (?)
can be used as well as high (H), medium
(M), low (L), or uncertain (?). To align
project success criteria with interests, an
additional step is to give a rough prioriti-
zation of each stakeholder with their
accompanying interests. Since not all

needs can be met with the same level of
intensity or at the same time, a prioritiza-
tion schema would be beneficial. Table 2
provides an example of this information
[4]. When this information is discussed in
facilitated brainstorming sessions, flip-
chart paper and sticky-notes are typically
used until formally documented.

3. Assess stakeholders for importance
and influence. Determining whether
stakeholders in a position of strong influ-
ence hold negative interests may be critical
to project success. This level of under-
standing can best be reached by conduct-

PPrroojjeecctt MMaannaaggeemmeenntt

6 CROSSTALK The Journal of Defense Software Engineering December 2000

Project
Name

Internal

External

Team
Members

Families
Unions

Sponsors

Legislators

Governments
Regulators

Legal
System

Courts

Political
Parties

Management

Functional
Management

Direct
Management

Customers

Clients

Inactive
Accounts

Community

Citizens
Boards

and Clubs

Special
Interest Groups

Competitors

Media
Television

Newspapers

Radio

Internet

Vendors

Suppliers

Functional
Departments

Accounting

Marketing

Engineering

Human
Resources

Owners Venture
Capital

Stockholders
Board of
Directors

Stakeholder Interests
Estimated

Project
Impact

Estimated
Priority

Pr
im

ar
y

Se
co

nd
ar

y

Owner
Achieve targets Med + 1
Liability (avoid at all costs) High -
Increase sales margin Med +

Team
Members

New product excitement Med + 2
Demand end-of-year bonus ?
Retain and expand skill level Med +
Strike (if basic demands aren’t met with new process) High -

Successfully addresses needs of adjunct customer Low + 3
Appears competent among peers Low -
Provides new market to expand ventures Med +

Sponsor

Project
Manager

Figure 1. Example of a stakeholder analysis context diagram.

Table 2. Stakeholder interest and impact table.

ing a formal assessment of each stakeholder’s level of importance
and influence to the project.

Influence indicates a stakeholder’s relative power over and
within a project. A stakeholder with high influence would control
key decisions within the project and have strong ability to facili-
tate implementation of project tasks and cause others to take
action. Usually such influence is derived from the individual’s
hierarchical, economic, social, or political position, though often
someone with personal connections to other persons of influence
also qualifies. Other indicators identified in [3] include: expert
knowledge, negotiation and consensus building skills, charisma,
holder of strategic resources, etc.

Importance indicates the degree to which the project cannot
be considered successful if needs, expectations, and issues are not
addressed. This measure is often derived based on the relation of
the stakeholder need to the project’s goals and purposes. For
instance, the human resources department may be key to getting
the project new resources at a critical time, and the accounting
department key to keeping the finances in order and the project
manager out of jail. The users of the project’s product or service
typically are considered of high importance.

These two measures, influence and importance, are distinct
from each other. A project may have an important financial
sponsor that can shut down the project at any time for any rea-
son, but does not participate at all in the day-to-day operations
of the project. The combination of these measures provides
insight not only into how stakeholders interact, but can help
identify additional assumptions and risks.

A diagram of these relationships can be useful to understand
potential risks and highlight groups of stakeholders whose needs
can be addressed in a common manner. Figure 2 shows such a
diagram. The interest–influence measures can be annotation with
a range of numbers (0-10) or high (H), medium (M), and low
(L). Note that stakeholders in the high influence-high importance
quadrant would be considered key stakeholders. Although count-
er to typical approaches, this area is where we may need to focus
our attention at times when the project is suffering rather than
targeting individuals in the opposite corner quadrant.

Those that are in the low importance-high influence quad-
rant have the potential becoming a high project risk. For instance,

an individual that does not have any apparent needs or provide
any technical requirements to our project, but has undue influ-
ence over a key funding source, should be monitored carefully.

A more interesting picture would be a dynamic view over
the life of the project rather than this static view. For instance, a
key indicator of project success may be where the key customer
is located at the conceptual, implementation, and closeout phas-
es of the project.

4. Outline assumptions and risks. Project success also depends
on the validity of key assumptions and risks. In relation to stake-
holders, risks are manifest when there are conflicting needs and
expectations. For example, the interests of a stakeholder with high
influence may not be in line with the project’s objectives and can
block a project’s positive progression. To bring to light key risks,
the project manager needs to clarify unspecified stakeholder roles
and responsibilities, play “what-if” scenarios using unfulfilled
needs and expectations, and double check the plausibility of
assumptions made. Table 3 provides an example of documenting
assumptions and risks in relation to key stakeholders. Note that a
spreadsheet could be used to capture this information as well as
that indicated in Table 2 and Figure 2.

This information provides a critical portion of a project’s risk
management plan. Using classical risk management methods, the
project team could add another column in Table 3 for their perti-
nent risk mitigation strategies and action plans [6, 7].

5. Define stakeholder participation. Now that we have made an
effort to understand the stakeholders, we need to assess their level
of participation and information needs. A well-designed project
will not only clarify key stakeholder roles, but will define as much
as possible who participates when. Not all stakeholders need to be
involved in all aspects of the project in all life cycle phases. Previ-
ous analysis has helped us identify potential groupings of stake-
holders. Similar individuals may have similar project information
needs. We can use this information to reduce project report devel-
opment costs and accompanying communication costs.

The participation matrix shown in Figure 3 is a method
outlined in [5] that can assist project managers in categorizing
their strategy for involving stakeholders. The life cycle stages
should reflect the phases of the project (those shown are from
[1]). Likewise, the types of participation shown are generic and
should reflect those desired by the project team.

December 2000 www.stsc.hill.af.mil 7

PPrroojjeecctt CCllaarriittyy TThhrroouugghh SSttaakkeehhoollddeerr AAnnaallyyssiiss

Im
po

rta
nc

e

Influence

SA

Sx = Stakeholder X

SB

SH

SJ

SI

SG
SN

SF

SE

SC

SL

SD

SK SM

Figure 2. Importance–Influence Classification

Stakeholder Assumptions and Risks
Estimated

Project
Importance

Estimated
Project

Influence

Owner

Team
Members

Sponsor

Providing all the resources, but don’t
appear to have specific requirements.Low (2) High (9)

We don’t really know if the funding in the
out years will continue. Has the propensity
to change mind at any moment.

High (10) Medium (6)

Project
Manager

Appear to be happy with new process and
systems equipment. Strike threats
supposedly have decreased. Received
numerous requests for additional training.

Low (3) Medium (5)

Table 3. Importance-Influence classification with assumptions, risks.

8 CROSSTALK The Journal of Defense Software Engineering December 2000

For example, Stakeholder A has been identified as someone
who we want to inform at the beginning of the project and then,
if possible, not involve them until the end of the project but in a
more active manner. Stakeholder E is a subject matter expert that
we want to maintain a close partnership with during critical
project phases because of this advanced design experience. Stake-
holder G is skilled as a facilitator conducting peer review sessions
that we wish to hire during the product design phase.

Although a relatively difficult set of data to analyze and
document, this information can be used to further highlight
assumptions and risks. For instance, a project will be endangered
with multiple key stakeholders all wishing to participate in proj-
ect controlling functions. This matrix can be overlaid with the
stakeholder information requirements (type, frequency, and for-
mat) to assist in developing the project communication plan.

Sample Case Studies
This technique has been used on a number of projects dif-

fering in application area, duration, and complexity. Two proj-
ects are described here. They have been simplified to allow pres-
entation of key concepts.

Case Study A: Where Is the Customer?
Case Study A describes a two-year project involving large

teams in the banking industry that fortunately has not yet been
completed. At the outset of the analysis (that started in the
beginning of the second year), it was clear what the key risks
were. Team members had become frustrated with the project for
primarily two reasons: (1) functional managers continually
added secondary projects to their plate, and (2) project require-
ments never seemed to be clear. The analysis showed that the
primary customer was never brought into project planning dis-
cussions, the project team members were not encouraged to talk
with customers, and the precisely defined secondary set of proj-
ect requirements did not really belong to anyone.

Figure 4 highlights this situation in the project implementa-
tion phase. Key points to note are: The primary customer was
deemed of little importance; the secondary customer went from
being important in the design phase to not existing in the imple-
mentation phase; The functional managers wielded too much
power in the matrix environment of the project. To improve the

chances of success, the project manager realized that he must have
both project sponsors more on the side of the project, and tactful-
ly convince them to help the functional managers understand
that they were ruining the project.

Case Study B: Planned Alignment
Case Study B describes a four-year project involving an inter-

national technical sponsor and a remote financial sponsor. The
project manager understood well that this project would not work
well unless all parties understood their roles and responsibilities. A
relatively large amount of time was spent planning and defining
the activities of the project and who would accomplish them.
Furthermore, the customers and vendors had to be involved in all
phases of the project, particularly at the beginning. Figure 5
shows a static view of the project taken at the middle of project
execution. From the data collected there has been some shifting
of key stakeholders, but the alignment has roughly stayed the
same, at least according to the project team. Marketing concerns
were not really known until a recent product review meeting
where the representatives loudly expressed their apprehension at a
potentially delayed shipping date.

The project team considered its communications strategy key
to the success of its project. Although there have been some prob-

Im
po

rta
nc

e

Influence

Primary
Customer

Project
Manager

A Static View

Where’s the Customer?

Team
Lead A

Secondary
Customer

Team
Lead B

Sponsor A
Sponsor B

Functional
Manager A

Team
Members

Functional
Manager B

Team
Lead C

Im
po

rta
nc

e

Influence

Customer

Senior
Project

Manager

Planned Alignment

Project
Lead A

Financial
Sponsor

Functional
Manager

Team
Members

(Functional Experts)

Project
Lead B

Team
Members
(Entry Level)

Administrative
Support

Marketing

Technical
Sponsor

Vendors

PPrroojjeecctt MMaannaaggeemmeenntt

Figure 4. Case Study A.

Figure 5. Case Study B

Type of Participation

Initiation
Identification

Planning

Execution
Implementation

Controlling
Monitoring and

Evaluation

Closing

St
ag

e
in

 L
ife

cy
cl

e

SA SH

SF

SC

SBSK

SI

SN

SJ

SD

SM

SE

SO

SD

SA

SL

Sx = Stakeholder X

Inform Consult Partnership Control

SG

Figure 3. Stakeholder participation matrix.

Where Is the Customer?

December 2000 www.stsc.hill.af.mil 9

lems along the way (particularly growth issues), design and imple-
mentation barriers were made known before they became critical.

Conclusion
Stakeholder analysis is a technique that can help project team

members understand the variety of stakeholders that have an
interest in the project, and the individual nuances that can affect
project risk. In an environment where organizational or office
politics often appear to cloud a project’s progression, stakeholder
analysis provides the team with views and some basic measures
that can help uncover and remove barriers. Consequences of
completing such an analysis include information for additional
tools that could prove valuable for the project team: a communi-
cation management plan, a risk management plan, and possibly
a set of previously unspoken project requirements.

The technique described here compels project leaders to
identify and support the interests of the key individuals or groups.
When interests that cannot be supported arise, the knowledge
that they exist and what level of influence the stakeholder may
impose can be a great asset to the project team. The difference
between success and failure can be simply knowing project advo-
cates and opponents, understanding their respective needs and
levels of influence, and aligning the project accordingly.�

References
1. Project Management Institute (PMI®), A Guide to the Project

Management Body of Knowledge. Four Campus Boulevard.
Newtown Square, Pa. 19073-3299. 1996. “PMI” is a trade
and service mark of the Project Management Institute, Inc.,
which is registered in the U.S. and other nations. “PMBOK” is
a trademark of the Project Management Institute, Inc., which is
registered in the U.S. and other nations.

2. IBID.
3. IBID.
4. Cleland, David I. (ed), Field Guide to Project Management,

John Wiley and Sons, 1998.
5. Overseas Development Administration, Guidance Note on

How to Do Stakeholder Analysis of Aid Projects and Programmes,
Social Development Department, July 1995.

6. Continuous Risk Management Guidebook, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pa., 1996.

7. Williams, Ray C., Pandelios, George J., and Behrens, Sandra G.
Software Risk Evaluation (SRE) Method Description (version 2.0),
Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-99-TR-029, Pittsburgh, Pa., 1996.

About the Author
Larry W. Smith is a software engineer for the
Software Technology Support Center at Hill Air
Force Base, Utah. He has provided software engineer-
ing, software process improvement, and project man-
agement consulting for the Air Force and DoD as
well as commercial and nonprofit organizations. He

has also authored and managed technology evaluation contracts in
support of these efforts. Smith has a bachelor’s degree in electrical
engineering from the University of Utah, a master’s degree in com-
puter science from Utah State University, and is a certified project
management professional (PMP®). He is a faculty member at the
University of Phoenix and provides PMP® certification instruction.

Software Technology Support Center
OO-ALC/TISEA, 7278 4th Street
Hill Air Force Base, UT 84056
Phone: 801-777-9712
DSN: 777-9712
Fax: 801-777-8069
E-mail: larry.w.smith@hill.af.mil

PPrroojjeecctt CCllaarriittyy TThhrroouugghh SSttaakkeehhoollddeerr AAnnaallyyssiiss

10 CROSSTALK The Journal of Defense Software Engineering December 2000

Nearly 15 years ago the Test Software and Industrial Automa-
tion branches of the Directorate of Aircraft Management began
using EV methods to manage software development. During this
time several refinements in the application of EV were made. The
work breakdown structures have evolved and are much more
sophisticated today than they were for the first few projects where
EV was applied. The planning and scheduling practices have
improved tremendously from simple paper and pencil tabulations
to the use of commercially available automated tools. With these
tools what if scenarios can now be performed during planning to
account for possible risk areas. Along with these improvements,
the ability to predict project outcomes and to strategize needed
recovery actions was significantly enhanced three years ago by
applying EV cost and schedule performance indexes [4]. Project
managers now have a tool to help them choose the appropriate
recovery strategy along with necessary actions.

Although these are significant improvements that have aided
greatly in managing software projects to achieve the required
performance at the negotiated cost and completion date, soft-
ware organizations today are feeling pressure to apply the control
chart method of SPC. Control charts began in the 1930s and
were applied to manufacturing processes to maintain quality
control of assembly line products. Control chart concepts and
methods fell out of favor in the United States by the 1950s,
but were revived in the 1980s. Dr. Edward Deming became an
international celebrity from the impact control charts had on
the success of the Japanese production of automobiles.

