
This file contains projections of benefits that may result from proposed 
amendments to the performance standard for diagnostic x-ray systems 
and their major components. The following caveat is adopted from the 
OSTP Committee on Interagency Radiation Research and Policy 
Coordination (CIRRPC) Science Panel Report No. 9 (Washington, D.C., 
December 1992): These benefit projections are based on many 
assumptions, including estimations of radiation-associated cancer deaths 
derived from linear extrapolation of nominal risk estimates for lifetime 
total cancer mortality at 0.1 sievert (Sv). Other methods of extrapolation 
to the low-dose region could yield higher or lower numerical estimates of 
cancer deaths. At this time studies of human populations exposed at low 
doses are inadequate to demonstrate the actual level of risk. There is 
scientific uncertainty about cancer risk in the low-dose region below the 
range of epidemiologic observation, and the possibility of no risk cannot 
be excluded.
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The FDA Center for Devices and Radiological Health [1] is proposing 
nine changes to the U.S. Performance Standard for Diagnostic X-Ray 
Equipment that will reduce unnecessary radiation emitted during 
fluoroscopy. Principal radiation risks to patients are a long-term possibility 
for cancer induction and a short-term potential for skin burns. We estimate 
benefits of the proposed amendments in terms of years of life that would 
be spared cancer mortality attributable to excess radiation, numbers of 
radiation burns that would be avoided, and their respective pecuniary 
savings to society. The analysis and assumptions (described in the notes) 
consider three procedures—percutaneous transluminal coronary 
angioplasty, cardiac catheterization angiography, upper gastrointestinal 
fluoroscopy—and three of the proposed amendments. Using dose, 
demographic, and risk data from various sources, we infer that the benefits 
of the amendments would greatly exceed their estimated costs.
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Proposed Amendments [2]

would require that new fluoroscopy equipment

•Display the rate, time, and cumulative total of radiation 
emission

•Filter out more of the lower energy x-rays to reduce dose 
to patient skin

•Collimate the x-ray field more “tightly” so that it’s used 
more efficiently

Note: Six other amendments are not evaluated in this study.
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•Rate, time, total amounts of radiation exposure displayed to radiologist

•Radiologist could use exposure data to optimize exam techniques

•Facility could compare, control emissions according to exam norms [3-8]

Impact: could reduce overall patient dose ~ 16% [9-12]

Display Amendment

fluoroscope 
monitor

clinical image

exposure values 
displayed



Filtration 
Amendment
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filter

•More filtration selectively absorbs low-energy x-rays [13]

•Spares the patient skin dose and potential radiation burn [14-17]

Impact: could reduce overall patient dose ~ 6% [13, 18, 19]



Collimation 
Amendment
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•“Tighter” collimation:  image area   ≥ 80% x-ray field area

•Reduces radiation not used for imaging

Impact:
could reduce overall patient dose ~  1% (UGI) - 3% (cardio)   [20-25]

current x-ray field

proposed x-ray field

image area



Fluoroscopic Procedures Analyzed

Percutaneous transluminal coronary angioplasty (PTCA)
•608,000 procedures per year in U.S. (1997)   [26]
•effective (whole-body) dose per procedure 5.0 ± 1.9 mSv [28]

Cardiac catheterization, coronary arteriography & angiography (CA)
•may include ventriculography, left- and/or right-heart studies
•3,870,000 procedures per year in U.S. (1997)   [26]
•effective (whole-body) dose per procedure 3.1 ± 1.3 mSv [28]

Upper gastrointestinal series fluoroscopy and radiography (UGI)
•excludes barium swallow examinations
•16,500,000 procedures per year in U.S. (1996)  [29]
•effective (whole-body) dose per procedure 2.8 ± 1.7 mSv [42]
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•For an individual, the dose and risk of death are very small
•For the population, the collective dose implies a number of excess deaths
•Attribution of risk to the population is scientifically controversial [49] but 
generally accepted for the purpose of radiation protection



Radiation-Induced Skin Injuries [14, 17]
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Injury
Threshold 
Dose to 

Skin (Sv)

Weeks to 
Onset

Early transient erythema 2 <<1
Temporary epilation 3 3

Main erythema 6 1.5
Permanent epilation 7 3
Dry desquamation 10 4
Invasive fibrosis 10
Dermal atrophy 11 >14
Telangiectasis 12 >52

Moist desquamation 15 4
Late erythema 15 6-10

Dermal necrosis 18 >10
Secondary ulceration 20 >6

•Skin “burns” are rare but possible for prolonged fluorocardio & other interventions
•FDA has received 60 reports of burns since 1994 ⇒ ~ 8.6 reported burns per year
•How many radiation burns are not reported?

