
Feb2003cover.qxd 1/8/03 10:56 AM Page 1

Evolutionary Trends of Programming Languages
This article discusses the needs and forces that have shaped the evolution of
programming languages, and the various evolutionary paths of current languages.
by Lt. Col. Thomas M. Schorsch and Dr. David A. Cook

Language Considerations
After some real-world examples of how programming languages were chosen, this
author provides some decision-making parameters that could be formalized into a
decision table to aid in the programming language selection process.
by Dennis Ludwig

SEPR and Programming Language Selection
This article explains that the true intent behind abrogating the military’s Ada mandate
was to make choosing a language part of the Software Engineering Process Review –
not a green light to abandon Ada.
by Richard Riehle

International Standardization in Software and Systems Engineering
This article is an introduction to international standardization in information
technology that explains why the industry needs standards, including a status and
outline of current activities.
by François Coallier

An Enterprise Modeling Framework for Complex Software Systems
The goal-oriented, agent-based enterprise modeling framework presented here assists
and drives stakeholders to define system functionality and quality early on, particularly
as it is applied to synthetic environments.
by Dr. Paolo Donzelli

Highpoints From the Amplifying Your Effectiveness Conference
Following its own mandate, this conference goes outside the box when developing presentations
that give attendees technical and interpersonal skills to improve their technical success.
by Elizabeth Starrett

Cover Design
by Kent Bingham,

inspired by
Gustave Doré’s

biblical illustration.

3

9

17

22

28

31

DeparDepar tmentstments

PrProogramming gramming LanguaLanguaggeses

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering February 2003

4

10

13

18

23

27

From the Publisher

Call for Articles

Web Sites

Coming Events

STC 2003 Conference
Registration

BackTalk

CrossTalk
Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the proper-
ty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of
their software products, efficiency in producing them, and
their ability to accurately predict the cost and schedule of
their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Chelene Fortier

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 30.

Ogden ALC/MASE
7278 Fourth St.
Hill AFB, UT 84056-5205

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyySoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

As I reviewed this month’s CrossTalk theme articles on programming lan-
guages, I found it interesting to look back at the evolution of programming dur-

ing the last 30 years. You can probably guess my age when I admit that the first pro-
grams I wrote in college were in machine code.

Lt. Col. Thomas M. Schorsch and Dr. David A. Cook begin this issue with their
article Evolutionary Trends of Programming Languages. The authors discuss the typical gen-
erations of programming languages defining first, second, and third generations, then

admit that there is probably no general agreement on what constitutes fourth, fifth, and future
generations of languages. (Of course, I actually related to writing programs in a first-generation
or machine-code language. One assignment I remember required us to actually write a fully
functional program with a limitation of 100 bytes of storage.) Schorsch and Cook go on to
describe several general evolutionary trends that have influenced programming languages, as
well as some specific recent advances. After discussing many different languages and how they
came about, the authors conclude that throughout this total evolution the basic role of a pro-
gramming languages does not change. This role is to allow the developer to easily express
abstract ideas in a language that a machine can execute.

Dennis Ludwig’s article, Language Considerations, proposes some pertinent ideas for dealing
with the question: What programming language should I use for my new project? He includes
some real-world examples of how this decision has been made in the past. He then suggests
some decision-making parameters that could be formalized into a decision table that could form
the basis of a decision-making process.

In SEPR and Programming Language Selection, author Richard Riehle laments the misunder-
standing and misuse of the 1996 memo from Assistant Secretary of Defense Emmett Paige. He
contends that many readers mistakenly assumed the memo’s intent was a license to abandon Ada
rather than advice to include language selection as part of a rational evaluation step. He discuss-
es some criteria used to evaluate the selection of a language for a particular purpose or project.
Riehle contends that the strengths and weaknesses of the more popular languages should be well
understood so that the decision whether to choose them or to reject them is based upon con-
sideration of sufficient specific criteria reflecting the project’s full life-cycle needs.

We are fortunate in this issue to also get an international perspective on the growth and chal-
lenges of the global software market. François Coallier, chairman of Sub-Committee 7
(ISO/IEC JTC 1/SC7), in his article International Standardization in Software and Systems Engineering
provides an introduction to international standardization in information technology. This arti-
cle provides status and describes the current activities in international software and systems
engineering standardization. Coallier explains why all of these are important for professionals
and organizations in the software arena.

Following this ISO tutorial is an application example from another international author, Dr.
Paolo Donzelli of Italy. In An Enterprise Modeling Framework for Complex Software Systems, Dr.
Donzelli describes a goal-oriented, agent-based Enterprise Modeling Framework where
advanced requirements engineering techniques are combined with software quality modeling
approaches. This provides an environment within which stakeholders and analysts can easily
cooperate to discover, verify, and validate the requirements for a new software system.

Lastly, CrossTalk’s Associate Publisher Elizabeth Starrett reports on ways to expand
your people skills in Highpoints From the Amplifying Your Effectiveness Conference. This conference
uses out-of-the-box techniques to teach personal skills to complement technical skills for a total
package that can help you improve your organization, project, or process.

I hope that this issue will prove useful in your efforts to understand the challenges associat-
ed with the myriad of programming languages available, and how to make some practical choic-
es for your particular needs.

We’ve Come a Long Way From Machine Code to
Current Programming Languages

H. Bruce Allgood
Deputy Director, Computer Resources Support Improvement Program

February 2003 www.stsc.hill.af.mil 3

Programming Languages

4 CROSSTALK The Journal of Defense Software Engineering February 2003

Aprogramming language allows a devel-
oper to translate logical real-world

actions into operations that can be per-
formed on computer hardware. In effect, it
is a way to translate concrete real-world
desires into computer-world operations.

Programming languages advance by
extending the number of operations pro-
grammers can perform without thinking
about them – thus making it easier to say
the things they want to say. In effect, these
advances hide the complexity of what is
going on underneath the hood and raise
the level of abstraction that programmers
think about when they program.

If a programmer wants to say some-
thing to the computer, and he/she finds
that the current language has difficulty in
saying it, then he/she develops a new lan-
guage or extends an existing language.
Advances in programming languages tend
to increase the intellectual distance
between program statements and what the
computer hardware actually does. The lan-
guage then does more of our work, while
decreasing the distance between the pro-
grams written and the real world, allowing
us to solve real-world problems in the con-
text and language of the real world. On a
subtler note, programming languages, soft-
ware, computer scientists, etc. exert an
influence on the real world also, drawing it
ever closer to the software realm (see
Figure 1).

Inevitably, a new programming lan-
guage enables a programmer to express an
idea or concept in a simpler, more readable
manner than what had come before. This
simpler, more readable manner allows us
to create code that is easier to verify, easier
to code, and easier to debug. In essence,
the more powerful a programming lan-
guage is, the easier it is to express complex
ideas in a simple manner.

Typical Generations of
Programming Languages
The first generation of programming lan-
guages, machine codes, is the actual binary

codes that the computer hardware directly
executes. To program directly in machine
code, one must be completely familiar with
the individual computer being pro-
grammed, including its architecture and its
native Central Processing Unit (CPU)
instruction set. Programming in a different
computer’s machine language is like
switching from Spanish to German.

The second generation of program-
ming languages, assembly languages, was
little more than mnemonics (symbols) on
top of machine language instructions.

Typically, one assembly language operation
is translated into a single, equivalent
machine-code operation. When program-
ming Assembler, we still need to under-
stand how the CPU works, and what the
command set is. However, we can forget
about the codes underlying the instruc-
tions and think about the CPU-level activ-
ity that is necessary to accomplish the task.

Third generation programming lan-
guages are CPU and machine-code inde-
pendent. Early third generation languages,
like Fortran and COBOL, are not com-
pletely pure, as many of their data types
and control structures derived directly
from machine-code operations. Later lan-
guages, like Ada and Pascal, were designed
specifically to be machine-independent.

There is no general agreement on what
the fourth, fifth, and future generations of
programming languages are. Some argue

that non-procedural languages (or declara-
tive languages), artificial intelligence lan-
guages, code generation applications, or
object-oriented languages are all con-
tenders. Part of the reason there is no gen-
eral agreement is that unlike computer
hardware generations, later programming
languages did not supplant earlier pro-
gramming languages but instead solved
domain specific problems or complement-
ed existing third generation languages.

At one time, it was projected that there
existed more than 450 languages being
used to develop Department of Defense
(DoD) applications [1]. Web sites like
< h t t p : / / o o p. r o s we b. r u / O t h e r > ,
<www2.latech.edu/~acm/HelloWorld.sht
ml>, <http://directory.google.com/ Top
/Computers/Programming/Languages>,
and <http://sk.nvg.org/lang/lang.html>
list more than 2,000 programming lan-
guages and <www.levenez.com/lang>
shows the evolutionary path of many pro-
gramming languages in terms of which
languages begot others.

However, rather than debate what
exactly constitutes a fourth, fifth, or future
generation of programming languages,
this article describes several general evolu-
tionary trends that have influenced pro-
gramming languages, as well as some spe-
cific recent advances.

Machine-Independent
Programming
An ongoing evolutionary trend with one
of the longest histories is that of reducing
the dependency of programming lan-
guages on any particular computer’s hard-
ware. The evolutionary goal of machine-
independent programming has been to be
able to write a program once that could
then be run on multiple types of hardware.
This would free the application program
from the particular hardware on which it
was developed.

Control structures were the first to be
freed from the tyranny of the computer
hardware. The initial control structures

Evolutionary Trends of Programming Languages

Dr. David A. Cook
Software Technology Support Center/Shim Enterprises, Inc.

Programming languages are the tools that allow communication between the computer and the developer. Far from being a
static tool, programming languages evolve – they are created, constantly change, and frequently disappear over the course of
their use. This article discusses the needs and forces that have shaped the evolution of programming languages, and discusses
various evolutionary paths of programming languages in current use.

Lt. Col. Thomas M. Schorsch
United States Air Force Academy

There does not now,
nor will there ever,

exist a programming
language in which it is

the least bit hard to write
bad programs [2].
— Lawrence Flon

February 2003 www.stsc.hill.af.mil 5

Evolutionary Trends of Programming Languages

were simple jump statements where
instructions followed each other sequen-
tially until a jump command caused it to
start executing a different sequence. In
Fortran, the GOTO command, both to
line numbers and later to symbolic labels
evolved out of machine code jumps.
Fortran also had a primitive for loop, the
DO statement and an IF statement.

Algol popularized structured control
statements where the statement itself
could have substatements and ushered in
the structured programming revolution
and the GOTO-considered-harmful debate.
Prior to 1968, most of the commonly used
programming languages routinely used
GOTO. Starting in the late 1960s, the pro-
gramming community debated if the use
of GOTO was useful, necessary, and/or
harmful to good programming practices.

This debate started with the seminal
paper “GOTO Statement Considered
Harmful” [3]. In this paper, author Edsger
W. Dijkstra said, “The quality of program-
mers is a decreasing function of the densi-
ty of GOTO statements in the programs
they produce.” Although this topic was
hotly debated for several years, it is now
generally recognized that the GOTO state-
ment decreases program understandability
and quality. With the structured program-
ming revolution, thereafter followed case
statements, generalized loops, tasks and
co-routines, exception handling, and paral-
lel programming.

Another fruitful area of evolution
toward machine-independent program-
ming has been with data structures. Initial
data items were limited to those that had
direct hardware representations (i.e., vari-
ous-sized integer data types and then later
floating-point data types.) Later came logi-
cal data, characters, strings, Booleans, and
enumerated types. For years, COBOL was
the ultimate language in terms of repre-
senting and manipulating data. Arrays were
initially physically adjacent integers or
floating-point data; gradually, more gener-
alized arrays, records, and nested data
structures appeared. Later came strong
data typing, user-defined data types, and
dynamic data structures. Pointers, which
were present since the very beginning,
evolved to become more structured and
have often been left out of modern lan-
guages or have been restricted across a
number of dimensions.

Once language elements were divorced
from computer hardware elements, entire
languages could be made more compatible
across different hardware platforms. One
of the goals in designing the Ada pro-
gramming language was that an Ada pro-
gram could be transported to any other

computer and need only be recompiled on
a validated Ada compiler in order for it to
be executed. Another method for making
programming languages cross-platform
compatible was to develop a virtual com-
puter (called a virtual machine) that
replaced the computer hardware as the
target on which the programming lan-
guage ran.

The Rise of Virtual Machines
A virtual machine (VM) is a program that
creates an artificial or abstract computer
running on top of an existing computer.
The VMs hide the normal computer hard-
ware behind a simpler or different compu-
tational model. The earliest VMs enabled
computer scientists to create programming
languages specifically for new and differ-
ent computational models. Lisp (a func-
tional language) and Prolog (a logic lan-
guage) are the earliest programming lan-
guages to run on top of a VM.

Functional languages, in their purest
form, eliminate loops, GOTOs, assign-
ment statements, and all forms of side
effects. Their VM does not support such

constructs. Functional languages retain IF
statements and simulate loops with self-
referencing functions (i.e., recursive calls).

Logic languages on the other hand,
eschew direct control by the programmer
entirely in favor of a VM: An answer is not
so much computed as it is deduced from
programmer-supplied facts and rules. The
VM determines which facts to use and
which rules to apply to solve the problem.

To transport these programming lan-
guages to other hardware platforms, one
must only develop a VM for that system.
In the 1970s, to make it easier to port the
Pascal language to different computers, a
Pascal VM was developed that accepted an
intermediate language called P-code. The
intermediate language is so named because
it is an intermediate step between the orig-
inal programming language and the com-
puter hardware language. Pascal code was

compiled to P-code, which was then inter-
preted by the Pascal VM. At the time, this
concept did not catch on because execut-
ing an intermediate code program on a
VM was much slower than executing an
equivalent compiled program.

The Java programming language was
expressly designed to be compiled to a
VM. The Java virtual machine (JVM) is a
self-contained operating environment.

“This design has two advantages:
• System Independence. A Java

application will run the same on
any JVM, regardless of the
hardware and software underly-
ing the system.

• Security. Because the JVM has
no contact with the operating
system, there is little possibility
of a Java program damaging
other files or applications” [4].

The JVM is so small and compact that
it can easily be downloaded and installed
over the Web. While it still runs slower
than compiled code, the benefits have
been enormous. Microsoft has developed
a similar language called C# (pronounced
C sharp) with its intermediate language,
Microsoft Intermediate Language (MSIL)
and associated VM.