The application of SPC to software management is not very
straight-forward; the automobile assembly-line application does
not translate directly to software. The rate of software develop-
ment is low, and none of the products are prepared to identical
specifications. Yet a belief persists that SPC control charts must
be used in order for software management to know that the
development process is in control. Just as in manufacturing, if
anomalous behavior occurs in the software process it should be
recognized and corrected in order to minimize the impact on
the delivered product.

Along with the rest of the software industry, we have strug-
gled to develop a meaningful application of SPC control charts.
EV indicators and cost and schedule performance indexes is
proving very useful. In the publication [3] cited previously, the
indicators were shown to be a management tool for statistically
representing project performance. That paper also provided
project managers with methods to overcome poor performance,
and it alluded to further application in the areas of software
project planning and process improvement. This paper addresses
project planning, including the quantification of risk in both

cost and schedule. Mitigating the risk with management reserve
is included in the discussion.

Earned Value
For this subject the book [5], Cost/Schedule Control Systems

Criteria, The Management Guide to C/SCSC, by Quentin
Fleming, is highly recommended for a more complete discus-
sion of EV and its application to project management. For our
specific application, an understanding of the EV indicators, cost
performance index (CPI), and schedule performance index
(SPI) is needed. To begin this discussion, refer to the point on
Figure 1 labeled budget at completion (BAC). BAC is the per-
formance expectation of the project; it identifies the cost and
completion date for the project manager. Similarly, the point
labeled customer expectation is the price and product delivery
completion date promised to the customer. (The customer
expectation is different from the planned project performance to
allow for anticipated risk.)

EV management tools are based upon establishing a project
baseline to achieve BAC. The project’s performance is tracked
against that baseline. The baseline performance is illustrated by
the S-curve in Figure 1 marked BCWS, i.e., budgeted cost of
work scheduled. The in-process performance tracking is facili-
tated by the two remaining curves shown: actual cost of work
performed (ACWP) and budgeted cost of work performed
(BCWP). BCWP is the earned value to date; it is a representa-
tion of the completion of project tasks and is traceable to the
values allocated to project tasks during the planning phase.

During project execution, CPI and SPI provide information
of performance efficiency. The CPI describes the rate of achieving

Software Project Planning, Statistics, and Earned Value

Increasingly, statistical methods are being applied to earned value (EV) data [1, 2]. In a previous publication [3] the
author has discussed the use of statistical process control (SPC) with the earned value indicators and cost and schedule
performance indexes. This application provides strategies and methods for gauging the performance of software proj-
ects and achieving project commitments. As an extension of managing performance, this article branches to using the
statistical representation of the EV information to prepare project plans. Interestingly, the statistical approach yields
not only the expected cost and completion date, but the management reserve required for an acceptable level of risk.

Walt Lipke and Mike Jennings
Software Division, Directorate of Aircraft Management, Oklahoma City Air Logistics Center

Figure 1. Earned Value

December 2000 www.stsc.hill.af.mil 11

earned value with respect to the funding
outlay. SPI is the rate of achieving earned
value with respect to the schedule baseline,
BCWS. These two indicators, taken
together, have been shown to be a very
useful software management tool [3, 4].

Statistical Process Control
There are several methods of per-

forming SPC: scatter diagrams, run
charts, cause and effect diagrams, his-
tograms, bar charts, Pareto charts, and
control charts [6, 7]. Although the other
methods are useful, the application of
control charts will be the only SPC appli-
cation discussed in this paper.

As mentioned earlier, the question
the software industry desires to answer is,
“How do I know if my software develop-
ment process is in control?” The answer is
in the use of control charts. The inherent
statistical variation in the process gives
definition to anomalous behavior. In the
statistical sense, anomalous behavior has
an extremely low numerical value for its
probability of occurrence. Consequently,
if anomalous behavior is not observed,
then the process is in control.

There are several applications for con-
trol charts with a division between two
basic types, i.e., those with attribute data
and those with variable data. An attribute
is a characteristic that is either present, or
is not. Conversely, a variable characteristic
is measurable on a continuous scale. The
control chart method chosen for our appli-
cation is termed Individuals and Moving
Range. Symbolically, it is shown as XmR,
where X represents individuals, and mR is
the moving range. This method can be
used for both attribute and variable data.
It is the appropriate control chart choice
when only a single data point is available
per sampling. The Individuals and Moving
Range method fits our application because
CPI and SPI are variables, and there is just
one data point per month for each.

Figure 2 illustrates the XmR control
chart. The symbol X used in the figure
represents CPI-1 or SPI-1. The symbol mR
represents the difference in X’s value
between i = n and i = n+1. The equations,
along with the value of the correction fac-
tors necessary for creating the chart are
also included in the figure. The correction
factors (d2, D3, and D4) are derived from
statistical theory, and are used to calculate

the control limits of the process (i.e thresh-
olds beyond which a measurement has an
extremely low probability of occurrence).

Control limits (upper and lower nat-
ural process limits [UNPL, LNPL] and
upper and lower control limits [UCL,
LCL]) are established at six sigma (6 σ),
where sigma is a standard statistical meas-
ure of the variation in the process being
observed. Measured values outside of the
six sigma limits have a probability of
occurrence of only 0.27 percent—virtual-
ly zero. any measured value occurring
outside of these limits is an anomaly
requiring management attention.

One of the applications of control
limits is testing the capability of the
process. For a product to be satisfactory
for a customer, it will normally have a
specification that establishes its accept-

ability in terms of upper and lower limits.
By comparing the product limits to the
process limits, we can predict the percent-
age of product not expected to meet cus-
tomer requirements. The calculated value
is the probability or risk of manufactur-
ing unacceptable product.

Performance Analysis
As mentioned earlier, we have merged

EV and SPC to create another software
management tool [3] depicted in Figure
3. By establishing performance limits in
the form of cost and schedule ratios, the
average of the monthly values for CPI-1

and SPI-1 can be compared, respectively.
The ratios are simply the quotients of the
customer requirement to the expected
project performance. The cost and sched-
ule ratios establish the poorest perform-

2dmR3xUNPL +=

∑=
=

k

1i
ix

k
1x

2dmR3xLNPL −=

mRDUCL 4=

∑ −
−

=
=

−

k

2i
1ii xx

1k
1mR

mRDLCL 3=
For subgroup n=2 (i.e., adjacent data points): d2=1.128, D3=0, D4=3.268

Individuals (monthly data)

i=1 i=k

σ3

σ3

Adjacent values (monthly data)

i=k

i=2
σ3

σ3

x

mR

months

months

Figure 2. Control Chart, Individuals and Moving Range

0.8

0.9

1

1.1

1.2

1.3

Jan Feb Mar Apr May Jun

Time

C
os

t

Planned

Negotiated
Green Yellow Red

CPI-1

CR

Time

R
at

io

0.8

0.9

1

1.1

1.2

1.3

Jan Feb Mar Apr May Jun

Green Yellow Red

SPI-1

SR

Time

R
at

io

Schedule Ratio vs <SPI-1 >

Cost Ratio vs <CPI-1>

BCWP
ACWPCPI

Cost Planned
Cost NegotiatedRatio Cost

1 =

=

−

BCWP
BCWSSPI

Perfomance of Period Planned
ePerformanc of Period NegotiatedRatio Schedule

1 =

=

−

G
re

en

Ye
llo

w

R
ed

Figure 3. Performance Analysis

SSooffttwwaarree PPrroojjeecctt PPllaannnniinngg,, SSttaattiissttiiccss,, aanndd EEaarrnneedd VVaalluuee

For subgroup n=2 (i.e., adjacent data points): d2=1.128, D3=0, d4=3.268

12 CROSSTALK The Journal of Defense Software Engineering December 2000

PPrroojjeecctt MMaannaaggeemmeenntt

ance efficiency allowed for the project to
achieve the customer requirement.

It is a simple matter to color code the
performance. If performance indicates the
project will be completed within the
planned cost and schedule, the status is
green. In this case, if the average value of
CPI-1 and SPI-1 (subsequently shown as
<CPI-1 > and <SPI-1 >) is reported to be
1.0 or less, then we can expect the plan to
be achieved. If performance indicates the
project plan will be exceeded, yet the cus-
tomer requirement will be met, then the
status is yellow. For this case, the values of
<CPI-1 > and <SPI-1 > will exceed 1.0, but
be less than the comparable ratio. Of
course if the indicators show efficiencies
in excess of the ratios (i.e., the limit above
which performance is unacceptably poor),
then the status is red.

Likewise from the article referenced
earlier in this section [3], the color cod-
ing of the performance status leads to a
recommended management action, i.e.,
adjustment of overtime or staffing,
realignment of personnel, or customer
negotiation. The calculation methods for
adjusting overtime and staffing are also
discussed in the article.

Project Planning
We have used the EV-SPC method

for approximately one year as a tool for
managing software developments. It
occurred to us that the method could also
assist with project planning. The basic
idea is that data (<CPI-1 >, <mRc>, <SPI-1

>, and <mRs>) from past projects could
be used to amend the draft project plan
to establish a project baseline (cost and

completion date). Using the project base-
line and risk level that the company or
project manager is willing to accept,
computations can be made of the cus-
tomer price (without profit) and delivery
completion. The differences between cus-
tomer values and project baseline then
determine the values for management
reserve. The planning process is schemati-
cally shown in Figure 4.

In the figure the computation of safe
performance indexes is shown, i.e., the
highest average values of CPI-1 or SPI-1

that will not exceed the 3 sigma variation
from the historical average value. There
are times when to be safe is not much
more expensive in cost and schedule than
for the risk defined. This condition
occurs when the process is highly refined
and is indicated by extremely small values
of <mR>. Certainly, if being safe does not
make the project’s bid noncompetitive, it
is the ideal project plan. However, in gen-
eral all project managers will need to
accept some risk of failure to win the
contract. This planning method quanti-
fies the risk and computes the commen-
surate management reserve.

Before elaborating on the computa-
tions, the expected result of this planning
method needs to be discussed. Our
hypothesis is that, at minimum, we could
expect the new project to execute closer to
the plan. After all, the adjustment to the
project baseline is, in essence, the use of a
lesson learned. Also, if little change is
made to the planning methods, then we
could expect the variation of the perform-
ance indexes from the new project to be
approximately the same as those from the

historical project. On the other hand, if
improvements are made in the planning
method or the software development
process, it becomes more difficult to pre-
dict the result. Nevertheless, what we hope
for is performance indexes closer to the
planned values and decreased variation.

Calculation Procedure
This procedure follows the flow

depicted in Figure 4. It may be helpful to
consult the figure as the calculations are
described.

Step 1. Select the historical project
that has the greatest amount of similar-
ity to the project being planned. The
variables of programming language used,
staff experience, software engineering
environment etc., variation in the work
breakdown structure (WBS), and values
allocated to the tasks are to be considered
in selecting the historical project. Also,
the planning team’s biases should be con-
sidered for historical and new projects,
along with the customer’s behavior attrib-
utes. Once the selection is made, obtain
the historical data: <CPI-1 >h, <mRc>h,
<SPI-1 >h, <mRs>h. Note that the per-
formance of tasks, which are out of
scope with respect to the contract, may
be imbedded in these numbers. If the
value of these tasks is known, it is appro-
priate to remove their effects and adjust
the historical data accordingly.

Step 2. Develop the draft plan to
establish the initial budget at comple-
tion (BACi) and period of performance
(POPi).

Step 3. Create the baseline project
plan by using the performance efficien-
cies from historical project data to
adjust the initial plan.

POPi x <SPI-1 >h = POPp

[Start Date + POPp => Expected

Completion Date (CDp)]

BACi x <CPI-1 >h = BACp

At this point, it is probably worth-
while for the planning team to reflect
again on the differences between the his-
torical and new projects. To finalize the
baseline plan, Steps 2 and 3 may need to
be iterated.

Step 4. Next, calculate the safe per-
formance indexes for future reference.
Recall from the earlier discussion that it
may not cost much to be safe. Later on a
comparison will be made between safe vs.
risk performance.

Figure 4. Planning Method

December 2000 www.stsc.hill.af.mil 13

SSooffttwwaarree PPrroojjeecctt PPllaannnniinngg,, SSttaattiissttiiccss,, aanndd EEaarrnneedd VVaalluuee

<CPI-1 >3[σ] = 1.0 + 3 <mRc>/1.128

<SPI-1 >3[σ] = 1.0 + 3 <mRs>/1.128

The formulas used above are shown in Figure 2.
Step 5. Define the acceptable risk level. Defining risk is a

tricky business. The project manager desires sufficient manage-
ment reserve to cover all anticipated risk. But, the company
wants to win the contract, which means accepting more risk.
Therefore, the planning team feels pressure to lower the price
and shorten the schedule. The level of risk selected will be a
compromise between these two extremes. Generally, the risk
associated with achieving the project cost is lower than the risk
for delivering the product on time. The planning method allows
for establishing risk levels for both cost and schedule. For the
remainder of the discussion, the risk acceptable is equated to the
probability of failure (Pf).

Step 6. Establish the boundary for red performance. The
upper specification limits (USLc and USLs) for <CPI-1 > and
<SPI-1 >, respectively, are calculated from statistical data. The
procedure is general to both cost and schedule; the calculations
for each are performed identically. To illustrate this, an example
of the calculations for 30 percent risk is shown below.

The probability of failure can be determined from the
mathematical table of the cumulative normal distribution [8]:

Pf(z) = 1 – F(z), where

(The representation of F(z) shown is one of the forms available in math-
ematical tables; there are other forms that can be used equally as well.)

For risk = 30 percent, Pf(z) = 0.30 = 1 – F(z)
Thus, F (z) = 0.70

Using the mathematical table of the cumulative normal dis-
tribution, identify F(z) values adjacent to F(z) = 0.70.

F (.52) = 0.6985, F (.53) = 0.7019

Now, estimate the value of z for 30 percent risk (z (@30
percent)) by interpolation.

z (@30%) =

Thus, z (@30%) = 0.5244

Using the z equation [6], calculate the value of the USL.
z = (x – u) / [σ] , where x is the value of the point
(in this example, USL), u is the average value (in this
example, 1.0), and [σ] is the standard deviation (in
this example, <mR>/1.128)

Therefore, z (@30%) = (USL – 1.0) / (<mR>/1.128)

With some algebraic manipulation, the equation can be
solved for USL.

