
Jan2003cover.qxd 12/5/02 4:21 PM Page 1

Overview of Project Management
This article outlines some of the key practices to creating or implementing projects
that will help organizations and project managers succeed in meeting goals.
by Tim Perkins, Roald E. Peterson, and Larry Smith

Delivering Quality Products That Meet Customer Expectations
Here are sound reasons to spend time at the beginning of a project on the basics –
product need, goals, and objectives – before jumping into design.
by Louis S. Wheatcraft

Making Measurement Work
Learn how a successful measurement program can become a way of doing business that
allows people to make fact-based decisions.
by Cheryl Jones

But I Only Changed One Line of Code!
This article introduces basic, software configuration management concepts to put your organization
on the road to successfully controlling software assets.
by Theron R. Leishman and Dr. David A. Cook

Risk Management Applied to the Reengineering of a Weapon System
As this article travels through the application of risk management practices to the reengineering
of missile operators’ console stations, many lessons learned are brought to light.
by Claude Y. Laporte and Guy Boucher

High Quality, Low Cost Software Inspections
This author presents an in-depth review of Ronald A. Radice’s new book on software inspections.
by Louis A. Poulin

Application of Lightweight Formal Methods in Requirements Engineering
This article overviews an evolving approach to capturing requirements known as “lightweight formalism”
that is less rigorous than normally expected.
by Vinu George and Dr. Rayford Vaughn

Cover Design by
Kent Bingham.

3

10

14

28

30

31

DeparDepar tmentstments

BackBack toto BasicsBasics

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering January 2003

4

11

15

20

24

29

30

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

STC Conference Registration

Coming Events

Web Sites

Call For Articles

BackTalk

CrossTalk Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions.Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center.All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of
their software products, efficiency in producing them, and
their ability to accurately predict the cost and schedule of
their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Chelene Fortier

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 23.

Ogden ALC/MASE
7278 Fourth St.
Hill AFB, UT 84056-5205

BackBack toto BasicsBasics

OnlineOnline ArArticleticle

From the Publisher

Irecently had the opportunity to attend a meeting conducted by a major program execu-
tive officer (PEO). What was the topic? Training. Here were lead engineers and program

managers talking about how to train their people in the basics of project management, con-
figuration management, and measurement. It was refreshing! How did they get there? Upon
assuming his new duties, the PEO used several definitive references on software develop-
ment practices: a text, the Software Engineering Institute’s “Guide to the Capability
Maturity Model® for Software (SW-CMM),” and several training manuals. After some study,

he began an initial review of the programs in his portfolio. During this process, he asked questions
on key process areas to those managing each program. The message he received? A lack of attention
to the basics.

This PEO is not alone. From Ford Motor Co. and the Air Force’s Air Logistics Centers to Marvel
Comics, all have formal “Back to Basics” programs aimed at reinforcing the organizations’ founda-
tion: properly trained people using correct tools, processes, and data. Total Quality Management,
Lean Six-Sigma, Benchmarking, ISO, SW-CMM, Capability Maturity Model® IntegrationSM – all these
depend on having the basics in place. This month’s CrossTalk is devoted to some of the funda-
mental areas necessary to successfully complete software intensive system development.

In Overview of Project Management, Tim Perkins, Roald E. Peterson, and Larry Smith of the Software
Technology Support Center (STSC) outline the definitions, skills, and processes required for effective
project management. Their work is derived from experience in the field and instructing the STSC’s
Project Management Workshop. Next, in Delivering Quality Products That Meet Customer Expectations,
Louis S. Wheatcraft emphasizes the importance of establishing a shared vision of the product at the
beginning of the project. He then shares best practices and lessons learned in defining product scope
such as stating an implementation as a need vs. understanding the customer’s need.

Making Measurement Work by Cheryl Jones provides lessons from successful measurement pro-
grams and outlines the Practical Software Measurement framework. The current Department of
Defense acquisition environment fosters using performance-based contracts with prime contractors
for major systems serving as integrators. This makes it crucial to understand critical software archi-
tecture, risks, and team capabilities to know what metrics to build into those contracts. A successful
measurement process must be a way of doing business and the basis for making fact-based decisions.

Also from the STSC is But I Only Changed One Line of Code! by Theron R. Leishman and Dr. David
A. Cook. This one-act play provides motivation for the application of one of the most widely accept-
ed software best practices: configuration management. Although generally accepted, basic configura-
tion management activities are often ignored, resulting in serious negative impact on software devel-
opment and acquisition projects. This article introduces basic software configuration management
concepts and the rationale for its implementation.

In Risk Management Applied to the Reengineering of a Weapon System, Claude Y. Laporte and Guy
Boucher briefly describe a systems engineering process and discuss the application of risk manage-
ment practices to the reengineering of operator console stations of a missile weapon system, includ-
ing 12 lessons learned.

Louis A. Poulin’s article, High Quality, Low Cost Software Inspections, cites work by Ronald A. Radice
in his book, “High Quality, Low Cost Software Inspections,” and defines inspections, peer reviews,
walk-throughs, and structured reviews. He explains that while these are all terms that are used inter-
changeably in software engineering, the activities are rarely carried out consistently in the course of
developing an application.

Are formal methods the answer to providing high-quality software through mathematical rigor?
In Application of Lightweight Formal Methods in Requirements Engineering, Vinu George and Dr. Rayford
Vaughn explain how using formal methods is important to achieving correctness, consistency, and
developmental understanding. However, the degree of formalization must be carefully planned. An
evolving approach – lightweight formalism – which is less rigorous than normal, can be advantageous.

A wealth of information exists on each of these fundamental topics. The STSC’s Web site,
<www.stsc.hill.af.mil>, contains additional references. We hope this collection of articles provides
you a quick review that you can use when training your team.

Best Training Includes Going Back to Basics

Lt. Col. Glenn A. Palmer
Director, Computer Resources Support Improvement Program

January 2003 www.stsc.hill.af.mil 3

Back to Basics

4 CROSSTALK The Journal of Defense Software Engineering January 2003

This article provides a brief overview of
project management, including its pur-

pose, activities, and responsibilities. The
beginning sections discuss what projects are,
what project management is, and what proj-
ect management generally entails. Next is a
summary of project life cycles and their
phases, along with the processes and activi-
ties of project management. The article con-
cludes with checklists, definitions, and fur-
ther resources. The content of this article
has been condensed from multiple sources
that are listed at the end along with other
recommended Web resources that provide
more detail and direction for managing proj-
ects. Check them out!

Projects and Programs
A project is a group of activities undertaken
to meet one or more specific objectives.
These objectives could include solving a
problem, building or upgrading a system or
product, launching a product or service,
implementing a strategic plan, changing a
process, or one of many other unique
efforts.

Projects can differ in size from small and
simple to large and complex. Because they
are designed to accomplish specific objec-
tives, projects are temporary and have spe-
cific starting and completion dates. Ongoing
operations, such as running a maintenance
facility or publishing a magazine, are not
projects. However, performing a specific air-
craft avionics upgrade or printing a monthly
issue of a magazine are projects.

Limited, specific performance time
frames and objectives are how projects differ
from programs. Programs are generally
much larger efforts than projects with a

longer duration. Relative to projects, they are
ongoing rather than temporary efforts.

While this article focuses primarily on
project management, most of what is pre-
sented will also apply to programs. Programs
are made up of multiple projects and in
many cases can be treated as longer, more
complex projects.

Projects are often divided into smaller
components or activities, usually based on
technical and functional disciplines such as
engineering, manufacturing, testing, and pro-
curement. The relationships among pro-
grams, projects, and activities are shown in
Figure 1. Some projects are divided along
product lines instead of activities.

Projects are successfully completed
when their objectives have been achieved.
Projects should be terminated when man-
agement can see that the projects will fail to
meet their objectives.

Project Management
Project management is that discipline that
employs skills and knowledge to achieve
project goals through various project activi-
ties. It involves controlling costs, time, risks,
project scope, and quality through project
management processes.

Project management includes the follow-
ing functions:
• Planning. Planning the project and estab-

lishing its life cycle.
• Organizing. Organizing resources such

as personnel, equipment, materials, facil-
ities, and finances. Coordinating work
and resources.

• Leading. Assigning the right people to
the right job. Motivating people. Setting
the project’s course and goals.

• Controlling. Evaluating project progress
and, when necessary, applying changes to
get it back on track.
Performing these functions in an organ-

ized framework of processes is the job of
the project manager (PM).

Projects rarely succeed by themselves.
They must be planned and executed.
Projects must have specific support from
management, general support from the
organization, and appropriate participation
from the customer. To be successful, proj-
ects must also have a responsible and
empowered manager to drive, direct, and
monitor them.

Project Manager
The selection of a PM has a major effect on
project success. The PM should have the
skills, knowledge, and personality necessary
to bring the project to fruition. In addition
to these traits, the PM must be given the
level of responsibility and authority neces-
sary to perform the job.

The PM’s actual role depends on the
structure of his/her organization, which can
be function-oriented, project-oriented, or
some type of matrix in between. In a heavi-
ly project-oriented organization, the PM may
have relatively unlimited authority, answering
only to upper management. At the other end
of the spectrum is an organization that man-
ages by function. The PM must deal with
functional managers as equals, or possibly
even superiors, and negotiate for resources.
Most organizations fall somewhere in
between these two extremes. Figure 2
depicts the level of PM authority associated
with different types of organizations.

It is essential that the PM understands
the organization’s structure and knows the
level of authority that goes with the job. It is
also essential that upper management grants
authority and establishes an environment
that will enable the PM to successfully
accomplish the project objectives.

PMs need both management and techni-
cal skills. The key management skills are
those needed to perform or direct project

Overview of Project Management

Larry Smith
Software Technology Support Center

Every organization or program creates and implements projects to help it move toward its goals. Every assigned project man-
ager wants to be successful in executing assigned projects, and a number of standard practices exist to assist and guide the proj-
ect manager. This article is extracted from the Software Technology Support Center’s soon-to-be-released condensed guidelines
for software acquisition. It outlines some of these key practices that, while are common sense, are not always common practice.

Tim Perkins and Roald E. Peterson
Software Technology Support Center/SAIC

PROGRAM
Project

Activity Activity

Activity Activity

Activity Activity

Project
Activity Activity

Activity Activity

Activity Activity

Project
Activity Activity

Activity Activity

Activity Activity

Figure 1: Relationships Between Programs, Projects, and Activities

January 2003 www.stsc.hill.af.mil 5

Overview of Project Management

management activities, which are listed in
Table 1.

The PM’s technical skills should include
at least some technical understanding of the
project field. Remember, however, the PM
will not typically be doing the technical work
but will be directing the work that others do.
The essential level of PM expertise is the
ability to understand what others are doing,
but not necessarily how they do their jobs.

Process Description
To understand how a project is brought to
fruition, the PM must understand project
processes. The PM must also understand the
differences between program and project life
cycles and the difference between life-cycle
phases and project-management processes.

Product Life Cycle
As stated earlier, programs are generally
large efforts spanning long periods of time
and are composed of multiple projects. They
are usually associated with developing or
acquiring systems such as aircraft, weapons,
training operations, communications, etc. An
example of a product life cycle with its asso-
ciated phases and products is shown in
Figure 3.

This example has five phases – planning
through operation – each producing a spe-
cific output. At the end of each life-cycle
phase, a decision is made to either continue
or not continue to the next phase. When the
final product is completed, it is implement-
ed, and after being in operation for some
length of time, it is retired.

Various industries employ different life
cycles, depending on their products. Each
phase of a product life cycle can consist of
one or more projects. Note that in the com-
mercial world, a product life cycle is often
described as the length of marketability of a
product. We must not forget, however, the
potentially long and costly maintenance or
sustainment phases.

Project Life Cycle
Projects, like products, have life cycles and
are usually performed in phases. Each phase
accomplishes specific work toward reaching
the project goal and produces one or more
deliverables. These are tangible, real items
used in attaining the final goal of the project,
and could include plans, studies, designs, or
software or hardware prototypes. The end of
a phase is defined by completing its deliver-
able. Figure 4 (see page 6) illustrates an
example of a very generic project life cycle
with its phases and major deliverables.

While major aspects of project manage-
ment are applicable across all projects, life
cycles may vary depending on the type of
project and the organization performing the

work. It is important to implement an appro-
priate life cycle for the product. This article
only deals with a generic project life cycle for
a generic product or deliverable.

Project Phases
The phases identified in Figure 4 are com-
mon across most projects. However, they
may be called by different names or split into
additional phases. They may even be iterative
where, for example, a prototype is designed,
built, and tested, then the results are used to
design, build, and test a new prototype.
Project phases should, in most cases, be
comparable to the generic project phases
discussed in the following sections.

Definition Phase
This phase begins when upper management

creates a project charter that defines the
project’s purpose and identifies the PM.
The charter should also include a statement
of support authorizing the PM to perform
his/her functions. During this phase, the
project rules are defined. Both the PM and
stakeholders determine the project’s goals,
scope, and constraints. Key individuals and
groups are identified as members of the

Function
Oriented

Project
OrientedMatrix

Organization Type

PM Authority

Figure 2: Organization Type and Project
Management Authority

Skill Description

Integration
Management

Coordinate project plan development, execute the plan, and manage the
change control process to ensure that all aspects of the project are
working together.

Scope
Management

Establish project scope at the start. Develop and implement plans and
procedures to verify that scope is achieved and maintained. Define and
oversee the process for controlling changes to the scope.

Risk Management Identify potential risks. Mitigate large risks and plan how to deal with
smaller risks. Monitor the project to detect and resolve problems.

Time and Schedule
Management

Estimate the duration of project activities, the proper sequence of these
activities, and develop and control the project schedule.

Cost and Budget
Management

Estimate project costs and develop and control the project budget.

Quality
Management

Establish and control processes to ensure project goals are met to the
stakeholders' satisfaction. This includes quality planning, quality
assurance, and quality control.

Communications Define methods and lines of reporting and information distribution: Who
gets reports and project information? How often? What is the content?

Procurement
Management

Oversee procurement and delivery of materials, equipment, and services
needed for the project. This includes planning, solicitation, source
selection, and contract administration.

Human Resources
Management

Develop good leadership qualities. Plan team organization, obtain the
right people to staff the positions, and develop their skills as individuals
and as a team.

Earned Value
Management

Develop a systematic approach to project control integrating cost and
schedule control with performance control.

Table 1: Management Skills for Project Managers

Program
PlanPlanning

Requirements

Design

Construction

Operation

Product
Requirements

Decision

Decision

Product
Design

Actual
Product

Decision

Implementation and Acceptance

Retired

Time

Example
Product
Life Cycle

Figure 3: Example of a Product Life Cycle

Note: In some life cycles, e.g., evolutionary or rapid prototype, the output of a design phase may be a
product prototype.

Back to Basics

6 CROSSTALK The Journal of Defense Software Engineering January 2003

project core team, and their roles are defined
by both the PM and upper management.
Upper management along with the PM also
defines communications channels, authority,
and the chain of command.

These project rules are written in three
documents: the project statement of work
(PSOW), the project responsibility matrix,
and the project communication plan. The
PSOW establishes the scope of the project
and documents what is to be accomplished.
For an internal project, the PSOW becomes
the primary requirements document.
However, the PSOW is not the same as a
contract statement of work (SOW). For a
project where much of the work is contract-

ed, the SOW is a binding, contractual agree-
ment. (See Table 2 for a description of these
documents and other terms.) Figure 5
depicts the input, major activities, and prod-
ucts of the definition phase.

Planning Phase
The planning phase uses the project rules as
a foundation and defines the path to achieve
the project goals. It is performed by the PM
and the core project team, which interfaces
with appropriate elements of the organiza-
tion, and identifies the actual work to be
done. It includes estimating schedule, cost,
and resources required to perform the work,
and produces plans to serve as a baseline and

direct the work. A key part of schedule plan-
ning is identifying the critical path. This is
the chain of interdependent, sequential proj-
ect activities that takes the longest time to
complete, and thus determines the minimum
schedule for the project. Planning also
includes risk identification and risk reduction
efforts. The results of the planning phase
become the project plan.

Figure 6 shows the inputs, activities, and
products of the planning phase. Note the
feedback loop from the phase activities to
the project rules. This indicates that the rules
may need to be modified after more detailed
analysis in this phase reveals deficiencies or
inefficiencies in the rules. This illustrates the
iterative nature of project management.
Remember, the project plan is fluid and the
PM should expect changes.

