Project 1 -- Characterization of Polymer Surfaces

Mark VanLandingham (BFRL)

NIST/Industry Consortium on Polymer Interphases Oversight Board Meeting May 2, 2001

Outline

- Objectives
- Overview of Progress
 - NanoIndenter capabilities
- Review of Scratch and Mar Literature
 - Review of AFM methods will include our results to date
- Surface Property Measurements
- Update Research Plan and Timeline

Objectives

- Develop advanced measurement techniques for evaluating surface mechanical properties of polymeric materials.
 - Can be used to help characterize interfaces and interphases as well as surfaces
- Relate material properties to deformation behavior under complex stress states.
- Correlate deformation to appearance.

Overview of Progress

- Literature review paper completed.
 - Will be placed on the website by next week.
- Nanoindentation system purchase just awarded to MTS Nano Instruments.
 - Installation and calibration expected by July 1, 2001.
 - Additional equipment funds allocated to nanoindenter purchase \Rightarrow \$240k
- Initial indentation and scratch testing with AFM completed for Phase 1 materials.

Nanoindenter Capabilities

• XP head

- Static indentation w/CSM
- Dynamic indentation
- Scratch testing
 - » lateral force measurement
 - » profilometry
- 1 μN 10 N load range
 » 75 nN resolution
- Max depth > 1 mm
 - » 0.02 nm resolution

- DSM head
 - Static indentation w/CSM
 - Dynamic indentation
 - $0.1 \ \mu N$ $10 \ m N$ load range
 - » 1 nN resolution
 - Max depth > 15 μ m
 - » 0.0002 nm resolution

Nanoindenter Capabilities (cont'd)

- Automated data acquisition and control
 - Flexible, user-defined loading histories
 - » Constant loading rate, constant displacement rate, step loading, constant strain rate (self-similar tip geometry).
 - » Constant load scratching, constant loading rate scratching.
 - Standard and user-defined calculations
 - Feedback control using any measured or calculated parameter
- Precision x-y sample stage
- Vibration isolation
- Optical imaging system

Review of Scratch and Mar Literature

Scratch and Mar Testing --Terminology

- Field Simulation (Multi-Probe) Tests
 - Wet abrasion
 - » Car wash simulation tests, crockmeter test
 - Dry abrasion
 - » Rub tests
- Single-Probe Tests
 - Dedicated scratch/mar systems
 - Depth-sensing systems
 - Atomic force microscope
- Scratch vs. Mar
 - Scratch: 0.5 μ m < depth < 20 μ m
 - Mar: depth < 0.5 μm

Field Simulation Test Methods

- Incorporate complex, multiprobe mechanics
 - Scratch resistance determined through
 - » Mass loss
 - » Cycles to failure
 - Visual inspection
 - » Gloss measurements
 - » Gray scale changes
 - Large number of scratches often needed for measurable changes or to produce failure
 - » Severity of abrasive forces and length of testing can deviate from service conditions and produce misleading results
 - Distinguish between wet and dry abrasion
- Provide ratings, not quantitative measurements

Single-Probe Test Methods

- Ford Laboratory Test Method BN 108-13
 - Five single-probe constant loads applied simultaneously
 - Probes are 1 mm diameter polished steel spheres
 - Loads for coatings range from 0.6 N to 7.0 N
 - » 30 N load typically used for bulk polymers
 - Scratch speed is 100 mm/s
 - Scratch resistance defined by residual scratch depth
 - » Measured 24 h after scratching with optical interferometer at 5X
 - » Reported depths generally in the 0.5 μm to 10 μm range
 - For bulk polymers, additional "scratch visibility" measurement performed
 - » Polarized light microscope captures 1 mm length of scratch
 - » A gray scale value measured using image analysis

Single-Probe Test Methods (cont'd)

- Progressive Load Testing (DuPont, CSEM)
 - Load ramped at a given loading rate using a single probe
 - Probes are typically diamond cones or spheres
 - » Tip radius varies widely in published literature from 1 μ m up to 200 μ m.
 - Maximum loads depend on tip radius
 - $\gg~(2\text{-}10)~mN$ for (1-3) μm radius, 200 mN for 10 μm radius, and 10 N for 200 μm radius
 - » Where published, loading rates vary from 20 μ N/s up to 1 N/s.
 - Scratch speed also varies with tip radius
 - $\gg~(5\text{-}25)~\mu\text{m/s}$ for (1-3) μm radius, 50 $\mu\text{m/s}$ for 10 μm radius, and 200 $\mu\text{m/s}$ for 200 μm radius
 - Measure normal force, friction force, and penetration depth
 - » Combine with profilometry before and after scratching
 - Scratch resistance defined by a critical load
 - » Coatings often show distinct transition to fracture as load is increased.
 - » Many bulk polymers do not show such a transition

Single-Probe Test Methods (cont'd)

General Single-Probe Testing

- Utilize contant loading, progressive loading, or step function loading.
- Pyramidal probes used for indentation studies used in addition to axisymmetric probes (spheres, cones)

» Berkovich

- » Cube Corner (face and edge orientations)
- Many gaps in published literature
 - » Test variables vary widely
 - » Very few systematic tests
 - » Most studies on a narrow range of materials
 - » Few studies of time and temperature dependent scratch behavior
 - » Modeling rarely utilized to understand property-performance relationships
 - » Relationship to appearance poorly understood.