To illustrate the calculation, we will use a value from an
actual project, <mR> = 0.2652.

USL (@30%) = (0.5244) (0.2652)/1.128) + 1.0

Performing the math, the performance index representing
the red boundary for 30 percent risk is computed to be 1.1233
for our example.

Step 7. Establish the customer baseline. Knowing the
value of USL, the customer baseline can be computed.

POPp x USLs = POPc

Start Date + POPc = Customer Completion Date (CDc)

BACp x USLc = Price (without profit)

The above calculation should be repeated using the appro-
priate safe index from Step 4 in place of its respective USL mul-
tiplier. As stated earlier, to be safe may not raise the price or
increase the schedule significantly if the development process is
very refined (the average value of <mR> is small).

Step 8. Calculate the management reserve. The manage-
ment reserve is simply the differences between the customer and
project baselines.

For Schedule Reserve, MRs = POPc – POPp (workdays)
or
MRs = CDc – CDp (calendar days)
For Cost Reserve, MRc = Price – BACp (dollars)

Prototype Application
The planning method and calculation procedures were test-

ed against both a historical and current project. The in-work
project was planned using knowledge gained from the perform-
ance of the historical project. For reference, the products from
the historical project were 52 test program sets (TPS). TPSs are
a combination of the software and hardware needed to test the
performance and diagnose the failures of electronic circuit cards.
The project ran for five years and had a peak staffing of 12
engineers. The in-work project was to develop nine TPSs. It has
eight engineers presently assigned, and is 29 percent complete.

As we discussed in the calculation procedure, better results
are expected when data is used from historical projects having
similar attributes to the project to be planned. In this case, the
projects are highly similar. The circuit cards requiring the TPSs
are similar in structure, application, and component technology.
The automated test system, which uses the TPSs for performing
the circuit card testing, is the same for both projects. The pro-
gramming language used for developing the software is also iden-
tical for both. The specification defining the TPSs came from the
same customer; there are only minor differences. The planning
team, project leader, and three engineers are common to both
projects. The planning team used the WBS from the historical
project with only minor changes. Schedules for the two projects
overlapped for approximately nine months.

The historical project has the following performance values:
<CPI-1 > = 1.12, <mRc> = 0.40, <SPI-1 > = 1.18, <mRs> = 0.46.
The numbers were derived from 61 monthly data points. The
<CPI-1 > and <SPI-1 > values indicate poorer than expected per-
formance. While the project had enough cost reserve to avoid
an overrun, it did not plan for schedule reserve and did experi-
ence problems completing the product deliveries on time. The
amount of variation is somewhat larger than the values of <mR>
from our other software development areas. Thus, it was
thought that better planning was needed.

The results of using the EV-SPC planning method are
shown in Table 1. Here you see that the planning team covered
a greater amount of schedule risk (35 percent probability of fail-
ure) than was accommodated for cost (40 percent probability of
failure). To mitigate the anticipated risks, the cost reserve is 8.8
percent of the expected project cost, and the schedule reserve is
15.6 percent of the planned period of performance. As a point
of emphasis, the methods described provide a significantly more

∫
∞−

−
=

Z
2

z
dze

2ð
1F(z)

2

()0.520.53
0.6985-0.7019
0.6985-0.70000.52 −

+

14 CROSSTALK The Journal of Defense Software Engineering December 2000

PPrroojjeecctt MMaannaaggeemmeenntt

complete understanding of the probability of project failure. By
having the risk strategy quantified, we can logically expect
improved business practice and software project management.

The performance results taken from the new project bear
out the hypothesis made earlier. These results are presented in
Table 2. As predicted the inverse performance index values are
closer to the expected values of 1.0 than for the historical proj-
ect; cost is closer by 41.7 percent while schedule is closer by
61.1 percent. However, the statistical variation seen in the new
project is considerably smaller, something we did not expect.
Cost variation is reduced by 47.5 percent, and schedule varia-
tion is down by 26.1 percent.

Reflecting on the two projects, adjustments were made to the
earned values that were assigned the various WBS tasks during
the new project planning. The expectation of improving the proj-
ect planning is the removal of statistical variation from some of
the common cause [6, 7] entities. But overall, the reduction is
enhanced from other lessons learned by the planning team, proj-
ect leader, and the three experienced engineers. They used those
lessons from the historical project to guide themselves, and espe-
cially the new members of the project team. Thus far many pit-
falls experienced during the historical project have been avoided.
Significant process improvement is evident.

Summary
The software project planning method proposed in this

article incorporates the use of past project performance data,
earned value management, and statistical process control. The
method provides several outputs:
• Project cost and customer price.
• Expected and customer completion dates.
• Management reserve for both cost and schedule.
• Quantified risk for cost and schedule.
• Statistical quantification of process improvement.

We have shown in the example application that the method
may have merit. In general, the results predicted were observed.

The new project is performing closer to the plan with less varia-
tion. Certainly this is improved software project performance.
And with improved performance, it is expected that customers
will be increasingly satisfied. Of course the bottom line to
achieving customer satisfaction is gaining additional business.
We believe the software management tool presented in this arti-
cle can help to achieve these goals.�

References
1. Gordon, Creaghe, Risk Analysis and Cost Management,

16th Annual College of Performance Management Conference,
May 2000.

2. Sen, Surhita, EVM Concepts in SPC, 16th Annual College of
Performance Management Conference, May 2000.

3. Lipke, Walt and Vaughn, Jeff, Statistical Process Control Meets
Earned Value, CROSSTALK, June 2000.

4. Lipke, Walter H., Applying Management Reserve to Software
Project Management, CROSSTALK, March 1999.

5. Fleming, Quentin W., Cost/Schedule Control Systems Criteria,
The Management Guide to C/SCSC, Probus, Chicago, 1988.

6. Pitt, Hy, SPC for the Rest of Us, Addison-Wesley, Reading,
Mass., 1995.

7. Florac, William A. and Carleton, Anita D., Measuring the
Software Process, Addison-Wesley, Reading, Mass., 1999.

8. Crow, Edwin L., Davis, Francis A., and Maxfield, Margaret W.,
Statistics Manual, Dover Publications, New York, N.Y., 1960.

About the Authors
Walt Lipke is deputy chief of the Software Division
at the Oklahoma City Air Logistics Center. The divi-
sion employs approximately 600 people, primarily,
electronics engineers. He has 30 years of experience
in the development, maintenance, and management
of software for automated testing of avionics. In

1993 with his guidance, the Test Program Set and Industrial
Automation (TPS and IA) functions of the division became the first
Air Force activity to achieve Level 2 of the Software Engineering
Institute Capability Maturity Model® (SEI CMM). In 1996, these
functions became the first software activity in federal service to
achieve SEI CMM Level 4 distinction. The TPS and IA functions,
under his direction, became ISO 9001/TickIT registered in 1998.
These same functions were honored in 1999 with the IEEE
Computer Society Award for Software Process Achievement. Lipke
is a professional engineer with a master’s degree in physics.

Mike Jennings is chief of the Avionics Test Software
Section, an organization within the Software Division
at the Oklahoma City Air Logistics Center. His sec-
tion develops and maintains software for the automat-
ed testing of avionics systems from several weapon sys-
tems. He has more than 10 years of automated testing

experience in various software development and leadership positions.
Jennings earned a bachelor’s degree in electrical engineering from
Oklahoma State University.

OC-ALC/LAS
Tinker AFB, Okla. 73145-9144
Voice: 405-736-3341
Fax: 405-736-3345
E-mail: Walter.Lipke@tinker.af.mil

Michael.Jennings@tinker.af.mil

Table 2. Performance

Table 1. Method – Results

December 2000 www.stsc.hill.af.mil 15

I am frequently asked how a commercial software model
will add value to an organization’s attempts to increase software
process maturity. I like that question because there is a pretty
simple answer up front. There are also many details that make
for a rich discussion about software process improvement and
software cost models. The simple answer is that project manage-
ment is a very important part of any solid process improvement
effort. Being able to perform accurate size, cost, and schedule
estimates is vital to good project management.

The more interesting answer requires some digression into
the complicated world of process improvement. I like to frame
this discussion in the context of Carnegie Mellon University’s
Software Engineering Institute (SEI) Capability Maturity Model
(CMM) for software. I do this not because it is the only vehicle
for software process improvement. It is, however, an effort that
encapsulates years of research into the software related processes
that must be in place and properly understood and executed in
order to have a world class software development organization. I
will talk briefly about software process maturity and the CMM
—what it is and why it is beneficial. This will be followed by a
discussion of software-estimating tools—what they do and how
they work. Then I will delve into some of the specific process
areas where a software-estimating model will help your organi-
zation achieve process maturity successes.

Software Process Improvement and the CMM
In the late 1980s, the federal government determined that

their job of building software systems would be simplified if
they could perform quantitative evaluations of the capability of
the subcontractors competing to build these systems. They
shared this realization, along with some funding, with SEI and
began the project that led to the development of what we call
today the CMM for software. Since its introduction in the early
1990s, hundreds of software development organizations have
used the CMM not only to assess the maturity of their existing
processes, but as a framework to guide their climb to higher lev-
els of process maturity. The CMM has gained tremendous pop-
ularity in the industry, so much so that many organizations are
finding they must achieve certain levels in order to win software
contract awards.

So what is the CMM? It is a model through which a quanti-
tative assessment of an organization’s software process maturity
can be made. The CMM document for software published by
the SEI describes the process areas that should be addressed and
gives guidance on the activities required to get those processes in
place. This model is based on the premise that real process
improvement involves the entire software development organiza-

tion, not just the groups that build the software. It requires com-
mitment throughout the entire organization. A CMM assess-
ment at an organization results in the assignment of a ranking
from one (initial) to five (optimizing) depending on how many
of the 18 Key Process Areas (KPAs) have been successfully
ingrained in the organizational software development process.

Benefits of Software Process Improvement
Clearly the climb from Level 1 to Level 5 is a long and

expensive journey. Why are so many companies willing to do it?
There are many ways that process improvement benefits the
software development organization—both qualitative and quan-
titative. Some are fairly hard to measure well. Even those that
are easy to measure are often undervalued because it is not until
an organization reaches some beginning level of process maturi-
ty that the measuring mechanisms are in place. This makes
comparisons to the worst case very difficult.

Improved processes result in higher quality products.
Product quality is a very hard thing to quantify even though we
may count defects per line of code (or other size measure) in the
released product. It is still hard to quantify those missed require-
ments or features that failed to meet any client need. Certainly
focus in Level 2 on requirements management and software qual-
ity assurance begins to address better analysis and early defect
detection—before the product is released rather than after.

However, it is the move to Level 3 that really begins to make
an impact on overall product quality. The introduction of soft-
ware product engineering and intergroup coordination results in
products that deliver the right functionality in a low defect pack-
age. The introduction of peer reviews starts the process of pre-
venting defects before they begin. This improvement in product
quality has the added benefit of lowering maintenance costs.

Improved processes not only result in better products, they
lead to better products that can be built in less time for less cost
per line of code. There are all kinds of studies that support this,
including productivity increases from 60 percent to 100 percent,
cycle time decreases from 25 percent to 75 percent, and other
numbers all over the map. Yet these numbers need to be viewed
in the context of how the studies were done, where the measure-
ments started, and what assumptions were made [1, 2]. Many
factors contribute to the increased productivity and reduced cycle
time. Processes that focus on forethought, inclusion of all inter-
ested parties from the beginning, commitment from all levels of
the organization, peer reviews, and training all contribute to
working smarter and getting the most out of each hour.

In addition to the dollar-and-cents incentive, process
improvement leads to a software development environment

Leverage an Estimating Model to Climb the CMM Ladder

How much value will a software-estimating model add to your organization’s efforts to increase software process matu-
rity? A lot, because not only does it aid in tackling the project management aspects of process maturity, but it also aids
in progressively sophisticated ways as your organization’s maturity increases. A software-estimating tool can provide a
language and framework for making valid and useful comparisons at all levels of the organization. This article indi-
cates how your organization’s climb up the CMM® ladder can benefit by incorporating a software-estimating tool.

Arlene F. Minkiewicz
PRICE Systems L.L.C.

16 CROSSTALK The Journal of Defense Software Engineering December 2000

where people are happy to work. Mature organizations offer
environments where creativity can thrive within the confines of
process. The process areas are meant to constrain the manage-
ment and execution of the projects, not the content. The
mature organization is proficient at predicting cost and sched-
ule, so project plans are realistic. It is also proactive rather than
reactive, so developers spend their time writing excellent code
instead of putting out fires.

Software-Estimating Benefits
Long before software process improvement and the CMM

were common vocabulary, there was wide spread recognition that
software project managers needed better ways to estimate the
costs and schedules of software development projects. In the early
1970s two concurrent research efforts produced two parametric
software cost-estimating models for use in the software develop-
ment community: Constructive Cost Model (COCOMO) and
PRICE Software Model. Since then many new models have been
developed as derivatives or expansions of the original offerings.
However each new model has evolved differently with individual
benefits and shortcomings. The following discussion describes in
general terms what a software cost estimating tool does, and how
it works without delving into specific details.

Software cost estimating tools require users to input a
description of their software project. At a minimum, the cost
estimating tools ask the user to describe:
• The size of the software either in source lines of code, function

points, or some other sizing metric.
• The anticipated amount of reuse.
• The type of software being developed, including real time,

operating systems, Web development, IS, etc.
• The software operating platform, including commercial,

military, ground, air, space, or desktop.
• A quantification of the organization’s software development

productivity.
The tool then derives a cost estimate, and in most cases a

schedule estimate, for the project. Processes driving inputs to out-
puts are: cost estimating relationships derived from regression of
actual data, analogies comparing input parameters to existing
knowledge bases, algorithms derived from theoretical research, or
some combination of these methodologies.

Most tools offer tables, wizards, or knowledge bases to help
novice users select the proper inputs or move into new products,
platforms, or technologies. The tools also require input about the
software development environment (programming language,
tools, etc.) and the software development experience of the team.
This information is then used to determine the cost and schedule
estimates.