Execution Phase
With a project plan for guidance, the actual
project work can begin in earnest. This is the
phase where project goals are achieved.
While Figure 7 may make it look far simpler
than the planning phase, the execution
phase entails directing the various work
groups in their activities, monitoring their
progress, solving problems and resolving
issues that will certainly come up, making
changes to the plan, and coordinating these
changes. (These activities are part of the
executing and controlling processes dis-
cussed in the project processes section.) If
your planning has been done well, you will
have a smoother ride through this phase.
This phase is complete when the product is
complete, the project goals are reached, or
the project is terminated.

Closeout Phase
The closeout phase begins with the delivery
of the product or completion of the project
goals or project termination. It consists pri-
marily of tying up loose ends. Any unre-
solved issues from the contract or SOW are
resolved in this phase. The contract is signed
off as fulfilled, and all other paperwork is
completed.

A very important activity of this phase is
assembling the project history. This is a sum-
mary of all that has been accomplished. It
should include information that will allow
either you or a follow-on PM to understand
what was done and why. Of particular
importance is a compilation of lessons
learned from the project so either you or
others in your organization can do things
better on the next project. Figure 8 summa-
rizes the closeout phase.

Project Processes
The Program Management Institute defines
five major process groups used in projects:

Project Rules
Definition Phase

Project Charter

- Announces Project
- States Purpose
- Identifies Project Manager
- Statement of Support

Project Statement of Work
Determine goals, scope,
and project constraints.

Identify core team
members (individuals and
groups) and their roles.

Define communications
channels, methods,
frequency, and content.

Responsibility Matrix

Communications Plan

Figure 5: Project Definition Phase

Project RulesDefinition

Planning

Execution

Time

Example
Project

Life Cycle
Closeout

Project Plan

Project Goal Complete

Formal Closure and
Project Review

Figure 4: Example of a Generic Project Life Cycle

Table 2: Definition of Basic Project Management Terms

• Baseline – A standard against which future sta-
tus, progress, and changes are compared and
measured. Most plans developed during the
planning phase are used as baselines. The
budget usually serves as one baseline, the
schedule as another, etc.

• Communications Plan – A document that
defines the lines, content, method, and frequen-
cy of communications between the project man-
ager, members of the project team, stakeholders,
and management.

• Critical Path – The sequence or chain of inter-
dependent activities in the project that takes the
longest time to complete. This sequence deter-
mines the shortest schedule for the project. Any
delay in a critical path activity increases the proj-
ect schedule.

• Life Cycle – The complete set of phases some-
thing goes through, beginning with its conception
and ending with its retirement from service.

• Process – A series of related activities or steps
that accomplish a specific purpose.

• Project Charter – Document that announces the
project by name, states its purpose, identifies the

project manager, and announces his or her
authority.

• Project Manager (PM) – Individual with respon-
sibility and authority for directing the project.

• Project Statement of Work (PSOW) –
Document that defines the goals, scope, and
constraints of the project. It states what needs to
be done, not how to do it.

• Responsibility Matrix – Document that identi-
fies members of the project team and defines
their roles.

• Stakeholders – Those persons and organiza-
tions that have an interest in the performance
and completion of the project. The customer or
user of a product created through a project is
usually a primary stakeholder.

• Statement of Work (SOW) – A contractual doc-
ument that defines the work to be performed for
a specific project under contract.

• Work Breakdown Structure (WBS) – A break-
down of the project into its constituent’s tasks or
activities. It lists the specific work needed to com-
plete all aspects of the project.

Overview of Project Management

January 2003 www.stsc.hill.af.mil 7

initiation, planning, executing, controlling,
and closing. Processes are sequences of
activities that accomplish specific functions
necessary to complete or enable some por-
tion of the project. These are not phases
themselves but can be found both in proj-
ects and in each major phase of a program
or large project. Because the activities in later
phases may require changes in the products
of earlier phases, these processes become
iterative and often overlap phases as well as
each other. An example would be an issue in
the execution phase requiring a change to
plans made in the planning phase. This over-
lap is shown in Figure 9.

Initiation Process
The initiation process consists of formally
validating or authorizing the project. It often
includes some form of analysis such as a fea-
sibility study, a preliminary requirements
study, a concept of operations, or a prelimi-
nary plan.

Planning Processes
Planning processes establish the scope or
boundaries of the project. They lay the
foundation and define an expectation base-
line. Future proposed changes are evaluated
against this baseline. What must be balanced
here and throughout the project are sched-
ule, cost, quality, and scope. Changes to the
scope of the project will almost certainly
affect at least one of these, requiring changes
in the others to achieve balance again.
Likewise, changes in one or more of these
three constraints will require changes in the
others and/or changes to the scope or
expectations of the project. This balance is
shown in Figure 10. Note that these do not
necessarily define the project scope but they
do constrain it.

Again, a manager can control any three
of these four constraints. For example, if
one chooses to control schedule, cost, and
quality, the functional capability of the prod-
uct may have to be reduced. Likewise, if one
attempts to expand functional capability (i.e.,
requirements bloat) while maintaining cost
and quality, the schedule may have to be
relaxed to maintain the balance.

Other planning processes include the
following:
• Define activities needed to perform the

project.
• Estimate activity duration.
• Estimate a minimum schedule and devel-

op a project schedule.
• Conduct risk management.
• Develop communications planning.
• Conduct staff planning.
• Develop organization definition.
• Sequence activities.
• Conduct resource planning.

• Estimate costs.
• Develop a spending plan or budget.
• Conduct quality planning.
• Conduct procurement planning.
• Develop a project plan.

Executing Processes
The executing processes are those that direct
or enable the actual work of the project.
They consist of the following:
• Execute the project plan.
• Perform quality assurance activities.
• Perform procurement activities.

Project PlanPlanning Phase

Project Rules

Risk Management Plan
Identify risks and develop
a plan to control them.

Identify the tasks required
to achieve project goals.
Estimate effort required.

Define task sequence,
estimate minimal schedule,
and develop a schedule.

Work Breakdown Structure

Project Schedule

Estimate costs: labor,
materials, facilities, etc.
Develop a budget.

Estimate required staffing
levels and specialties.

Project Spending Plan

Staffing Plan

Estimate quantity and
timing of materials and
equipment needed.

Material and Equipment Plan
Feedback

Figure 6: Project Planning Phase

Time

Activity

Start Finish

Executing

Controlling

Planning

Initiation Closing

Figure 9: Project Management Processes Overlap [1]

Execution Phase

Product or Goal
Execute project plan and
accomplish project goals.

Project Plan

Feedback

Figure 7: Project Execution Phase

Closeout Phase

Project History

Resolve open issues.
Product is

delivered or
goals are met.

Complete contractual
obligations (contract
closeout).

Assemble project history
and lessons learned.

Contract Closed

Stakeholders Satisfied

Figure 8: Project Closeout Phase

Balance

Scope
Cost

Schedule

Quality

Figure 10: Balancing Constraints Within
Project Scope

8 CROSSTALK The Journal of Defense Software Engineering January 2003

Back to Basics

• Develop team and individual compe-
tencies.

• Communicate to team members and
stakeholders.

Controlling Processes
Controlling processes are ongoing through-
out most of the project. They include verify-
ing that the project is proceeding according
to plan or determining where and how much
a deviation is occurring. They are absolutely
essential to the progress and success of the
project. They include the following:
• Monitoring, measuring, and reporting

the performance of project activities.
• Verifying the project is continuing within

scope.
• Controlling changes to the project scope.
These processes are, in turn, enabled by
these supporting processes:
• Schedule control.
• Cost control.
• Quality control.
• Functional scope control.
• Risk monitoring and control.

Earned value management techniques, if
properly employed, have been shown to be a
worthwhile approach to indicate project sta-
tus, progress, and trends toward successful
completion.

Closing Processes
The closing processes are accomplished fol-
lowing the completion of the project objec-
tives. Their purpose is to resolve any open
issues, complete any paperwork required for
formal completion of the project, and gath-

er information useful for evaluating project
performance for future reference. The first
process is contract closeout, where any
remaining contract issues are settled. The
other process is administrative closure,
where formal documents terminating the
project are generated, and an appropriate
history of project performance and lessons
learned is gathered.

Project Management
Application
Applying the previous information to a real
project will depend on several things. A PM
assigned to an ongoing project has little con-
trol over how the project is set up. In this
case, the new PM will need to quickly learn
the following:
• Project purpose and objectives.
• Project phases and deliverables.
• Project budget and current spending

status.
• Project schedule and current status.
• Current problems and issues.
• Major risks.
• Project team organization and contacts.
• Project management processes in place

or planned.
• Life cycle of the product the project is

supporting.
• Communications that detail who gets

what information and when.
A new project requires the PM to learn

or establish the items in the previous list.
After understanding the purpose and goals
of the project, the PM will need to select an

appropriate project life cycle. If it is a small,
straightforward software development
effort, all the software development life-
cycle phases are performed as part of the
execution phase, as shown in Figure 11.
Remember to distinguish between project
phases and software development phases.
Also note that this example portrays only
one of several possible life-cycle models.

If the software development effort is
larger or more complex, the development
life cycle will still be performed in the execu-
tion phase of the overall project or program.
However, each phase of software develop-
ment now becomes a project in its own right,
with all the phases of an individual project.
This is shown in Figure 12.

If the PM is managing a project team
that is developing software, then he or she
will manage both project and software
development phases. If managing a contract
effort, the PM will manage the overall proj-
ect, but a contractor PM will manage the
actual development effort.

With a contracted software development
effort, you will also need to add a procure-
ment phase to your project. This additional
phase will take the outputs from the previ-
ous stage, including a SOW, and perform
procurement activities to contract with an
outside organization to perform the work.
This additional phase is shown in Figure 13.

Knowing the project goals and selecting
a project life cycle establishes the foundation
on which to build the project.

Project Management Checklist
This checklist is provided to guide you in
essential actions to ensure your project is on
track in meeting cost, schedule, and per-
formance requirements. If you cannot
check an item off as affirmative, you need
to either rectify the situation or develop a
contingency plan to solve problems that
may arise. For example, if the staff does not
have sufficient technical skill to do the
work, you will need to remedy the situation
either by providing training or by obtaining
sufficiently skilled people.

Beginning a Project
" The project has specific goals to accom-

plish, and you understand the reasoning
behind them.

" All stakeholders (interested parties)
understand and agree on the expected
project outcomes.

" Upper management is solidly behind the
project.

" You understand the level of authority
you have been granted in relation to the
project and the rest of the organization,
and the level of authority is appropriate.

" You understand how the organization

Requirements Design

Definition Planning Execution Closeout

Implement Test Integrate

Figure 11: Software Development Phases are Part of the Project Execution Phase

D
ef

in
iti

on
P

la
nn

in
g

E
xe

cu
tio

n
C

lo
se

ou
t

D
ef

in
iti

on
P

la
nn

in
g

E
xe

cu
tio

n
C

lo
se

ou
t

`

D
ef

in
iti

on
P

la
nn

in
g

E
xe

cu
tio

n
C

lo
se

ou
t

D
ef

in
iti

on
P

la
nn

in
g

E
xe

cu
tio

n
C

lo
se

ou
t

D
ef

in
iti

on
P

la
nn

in
g

E
xe

cu
tio

n
C

lo
se

ou
t

Definition Planning Execution Closeout

Requirements Design Implement Test Integrate

Figure 12: Complex Development Phases Become Projects Themselves

January 2003 www.stsc.hill.af.mil 9

operates, including how to get things
done within the organization.

" You understand what you are responsi-
ble for delivering at both a macro and a
micro level.

" You know the high-priority risks your
project faces.

During Project Planning
" You know which external interfaces are

not under your control.
" You know the estimated size of the soft-

ware to be developed, and how the esti-
mate was made.

" Funding has been allocated for the proj-
ect.

" A credible budget has been prepared,
based on project scope and work esti-
mates.

" Adequate time has been allocated to
complete the project.

" Adequate staff is or will be available to
complete project tasks.

" The project staff has sufficient expertise
to perform the work.

" Facilities and tools are or will be available
for the project team.

" You know of potential funding cuts and
when they might come.

" You know what major problems have
plagued projects of this type in the past.

" An appropriate life cycle has been select-
ed for the project, and you understand
that life cycle.

" You have a credible work breakdown
structure.

" All requirements have work tasks
assigned to fulfill them.

" All work tasks are associated with project
requirements or support activities.

" Special requirements or constraints are
documented.

" You have a budget, schedule, and per-
formance baseline established and docu-
mented.

" You have identified the critical path for
the project.

" You have a process established to moni-
tor the project and detect problems and
departures from the baseline.

During Project Execution
" You know what your project’s expendi-

tures are to date and any difference
between those and your budget.

" You know the status of project activity
completion along the critical path and
any difference between that and the
schedule.

" You are aware of any issues or problems
with quality or performance that may
impact the critical path.

" You are aware of any contract perform-
ance issues.

Conclusion
All project managers desire to bring their
projects to a successful conclusion. The typ-
ical success factors are meeting cost, sched-
ule, and quality objectives within the allotted
scope while also meeting the associated cus-
tomer expectations. The standard practices
to accomplish this desire have been outlined
in this article. They include the following:
obtaining and maintaining the necessary
support from the project sponsor, support
organization, and customer; employing an
appropriate life cycle and breaking the proj-
ect into success-oriented phases; setting
aside an appropriate amount of time to
understand the expectation of key stake-
holders; adequate planning to accomplish
key objectives; and finally, executing the
project plan while balancing the naturally
occurring changes with a companion control
and tracking system.◆

Reference
1. Project Management Institute. A Guide

to the Project Management Body of
Knowledge. 2000 Ed. John Wiley &
Sons, Inc., 1999.

Resources
1. AllPM. Project Managers Home Page.

<www.allpm.com>.
2. Best Manufacturing Practices. TRIMS

Risk Management and Best Practices
Software downloads: <www.bmpcoe.
org/pmws/index.html>.

3. Best Manufacturing Practices Library.
Download know-how software and
copies of DoD 5000.1, 5000.2, etc.
<www.bmpcoe.org/pmws/download/
knowhow.html>.

4. Can-Plan Project Management. Soft-
ware download. <www.geocities.com/
b i l lmcmi l l an2000/CAN-PLAN.
html>.

5. Baker, Kim and Sunny. Complete
Idiot’s Guide to Project Management.
2nd Ed. USA: Alpha Books, 2000.

6. Department of Defense. Defense
Acquisition Deskbook. <http://web2.
deskbook.osd.mil/default.asp?>.

7. Department of Defense. Defense
Acquisition Deskbook, Program
Management. <http://web1.desk
book.osd.mil/CS_PM.asp>.

8. Defense Systems Management College.

Program Manager Magazine <www.
dsmc.dsm.mil>.

9. Department of Defense Software
Clearing House. <www.dacs.dtic.mil>.

10. Gantthead Online Community for IT
Project Managers. <www.gantthead.
com>.

11. Department of Defense. “Guidelines
for the Successful Acquisition and
Management of Software-Intensive
Systems (GSAM).” Ver. 3.0. OO-
ALC/TISE. May 2000. <www.stsc.hill.
af.mil/gsam/guid.asp>.

12. Project Management Forum. <www.
pmforum.org>.

13. Project Management Institute. <www.
pmi.org>.

14. Project Management Knowledge Base.
Extensive free library. <www.4pm.
com>.

15. Defense Systems Management College.
Project Manager Magazine. <www.dau.
mil/forms/order_pm. asp>.

16. Software Program Managers Network.
<www.spmn.com>.

17. Software Program Managers Network.
Risk Radar software download. <www.
spmn.com/rsktrkr.html>.

18. Software Program Managers Network
Guidebooks. <www.spmn.com/products
_guidebooks.html>.

19. Software Technology Support Center.
<www.stsc.hill.af.mil.>.

20. TechRepublic Information Technology
Forum. <www.techrepublic.com>.

21. Ten Step Project Management Process
Site. <www.tenstep.com>.

22. Clinger-Cohen Act of 1996. The
National Defense Authorization Act
for Fiscal Year 1996.

23. Department of Defense. “Mandatory
Procedures for Major Defense Acquisi-
tion Programs and Major Automated
Information System Acquisition Pro-
grams.” Regulation 5000.2-R. 10 June
2001. Part 2: 2.8 Support Strategy. Part
2: 2.9 Business Strategy. Part 5:
Program Design.

24. Department of Defense. “The
Defense Acquisition System, 4.5
Effective Management.” DoD 5000.1.

25. Department of Defense. “Operation
of the Defense Acquisition System, 4.7
The Defense Acquisition Management
Framework.” DoDI 5000.2.