AFM Scratch/Mar Testing

- In general, scratch testing with commercially available AFM systems has many problems:
 - No force control in AFM force mode operation
 - Non-ideal tips
 - No force measurement during scratching
 - » Even if lateral signal measured, no way to determine force
 - » Often, both bending and twisting of probe can occur
 - Limited ranges of test variables (load, scratch length, etc.)
 - System nonlinearities
- Jones and co-workers control force through scanning system.
 - Instead of imaging, they use macros to perform single- and multi-pass scratch studies.
 - Now using a manufactured diamond conical probe.
 - » Scan with normal probe tip and analyze residual damage.

0° Vs. 90° Scratching

ُ0°

 $M=Pd_1-(F_L-F_c)d_2$

 $M=Pd_1+(f+F_c-F_1)d_2$

F_L-F_c

f+F_c-F_L

↓90°

- AFM scratch tests are normally performed in the 90° orientation:
 - Normal force determined by probe bending
 - Lateral force related to probe twisting
 - » Probe spring constant in bending can be measured
 - » No methods exist to measure probe spring constant in twisting
 - » Both bending and twisting of probe often occur
 - **Du et al. performed 0° scratching.**
 - Utilized data from both indentation and scratching along with FBDs of probe to determine friction forces.

Typical Ranges of Test Parameters

Test/System	Tip material	Tip geometry	Load Range	Depth Range	Speed/length
AFM	Diamond	Non-ideal < 0.1 μm radius	(1 - 400) μN	(10 –250) nm	(1-70) μm/s (1 –70) μm
AFM	Diamond	90° cone 1 μm radius	50 μN - 4 mN	50 nm - 1 μm	(35-70) μm/s 70 μm
Ford	Steel	sphere 500 μm radius	(0.6 - 7) N 30 N	(0.5 –10) µm	100 mm/s ?
LTDS	Diamond	Berkovich pyramid < 0.1 μm radius	(1 – 7) N	50 µm	500 μm/s (1 – 10) mm
CSEM	Diamond	Sphere 2 µm radius	(0 - 5) mN	(0.5 – 1) μm	5 μm/s ?
CSEM	Diamond	Sphere 200 µm radius	(0.5 – 10) N	?	200 µm/s ?
CSEM	Diamond	? 10 µm radius	(0 – 190) mN	(0 – 20) μm	50 μm/s 3 μm
DuPont	Diamond	60° cone, 3 μm radius ?, (1-2) μm radius	(0 – 8) mN	(1 – 4) μm	25 μm/s (1 – 10) mm
NanoIndenter	Diamond	Berkovich pyramid < 0.1 μm radius	(0.02 – 16) mN	(0 – 1.5) μm	(10-25) μm/s 500 μm
NanoIndenter	Diamond	Cube corner pyramid (0.5-2) µm radius	(0.02 – 16) mN	(0 – 2.5) μm	25 μm/s 500 μm

Measuring Surface Mechanical Properties

Summary of Modulus Measurements

Material	Nominal	Quasi-static DSI/O-P	Quasi-static DSI/BR-SS	AFM/ BR-SS	IFM/ Hertzian	Dynamic DSI/CSM
BCB $(T_g > 350^{\circ}C)$	2.9	3.6 ± 0.2	3.5 ± 0.3	5.1 ± 0.8	2.8 ± 0.7	3.5 ± 0.1
$Epoxy - T_g = 150^{\circ}C$	1.8			5.9 ± 0.4	4.4 ± 0.7	6.7 ± 0.1
Epoxy $T_g = 68^{\circ}C$	2.0			4.4 ± 0.2		5.0 ± 0.1
Epoxy $T_g = 13^{\circ}C$	0.4			1.9 ± 0.1	1.5 ± 0.3	
PMMA ($T_g = 114$ °C)	3.3	5.1 ± 0.1		6.8 ± 0.5		5.8 ± 0.1
$PS (T_g = 99^{\circ}C)$	3.1				4.8 ± 0.5	

	Load rates (µN/s)	Displacement rates (nm/s)	Tip Radius (nm)	
AFM	10-100	100-1000	10-20	
DSI	1-100*	1-200	50-100	
IFM	~1	1-2*	>1000	*controlle

Effect of Loading Rate for PMMA

- Measured values of E ranged from 6.1 GPa at high loading rates to 5.0 GPa at low loading rates.
- Dynamic testing yielded an increase in E' with frequency from 4.0 GPa to 5.7 GPa.
- Continuous stiffness measurements at 75 Hz yielded E = 5.8 GPa.

Effect of Dwell Time for PMMA

- Hold periods can be useful for measuring creep response of a material.
- A sufficient dwell time also can reduce some of the effects of viscoelasticity on the curvature of the unloading curve.
 - For no hold period, E = 5.3 GPa (17 μ N/s loading rate).
 - For the 10 s and 20 s hold periods, E = 4.6 GPa.

Next Steps

- Determine best methods for characterizing surface roughness as related to scratch/mar.
- Tip characterization project (summer student).
- With NanoIndenter:
 - Characterize time-dependent and dynamic mechanical response of surfaces for Phase 1 materials
 - » Link to time/rate-dependent response to scratch/mar
 - Explore the usefulness of friction coefficient measurements in single-probe scratch/mar testing.

» Effects of probe geometry

- Begin appearance studies
- Begin model development