While cost and schedule estimates are the main deliverables,
there are many other organizational needs the right estimating
tool can address. Software project planning is really a balancing
act between cost, schedule, quality, and content. The right soft-
ware-estimating tool can help optimize this balance. Many tools
have the capability to estimate latent defects in the delivered
product, then use this information to predict maintenance costs.
With this knowledge a project manager can make tradeoffs based
on the total ownership cost, rather than just development costs.

Most tools have other trade-off and analysis features as
well—allowing the user to set a baseline and vary parameters to
optimize cost and schedule. Your organization can use a software
cost estimating tool to help derive a common language (the tools
input parameter set) to describe and compare software develop-
ment projects, and a common productivity measurement to make
reasonable comparisons between projects that have technical and
operational differences.

Another important feature that most cost estimating tools
deliver is the ability to perform a risk analysis on the cost and
schedule estimates so those estimates can be accompanied by
a confidence level. They do this by asking the user to specify
uncertainty of one or more input parameters, either with a
low, high, and most likely value, or across a distribution (Beta,
Normal, etc.). The tools then use the specified input uncertain-
ties to replace the point estimate with an output distribution
through a simulation technique such as Monte Carlo. From this
distribution the estimator can see the likelihood of achieving a
particular cost or schedule.

There are, of course, limitations to every software cost esti-
mating tool, which are important to understand. Each tool was
created and is maintained using a certain set of data and research
that does not include all types of projects, platforms, or tech-
nologies. It is important to understand the limits of the tool, and
know when you are estimating on the edge or outside of these
limits. Many organizations find it best to include in their esti-
mating processes, the use of more than one tool or methodology
—one for performing an estimate, and another to use as a sanity
check. Doing multiple estimates helps ensure that you will not
miss a case where one particular tool is weak. It is also very
important, no matter what tool or method you use for your soft-
ware estimates, to understand what the tool is looking for when
it asks for particular parameter values. As with everything else, if
your input is not well thought out your output will suffer.

Tools Are Critical in Process Improvement
What part will your software-estimating model play in your

organization’s drive to a higher process maturity level? There are
processes at every level that require the standardization of estimat-
ing, data collection, quality control, measurement, and analysis.
These are all areas where an estimating tool can help add the
structure to define processes. The following addresses some specif-
ic KPAs that have direct requirements that an estimating tool will
help meet.

Level 2 KPAs
One of the goals of the Software Project Planning KPA is,

“Software estimates are documented for use in planning and
tracking software projects.” The software plan is expected to
include size estimates for all work products, along with cost and
schedule estimates. A software-estimating model with the capabil-
ity to estimate software size, cost, and schedule provides an excel-
lent tool for institutionalizing these estimating practices.

The main value a software-estimating tool can add at this
point in your process improvement venture is the ability to esti-
mate software cost and schedule consistently and logically. The
software-estimating model acts as the lowest common denomina-
tor, aiding the process of putting software projects into a com-

PPrroojjeecctt MMaannaaggeemmeenntt

December 2000 www.stsc.hill.af.mil 17

LLeevveerraaggee aann EEssttiimmaattiinngg MMooddeell ttoo CClliimmbb tthhee CCMMMM LLaaddddeerr

mon framework so that information can be learned from each
project and applied to many others.

Imagine that you are a software project manager who has
just delivered a software project late and over budget. You are
gearing up for the next project and would like to learn from this
past experience. How do you evaluate where you went wrong?
Using your software-estimating tool as a guide, you can deter-
mine values for the input parameters that would have led you to
the right answer based on the actual experiential data you have
collected. Once you have done this, you can, based on what you
know about this new project, determine which of these input
parameters will need to change and how the input values might
change. Using a commercial model for estimating facilitates the
creation of a common language for discussing project cost driv-
ers and aids in the development and implementation of a docu-
mented process.

One of the goals of software project tracking and oversight
is taking and managing corrective actions when the results devi-
ate from the plan. A software-estimating model can be a useful
tool in reaching this goal as well. When a well thought-out esti-
mate turns out to be incorrect, this is generally because assump-
tions made about the project were incorrect. Incorrect assump-
tions lead to incorrect inputs. The software project team can
review the original inputs to the model and compare them to
actual information to date. This review helps highlight where
incorrect assumptions have been made and offers the opportuni-
ty to re-plan the remaining portion of the project based on
more accurate versions of assumptions.

Suppose you are involved in an effort to estimate a software
project that represents a new market for your organization. In
developing your original estimate you made and documented
(through an input wizard in the tool) assumptions about your
software development team’s capability to learn and apply domain
knowledge for this new market. You also assumed that the team
was proficient in the technologies employed. The critical design
review shows the project late and over budget. You are tasked
with determining what went wrong, and what the real cost and
schedule should be.

You look back at the original estimate and compare it to
what you know about the project. First of all, the team took
much longer than expected to obtain domain knowledge.
Additionally, once the project got underway, they determined
that the incorporation of a new development technology was
required to achieve all of the project goals. After modifying the
inputs to your estimating tool and regenerating the estimate,
leaving all other parameters the same, the critical design review
cost and schedule is much closer to the actual. You now have an
estimate to complete with a new level of credibility. Care should
be taken to make sure that use of an estimating tool does not
lead you to overlook factors outside the scope of the tool. You
may find that there was nothing wrong with your original esti-
mate, but that the missed deadline was due to unforeseeable
organizational changes for which no tool could account.

Another process area where a software-estimating tool
can be included is the Software Subcontract Management KPA.
Not only does there need to be a process for planning software
developed on site, but also for reviewing and checking the plans

provided by a subcontractor. These plans, too, are based on size,
cost, and schedule estimates. Subcontracting organizations can
also use the language that a commercial tool offers for talking
about things that drive cost.

Level 3 KPAs
As an organization begins to attack the required processes

to move from repeatable to defined processes, the focus shifts
from the project level to the organizational level. One goal of the
Organization Process Focus KPA is coordination of process activ-
ities at the organizational level. A key part in achieving this goal
is the organization’s software process database, which collects
process and project data. A commercial estimating model
requires inputs to develop a generic framework that describes
product and project characteristics (such as functionality, quality,
size, complexity, and reuse) in such a way that permits compar-
isons across the organization. Various organizational groups can
use this language to compare dissimilar projects in ways that pro-
vide useful analysis to feed the improvement process.

For example, imagine you work for an organization that
develops avionics for both military and commercial applications.
The military side of the house is attempting to evaluate the cost
impact of incorporating a new technology that the commercial
side has been using for some time. Using the data learned from
the commercial avionics development, the software estimator only
needs to change information directly related to the operating plat-
form in applying lessons learned to evaluate how this new tech-
nology would change costs on a military application. The input
parameters for the model help focus the evaluation on what is dif-
ferent and what is the same when performing this type of com-
parison, and help remove noise from the comparison.

As processes begin to be defined at an organizational level,
the real power of a commercial model becomes clear. Part of the
Integrated Software Management KPA requires that an organiza-
tion use data in the software project database for software plan-
ning and estimating. This is a process that cost estimating profes-
sionals call calibration, and it is automated as part of the many
good estimating tools. As noted earlier, in implementing a com-
mercial tool, the organization has already committed to storing
data in the process database in a way that makes comparisons
possible at an organizational level. The tool then has the capabili-
ty to look at this historical data, which describes the actual past
performance of the organization, and use it to improve the esti-
mates made from that point.

Another question frequently asked is how inputs to the esti-
mating model might need to change as the company progresses
to higher levels of maturity. The beauty of a process improve-
ment approach such as that dictated by the CMM is that once
an organization has reached a new level of maturity, they already
know the answer to this question. The increased data collection
and analysis with more mature organizations provides the infor-
mation required for calibrating and tailoring the inputs to reflect
organizational maturity accurately. The value of the tool itself is
improved tremendously by the processes that utilize it.

Level 4 and Beyond
Most software-estimating models contain features that can

help meet process needs for the Software Quality Management

18 CROSSTALK The Journal of Defense Software Engineering December 2000

PPrroojjeecctt MMaannaaggeemmeenntt

KPA. A model that contains a submodel to estimate defects per
size measure provides the basis for a process that allows for the
control and management of a quality plan through trade-off
analyses between quality, schedule, and content goals. This sub-
model can be calibrated by using organizational data from the
process database. Suppose you have as an organizational goal to
reduce latent defects in your delivered software by 20 percent. At
Level 4 you have enough data in the software process database to
evaluate defects delivered in the past and calibrate the estimating
tool’s defect estimate. Once this is done, you can evaluate every
proposed project for estimated defects and make corrections to
the project plan. This makes possible the goal to extend the devel-
opment schedule or reduce the amount of content expected in
the given time frame until the quality goal is met.

The Technology Change Management KPA requires that an
organization have a well-kept process database with productivity
and quality metrics from past projects, and a language and frame-
work for introducing new technology parameters. Your commer-
cial software-estimating model can be an important component
in that framework. Its parameters for characterizing software proj-
ects constitute an important part of the language. A mature
organization has much of the right data about past projects. The
cost estimating relationships or knowledge bases in your tool have
encapsulated the impacts of new and emerging technologies. The
marriage of these two stores of information offers an organization
excellent insight into how their existing capabilities and experi-
ences merge with new target technologies, and provides informa-
tion vital to making the right technology decisions.

Conclusion
Process improvement is a worthwhile investment for any

software development organization. The CMM is an excellent
resource for any organization planning to improve their processes
regardless of the level of process improvement needs. Review of
the CMM and concentration in those areas that will meet organi-
zational goals is a must for any organization seriously considering
process improvement. The CMM is thorough, comprehensive,
and encapsulates a lot of good ideas from many experts in the
software process field.

No matter how large or small your process improvement
plans are you will find that a commercial software-estimating
tool will ease your efforts for standardization and control. The

most value will be obtained if you incorporate it into organiza-
tional practices, and make it a common language for discussions
surrounding things that drive your software costs. It is not until
all the projects in the organization can be discussed in a com-
mon context that true organizational needs and concerns can be
addressed. A commercial model will help provide the framework
for these discussions. Not only does it offer a way to make this
happen, but the tool you choose adds value to your software
process improvement program. Conversely, your software
process improvement results will make your tool more valuable
to your organization.�

References
1. McGarry, Frank et al., Software Process Improvement in the NASA

Software Engineering Laboratoty, Technical Report. CMU/SEI-94-
TR-22, December 1994.

2. Oldham, Leon G., et.al., Benefits Realized from Climbing the
CMM Ladder, CROSSTALK, May 1999, Vol. 12, No. 5.

About the Author
Arlene Minkiewicz is chief scientist at PRICE
Systems L.L.C. She leads cost research initiatives
for the entire suite of PRICE cost estimating
products. Previously, she functioned as lead of the
Product Enhancement Team with responsibility
for the maintenance and enhancement of all

PRICE products. She speaks frequently on software measurement
and estimating at conferences, and has published articles in
Software Development, ITMS, and the British Software Review.

700 East Gate Drive, Suite 200
Mount Laurel, N.J. 08054
Voice: 856-608-7222
Fax: 856-608-7247
E-mail: arlene.minkiewicz@pricesystems.com
Internet: www.pricesystems.com

April 2001
Web-Based Applications

Deadline Dec. 4, 2001

May 2001
Software Odyssey: Cost, Schedule, Quality

Deadline Jan. 1, 2001

June 2001
Software Design Methodologies

Deadline Feb. 1, 2001

Please E-mail submissions to features@stsc1.hill.af.mil

Author Guidelines are available at www.stsc.hill.af.mil

Issues will not focus exclusively on one theme.We
accept article submissions on all topics at all times.

“Open Forum” and “BackTalk” submissions welcome.

Please address any questions to Heather Winward at
801-586-0095 DSN 586-0095

Thank you in advance for your contributions!

Call for Articles

Additional Readings
• Craig, Rushby, Software Quality Assurance in a CMM Level 5

Organization, CROSSTALK, May 1999, Vol. 12, No. 5.
• Paulk, Mark C., Practices of High Maturity Organizations, Proceedings

of 1999 SEPG Conference, Atlanta, Ga., March 1999.
• Paulk, Mark C., Effective CMM-Based Process Improvement, Software

Engineering Institute, Carnegie Mellon University, 1996.
• Lawlis, Patricia K., A Correlational Study of the CMM and Software

Development Performance, CROSSTALK, September 1995, Vol. 8 No. 9.

December 2000 www.stsc.hill.af.mil 19

Software Engineering Technology

Prevent Losses, Maximize Opportunities
Most risks arise from dealing with change. Any change

translates into a loss or an opportunity, each requiring a decision
that in turn will generate more changes, as shown in Figure 1.
This can lead to an avalanche effect (usually destructive), or it
can be channeled to have a constructive outcome.

In any situation at least three main axes should be considered
when attempting to prevent losses for a given entity: the human
resources associated with this entity; the tools, equipment, and
technology used in (or by) this entity; and the mission that this
entity is pursuing (or the function it is performing). Assume that
five changes can occur along each axis over a given period of
time. Each change offers either a loss or an opportunity. If there
are two ways to prevent the loss from occurring and two ways to
take advantage of the opportunity, any one change requires exam-
ining a total of = 4,005 relationships before making an opti-
mal decision. Given that at times several changes may occur over
a period of one day, this is not an easy task, as depicted in Figure
2, which includes only one change per axis. Napoleon Bonaparte’s
statement to the effect that all he wanted from his generals was
that they be lucky, is therefore not entirely surprising.

Obviously problems that have been anticipated are more
likely preventable. Just implementing a few preventive measures
perfectly matched to an undesirable event increases the likelihood
of preventing losses. Conversely, even a large number of preven-
tive actions are liable to be ineffective if potential problems are
poorly anticipated. Crises are bound to occur sooner or later.

For example in the Vietnam conflict, the North Vietnamese
were definitely more successful than the French and the United
States even though they did not have access to all the material
resources that the latter had. Yet they demonstrated great inge-
nuity at exploiting what they had at their disposal to address the
challenges they were facing. It is indeed remarkable that they
were able to hold out for so long against two world powers.

It should nevertheless be possible to devise a set of mecha-
nisms to monitor undesirable conditions and to prevent prob-
lems from occurring. In this way, it becomes possible for an
entity to operate at an arbitrarily low likelihood of losses as
long as it has the capacity to implement such mechanisms [1].