In the future, very few programming
languages will be compiled to machine
code directly. Instead, VMs like the Java
virtual machine or the Common Language
Runtime (CLR), the virtual machine for
C#, will be the intermediary. Only those
applications that need additional speed will
use just-in-time compilers to compile the
intermediate code (Java byte code, MSIL,
or others) into machine code. Thus, most
languages will have at least a two-step
translation process: compiler to compiler,
or compiler to interpreter. Remember, it
was not that long ago when assembly level

The Real World

Programming
Languages

Computer
Hardware

Increase

Decrease

The Real World

Programming
Languages

Computer
Hardware

Increase

Decrease

Figure 1: Distance Between Programming
Languages and the Real World Decreases

The tools we use
have a profound (and
devious!) influence on

our thinking habits, and,
therefore, on our thinking

abilities [5].
— Edsger Dijkstra

Programming Languages

6 CROSSTALK The Journal of Defense Software Engineering February 2003

programmers scoffed at languages that
needed compilers because they believed a
compiler could never produce code that
achieved the speed of a hand-coded
assembly.

In addition, the existence of VMs, and
the intermediate languages that run on
them, will be a boon for other languages as
it will make it easier to port new languages
to multiple machines. Rather than creating
a compiler or interpreter for a new lan-
guage that has computer hardware as the
target language, programmers merely pro-
duce intermediate code for a VM. The
JVM already has more than 160 experi-
mental, research-oriented, and commercial
languages that use Java byte code as the
intermediate language [6].

Programming Language
Interoperability
One reason so many programming lan-
guages have been developed is that lan-
guage developers designed different lan-
guages to solve different types of prob-
lems. In theory, a software developer
would be able to pick the right language
for the task. In practice, it has been diffi-
cult to integrate different programming
languages so developers tend to stick with
general-purpose languages.

To further their use, programming lan-
guage designers feel compelled to make
their languages more appealing by adding
new features and language constructs until
the languages become very complex to use
and master. No one knows what feature or
capability will be a success in the end, so
language designers add new features to
existing languages to make them more
competitive. Pl/1, the Algol family of lan-
guages, Ada-Ada 95, and C-C++ all suf-
fered from this problem. For example, Ada
was designed to be the programming lan-
guage for the DoD, supplanting almost all
others. Even with Ada, it was felt neces-
sary to periodically update the language to
ensure that it had features and capabilities
necessary to make it competitive in current
environments, hence Ada 95. Language
bloat through feature addition is a natural-
ly occurring phenomenon.

On a related note, developing a new
programming language has often been hin-
dered by the lack of existing libraries and
components for that language. Much of
the power of today’s programming lan-
guages comes from their ability to use
existing libraries of code. It is possible to
design bridges between new and old lan-
guages so that the other’s libraries can be
accessed, but it is an endless effort that
must be done for each one [7].

C++ was built as a superset of C to
take advantage of all of the existing C pro-
grammers and all of the existing libraries
of code. Many would argue that a com-
pletely new and clean design would have
resulted in a much better language. In the
same vein, there are probably millions of
lines of Fortran libraries in existence.
Fortran keeps evolving to include new fea-
tures, but backwards-compatibility with
existing libraries is still possible. Were it
not for all of the Fortran libraries in many
engineering application areas, the develop-
ers would probably have switched to a
newer language years ago. What is needed
is a mechanism that enables programming
languages to interoperate, and yet be inde-
pendent of any particular programming
language.

The first steps toward this goal were
for languages to be able to make external
calls, i.e., calls to a procedure or function
that is in a different language and to
exchange data in that call. Most modern
languages have a mechanism that enables
them to make an external call. However,
few programming languages have that

capability defined as part of their language
definition, and none have such clearly
defined routines for converting data ele-
ments between programming languages
like Ada does [8]. Programming language
and machine-independent data representa-
tion standards such as External Data
Representation, Network Data Represen-
tation, and eXtensible Markup Language
were developed to make it easier to
exchange data between different program-
ming languages on different computing
platforms.

Another step in the evolutionary path
has been to enable components to be built
in nearly any programming language that
can then be accessed by nearly any other
language. In essence, by making the code
libraries more open and non-language spe-
cific, it is easier for languages to rely on the
strengths of other languages instead of
incorporating all of the necessary features
themselves.

Current technologies that enable lan-
guage-independent programming are
Dynamic Link Library, Component Object
Module, and Common Object Request
Broker Architecture. Each of these tech-
nologies has enabled a service to be made
available, and yet shields the calling pro-
gramming language from the called pro-
gramming language. These technologies
enable functionality to be built and shared
independently of the language and
machine by developing a standardized call-
ing model that is programming-language
neutral.

The latest step in the language interop-
erability evolutionary trend is the dot-net
environment and the CLR. In this envi-
ronment, classes and objects in one lan-
guage can be used as first-class citizens in
another. Not only can one language call
services in another language, but it can
inherit from the classes of another lan-
guage, declare variables based on types
declared in another language, handle
thrown exceptions from a routine in a dif-
ferent language, and debug across lan-
guages [7].

The trick is, not only is there an inter-
mediate language, but an intermediate type
system exists as well that retains high-level
data-type information such as classes and
inheritance hierarchies. Once a program is
compiled into the dot-net architecture, its
language of origin disappears, and it
becomes language neutral. Consequently,
other dot-net aware languages (actually
their compilation systems) can access
those types. The language interoperability
evolutionary trend and the machine-inde-
pendent programming evolutionary trend
intersect under the dot-net architecture.

Increasing Modularity
Software designers reduce the complexity
of software by decomposing difficult
problems into smaller, easier to solve
pieces. Initially this concept of modularity
was supported in programming languages
by procedures, functions, and user-defined
data structures. Eventually, the evolution-
ary paths of control and data abstraction
merged into larger structures. The ideas of
encapsulation and information hiding,
which are two key parts of modularity, led
to evolutionary improvements in program-
ming languages to support those concepts.

Programming languages evolved to
provide support for modularity by making
it easier to create abstract data types (such
as a stack, set, queue, or hash table) by
allowing separate code units that can be
compiled and by syntactically supporting
modules, packages, and namespaces.
Object-oriented programming is a form of

Language serves not
only to express thought
but to make possible

thoughts which could not
exist without it [9].
— Bertrand Russell

Evolutionary Trends of Programming Languages

February 2003 www.stsc.hill.af.mil 7

modularity. Although the first object-ori-
ented language, Simula, was developed in
1965, other languages did not adopt that
paradigm until the mid-1980s.

A final unit of functional modularity is
the framework. A framework is much larg-
er than an abstract data type or a class hier-
archy. A graphical user interface (GUI)
framework, for example, contains all of
the necessary routines and classes to make
programming user interfaces easier.

Programming languages have evolved
to provide a wide variety of syntactic and
semantic supports for modularity and
information hiding, but not all forms of
modularity are equal. Coupling refers to
how many other modules a module refer-
ences. Cohesion refers to how single-
minded a module is – a way of measuring
how many things a module accomplishes.
A highly cohesive module is one that
solves a single problem; a low-coupled
module is one that is self-contained and
has few ties to other modules. A module
that is highly cohesive with low coupling is
easier to maintain because it has fewer
dependencies.

To date, programming languages pro-
vide little syntactic support to facilitate the
creation of highly cohesive and low-cou-
pled modules (other than just making it
possible). This is problematic because
there are some facets of a problem that
crosscut normal module boundaries.
When programmers combine different
facets of the problem into a single module,
the code is longer, less readable, and less
easy to maintain, reuse, and evolve.

Programming languages have instruc-
tion and data topologies that have evolved
as programming languages evolve [10].
During the first 20 years of computing,
programming languages supported mixing
code and data (assembly languages) or had
global data structures (Fortran common
statements) resulting in poor cohesion and
high coupling. In the next 20 years, mod-
ule-oriented programming languages
evolved that enabled programmers to
place related routines and data structures
within the same module and provide limit-
ed access via exported routines thus pro-
viding direct support for encapsulation
and information hiding, which can be used
to improve both cohesion and coupling.
The last 15 years have seen the rise of
object-oriented programming languages
that enable programmers to decrease the
coupling and increase the cohesiveness of
their program designs even further.

Unfortunately, different facets of a
problem often defy being easily separated
into cleanly modularized subunits.
Components of a system are usually

arrived at by decomposing a problem’s
functionality. Other aspects of the prob-
lem such as performance, security, com-
munication, synchronization, failure han-
dling, persistence, integrity and error-
checking rules, design patterns, and con-
currency often crosscut the boundaries of
the functional components. These cross-
cutting aspects necessarily increase the
coupling and decrease the cohesiveness
because our current programming lan-
guages have no other way to deal with
them.

For example, many typical applications
have error-handling code that crosscuts
module boundaries and spans the applica-
tion. Similar bits and pieces of error han-
dling code are scattered throughout the
application. A design change that affects
error-handling code will necessarily affect
all of those scattered bits and pieces [11].
All crosscutting modifications to the code
affect readability and maintainability,
increase coupling, and decrease cohesion.

Programming languages currently only
support composing different components
during run-time by procedure or method

invocation and during development time
by inheritance. Software developers are
forced to manually compose the different
aspects in the code, which can cause simi-
lar code to be scattered across an applica-
tion and can cause existing code to
become a tangled mess of differing con-
cerns. Aspect-oriented programming lan-
guages address the different facets in clean,
modularized ways. Aspect-oriented pro-
gramming languages separate different
aspects of the problem into different, eas-
ily maintainable modules and then auto-
matically weaves the aspects together
(using an interpreter, compiler, or pre-
processor) just prior to normal processing.

The most advanced general-purpose
aspect-oriented programming language,
AspectJ, is an extension of Java
(<https://aspectj.org>). AspectJ uses
pointcuts to specify join points in the nor-
mal Java code and uses Advice to specify
additional Java code to be executed at the

join points1. The pointcut and Advice code
are maintained separately and the AspectJ
compiler weaves the Advice Java code into
all the specified join-point code locations,
thus the different crosscutting concerns
can be developed and maintained separate-
ly eliminating a tangled mess of differing
concerns.

Aspect-oriented programming has
barely broken out of its research roots1,
but it is already having an influence on lan-
guage design. Currently there are aspect-
oriented programming extensions being
made to a variety of programming lan-
guages (several Java variants, C, C++, C#,
Ruby, Perl, Python, and several Smalltalk
variants). Links to those and other domain
specific, aspect-oriented programming lan-
guages can be found at <http://
aosd.net/tools.html>.

Scripting Languages
Scripting programming languages, also
called glue languages or integration lan-
guages, are not designed for developing
large-scale applications from scratch (or
with the help of a large class library). They
leave that task to mainstream, or system
programming languages. Instead, scripting
languages construct applications by gluing
together pre-written components. Scrip-
ting languages may seem in some ways to
be an evolutionary throwback, but in reali-
ty they are just programming languages
that are being optimized (evolved) along
different lines.

Scripting languages originated as com-
mand languages for computer operator
tasks. Job Control Language in the ’60s
and Rexx in the ’70s were early IBM main-
frame scripting languages. The original
Unix scripting language developed in the
’70s was sh, and has since been followed
by csh, bash, ksh, and others. The Unix
shell script languages made it easy to create
new applications by composing existing
applications that piped and filtered data
from one application to the next. The ease
with which new applications were created
was probably the most important reason
for Unix’s popularity among application
developers [13].

In the late ’80s, scripting languages
took a major evolutionary leap with the
development of Perl and Tcl. Perl grouped
together some of the Unix text processing
applications (sh, sed, and awk) and added
more sophisticated input and output state-
ments and control statements. Perl has
become the primary means of creating on-
the-fly common gateway interface scripts
for dynamic Web pages [14]. Tcl started
out as an embedded command language
for end-user tailoring of the application.

The city’s central
computer told you?

R2D2, you know better
than to trust a strange

computer [12].
— C3P0

Programming Languages

8 CROSSTALK The Journal of Defense Software Engineering February 2003

Tcl/Tk extended Tcl so that it can easily
create GUI’s in Windows, Mac OS, and
the Unix X windowing system.

In the almost 15 years since, many
other scripting languages followed (Visual
Basic, Python, JavaScript, Icon, Ruby, etc.)
for many purposes (rapid integration of
Web, database, and GUI components; sys-
tem management; automated testing; Web
scripting; etc.). The creators of these
scripting languages designed them to be
flexible and very powerful. Most scripting
languages are interpreted instead of com-
piled, dynamically typed, perform auto-
matic conversions between types when
needed, have loose and forgiving syntax,
have powerful text manipulation and
input/output capabilities, and can often
create and execute additional code on the
fly. These language features make script-
ing languages extremely useful for rapidly
interfacing with legacy applications,
acquiring and manipulating data from
those applications, and either displaying
the data to the user or sending it on to
some other application.

System programming languages (C,
Ada, Java, C++, etc.) are designed to
develop applications from scratch with
the help of a few class libraries. Scripting
languages assume the existence of the
necessary components and quickly and
easily join those components together to
form a larger application. System pro-
gramming languages have high overhead
in terms of their structure (try writing a
Hello World! program in Java). Scripting
languages can do quite a lot with just a
few lines. A single line of scripting code
may execute hundreds of machine code
instructions where a system language may
only execute tens of machine code
instructions [15].

Scripting languages will never replace
system languages, as scripting languages
are not very good at programming com-
plex algorithms and complex data struc-
tures, or for manipulating large data sets.
However, scripting languages have their
own strengths, including easily connecting
pre-existing components, robustly manip-
ulating a variety of data types from a vari-
ety of sources, rapidly developing GUIs,
straightforward text manipulation, and
creating and executing code on the fly.
Scripting languages are the duct tape of
the programming world.

Scripting languages are still very young
compared to system languages. In all like-
lihood, many more evolutionary improve-
ments will be made to them to make their
strengths even greater. We predict that the
easy work of complex algorithms, elabo-
rate data structures, and brute force pro-

cessing of large data sets will continue to
be accomplished by system programming
languages. More and more reusable com-
ponents and services will be constructed
using systems programming languages.
However, the more difficult part of pro-
gramming, that of developing a robust,
easy-to-use application that is easily
extended and modified as requirements
change and the operational environment
varies, will become more and more the job
of scripting languages. Both types of lan-
guages will continue to evolve, but toward
their strengths.