Figure from [17]
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Impact of New Amendments: Life Benefits
Assumption: savings start to accrue at the beginning of a decade in which all 
current fluoroscopy equipment is replaced by new equipment manufactured 
according to the proposed new standards.

Estimated benefits (highlighted in color): refer to annual projections 10 
years after the initial implementation of the proposed standards. Projected 
life savings would ultimately be realized only after an additional ~ 10-year 
interval of cancer latency [48] followed by 10 years of survival.

•dose savings per procedure = % dose reduction × effective dose per procedure

•collective dose savings = dose savings per procedure × no. of U.S. procedures

•no. of lives saved = collective dose savings × rad.-induced cancer excess mortality

•years of life saved = no. of lives saved × (years of life remaining minus 20)  [50]

•no. of cancers precluded = no. of lives saved ÷ lethality fraction [51, 52]

•no. of skin burns precluded = percentage dose reduction × no. of skin burns [53]



Age at 
Exposure

Age < 
1 

Age 1-
17

Age 18-
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Age => 
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Sub-
total 
Male

Age < 
1 

Age 1-
17

Age 18-
44

Age 45-
64

Age 65-
84

Age => 
85

Sub-
total 

Female Total
Procedure

PTCA 36 239 220 7 502 10 87 158 10 265 767
CA 4 4 151 811 858 30 1,857 3 4 64 414 691 42 1,217 3,075
UGI 507 230 790 1,092 1,861 463 4,952 442 223 775 1,132 2,324 770 5,669 10,621

7,312 7,151 14,463

PTCA 3 14 6 0 23 1 4 4 0 9 32
CA 0 1 11 47 24 0 84 0 1 6 20 17 0 44 128
UGI 65 28 60 64 53 5 274 68 34 68 55 56 7 288 562

382 341 723

PTCA 63 38 0 0 101 25 32 0 0 58 159
CA 25 22 264 127 0 0 439 25 28 163 151 0 0 367 806
UGI 3,345 1,223 1,386 172 0 0 6,126 3,969 1,743 1,989 414 0 0 8,114 14,240

6,667 8,539 15,206

Collective Dose Savings (man-Sv) Collective Dose Savings (woman-Sv)

1 1

0 0

Projected No. of Lives Saved (male) Projected No. of Lives Saved (female)

Projected Years of Life Saved (male) Projected Years of Life Saved (female)

0 0

Annual Life Benefit Projections in U.S.
10 Years after Implementation of New Standards versus Age at Exposure

•Projection: 2 reports of fluorocardio skin burns precluded per year 10



Projection of Pecuniary Benefits
for 3 amendments and 3 procedures

We compute average annual savings over the 10 years in which all 
new fluoroscopic equipment will meet the new standards:

•Year 0 to year 10—dose savings increases from 0 to 14,500 person-Sv/year ⇒
•Year 20 to year 30—projected no. of lives saved increases from 0 to 723/year
•Year 20 to year 30—projected cumulative no. of lives saved is 3615

•Savings based on societal “willingness to pay” (WTP) premium for high-risk jobs
$5 per one-in-a million chance of death [54-56] ⇒

•net present WTP value =  $1.3 M per life saved 20 years in future [57]
•average annual amortized savings in first 10 years = $462 M per year

•Savings from preclusion of cancer treatment $25,000 [58-61] and its
psychological impact $5,000 per cancer incidence [62-67] ⇒

•average annual amortized savings in first 10 years = $57 M per year

•Savings per radiation burn preclusion: $67,600 per burn avoided [68-70]
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Summary / Conclusion

•Life savings and pecuniary benefits are estimated for three proposed 
amendments to fluoroscopic equipment performance standards

•Display the rate, time, and cumulative total of radiation emission
•Filter out more lower energy x-rays to reduce dose to patient skin
•Collimate the x-ray field more “tightly” so that it’s used more efficiently

•Proposed amendments would reduce dose in at least three procedures
•Percutaneous transluminal coronary angioplasty (PTCA)
•Cardiac catheterization coronary arteriography & angiography (CA)
•Upper gastrointestinal series fluoroscopy and radiography (UGI)