Overview of Project Management

Planning Procurement Execution CloseoutDefinition

Requirements Design Implement Test Integrate

Figure 13: Project with Procurement Phase

10 CROSSTALK The Journal of Defense Software Engineering January 2003

About the Authors

Larry Smith is a senior
software engineer and
project manager for the
Air Force’s Software
Technology Support
Center at Hill Air Force

Base. He provides software engineer-
ing, software process improvement,
and project management consulting for
the U. S. Air Force and other Depart-
ment of Defense organizations as well
as commercial and nonprofit organiza-
tions. Smith is a faculty member at the
University of Phoenix. He is also certi-
fied by the Project Management
Institute as a Project Management
Professional. Smith has a bachelor’s
degree in electrical engineering and a
master’s in computer science.

Software Technology Support Center
OO-ALC/MASE
7278 Fourth St. Bldg.100
Hill AFB,UT 84056-5205
Phone:(801) 777-9712
Fax:(801) 777-8069
E-mail: larry.smith4@hill.af.mil

Roald E. Peterson is a
senior systems engi-
neer with Science Ap-
plications International
Corporation. He has 22
years of electronic sys-

tems development experience, special-
izing in communications, architecture,
and software development. Peterson
was an editor and contributor for the
“Guidelines for the Successful Acquisi-
tion and Management (GSAM) of
Software Intensive Systems” and is the
author of the “Condensed GSAM
Handbook.” He has a bachelor’s degree
in physics and master’s degrees in com-
puter resources management and elec-
trical engineering.

Software Technology Support Center
Science Applications Int’l Corporation
920 W.Heritage Park Blvd.Suite 210
Layton,UT 84041
Phone:(801) 774-4705
Fax:(801) 728-0300
E-mail: roald.e.peterson@saic.com

Tim Perkins has been
involved in software
process improvement
for the past 11 years,
including leading the
effort to initiate soft-

ware process improvement at the then
five Air Force Air Logistics Centers. As
the software engineering process group
leader at the Software Engineering
Division at Hill Air Force Base, UT, he
led the division in reaching Capability
Maturity Model® (CMM®) Level 3. The
division has gone on to achieve CMM
Level 5. Perkins is Acquisition
Professional Development Program
Level 3 certified in Project Manage-
ment and System Planning, Research,
Development, and Engineering.

Software Technology Support Center
OO-ALC/MASE
7278 Fourth St. Bldg.100
Hill AFB,UT 84056-5205
Phone:(801) 775-5736
Fax:(801) 777-8069
E-mail: tim.perkins@hill.af.mil

Back to Basics

January 2003 www.stsc.hill.af.mil 11

Past articles in CrossTalk have cited
dismal results for studies of software

project failures and successes. In the
April 2002 issue, Theron Leishman and
Dr. David A. Cook reported the follow-
ing facts regarding the Department of
Defense software development:

At the 5th Annual Joint Aerospace
Weapons Systems Support, Sen-
sors, and Simulation Symposium
in 1999, the results of a study of
1995 Department of Defense
(DoD) software spending were
presented. Of $35.7 billion spent
by the DoD for software, only 2
percent of the software could be
used as delivered. The vast major-
ity, 75 percent, of the software was
either never used or was cancelled
prior to delivery. The remaining 23
percent of the software was used
following modification. [1]

Similarly in a July 1998 CrossTalk
article, Lorin J. May reported on a
Standish Group study of unsuccessful
government software:

According to the Standish Group,
in 1995, U.S. government and busi-
nesses spent approximately $81
billion on cancelled software proj-
ects, and another $59 billion for
budget overruns. Their survey
claimed that in the United States,
only about one-sixth of all projects
were completed on time and with-
in budget, nearly one third of all
projects were cancelled outright,
and well over half were considered
“challenged.” Of the challenged or
cancelled projects, the average
project was 189 percent over budg-
et, 222 percent behind schedule,
and contained only 61 percent of
the originally specified features. [2]

One problem that contributes to can-
celled projects is a failure to establish a
shared vision of the final product at the
beginning of the project. Having a shared
vision requires defining the product’s
need, goals, and objectives before writing

requirements and developing code. The
purpose of new software or of an
upgrade must be clearly understood
before writing requirements, or divergent
requirements will be written and impor-
tant requirements will be missed. This
vision must be provided to programmers
before development to ensure that they
maintain a single viewpoint.

Creating a shared vision is a basic
concept in product development that is
often neglected. There is an old saying
that expresses this: “Failure to plan, is a
plan to fail.”

Project vs. Product
For the purposes of this article, I define
a project or program as a system that con-
sists of the people, processes, and tools
that make up the environment in which a
product or products will be developed.
The product could be a hardware system,

a hardware/software system, a process,
or a service. The product is a separate
system within the project or program sys-
tem. Each may have its own scope.

An error made by some project teams
is the failure to differentiate the product
scope from the project scope. Each
defines overlapping but different needs,
goals, objectives, stakeholders, drivers,
and interfaces. While the product will be
driven by the project scope, there will be
other drivers as well. The perspective is
different when focusing on developing
the product vs. managing the project or
program. For large programs or projects,
there typically will be a project manager
as well as a product manager. The prod-
uct manager may be referred to as the
system engineer, the lead engineer, the
lead software engineer, etc. His/her focus
is on product management vs. project
management.

This article deals primarily with the
product. The following sections discuss
the problem in clearly defining the prod-
uct scope identified earlier – a failure to
define and agree to the product need,
goals, and objectives.

Clearly Define Product Scope
The scope of a product constitutes the
vision: the need to develop or procure a
product or service; the goals and objec-
tives of the customer and your company;
information about the customers and
users; and how the product will be devel-
oped or purchased, tested, deployed and
used [3, 4, 5]. The scope must unequivo-
cally define the product boundaries. A
product with no boundaries will diverge,
or as Yogi Berra said: “If you don’t know
where you’re going, you’ll probably end
up someplace else.”

For example, you are assigned to lead
a project team to upgrade a product. The
main reasons for the upgrade are to fix
known problems, to address lessons

Delivering Quality Products That
Meet Customer Expectations

Louis S. Wheatcraft
Compliance Automation, Inc.

Why is it so difficult for project personnel to deliver a quality product on time and on budget that meets or exceeds their cus-
tomer’s expectations? A major contributor to project failure is neglecting to spend time at the beginning of the project on the
basics. There are critical activities that must be accomplished and agreed to before writing requirements and beginning prod-
uct development. These activities include clearly defining the project and product scope, including need, goals, objectives, driv-
ers and constraints, assumptions, operational concepts, external interfaces, and feasibility and risk assessments. Unfortunately,
many of these activities are often skipped. Developers jump into design without really understanding the reason for develop-
ing the product, and what it is they are supposed to do. This article focuses on one of the biggest problems in clearly defining
your product scope: a failure to define and agree to the product’s need, goals, and objectives.

“An error made by some
project teams is the

failure to differentiate
the product scope from
the project scope. Each
defines overlapping but
different need, goals,

objectives, stakeholders,
drivers, and interfaces.”

12 CROSSTALK The Journal of Defense Software Engineering January 2003

Back to Basics

learned, and to improve its operability,
reliability, security, safety, and maintain-
ability. The functionality of the current
product is adequate to meet the basic
need for the product; however, there are
stakeholders that would like to add to
current functionality and improve prod-
uct performance.

While some stakeholders want to add
a few bells and whistles, others have legiti-
mate reasons to add to the product’s
functionality. These reasons include
upgrading to new technology, making
the product more competitive, making
the stakeholder’s jobs easier or more
effective, and adding features based on
changes to the product’s operating envi-
ronment. If you skip the up-front activi-
ties and fail to define and get an agree-
ment on the scope of the product
upgrade, there will be no clear bound-
aries of what is included in the upgrade
and what is not. You are doomed to fail-
ure.

Getting agreement from all key stake-
holders of the product scope before
your team writes requirements and
begins design ensures that everyone will
clearly understand the requirements’
boundaries for the upgrade. Involving
key stakeholders in scope definition will
avoid battles that result from differing
visions and different interpretations of
what should be included or excluded in
the product. Issues can be identified and
resolved before investing scarce
resources into the requirements writing
effort. Spending time to resolve issues,
get questions answered, reduce debates,
and confirm assumptions will result in
reducing the time to write requirements,
as well as speeding up the requirements
review and baseline process.

Scope definition keeps requirements
writers from diverging, reduces require-
ments inconsistencies, and keeps the big
picture in view. An agreed-to product
scope contributes to better requirements
whose impact on development and test-
ing is to avoid incorrect design and to
reduce requirements discrepancies found

in testing. Having a clear product scope
will allow ground rules to be established.

In the preceding example, your first
priority is clearly to maintain current
functionality while specifically addressing
the known problems and lessons learned
as well as improving the current prod-
uct’s operability, reliability, security, safe-
ty, and maintainability. Requirements to
add additional functionality or features
will only be considered if specifically
agreed to and documented; if they do
not impact the development schedule
and budget; and if they do not conflict
with your efforts to improve the prod-
uct’s operability, reliability, security, safe-
ty, and maintainability.

Once product scope has been defined
and agreed to by all key stakeholders, it
must be formally baselined and con-
trolled. Managing change to avoid scope
creep is one of the biggest problems in
government and industry. Too often, the
scope of the software development proj-
ect changes in midstream as stakeholders
think of new features to add. One reason
given for project cost or schedule over-
runs is a change in the agreed-to product
scope without a corresponding change in
cost or schedule. Change is inevitable.
However, if new features are requested
then the scope, which includes the cost
and schedule, must be adjusted accord-
ingly. Change is not free. Key stakehold-
ers are often ignored until far too late in
the process. By involving key stakehold-
ers in product scope development and
baseline, you will be able to minimize
change. The ultimate payoff is reduced
rework, reduced cost overruns, and
reduced schedule slips.

Defining Need, Goals, and
Objectives
The foundation of a product scope is
having a clear understanding of the
product’s need, goals, and objectives.
You do not want anyone on your team
saying: “Why are we doing this?” You do
not want everyone on your team having

a different vision of what they are to
develop.

In defining product scope, one prob-
lem you will frequently face is under-
standing product need, goals, and objec-
tives and their relationships.

Product Need
It is the need that typically initiates a proj-
ect. The need forms the basis of the proj-
ect: The product is being developed to
fulfill the identified need. The product
need may come because of a new threat
or opportunity, a mission or business
need, a customer request, a technological
advance, a deficiency in an existing prod-
uct, or a legal requirement. The need may
require a new product or an upgrade to
an existing product. The product need is
the driving purpose for designing and
building or upgrading the product.

The need is why you are doing the
work. For example, say I am going to
build a house. Why? I need to protect my
family. I am protecting my family from a
number of things: the natural environ-
ment, persons or critters that might want
to harm us, or persons who may want to
steal our possessions. The basic need is to
protect my family.

A common error when identifying the
project need is to begin by stating an
implementation (naming a product)
rather than stating the underlying need
for the project. The product is not the
need; assumptions about need may be
conflicting or just plain wrong. There are
often several ways a need can be met. As
an example, consider this statement: “We
need a drill bit.” What we really need is a
hole. It may be that a drill bit is the best
solution to obtaining the hole, but it is the
hole that is needed.

One prime method to uncover the
real need is to ask “Why?” If someone
says they need a drill bit, ask “Why?” In
this case, a drill bit is not needed, the hole
is. If someone says they need a remote-
piloted aircraft, ask “Why?” The real rea-
son may be that they need to provide low-
risk, accurate, real-time situational aware-
ness of battlefield operations. In both
cases, the drill bit and the remote-piloted
aircraft are one of several solutions that
will meet the need. A product develop-
ment effort should be need-oriented and
should not seek to justify a specific solu-
tion or acquisition program (see Table 1).

Identifying the problem the product is
to solve is one of the best approaches to
determining the real need. This point is
clearly made by Robert Frosch, senior
research fellow, Kennedy School of
Government, Harvard University and

Product (Implementation) Need

New remote-piloted aircraft. To provide low risk, accurate, real-time situational
awareness of battlefield operations.

New software standard message protocol. To enable a fighting force linked together as an
integrated collection of interoperable systems.

New integrated intelligence software system that will
collect and integrate terrorist information from
multiple sources.

To quickly and accurately assess potential terrorist
threats.

Integrated acquisition system. To reduce the integration and maintenance overhead
associated with current non-integrated, distributed
systems.

A proactive tool provided to officers that ensures the
accuracy of their promotion data prior to its
submission to the primary promotion board.

To decrease the cost and use of resources in
support of military promotion boards.

Table 1: Examples of Defining a Product vs. Defining the Real Product Need

January 2003 www.stsc.hill.af.mil 13

Delivering Quality Products That Meet Customer Expectations

former NASA administrator:

In my work here, my most fre-
quent refrain is: “What problem is
it you’re trying to solve? What’s
the underlying question?” In my
work on the Reports Review
Committee of the National
Academies, I have found that the
most common problems faced by
an advisory report at the end are
generated by lack of clarity in set-
ting the scope of the question at
the beginning. [6]

For your project, you should be able
to clearly define the specific problem the
product is to address and demonstrate
your understanding of the problem.
Knowing and understanding the prob-
lem will enable you to explain why the
project is worth doing, why the product
is needed, and why the product is impor-
tant to the customer.

In solving the problem, you can ask
any or all of these questions: What is it
you cannot do with the current system?
What are the limitations that will prevent
you from meeting the projected mission
need? What is the key capability (bene-
fits) that having this product will provide
for your organization, the customer, or
the product users? What will you be able
to do differently if you have this product
(in terms of improved productivity,
operational effectiveness, or efficiency)?
What will you not be able to do if you do
not have this product? What are the con-
sequences of not having this product
(impact on customer/sponsor and/or
users to perform mission responsibilities
if the capability shortfall is not resolved,
or impact of lost technological opportu-
nity in terms of cost to your organiza-
tion)? The answers to these questions
can help you identify the real need for
your product.

The process of answering these ques-
tions in the government arena for large
projects is often accomplished during an
activity called the need assessment. The out-
come is a problem statement that sum-
marizes the analyses and conclusions of
the assessment. The resulting problem
statement is referred to by various
names: statement of need, need state-
ment, or mission need statement [7 (a
template for this process can be found
here)]. From this problem statement, the
need for the product can be identified, as
shown in Table 2.

The need should be a short and con-
cise statement. Once derived, the need
should not change over time. If the need

is changing, you do not know what is
really needed, and you cannot build a
product to meet a moving target. Do not
let the real need be forgotten. It is the
focus of your investment.

Once the need for the product is cap-
tured, identify its goals and objectives.
When in a group, ask what the need is
and you will often find a variety of needs
stated. In some cases, this is due to a lack
of agreement on what the need is. In
other cases, they are listing goals for the
product. If you find yourself creating a
long list of needs, you are probably mix-
ing goals and objectives with the true
need. The challenge is to differentiate
between the need and the goals and
objectives.

Notice that I am advocating deter-
mining a single need. There might be
times when a product will meet more
than one need, but too many needs, like
too many cooks, spoils the broth. The
attempt to define a product to support
multiple needs often results in a product
no one can build, no one will buy, or no
one can use. It does not mean your prod-
uct does not have multiple features.
Expanding that need into goals and
objectives, developing operational con-
cepts, and reviewing with stakeholders
will result in many features that will
become requirements to meet the need.
Do not confuse features with the need.

Goals
In developing a product, ask what you
hope to accomplish in meeting the need.
Goals are the end toward which your
efforts are directed. Each goal is tied to a
part of the process in meeting the need.
Goals are general responses to the need
statement. Goals translate the need into a
given solution to the problem. What will
the project accomplish to affect the prob-
lem and meet the need?

There may be more than one way to
meet a need. The goals you document
will differentiate what you are going to
accomplish vs. some other implementa-
tion.

Objectives
Objectives expand on the goals and state, in
measurable terms, what you are trying to
achieve. Objectives state the customer’s
expectations for performance. Objectives
can include quality, new capabilities,
needed functionality, etc. Objectives
address these questions: In order to
accomplish each goal, what specifically
are you going to do? How will you know
if you succeeded? What results do you
expect? They may include cost and
schedule objectives inherited from the
parent project or program.

Both goals and objectives are short
declarative sentences; goals are rather
broad, and objectives fall under each goal

Military Promotion Board Information Availability Military Logistics Command [8]

Problem: There is no easy way for officers up for
promotion to review the information contained in their
promotion files. Because of this, there have been too
many requests for supplemental promotion boards
due to incorrect data in officers' promotion files used
by the primary promotion board. This puts a burden
on our personnel and promotion board workers.