Conclusion
The evolutionary path of programming
languages has not been without its share
of dodos and passenger pigeons: the
Algol by-name parameter passing mecha-
nism and the dynamic scoping semantics
of Lisp to mention two. Many languages
are introduced with great fanfare and then
die unnoticed (PL/1, Modula-2). Some

language features (such as unrestricted
pointer use and GOTOS) are historical
relics: They are generally regarded as bad
and unsafe, but they continue to be
included in languages (C++).

As the developers’ needs have evolved,
so have the abilities of programming lan-
guages evolved. If a programming lan-
guage is not expressive enough, then it
must evolve to allow its users the ability to
articulate their abstractions or it will
become extinct.

At one time, many believed that a sin-
gle multi-purpose programming language
would allow developers to standardize.
However, the wide variety of problems
that need solving and the diverse philoso-
phies of developers have appropriately
led to different languages for different
purposes. Certain domains will continue
to have special-purpose languages that
focus on the features that are unique to
the applications of that domain; those
languages will continue to evolve and be
optimized for those domains (e.g.,

ProModel – a simulation language, and
MATLAB – an engineering language are
examples of this).

General-purpose languages will also
continue to evolve by incorporating new
features and programming paradigms.
These general-purpose languages must
also shed features that become outmoded,
and be redesigned to become leaner and
meaner in order to try to eliminate bloat
and regain simplicity. Programmers do
not need to use complex languages, there
is enough complexity in the world for
them already.

During all this evolution though, the
basic role of a programming language will
not change – allowing the developer to
easily express abstract ideas in a language
that a machine can execute. Future
advances in programming languages will
only be made possible by the evolutionary
advances (and cullings) being made today.
In the near future, the general evolution-
ary trends of increasing machine inde-
pendence, increasing programming lan-
guage interoperability, and increasing
modularity will continue.◆

“Are you quite sure that all those
bells and whistles, all those won-
derful facilities of your so called
powerful programming languages,
belong to the solution set rather
than the problem set” [17]?

— Edsger Dijkstra

“The limits of your language are
the limits of your world” [18].

— L. Wittgenstein

References
1. Hook, Audrey A., et al. “A Survey of

Computer Programming Languages
Currently Used in the Department of
Defense: An Executive Summary.”
CrossTalk 8.10 (Oct. 1995)
<www.stsc.hi l l .af.mil/crosstalk/
1995/10/ index.html>.

2. Flon, Lawrence. “On Research in
Structured Programming.” SIGPLAN
Notices 10:10 (Oct. 1975).

3. Dijkstra, Edsger W. “Go To Statement
Considered Harmful.” Communica-
tions of the ACM 11.3 (Mar. 1968):
147-148.

4. Webopedia. Online dictionary and
search engine for computer and
Internet technology <www.webope-
dia. com>.

5. Dijkstra, Edsger W. Selected Writings
on Computing: A Personal
Perspective. Springer-Verlag, 1982.

6. Tolksdorf, Robert. Programming
Languages for the Java Virtual

There will always be
things we wish to say in
our programs that in all
known languages can

only be said poorly [16].
— Alan J. Perlis

Evolutionary Trends of Programming Languages

February 2003 www.stsc.hill.af.mil 9

Machine. <http://grunge.cs.tu-berlin.
de/~tolk/vmlanguages. html>.

7. Meyer, Bertrand. “Polyglot Program-
ming.” Software Development May
2002.

8. Ada 95: The Language Reference
Method and Standards Libraries.
Appendix B. ANSI/ISO/IEC-
8652:1995 <www.adahome.com/rm
95>.

9. Russell, Bertrand. <www.angelfire.
com/realm/firelight63/Words_Russel
l_Bertrand.htm>.

10. Cook, Dr. David A. “Evolution of
Programming Languages and Why a
Language Is Not Enough to Solve
Our Problems.” CrossTalk 12.12
(Dec. 1999).

11. Kiczales, Gregor, et al. Aspect-
Oriented Programming. Proc. of In
ECOOP ’97 Object-Oriented Pro-
gramming, 11th European Confer-
ence. LNCS 1241: 220-242.

12. C3PO. “Star Wars – Episode V: The
Empire Strikes Back.”

13. Tcl Developer Xchange. History of
Scripting <www.tcl.tk/doc/script/
scriptHistory.html>.

14. Laird, Cameron, and Kathryn Soraiz.
“Choosing a Scripting Language.”
SunWorld. Oct. 1997 <http://sun
site.uakom.sk/sunworldonline/swol
-10-1997/swol-10-scripting.html>.

15. Ousterhout, John K. “Scripting:
Higher Level Programming for the
21st Century.” IEEE Computer Mar.
1998 <http://home.pacbell.net/
ouster/scripting.html>.

16. Perlis, Alan J. “Epigrams in Program-
ming.” ACM’s SIGPLAN Sept. 1982.

17. Dijkstra, Edsger W. A Discipline of
Programming. Englewood Cliffs, NJ:
Prentice Hall, 1976.

18. Ludwig, Wittgenstein. Tractatus
Logico-Philosophicus 5.6. Trans. by D.
F. Pears, B. F. McGuinness, London:
Routledge and Kegan Paul, 1961.

19. Clark, Lawrence R. “A Linguistic
Contribution to GOTO-less Pro-
gramming.” Datamation 1973.
Reprinted in Communications of the
ACM 27.4 (Apr. 1984): 349-350.

Note
1. A join point is similar in some

respects to the infamous and semi-
mythical COME FROM statement
[19], which was one of the salvos
fired in the famous GOTO-considered-
harmful debates mentioned earlier in
the article. For a formal and correct
definition of join points and point-
cuts, see <http://aspectj.org/
servlets/AJSite>.

About the Authors

David A. Cook, Ph.D.,
is the principal engineer-
ing consultant for Shim
Enterprises, Inc. Dr.
Cook has more than 27
years of experience in

software development and software
management. He was formerly an asso-
ciate professor of computer science at
the U.S. Air Force Academy (where he
was also the department research direc-
tor) and also the deputy department
head of the Software Professional
Development Program at the Air Force
Institute of Technology. He has a doc-
torate degree in computer science from
Texas A&M University, and he is an
authorized Personal Software Process
instructor.

Software Technology Support Center
7278 4th Street Bldg. 100
Hill AFB, UT 84056
Phone: (801) 775-3055
DSN: 775-3055
Fax: (801) 777-8069
E-mail: david.cook@hill.af.mil

Lt. Col. Thomas M.
Schorsch, Ph.D., is
deputy department head,
Computer Science de-
partment at the U.S. Air
Force Academy. He has

served in the Air Force for 17 years in a
variety of software-related capacities
from application programming to man-
aging the development and installation
of a new Cheyenne Mountain Com-
mand and Control System. Schorsch has
a bachelor’s of science degree from the
U.S. Air Force Academy, a master’s of
science degree from the University of
Colorado, and a doctorate degree from
the Air Force Institute of Technology, all
in computer science. His most well-
known CrossTalk publication is
“The Capability Im-Maturity Model”
<www.stsc.hill.af.mil/crosstalk/frames.
asp?uri=1996/11/xt96d11h.asp>.

U.S. Air Force Academy
Colorado Springs, CO 80840
DSN: 333-8793
E-mail: tom.schorsch@usafa.af.mil

If your experience or research has produced information that could be
useful to others, CrossTalk can get the word out. We are especially
l ki f i l Network-Centric Architecture for our August 2003

al schedule for this and the subsequent issue:

Call for Articles

work-Centric Architecture
August 2003

ission Deadline: March 17, 2003

Defect Management
September 2003

mission Deadline: April 21, 2003

Please ossTalk, available on the Internet at:
il/crosstalk

We accept article submissions on all software-related topics at any time,
along with Open Forum articles, Letters to the Editor, and BackTalk submissions.

10 CROSSTALK The Journal of Defense Software Engineering February 2003

Back when the 6502 microprocessor
was competing with the 8080 micro-

processor, my college professor posed a
question to our class. Why did IBM
choose to use the Intel 8080 for its per-
sonal computer when he considered the
6502 to be a superior microprocessor?

His answer was that the IBM engi-
neers used the 8080 because they were
familiar with it. They knew how to pro-
gram it, and they had to get a product out
the door fast. So they used the product
they knew best.

Similarly, during the time the govern-
ment was under an Ada mandate, which
meant all new software development
would be Ada, I knew of a company that
presented a proposal to develop a flight
line electronic warfare tester using
Fortran. Why? Their microwave engineers
knew Fortran best.

Obviously, one common method of
choosing a programming language for a
new project is to let the engineers decide,
and go with the language they already
know. However, there can be problems
with this approach. System design should
have a team approach that considers all
life-cycle phases. This includes asking,
“Will the design engineers be around for
the maintenance phase?” “Will the choice
be made on what is best for the project,
or on what is best for the engineers?”

The project manager must ensure that
the language selection technique being
used is not pure careerism, which is mak-
ing decisions based on what is best for
someone’s career instead of on what is
best for the organization. For example,
during the era of the Ada mandate, pro-
fessional magazines were listing plenty of
job offerings for C++ programmers, but
none for Ada programmers. Although
Ada is a superior language with better
array handling facilities, stronger typing,
more readability, etc., marketable pro-
grammers were perceived to be the ones
with C++ experience. More recently, the
trend among programmers has been to
push Java as the language to handle all
projects. Have you checked the job list-
ings lately?

It would be easy to simply let market
demands decide which language to use.
Some people feel that they cannot go
wrong with the most well-known lan-
guage. Their rationale is that if it were not
the best, it would not be the most well
known. Currently, that means using
Visual C++ or C# hosted on a Microsoft
Windows operating system. For many
projects, this will do the job. However, a
popularity contest is not the best way to
make what is essentially a technical deci-
sion. A software product that works very
well in one project may not be suited for
another under different circumstances.

Quickly changing markets could leave a
project stranded with an obsolete soft-
ware base.

Another method of choosing a pro-
gramming language could be called the
Dilbert method. Under this scenario,
executives lament that they are not able to
find Ada programmers because the local
schools are not teaching Ada. Meanwhile,
their respective companies are advertising
to hire C++ programmers, but not Ada
programmers. The executives whine that
they do not have any control over their
advertising departments. So we are led to
believe that the advertising or human rela-
tions departments make the program-
ming language decisions. The Dilbert

rationale is that since the languages major
companies advertise for in trade journals
determines what students want to learn,
this then determines what colleges teach.
Since major companies rely on colleges to
put out the latest, or at least the best, tech-
nology, they advertise for what is most
popular with the colleges.

This author believes our society is cur-
rently trapped in an unhealthy cycle that is
propagating an inferior language. A way
to improve the process of deciding which
language would be best for a particular
development project should be developed
and documented.

Language Selection Process
The first step in a language selection
process is to decide what computer hard-
ware and operating system will be used.
Defining the hardware and operating sys-
tem greatly narrows the choice of avail-
able languages. If an Atari 800 were going
to be used for the brains of a robot pet,
then a compiler or assembler for that
machine would be useful. If plans call for
using RSX-11 on a program decision
package, then that environment will bind
the choice of languages.

To help in choosing an operating sys-
tem, ask the following three questions:
“Will direct access to the input/output
(I/O) ports be necessary?” “Will multi-
tasking be needed?” “What support will
be available?” If direct control of I/O
ports is needed, then an operating system
like DOS or Linux or a real-time operat-
ing system that provides this service will
be required. However, Windows will not
allow it. If multitasking is required, then
DOS drops out of consideration. If
direct access to I/O ports is not required,
then Windows can be considered. The
chosen operating system will constrict the
language choice.

Lastly, the availability of support
maintenance for an operating system also
factors into the final choice. Operating
systems themselves are large computer
programs that have bugs and will require
support. Unfortunately, operating systems
are numerous but few have good support.

Language Considerations
Dennis Ludwig

Aeronautical Systems Center

A major question asked when beginning a project is, “What programming language should I use?” This article will provide
some ideas to help make this choice. First, it will present some real-world examples of how this decision has been made in the
past, and then some decision-making parameters will be explored. It is intended that these ideas could be formalized into a
decision table that could be the basis of a decision-making process.

“The project manager
must ensure that the
language selection

technique being used is
not pure careerism,

which is making
decisions based on

what is best for
someone's career ...”

Language Considerations

February 2003 www.stsc.hill.af.mil 11

(For more information on operating sys-
tem considerations, see [1].)

The next step in the language selec-
tion process is to define or decide on a
design method. Some considerations are
to create a flow chart, top-down design,
or object-oriented design. If an object-
oriented design is required or desired,
then strictly procedural languages like
Fortran drop out of consideration. Some
languages that claim to be object oriented
are Ada 95, C++, Common Lisp, and
Smalltalk. Ada 95 and C++ can also be
used as procedural languages using flow
charts or other design tools.

The following list itemizes some
things to consider in choosing a language.
Using this list, managers could build a
decision matrix, assign weights, and arrive
at a decision that would be documented.
1. Speed. It is hard to beat assembly lan-

guage for speed, but some compiled
languages with optimized compilers
can match it. Avoid interpreted and
scripting languages if possible because
they are slower.

2. Operating System. Defining the
hardware and operating system greatly
narrows the choice of available lan-
guages.

3. Program Size. There is a difference
between programming large systems
and writing a small program to calcu-
late a mortgage amortization. For
large system programs, a large system
programming language with clean
interfacing is required. Ada would be a
good choice here.

4. Reuse and Cost. If it has already
been coded, why reinvent it? If the
need is for a small neural network, buy
a book with the code included. Then it
can be rewritten to make it faster or
more robust if needed.

5. Engineers’ Knowledge. It takes two
years to learn a language like Ada or
C++. There are two-week courses and
21-day instruction books for most lan-
guages, but it takes two years of really
working with the language to become
good. Look at what languages are
already being maintained in the organ-
ization. Some synergy could be gained
from staying with what is already
being used, considering any trade-offs
with obsolescent factors. Or ask, “Is it
time to upgrade the workers’ knowl-
edge?”

6. Required Pointers. Some languages
like early versions of Fortran, Java,
and Basic do not have pointers.
Others do, including C, C++, Delphi,
Ada, and the latest version of Fortran.