Application in Software Engineering
Among the fields where the aforementioned principles have

been put into practice, assessing risk in IT projects [2] is the one
in which we have collected the most information. In these assess-
ments three basic parameters were measured: the risk perception
level, the risk mitigation capacity, and the likelihood of problems.

The Software Engineering Institute’s Capability Maturity Model®

(Levels 2 and 3) and the Taxonomy-Based Risk Identification [3]
were used as the IT assessment framework.

The risk perception level corresponds to the ability to antici-
pate problems. In an IT context, it is the capacity of profession-
als assigned to a project to anticipate potential problems and take
preventive actions. To some extent, this capacity depends on per-
sonnel experience and know-how. It also depends on the risk
mitigation capacity because a mature process has a greater capac-
ity to anticipate problems through information provided by its
risk mitigation components. In fact, such a process may compen-
sate for a lack of experienced personnel.

In other words, an organization may decide to hire very tal-
ented and experienced, high-salaried people to develop the IT
application with the help of a minimal and less expensive
process. Or it can decide to implement an expensive high-matu-
rity process and hire less experienced, less expensive people. A
cost-effective compromise may be to hire a few talented and

Assessing Software Risk
Louis A. Poulin

GRafP Technologies Inc.

This article describes the application of hazard evaluation and prevention to software risk management. This approach has been
used by organizations involved in developing information technology (IT) applications in order to assess the probability that seri-
ous problems will occur, such as cost overruns, schedule slippage, and products or services that do not satisfy their intended needs.

Figure 1. Loss vs. opportunity

Figure 2. The complexity of preventing losses and exploiting opportunities

C
2

90

20 CROSSTALK The Journal of Defense Software Engineering December 2000

experienced people to develop and implement a high maturity
process that captures their know-how and experience, which less
experienced people can subsequently apply.

The risk mitigation capacity corresponds to the mechanisms
in place to prevent problems. In this context, risk mitigation
capacity is similar to process capability, taking into account that
some process components have more risk mitigation potential
than others.

Finally, the likelihood of problems is the probability that
risks will materialize. Again, given the IT framework and defined
assessment scope, this represents the probability that serious
problems will occur jeopardizing the project or causing failure.
Risks in this case include cost overruns, schedule slippages, and
products or services that do not satisfy their intended needs.

The experience gained in the course of conducting such
assessments has shown that in IT, risks are basically divided into
two classes: process-related (common or frequently recurring)
risks and project-specific (singular or infrequently recurring)
risks. Process-related risks originate from the way methods, tools,
procedures, and human resources are integrated to produce a
desired outcome. Their nature makes them more prone to recur
from project to project (e.g., conditions leading to critical deci-
sions being unduly delayed or taken without having access to all
relevant information). Project-specific risks are intimately linked
to the nature of a project and are therefore less prone to recur
(e.g., conditions leading to a system being unable to handle the
volume of information it must process because of network band-
width limitations).

The breakdown of problems encountered in organizations
having undertaken IT projects, based on the information col-
lected so far, is shown in Table 1. This data indicates that
process-related risks account for 70 percent of all risks in IT
projects where risks of unknown nature are distributed along
the ratio of process-related to project-specific risks. In fact, a
more accurate statement would be that, on average, risks in IT
projects are made up of 30 percent project-specific components
and 70 percent process-related components.

Risk Assessment Results Summary
The data collected so far in Europe, South America, and

North America using this approach indicates that an IT project
has a 33 percent probability of experiencing serious difficulties,
including cost overruns, schedule slippage, and products that do
not generate anticipated benefits. In terms of frequency, 33 per-
cent of IT projects can expect to experience such problems to
the point of failure. This also confirms the finding documented
by the Standish Group International showing 31 percent of IT
projects are cancelled before completion [4].

Assessment data also showed that, at least in IT, the critical
threshold associated with the likelihood of problems appears to
be approximately 40 percent. In other words, a project or an
organization cannot sustain a likelihood of problems higher
than 40 percent for any significant duration relative to the
planned or current activities. Consider that a likelihood of
problems equal to 50 percent corresponds to operating at ran-
dom. If such were the case, it would be wishful thinking to
expect any successful outcome over a significant period of time.

The same 40 percent value holds true in the financial indus-
try (venture capital), where a portfolio manager will tolerate four
investments out of 10 not generating a profit [5]. Anything
higher than this ratio will result in restructuring the portfolio in
order not to exceed the 40 percent limit, which would result in a
certain loss.

The assessment approach has also been used to characterize
the Canadian IT industry. Data was collected through 30 com-
prehensive assessments conducted in Canadian organizations
involved in developing products or providing services drawing
on IT and software engineering. The size of the assessed organi-
zations ranged from 10 professionals to 250, with an average of
76, and a standard deviation of 64. Table 2 summarizes assess-
ment results.

The results indicate that with a likelihood of problems at
34.3 percent, Canadian organizations can expect to face slightly
more difficulties than the average organization, which is charac-
terized by a 33 percent value. Out of the 30 assessed organiza-
tions, eight exceeded the aforementioned 40 percent threshold,
and in all cases, major difficulties were observed during the 12
to 18 months that followed.

Government organizations have a higher risk mitigation
capacity than private industry. But the latter has a higher capac-

Table 1. Breakdown of problems in IT projects

Table 2. Assessment results for all assessed government/private organizations

Source of Observed Problem Nature Relative
(a risk that materialized) Freq. of

Occurrence

Customers (e.g. poor communication Mostly 15%
of requirements) process-

related
System components (e.g. inadequate Mostly 14%
technical performance) project-

specific
Development methods (e.g. improper Mostly 13%
design approach) process-

related
Management (e.g. critical decision Mostly 12%
unduly delayed) process-

related
Suppliers (e.g. inability to deliver Mostly 12%
as planned) process-

related
Change management (e.g. incompatible Mostly 10%
components) process-

related
Development environment (e.g. unsuitable Mostly 9%
programming language) project-

specific
Tests (e.g. incomplete test coverage) Mostly 6%

project-
specific

Supervision mechanisms (e.g. irregular Mostly 5%
tracking of progress) process-

related
Others Unknown 4%

All Government Private
Organizations Organizations Industry

Average Standard Average Standard Average Standard
Parameter deviation deviation deviation

Risk 60.1% 9.1% 62.9% 11.0% 57.9% 6.9%
Mitigation
Capacity
Risk 38.0% 9.4% 34.0% 10.7% 41.0% 7.2%
Perception
Level
Likelihood 34.3% 11.0% 34.3% 10.9% 34.2% 11.3%
of Problems

SSooffttwwaarree EEnnggiinneeeerriinngg TTeecchhnnoollooggyy

December 2000 www.stsc.hill.af.mil 21

ity of anticipating problems and taking appropriate action. The
end result is that both are characterized by the same likelihood
of experiencing problems (34.3 percent vs. 34.2 percent).

Reliability of the Approach
A trial was conducted in 1999 with a large government IT

project to determine the reliability of the approach. The project
called on new technologies and a large pool of resources that
did not necessarily share the same processes. It also had particu-
larly challenging coordination aspects stemming from the wide
geographical distribution of stakeholders.

On a general level, the trial’s main objective was to deter-
mine the level of correlation between intrusive (or active) risk
assessment techniques such as taking a subsystem apart, con-
ducting audits and inspections vs. non-intrusive (or passive) risk
assessment techniques (e.g. keeping a subsystem under remote
surveillance or conducting collaborative appraisals). A second
objective was to assess the degree of correlation between the
measured likelihood of problems when 259 process-embedded
risk mitigation mechanisms were investigated versus 404. The
number of undesirable situations that are most often encoun-
tered in the course of developing or maintaining IT applications
was fixed at 163 in both cases. Table 3 summarizes the results of
the trial.

The correlation between non-intrusive and intrusive assess-
ment techniques was not as high as expected. In fact, non-intru-
sive assessments were found to be more accurate than intrusive
assessments after the data analysis was completed; intrusive assess-
ments do have an impact on the likelihood of problems because
of their disruptive effect on the collected information. On the
other hand, non-intrusive assessments do not seem to be overly
affected by noise, a concern that had been expressed regarding the
use of such techniques. Non-intrusive assessments exhibited a
surprisingly high level of correlation considering that two inde-
pendent teams conducted the field trial. However, while relatively
immune from noise, non-intrusive assessment techniques alone
tend to be pessimistically biased, whereas intrusive assessment
techniques tend to be optimistically biased. Non-intrusive assess-
ments followed by intrusive assessments seem to provide the best
results. In this case for an investigation of 404 mitigating mecha-
nisms, the results were: a likelihood of problems of 33.7 percent,
a risk mitigation capacity of 61.2 percent, and a risk perception
level of 36.7 percent.

Conclusion
The importance of assessing software risks and of subse-

quently managing them has slowly been gaining recognition
over the last decade. Common sense indeed dictates that reduc-
ing the frequency of problems in the course of an IT project
will increase the likelihood of a successful delivery.

Through assessments we have conducted during the years,
we have observed that the most successful organizations are those
that have established sound processes for carrying out their proj-
ects while concurrently focusing on anticipating problems and
preventing them from occurring. Individuals are known to oper-
ate at a constant risk level, and as problems are better anticipated

and dealt with, larger projects that present a higher level of risk
are initiated, which in turn contribute to the growth of the
organization.

It is worth quoting Andrew Grove, CEO of Intel Corp., a
company that has had a major impact on IT, in his book Only
the Paranoid Survive. According to Grove, “Sooner or later,
something fundamental will change in your business.” The
Wallace Corp. is a good example; it won the prestigious Malcom
Baldridge Award in 1990 and declared bankruptcy in 1991.�

References
1. Gallager, Robert G., Information Theory and Reliable

Communication, John Wiley and Sons, New York, 1968.
2. Poulin, L.A. and Michael Raftus, Software: Process Risks

Identification, Mapping and Evaluation, Proceedings of
the SEI Conference on Risk Management, Virginia Beach, Va.,
April 1997.

3. Dorofee, Audrey J., Higuera, Ronald P. et al., Continuous Risk
Management Guidebook, Carnegie Mellon University, Software
Engineering Institute, Pittsburgh, Pa. 1996.

4. Chaos—Application Project and Failure, The Standish Group
International, January 1995.

5. Worzel, Richard, From Employee to Entrepreneur, Key Porter
Books, Toronto, 1989.

Table 3. Summary of field trial results

Non-Intrusive Intrusive Non-Intrusive
Techniques Techniques Techniques
404 Mitigating 404 Mitigating 259 Mitigating
Mechanisms Mechanisms Mechanisms

Likelihood 37.5% 31.0% 37.8%
of Problems

Risk 58.6% 63.0% 58.0%
Mitigation
Capacity

Risk 36.7% 36.7% 37.3%
Perception
Level

About the Author
Louis A. Poulin assesses the capability of IT organ-
izations and develops hazard evaluation, monitor-
ing, and prevention tools and methodologies. He
has a bachelor’s in engineering physics, a certificate
in Naval engineering, and a master’s in electrical
engineering. He supervised the development of

the tool used to carry out the assessments described in this paper.
Previously, Poulin served in the Canadian Navy as a Combat
Systems Engineering Officer. He is a member of the Institute
of Electrical and Electronics Engineers and a fellow of the
Engineering Institute of Canada.

GRafP Technologies Inc.
550 Sherbrooke St.West, Suite 777
Montreal, Canada, H3A 1B9
Voice: 514-847-0900
Fax: 514-847-0400
E-mail: lpoulin@grafp.com
Internet: www.grafp.com

AAsssseessssiinngg SSooffttwwaarree RRiisskk

22 CROSSTALK The Journal of Defense Software Engineering December 2000

Since the demise of the Ada mandate on April 29, 1997, lit-
tle has been said about the debate that raged in the mid-1990s
comparing the merits of C++ versus Ada [1] within the weapons
system world. Many questions remain such as: “Has the defense
community made a wholesale move to competing languages like
C++ and technologies like Java?” “Is the migration pattern the
same for embedded software as it is for application software?”
“Are high quality compilers, bindings, tools and libraries still
readily available?” “Is Ada still making converts in academic,
industrial and government circles?” “Are vendors making a prof-
it?” “Will vendors exist in the future to satisfy the community’s
continuing demands for training, compilers, tools and support?”
“Will organizations be able to find and hire programmers skilled
in Ada language and associated toolsets now and in the future?”

To determine if Ada is still viable, proponents must answer
these and many other similar questions.

Like many weapons systems organizations, the Army missile
defense community embraced Ada two decades ago because it
was the best available alternative to reduce the risk—cost, sched-
ule, and technical—in developing safety critical systems. The lan-
guage directly supported real-time development needs and risk
reduction through standard enforcement. It provided the tools
contractors needed to develop highly complex, distributed, real-
time systems. If given the chance to make the decision again,
under similar circumstances, the Army would still choose Ada.

However, times change along with decision criteria. Today,
the missile defense community has millions of lines of Ada soft-
ware that must be maintained, sustained, and supported up to a
20-year time period. As programs enter full scale development,
decision makers cannot help but wonder if Ada will retain the
staying power needed for cost effective systems support. Whether
to continue using the language or switch to an alternative is a
very real question in light of Ada’s current status.

To make an informed decision, the THAAD program com-
missioned a study to address questions relative to the long term
viability and staying power of Ada. As part of the study, the pro-
gram developed a wealth of information that could prove useful
to other members of the Department of Defense (DoD) weapons
system community relative to Ada’s viability. This article shares
the information by putting it into the public domain. Hopefully,
others will use this information to make informed decisions when
answering the question: Is Ada dead or alive?

Viability Assessment
Previous studies have reported that the viability of a pro-

gramming language is a function of many variables. The accom-
panying tables 1, 2 and 3 were developed via a Delphi exercise by
Reifer Consultants, Inc. (RCI) by having a group of software

managers rank items per the criteria listed using a scale of one to
five. In these tables Ada scores well in language evaluation when
the richness of the language and its degree of standardization are
taken into account. Its support for real-time development and
reuse features provides facilities that users who work within the
weapons systems community always deem important.

Is Ada Dead or Alive Within the Weapons System World?
Donald Reifer

Reifer Consultants, Inc.
Jeff Craver
U.S. Army

Mike Ellis and Dan Strickland
Dynetics, Inc.