•Projection of 723 lives per year spared radiation-induced cancer 
mortality 30 years from start of implementation of amendments

•Average annual pecuniary savings of $519 M in first 10 years of 
implementation greatly exceeds estimated average annual cost of $49 M 
to manufacturers and FDA [71]
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Notes and References
1. The proposed amendments were developed in the CDRH Fluoroscopy Working Group, currently 
comprised of Robert Doyle, Robert Gagne, Richard Kaczmarek, Henry Knox, Thomas Shope (Chair), 
Stanley Stern, and Jennette Wade, with contributions from Thomas Jakub, Robert Phillips, Marvin 
Rosenstein, Orhan Suleiman, and Arlene Underdonk.

2. http://www.fda.gov/cdrh/fluoroamend.pdf.

3. Patient dose norms are called “reference values,” and they correspond to the 75th percentile of the 
distribution of measured values for particular radiological procedures.  They were introduced in the 
United Kingdom—NRPB/RCR, "Patient Dose Reduction in Diagnostic Radiology," Doc. NRPB Vol. 
1, No. 3, pp. 1-46 (1990), and refs [4-5]—and have been adopted throughout western Europe (refs [6, 
7]).  They are being proposed in the U.S. by a task group of the American Association of Physicists in 
Medicine (ref. [8]).  Reference values are benchmarks to which a facility’s practice may be compared 
in a radiation-protection quality assurance program: When reference levels are exceeded in any 
particular examination, the facility may investigate to see if it’s possible to reduce exposure without 
adversely affecting image quality. As part of a quality assurance program, dose displays would be an 
essential tool needed for evaluation of patient dose in the first place.

4. Dosimetry Working Party of the Institute of Physical Sciences in Medicine, National Protocol for 
Patient Dose Measurements in Diagnostic Radiology, National Radiological Protection Board, 
Chilton, UK, (1992).
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2000).

9. The percentage dose savings that are projected to follow implementation of the display 
amendments corresponds to one-half the difference between 1995 UK survey levels (ref. [12]) and 
1985 values (ref. [11]). See R.H. Corbett, "A European Radiologist's View of Diagnostic Reference 
Levels," European Radiation Protection, Education and Training (ERPET), ERPET Course for 
Medical Physicists on Establishment of Reference Levels in Diagnostic Radiology, Passau, 
Germany, 13-15 September 1999, Proceedings, EC Directorate General Science, Research and 
Development Doc. RTD/0034/20, (BfS-ISH, Oberscheissheim, July 2000), pp. 83-91, and ref. [10].  
“Reference levels” based on the 1985 data were introduced into the UK in 1990 (refs. [3-5]).  It is 
assumed that one-half of the UK dose reduction from 1985-1995 is due to to technology 
improvements alone (e.g., faster film-screen combinations and the use of digital spot films), 
whereas the other half of dose savings stems from the quality assurance use of reference levels and 
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levels.
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HVL (2.7 mm Al) by 1.7 mm Al.  We assume that as newer equipment meeting a new 
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gastrointestinal series--and presumably for fluorocardio procedures as well--will ultimately 
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14. Avoidance of Serious X-Ray-Induced Skin Injuries to Patients During Fluoroscopically-
Guided Procedures, Food and Drug Administration Important Information for Physicians and 
Other Health Care Professionals, September 9, 1994. The table of radiation-induced skin injuries 
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September 15, 1995.

17. Thomas B. Shope, “Radiation-induced Skin Injuries from Fluoroscopy,” RadioGraphics Vol. 
16, No. 5, pp. 1195-1199 (September 1996).

18. R. Kaczmarek, Nationwide Evaluation of X-Ray Trends Summary of 1996 Fluoroscopy 
Survey, (unpublished draft, November 2000).