7. Other Data Structure Consider-

ations. Will enumerated types or
records (such as struct in C) be
required? Will array slicing be required
or helpful? Is string manipulation built
into the language, provided as a
library, or will it have to be coded sep-
arately?

8. Garbage Collection. The reclama-
tion of heap-allocated storage after its
usefulness in a program is called
garbage collection. Automatic garbage
collectors can be useful for some
applications, but can be damaging in
other situations because it relinquishes
control of the program. For some lan-
guages that do not have automatic
garbage collection, like C++ and Ada,
a routine could be written, if required.
If you do not need it, it does not mat-
ter. If garbage collection interferes
with what you need to do, then choose
a language that does not have it. Not
having automatic garbage collection
gives the programmer more control.

9. Reliability. This can be one category
or several such as information-hiding
capabilities, readability, or strong vs.

weak typing rules. Typing strength is a
matter of opinion. Every book the
author has on C++ claims that it is a
strongly typed language, but any lan-
guage that intrinsically converts floats
to integers has no business calling
itself strongly typed. This is another
issue to be addressed in the organiza-
tional software-engineering hand-
book.

10. Standardization. Will one company’s
compiler produce the same results as
the compiler from another company?
Will a later version of the same com-
piler work with earlier code? The last
question has been a problem with
C++ because the language has
changed rapidly over the years. Will
the language be around in 10 years or

more? Ada’s well-documented stan-
dard and the Association for
Computing Machinery (ACM) special
interest group assures its success. On
the other hand, the former lack of
standardization for C++ impeded
portability and programmer efficiency,
and even though it now has a stan-
dard, it is not being followed.
Furthermore, Microsoft C++ is not
the same as Borland C++. And while
Pascal and C are also standardized,
Java is not.

11. Compiler Tools Like Debuggers. If
a graphical user interface (GUI) is
mandated or desired, that is also con-
sidered because the compiler would
have to interface with the GUI tool. It
would take considerable research to
get honest ratings in this category. The
operating system would be a major
player in this consideration. If
Microsoft Windows were the plat-
form, Visual Basic, Visual C++, and
Ada would be major contenders. But
if Unix or Linux platforms would be
users as well, then the visual languages
would not be considered.

12. Parallel Processing. If parallel pro-
cessing is required, some languages
shine brighter than others do. The
operating system would also be a con-
sideration here. For most applications,
the decision matrix would have not
applicable here. Ada tasking features
make it a good choice for parallel pro-
cessing needs, but other languages,
such as Pascal or C++, could be
pressed to perform in this arena.

13. User Base. Be careful here. C++ is
touted as the most popular program-
ming language today, and it claims a
large user base. Because Borland C++
differs from Microsoft C++, and
almost every compiler sold has its own
brand of C++ (due to lack of stan-
dardization), the claim to a large user
base can be misleading. The backward
compatibility to C has been used as an
excuse to expand the user base, but
only very trivial programs are actually
backward compatible. The ACM has a
user group for Ada, and that assures a
viable user base for this language.
Because Ada is well standardized, the
users are truly more portable.

14. Specialized Areas. ATLAS is a stan-
dard language for automatic test
equipment. Although most modern
test stations use some form of BASIC
or C, keep in mind that there are lan-
guages developed for special purpos-
es. Forth was developed to control tel-
escopes, but has been expanded into a

“The language decision
is a fundamental design
decision that will affect

production, testing,
training, and

maintenance, so the
entire system life cycle
should be considered.”

Programming Languages

12 CROSSTALK The Journal of Defense Software Engineering February 2003

powerful, flexible language. Lisp and
Prolog are languages associated with
artificial intelligence. However, gener-
al-purpose languages are often used in
specialized areas. For example, array
slice capabilities of Ada make it a
powerful language for database opera-
tions.
With these considerations and others

that may be program-dependent, a payoff
table or decision matrix could be built to
make a decision based on program
requirements. A good process would
eliminate programmer bias and focus on
the project. It would also provide docu-
mentation that could be used to build
experience for decisions in future proj-
ects. For more information on developing
decision matrixes and using weights in
decision making, see [2, 3]. Note that in
management jargon, a decision matrix is
also known as a payoff table.

Other Considerations
To further enhance the process, the deci-
sion maker should be familiar with some
basic software engineering concepts. For
example, suppose a group inaccurately
argues that they want to use C++ instead
of Ada because they do not think infor-
mation hiding is a good idea. Information
hiding is not an Ada concept, but a soft-
ware engineering concept that is also used
by C++ in the form of file scope and
class scope. The concept is associated
with Ada because this language has con-
structs (packages) that make implement-
ing it easier. A small pamphlet explaining
this and other software-engineering con-
cepts would be useful for managers to dis-
pel misconceptions.

Unfortunately, software engineering is
not an exact science, but a field full of
opinions, contradictions, and poorly
defined words and concepts. For example,
the concept of object oriented has changed
over the years. A software-engineering
handbook would help to standardize
some of the concepts, even if the defini-
tions are just accepted in your organiza-
tion. It would have to be a handbook and
not an encyclopedia, or busy program
managers will never read it.

Another problem in language consid-
eration is knowing them all well enough
to make decisions. It is difficult to judge if
a language will meet your requirements
without knowing it. Yet no one has time
to learn the syntactic structure of all of
the available languages. For example, an
excuse to use C on a project instead of
Ada could be that “the array sizes had to
be dynamically allocated, and Ada could
not do that.” Of course, Ada could do

that, but the person did not know that.
Thus the decision would be made on
incomplete or inaccurate information.

As another example, consider that
Java does not have pointers. However,
someone who knew the language could
build a linked list using the Vector class in
java.util. Keep in mind that insertions and
deletions are less efficient (see
<www.cafeaulait.org/javafaq.html> ques-
tion 4.1). Language summaries similar to
one found at <www.cs.rochester.edu/
u/scott/pragmatics/a.html> could be
expanded and made part of the process
documentation [4].

In the future, the line between operat-
ing system and language may get blurred.
For example, Niklaus Wirth, the creator
of Pascal, along with Jurg Gutknecht have
created Oberon, which is an integrated
software environment that can run on
bare hardware or on top of a host operat-
ing system. Oberon is also the name of a
programming language. It is the author’s
understanding that the operating system
and the language were developed to oper-
ate closely together (see <www.oberon.
ethz.ch>).

Language vs. Process
Some people feel that the process and
tools are more important than the lan-
guage. A common belief is that if the
design is good, the language selection will
not matter. This author believes that the
process, tools, and design are dependent
on the language. The language decision is
a fundamental design decision that will
affect production, testing, training, and
maintenance, so the entire system life
cycle should be considered.

If the popular language today is not
around during the maintenance phase of
the system, life-cycle costs will greatly
increase. Languages that are not standard-
ized may be around, but they might be
drastically different from the original, or
even from another language going by the
same name (as is the case with C++).
Front-end costs to move to a different
language would include training and pur-
chasing tools. Back-end costs to maintain
an obsolete system would be constant
training and trying to purchase or main-
tain obsolete tools. Jovial programmers,
for instance, are hard to find. COBOL is
another example, as those who fought the
Year 2000 battle found out.

Conclusion
Operating systems are complex programs.
Compilers are complex programs.
Choosing which combination of these
complex programs best suits a need is not

an easy process, and most often, this
process is not documented. This article
provides an idea for making and docu-
menting the language decision process
using a decision matrix. The table ele-
ments presented are not intended to be
inclusive, or to even all be necessary. The
idea is to use a decision process that is
documented and able to be improved.◆

References
1. Silberschatz, Galvin. Operating Sys-

tem Concepts. 6th ed. Indianapolis,
IN: John Wiley & Sons, June 2001.

2. Babcock, Daniel L. Managing Engi-
neering and Technology. Prentice-
Hall, Inc, 1991.

3. Griffin, Ricky W. Management.
Houghton Mifflin Company, 1984.

4. Scott, Michael L. Programming
Language Pragmatics. San Francisco:
Morgan Kaufmann Publishers, 15 Jan.
2000.

Additional Reading
1. Ghezzi, Carlo, and Mehdi Jazayeri.

Programming Language Concepts.
John Wiley and Sons, 1987.

2. Friedman, Daniel P., Mitchell Wand,
and Christopher T. Haynes. Essen-
tials of Programming Languages. The
MIT Press, 2001.

3. Jones, Richard, and Rafael D. Lins.
Garbage Collection, Algorithms for
Automatic Dynamic Memory Man-
agement. John Wiley & Sons, 1996.

About the Author

Dennis Ludwig is a
computer engineer at
the Simulation and
Analysis Facility, Aero-
nautical Systems Cen-
ter at Wright-Patterson

Air Force Base, Ohio. He has worked
with software for more than 20 years.
He has a bachelor’s of science degree
in electrical engineering from
Louisiana Tech University, a master’s
of science degree in administration
from Georgia College, and a master’s
degree in engineering from Mercer
University.

ASC/HPMI
2210 5th Street Bldg. 146
Room 122B
Wright-Patterson AFB, OH 45433
Phone: (937) 255-7887
DSN: (785) 255-7887
E-mail: dennis.ludwig@wpafb.af.mil

February 2003 www.stsc.hill.af.mil 13

Former Assistant Secretary of Defense
for Command, Control, Communica-

tions, and Intelligence Emmett Paige
issued a memo in 1996 abrogating the
Department of Defense’s (DoD) single-
language policy. His memo included a
clause designating programming language
selection as a part of the Software
Engineering Process Review (SEPR).
Many who read the memo mistakenly
assumed his intent was a license to aban-
don Ada rather than advice to determine
language selection as part of a rational
evaluation step.

As a consequence of misinterpreting
Paige’s memo, the DoD is retrogressing
toward the situation prior to 1983; a peri-
od sometimes described in Tower-of-Babel
terms. Projects are adopting a language du
jour policy that is destined to restore the
havoc experienced prior to the single-lan-
guage policy. For example, one DoD soft-
ware group has replaced all of its Ada
code with Perl. While Perl is a perfectly
good scripting language, the decision to
use it instead of Ada for this application
represents a substantial failure of manage-
ment to understand its long-range respon-
sibilities. Program managers are once
again required to cope with a multiple-lan-
guage policy rather than a single-language
policy.

When the Ada mandate was relaxed,
some in the software community asked,
“If the DoD cannot manage a single-lan-
guage policy, how can it be expected to
manage a multiple-language policy?”
Although it was not explicitly stated in his
memo, Paige did not want a return to the
days of more than 400 DoD program-
ming languages. He included the SEPR
clause intending to provide guidance for
this new multi-language policy.

Most DoD program managers are
unprepared to make decisions regarding
language choice. They are at the mercy of
each contractor. In the future, we will see
DoD software written in Java, C++, C#,
Ada, Eiffel, Ruby, Perl, Python, Smalltalk,

Fortran, COBOL, Euclid, Lisp, Prolog,
Haskell, or even some proprietary lan-
guages invented by contractors.

Compilers for these languages, with
the exception of Java and Ada, implement
dialects that fail to correspond to a pub-
lished standard. Gone are the days when a
program manager would be able to insist
on a validated compiler for the chosen
programming language. No one even pre-
tends that C++ compilers can be validat-

ed. In my conversations with program
managers, I find that many have simply
abandoned the language decision to the
contractor. While this is expedient in the
short term, it is likely to create major
problems in the future. The Tower of
Babel is slowly being rebuilt.

More Mature Selection
At first, many in the software community
were surprised that someone with Paige’s
appreciation of Ada would issue a memo
abrogating its mandate. In meetings with
Ada advocates subsequent to the SEPR
memorandum, Paige emphasized several
key points. He noted that, with more than
50 million lines of Ada code deployed in
operational weapons systems, Ada had
proven it could do the job it was intended
to do. He also noted that, instead of uni-
fying the software community within the
DoD, Ada had become a rallying point for
bickering among contractors and military
officials. Its image was being tarnished

through flurries of e-mail and other cor-
respondence, often by some of the very
people who were its advocates. Paige
came to believe that Ada was good
enough to stand on its own against alter-
native choices.

His decision coincided with the
advent of the Ada 95 standard. In 1995,
Ada changed from a military standard
(MIL-STD 1815A) to an ISO/ANSI stan-
dard (ISO8652-1995), which made Ada
95 a powerful language for real-time,
embedded object-oriented systems.
Those who discovered that fact are enjoy-
ing the benefits of Ada while those who
have chosen error-prone languages such
as C++ have a long struggle ahead of
them. The DoD will not be the benefici-
ary of that struggle.

Paige envisioned the SEPR as an
essential part of any DoD software engi-
neering effort. We know that successful
software engineering projects start at a
high level of abstraction. Before adopting
tools, languages, and methods, we need to
answer a question at the highest level of
abstraction: “What problem are we trying
to solve?”

As a project moves forward, even
under agile processes, there is a succession
of reviews to decide on methods, tools,
and languages. We use the plural of lan-
guage because more and more contempo-
rary projects are implemented in multi-
language environments. We would not
choose C++ where HTML is appropriate
nor would we choose Ada where we could
more effectively use MATLAB. Java
would be inappropriate for high reliability
mathematical applications but might be
perfect for displaying some of the results
of those computations. XML is of grow-
ing importance, and XML works well with
both Java and Ada.

In other words, we select the appro-
priate language for the problem to be
solved. This is analogous to selecting the
right tool for the job at hand. A pipe
wrench does a different job than a box

SEPR and Programming Language Selection
Richard Riehle

Naval Postgraduate School

When former Assistant Secretary of Defense for Command, Control, Communications, and Intelligence Emmett Paige
issued a memo in 1996 abrogating the Department of Defense’s single-language policy, he included a clause designating pro-
gramming language selection as a part of the Software Engineering Process Review (SEPR). The intent of his memo and
its realization have not yet converged. Many readers of the memo mistakenly assumed his intent was a license to abandon
Ada rather than advice to determine language selection as part of a rational evaluation step in the SEPR. This article
addresses that confusion. Many of the references to Paige in this article originate in private conversations and correspondence
between Paige and the author.

“Program managers are
once again required to

cope with a
multiple-language policy

rather than a
single-language policy.”

Programming Languages

14 CROSSTALK The Journal of Defense Software Engineering February 2003

wrench. When there is a chance we might
break off the head of a bolt with a long-
handled wrench, we use a torque wrench.
Of course, we must know something
about torque wrenches before we use
them.