Problem: Equipment is maintained at logistic centers
that are distributed around the world. Command
instructions specify how the data concerning the
tasks and training of skilled mechanics and
technicians doing this work will be managed.
Currently, each logistic center has unique processes
and software tools to do this. The costs of
maintaining these individual software tools have
become excessive. Command has dictated that the
process and tools be standardized.

Need: Decrease the cost and use of resources in
support of military promotion boards.

Need: Reduce the life-cycle costs of the command
logistics process.

Goals:
• Put the responsibility for checking officer

promotion data in the hands of the officers being
considered for promotion.

• Provide officers a proactive tool to ensure the
accuracy of their promotion data prior to the
primary promotion board.

• Eliminate excessive workload for the personnel
office and promotion board personnel.

Goals:
• Reduce the costs of maintaining multiple

logistic systems with a standard, command-
wide software system to be used at all
logistic centers.

• Provide an integrated training and tracking
system for all logistics personnel.

Objectives:
• Provide 24/7/365 access to members' official

personnel records.
• Provide correct display of data in officers'

promotion files.
• Remove personnel office workers as the

middleman.
• Provide up-to-date information to officers on

corrective actions when errors are found.
• Give officers correct and current promotion

products.
• Lower supplemental promotion board requests

from 75 per board to 40.
• Prevent fraud.

Objectives:
• Use state-of-the-art computing, networking, and

software technologies.
• Deploy the system as a client-server system.
• Allow supervisors to manage skills and training

data in accordance with Command Instruction
21-108, Production Acceptance Certification.

• Support the procedures to maintain Air Force
Materiel Command Form 75, Job Knowledge-
Training Certification Standard.

• Interface to a command-wide training
management system.

• Develop a module to collect data for process
improvement evaluation, also required by
Command Instruction 21-108.

Table 2: Examples of Problem Statement, Need, Goals, and Objectives

14 CROSSTALK The Journal of Defense Software Engineering January 2003

Back to Basics

and are somewhat more specific.
It is common for people to confuse

goals and objectives. Sometimes one or
the other is defined without making a dis-
tinction. Sometimes the words are used
together: goals and objectives. The impor-
tant thing is that these topics and their
content are addressed up front. One
approach that can be used to differentiate
goals and objectives is to think of a top-
down approach. You start with defining
the need. Then, you list goals. For each
goal, ask the question “Why?” The
answer should be the need. Then for each
goal, list your objectives. Each objective
should be traceable to one or more goals.

Once you have a draft of the product
need, goals, and objectives, you must
communicate them with the major stake-
holders and get their agreement. The
need, goals, and objectives form the
foundation of your project’s scope. Once
you have a better understanding of the
product, goals and objectives may change
– but changes need to be closely man-
aged. A change to goals or objectives is a
change to the scope, which could impact
cost, schedule, and risk.

Conclusion
To deliver a quality product, on time and on
budget that meets your customer’s expecta-
tions, get back to the basics and define,
communicate, and get agreement on a clear
vision for the product. To establish this
vision, spend the time at the beginning of
the project accomplishing and getting
agreement on critical activities before writ-
ing requirements and beginning product
development. These activities include clear-
ly defining the project and product scope,
including need, goals, objectives, drivers
and constraints, assumptions, operational
concepts, external interfaces, and feasibility
and risk assessments. Going back to the
basics of product management and estab-
lishment, getting buy-in, and communicat-
ing a clear vision for the project will lead
toward a successful project. Anything less
will compromise schedule, budget, quality,
and mission success.◆

References
1. Leishman, Theron R., and David A.

Cook. “Requirements Risks Can Drown
Software Projects.” CrossTalk Apr.
2002 <www.stsc.hill.af.mil/CrossTalk/
2002/apr/leishman.asp>.

2. May, Lorin J. “Major Causes of
Software Project Failures.” Cross-
Talk July 1998 <www.stsc.hill.
af.mil/crosstalk/1998/jul/causes.
pdf>.

3. Hooks, Ivy F., and Kristin A. Farry.

Customer-Centered Products: Creating
Successful Products Through Smart
Requirements Management. New York:
Amacom 11 Sept. 2001.

4. Wheatcraft, Louis S., and Ivy F. Hooks.
“Scope Magic.” Nov. 2001 <www.
complianceautomation.com/papers/
scope_magic.pdf>.

5. Wheatcraft, Louis S. “The Importance
of Scope Definition Prior to
Developing Space System Require-
ments.” INCOSE INSIGHT, Jan.
2002: 4: 4 <www.complianceautomation.
com/papers/scopedefincoseinsight.
pdf>.

6. Robert Frosch. “Various.” E-mail to Ivy
F. Hooks. 6 Mar. 2002.

7. Federal Aviation Administration.
“Acquisition System: FAA Mission
Need Statement – Aids and Tools.”
<http://fast.faa.gov/archive/v0800/
flowcharts/maflow/drfmnsaids.htm>.

8. Lynch, K. Edward. “AFMC Production
Acceptance Certification and Depot
Maintenance Quality Software Project.”
CrossTalk May 1998 <www.stsc.
hi l l .af.mi l/crossta lk/1998/may/
afmc.asp>.

About the Author

Louis S. Wheatcraft
has more than 34 years
experience in the aero-
space industry, includ-
ing 22 years in the U.S.
Air Force. During the

last two years, Wheatcraft has worked
for Compliance Automation where he
conducts seminars on defining product
scope, writing good requirements, and
requirement reviews. He is a member
of the Project Management Institute,
INCOSE, and Toastmasters
International. Wheatcraft has a bache-
lor’s of science degree in electrical
engineering from Oklahoma State
University, a master’s of arts degree in
computer information systems, a mas-
ter’s of science degree in environmen-
tal management, and is completing a
master’s of science degree in studies of
the future at the University of
Houston, Clear Lake.

Compliance Automation, Inc.
1221 South Main St.
Suite 204
Boerne,TX 78006
Phone:(830) 249-0308
Fax:(830) 249-0309

COMING EVENTS

February 10-13
Commercialization of Military and

Space Electronics Conference
Los Angeles, CA

www.cti-us.com/ucmsemain.htm

February 24-27
Software Engineering Process

Group Conference

Boston, MA
www.sei.cmu.edu/sepg/

February 25-26
Data Mining Technology for Military
and Government Applications Forum

Washington, D.C.
www.worldrg.com

March 24-28
International Symposium on

Integrated Network Management
Colorado Springs, CO

www.im2003.org

April 8-10
FOSE 2003

(Federal Office Systems Exposition)
Washington, D.C.

www.fose.com

April 28-May 1
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

May 3-10
International Conference on

Software Engineering
Portland, OR

www.icse-conferences.org/2003

May 6-8
TechNet 2003

Washington, D.C.
www.technet2003.org

January 2003 www.stsc.hill.af.mil 15

Given the competitive importance of
organizational performance and fact-

based decision making, measurement pro-
grams have become increasingly impor-
tant within the software and systems engi-
neering communities. Measurement can
no longer be implemented as a check-the-
box process that is rolled out to satisfy a
scheduled review or process improvement
assessment. Today, measurement must
provide real information to support criti-
cal project and organizational business
and technical decisions, and the measure-
ment results must be effectively communi-
cated and used across the entire corporate
entity.

The Navy provides us with two excel-
lent examples of the impacts of using,
and not using, measurement correctly.
The F/A-18E/F program implemented a
real-time management information system
that communicated critical measurement-
derived performance information to all
project participants. This was instrumental
in helping the F/A-18E/F program to be
one of the most successful in recent mem-
ory. Conversely, on the Navy’s A-12 pro-
gram, objective information about project
status was not available to the managers
who were continuously required to deal
with critical program constraints and per-
formance shortfalls. Without accurate
information, these managers were not able
to properly make the difficult decisions
required of them, and the program was
ultimately cancelled.

Ten years ago, only a few organizations
actually implemented measurement as an
integral part of their technical and busi-
ness processes. These forward-looking
organizations established what worked
well with respect to measurement, and
even more importantly, what did not
work. Under the umbrella of the Practical
Software and Systems Measurement
(PSM) Initiative, many software and sys-
tems measurement professionals that had
successfully implemented measurement
joined together in a government-industry-
academia team to help put measurement
into widespread practice. The goal of this
PSM team was, and remains today, to help
organizations meet a wide range of fact-

based technical and business information
needs by defining and helping them to
implement a practical, information-driven
measurement process.

Key Measurement Concepts
We all know how complex weapons, com-
munications, and information systems are
becoming. At the center of this growing
complexity is the need to deal with con-
tinuous technical and business change. We
need to make better and more timely deci-
sions that will result in the success of our
projects, systems, and organizations.

In today’s environment, our measure-
ment processes must provide objective
information to support critical decision
making in an ever-changing environment.
As a simple example, the defect status
indicator shown in Figure 1 was developed
to help make decisions concerning test
completion by evaluating product quality.
In this example, the program manager
needs to assess whether the system will be
ready for a user acceptance test by April
2002.

As an entrance criterion for the user
acceptance test, all open defects must be
closed prior to the start of this test. An
indicator was generated that included a
graph of the number of defects written

and closed, along with a calculation of the
number of open defects remaining. The
analysis indicated that the closure rate of
defects has remained relatively constant,
while the number of new defects appears
to be slowing. This has led to a decreasing
number of open defects, and provides a
positive indicator that the product will be
ready for user acceptance testing.

Obviously, this is a very simple indica-
tor. More elaborate indicators would usu-
ally be generated that might include indi-
cators with defect data by severity (gener-
ally all high priority defects must be
closed, but some number of low priority
defects may be allowed), by status (to
allow an assessment of progress), by com-
ponent (to identify defect-prone compo-
nents that may require additional inspec-
tion or testing), or by age (to identify those
that have been open a long time).

For those organizations that are just
starting to measure their software and sys-
tems engineering processes and products,
producing usable measurement results like
this example can be challenging. Certainly
the thought of starting up a measurement
program has some considerable implica-
tions, especially when you need informa-
tion immediately. The good news is that
most successful measurement programs

Making Measurement Work
Cheryl Jones

U.S. Army

A successful measurement process becomes a way of doing business. Measurement is embedded in the organization, and per-
formance improves because people are making fact-based decisions. This article describes characteristics of successful measure-
ment programs using the Practical Software and Systems Measurement Initiative [1, 2] guidance.

Defect Status

Written

Closed

Project: PSM Data as of 31 Jan 02

0

250

500

750

1,000

1,250

1,500

Jan 01 Apr 01 Jul 01 Oct 01 Jan 02 Apr 02

Defect Status

Written

ClosedN
u

m
b

er
 o

f
D

ef
ec

ts

Project: PSM Data as of 31 Jan 02

0

250

500

750

1,000

1,250

1,500

Jan 01 Apr 01 Jul 01 Oct 01 Jan 02 Apr 02

Figure 1: Quantitative Information Supports Critical Decision Making

Back to Basics

16 CROSSTALK The Journal of Defense Software Engineering January 2003

are based on a few manageable concepts.
Together these basics provide the foun-
dation for an effective measurement pro-
gram even in the most complex environ-
ments, and they provide for a flexible,
cost-effective approach to meeting
defined information needs.

There are three recurring lessons
learned from successful measurement
programs. These are the basic building
blocks of any successful measurement
program:
• Measurement is a consistent but flex-

ible process that must be tailored to
the unique information needs and
characteristics of a particular project
or organization. Measurement needs

to change as the environment changes
around it. Changing information
needs drive the measurement process.

• Decision makers must understand
what is being measured. Key decision
makers, including both the technical
and business manager, must deliver
value-added objective results that can
be trusted on the day-to-day issues
that these managers face.

• Measurement must be used to be
effective. The measurement program
must play a role in helping decision
makers understand project and organ-
ization issues and to evaluate and
make key trade offs to optimize over-
all performance.
Although these three basic measure-

ment concepts seem like common sense,
it is amazing how many organizations
ignore them when they establish their
measurement programs. Even with all of
the change that they must deal with,
some organizations still try to build their
measurement programs around the 10
best measures or try to measure so much
that their measurement programs col-
lapse under their own overhead burden.
A large number of measurement pro-
grams fail early in their inception, usually
because they do not provide information
relevant to user information needs.

PSM has focused on delivering to
both new and experienced measurement
users guidance, tools, and other measure-
ment products built around the founda-
tional measurement concepts. A measure

of PSM’s success has been the adoption
of its overall measurement approach by
both the Capability Maturity Model®

IntegrationSM (CMMISM) [3] and by the
international software and systems engi-
neering community, as embodied in the
new commercial software engineering
standard ISO/IEC15939 Software Engi-
neering-Software Measurement Process
[4]. An important aspect of the three ini-
tiatives is the consistent treatment of
measurement by PSM, CMMI, and
ISO/IEC 15939. The measurement prac-
titioner now has an integrated guidance
set based on real measurement experi-
ence that has proven successful in actual
applications.

Since measurement success is so
closely tied to the three basic measure-
ment concepts, let us take a look at each
of them more closely.

The Measurement Process
An underlying concept of measurement
is that it should be flexible and tailorable
based on the unique information needs
and characteristics of each project or
organization. Measurement must be iter-
ative to support necessary changes that
result from changing information needs
and improvements in the measurement
process itself.

The PSM process, shown in Figure 2,
describes four activities that are part of a
successful measurement program:
• Plan measurement: In this activity,

measures are defined to provide
insight into a project or organization’s
information needs. This includes
identifying what the decision makers
need to know, relating these informa-
tion needs to those entities that can
be measured, and then selecting and
specifying prospective measures
based on project and organizational
processes. In the defect example in
Figure 1, a comparison of the number
of defects written and the number
closed was used to address the ques-
tion: “When will the system be ready
for use acceptance test?”

• Perform measurement: This activity
involves collecting measurement data,
performing measurement analysis,
and presenting the results so that the
information can be used to make
decisions. Analysis can include esti-
mation, feasibility analysis of plans,
and performance analysis of actual
data against plans. For the defect
example, the performance analysis
included evaluating the trends of
written and closed defects, and calcu-
lating test readiness.

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

SM CMMI and CMM Integration are service marks of
Carnegie Mellon University.

Objectives and
Issues

Evaluate
Measurement

Improvement
Actions

Analysis
Results and
Performance
Measures

Scope of PSM

User Feedback
Analysis Results

Establish and
Sustain

Commitment

Technical and
Management

Processes

Perform
MeasurementNew

Issues

Measurement
Plan

Core Measurement Process

Plan
Measurement

Figure 2: Four Key Activities Are Characteristic of Successful Measurement Programs

Information
Product

Derived
Measure

Indicator

Base
Measure

Attribute

Measurement
Construct

Figure 3: A Measurement Construct Relates
What Is Being Measured to an Information Need

Making Measurement Work

January 2003 www.stsc.hill.af.mil 17

• Evaluate measurement: In this
activity, both the measurement
process and the specific measures
should be periodically evaluated and
improved as necessary. For example,
if the defect indicator does not pro-
vide enough information to adequate-
ly determine readiness for user
acceptance testing, additional indica-
tors may be added. The user may add
an indicator of defect data by severity
(generally all high priority defects
must be closed, but some number of
low priority defects may be allowed).

• Establish and sustain commit-
ment: This activity involves establish-
ing the resources, training, and tools
to implement a measurement pro-
gram effectively, and most important-
ly, ensuring that there is management
commitment to use the information
that is produced. In the defect exam-
ple, if the measurement information
is not used to develop plans for when
user acceptance testing can begin,
there is little need for collecting the
data.
A measurement process that is flexi-

ble and tailored to project and organiza-
tional processes ensures that measure-
ment is cost effective. Data should not be
collected or reports distributed that are
not needed or are not used. In addition,
data collection and reporting should be
automated whenever possible to provide
an automatic by-product of normal proj-
ect activity.

The process shown in Figure 2 pro-
vides a foundation for measurement for
many disciplines, including software engi-
neering, systems engineering, and process
improvement measurement. An impor-
tant thing to remember is that the same
basic measurement process can support a
wide variety of distinct and changing
information needs in each of these areas.
For additional information on the meas-
urement process, see [3] and [4].

Connecting Information
Needs to Actual Measures
A second basic concept in a successful
measurement program is the communi-
cation of meaningful information to the
decision makers. It is important that the
people who use the measurement infor-
mation understand what is being meas-
ured, and how it is to be interpreted.

PSM does this by incorporating a
measurement information model that
links the entities that are measured to the
associated measures and ultimately to the
identified information need. The meas-

urement information model provides a
structure for specifying how a particular
information need will be addressed with-
in the measurement process. This allows
the measures to be clearly and consistent-
ly defined.