The Theater High Altitude Area Defense program commissioned a study on the long-term viability and staying power of Ada
after the demise of its mandate in 1997. The study would help decision makers determine if Ada had the staying power to sup-
port future systems, or whether an alternative should be sought. This article puts the results of that study in the public domain.

Factors\Language Ada C/C++
Core Features 5 4

• Strong Typing
• Exception Handling

Degree of Standardization 5 4
Object-Oriented Support 5 5
Reuse Facilities 5 4
Real-Time Programming Support 5 3

Subtotal 25 20

Factors\Language Ada C/C++
Optimizing compilers available 5 5
for current host/target platforms
Optimizing compilers planned 3 5
for future host/target platforms
Bindings to existing systems 5 5
software available (POSIX,
Windows 98, etc.)
Bindings to future systems 4 5
software available (Linux,
Windows 2000, etc.)
Bindings to GUIs and generators 4 5
available (Fresco, etc.)
Rich libraries available (run-time, 4 5
math, class, building blocks, etc.)
Compiler support tools available 4 5
(syntax-directed editor, symbolic
debugger, etc.)
Inexpensive visual toolset available 2 5

Subtotal 31 40

Table 1. Language Evaluation (rating scale 1 to 5 [highest])

Factors\Language Ada C/C++
Popularity 2 5
Public training offerings available 2 5
Literature and textbooks readily 4 5
available
Consultants and subcontractors with 2 5
skills in language available for hire
Contractor core competency with 5 3
language and toolset

Subtotal 15 23

Table 3. Education and Training Support (rating scale 1 to 5 [highest])

Table 2. Compiler/Tool Availability (rating scale 1 to 5 [highest])

Open Forum

December 2000 www.stsc.hill.af.mil 23

However, its lack of bindings, tools,
libraries and inexpensive compilers has
been a weakness that has caused users to
shy away from selecting Ada in the past,
especially for command and control proj-
ects. Most importantly, a lack of popular-
ity and education and training shortfalls
has detracted from Ada’s use in new pro-
grams. Today’s projects demand a lan-
guage whose products are stimulated by
market forces, not edicts. Such forces
stimulate product developments along
with language learning and use.

These factors can have a large impact
on a program like THAAD. For example,
the cost of a compiler for a new target
machine is prohibitive if the project, not
the market, has to stimulate product
development. The cost to produce just a
new code generator for THAAD would
exceed $1 million.

Additionally, it would take 18 months
to field this compiler; and the activity
would be on the critical path due to
impacts from potential schedule delays. As
a result, practical concerns epitomized by
the following trends also play an impor-
tant part in assessing the viability of lan-
guage alternatives:
• Vendor/Tool Availability—Figure 1

summarizes our findings relative to the
availability of vendors, compilers and
tools. This chart and Figures 2 and 3 were
developed using public data available on
Ada’s Web page (www.adahome.com) by
RCI for the THAAD program office. As
the figures illustrate, the number of ven-
dors generating Ada products has been cut
in half since 1994. Of course, some of the

firms that disappeared were acquired.
Others just went out of business. In addi-
tion, the number of compilers has
decreased dramatically as users of Ada 83
have migrated to Ada 95.

On the upside, tools supplied with
the compilation systems (debuggers, edi-
tors, etc.) that have survived are rich and
capable, especially those that are part of a
Multi-Language Support System (MLSS).
But the cost of these compilers and tools is
high compared with the alternatives. In
addition, their availability for new plat-
forms is questionable. To ensure options,
the program would have to fund the com-
piler developments and maintenance. As
shown, this alternative adds cost to the
program, and because compilers are on the
critical path, increases programmatic risks.

• New Starts/Language Use Trends—
Most vendors interviewed agreed that Ada
would continue like Jovial and other DoD
programming languages as a niche market.
Most of their business was concentrated in
maintenance. Very few new projects were
selecting Ada. The reasons for this lack of
popularity are highlighted in Tables 1
through 3 above. Our primary concern is
that without a large market to fuel future
compiler and tool developments, firms will
rely on projects like THAAD to fund
innovations and compilers for new plat-
forms and targets. The costs for this are
prohibitive relative to available options.
• European Use Trends—THAAD

kept hearing from Ada advocates that
development was stronger in Europe. In
response, our team surveyed the overseas
marketplace to see if things were any dif-
ferent outside of the United States. This
survey confirmed that the European mar-
ketplace mirrors the U.S market. Like the
United States, there were few new starts
for Ada efforts in Europe. Similarly, most
Ada efforts identified in the European
weapons systems community were
focused on maintenance and upgrades.
Again, as in the United States, the gov-
ernment Ada supporters were neither
funding R&D nor urging their contrac-
tors to use the language.
• Academic Trends—Figure 2 summa-

rizes our findings relative to Ada’s aca-
demic trends. As this figure illustrates,
Ada use by colleges and universities seems
to have peaked in 1997. While Ada is
recognized as an excellent teaching lan-

Figure 1. Tool/Vendor Availability

Figure 2 Trends in Academia

IIss AAddaa DDeeaadd oorr AAlliivvee WWiitthhiinn TThhee WWeeaappoonnss SSyysstteemm WWoorrlldd??

Colleges in the United States Teaching Ada

Ada Vendor/Tool Availability Trend

1991 1993 1995 1997 1999 2000

200

150

100

50

0

CS Level 2-7
CS Level 1

[CS = Comp Science]

• Number of colleges teaching Ada peaks in the year (1997)
when the government mandate (subsidy) stops.

• Trend from 1997 is relatively flat – academia is slow to change.

• From 1994 to 1999, vendors cut to half (16 to 8), compilers to 8%.
• Continuing trend indicates no pure Ada compilers by 2009.

Vendors

Compilers

Vendors

1994 1999 2004 2009

800
700
600
500
400
300
200
100
0

18
16
14
12
10
8
6
4
2
0

Compilers

24 CROSSTALK The Journal of Defense Software Engineering December 2000

guage for introduction to computer science, its use trend from
1997 to present is relatively flat. In addition, the number of
Ada seminars offered by firms specializing in educating and
training professionals working in the field has fallen off sharply.
If these trends continue, it may become increasingly difficult to
find programmers skilled in using Ada programming language
to staff projects in the near future.
• Publication Trends—To indicate popularity, the THAAD

team surveyed publications about Ada. Figure 3 summarizes the
results, which indicate that interest in Ada is diminishing rapidly.
This trend confirms that Ada is increasingly becoming a niche
market inherently characterized by high costs, low demand, and
lack of innovation; i.e., limited competition forces a degree of
complacency.

As a final indicator of popularity, the THAAD team investi-
gated conferences and professional publications. The decline of
the Tri-Ada conference, seeming lack of interest for Ada at confer-
ences such as the Software Technology Conference, and diminish-
ing number of sponsors for Ada Letters does not paint a good
picture for the future staying power of the language.

Productivity Assessment
Ada supporters would argue that its cost-benefits alleviate

these and other concerns. However, the productivity data that is
summarized in Table 4 shows that Ada no longer has an edge
over other object-oriented languages like C/C++ within the
weapons systems domain. RCI developed the information in
this table by analyzing cost and productivity data for more than
1,500 projects within their historical databases. The trends indi-
cate that the productivity gap between languages has narrowed,
and the competition has caught up with Ada (i.e., see [2] for a
1995 snapshot of the RCI databases).

Conclusions
The results summarized so far should not surprise anyone.

Based upon the evaluation factors and identified trends, the ver-
dict on Ada use is in: Lack of DoD institutional support and
popularity has weakened its position relative to the competition.
Not surprisingly vendors report only one in 10 projects within
the weapons system community seem to be selecting Ada for
new developments.

The issues involved are pervasive even when you have mil-
lions of lines of code to support while looking at developing/
upgrading code for new platforms. While the Ada language pro-
vides superior support for weapons systems development, the
investments needed to continue and sustain its use are large, and
for the most part, not budgeted. Neither are the costs needed to
convert millions of lines of code from Ada to C/C++.

While the THAAD project supports Ada’s continued use, it
must do what is in the best interests of the project. However,
blanket approval to change to another language is in nobody’s
best interests. In response, THAAD has elected to permit its con-
tractors to change to another language only when it makes both
economic and technical sense. They must justify the conversion
technically and in terms of the lifecycle costs before being given
permission to change. In addition, they must also develop a tran-
sition plan that details how the transition will take place as part
of the approval process. Then, projects like THAAD can figure
out how to manage the transition and amortize the costs as part
of an existing budget.

The approach THAAD has taken is consistent with current
DoD policy regarding Ada, which calls for doing what makes
sense in the long term for the program. THAAD recommends
that other programs critically examine their situation before aban-
doning Ada because of its technical strengths as a real-time pro-
gramming language.

THAAD is also investigating using MLSS. Such tool systems
permit the vendors to reuse their existing language front-ends
(syntax analyzers, etc.) with common back-end tools (code gener-
ators, editors, debuggers, etc.). This reduces problems associated
with learning different toolsets and increases availability of bind-
ings, tools, and libraries. Yet caution must be exercised to select
compilers that enforce and implement published language stan-
dards in keeping with required real-time, safety critical systems.

In conclusion, Ada is not dead. It is alive and providing qual-
ity support to programs like THAAD. However, its future is not
assured. Trends indicate that Ada is following the direction of
Jovial and other DoD programming languages. In response, the
project must continuously address the risks, and do what makes
economic sense for the program. Because others will probably
elect to follow suit, we have put the results of our study in the
public domain.�

References
1. U.S. Air Force, Ada and C++: A Business Case Analysis, 1991.
2. Donald J. Reifer, Quantifying the Debate: Ada versus C++,

CROSSTALK, July 1996.

Figure 3 Publication Trends

Application Domain Ada83 Ada95 C/C++ 3GL Norm
Command and control 70 * 50 100 75
Information systems 25 25 20 35 30
Telecommunications 50 35 40 80 60
Weapons – Airborne 150 125 125 225 175
Weapons – Missile 150 * * 250 200
Weapons – Spaceborne 150 * 150 200 175
Weapons – Ground 75 75 50 90 75
* Not enough data available

Table 4. Cost Per Delivered SLOC by Language/Application Domain

OOppeenn FFoorruumm

• 1999 book was not new, but a revision of a 1997 work.
• Trend indicates that interest in Ada is diminishing rapidly.

1989- 1991- 1993- 1995- 1997- 1999
1990 1992 1994 1996 1998

20

15

10

5

0

December 2000 www.stsc.hill.af.mil 25

About the Authors
Donald J. Reifer is a consultant specializing
in change management at Reifer Consultants,
Inc. in Torrance, Calif. He has more than 30
years of experience managing large software
projects and putting software technology to
work in Fortune 500 firms. From 1993 to

1995, he was chief of the Ada Joint Project Office, technical
advisor to the Center for Software, and chief of the
Departmetn of Defense Software Reuse Initiative under an
Intergovernmental Personnel Act assignment with the
Defense Information Systems Agency. Reifer currently helps
clients insert product line and component-based software
engineering technologies into their software operations.

Reifer Consultants Inc.
P.O. Box 4046,Torrance, Calif. 90510
E-mail: d.reifer@ieee.org
Voice: 310-530-4493

Jeff Craver is the THAAD System Software
Engineering division chief. He has more than
eight years experience in software acquisition
and development process improvement of
Department of Defense systems.

U.S.Army Space & Missile Defense Command
SFAE-AMD-THA-W-SW, P.O. Box 1500
Huntsville,Ala. 35807
E-mail: Jeff.craver@thaad.army.mil
Voice: 256-955-1828

Mike Ellis works for Dynetics Inc. as the
System Software Engineering branch chief.
He has more than 24 years experience in
large system software development, quality
assurance, and test.

Dynetics, Inc.
990 Explorer Blvd.
Huntsville,Ala. 35806
E-mail: mike.ellis@dynetics.com
Voice: 256-964-4614

Dan Strickland works for Dynetics Inc. as a
software engineer. He has specialized in the
software metrics and software cost estimation
fields of software engineering.

Dynetics Inc.
990 Explorer Blvd.
Huntsville,Ala. 35806
E-mail: daniel.strickland@dynetics.com
Voice: 256-964-4619

Ed. Note:
Ada has been surrounded by controversy almost since
its inception. In this issue we offer one perspective on
the current state of Ada and how this affects technology
decisions for weapons systems. An upcoming issue will
provide an opposing point of view … stay tuned.

Project Management (PM) Web Sites

www.pmforum.org Project Management World Today
This is an on-line publication that contains notices, reports, news and
information related to project management from around the world. Each
issue features editorials and presentations by some of the world's leading
project management experts, on leading-edge issues and concepts.

www.ipma.ch International Project Management Association
The IPMA is a nonprofit organization based in the U.K. It promotes
PM through its global membership network of national PM associations.
Currently IPMA comprises 28 national associations representing approxi-
mately 20,000 members primarily in Europe but also in Africa and Asia.
Moreover, institutional contacts to National Associations in North America,
Australia and South Africa ensure a true global dimension to the work of
IPMA. The site features listings of conferences, seminars, research, global
forum, training courses and quarterly newsletter.

www.infogoal.com/pmc/pmchome.htm Project Management Center
This site is dedicated to those with an investment in PM. The site brings
information together to cut back on Web cruising and provides practical
help. It offers the latest news, articles, software, case studies, links, etc.

www.pmboulevard.com/home.jsp PMBoulevard
This PM Community connects you to others facing the same PM challenges
you do every day. You can share ideas, compare notes, ask for help, find out
the latest news, purchase materials and access other relevant project manage-
ment sites. There is a calendar of events, a PM Bulletin Board that gives you
access to project managers everywhere. Guests can view the ongoing discus-
sion. Members and subscribers can take part in the action by posting mes-
sages and replies. It also features a news link, bookstore and PM links.

www.projectzone.com ProjectZone
The ProjectZone is a community of technology project leaders discovering,
learning, inventing, and teaching each other better ways to lead and manage
teams and projects. The material on this site is written by project leaders for
project leaders as a volunteer effort, and reflects their experiences and opin-
ions. You will find a variety of different, perhaps even conflicting, points of
view here. The site is divided into four distinct zones—strategy, people, struc-
ture, and process. Articles on project leadership and management topics can
be found in each zone.

www.newgrange.org NewGrange Center for Project Management
The NewGrange Center for Project Management was started in early 1997
as a nonprofit professional organization. Its mission is to further the discussion
of project management as a professional discipline. The focus is a hands-on,
practical approach to project management to determine what really works,
why it works, and how to replicate it consistently.

www.allpm.com The Project Manager's Resource Center
ALLPM is a site for Information Technology (IT) project management infor-
mation and resources. It is a clearinghouse of discussion forums, resource links,
conference and seminar listings, news releases, contract awards and more.

www.project-manager.com Project-Manager
This site is an online guide for anyone who must plan, implement and com-
plete a commercial project. Project-Manager is a learning experience. Here
you can get professional advice. Upgrade personal skills. Exchange ideas.
Above all, get your project up and running on time and within budget.
The site also has links to various Product Depots where you may source
equipment, machinery and supplies.