Paige’s SEPR memo suggests that pro-
gramming language selection should be a
carefully considered process with the
decision made on the basis of criteria
derived from the project requirements.
Although it was noted earlier that Paige
was responding to a controversy, it was
that controversy that led to his realization
that the DoD needed a more mature
approach to programming language selec-
tion. This, in turn, led him to the decision
to include programming language choice
in the SEPR.

One important benefit of abrogating
the mandate has been the democratization
of Ada. When the mandate was in place,
Ada compiler publishers had the DoD as
a captive customer. They could charge
whatever they wanted for their technolo-
gy. Prior to the Ada 95 standard, Ada
compilers and tools were priced so com-
mercial software developers could not
afford them. When that captive DoD
audience diminished, many Ada compiler
publishers vanished or merged. In the
absence of the mandate, compilers and
tools, downloadable by anyone with
access to the Internet, are now free.

Programmers worldwide are now
experimenting with Ada. More non-DoD
developers are quietly using it.
Contemporary Ada has been adopted by
the United States’ friends and enemies.
For example, Iranian and Chinese military
software engineers are now using Ada. It
is not as popular as C++ or Java, but it is
equal to those languages in every way and
better in some respects. At this stage, the
cost of Ada technology should not be any
greater than for C++ technology. Ada
compilers are no more difficult to create
than C++ compilers. They can be hosted
on any computer in existence or being
planned.

Programming languages are designed
according to different goals. The SEPR
must consider its language choice with an
understanding of those goals, along with
other factors. Those other factors include
mission requirements such as targeted
platform, expected level of dependability,
maintenance ease, compiler availability,
development tools, and environments as
well as others. The factors should be
determined by defining the criteria appro-
priate to the software product require-
ments.

Too often, language is chosen by the

programmers, the contractor, or through
some ad hoc decision-making process that
has little to do with the underlying
requirements. It is not unusual to see pro-
grammers make the language decision in
pursuit of career goals. Do not let the
programmers decide what language will
be used for a sensitive DoD project. Long
after the original programmers are gone,
the software will require continued main-
tenance. Language choice must be a man-
agement decision based on what is best
for the long-term health of the final soft-
ware product.

It is rarely difficult for programmers
to learn the language needed for the proj-
ect. Ada, well taught, is as easy to learn as
any other contemporary language. Our
tools, including our programming lan-
guages, must help us meet the mission
requirements with minimal error and
maximum reliability.

Reliability is an essential criteria for
DoD weapons systems. A pilot attempt-
ing a carrier landing will be greatly
annoyed if greeted by a heads-up display
that announces, “Sorry. System error
occurred. Please reboot.” That is the kind
of thing that can happen if we make the
wrong choices.

So how should the programming lan-
guages be selected during the SEPR? I
believe the answer lies in ideas: context
and criteria. Can criteria be defined in the
context of the future product? Lloyd
Mosemann, senior vice president of
Corporate Development for Science
Applications International Corporation
and former deputy assistant secretary of
the Air Force for Communications,
Computers, and Logistics, often cites pre-
dictability as an essential characteristic of
DoD software. Predictability is an essen-
tial property of any engineering effort.
Software engineering is not any different.

Can DoD program managers give
guidance and direction about program-
ming language choice? Should they simply
provide context and criteria and let the
software contractor choose the program-
ming language? I believe the program
manager, representing the DoD, should
have a role in the programming language
decision. The sad fact is that I see many
contractors making the programming lan-
guage choice on the basis of convenience,
résumé building, and other factors that
have little to do with product quality.
Some consultants make recommendations
based on poorly chosen criteria. Worst of
all, language choices are made on the basis
of what is currently popular rather than
on what is best for a particular project.

Language Options
Because so many languages are available,
this article focuses on object-oriented
programming (OOP) languages. There are
many OOP language choices available,
including Smalltalk, C++, C#, Java, Ada,
Eiffel, Modula-3, and Object COBOL.
This list could be longer, especially if it
included some of the excellent new lan-
guages, such as Ruby, or discussed the
value of functional languages such as
Objective CAML and Haskell.

Each language has benefits in given
application domains. Some are better for
one domain than another. Advocates will
make the case that a favorite from the list
is great for every kind of application, but
that claim must be supported by the crite-
ria declared for the targeted domain.

The language decision must recognize
the difference between two issues: express-
ibility and expressiveness. Nearly every pro-
gramming idea can be expressed in your
favorite language. Expressiveness is about
how well a language maps its solution
space to the problem space. The ability to
express an idea is called expressibility. The
ease of expressing that idea is called
expressiveness. For example, we might be
able to compute Bessel functions in Lisp,
but Fortran better expresses mathematical
functions than Lisp. Lisp is more expres-
sive of ideas related to artificial intelli-
gence.

A DoD contractor for whom I once
worked was assigned to create materials
management software for a specialized
Navy environment. At that time, the con-
tractor was a Fortran programming shop.
Some members of our team, comfortable
with Fortran, insisted we could do the
entire project in Fortran. From the per-
spective of expressibility, they were right.
Others on the team made the case for
COBOL. The COBOL advocates correct-

“Too often, language is
chosen by the

programmers, the
contractor, or through

some ad hoc
decision-making process
that has little to do with

the underlying
requirements.”

SEPR and Programming Language Selection

February 2003 www.stsc.hill.af.mil 15

ly pointed out that COBOL was designed
to express exactly this kind of application.
The Fortran advocates correctly pointed
out that they could do anything in Fortran
that the other group could do in COBOL.
The COBOL advocates won the day. The
deciding factor was one of expressiveness
over expressibility. Although Fortran could
express the required programming solu-
tions, management decided that COBOL
was more expressive of those solutions.

Expressiveness is one of the earliest
issues to consider before choosing other
criteria. However, one needs to exercise
some care about this. Some special pur-
pose languages are expressive for specific
applications, but targeted so narrowly they
fail to meet other requirements. Also,
many expressive languages are propri-
etary, useful only on one operating sys-
tem, or poorly supported. For example,
Visual BASIC is popular for program-
ming on Microsoft platforms but is non-
portable when considering other environ-
ments.

The program manager and the con-
tractor together formulate the relevant
criteria. Are the applications computa-
tional/numerical? Is nonportable soft-
ware OK? Must we be able to deploy on
multiple operating systems? Will this
application require a lot of string manipu-
lation? Is there an embedded real-time
requirement? Must we interface with
other languages? Is the application short-
lived or long-lived? What is the cost of a
software failure? Do we expect a lot of
enhancements during the life cycle of this
product? Is this a graphics product? What
are the human-machine interface require-
ments? What are the software architecture
considerations? Can we get efficient code
from the available compilers? Is there a
technology transition cost? The list of
possible questions continues.

As you develop criteria, try to include
a numerical weight and rating. This is a
good place to use a spreadsheet listing
languages and criteria with weights for the
various criteria (see Table 1). Have more
than one person assigning the scores on
separate versions of the spreadsheet. You
will be surprised by the disparity of view-
points. Gather those involved in the scor-
ing process and encourage a discussion
that excavates biases, predilections, and
perversions that may have influenced each
person’s scoring. The final score on the
spreadsheet should be one of your indica-
tors, but not the only indicator.

Language Criteria
Consider Table 1 in which sample criteria
are weighted in favor of a safety-critical

weapon systems. The entries will vary
according to each kind of system. To
avoid introducing too much bias into the
chart, and to acknowledge that projects
will evaluate criteria differently, I have
masked the names of the languages. Your
evaluation would insert the languages of
interest in the spreadsheet.

Let me emphasize that Table 1 will
look different after you have combined
the scores from more than one person.
Where the example shows a score for
OOP of five for Language D and four for
Language E, someone else might score
these differently. Also, someone might
take issue with a score of one for
Language E on Microsoft Windows. Even
if no one argues about zero for built-in
concurrency, they might argue that exter-
nal (operating system-based) concurrency
is a close enough equivalent.

Some Language Choices
Some of the OOP language choices were
named earlier. The following sections
contain a few pros and cons of some lan-
guages. I have chosen to mention
Smalltalk, C++, Ada, Java, Eiffel, and
Object COBOL. If there were enough
space, I would have included some other
favorites such as Modula-3, Haskell, and
Ruby. Also, logic languages such as Prolog
often have an important place in DoD
applications. While this is all a matter of

opinion, it is opinion derived from experi-
ence as well as study of the given exam-
ples.

Smalltalk
This is still the gold standard for OOP.
Whenever someone writes about OOP,
they compare their favorite language to
Smalltalk. It is fun to program in
Smalltalk. Although it has fallen out of
popularity during the past several years, it
comes with a powerful development envi-
ronment, a large selection of libraries, and
a small but powerful collection of fea-
tures for building interactive applications.
It is not a type-based language and does
less compile-time checking than other lan-
guages. It is excellent for applications
where dynamic binding is beneficial. It is
not appropriate for safety-critical or
embedded weapon systems applications.
Smalltalk is portable enough for most sit-
uations. I personally like Smalltalk, but
must realistically acknowledge its limita-
tions.

C++
This language gained a large following
during the 1990s. It is losing some ground
to Java. C++ has both severe critics and
committed advocates. It is a general pur-
pose OOP language that became an ISO
standard in the late 1990s. Few compilers
support the full ISO standard so develop-

Language

Criteria Weight A B C D E F

Object-Oriented Programming (OOP) 3 3 3 4 5 4 5

Built-in Concurrency 5 5 0 3 2 0 0

Safety-Critical Features 5 5 3 3 4 3 1

Ease of Learning 3 3 2 4 4 4 5

Java Virtual Machine 2 3 0 5 2 0 0

Portability 4 4 3 4 4 3 4

Relevant Component Libraries 4 4 4 4 4 4 2

Open Source Compilers 2 4 4 2 2 2 5

Pre-, Post-, and Invariant Assertions 3 3 1 4 5 2 2

Type Safety 4 5 3 4 4 4 2

Development Tools 3 3 4 5 5 3 2

Language Maturity 4 4 4 3 4 1 1

Market Penetration 3 2 5 5 1 0 1

Microsoft Windows 2 4 5 1 4 3 3

Linux 4 4 3 1 4 1 5

Other Unix 4 4 3 1 4 1 5

Generic Templates 4 5 5 0 4 0 0

ISO/ANSI Standard Compliance 5 5 4 0 0 0 0

Interoperability 4 5 4 3 3 2 1

Raw Totals: 75 60 56 65 37 44

Weighted Totals: 279 214 192 230 128 146

Table 1: Language Criteria Spreadsheet

Programming Languages

16 CROSSTALK The Journal of Defense Software Engineering February 2003

ers often design around a subset of the
C++ language to achieve portability. The
language has a type system built on prede-
fined primitive types and designer-defined
classes. A well designed class is supposed
to behave like a predefined type.

The C++ type system has weaknesses.
Among these are the notion of structural
equivalence, the potential for unruly
pointers, and the excessive reliance on
predefined types as primitives. Typecast-
ing in C++ is fraught with potential dan-
gers. C++ has borrowed a number of fea-
tures from Ada, including genericity,
exception handling, and dynamic memory
allocators.

It is a satisfactory language for non-
critical software such as windowing appli-
cations and graphics. It is a poor choice
for any kind of safety-critical application.
It is probably a terrible choice for weapon
systems, radar, space applications, or
flight-control software. Validation suites
for C++ do exist. Unlike Ada, C++ is
held to a lower standard and no program
manager or contractor ever suggests
requiring a validated compiler.

Ada
The ISO 1995 Ada standard is a great
improvement over the original 1983 stan-
dard. The primary goal of Ada is to max-
imize the amount of error detection a
compiler can perform as early in the
development process as possible. This has
led to the strongest type-safety model of
any contemporary language supplement-
ed with a set of rules for scope and visi-
bility that prevents name collisions, struc-
tural equivalence problems, dangling
pointers, pointers to nonexistent data,
along with many other problems. Ada
supports several levels of object technol-
ogy, including inheritance, polymorphism,
dynamic binding, and genericity.
However, OOP is optional and can be
avoided when inappropriate for a particu-
lar application. Ada supports built-in con-
currency and embedded real-time sys-
tems.

It is still the best choice for DoD soft-
ware such as safety-critical, real-time
weapon systems and flight-control soft-
ware. For interoperability, Ada 95 is prob-
ably the most hospitable language of all.
It directly interfaces with several legacy
languages as well as with C++ and XML.
Ada compilers used for DoD software are
held to a higher standard than any other
language. That is, the compilers for Ada
are always required to pass the validation
suite before they can be used in DoD
applications. Safety-critical applications
continue to be best served by Ada.

Java
Not since PL/I has a language been
introduced into the marketplace with so
much hyperbole. Java is a language that
promises to become better with time. At
the elementary level, it is comparatively
easy to learn. It is, in many respects, safer
than C++. Indirection in Java does not
use computational pointers, thereby
reducing some of the risks encountered
with C++. It also has automatic garbage
collection, which some see as a blessing
and others as a curse. Java consists of
three basic parts: the language, the
libraries, and the Java Virtual Machine
(JVM). The most important contribution
of Java is not the language. The language
actually contributes very little new and
actually represents a step backward in
some respects. Rather, the important
thing about Java is the libraries and the
JVM. In particular, the JVM permits a
high level of portability for compiled
applets.

Java includes a capability for concur-
rency but falls short of the concurrency
model of Ada. Java provides none of the

deterministic behavior expected for a
hard, real-time software environment.
Like Smalltalk, Java is fun for program-
ming, largely because it appeals to the
instant gratification that entices so many
of us. The language includes a disclaimer
that it is not intended for safety-critical
applications. Do not use it for weapon
systems or applications where high relia-
bility is required. Java is not yet a stan-
dard. It seems to be an evolving product
that will probably stabilize in the next
couple of years.

Eiffel
This is a relative newcomer, but older
than Java. It is everything one could get
from Java, except the bytecode. Grady
Booch, chief scientist at Rational
Software Corporation, in an off-the-cuff
remark at a software conference said of

Eiffel, “Eiffel is what C++ could have
been if C++ had not been dependent on
C.”