In the defect example, it is important
for the decision makers to know exactly
what the data represents in order to
ensure that objective decisions are made.
For the sample defect indicator present-
ed, it is important for managers to under-
stand that only identified defects are
included, and that some number of latent
defects will remain in the product. It is
also important to ensure that planned
and actual data are quantified using the
same methodology so that the two sets of
data are comparable.

The measurement information model
provides a mechanism for linking infor-
mation needs to what can be measured. A
measurement structure, called a measure-
ment construct, describes how the rele-
vant attributes of products and processes
are quantified and turned into indicators
that provide a basis for decision making.
The measurement construct may involve
three levels of measures: base measures,
derived measures, and indicators as illus-
trated in Figure 3. In our defect example,
base measures include number of defects
written and number of defects closed.
The derived measure of open defects was
then calculated as the difference between
the two. The indicator presented is a
graph of the two base measures.

For each of the base measures,
derived measures, and indicators, addi-
tional information also needs to be spec-

ified about how the various measures are
calculated. Figure 4 illustrates the struc-
ture of a complete measurement specifi-
cation, including the measurement
method, measurement function, analysis
model, and decision criteria. These, along
with the procedures for data collection,
data analysis, and reporting provide an
operational definition of a measure,
addressing a specific information need.
Figure 5 (see page 18) contains a high-
level description of a complete measure-
ment specification for the defect example
described previously. For a description of
each of these terms in more detail, see [3]
and [4].

Defining the measurement terms to
this level of detail provides everyone
working with the data a common under-
standing of what is being measured, and
how this relates to the information needs.
This formalizes what is important. By
detailing the base measures to be used,
this also helps to highlight common
measures that can be reused to address
multiple information needs. This assists
in prioritizing the measures to be imple-
mented. Sample measurement specifica-
tions for many common measures can be
found in the PSM guidance.

In the past, measurement terms were
often defined in unique and inconsistent
ways from organization to organization.
This led to confusion and difficulty in
widespread measurement implementa-
tion. In many cases, decision makers were
unsure of what the measurement results
actually represented. One of the advan-
tages of the measurement information
model is that it defines a consistent ter-

Measurement
Method Method

Estimate or Evaluation That
Provides a Basis for Decision
Making

-

Operations Quantifying an
Attribute Against a Scale

Indicator

Derived
Measure

Derived
Measure

Base
Measure

Algorithm Combining Two or More
Base Measures

A Measure of a Single Attribute
By a Specific Method

Quantity Defined as a Function of
Two or More Measures

Algorithm Combining Measures and
Decision Criteria

Measurement
Function

Entities

Information Needs

Adapted from ISO/IEC 15939 - Software Measurement Process

Base
Measure

Interpretation

Analysis
Model

Information
Product

Attribute Attribute Property Relevant to
Information Needs

Measurement

Figure 4: A Measurement Specification Provides a Common Understanding of What Is Being Measured

Back to Basics

18 CROSSTALK The Journal of Defense Software Engineering January 2003

minology. This allows projects and
organizations to document their infor-
mation needs and selected measures to
allow a common understanding of what
is being measured. This is especially
important as information needs change.

Understanding and Using
Measurement Results
A third concept of a successful measure-
ment program is that the measurement
process is an integral part of the way busi-
ness is conducted. In a successful organi-
zation, the measurement results are regu-
larly used to make decisions. If the mem-
bers of a project or organization are not
able or willing to use measurement data to

make decisions, the measurement pro-
gram is of little use. In the defect exam-
ple, if this measurement information is
not used to develop plans for when user
acceptance testing can begin, there is little
need for collecting the information.

To support the use of measurement,
information must be obtained early
enough to allow managers to take the nec-
essary actions to reduce risks or correct
problems. Management decisions cannot
wait for a complete set of perfect data to
support management decisions, but
should be derived from the minimum
amount of data, complemented by real-
time events and qualitative insight.
Measurement should provide information

on real-time events in a project, and facil-
itate communication.

The risk management and measure-
ment processes should always be closely
aligned. Risk management identifies the
information needs that can impact project
and organizational performance – infor-
mation needs that should be objectively
explained with the measurement results.
The measurement data help to quantify
risks, and subsequently provide informa-
tion about whether risks have been suc-
cessfully mitigated.

While measurement begins with a
project-level focus, there are legitimate
needs for information at higher levels of
management. The information needs at
different levels in an organization are
related, as depicted in Figure 6. The proj-
ect manager is concerned with the time
and effort it takes to implement required
product functionality and quality. At high-
er levels, managers are responsible for
organizational performance and for
improving organizational processes. At
the enterprise level, managers are respon-
sible for making investment decisions and
ensuring performance is satisfactory.
Since most organizations are composed
of a portfolio of distinct projects, all of
these uses of measurement rely on having
good project-level information, aggregat-
ed to appropriate levels of the organiza-
tion. The project level is where the
processes and products are actually meas-
ured. As a result, a viable measurement
program satisfies the needs of many lev-
els of decision makers.

Where to Get Help
The PSM project is a Department of
Defense and U.S. Army sponsored initia-
tive. The PSM project comprises a fully
integrated approach of products and
services. Products are developed and
improved incrementally by a joint govern-
ment, industry, and commercial technical
working group based on actual implemen-
tation experiences. Products are updated
based on the technical consensus of best
practices and are freely provided. The
project is supported by a number of tran-
sition organizations that are qualified to
teach PSM concepts and transition the
PSM measurement guidance. PSM’s prod-
ucts include the following:
• “Practical Software Measurement”

(Addison-Wesley).
• “Practical Software and Systems

Measurement Guidebook” (PSM ver-
sion 4.0).

• PSM Insight Tool (a PC-based meas-
urement tool that allows tailoring to
an individual project’s needs).

Enterprise
Management

Organizational
Management

Project
Management

Performance Measurement
Normative Performance Baselines
Technical and Business Policy
Investment Decisions and Analysis

Process Improvement
Project Planning Guidelines
Performance-Based Guidelines
Organizational Norms and Benchmarks

Project Estimation and Planning
Project Performance Tracking
Project Trade-off Analysis
Resource Management

Risk
Management

Process

Information - Driven
Measurement

Process

Figure 6: All Levels of an Organization Have Measurement Information Needs

Count
Defects

Count Defects
with Closed
Status

Subtract Closed from
Written Defects

Value for
Project X

Value for
Project X

Value for Project X

Defect
Reports

Open Defects

SemicolonDefects

Closed
Defects

Test
Reports

Compare Open
to Limits

Analysis
Model

Out-of-Control
Situations Detected

ATTRIBUTES

BASE
MEASURES

DERIVED
MEASURES

INDICATORS

Measurement
Function

Measurement
Method

Measurement
Method

Figure 5: A Measurement Specification for the Defect Example

Making Measurement Work

January 2003 www.stsc.hill.af.mil 19

• “PSM for Process Management and
Improvement Guidebook” (PSM:
MPM) .

• PSM technology papers (measure-
ment with object-oriented develop-
ment, spiral/evolutionary develop-
ment, interoperability, and product-
line architectures).

• Training and workshop materials.
• Supporting materials (descriptions of

products and services).
• A qualified technical team to provide

direct project support.
The guidebook and papers are avail-

able from the PSM Web site at no charge
<www.psmsc.com>. We invite your par-
ticipation in the PSM project, and your
input into future work products. Please
see the Web site for more information
about how you can get involved.

Conclusion
A successful measurement process
becomes a way of doing business.
Measurement is embedded in the organi-
zation, and performance improves
because people are making fact-based
decisions. Three lessons learned from
successful measurement programs
include the following:

1. Measurement is a consistent but flex-
ible process.

2. Decision makers must understand
what is being measured.

3. Measurement must be used to be
effective.
These measurement concepts de-

scribed here are relatively easy to imple-
ment. There are many available resources
to support their implementation.◆

References
1. Department of Defense. Practical

Software and Systems Measurement
Guidebook. v.4.0 Oct. 2000 <www.
psmsc.com>.

2. McGarry, John, David Card, Cheryl
Jones, Beth Layman, Elizabeth Clark,
Joseph Dean, and Fred Hall. Practical
Software Measurement –- Objective
Information for Decision Makers.
Addison-Wesley, 2002.

3. Software Engineering Institute.
“Capability Maturity Model® Integra-
tedSM (CMMISM) for Systems Engi-
neering, Software Engineering,
Integrated Product and Process
Development, and Supplier Sourcing
Version 1.1 Staged Representation.”
Pittsburgh: Carnegie Mellon

University, Mar. 2002.
4. ISO/IEC15939. Software Engineer-

ing – Software Measurement Process.
2002.

PSM’s Relationship to ISO Standards and CMMI

Practical Software Measurement (PSM), a product of a Department of
Defense measurement initiative, served as the base document for the new

international standard on measurement ISO/IEC 15939 Software
Engineering-Software Measurement Process. The international standard
describes the measurement process in terms of the purpose and outcomes of
a compliant process, along with associated activities and tasks. The standard
also defines the measurement information model and associated terminology.

PSM provides additional details on the activities and tasks presented
in ISO/IEC 15939, and provides detailed steps to successfully meet these
tasks. In addition, PSM provides detailed how-to guidance, including sam-
ple measures, lessons learned, case studies, and implementation guidance.
PSM provides a set of sample measures using the measurement informa-
tion model terminology. Both products are coordinated to provide users
with a consistent framework for implementing a measurement program.

In addition, the purpose and outcomes of the measurement process
from ISO/IEC 15939 have been added to the revision to ISO/IEC 12207
Software Life-Cycle Processes, within a new supporting process entitled
Measurement. Measurement concepts have also been added to ISO/IEC
15288 System Life-Cycle Processes. The new measurement terminology
has also been coordinated with the revisions to ISO/IEC 9126 Software
Product Quality and ISO/IEC 14598 Evaluation of Software Products, so
that all these standards will use a common set of measurement terminolo-
gy once the revisions are complete. In addition, the purpose and outcomes
of the measurement process have been added to ISO 9000-3: Application
of ISO 9001:2000 to Software.

The draft international standard ISO/IEC 15939 in turn was used as
an input to the measurement and analysis (MA) process area of the
Capability Maturity Model® IntegrationSM (CMMISM) [4]. The MA process
area provides a methodology for assessing whether a project’s measurement
program is compliant with the international standard, in addition to pro-
viding relevant information on CMMI-based process improvement activi-
ties. Overall, the CMMI helps organizations to institutionalize their meas-

urement and analysis activities, rather than addressing measurement as a
secondary function. In the MA process area, the activities of plan meas-
urement and perform measurement are detailed in two specific goals that
must be implemented and eight specific practices that are considered
important in achieving the associated specific goals. The activities of evalu-
ate measurement and establish and sustain commitment are considered
through the generic goals, with elaborations specific to the MA process
area.

The coordination of these documents means that the software and
systems engineering communities have a consistent set of information-driv-
en standards and guidance for implementing project and process measure-
ment.

ISO/IEC 15939, Software Measurement Process

CMMI
Measurement
And Analysis

ISO/IEC SC7 Standards
12207 (revision - supporting process)
15288 (measurement concepts)
9126 (terminology coordinated)

14598 (terminology coordinated)

ISO 9000-3: 2000 (objectives)

Practical Software Measurement

ISO/IEC 15939, Software Measurement Process

CMMI
Measurement
And Analysis

ISO/IEC SC7 Standards
12207 (revision - supporting process)
15288 (measurement concepts)
9126 (terminology coordinated)

14598 (terminology coordinated)

ISO 9000-3: 2000 (objectives)

CMMI
Measurement
and Analysis

ISO/IEC SC7 Standards
12207 (revision - supporting process)
15288 (measurement concepts)
9126 (terminology coordinated)

14598 (terminology coordinated)

ISO 9000-3: 2000 (objectives)

Practical Software Measurement

PSM, 15939, and CMMI Measurement and Analysis are Coordinated

About the Author

Cheryl Jones is a soft-
ware engineer for the
U.S. Army Tactical
Army Command, Ar-
mament, Research, De-
velopment and Engi-

neering Center, responsible for meas-
urement and analysis, risk manage-
ment, and estimation. Jones is also the
project manager of Practical Software
and Systems Measurement and one of
the authors of “Practical Software
Measurement: Objective Information
for Decision Makers.”

U.S.Army TACOM-ARDEC
Bldg. 62
AMSTA-AR-QAT-S
Picatinny Arsenal, NJ 07806
Phone: (973) 724-2644
Fax: (973) 724-2382
E-mail: cljones@pica.army.mil

20 CROSSTALK The Journal of Defense Software Engineering January 2003

We are sitting in the Chicago O’Hare
airport hours after the departure time

of a flight home. After sitting on the plane
for more than an hour, the pilot indicated
that he was unable to get one of the
engines to start. The pilot returned to the
gate, and we were allowed to deplane.
Eventually, it was determined that a hose in
the engine was malfunctioning. This single
hose was essential to the proper function-
ing of the engine. Fortunately, the engine
mechanic was able to determine the hose
that was causing the problem.

The mechanic understood the configu-
ration of the plane engine and was able to
refer to a defined list of all the engine parts,
their relative arrangement to each other,
and the methods to be used to assemble
these parts into a jet engine. This is what is
referred to as a configuration. The ability to
properly distinguish the appropriate parts
that must be used to build each type of
engine is critical to assure consistent, safe
production and use of aircraft engines.

As software developers, is it any less
critical for us to be able to manage the
assets that we create? The software we cre-
ate is often maintained in various forms,
with different tools, during its various
stages of development, usage, mainte-
nance, and operation. It is maintained at
diverse locations, in diverse formats, and by

diverse organizations. Software compo-
nents are composed of parts, which are
themselves software and are created using
tools that are also software. Software sys-
tems are made of parts that cannot be
touched, picked up, physically put in place,
or manipulated. If you lose track of one of
the software pieces, you have to re-create it.
However, if you lose track of one of the
tools, you hope that you can procure a new
one. If the tool vendor is out of business –
or no longer sells or supports the tool you
need – you have a problem.

Software Configuration
Management
Software Configuration Management
(SCM) has been defined as the art of iden-
tifying, organizing, and controlling modifi-
cations to software [1]. SCM is a process
that should be performed across the entire
software development and maintenance life
cycle. The configuration of software sys-
tems is by their nature complex. SCM may
be described as a well-defined arrangement
of software parts and the exact procedures
and tools to be used for constructing the
product or system from these parts. This
must also include procedures for recon-
structing various versions and releases [2].
The concepts of SCM are not new; numer-

ous texts have been written on the topic of
SCM. Typically SCM is defined by, and bro-
ken up into, the following four functional
areas.
• Configuration Identification.
• Configuration Control.
• Configuration Status Accounting.
• Configuration Auditing.

SCM involves identifying what software
assets are important to the organization. It
includes controlling changes to these assets
to ensure their integrity. Accounting for the
status of these assets is important to the
ongoing success of the organization. To
assure that software assets are being prop-
erly accounted for, periodic configuration
audits should be performed. Figure 1
depicts SCM’s four basic functions. An
introduction to each of these functions fol-
lows in this article.

Configuration Identification
To properly manage all the elements of an
aircraft engine, each of the critical parts
must be properly identified. This is a key
element in allowing proper management of
the various engine configurations.

To provide the proper level of configu-
ration management to software parts, we
must also identify all the items that must be
managed. These items, which we need to
identify, are referred to as configuration
items. Software configuration items (SCIs)
are the items that are determined to be
essential to manage the software product of
concern. SCIs are the objects required to
design, develop, build, maintain, test, and
field a software product. SCIs are not
things that can necessarily be shared
between organizations, or even from one
project to another. What an organization
can, and should do, is develop documented
criteria that can be consistently applied in
determining which software-related items
should be placed under configuration con-
trol.

Identification is the most important
function of SCM. This is because items
that are not identified cannot be managed.
If you need anything to create your software
product, then that item must be identified

But I Only Changed One Line of Code!

One of the basic concepts widely accepted as a software best practice is software configuration management. Although gener-
ally accepted, basic configuration management activities are often ignored, resulting in serious negative impact on software
development and acquisition projects. This article is an introduction to basic, software configuration management concepts. It
introduces these basic concepts and provides rationale for their implementation.

Dr. David A. Cook
Software Technology Support Center/Shim Enterprises, Inc.

Theron R. Leishman
Software Technology Support Center/TRW

Software
Configuration
Management

Configuration

Identific
ation

C
on

fig
ur

at
io

n
C

on
tro

l

Configuration

Status Accounting

Configuration Auditing

Figure 1: The Basic Functions of Software Configuration Management

But I Only Changed One Line of Code!