26 CROSSTALK The Journal of Defense Software Engineering December 2000

So your organization has reached Capability Maturity
Model (CMM) Level 2, and you have decided to move on to
Level 3. What does that mean? Where exactly do you go?

The organization faces a difficult journey across uncharted
waters to Level 3. The focus of Level 2 is very clear and very
pragmatic. Level 3 is a little foggy. Organizations can go adrift as
they search for a course from project-focused improvement to
organization-focused improvement. At this point the journey to
improvement can enter an area like the Bermuda Triangle. There
are a number of similarities between the trip from Level 2 to
Level 3 and the trip across the wide Sargasso Sea. Organizations’
challenges can be compared to three major concerns that plague
those entering the triangle: no clear direction, disoriented instru-
ment readings, and motionless waters.

No Clear Direction
Ships entering the Sargasso Sea at the heart of the Bermuda

Triangle encounter an area of unusually calm waters. The area
contains a large mass of seaweed, or sargasso, that adds to the its
sluggish nature. Early navigators lost their sense of direction in
this unusual area. An organization can fall into this same trap.
An organization that has just reached a repeatable level of process
maturity run the danger of resting on its laurels. It is easy to
enjoy the relative calm of a repeatable level of performance.

Such organizations need a strong captain. Without one, the
calm waters can lead the ship to run adrift. A loss of course
could lead to falling back to earlier behaviors. The captain that
led the ship to the repeatable level must plan a change in course
to keep them moving. At Level 2, projects organized their soft-
ware development practices to a degree of discipline that can
repeat past success. This means that each crew understands how
to set the rigging and trim the sails. What if you have more than
one ship? Will the same practices that work for a sloop work for
a schooner? What happens if you add a ship to the fleet?

At this point, the captain must step back and look at the
whole fleet. All the ships have similar needs and can benefit
from the experience of the others; however, they all have unique
needs as well. To address organizational needs, the captain must
assemble a command staff that has the responsibility for making
sure the individual ships work together. In a software organiza-
tion, this is the Software Engineering Process Group (SEPG).
The SEPG serves as a communication channel from the captain
to the commanders of the individual ships. The SEPG also
monitors the sailing requirements of each ship to determine
how it relates to the others and to find the best practices used
by each ship. The SEPG works for the captain while serving as
an advocate group that supports every ship commander. In this
role, they ensure that the captain’s vision is communicated clear-

ly to the ship commanders. The SEPG helps ship commanders
put that vision into practice.

The SEPG works with the captain to set the fleet’s direction
and to define the sailing process to follow that direction. The
SEPG works with individual commanders to build a standard
fleet-wide process for trimming the sails and battening down
the hatches. After the fleet standards have been set, the SEPG
goes over the processes with the individual ship commanders to
make sure they fit. The schooner may need specific steps to set
its many sails. A sloop has a different set of sails and may have
different types of hatches. The standard fleet process can be tai-
lored to fit the needs of the individual ships. These standards
help the ships determine what to do when they reach unknown
waters. When the ships enter calm waters, they all know to take
the same steps to sail through them at the fastest possible speed.

When the fleet is outfitted with new vessels, the captain
and SEPG meet with the commanders to see how well the stan-
dard sailing processes fit. If a steam powered ship is added to
the fleet, its needs will be very different; however, some basic
fleet processes will still apply. While the new commanders’ uni-
forms are being tailored, so are the fleet’s processes.

In a software development organization this comes into play
when new projects are developed. If the organization tackles a
new project from a new customer, the SEPG works with the new
commander to tailor the standard software process and establish a
life-cycle flow. When the new commander looks to build the
details of his process, he chooses from proven methods used
throughout the fleet. He may take the estimating details from
Project A and the requirements management process from Project
B. If a new technology is being brought into play, the old process-
es may not fit, and new details will need to be developed.

Without a strong captain and dedicated command staff, an
organization faces might run adrift in new territory. The chal-
lenges of the Sargasso Sea may prove too much for Level 2
ships, but should be a reasonable challenge to a Level 3 fleet.

Disoriented Instrument Readings
Legendary Air Force Flight 19 lost its way over the Bermuda

Triangle. In-flight, the commander radioed that his instruments
were acting funny. Sailors since the days of Columbus have also
reported problems when crossing the area. Software development
organizations rely on instruments, too. Level 2 organizations track
size, effort, and schedule, but they may not track them well. The
fleet is learning how to use its instruments.

Even Level 1 organizations generate numbers. Some of
them may not be collected or reported as consistently as they
could be, but the numbers are there. As an organization pro-
gresses to Level 2, it gets a better handle on its numbers. It may

Reaching Level 3 Is Like Traveling a Wide Sea
Paul J. Kimmerly

DFAS Information and Technology Directorate

This article looks at the changes facing an organization as it moves from CMM® Level 2 to Level 3. The
author compares the journey to crossing the Bermuda Triangle. Dangers lurk, but there are steps an organiza-
tion can take to change from the project-centered view of Level 2 to the broader organizational view of Level
3. The article focuses on the action of the organization’s management and software engineering process group.

December 2000 www.stsc.hill.af.mil 27

RReeaacchhiinngg LLeevveell 33 IIss LLiikkee TTrraavveelliinngg aa WWiiddee SSeeaa

be the first time the captain sees some usable numbers. What
happens if the numbers look worse as time goes on? What could
cause such a problem? How can it be fixed?

Since the fleet may be inexperienced in using instruments for
navigation, it may take some wrong turns. When numbers are
collected for the first time, there is no historical information to
compare to them. Are they good or bad? They may be neither or
both—it is just too hard to tell. If the numbers go up or down
with the second iteration, are they good or bad? This time, there
may be a way to tell.

The key to using the instruments is the reliability of the data.
Numbers on things like expended effort and defects may look
worse after the ship has sailed to a few new ports. Part of this
comes from growing pains of learning. As people become more
familiar with capturing defects and more comfortable with how
to charge their time, numbers may go up and look worse. Every-
one may feel like the ship is sailing smoothly, but the instruments
show something else. At this point, the captain must be patient.
Realigning the sails or forcing a commander to walk the plank is
probably not the answer. Calibrating the instruments is better.

The captain and the SEPG should look for a measurement
that is the most consistent. In the software development world,
both size and effort lend themselves well to this task. Size meas-
urements like function points or source lines of code can be
defined precisely enough so that a size measurement to one ship
is the same as a size measurement to the next ship. Having such
a normalization factor is key to comparing and combining
measures into meaningful metrics. Similarly, if an expended
hour is clearly defined for the entire fleet and used consistently
by all ships, it can be used as the normalizing measure.

Starting with a normalization factor like function points, an
organization can calculate such metrics as defects per 100 func-
tion points, hours per function point developed, and cost per
function point. Each value should be calculated for each ship for
each time it sails. The captain and ship commanders should be
aware of such numbers. Each time a trip is made, the numbers
can be compared to those calculated for the previous voyage or
series of voyages. With some historical data for comparison, the
captain and ship commanders can determine the success of the
current voyage. They can also predict with some degree of cer-
tainty how the next voyage will go. If the voyage is dramatically
different from the previous ones, the captain can look for special
causes like bad weather or the drag of the sargasso. Even these
special causes can be factored in to predict future performance.

In a software organization, each software release represents a
voyage. As the measurement process improves and historical data
are built, some comparisons can be made to previous releases. If
the defect rate per 100 function points goes up, the ship com-
mander may want to look for special causes. If a change is made
to the process, the ship commander will want to see the effect on
defect rates, delivery rates, and cost factors. Each voyage builds a
history and helps set expectations for ship performance. By
reviewing current results against those expectations, the com-
manders gain greater understanding of their process and greater
insight into needed changes to the process.

The Level 2 voyage gathered information that can be used
for the Level 3 crossing. The information allows the captain and

ship commanders to make informed decisions on how to man-
age the fleet’s activities.

Motionless Waters
As stated above, early navigators found unusually calm

waters in the Sargasso Sea. The log kept by Columbus mentions
several days floundering in the still waters of what is now called
the Bermuda Triangle. The crew became restless, and talk of
mutiny began. In software development organizations that reach
Level 2, such mutiny can come in the form of regression to earli-
er behaviors. The resulting loss of direction in the motionless
waters can also lead to losing sight of what got the fleet to its cur-
rent position. For the fleet to successfully negotiate these waters,
everyone must coordinate their efforts and communicate clearly.

The legend of Flight 19 also shows the problems with
faulty communication and coordination. While lost over the
Triangle, the flight’s commander began having radio problems.
Poor visibility made him disoriented, and his failing radio made
communication spotty. While members of his flight suggested
they were flying along the Atlantic seaboard, he insisted they
were in the Gulf of Mexico. When he gave them the order to fly
east to look for Florida, he simply sent them further into the
Triangle, where they were lost.

What can the captain do to ensure the fleet stays together?
How can the ship commanders relate their concerns to the cap-
tain? How can the crew members become involved? Should the
fleet rely on semaphore flags or Morse code?

For a software development organization, a lot depends on
how the organization approached its initial process improve-
ment activities. If the captain’s message focuses on the grade, the
organization runs a higher risk of reverting to less mature
behaviors. The rush for a grade can motivate a crew to put a lot
of changes in place. However, it often does not reinforce the
desired behaviors that go along with the higher maturity level.
After the assessment team has left the ship, crew members fall
back on the familiar and disregard the new. If the captain has
not communicated intentions beyond the initial improvement
efforts, a ship confronting the still waters of inactivity is more
susceptible to covert resistance and may court open mutiny.

A software organization’s captain must set clear goals based
on a well communicated mission and vision. The importance of
good communication cannot be stressed too much. The captain
and his command staff must constantly work to ensure that the
crew understands their role in executing the mission and vision.

The role of the captain and command staff is critical to avoid
stagnation or mutiny. As stated earlier, the captain must set a clear
course for the fleet as well as communicate that course to the ship
commanders. If they do not act accordingly, the fleet remains
trapped in Level 2 waters with each ship taking care of its own
concerns. The good of the fleet becomes lost in each comman-
der’s private concern. The captain must reinforce the fleet’s vision
and goals. In turn, the commanders must communicate the
course to all of their crew members. The entire fleet must be
aware of the course for the individual ships to work together. The
SEPG plays a critical role in coordinating the fleet’s efforts.

Different ships in the fleet must coordinate their activities.
By focusing on understanding a ship’s needs and finding depend-

28 CROSSTALK The Journal of Defense Software Engineering December 2000

OOppeenn FFoorruumm

able methods of communication, the captain and the SEPG can
ensure they consistently convey the right messages to keep the
fleet working together. As stated earlier, the SEPG serves as the
fleet’s channel for communication. While the SEPG does not
work for any individual ship, it does work for all of the ships. The
SEPG coordinates the improvement activities and ensures that
each ship fits in an organization’s armada. Regular communica-
tion between the SEPG and all parts of the fleet is critical to suc-
cess. The SEPG serves as the captain’s ears when listening to con-
cerns from the commanders. It must also serve as the captain’s
voice when explaining and coordinating improvement activities.
The SEPG also assists commanders in communicating directions
to the crew. Additionally, the SEPG must listen to crew member
concerns and communicate them back up to the commanders.

The ship commanders must be able to communicate their
needs to the captain without fear. While the captain must bal-
ance the many concerns of the fleet, the commanders must bal-
ance new directives with the fleet’s primary mission. The captain
must realize that commanders’ perceptions drive their behaviors.
The clarity and consistency of the message passed down the
chain of command shapes how the fleet reacts. The crew listens
to commands, but watches actions. The two must be aligned for
the fleet to move in the captain’s chosen direction.

One way to ensure this is to form a management steering
group (MSG) consisting of the captain and his ship commanders
with the SEPG in a consulting role. The MSG sets the direction
for the organization. Working together to set the organization's
mission, vision, and goals, the captain and the ship commanders
can communicate a shared message to the organization.

While sailing across Level 2, the ships established their own
courses. When facing the expanse of the Level 3 sea, the entire
fleet from the captain to the crew must understand the direction
of the entire fleet. Through consistent communication and
coordination, they can ensure the fleet moves as a whole and
finds its way out of the still waters of complacency and routine.

Summary
The Level 3 Triangle holds many challenges for captain

and fleet. The stagnant water can make a fleet lose its course. It
is critical that the captain be a person of strong mind and clear
vision. It is the captain’s job to set a direction for all to follow.
If each ship sets its own course, the fleet will disperse. Even if
instruments seem to be giving false readings, the captain and
commanders must trust processes that the fleet has established.
That trust will be rewarded when future efforts can be predict-
ed from current ones, and when information can give the lead-
ers a clearer picture of the course being followed. To negotiate
the motionless waters, the captain and the SEPG must lead the
organization to shift from a ship-centric view to one that
encompasses the whole fleet. That view must be passed down
clearly from the captain, through the commanders, to each
crew member. Crew members, in turn, must be able to com-
municate concerns and ideas back up the chain of command.
These coordinated efforts make it easier for the fleet to find its
way out of still waters. By addressing these challenges, the cap-
tain can ensure that all the ships set their sails correctly and fol-
low the right tack.

About the Author
Paul Kimmerly has 13 years experience in software
development for different incarnations of the
Defense Finance and Accounting Service (DFAS)
Information and Technology Directorate. Since
1993, he has served as a member of the SEPG ,
chairing the group for the past five years. In addition

to local duties, he chaired a group representing the six software
development sites within DFAS that addressed process improvement
issues. Paul is a member of the Kansas City SPIN and has given sev-
eral presentations to the group. He presented part of a tutorial enti-
tled Transition Success from the Field at the 1997 SEI Symposium.
He also served on a panel at the 2000 SEI Symposium, Statistical
Process Control as a Method of Continual Improvement. His article
Quietly Making Noise: A Parrothead’s Look at Software Process
Improvement was published in the May 1998 edition of CROSSTALK.