The language permits a stronger typ-
ing model than Smalltalk but still empha-
sizes a pure OOP approach. For applica-
tions programming it is a better choice
than C++ because it permits a more nat-
ural form of expressiveness than C++.
When considering type safety, Eiffel is
probably more reliable than C++. Eiffel
includes a powerful development envi-
ronment along with a full library of
generic reusable components. Eiffel does
not enjoy the large audience of users it
deserves. Most Eiffel compilers are C
Path, meaning they generate intermediate
C code. Eiffel also has a built-in capabili-
ty for programming with assertions.
Assertions are pre-, post-, and invariant
conditions that can be applied at many
levels within an Eiffel module. The
designer of the Eiffel language, Dr.
Bertrand Meyer, calls the use of this fea-
ture design-by-contract. None of the other
languages mentioned so far are as robust
in this regard. Even Ada, which supports
a kind of range constraint assertion, does
not yet support assertions such as those
found in Eiffel.

Eiffel is still not my first choice for
safety-critical weapons systems, but it is
probably a better choice than either C++
or Java. There is no ISO standard for
Eiffel, but there is an international body
called Network Information and Control
Exchange that oversees its progress. A
program manager once told me, “The
only two languages I would consider are
Ada and Eiffel.” If you have not yet
looked at Eiffel, you might consider
doing so.

Object COBOL
If you are currently programming in
COBOL, Object COBOL makes sense.
Many COBOL shops are making the mis-
take of converting to Java, or worse, C++.
The syntax of Object COBOL will be
familiar to your programmers. They can
learn OOP on the job using this familiar
syntax. Everything you liked about
COBOL is still there, but you can enjoy
inheritance, information hiding, encapsu-
lation, polymorphism, dynamic binding,
and everything else expected from an
OOP language. Contemporary COBOL is
a language with expressive power required
for business and business-like applica-
tions. It includes features that will make
your current COBOL programmers and
systems analysts more productive than
they would be after retraining in some
other language. Object COBOL can

“With the abrogation of
the DoD’s single

language policy, we need
to take care not to fall

into the trap of avoiding
Ada or becoming too

attached to it.”

SEPR and Programming Language Selection

February 2003 www.stsc.hill.af.mil 17

improve communications between clients
and systems analysts as well as between
systems analysts and programmers.
Object COBOL is not appropriate for
safety-critical weapons systems, but it is an
excellent step into the future if you are
already in a COBOL programming envi-
ronment.

Summary
The programming language selection
process for DoD software systems is too
often made on the basis of inadequate
criteria. With the abrogation of the
DoD’s single language policy, take care
not to fall into the trap of avoiding Ada
or becoming too attached to it. It is
important to recognize the strengths and
weaknesses of more popular languages

such as C++ and Java, and understand
when to choose them and when to reject
them.

Paige’s SEPR memorandum suggests
a direction without specifying too many
details. As we implement his suggestions,
we must do so on the basis of carefully
defined criteria and with sufficient knowl-
edge to understand the contribution of
each of the alternatives in terms of those
criteria. Also, selecting the language is not
sufficient. We must insist that the compil-
er for the language we choose conforms
to the highest possible set of standards
available. Unlike commercial software, the
safety of our uniformed personnel and
the success of our military missions
depend of the reliability of the choices
we make.◆

About the Author

Richard Riehle is a
visiting professor at
the Naval Postgraduate
School. He also owns
AdaWorks, a small com-
pany dedicated to Ada

consulting and training. His book
“Ada Distilled” may be downloaded
free from <www.adaic.org>.

Naval Postgraduate School
Computer Science Department
Spanagel Hall
Monterey, CA 93943
E-mail: richard@adaworks.com or

rdriehle@nps.navy.mil.

Data and Analysis Center for Software
http://dacs.dtic.mil
The Data and Analysis Center for Software (DACS), a
Department of Defense (DoD) Information Analysis Center, is
designated as the DoD software information clearinghouse,
serving as an authoritative source for state-of-the-art software
information and providing technical support to the software
community. From its home page, the user can access more than
30 specific technical topic areas related to software engineering
and software technology, including programming languages.
The DACS offers a wide-variety of technical services designed
to support the development, testing, validation, and transition-
ing of software engineering technology.

JOVIAL Lives
www.jovial.hill.af.mil
JOVIAL Lives is the official home page of the U.S. Air Force
JOVIAL program office, whose mission is to provide current
and future customers with superior service, support, and distri-
bution of the best JOVIAL compilers available and
JOVIAL/MIL-STD-1750A Integrated Tool Sets (ITS), which
are software support tools used for development and mainte-
nance of MIL-STD-1750A target applications. In compliance
with the Air Force's policy of software reuse, this office provides
a cost-effective way to maintain and modernize existing quality
software products.

Ada Power
www.adapower.com
Ada Power developer resources and tools Web site was formed
to contribute back to the Ada community and to help advocate
this powerful language. The site features examples of Ada source
code, including illustrating various features of the language and
programming techniques, various interfaces to popular operat-
ing systems, various algorithms, a collection of packages for re-
use in Ada programs, inplementation articles, numerous Ada
links, and more.

Computing Research Association
www.cra.org
The Computing Research Association (CRA) includes more
than 200 North American academic departments of computer
science, computer engineering, and related fields; laboratories
and centers in industry, government, and academia engaging in
basic computing research; and affiliated professional societies.
CRA's mission is to strengthen research and education in the
computing fields, expand opportunities for women and
minorities, and improve public and policy-maker understand-
ing of the importance of computing and computing research in
our society.

Ada Information Clearinghouse
www.adaic.org
The Ada Information Clearinghouse (AdaIC) was formed to
ensure continued success of Ada users and promote Ada use in
the software industry. The AdaIC has served a community of
software engineers, managers, and programmers for more than
15 years. The Web site provides articles on Ada applications,
databases of available compilers, current job offerings, and
more. The AdaIC is managed by the Ada Resource Association,
a group of software tool vendors that supports the use of Ada for
excellence in software engineering.

IEEE Computer Society
www.computer.org
With nearly 100,000 members, the International Electrical and
Electronics Engineers Computer Society (IEEE-CS) is the
world's leading organization of computer professionals.
Founded in 1946, it is the largest of the IEEE’s 36 societies. The
IEEE-CS’s vision is to be the leading provider of technical infor-
mation and services to the world's computing professionals.The
Society is dedicated to advancing the theory, practice, and appli-
cation of computer and information processing technology.

WEB SITES

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering February 2003

The last decade saw an increase in the
phenomenon of globalization and con-

currently the pervasiveness of computing in
our society. Products based on the informa-
tion and communication technologies
(ICTs) and software intensive systems are
now ubiquitous in industrialized societies,
whether for commercial, industrial, defense,
or domestic applications. The global infor-
mation technology (IT) procurement indus-
try, which includes telecommunication
equipment, computer systems hardware,
software licenses, semiconductors, and IT
services, should now be around $1.4 trillion,
according to Gartner Dataquest [1].

As a direct result of the use of comput-
erized devices, the world is now very
dependent on software systems. ICT-based
products are software-intensive systems and
the software in them is essential to their
functioning.

The ability to design and implement ICT
systems and products has greatly improved
in the last 10 years. A recognized core body
of knowledge in software engineering now
exists – a sign that software engineering is
maturing into a recognized profession.
Challenges still abound because of the pres-

sure to build even more complex applica-
tions and products in an ever-shorter time
frame (a Web year is three months) [2].

In response to these market needs, there
has been significant development in interna-
tional standards in software and systems
engineering in the last decade. This article
will give an overview of these developments
as well as the context in which they are hap-
pening.

The International
Standardization Context
Standards are essentially either a de jure (for-
mal) or a de facto (current state of things)
mandatory set of conventions and/or tech-
nical requirements or practices [3]. Standards
can be classified into the following cate-
gories:
• Organizational standards such as internal

company standards.
• Market standards (de facto) such as the

VHS format.
• Professional standards developed by

professional organizations such as the
Institute of Electrical and Electronics
Engineers (IEEE).

• Industry standards developed by indus-
trial consortia such as the World Wide
Web Consortium, and the Organization
for the Advancement of Structures
Information Standards.

• National standards developed or adopt-
ed by national standards organizations
such as the American National Standards
Institute.

• International standards developed or
adopted by formal international stan-
dards organizations such as ISO.
A given standard may be developed in

one environment (market, professional,
industry, or national) and migrate into a for-
mal international standard. Market, profes-
sional, and industry standards may also rep-
resent an international consensus or de facto
state. The difference with the formal inter-
national standards is in the degree of the
breadth and formality of this consensus.
This will become clearer later in the article.

Formal international standards in the
ICT are developed by the following organi-
zations:
• International Telecommunication Union,

founded May 17, 1865. This is the inter-
national organization within the United
Nations System where governments and
private sectors coordinate global telecom
networks and services.

• ISO (International Organization for
Standardization), founded in 1947. The
mission of ISO is to promote the devel-
opment of standardization and related
activities in the world with a view to
facilitating the international exchange of
goods and services, and to develop
cooperation in the spheres of intellectu-
al, scientific, technological, and econom-
ic activity.

• International Electromechanical Com-
mission (IEC), founded June 1906. This
is the leading global organization that
prepares and publishes international
standards for all electrical, electronic, and
related technologies.

In 1987, ISO and IEC joined forces and put
in place a Joint Technical Committee 1 (JTC
1) with the following mandate:

International Standardization in
Software and Systems Engineering

François Coallier
École de technologie supérieure

The last decade saw an increase in the phenomenon of globalization and concurrently the pervasiveness of computing in our
society. This article provides an introduction to international standardization in information technology, gives a status and
describes current activities in international software and systems engineering standardization, and explains why all of these
are important for professionals and organizations in this area.

Technical Areas JTC1 Subcommittees and Working Groups

 Application Technologies SC 36 – Learning Technology

 Cultural and Linguistic Adaptability
 and User Interfaces

 SC 02 – Coded Character Sets
 SC 22/WG 20 – Internationalization
 SC 35 – User Interfaces

 Data Capture and
 Identification Systems

 SC 17 – Cards and Personal Identification
 SC 31 – Automatic Identification and Data Capture Techniques

 Data Management Services SC 32 – Data Management and Interchange

 Document Description Languages SC 34 – Document Description and Processing Languages

 Information Interchange Media SC 11 – Flexible Magnetic Media for Digital Data Interchange
 SC 23 – Optical Disk Cartridges for Information Interchange

 Multimedia and Representation SC 24 – Computer Graphics and Image Processing
 SC 29 – Coding of Audio, Picture, and Multimedia and
 Hypermedia Information

 Networking and Interconnects SC 06 – Telecommunications and Information Exchange
 Between Systems
 SC 25 – Interconnection of Information Technology Equipment

 Office Equipment SC 28 – Office Equipment

 Programming Languages
 and Software Interfaces

 SC 22 – Programming Languages, Their Environments and
 Systems Software Interfaces

 Security SC 27 – Information Technology Security Techniques

 Software Engineering SC 07 – Software and Systems Engineering

Table 1: Current JTC 1 Subcommittees (Note: 10 Jan. 2002, taken from <www.jtc1.org>)

February 2003 www.stsc.hill.af.mil 19

International Standardization in Software and Systems Engineering

“Standardization in the Field of
Information Technology: Informa-
tion technology includes the specifi-
cation, design, and development of
systems and tools dealing with the
capture, representation, processing,
security, transfer, interchange, pres-
entation, management, organiza-
tion, storage, and retrieval of infor-
mation” [4].

JTC 1 presently consists of of the subcom-
mittees lists in Table 1.

International standards can come into
being through different processes:
• As a proposal that is developed in work-

ing groups through the standard six-stage
process described in Table 2 (three to
five years from initiation to publication).

• As a proposal with a base document that
can be internally fast-tracked, e.g.,
processed through a compressed sched-
ule (about two years).

• As a proposal with a complete document
that can be fast-tracked by JTC 1 (one
four-month ballot, less than one year).

• As a proposal with a complete document
that can be proposed by external (but
recognized) organizations and fast-
tracked as a four-month ballot known as
the Publicly Available Standard process
(one to two years).
It is a misperception that the develop-

ment of formal international standards
always takes an exceeding amount of time.
When this is the case, it is usually due to one
(or a combination) of the following reasons:
• The topic is new thus it takes time to

develop a unified international view.
• International consensus on the topic is

weak due to positions that are difficult to
bring together.

• Management of the development pro-
cess is suboptimal.
This brings us to another key concept in

standardization work: the notion of consensus.
Standards represent a consensus, and the
essence of the ISO standard process is the
achievement of a proper level of consensus.
ISO defines consensus as the following:

“General agreement, characterized
by the absence of sustained opposi-
tion to substantial issues by any
important part of the concerned
interests and by a process that
involves seeking to take into account
the views of all parties concerned
and to reconcile any conflicting argu-
ments” [5].

This essentially means the following:
• That all the parties involved were able to

voice their views.

• That the best effort was made to take
into account all of the above views and
resolve all issues (meaning all comments
tabled during a ballot).

• That nearly all or (ideally) all the parties
involved can live with the final result.
As ISO notes in its guidelines, consensus

does not mean unanimity. The minimal
numerical for international standards adop-
tion in ISO is a two-thirds majority of the
participating members (e.g., countries) vot-
ing. For technical reports (e.g., guides), it is a
simple majority.

So what added value do international
standards bring in addition to a well-known
brand? They bring the following:
• They represent an international consen-

sus attained through a very rigorous and
uniform process.

• They usually represent a set of conven-
tions and/or technical requirements or
practices that are relatively stable.
In addition, the international standardi-

zation process makes it relatively difficult
and costly for special interest groups to take
over a given standardization project, espe-
cially if the topic is controversial. This would
mean controlling many country delegations,
as well as liaison organizations. For a project
to be accepted in ISO, at least five countries
must be willing to contribute experts. In
Subcommittee 7 (SC7) of JTC 1, there are
currently 27 participating countries.

Evidently, nothing is perfect. Industry
and de facto standardization dominate in
some fast-evolving ICT areas. The interna-
tional standardization process is not built to
accommodate the requirements in these
areas, especially when the technology and
the market are unstable. On the other hand,
once things stabilize, industry standards
developed by an industrial consortia (for
example, the object management group or
OMG) should be able to migrate to the for-
mal international scene using one of the
compressed processes presented earlier in
this article. This has been happening in the
ICT since JTC 1 was created.