January 2003 www.stsc.hill.af.mil 21

and controlled. This includes compilers,
operating systems, libraries, development
tools, or environments. It might even
include manuals and other documentation.
It could also include such items as current
spreadsheet programs, database programs,
and word processing programs. In short, if
you need it to accomplish your develop-
ment task, then you probably should assign
an identification number to it.

Configuration Control
As an inexperienced programmer, one of
the authors of this article was approached
by the primary stakeholder of an applica-
tion for which he held maintenance respon-
sibility. The stakeholder, a very influential
individual in the company, wanted to have a
small change made to a section of the
application. Being pushed by the stakehold-
er to make the change, and being anxious to
make brownie points in the company, the
author made the simple, one line code
change.

It was not until 2:00 a.m. the next
morning, during the middle of a produc-
tion run, that it was determined that the
one line change had brought the entire
application down. Not only was this appli-
cation down, but also a critical corporate
system that required input from the appli-
cation was unable to complete essential
processing while waiting for input.

Ouch! The desire to make a good
impression in the organization backfired!
The problem was that neither the organiza-
tion nor any developers were controlling
software assets. Anyone was allowed to
make changes to the software at will. They
were then able to have the changes migrat-
ed into a production environment with lit-
tle or no unit testing, to say nothing of inte-
gration testing.

Software configuration control is the
process of controlling and limiting changes
made to software assets. According to the
Institute of Electrical and Electronics
Engineers, configuration control is an ele-
ment of configuration management con-
sisting of the evaluation, coordination,
approval or disapproval, and implementa-
tion of changes to configuration items after
formal establishment of their configuration
identification [3]. In our words, configura-
tion control is making sure that changes to
software assets are only allowed to occur
after they have been analyzed, evaluated,
reviewed, and approved by a group author-
ized to control changes to software assets.

This group of people act as gatekeepers
to control the flow of changes made to a
SCI. They have authority to approve or
veto proposed changes. This group is
known as a change control board or con-

figuration control board (CCB). The pri-
mary role of the CCB is to ensure that
every requested change to an SCI is prop-
erly considered and coordinated prior to it
being incorporated. The CCB should
include representation from program man-
agement, systems engineering, software
engineering, software quality assurance,
software configuration management, inde-
pendent test, and a customer representa-
tive.

The CCB is responsible for seeing that
all change requests are adequately reviewed,
understood, and analyzed for impact prior
to their decision to accept, defer to the next
release, or decline the change request.
Before any change to a SCI is made, the
CCB ensures that someone did the research
necessary to verify that the change will not
unexpectedly impact other SCIs. The CCB,
to make its decision, evaluates the impacts
of each proposed change, and decides if
the change is worth making.

Figure 2 presents a sample software
change control process. A software design
review board prior to the development of
an engineering change proposal (ECP)
reviews requested changes, enhancements,
or problem reports. Once developed, the

software CCB then evaluates ECP’s. This
board controls which ECP’s are approved
for incorporation into the software.
Following approval and prioritization the
change/enhancement will be made to the
software.

Configuration Status
Accounting
While attending college, one of the authors
of this article was required to endure a
course on cost accounting. In this course,
he learned that cost accounting is that part
of accounting that identifies, defines, meas-
ures, reports, and analyzes the various ele-
ments of direct and indirect costs associat-
ed with manufacturing and providing
goods or services. Companies tend to care
about things (assets) for which they have a
financial investment.

Cost accountants are expected to track
these corporate assets. They must know
what the assets are, what costs were
incurred in the development and ongoing
maintenance of the asset, how the asset
works with or interfaces with other assets,
and be able to perform analysis on and
report the status of these assets. To prop-
erly account for an organization’s assets,

Software
Change

Software
Enhancement

Problem
Report

Analyze and
Assess Impact

Engineering
Change
Proposal

Evaluate
ECP

Incorporate
Change

Verify
Change

Archive
Change

Approve
ECP

Supply
Feedback to

Originator

End

Software Configuration
Control Board

Yes No

Software Design Review Board

Figure 2: The Software Change Process

Back to Basics

22 CROSSTALK The Journal of Defense Software Engineering January 2003

accountants must track the cost of each
asset. In a manufacturing environment this
may include assets that roll into other
assets. The work, or product breakdown
must be documented and all items tracked.

SCI’s are the assets of a software prod-
uct and must likewise be accounted for.
Status accounting is the SCM activity
responsible for tracking and maintaining
data relative to each of these SCI’s. It
includes the tracking of changes to SCI’s,
and provides the ability to determine the
status of each item at any phase of the soft-
ware development or maintenance process.
Status accounting involves gathering infor-
mation to answer the following questions:
• What changes have been requested?
• What changes have been made?
• When did each change occur?
• What was the reason for each change?
• Who authorized each change?
• Who performed each change?
• What SCIs were affected by each

change?
A repository of key software assets

must be maintained to ensure that these key
assets are properly accounted for. Changes
to the status of these assets must be docu-
mented and tracked to allow the organiza-
tion to know the status of any software
asset at any point in time. Reports indicat-
ing the configuration of these software
products must be defined and generated as
a critical part of the accounting process.
Following is a list of sample reports that
the status accounting function should pro-
vide.
• Transaction log.
• Change log.
• SCI delta report.
• Resource usage report.
• SCI status report.
• Changes in progress report.
• Change request status report.
• Change completion report by develop-

er, application, etc.

Configuration Auditing
There has been much interest lately in the
integrity of certain large accounting firms
who perform independent audits of corpo-
rate books. These audits are intended to
attest to the soundness of the financial
information reported by corporations.

In a previous lifetime, one of the
authors of this article had the opportunity to
work as an internal auditor. In this role he
performed compliance audits, operational
audits, proposal audits, and other types of
audits in support of the mission of the
organization. He was labeled by one
acquaintance as Mr. Sneak & Peak.
Auditors are not widely embraced as good
guys. They are more likely considered those

who go in after the war is over and stab the
wounded.

By auditing adherence to policies,
processes, and procedures, this corpora-
tion was able to demonstrate to their gov-
ernment customer that sound practices
were consistently being followed in the
delivery of the products and services for
which the government was paying. In
addition, people are more likely to follow
the approved practices if they know some-
one is checking to see that they do. If
developers gather metrics that nobody
ever evaluates, the developers quickly learn
that the metrics can safely be ignored. By
the same token, if developers are never
held accountable, then they quickly learn
that policies, processes and procedures
can be ignored. There must be accounta-
bility.

Software configuration audits are
important for the same reasons. It is gen-
erally accepted that following good soft-
ware development practices will con-
tribute to consistent delivery of quality
software products (assets). Audits should
be conducted to help assure that software
development policies, processes, and pro-
cedures are being consistently followed
and adhered to.

In “Software Configuration Manage-
ment for Project Leaders” presented at the
1997 Software Technology Conference in
Salt Lake City, Tim Kasse explained that
configuration audits verify that the soft-
ware product is built according to the
requirements, standards, or contractual
agreement. Auditing also verifies that all
software products have been produced,
correctly identified, described, and that all
requested changes are resolved.

A software configuration audit should
be periodically performed to ensure that
the SCM practices and procedures are rig-
orously followed. The integrity of the
software baseline must be assessed. The
completeness and correctness of the soft-
ware baseline library contents must be ver-
ified. The accuracy of changes to the base-
lines must be verified to ensure that the
changes were implemented as intended. It
is recommended that a software configu-
ration audit be performed before every
major baseline change. Software configu-
ration auditing should be continuous, with
increased frequency and depth throughout
the life cycle [4].

With regard to SCM, the terms func-
tional configuration audit and physical
configuration audit are often used. A func-
tional configuration audit is intended to
verify that the software functions as
defined by the software requirements doc-
umentation. A physical configuration audit

is intended to verify that all the items iden-
tified to be included in software release are
actually included and that no additional
items are included.

Who Cares?
OK, we have said lots of nice words about
SCM, but why do you care about all this?
Findings from various software assess-
ments indicate that the lack of adherence
to basic software development and acqui-
sition sound practices continues to have a
negative cost and schedule impact of soft-
ware development, maintenance, and
acquisition projects. SCM is one of these
sound practices. Watts Humphrey said:

The most frustrating software
problems are often caused by poor
configuration management. The
problems are frustrating because
they take time to fix, they often
happen at the worst time, and they
are totally unnecessary. [5]

If any of the following situations sound
familiar to you, then you care!
• A software bug that was fixed six

months ago has suddenly reappeared.
• A programmer just spent 12 hours

making a change to the wrong version
of the software.

• There is no way to trace requirements
from the requirements document to
the user documentation and source
code.

• Two programmers working on a proj-
ect have overwritten each other’s code,
rendering the last 40 hours of each of
their work useless.

• No one can find the latest version of
the source code.

• Fielded software that was working fine
yesterday mysteriously will not work
today.

• An application installed at various
locations is running fine at some loca-
tions, but not at other locations.

• There is no way to evaluate impact on
requirements from proposed changes.

Conclusion
In short, there is no such thing as a one-
line change! Any software change is based
on some type of requirement change.
Proper identification of all the items criti-
cal to the development of software to sat-
isfy requirements is essential to meeting
those changing requirements. A supposed
one-line change requires proper identifica-
tion of what actually needs to change. It
requires analysis of how the piece of code
affected interfaces with other sections of
the code. It requires analysis of what

But I Only Changed One Line of Code!

January 2003 www.stsc.hill.af.mil 23

impact a change to the code will have on
other sections of the code. It requires
review and approval by individuals who
know and understand the application and
can determine the extended impact of the
requested change. It also requires docu-
mentation and traceability into what
change is really required, who approved
the change, when the change was made,
and why it was made. It also assumes that
someone is watching the process, that
audits are being conducted assuring that
the approved process for making changes
is being followed, and that the software
product matches the documentation.

Applying the concepts of SCM will
improve the organization’s ability to con-
trol software assets. Items and compo-
nents essential to the development and
maintenance of the software will be iden-
tified, managed, and controlled. Changes
will not be made without proper analysis
and approval. The status of software
assets will be known and traceable at all

times, and periodic audits will assure that
the process is being followed. The proba-
bility of simple software changes hugely
impacting projects will be greatly
reduced.◆

References
1. Babich, Wayne A. Software Configura-

tion Management. Mass.: Addison-
Wesley, 1986.

2. Ben-Menachem, Mordechai. Software
Configuration Management Guide-
book. London: McGraw-Hill, 1994.

3. Institute of Electrical and Electronics
Engineers. “Glossary of Software
Engineering Terminology.” IEEE Std-
610.12-1990. New York: IEEE, 1993.

4. Kasse, Tim. Proceedings of The 9th
Annual Software Technology Confer-
ence. Salt Lake City, UT. Software
Technology Conference, 1997.

5. Humphrey, Watts. Managing the
Software Process. Addison-Wesley,
1989.

About the Authors

David A. Cook, Ph.D.,
is the principal engineer-
ing consultant, Shim
Enterprises, Inc. He is
currently assigned as a
software-engineering

consultant to the Software Technology
Support Center at Hill Air Force Base,
Utah. Dr. Cook has more than 27 years
of experience in software development
and software management. He was for-
merly an associate professor of comput-
er science at the U. S. Air Force Academy
and also the deputy department head of
the Software Professional Development
Program at the Air Force Institute of
Technology. Dr. Cook has published
numerous articles on software process
improvement, software engineering,
object-oriented software development,
programming languages, and require-
ments engineering. He has a doctorate
degree in computer science from Texas
A&M University, and he is an authorized
Personal Software Process instructor.

Software Technology Support Center
7278 4th Street
Bldg. 100
Hill AFB, UT 84056
Phone: (801) 775-3055
Fax: (801) 777-8069
E-mail: david.cook@hill.af.mil

Theron R. Leishman
is a consultant currently
on contract with the
Software Technology
Support Center at Hill
Air Force Base, Utah.

Leishman has 18 years experience in
various aspects of software develop-
ment. He has successfully managed
software projects and performed con-
sulting services for the Department of
Defense, aerospace, manufacturing,
health care, higher education, and other
industries. This experience has provided
a strong background in systems analysis,
design, development, project manage-
ment, and software process improve-
ment. Leishman has a master’s degree in
business administration from the
University of Phoenix. He is a Level 2
Certified International Configuration
Manager by the International Society of
Configuration Management, and is
employed by TRW.

Software Technology Support Center
7278 4th Street
Bldg. 100
Hill AFB, UT 84056
Phone: (801) 775-5738
Fax: (801) 777-8069
E-mail: theron.leishman@hill.af.mil

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 " TESTING & CM

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

JUN2002 " SOFTWARE ESTIMATION

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

OCT2002 " AGILE SOFTWARE DEV.

NOV2002 " PUBLISHER’S CHOICE

DEC 2002 " YEAR OF ENG. AND SCI.

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering January 2003

Oerlikon Contraves Inc. is a systems
integrator specializing in the design,

assembly, integration, testing, and delivery
of complete systems solutions, including
an air defense missile system. The system
consists of a missile launcher mounted on
a tracked vehicle or a fixed platform,
together with radar and optical sensors,
electronic control systems, and communi-
cation equipment.

The organization has been ISO 9001
certified since 1993. In 1997, it was also
assessed at the Software Engineering
Institute’s (SEI) Capability Maturity
Model® (CMM®) Level 2 [1] by independ-
ent assessors certified by the SEI. In addi-
tion to satisfying Level 2 goals, the organ-
ization also met eight of the 17 Level 3
goals.

In 1995, it was decided that a formal,
systems engineering process had to be
developed and implemented in order to
seamlessly integrate disciplines associated
with systems engineering. The develop-
ment effort was initiated by performing an
internal assessment of the organization’s
systems engineering practices. A decision
was made to use as frameworks the CMM
for Systems Engineering and the Generic
Systems Engineering Process developed

by the Software Productivity Consortium
[2].

The systems engineering process
(SEP) [3] describes management and tech-
nical activities, roles and responsibilities,
and metrics and artifacts produced by
each activity. The management activities
of the SEP’s major steps are summarized

in Table 1 while Table 2 illustrates the
technical activities (steps 210 through
270). The process had been applied to the
reengineering of two subsystems: the
launcher control electronics and the radar
and electro-optical operator consoles [4].

The launcher control subsystem is
composed of a main data processor that
coordinates the operation of the sensors
and the launch and guidance of the mis-
siles, a missile tracker processor, a target
tracker processor, and a servo control
processor. The operator consoles consist
of a radar and communication subsys-
tems, and of an electro-optical console to
control both the optical sensors and the
missile launcher.

The Reengineering of
Operator Consoles
The reengineering of the consoles was
divided into two major increments: a sys-
tem definition increment of the subsys-
tem in its new configuration and a detailed
hardware/software development incre-
ment, which was further broken down
into several sub-increments. The identifi-
cation of each increment was based on
the nature of the deliverable products at
the end of the increment. In both cases,
the first increment deliverable would be a
system requirement specification, and the
second increment deliverables would be a
set of design and equipment specifica-
tions plus a qualified working preproduc-
tion prototype.

The following paragraphs describe
what was accomplished during increment
one as well as what is being planned and
performed for increment two. The
emphasis of this article will be put on the
risk activities that have been performed.

Overview of Increment One
Requirements Management
The system engineering CASE Tool
CORE has been used to develop the con-
sole requirements. The database included
the following types of information:
• Originating requirements (behavioral

and nonbehavioral).
• Interface requirements.
• Verification requirements.
• Physical architectures.
• System diagrams.

The CORE database was baselined

Risk Management Applied to the
Reengineering of a Weapon System

Guy Boucher
Oerlikon Contraves Inc.

In this article, a systems engineering process is briefly described followed by a discussion of the application of risk manage-
ment practices to the reengineering of operator console stations of a missile weapon system. Lastly, 12 lessons learned are pre-
sented.

Claude Y. Laporte
École de Technologie Supérieure

Major Steps Substeps
111 Define Approach
112 Estimate Situation

110 Understand Context

113 Review Context
121 Perform Risk Analysis
122 Review Risk Analysis
123 Plan Risk Aversion

120 Analyze Risk

124 Commit to Strategy
130 Plan Increment Development 131 Execute Risk Aversion

132 Review Development Alternatives
133 Plan Increment Development
134 Commit to Plan
141 Monitor and Review Increment Development
142 Update Increment Plan

140 Track Increment Development

143 Review Technical Product
151 Baseline System Definition
152 Assess Increment Closure
153 Update External System Plan

150 Perform Increment Closure

154 Commit to Proceed

Table 1: The Management Activities of the Systems Engineering Process

“Dealing with formal
risk management

represented a
mentality change not
only for the project

team but also for the
entire organization.”