DFAS-FSAKC/KZ
1500 East 95th Street
Kansas City, Mo. 64197
Voice: 816-926-5364 DSN 465-5364
Fax: 816-926-6969 DSN 465-6969
E-mail: pjkimmerly@cleveland.dfas.mil

January 18-19
2001 Measurement Science Conference

www.msc-conf.com/findex.html#cfp2001.html

January 25-27
Ryerson 2001: A Software Approach

www.ryerson.ca/~csie/2001

January 30-February 2
CIEC 2001 Odyssey: Industry & Education Engineering

www.asee.org/conferences/html/ciec2001.htm

February 7-9
Network and Distributed System Security Symposium

www.isoc.org/ndss01/call-for-papers.html

March 5-8
Mensch and Computer 2001

http://mc2001.informatik.uni-hamburg.de

March 12-15
Software Engineering

Process Group Conference
www.sei.cmu.edu/products/events/sepg

March 31-April 5
Conference on Human Factors in Computing Systems

www.acm.org/sigs/sigchi/chi2001

April 22-26
Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies
www.ieee-infocom.org/2001

April 29-May 3
Software Technology Conference

(STC 2001)
www.stc-online.org

Coming Events

December 2000 www.stsc.hill.af.mil 29

CrossTalk Article Index 2000
Theme Author(s) Issue

Acquisition
Component Acquisitions Policy Memorandum J.S. Gansler January
Stokley and Little Lead Acquisition Reform P. Bowers October
Help Identify and Manage Software and Program Risk K. Baldwin, L. Dwinnell November
Product Line Approach to Weapon Systems Acquisition Col. J.M. Hanratty, November

J. Dixon, C. Banning
Evaluating Risk in Competitive Procurements T. Carrico, J. Herman, L. Blades, November

M. Slagle, D. O'Connor
Writing an Effective IV&V Plan D. Walters November
Acquisition Reform May Resemble Madness … [Open Forum] J. Belford November

CMMI
Up Close with Lt. Col. (Ret.) Joe Jarzombek, Bruce Allgood S. Lucero July
Choosing a CMMI Model Representation S. Shrum July
CMMI: An Evolutionary Path to Enterprise Process Improvement J. Weszka, P. Babel, J. Ferguson July
Transitioning from EIA-IS/731 to CMMI A. Clouse, C. Wells July
Is CMMI Ready for Prime Time? [Open Forum] B. Pierce July
Creating an Integrated CMM for Systems and Software Engineering M. Phillips, S. Shrum September

COTS
Off-the-Shelf Software: Practical Evaluation L. Fischman, K. McRitchie January
Evaluating COTS Using Function Fit Analysis L. Holmes February
Up Close with Microsoft’s Paul Maritz K. Gurchiek September
An Activity Framework for COTS-based Systems L. Brownsword, P. Oberndorf, September

C. Sledge
Supporting Commercial Software Lt. Col. L.D. Alford September
Evaluating COTS/GOTS Software: Functional Test Criteria W. Dashiell, P. Brashear September
Implementing COTS Open Systems Technology on AWACS Lt. Col. M. Milligan September

Configuration Management
SCM: More than Support and Control B. Angstadt March
Configuration Management: Current Trends [Open Forum] B. Angstadt March
A Configuration Manager’s Perspective R. Starbuck July

Cost Estimation
Future Trends, Implications in SW CostEstimation Models B. Boehm, et al. April
Software Estimation: Challenges and Research R. Stutzke April
Does Calibration Improve Predictive Accuracy? D. Ferens, D. Christensen April
Reducing Bias in Software Project Estimates D. Peeters, G. Dewey April

Education and Training
Anytime, Anywhere Learning in DoD M. Parmentier March
Cognitive Readiness and Advanced Distributed Learning D. Etter, R. Foster March
Software Engineering Degree Programs R. Vaughn Jr. March
Industry/University Collaborations SEI Working Group March
Using Your Software Coach Effectively [Open Forum] J. Hubbs November

F-22, The
Up Close with Maj. Gen. Claude Bolton Jr. K. Gurchiek May
Up Close with (Ret.) Maj. Gen. Brandt K. Gurchiek May
A View from Wright-Patterson AFB K. Gurchiek May
F-22 Software Risk Reduction B. Moody May
F-22 Avionics Integration on Track R. Barnes May

Lessons Learned
Architectural Issues, Lessons Learned in Component-Based Software Development W. Tracz January
Building a CM Database: Nine Years at Boeing S. Grosjean January
CM Database: To Buy or to Build? R. Sorensen January
Learning: The Engine for Technology Change Management L. Levine January
Content Change Management: Problems for Web Systems [Web Addition] S. Dart January
The Need for a Useful Lessons Learned Database [Open Forum] G. Jackelen January

Miscellaneous
Ship Cost Agent for Pier and Port Management [Web Addition] J. Sena February
ACPINS Makes Management Easier G. Ozment March
A Concept of Operations for Product Lines S. Cohen March
Managing the Changing Mainframe Environment D. Wetzel March
Web-Based Software Process Improvement Repository B. Groarke March
Human Nature Has Not Changed [Open Forum] J. Smedra March
Top 10 CrossTalk Authors of 1999 staff April
Requirements Management as a Matter of Communication [Open Forum] I. Ogren April
Case Study: Automated Materiel Tracking System J. Restel April

30 CROSSTALK The Journal of Defense Software Engineering December 2000

The Determining Factor [Open Forum] D. Dynes May
Statistical Process Control Meets Earned Value W. Lipke, J. Vaughn June
Proven Techniques for Efficiently Generating and Testing SW Programs K. Wegner June
Large SW Systems–Back to Basics [Open Forum] J. Evans June
The V Model [Web Addition] Hirschberg M. June
Requirements Elicitation in Open-Source Programs L. Henderson July
Collaborative Software Development D. Mann August
New Application of the CONOPS D. Ammala August
Is Ada Dead or Alive Within the Weapons System World? D. Reifer, J. Craver December

M. Ellis, D Strickland

Network Security
Restoring Cyber-Security B. Crittenton January
The Systems Security Engineering CMM R. Hefner, R. Knode, M. Schanken October
Improving the Security of Networked Systems J. Allen, C. Alberts, S. Behrens, October

B. Laswell, W. Wilson
The Survivability Imperative: Protecting Critical Systems R. Linger, R. Ellison, October

T. Longstaff, N. Mead
Avoiding the Trial-by-Fire Approach to Security Incidents M. West-Brown October
Security Often Sacrificed for Convenience [Open Forum] S. Hernan October
Taming the Cyber-Frontier: Security is Not Enough P. Toscano November

Process Improvement
Reducing Software Project Productivity Risk R. Bechtold May
Goal-Problem Approach for Scoping an Improvement Program M. Sakry, N. Potter May
Four R’s of Software Process Improvement J. Rothman May
The Demarcation Zone: Surviving A CMM Assessment D. Jacobs August
Software Best Practice Development: An Experience G. Jackelen August
Software Risk Management: The Practical Approach G. Holt, K. Phillips August
Avoid Self-Inflicted Wounds in Applying CMM to ATP and Support D. Putman October
The Wide Level 3 Sea [Open Forum] P. Kimmerly December

Project Management
What We Have Learned L. Putnam June
Project Clarity Through Stakeholder Analysis L. Smith December
Project Planning, Statistics, and Earned Value W. Lipke, M. Jennings December
Leverage an Estimating Model to Climb the CMM Ladder A. Minkiewicz December

PSP/TSP
Building Productive Teams W. Humphrey June
Managing Risk with the TSP D. Webb June
Making Quality Happen: The Manager’s Role G. Seshagiri June
PSP: Fair Warning E. Starrett June

Risk Management
Both Sides Always Lose: Litigation of Software-Intensive Contracts T. DeMarco, T. Lister February
Continuing Risk Management at NASA L. Rosenberg, T. Hammer, A. Gallo February
Risk Management Rollout and Installation at the NRO A. Neitzel, J. Link, February

R. Barbour, F. Parolek
Risk Management: Integrating Crisis into PM Training K. Knight, D. Corbin February

R. Hammerly, R. Cox
A Practical Approach to Quantifying RiskEvaluation Results P. Hantos February
Assessing Software Risk L. Poulin December

CrossTalk Article Index 2000

BackTalk

Software Pie G. Petersen January
Thank Goodness We’re Not D. Cook February
Dumb Animals
Beware the Ides of March Madness M. Welker March
State of the Software Industry, Part I G. Petersen April
State of the Software, Part II G. Petersen May
Common Sense—Can You Dig It? D. Cook June
Gilligan's Integration H. Winward July
A Tale of Two Monoliths M. Welker August
Incredible Suckers G. Petersen September
Three Cheers for Big Brother M. Welker October
Time to Stuff the Tower, I Mean, Turkey M. Welker November

G. Petersen
With Great Apologies to D. Cook December
Clement Clark Moore L. Dupaix

Publisher’s Note

Charting Your Course R. Alder January
Risky Business L. Silver February
Delivering Just-in-Time Training J. Jarzombek March
Making an Educated Guess B. Allgood April
Study Success, Learn From Failure R. Alder May
PSP & TSP–The Necessary Approach L. Silver June
Impacting the Future B. Allgood July
of Process Improvement
What Makes Software Process R. Alder August
Improvement?
COTS: The Ideal World L. Silver September
You Cannot Pass the Buck B. Allgood October
on Reliable Network Security
Quality Leadership Is the Foundation… R. Alder November
Other Disciplines Lend Ideas … Lt. Col. Palmer December

For a comprehensive search of CrossTalk back issues, please visit the Web site at www.stsc.hill.af.mil/CrossTalk/crostalk.html

Twas the night before FY closeout at USAF,
and the PMs were nestled all snug at their desks.

Budgets were adjusted and figured with care
In hopes that funding would soon show up there.

Amounts were looked at, figured with precision.
“Just inflate it 150%” was shouted with derision.

Contractors scurried to minimize their risks
Organic staff tried to amend deliverables lists.

When out on the street there arose such a roar –
I closed down Solitare and ambled over to the door.

I slipped outside, hoping no one would see
(that door was off limits during THREATCON D).

Bright sunshine left me shaking with fear
(with mandatory OT – hadn’t seen the sun all year).

Looking down the street, on glistening black tar,
I spied a chubby man climb out of a beat-up old car.

His brow was all furrowed, his face held no cheer.
I knew in a moment – he was a Software Engineer!

His hair was rumpled, his clothes didn’t match
his pants drooped, and he showed just a crack.

His shirt was un-ironed, and his belly hung low.
His orange tie, blue socks and brown shoes didn’t go.

Muttering “Sorry I’m late – last meeting over-ran,”
he went inside, and beckoned me to stand.

“I’m from the Pentagon – they sent me here straight.
They’re trembling in fear as your schedule is late.”

“I’m here to make changes, keep you on your toes.
I’m here to help you (you know how it goes …).

“Get moving, and get your budget in the black.
I have some ways to get you back on track.

His lack of knowledge made me hang my head in shame.
He wasn’t technical; he just knew technical names.

“Lose Jovial – C++, Ada, or Java is best.
Language is important – does yours pass the test.?”

I tried to argue, to explain our current state.
“Coding isn’t our problem – requirements are late.”

“We can write software, but our progress is fruitless.
Users won’t say what they want – they’re all clueless.”

He sighed deeply, then shook his head side to side—
“That’s been your excuse for years – no more free ride.”

“What about our process?” I tried to plea.
But each point I had, he countered with glee.

“We don’t mind a process; we like Level 3.
But what we want is for the process to be free.

Who cares about planning, or CMM levels,
as long as developers are coding like devils?”

I couldn’t take his attempts to code far too quick.
I explained our process, which made him quite sick.

“We develop it correctly, and have a process to follow.
Requirements with no validation are hollow.

Once we coded blindly, now we see the light –
We follow a process to develop software right!

Design is important (OO does the trick)
because undesigned code cannot be fixed!

Now off you go – back to your boss.
Experience shows – without a process we’re lost!”

He muttered curses, but I stuck to my guns,
sending him back to his car on the run.

“You don’t understand” he said, driving out of sight.
“You have time to do it over, but not to do it right!”

“I understand well,” I said, “I understand fine.
If you want quality software, it just takes time!

I don’t want to seem obstinate, rude, nor surly.
But if you want quality, plan for it early.”

—Dave Cook, Draper Labs, and Les Dupaix, STSC

December 2000 www.stsc.hill.af.mil 31

Give Us Your Information, Get A Free Subscription
Fill out and send us this form.

OO-ALC/TISE
5851 F Ave., Bldg 849, Rm B-04

Hill AFB, UT 84056-5713
Attn: Heather Winward

Fax: 801-777-5633 DSN: 777-5633
Voice: 801-586-0095 DSN: 586-0095

Or use our online request form at www.stsc.hill.af.mil

NAME:_________________________________

RANK/GRADE:_________________________

POSITION/TITLE:_______________________

ORGANIZATION/COMPANY:_________________________

ADDRESS:_____________________________

BASE/CITY:__________________________ STATE:______

ZIP:____________ VOICE: ______________________

FAX:________________ E-MAIL: ___________@_____________

CHECK THE BOX(ES) TO REQUEST EXTRA ISSUES FROM 2000:

JAN____ FEB____MAR____APR____MAY____JUN____

JUL____AUG____SEP____ OCT____NOV____DEC____

BACKTALK

With Great Apologies to Clement Clarke Moore …

CrossTalk / TISE
5851 F Avenue
Building 849, Room B04
Hill AFB, UT 84056-5713
Return Service Requested

PRSRT STD
U.S. POSTAGE PAID

Kansas City, MO
Permit 34

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Cover
	Index
	From the Publisher
	Project Clarity Through Stakeholder Analysis
	Quote Marks
	Software Project Planning, Statistics, and Earned Value
	Leverage an Estimating Model to Climb the CMM Ladder
	Call for Articles
	Assessing Software Risk
	Is Ada Dead or Alive Within the Weapons System World?
	Project Management Web Sites
	Reaching Level 3 Is Like Traveling a Wide Sea
	Coming Events
	CrossTalk Article Index 2000
	BackTalk
	Back Cover