International Software and
Systems Engineering
Standardization
The SC7 has the mandate within JTC 1 for,

as described in its terms of reference, stan-
dardization of processes, supporting tools,
and supporting technologies for the engi-
neering of software products and systems.

The origins of SC7 go back to
ISO/Technical Committee (TC) 97, initiated
in 1960 for international standardization in
the field of information processing. When JTC 1
was established in 1987, ISO/TC97 was
combined with IEC/TC83 to form JTC
1/SC7, with software engineering as its initial
title and area of work. This was extended to
software and systems engineering in 2000.

There are currently 69 published interna-
tional standards under the responsibility of
SC7. By early 2004, this will rise to 81 if the
work proceeds as planned. As illustrated in
Figure 1 (see page 20), the availability of so
many international standards in software and
systems engineering is a recent occurrence.

In 1990, only eight standards were under
the responsibility of SC7. One of the eight
standards was on software documentation
(ISO/IEC 6592, last revised in 2000), the
balance being diagramming and charts stan-
dards, six of them still existing as legacy stan-
dards. At the same time, the IEEE already
had a substantial collection of 14 software
and systems engineering standards, a collec-
tion that grew to 27 in 1994 and presently
stands at about 50 standards. To get the
complete picture, it is good to keep in mind
that the first software engineering standard
was a U.S. military standard in 1974, and the
first IEEE software engineering standard
was published in 1979 (software quality
assurance plans) [6].

The increase in the number of published
international standards in software and sys-
tems engineering in the last 10 years is due to
the following:
• The increased dependencies of our glob-

al society and economy on the ICT and
software intensive systems.

• The maturing of the software and sys-
tems engineering profession in the 1990s
due to the work of professional organi-
zations such as the IEEE, the European
Strategic Program for Research in
Information Technology (ESPRIT) proj-
ects, and Japanese IT research initiatives
to name a few.

• The dedication of all the technical

 Stage No. Stage Name Stage Description

0 Preliminary
1 Proposal A new project is under consideration.
2 Preparatory
3 Committee A committee draft /final committee draft is under consideration.
4 Approval A final draft international standard is under consideration.
5 Publication An international standard is being prepared for publication.

A study period is under way.

A working draft is under consideration.

Table 2: Standard Six-Stage Process for the Development of International Standards

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering February 2003

experts and professionals who work on
these standards.

In background to all this – as mentioned at
the beginning of this article – is the very sig-
nificant expansion of the ICT market during
the 1990s, driven by Moore’s Law1 and the
Internet.

Another evolution took place in the stan-
dardization area. The Computer Society of
the IEEE (IEEE-CS) saw its membership
become more international, with more than
half now coming from outside the United
States. The IEEE-CS has adopted key inter-
national standards from SC7 such as
ISO/IEC 12207 (available in an IEEE edi-
tion). Also, as we will see in some examples
that follow, IEEE standards are being con-
sidered by SC7. This means that the two sets
of standards should become more integrat-
ed with time. SC7 and IEEE-CS are
presently working together to become more
systematic in their relationship.

The SC7 standardization portfolio can
be presently divided into the following areas
of work:
• Legacy Standards. These are essential-

ly legacy information processing stan-
dards that SC7 still has in its portfolio
(six standards).

• Software and Systems Engineering
Processes. These are standards that
describe good software and systems
engineering practices, as well as stan-
dards to consistently assess organization-
al software and systems engineering
practices against a given benchmark (19
standards, eight active projects).

• Software Systems Products. These are
standards that allow developers, pur-
chasers, and buyers to size and document
software products, as well as to express,

measure, and evaluate the quality of the
software that is produced and its contri-
bution to the final product or application
systems (25 standards, six active proj-
ects).

• Enterprise Architecture. These are
standards to integrate IT and business
systems definitions and to provide the
software and systems engineering tools
to implement enterprise information sys-
tems (12 standards, nine active projects).

• Software Engineering Environment.
These are standards that make it easier to
use software-engineering environments
and to reuse and re-deploy the data con-
tained in them (two standards, one active
project).

• Software and Systems Engineering
Formalisms. These are standards for
formal representations and modeling of
software and systems (five standards, two
active projects).

• Software Engineering Body of
Knowledge. These are guidelines that
establish the appropriate set(s) of criteria
and norms for the professional practice
of software engineering upon which
industrial decisions, professional certifi-
cation, and educational curricula can be
based (one active project).

• Management of Software Assets.
These are standards that will describe the
basic requirements of a software asset
management environment (one active
project).
Let us look in greater detail into the last

seven areas, focusing on key standards and
projects.

Software and Systems Engineering
Processes
Four standards are the cornerstones of this
area:
• The ISO/IEC 12207 Software Life-

Cycle Processes was published in 1995
and amended in 2002.

• The ISO/IEC 15288 Systems Life-
Cycle Processes was published in 2002.
It was developed with a strong partici-
pation of the International Council on
Systems Engineering (INCOSE).

• The ISO/IEC TR 15504 Software
Process Assessment series was pub-
lished in 1998 and 1999 as technical
reports. They are currently being
revised, with their scope widened to
cover any type of processes and
upgraded to international standards.
The Capability Maturity Model®

IntegrationSM (available through the
Software Engineering Institute) is
compatible with the current version of
ISO/IEC 15504 [7].

• The ISO/IEC 9000-3 Guidelines for
the Application of ISO 9001 to
Computer Software was transferred to
SC7 from another ISO committee
(ISO/TC176) and is currently under-
going a revision to be aligned to the
2000 version of ISO 9001.

The relationship between these four stan-
dards is illustrated in Figure 2.

These key standards, including the
recently published ISO/IEC 15288, are
well known in the software and systems
engineering community. Since these stan-
dards were developed on different time-
lines, it is normal that differences crop up
among them. This is why a harmonization
project between 15288 and 12207 is under
serious consideration in SC7.

The following complements this top-
level set of standards:
• ISO/IEC TR 15271 – Guide to

ISO/IEC 12207.
• ISO/IEC 14764 – Software

Maintenance.
• ISO/IEC TR 15846 – Configuration

Management.
• ISO/IEC 15910 – Software User

Documentation Process.
• ISO/IEC 15939 – Software

Measurement Process.
• ISO/IEC TR 16326 – Guide for the

Application of ISO/IEC 12207 to
Project Management.

The following two standards should join
this set by the third quarter of 2003:
• ISO/IEC TR19760 – Guide for

ISO/IEC 15288.
• ISO/IEC 16085 – Risk Management.
It is interesting to note that the ISO/IEC
16085 is a fast-track of IEEE 1540:2001.

Software Systems Products
There are five main sets of standards in
this area:
• The 9126 series on software quality char-

0

10

20

30

40

50

60

70

80

90

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Standards Published

Standards Maintained

Figure 1: Evolution of Published International Standards in Software and Systems Engineering

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office.

SM Capability Maturity Model Integration is a service mark of
Carnegie Mellon University.

International Standardization in Software and Systems Engineering

February 2003 www.stsc.hill.af.mil 21

acteristics. The initial standard was pub-
lished in 1992. This standard is cur-
rently being revised and expanded into
a three-part document.

• The 14598 series on software product
assessment. Initially published between
1998 and 2001, this six-part standard
got significant inputs from the
Software Certification Program in
Europe, ESPRIT project of the early
1990s.

• The 14143 series on functional size meas-
urement. This five-part standard publi-
cation will span from 1998 through
early 2003.

• A group of four functional size counting
methods standards (19761, 20926,
20968, 24570). These are in the final
approval stage, three of which are fast-
tracked through the PAS process.

• A block of software and systems reliability
standards. These include the standard
on Systems and Software Integrity
Levels (15026) and the recently trans-
ferred project from IEC/TC 56 Guide
to Techniques and Tools for Achieving
Confidence in Software (IEC 16213).
The 9126 and 14598 standards are cur-

rently being integrated and reworked into
the new 25000 series titled “Software
Product Quality Requirements and
Evaluation” (SQuaRE). The architecture
of the SQuaRE standards is given in
Figure 3.

Enterprise Architecture
The enterprise architecture standards of
SC7 currently consist of a series of docu-
ments on open distributed architecture
(principally 10746 and 13235 series, 14750,
14752, and 14753). This work is being car-
ried cooperatively with the OMG, which is
fast-tracking many of the documents.
More details on the applications of these
standards can be found in [10].

Software Engineering Environment
Published standards in this area cover the
evaluation (14102) and the adoption of
CASE tools (14471).

Software and Systems Engineering
Formalisms
A key standard in this area is the Unified
Modeling Language (19501) that is cur-
rently being fast-tracked from the OMG.

Software Engineering Body of
Knowledge
This is a cooperative project with the
IEEE-CS to publish their Software
Engineering Body of Knowledge as an
ISO technical report – ISO/IEC TR 19759
[11]. This project is near completion.

Management of Software Assets
This is a new project (19770) initiated in
2001 that aims to develop a standard on a
software asset management process. A
first working draft of this standard has
been published on the SC7 Web site.

Conclusions
The increase in international software and
systems engineering standardization is a
consequence of both the continuing
growing importance of the ICT and the
ICT-based systems, products, and services
in the global economy as well as the grow-
ing maturity of the software and systems
engineering disciplines.

The SC7 will strive to fulfill its man-
date and deliver to the international soft-
ware and systems engineering community

the tools it requires in the global informa-
tion society. This will be done in coopera-
tion with other standards-developing
organizations, not only the national stan-
dards organizations but also, increasingly,
professional and industrial ones.

Additional Information
The SC7 Web site <www.jtc1-sc7.org>
provides more information. All JTC
1/SC7 standards can be purchased direct-
ly from ISO or from the American
National Standards Institute at
<http://webstore. ansi.org/ansidocstore
/default.asp>.

It is necessary to be accredited with a
national body to participate in the devel-
opment of SC7 standards. In the United
States, the contact for the U.S. Technical
Advisory Group on software and systems

Figure 2: Relationship Among Key SC7 Software and Systems Engineering Process Standards [8]

Quality Model

2501n

Quality Model

Division Quality

Requirement

2503n

Quality

Requirements

Division

2504n

Quality
Evaluation

Division

2502n

Quality Metrics
Div i s i on

2500n

Quality

Management Division

Figure 3: SQuaRE Architecture [modified from 9]

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering February 2003

engineering is Mike Gayle at
s.m.gayle@jpl.nasa.gov.

Acknowledgements
The author would like to thank Claude
Laporte, James Moore, Perry DeWeese,
Robert Frost, Gilles Allen, Alastair Walker,
Hans Daniel, Dennis Ahern, Witold Suryn,
and Alain Abran for reviewing this article
and providing feedback.

References
1. R. Fulton. “Predicts 2002 – What’s

Ahead for the IT Industry?” Gartner
Research, 1 Aug. 2002 <www.adabas nat-
ural4ever.com/industry_news/media/pr
edicts_2002_whats_ahead_for_the_
it_industry.pdf>.

2. Booch, Grady. “The Illusion of Simplic-
ity.” Software Development Feb. 2001
<www.sdmagazine.com/documents/
s=734/sdm0102m/0102m.htm>.

3. Institute of Electrical and Electronics
Engineers. Software Engineering Term-
inology. Adapted from IEEE Std. 610-
12. New York, 1990.

4. ISO/IEC Guide 2:1996 <www.iso.
org/sdis>.

5. Procedures for the Technical Work of
ISO/IEC JTC 1 <www.jtc1.org>. Found
under Procedures in the public area.

6. Moore, James W. Software Engineering
Standards: A User’s Road Map. ISBN 0-
8186-8008-3. New York: IEEE CS Press,
1979.

7. Software Engineering Institute. Capabil-
ity Maturity Model ® Integration SM

Pittsburgh: Software Engineering Insti-
tute, Mar. 2002.

8. Subcommittee 7/WG7. “ISO/IEC
15288 Marketing Presentation.” SC7
document N2646R <www.info.uqam
.ca/Labo_Recherche/Lrg l/sc7/
N 2 6 0 1 N 2 6 5 0 / 0 7 N 2 6 4 6 R %
2 0 W 0 7 N 0 6 1 1 0 Ve r s i o n % 2 0 2 %
20%20IEC%2015288%20Marketing
%20Presentation.pdf>.

9. Azuma, Motoei. SQuaRE: The Next
Generation of the ISO/IEC 9126 and
14598 International Standards Series on
Software Product Quality. Proc. of
European Software Control and Metrics
– Escom 2001, London, 2-4 Apr. 2001
<http://dialspace.dial .pipex.com
/town/drive/gcd54/conference2001/pa
pers/azuma.pdf>.

10. Putman, Janis R. Architecting with RM-
ODP. New Jersey: Prentice Hall PTR, 6
Oct. 2000.

11. Abran, Alain, James W. Moore, Pierre
Bourque, Robert Dupuis, and Leonard L.
Tripp. Guide to the Software
Engineering Body of Knowledge SWE-
BOK. ISBN 0-7695-1000-0. New York:

IEEE CS Press, 2001.

Note
1. Moore’s Law <www.webopedia.com/

TERM/M/Moores_Law.html>.

Further Information
1. IEEE-CS Software Standards: <http://

standards.computer.org/sesc>.
2. IEC: <www.iec.ch>.
3. INCOSE: <www.incose.org>.
4. OMG: <www.omg.org>.
5. ISO: <www.iso.ch>.
6. JTC 1: <www.jtc1.org>.
7. SC7: <www.jtc1-sc7.org>. Provides

information on current SC7 activities,
published standards, and more. Many
documents are available for download.

COMING EVENTS

February 24-27
Software Engineering Process

Group Conference

Boston, MA
www.sei.cmu.edu/sepg/

February 25-26
Data Mining Tech. for Military and

Government Applications Forum
Washington, D.C.
www.worldrg.com

March 10-13
Software Test Automation

Spring ‘03
San Francisco, CA

www.sqe.com/testautomation/

March 24-28
International Symposium on

Integrated Network Management
Colorado Springs, CO

www.im2003.org

March 31-April 2
ACDM’s Annual Technical and

Training Conference
San Diego, CA

www.acdm.org/main.htm

April 8-10
FOSE 2003

(Federal Office Systems Exposition)
Washington, D.C.

www.fose.com

April 28-May 1
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

May 3-10
International Conference on

Software Engineering
Portland, OR

www.icse-conferences.org/2003

About the Author

François Coallier is
professor of software
and information tech-
nology (IT) engineering
at the École de technolo-
gie supérieure. He has

nearly 22 years of industrial experience
in one of Canada’s largest companies,
where he held various engineering and
managerial positions in engineering,
quality engineering, IT procurement, IT
infrastructure deployment and opera-
tion, and IT enterprise architecture
management. Coallier is currently the
international chairman of the Joint ISO
and International Electromechanical
Commission (IEC) subcommittee
responsible for the elaboration of
Software and Systems Engineering
Standards ISO/IEC JTC1/SC7, and
also a fellow of the American
Association for the Advancement of
Science. He has a bachelor’s of science
degree in biology from McGill
University, a bachelor’s degree in engi-
neering physics, and a master’s of sci-
ence degree in electrical engineering
from Montreal’s École Polytechnique.