January 2003 www.stsc.hill.af.mil 25

Risk Management Applied to the Reengineering of a Weapon System

after the completion of increment one.

Developing an Engineering Model
An engineering model was developed
during increment one. The model ran on
a standard PC, and its purpose was to
show the new concept of operation and
the proposed man-machine interface
(MMI). The model was formally shown
to stakeholders. Comments were collect-
ed and analyzed to modify and improve
the system requirements in a second iter-
ation.

Technology Search
A series of technologies related to either
hardware or software has been researched
and trade-off analyses have subsequently
been documented. Many potential suppli-
ers were met and a few employees attend-
ed real-time embedded conferences as
well as virtual machine environment
(VME) and high tech shows.

Training
Beside the training provided on the new
systems engineering process, the only for-
mal training provided had been on tools:
the graphical user interface (MMI) CASE
tool, and CORE, the system definition
CASE tool. Training was also later per-
formed on VxWorks operating system,
Rhapsody software development CASE
tool, and unified modeling language soft-
ware development methodology.

Overview of Increment Two
The plan for increment two consisted of
proceeding with both the hardware and
software detail design based on the inter-
im system definition and the engineering
model generated during increment one.
The detailed development will include the
construction of an engineering unit to
support the hardware and software devel-
opment and the construction of a pre-
production unit that will support system
integration and qualification activities. In
addition, simulators will be built in paral-
lel to support development, integration,
and validation efforts.

The plan for increment two also
included other nonrecurring activities
such as the production jigs, tooling and
logistic activities, technical publications,
and training.

The Application of Risk
Management Activities
SEP Step 120: Analyze Risk
In SEP step 120, risks were analyzed, risk
mitigation strategies were developed, and
stakeholders’ commitment was made on

mitigation strategies (Substeps 121 and
122). The high-level process, as illustrated
in Figure 1 and Table 3 (see page 26),
describes what risk management activities
should be performed, but it does not pre-
scribe any particular method. The mem-
bers of the project were aware of the
method used by software engineers since
a method was described in the project
planning and tracking activities of the
company software engineering process.
After a brief discussion, the team decided
to use the method proposed by the U.S.
Air Force [5]. At the beginning of the
project, it was felt that this step looked
like a paper exercise and was not very
useful. However, it was the first develop-
ment project to proceed with a formal
method to handle risks.

A risk management plan (RMP) was
developed containing two main sections.
The first section described the program
overview and defined terms based on the
following:
• Type of risk (cost, program, schedule,

technical, and supportability).
• Assessment of risk impact (cata-

strophic, critical, marginal, and negli-
gible).

• Overall categorization of risk (high,
moderate, and low).
The RMP specified who was respon-

sible for the risk management and how
the risks were to be managed during the
increment. This section was quite generic;
it could be reused by other projects.

The second section of the RMP was
specific to the project. It was mainly com-
posed of a single matrix that listed all of
the identified risks. The risk identification
process was performed through brain-
storming sessions with both the develop-
ment team members and stakeholders.
Along with the list of risks in the same
matrix was the following information:
• Type of risk (cost, program, schedule,

or technical).
• Probability of occurrence (very low,

low, medium, high, or very high).
• Impact (catastrophic, critical, margin-

al, negligible, and cost).
• Overall risk (high, medium, low, and

cost).
• Identification of impact on other

projects.
• Brief resolution plan.
• Drop-dead date.
• Person(s) responsible (member of the

project team, functional manager,
project manager, or engineering direc-
tor).

• Hours or resources required perform-
ing the project.

• Resolution status (open or close).

Major Steps Substeps
211 Determine Stakeholders
212 Define Problem Domain
 Assess Problem Needs and Constraints

210 Analyze Needs

213 Define Environment
214 Develop Informal Functionality
221 Determine Behavioral Requirements
222 Determine Performance Requirements
223 Map Behavior to Performance

220 Define Requirements

224 Refine Requirements
231 Partition Requirements into Functions
232 Define Lower Level Functions

230 Define Functional Architecture

233 Define Functional Interfaces
241 Allocate Functions to Alternative Solutions
242 Define Physical Parameters
243 Define Physical Interfaces
244 Integrate Design

240 Synthesize Allocated
 Architecture

245 Refine Physical Architecture
251 Assess System
252 Perform Sensitivity Analysis
253 Allocate Performance to Technical
 Parameters
254 Assess Technical Risks and Problems
255 Identify and Perform Trade-off

250 Evaluate Alternatives

256 Select Best System Solution
261 Define Verification and Validation Procedures
262 Validate System

260 Verify and Validate Work
 Products

263 Verify System
271 Control Technical Decision Data270 Release System Definition
272 Control System Configuration

Table 2: The Technical Activities of the Systems Engineering Process

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering January 2003

The Implementation of the
Risk Management Plan
The actions and status of the risks were
then reviewed on a weekly basis during
project reviews. When a mitigation plan
was required, e.g., special resources and a
considerable amount of hours, then spe-
cific risk activities were directly integrated
in the detailed work breakdown structure
and scheduled like any other major devel-
opment items.

Some of the risks identified were as
follows: project risks such as budget over-
run, schedule delays mostly due to lack of
dedicated resources, and technical risks
such as the lack of experienced personnel
in using a new process, and a new CASE
tool (CORE). Also, since this project was
performed concurrently with another
project, it was necessary to closely moni-
tor integration, validation and verification
activities, and interfaces definition with
the rest of the missile system. Finally, spe-
cific risks like availability of commercial
off-the-shelf hardware, mastering of new
technologies such as VME, development

of a new custom circuit card assembly,
and development of new communication
bus were also identified.

Risk impacts were represented by a
weighted probability of occurrence and
consequence index. This risk matrix was
stored in a database and was continuously
updated during the two increments.

In some cases, the same mitigation
strategy addressed several risks. Mitigation
strategies included activities such as pilot
projects, engineering models and mock-
ups, additional analyses, and subsystem
modeling. Specific participant training was
also planned in some areas. Finally, a for-
mal review with stakeholders helped to
identify other risks, gather mitigation sug-
gestions, and obtain final commitment
(substep 124).

Lessons Learned
Quantification of Risks Issues
During increment one, risk only had a
qualitative score, i.e., high, medium, or low.
We found that this had two major draw-
backs compared to quantitative evalua-
tions:

• It did not have the same weight or nec-
essary attention from management.

• No money/resources were set aside
should the risk issue have occurred.
This could lead to budget overruns.

Evaluation of Risks in a
Systemic Perspective
For increment two, we quantified and
costed all risks, even the ones that the
team had no control over such as hiring or
allocating budgets and expenses. The
development team would ultimately be
impacted should a risk occur. As a result,
the company decided to put money aside
for risks in the budget for increment two.

Risk Management Is Not Free,
But It Is a Wise Investment
We quickly found out that some risks
required a lot of effort to mitigate. One
example was the activity related to the
engineering model in increment one. It
was decided to proceed with an engineer-
ing model to mitigate a risk previously
identified that related to the fact that we
had no customer requirement. The fear
was then that we would proceed with a
design that would not meet any potential
customer wishes.

Approximately 800 hours were spent
to model a new concept of operation and
an MMI. This included activities such as
model design and, even more important,
validation of the concepts with a selected
group of operators from inside and out-
side the company.

This model allowed us to develop and
refine the system requirements as well as
define software use cases with a very high
confidence level that they would remain
stable throughout the entire design chain.
Although it was difficult to precisely
assess the amount of time/money that
has been and will ultimately be saved, one
can imagine what would be the cost of
delivering a product that would not meet
customer expectations.

Another example is a pilot project per-
formed in increment two. This pilot proj-
ect came as a result of a risk identified that
expressed the concerns that we would
enter the software design phase with a
new methodology, new CASE tools
(design and GUI), and a new development
environment. About 1,000 hours were
spent on a mini-project that had the main
objectives to verify the capabilities of the
tools, to verify the integration of the tools,
and to propose a design method.

The results and conclusions obtained
through the development of this pilot
project were crucial to generating a prop-
er software development plan that needs

Identify Potential Risks
Identify Potential Loss and
Consequences
Analyze Risks Dependencies
Identify Risks Probability of Occurrence
Prioritize Risks

121 Perform Risk
 Analysis

Identify Risk Aversion Strategies for
Each Risk
Review Risk Analysis122 Review Risk

 Analysis Identify Risks to Be Part of the Risk
Management Plan (RMP)
Define a Risk Monitoring Approach
Estimate Risk Aversion Strategy Cost
and Schedule

123 Plan Risk Aversion

Recommend Risk Aversion Strategies

120 Analyze Risk

124 Commit to Strategy Obtain Stakeholders' Commitment

Table 3: The Risk Activities of the Systems Engineering Process

SEP 121

Perform
Risk Analysis

SEP 122

Review
Risk Analysis

SEP 124

Commit
to Stategies

SEP 123

Plan
Risk Aversion

Figure 1: Risk Management Activities

Risk Management Applied to the Reengineering of a Weapon System

January 2003 www.stsc.hill.af.mil 27

to clearly show, organize, and plan the
work of a group of more than 20 persons
for a 24-month time frame. The pilot proj-
ect represented about 1.5 percent of the
total software design effort, but it was sure
worthwhile since it ensured that the
remaining 98.5 percent of the project
would be done properly and correctly.

Pilot Projects As a Risk
Mitigation Strategy
It was very important to carefully select
pilot projects and their participants since
these projects would foster adoption of
new practices throughout the organiza-
tion. Also, first-time users of a new
process would make mistakes; it was
therefore mandatory to properly coach
the participants. If participants sensed
that mistakes would be used to learn and
make improvements to the process
instead of pointing fingers, the level of anx-
iety was reduced. This also led individuals
to bring forward suggestions instead of
hiding mistakes. Most of the participants
for both projects were therefore selected
within the working group who developed
the SEP. Other participants were given a
two-day training session on the SEP.

Management’s Response to Risks
Dealing with formal risk management
represented a mentality change not only
for the project team but also for the entire
organization. Yet, when risk management
activities were done properly by the devel-
opment team, management was more
prone to agree and support the risk activ-
ities that resulted from the risk analysis.

Risk Mitigation Leads to Design
Decisions, Development Strategies
The results of the risk mitigation activities
related to technical risks will necessarily
lead to, or as a minimum be an input to,
design decisions and will provide direction
for follow-on activities. In fact, whether a
mitigation plan arose from generating an
analysis, conducting a test, or constructing
a physical or behavioral model, the result
will be the confirmation of a hypothesis
or the identification of the best design
alternative. Ultimately, this leads to design
decisions and subsequent development
strategies.

Training as a Risk Management Issue
One important aspect of risk manage-
ment was training. Previously, most plans
showed a nice flow-down of activities
with associated efforts, as it should be.
However, these plans also reflected the
fact that they were all conducted by high-
ly skilled personnel that knew exactly what

to do at all times. This obviously did not
represent reality. Therefore, appropriate
training became mandatory to manage the
risks, and training activities were built into
the project plan.

Dividing a Project Into Increments As
a Risk Management Strategy
Project increments must be carefully
defined so that they remain manageable.
Their associated activities were not too
long to be properly tracked, and on the
other end were not too small so that their
activities required micro-management.
Project manager experience was found to
be a critical asset for project and incre-
ment definition. A manageable increment

size was also critical for the proper per-
formance of design reviews; in those
reviews, participants kept their focus on
the increment scope.

New Process Implementation Risks
It was found that for some areas of the
SEP, specific deliverables were difficult to
determine precisely. This situation hap-
pened because the end products (i.e., proj-
ect documents) grew iteratively as process
steps were performed. It was therefore
difficult to closely measure the progress of
the activities and report progress to man-
agement. As a result, lessons learned were
generated, and this led to the development
of a specific set of methods/instructions
to support the project manager and his
team by providing better definitions and
tracking/reporting methodologies. The
lessons learned and the various instruc-
tions have been distributed and electronic
copies are available on the company
intranet.

Risk Associated With People Issues
Managing the human dimension of the
project was found to be an element that
not only fostered the adoption of the new
process, but also created an environment

where changes were introduced at an
increasingly greater rate. Members of the
engineering organization realized that
managing the soft stuff was as important as
managing the hard stuff. Additional infor-
mation about managing people issues can
be found in a previous CrossTalk [6].

Risk Management Activities Are
Planned and Included in the
Project Plan
Since a substantial amount of energy was
expended in risk management activities,
those activities were identified, estimated,
and incorporated in the project plan. It is
important to note that risk management is
part of the standard company work break-
down structure and a level of effort is
estimated and planned accordingly. In
addition, as the major risk mitigation
strategies become part of the system plan
to be approved by the organization, com-
mitment is established. The costs associat-
ed to that risk effort and associated miti-
gation strategies are then tracked as any
other work breakdown structure activity.

Appointing a Project Risk Officer
When a project is composed of many
projects similar to the one described in
this article, all risk activities may represent
a substantial effort. Also, the risks have to
be analyzed at the project level since risks
in one subproject may create risks at the
project level. Risks from different subpro-
jects may be analyzed and mitigated at the
project level instead of being mitigated
individually. It was found that all project
risk activities were better managed by one
individual. A project role called risk offi-
cer had been established. The risk officer
hat was allocated, as a secondary duty, to a
member of the team who was interested
by this role and had a lower load in the
project.

Conclusion
A new SEP involving managing risks had
been deployed and used in the re-design
of a missile system operator console. The
risk management activities were found to
be very useful to plan activities and collect
technical and managerial information
more formally in the course of the proj-
ects. It also helped manage and improve
the dynamic human dimension of the
development project.◆

References
1. Paulk, M. et al. Capability Maturity

Model for Software. Pittsburgh:
Software Engineering Institute, 1993.

2. Software Productivity Consortium. A
Tailorable Process for Systems Engi-

“It was very important
to carefully select

pilot projects and their
participants since these
projects would foster

adoption of new
practices throughout the

organization.”

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering January 2003

neering. Software Productivity
Consortium, Jan. 1995.

3. Laporte, C. Y., and N. R. Papiccio.
Development and Integration of
Engineering Processes at Oerlikon
Aerospace. Proc. of the Seventh
International Symposium of the
INCOSE. Los Angeles, CA, 1993.

4. Laporte, C. Y., A. Guay, and J.
Tousignant. The Application of a
Systems Engineering Process to the
Reengineering of an Air Defense
System. Proc. of the Eighth Annual
International Symposium of the
INCOSE. Vancouver, British
Columbia, Canada, 26-30 July 1998.

5. U.S. Air Force. USAF’s Software Risk
Abatement Handbook. AFSC/AFLC
Pamphlet 800-45, 30 Sept. 1988.

6. Laporte, C. Y., and S. Trudel.
“Addressing the People Issues when
Developing and Implementing Engi-
neering Processes.” CrossTalk
Nov. 1999.

Additional Reading
1. Forsberg, K., and H. Mooz.

Application of the ‘Vee’ to Incremen-
tal and Evolutionary Development.
Proc. of the Symposium of the
International Council on Systems
Engineering. St. Louis, MO, July 1995.

About the Authors

Guy Boucher is a proj-
ect manager on various
projects at Oerlikon
Contraves Inc. He was
formerly radar principal
engineer at the compa-

ny. Boucher served the Canadian
Forces for a period of five years as a
radar engineer on a long-range radar
station and as a Canadian representa-
tive on a joint development program of
the U.S. Over-the-Horizon-Backscatter
Radar in Bangor, Maine. He left the
Forces in 1987 at the rank of captain.
Boucher has a bachelor’s degree in
electrical engineering from the Royal
Military College of Canada.

Oerlikon Contraves Inc.
225,boul.du Séminaire Sud
Saint-Jean-sur-Richelieu,Quebec
Canada, J3B 8E9
E-mail:gboucher@oerlikon.ca

Claude Y. Laporte is a
software engineering
professor at the École
de Technologie Supér-
ieure in Montreal. He
was an officer in the

Canadian Forces and retired at the rank
of major. He joined Oerlikon
Contraves Inc. in 1992, then called
Oerlikon Aerospace, where he coordi-
nated the development and implemen-
tation of engineering and management
processes. Laporte has a bachelor’s
degree in science from the Canadian
Military College of Saint-Jean, a mas-
ter’s of science degree in physics from
the Université de Montreal, and a mas-
ter’s degree in applied sciences from
the Department of Electrical and
Computer Engineering at École
Polytechnique de Montreal.