19. R.F. Laitano et al., Energy Distributions and Air Kerma Rates of ISO and BIPM Reference 
Filtered X-Radiations, Comitato Nazionale per la Ricerca e per lo Sviluppo dell'Energia Nucleare
e delle Energie Alternative, p. 29 (December 1990).
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20. Ref. [18] indicates that over 60% of fluoroscopy units used for upper gastrointestinal (UGI) 
examinations in the U.S. have image intensifiers of diameter d = 9 inches (22.86 cm).  We assume that 
all UGI units use rectangular collimation and that in meeting the current performance standard (ref. 
[21]) there is a uniform distribution of lengths exceeding those characterized in refs. [22, 23] by 
amounts from 0% to 3% of the SID to yield an average excess length of 1.5% of an average SID (refs. 
[22, 23]) of 80 cm = 1.2 cm. When both the width and length of the x-ray field exceed the diameter of 
the image intensifier, it is assumed that the average width excess is 1% and average length excess is 1% 
of the SSD. For d less than or equal to 34 cm, the proposed field limitation amendment would require 
that the ratio of the visible area of the image receptor (IR) to the x-ray field area at the IR plane be at 
least 80%. To meet the proposed field-limitation amendment, fluoroscopic equipment will need their x-
ray field areas reduced by 8.4% for only 2 (stomach LPO and RAO) of the 12 views comprising the 
UGI series. We assume therefore that the effective dose savings for the fluoroscopic components of UGI 
would be approximately (8.4%)/6 = 1.4%.  It is assumed furthermore that most UGI systems in the U.S. 
use spot films rather than digital radiographs of the image intensifier (ref. [18]) and that such spot films 
contribute approximately 40% of the kerma-area product (ref. [24]) to which the amendment is not 
applicable. For UGI examinations, the overall effective dose savings is therefore (60%)(1.4%)=0.84% 
on average with the implementation of the proposed field limitation amendment. For fluorocardio
procedures, we use an average field-magnification diameter of 14 cm at the image intensifier (ref. [25]) 
and assume that the width and length of a rectangularly-collimated field each exceed the image-
intensifier field bound by 1% (0.9 cm) of an average SID of 90 cm (ref. [25]) in order to meet the 
current performance standard (ref. [21]). Reducing the x-ray field area by 13.3% would meet the 
proposed requirement for systems with rectangular collimation. We assume approximately one-fourth of 
all fluorocardio procedures are performed on systems having rectangular rather than circular collimation 
and that therefore that the effective dose savings for all of these procedures would be approximately 
(13.3%)/4 = 3.3% on average with implementation of the proposed amendment.
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& Human Services, Public Health Service, Food and Drug Administration, Center for Devices and 
Radiological Health, Rockville, Maryland (September 1995).

26. Nationwide Inpatient Sample Release 6 for 1997, compiled by HCUPnet, Healthcare Cost and 
Utilization Project, Agency for Healthcare Research and Quality, Rockville, MD, 
http://www.ahrq.gov/data/hcup/ (August 2000). Note: Per ref. [27], stents were inserted in ~55% of 
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28. The effective dose per procedure (± standard deviation of the mean) is the product of the 
kerma-area and the ratio of effective dose to the kerma-area.  Each of these factors refers to 
respective means of values cited in several studies, where each mean is weighted by the study 
sample size (n).  For PTCA procedures, a mean kerma-area of 69 ± 25 Gy-cm2 is the weighted 
mean of values cited in refs. [30-36]; for cornary angiography a mean kerma-area of 44 ± 16 Gy-
cm2 is the weighted mean of values cited in refs. [32-37]. The ratio 0.07 mSv/Gy-cm2 was inferred 
according to reference [25] (Tables E1, F1, Appendix D) from the particular case in reference [38] 
for an adult male left ventriculogram with left and right coronary angiography.  The value 
obtained is consistent with that calculated for ref. [25] Table 12, which is comprised of average 
values whose technique inputs were based on a 230-procedure study (ref. [39]). It is assumed that 
this ratio of effective dose to kerma-area product is generally valid for PTCA as well.

29. Most UGI procedures are performed on an outpatient basis in hospital radiology departments 
or in radiology practices on referral from other physician offices.  The number of hospital 
procedures was estimated from the hospital workload data cited in ref. [18] and the total number 
of U.S. hospitals cited in ref. [40].  The number of procedures performed in radiology practices is 
inferred as the product of the number of hospital procedures and the ratio of physician-office to 
hospital diagnoses of UGI morbidity. This ratio is assumed to be proportional to the weighted 
average of the numbers of corresponding diagnoses in reference [41] categories explicitly 
associated with the UGI tract plus one-half of the gastrointestinal diagnoses not specifically 
associated with the UGI or the lower gastrointestinal (lgi) tract. For the estimation of the 
distributions of savings in collective dose, lives, and years of life, the distributions of UGI 
procedures among genders and ages is assumed to be proportional to those of ref. [26] for barium 
swallow/UGI series.
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