École de Technologie Supérieure
1100 Notre-Dame Ouest
Montreal, Quebec
Canada,H3C 1K3
E-mail:claporte@ele.etsmtl.ca

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center is an Air Force
organization established to help other U.S. government organ-
izations identify, evaluate, and adopt technologies to improve
the quality of their software products, efficiency in producing
them, and to accurately predict the cost and schedule of their
delivery.

Risk Management
www.acq.osd.mil/io/se/risk_ management/ index.htm
This is the Department of Defense (DoD) risk management Web
site, a working group composed of representatives from the serv-
ices and other DoD agencies involved in systems acquisition to
assist in the evaluation of the department’s approach to risk man-
agement. The working group will continue to provide a forum
for sharing experiences and knowledge in order to provide pro-
gram managers with the latest tools and advice on managing risk.

Software Program Managers Network
www.spmn.com
The Software Program Managers Network (SPMN) is sponsored
by the deputy under secretary of defense for Science and
Technology, Software Intensive Systems Directorate. It seeks out
proven industry and government software best practices and con-
veys them to managers of large-scale DoD software-intensive

acquisition programs. SPMN provides consulting, on-site program
assessments, project risk assessments, software tools, guidebooks,
and specialized hands-on training.

Software Engineering Institute
www.sei.cmu.edu
The Software Engineering Institute (SEI) features information on
“Building High Performance Teams Using Team Software
ProcessSM (TSPSM) and Personal Software ProcessSM (PSPSM).” The
SEI is a federally funded research and development center spon-
sored by the U.S. Department of Defense The SEI’s core purpose
is to help others make measured improvements in their software
engineering capabilities.

The Software Productivity Consortium
www.software.org
The Software Productivity Consortium is a nonprofit partnership of
industry, government, and academia. It develops processes, meth-
ods, tools, and supporting services to help members and affiliates
build high-quality, component-based systems, and continuously
advance their systems and software engineering maturity pursuant
to the guidelines of all of the major process and quality frameworks.
Based on the members’ collective needs, its Technical Program
builds on current best practices and information technologies to cre-
ate project-ready processes, methods, training, tools, and supporting
services for systems and software development.

WEB SITES

January 2003 www.stsc.hill.af.mil 29

Iwould bet that all articles submitted to
CrossTalk, including this one, for

which I can vouch, have been peer-
reviewed. Why is it that peer reviews in the
publishing industry are widely accepted,
while they are the first items to be
dropped off the priority list in the soft-
ware industry?

According to Ronald A. Radice in his
book “High Quality Low Cost Software
Inspections” [1], there are several reasons
why inspections are not more widely used
in software development. First is the belief
that inspections can only be done one way,
a myth this book has all but obliterated.

Second is that inspections are not easy
to do well, given the psychology that per-
meates them. Radice addresses this topic
by discussing participant personalities
such as aggressive inspectors, intimidating
moderators, weak moderators, and defen-
sive producers – whose products are being
reviewed – and offers suggestions on how
to deal with these situations.

Third, the perception that inspections
represent an added cost to software devel-
opment is still widely prevalent. The book
certainly helps in countering this argu-
ment, with plenty of charts and data that
demonstrate the added value of inspec-
tions. However, Radice, may very well
have identified the fundamental underly-
ing cause software inspections are not
more widely used: inspections are low tech
and are not the most enjoyable engineer-
ing tasks, especially when compared to
design and coding.

But software inspections do work, and
Radice’s book contains 400 pages that not
only demonstrate their value but also offer
various approaches, techniques, and guide-
lines to conduct them. “High Quality Low
Cost Software Inspections” is a must for
anyone wishing to start inspections in
their organization or to those who have
performed inspections for some time and
want to get better results. Radice describes
the inspection process in detail, including
the roles assumed by inspection partici-
pants and the type of data that should be
collected, all the way to causal analysis of
defects detected through such reviews.

Inspections also contribute to the cul-
ture change experienced by software com-
panies that appreciate the value of data
and allow the data to be used safely, in a
nonthreatening way by the people who
provide the data. However, this is easier
said than done and does not happen
overnight. The book includes a chapter on
managing inspections and another on
practical issues you can expect to deal with

when introducing inspections. These
chapters will prove helpful in preventing
lukewarm reception by those who have
been identified as participants, or down-
right failures.

The chapter on economics of inspec-
tions is particularly eloquent for anyone
who needs to be convinced of their value.
It references Infosys, where two teams
were set up to assess inspections and unit
testing. Inspections found 2.7 times more
defects than did unit testing. According to
Radice, another feature that differentiates
inspections from unit testing is that when
defects are found in inspections, the fix is
often understood as soon as the defect is
identified. Testing is characterized by a
more serial approach: After a defect symp-
tom has been observed, its cause must
then be sought out and a fix devised.

Radice also takes a jab at the Software
Engineering Institute’s Capability Maturity
Model® (CMM®) IntegrationSM (CMMISM)
for diluting the value of inspections.
Whereas peer reviews were deemed
important enough to deserve a whole
process area in the CMM for Software,
they have now been reduced to a goal
within the Verification Process Area in the
CMMI. Implementation of inspections
with the CMMI is now more a matter of
choice than a requirement. Potentially,

organizations that do not see a need to
perform inspections will now have a big-
ger hole to squeak through to prove their
point that inspections are not required. We
can only hope that it will not be the case.

Currently, software development has
been hit hard in the technology sectors,
which are early contributors to the current
economic downturn. Inspections may be
low tech, but they represent a sound
investment to guarantee that products
released by software companies operate as
advertised.◆

Reference
1. Radice, Ronald A. High Quality Low

Cost Software Inspections. Andover,
Mass.: Paradoxicon Publishing, Jan.
2002.

High Quality, Low Cost Software Inspections

Louis A. Poulin
GRafP Technologies

What do inspections, peer reviews, walk-throughs, and structured reviews have in common? These are all terms that are used
interchangeably in software engineering. Yet, the activities that they entail are rarely carried out consistently in the course of
developing an application. This article reviews this theme as Ronald A. Radice presents it in his new book.

About the Author

Louis A. Poulin is
president of GRafP
Technologies. He has
been involved in assess-
ing the capability of
information technolo-

gy organizations and in developing
hazard evaluation, hazard monitoring,
and hazard prevention tools and
methodologies applicable to various
fields. Prior to this, Poulin served in the
Canadian Navy as a combat systems
engineering officer. He is a member of
the Institute of Electrical and
Electronics Engineers and a fellow of
the Engineering Institute of Canada.
Poulin has a bachelor’s degree in engi-
neering physics, a certificate in naval
engineering, and a master’s degree in
electrical engineering.

550 Sherbrooke St. West
Suite 777
Montreal,Quebec
Canada H3A 1B9
Phone:(514) 847-0900
E-mail: lpoulin@grafp.com

“... inspections are low
tech and are not the

most enjoyable
engineering tasks ...”

There is little doubt in the software
engineering community that require-

ments engineering plays an important role
in the development of a software system.
Requirements engineering [1] is generally
divided into five stages: elicitation of the
requirements from the customer or user,
analysis of the elicited requirements, man-
agement of the requirements (i.e., control-
ling of requirements), verification of
requirements, and documentation.

Requirements engineering can employ
a variety of methods that effectively cap-
ture requirements. Success with this phase
of the development life cycle is consid-
ered crucial in that the remainder of life-
cycle activities is highly dependent on this
early foundation (in terms of schedule,
cost, and user acceptance). These meth-

ods are broadly divided into three cate-
gories: informal, semiformal, and formal meth-
ods [2], each having its own advantages
and disadvantages.

In the requirements phase, require-
ments are often specified informally with
a language in which the customer or end-
user is familiar. This often results in the
use of natural language (e.g., spoken and
written English) to create a requirements
document such as the system require-
ments specification or concept of opera-
tions [2]. Such informal specifications are
not adequate in that they are often inaccu-
rate, inconsistent, and ambiguous [2].
Natural language specifications are also
very lengthy, making them difficult to
check for completeness.

Applying semiformal methods that

emphasize the use of graphical represen-
tations of the software being built can
mitigate this disadvantage. A major prob-
lem with the semiformal approach, how-
ever, is the lack of precise semantics,
which may lead to ambiguous interpreta-
tion of certain requirements. Sometimes
the application of formal methods is
offered as a solution to problems associat-
ed with both the informal and semiformal
approaches.

Due to space constraints, CrossTalk was not
able to publish this article in its entirety.
However, it can be viewed in this month’s issue on
our Web site at <www.stsc.hill.af.mil/
crosstalk> along with back issues of
CrossTalk.

30 CROSSTALK The Journal of Defense Software Engineering January 2003

If your experience or research has produced information that could
useful to others, CrossTalk can get the word out. We are
ecially looking for articles in several specific, high-interest areas.
oming issues of CrossTalk will have special, yet non-
usive, focuses on the following tentative themes:

Call for ArticlesC

Commercial and Military Applications Meet
June 2003

Submission Deadline: Jan. 20, 2003

Defect Management
August 2003

Submission Deadline: March 17, 2003

Information Sharing/Data Management
September 2003

Submission Deadline: April 21, 2003

Please follow the Author Guidelines for CrossTalk, available on the Internet at:
www.stsc.hill.af.mil/crosstalk

We accept article submissions on all software-related topics at any time,
along with Open Forum articles, Letters to the Editor, and BackTalk submissions.

Application of Lightweight Formal
Methods in Requirements Engineering

Vinu George and Dr. Rayford Vaughn
Mississippi State University

Using formal methods in software development is an important step toward achieving correctness, consistency, and under-
standing in the software development process. This use of formalism can be informal, semiformal, or formal. An evolv-
ing approach known as lightweight formalism uses the application of formal methods that are less “rigorous” than nor-
mally expected. This article overviews advantages and disadvantages in the application of formal methods in software
development and discusses the lightweight formal approach with emphasis given to the requirements phase of software
development.

Online Article

BACKTALK

January 2003 www.stsc.hill.af.mil 31

There are phrases we hear over and over
while investigating software develop-

ments gone amuck. Some we hear in many
developments resemble these: “Our produc-
tivity is 25 percent higher than we achieved
on the last project because we are working
smarter this time.” Or, “The schedule is tight,
but we have polished the requirements until
they are rock solid.” Or, “The software is 90
percent COTS. We should be able to deliver
the product in six months.” Or, “If we dou-
ble the staff, we can cut the delivery time in
half.” Or finally, “We are 90 percent com-
plete. Just a few more days of testing ...”
You can probably add to this irrational
bunch of statements your own experi-
ences.

I am here to declare in true
1990s fashion that these absurdi-
ties are not our fault. No, I am
not going to blame them on our
parents, our schools, the envi-
ronment where we grew to
adulthood, or the occasional use
of prescription drugs. These
statements come from our
genes, and there is nothing we
can do to restrain ourselves from
uttering them. Let me explain.

The source of this weakness
has been with us since creation, at
least according to tradition. Our
story begins a long, long time ago in
ancient Greece with two brothers:
Prometheus and Epimetheus, who
were among the titans prior to mankind
being established on Earth. Prometheus
was a young intelligent god whose personali-
ty and disposition would have made him an
extreme sports star today. He was tasked by
Zeus to create mankind. His brother,
Epimetheus, was simpler (much more) than
his older brother, and much less adventur-
ous. All of his friends called him Epi the
Lesser. Epimetheus was tasked to create the
other creatures.

One day Prometheus tricked Zeus and
stole divine fire from Mount Olympus for
the benefit of mankind. Zeus, the chief god,
was irate about the theft of this one thing
that belonged only to the gods. He went bal-
listic and swore that Prometheus and all mor-
tals would suffer for this affront. Zeus
ordered Hephaestus to create Pandora from
earth and water as vengeance upon man and
his benefactor, Prometheus. The gods
endowed the beautiful and seductive damsel
(of course) with every charm including

curiosity and deceit. Zeus reasoned that
Prometheus was smart and would probably
see through his plan, so he arranged for
Pandora to marry Epi who, as I said before,
was not the sharpest rock in the box. Zeus
gave her a vase (no, it wasn’t a box) as a wed-
ding gift. Prometheus had warned his slow-

witted brother Epi about accepting gifts
from Zeus, but Epi was dazzled by Pandora’s
beauty.

There are two versions of what tran-
spired at this point. Version one says that
Zeus forbade her to open the vase. Despite
Prometheus’ warnings, Epi allowed
Pandora’s womanly curiosity to win out and
she opened the vase. Version two says that
Pandora’s task was to con Epi into opening
the vase. Again, in spite of Prometheus’
warnings, Pandora was so beautiful and, liter-
ally, irresistible, Epi could not refuse. After a
brief casting of her wiles, Pandora led poor
Epi into taking the lid off the vase.

When the lid was lifted (who did the deed
is a religious issue), there was a tremendous
whoosh and all but one of the evils, sorrows,

and diseases were released to forever plague
mankind. Evils like hard work, greed, lust,
envy, television, Eminem, and Britney Spears
escaped and spread over the entire earth.

Epimetheus may not have been too
sharp, but he was fast. He managed to close
the vase before the worst of all afflictions
was released. Epi felt terrible about his mis-
take, but Zeus’ work was not finished. After
some discussion, Epi and Pandora conclud-
ed that the worst had been done and the vase

was empty. Epi slowly lifted the lid, and
there came a scream as hideous as anyone
had ever heard, even on TV. The worst of
all evils had finally been unleashed on the
world. That evil was ... HOPE.

Because of hope we can never
learn from our mistakes. History

can never be our teacher. We will
forever be cursed with unbound-
ed optimism. Oddly, software
program managers and develop-
ers seem to have been more
receptive to this evil than any
other mortal. What was it I
heard yesterday? “If you adopt
this (tool, technique, program-
ming language, etc.), your pro-
ductivity will improve an order of

magnitude, and you will never
again make an error!”

Sure it will!

— Randy Jensen
randall.jensen@hill.af.mil

Software Technology Support Center

Pandora and the Magic Vase

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-cheek,
without your boss censoring your writ-
ing. In addition to accepting articles that
relate to software engineering for publi-
cation in CrossTalk, we also accept
articles for the BackTalk column.
BackTalk articles should provide a
concise, clever, humorous, and insight-
ful article on the software engineering
profession or industry or a portion of
it. Your BackTalk article should be
entertaining and clever or original in
concept, design, or delivery. The length
should not exceed 750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

The Requirement for Good Requirements will be offered March 11-13 in the vicinity of Hill AFB, UT
and again on April 22-24 in the vicinity of Hanscom AFB, MA. This seminar covers the fundamentals of
requirements engineering, analysis, elicitation, documentation, and verification and validation. STSC
consultants will utilize their many years of hands-on experience to show attendees how to get their
requirements right the first time. The seminar also includes planned exercises to help participants
solidify the concepts they learn.

The 2003 STSC Seminar Series

 January 14-16 Software Project Management Hill AFB Vicinity
 February 18-20 Software Project Management Hanscom AFB Vicinity
 March 11-13 The Requirement for Good Requirements Hill AFB Vicinity
 April 22-24 The Requirement for Good Requirements Hanscom AFB Vicinity
 May 13-15 Software Schedule and Cost Estimation Hill AFB Vicinity
 June 17-19 Introduction to CMMI Hanscom AFB Vicinity
 July 15-17 Introduction to CMMI Hill AFB Vicinity
 August 19-21 The Risks of Not Being Risk Conscious: Hill AFB Vicinity
 Software Risk Management Basics
 September 16-18 Software Quality Assurance Hill AFB Vicinity
 October 14-16 Why Is Buying Software So Difficult? Hill AFB Vicinity
 November 18-19 Bringing it All Together for the Software Manager Hill AFB Vicinity
 (Software Best Practices: An Executive’s Perspective)

These seminars are FREE to U.S. government employees, however seating is limited, so act quickly.

For additional information, visit our Web site at www.stsc.hill.af.mil

SPACE IS LIMITED. To reserve your place at any of these seminars,
contact Debra Ascuena at 801-775-5778 (DSN 775-5778) or debra.ascuena@hill.af.mil.

Get Your Requirements Right the First Time

CrossTalk / MASE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

Jan2003cover.qxd 12/5/02 4:19 PM Page 2

	Cover
	Index
	From the Publisher
	Overview of Project Management
	STC Conference Registration
	Delivering Quality Products That Meet Customer Expectations
	Coming Events
	Making Measurement Work
	But I Only Changed One Line of Code!
	Risk Management Applied to the Reengineering of a Weapon System
	Web Sites
	High Quality, Low Cost Software Inspections
	Application of Lightweight Formal Methods in Requirements Engineering
	Call for Articles
	BackTalk
	Back Cover