Département de Génie
Électrique/Department of
Electrical Engineering
École de technologie supérieure
1100, rue Notre-Dame Ouest
Montreal, Quebec
Canada H3C 1K3
Phone: (514) 396-8637
Fax : (514) 396-8684
E-mail : fcoallier@ele.etsmtl.ca

February 2003 www.stsc.hill.af.mil 23

Systems requirements define what the
system is required to do and the cir-

cumstances under which it is required to
operate. The branch of software engi-
neering concerned with all the activities
involved in discovering, documenting,
validating, and maintaining system
requirements is requirements engineering
(RE). Since difficulties with requirements
are still a major contributory factor to
project failures, leading not only to late
and over budget deliveries but often also
to systems significantly different from the
stakeholders’ expectations, RE is one of
the most crucial steps in system develop-
ment.

As technologies advance, they allow
designers to envision systems that are
increasingly becoming integral parts of
the encompassing organizational process-
es. As this occurs, attention is being more
and more focused on the very early phas-
es of RE. The development of a success-
ful system, that is a system able to address
the stakeholders’ real needs and suitable
to evolve to meet ever-changing organiza-
tions’ demands, relies on a firm under-
standing of the organizational context in
which the system has to function. In
other words, the system and its context
need to be treated as a larger social-tech-
nical system, whose overall needs are the
ones to be fulfilled [1].

Consequently in RE, appropriate
process modeling techniques are typically
advocated [2, 3] to help understand the
organizational context (as it exists), envi-
sion possible solutions (as they could
exist with the new system in place), and
compare feasible alternatives. Within such
a perspective, this article introduces an
Enterprise Modeling Framework (EMF)
explicitly designed to support discovery,
verification, and validation of both user-
oriented and organization-oriented system
requirements [4, 5] by assisting dialogue

between the analysts and the stakeholders
and negotiation among the stakeholders.

In the remainder of this article, the
EMF is introduced and its main charac-
teristics are briefly described. Next comes
some extracts from a practical applica-
tion, and the article concludes by dis-
cussing some of the observed benefits.

The EMF
The EMF is designed to allow analysts to
deal with the what and how of the organi-
zational context, i.e., the tasks performed
by the organization, and the way in which
they are performed. It also allows the ana-
lysts to model explicitly the why, i.e., the
underlying reasons, expressed in terms of
organizational goals. This enables the
analysts and the stakeholders to focus on
the right system for a given context, to
design (or redesign) the encompassing
process that fully exploits the system’s
capabilities [6], and to improve their
capacity to identify, justify, and validate
the system requirements [2, 3, 7].

In particular, the modeling effort is
tackled by breaking the activity down into
more intellectually manageable compo-
nents, and by adopting a combination of

different approaches on the basis of a
common conceptual notation: Agents are
used to model the organization, whereas
goals are used to model agents’ interac-
tions.

According to the nature of a goal, we
distinguish between hard goals and soft
goals [2, 3]. For a hard goal, the achieve-
ment criterion is sharply defined (e.g.,
“buy a computer”); for a soft goal, it is up
to the goal originator, or an agreement
between the involved agents, to decide
when the goal is considered to have been
achieved (e.g., “buy a fast computer”). In
comparison to hard goals, soft goals are
highly subjective and strictly related to a
particular context (what is meant by “fast
computer?”). The EMF, therefore,
spawns three interrelated modeling
efforts: the organizational modeling, the
hard goal modeling, and the soft goal
modeling (see Figure 1 on page 24). In
this way, separating goal modeling from
organizational modeling helps reduce the
problem complexity [4].

During organizational modeling, the
organizational context is modeled as a
network of interacting agents (any kind
of active entity, e.g., teams, humans, and
machines, one of which is the target sys-
tem) [2, 8], collaborating or conflicting in
order to achieve both private and organi-
zational goals. Once identified, goals are
translated and implemented through con-
tinuous refinement into operational terms
as tasks with constraints.

The hard goal modeling seeks to deter-
mine how to achieve hard goals by
decomposing them into more elementary
subordinate hard goals and tasks, where
tasks are well-specified activities that
someone or something within the organi-
zation has to perform. So, for example,
the hard goal “buy a computer” will be
translated into a set of actions (tasks) nec-
essary to procure a computer: organize a

An Enterprise Modeling Framework
for Complex Software Systems

Dr. Paolo Donzelli
Office of the Prime Minister

This article presents a goal-oriented, agent-based Enterprise Modeling Framework where advanced requirements engineering
techniques are combined with software quality modeling approaches to provide an environment within which the stakeholders
and the analysts can easily cooperate to discover, verify, and validate the requirements for a new software system. The frame-
work assists and drives the stakeholders to an early definition of the desired system functionality and quality attributes, while
supporting the redesign of the encompassing organization to better exploit the new system’s capabilities. Although beneficial
to a wider class of software systems, the framework has been applied here to improve the requirements engineering process for
synthetic environments, which are complex software-intensive systems that typically comprise distributed interactive simulations
of real-world systems. They are increasingly used to support vitally important operational, political, and economic decisions in
a variety of industrial and governmental settings.

“As technologies
advance, they allow
designers to envision

systems that are
increasingly becoming
integral parts of the

encompassing
organizational processes.”

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering February 2003

competitive tender, inform the bidders,
etc. The EMF then draws upon these [7],
although a more informal approach based
on a combination of natural language and
a semiformal graphical notation is pre-
ferred [2].

The soft goal modeling aims at producing

operational definitions of the soft goals
sufficient to capture explicitly the seman-
tics that are usually assigned implicitly by
the user [9], and highlight the system qual-
ity issues from the outset. A soft goal is
refined in terms of subordinate soft
goals, hard goals, tasks, and constraints.

Constraints are associated with hard goals
and tasks to specify the corresponding
quality attributes. So, for example, the
soft goal “buy a fast computer” will
spawn the hard goal “buy a computer”
and a set of associated constraints, e.g.,
CPU speed, memory size, cache charac-
teristics, etc., that specify the computer
quality attribute fast according to the
stakeholders’ perception.

Applying the EMF
To investigate the feasibility of equipping
an aircraft with a new avionics subsystem,
a particular kind of ground-based equip-
ment capable of providing the character-
istics of the aircraft and of its compo-
nents is usually adopted. Such equipment,
or Avionics System Rig (ASR), is an
example of a synthetic environment (SE)
or of a subcomponent. In fact, a SE
would typically consist of a mixture of
real and simulated equipment [10], and
would even encompass human operators.
Furthermore, a SE can have different
degrees of complexity, depending on the
kind of information it provides (i.e., on
the decision-making process that it has to
inform).

In [5], EMF is applied to support the
requirements engineering process for a
hypothetical ASR that is needed to inves-
tigate the feasibility of providing an air-
craft with a thermal pod. A thermal pod
is an infrared device that is, for example,
normally used on aircraft and helicopters
dedicated to search and rescue and anti-fire
roles. Although hypothetical, the case
study is firmly based upon a real applica-
tion where SE's have been used for a sim-
ilar purpose [10]. For brevity in this arti-
cle, the presentation is limited to a few
extracts from this example application.

Shown in Figure 2 is a simple organi-
zational model, within which the ASR is
employed. Circles represent agents, and
dotted lines are used to bind the internal
structure of complex agents; i.e., agents
containing other agents. Consequently,
the avionics system expert is a simple agent
that interacts with the SE to collect infor-
mation necessary to assess the feasibility
of equipping the aircraft with the thermal
pod.

The SE agent in Figure 2, instead, is a
complex agent encompassing the agents
ASR and flight test crew. As stated earlier, it
is typical of SE's to encompass human
operators who have to interact with the
simulated environment, but who are not
direct stakeholders of the process that
the SE is designed to support. In this
case, for example, the flight test crew is
part of the overall SE, so that the effects

Avionics
System
Expert

Avionics
System Rig

Flight Test
Crew

Collocate the
Pod in Its
Avionics

Environment

Try the Pod in
fli hConditions

Pod
Avionics

iRealism

ASR Interface
Realism

SE

Evaluate Avionics
Integration Feasibility

f bili

 Crew
Judgement

Collect Power
Data

Figure 2: The Organizational Model to Perform the Integration Study

Constraints
Hard Goals Mapping to

Organization

Soft Goals

Hard Goals

Soft Goal
Modeling

Organization
Modeling

Hard Goal
Modeling

Development Flow

Verification Flow

Elicitation and
Validation Flow

Stakeholders
and Analysts

Figure 1: The Enterprise Modeling Framework

An Enterprise Modeling Framework for Complex Software Systems

February 2003 www.stsc.hill.af.mil 25

of the thermal pod integration on crew
performance can be determined.
However, it is the avionics system expert
who is the primary (feasibility study)
process owner.

Agents interact by exchanging goals
and tasks. Clouds represent soft goals,
rounded-rectangles represent hard goals,
and hexagons represent tasks. Thus in
Figure 2, the avionics system expert
receives from the enclosing domain the
soft goal of “evaluate avionics integra-
tion feasibility” for the new pod. Goals,
tasks, and agents are connected by
dependency-links, represented by arrow-
head lines. An agent is linked to a goal
when he/she needs that goal to be
achieved; a goal is linked to an agent
when he/she depends on that agent to be
achieved. Similarly, an agent is linked to a
task when it wants the task to be per-
formed; a task is linked to an agent when
the agent has to perform the task. By
combining dependency-links, we can
establish a dependency among two or
more agents [2].

Each agent works as a goal trans-
former. Having received a goal, an agent
will operate according to his/her own
experience, knowledge, or position with-
in the organization in attempting to
achieve the goal. He/she will decide how
to achieve the goal in terms of tasks and
subordinate goals, and may choose to
depend on other agents by passing out
some of these tasks and subordinate
goals. For example, the soft goal model in
Figure 3 explains the behavior of the
avionics system expert.

In order to achieve the received goals,
the avionics system expert will need to
“observe the pod in its avionics environ-
ment” and will require a crew judgement.
The first soft goal will spawn some pre-
cise goals that the SE agent has to satisfy.
These include the hard goal “collocate
the pod in its avionics environment” with
the associated soft goal “pod avionics
environment realism,” and the hard goal
“monitor avionics system behavior,”
which leads to the task “collect power
data.”

The latter will require that a new
agent, named flight test crew, will have to
be included in the SE to operate with the
ASR. In Figure 3, the A annotation on
each decomposition line indicates that all
these goals must be satisfied (and
refined), whereas the goals and tasks in
bold outline are those that the avionics
system expert will pass out (see Figure 2)
and are not further refined. To be able to
express its opinion, the flight test crew in
Figure 2 will require the possibility of fly-

ing the new pod, which places two other
goals on the ASR: a hard goal “try the
pod in flight conditions,” and a soft goal
“ASR interface realism.”

By analyzing and refining the goals
imposed on the SE agent, the final
requirements for the ASR can be
obtained. For example, by modeling the
soft goals “pod avionics environment
realism” and “ASR interface realism”
(identified in Figure 2), a clear idea of the
needs of the avionics system expert and flight
test crew agents can be gained and translat-
ed into functional and nonfunctional require-
ments for the ASR.

Figure 4 provides this soft goal model
for the ASR. It shows how the soft goal
“pod avionics environment realism”
from the avionics system expert spawns
the following soft goals: “sensors and air-
craft model realism,” “avionics system
realism,” and the same “ASR interface
realism” as was generated by the flight-
test crew.

The soft goal “sensors and aircraft
model realism” leads to a well defined set
of constraints, which are represented by
rounded-rectangles with one horizontal
line and form nonfunctional require-
ments regarding both the sensors’ toler-
ance and the aircraft model’s capabilities.
In this way, the flight test crew will be
able to fly quite realistic low-level mis-
sions to test the pod.

The soft goal “avionics system real-
ism” will translate into constraints that
define what kind of equipment should be
used. For example, the avionics system
expert wants to be able to interface the
pod with the real on-board computer.

Finally, the soft goal “ASR interface
realism” will refine into both hard goals

and constraints by mutual agreement of
the two agents that have independently
generated this same soft goal.

In particular, resolving requirements
clashes in this area result in the ASR pro-
viding the pilot cockpit view (a function-
al requirement) on a flat screen (a non-
functional requirement). Importantly, this
last goal demonstrates that different
agents may have different opinions [11],
and that soft goal models allow the analysts to
detect clashing requirements at the early stages
of a new system development and simul-
taneously provide a way to resolve them.

Conclusions
The application example described
demonstrates the feasibility of the sug-
gested approach. It also shows the bene-
fits offered during the early phases of
RE. This is the time when analysts and
stakeholders have to cooperate to under-
stand and reason about the organization-
al context within which the new system

A

Pod
Avionics

 Environment
Realism

Avionics System
Realism

A

A

.....
A

Real
On-Board
Computers

A

Sensors and
Aircraft Model

Realism

A A

10% Error Tolerance
for No-Altitude

Sensors

A

.....
Aircraft Model to

Provide Low-Altitude
Flight Capability

A

ASR
Interface
Realism

Commands and
Controls
Realism

A

Stick, Throttle
and Selectors

Realism

A

A

Real
Stick, Throttle
and Selectors

A

External Context
Realism

.....
A

.....

Pilot View
on Flat Screen

A A

A

Provide Pilot
Cockpit View

Figure 4: Soft Goals Imposed on the ASR

Collocate the
Pod in Its
Avionics

Environment
Pod

Avionics Environment
Realism

Monitor
Avionics
System

Behavior

Evaluate Avionics
Integration Feasibility

Crew
Judgement

A

Observe the Pod in Its
Avionics Environment

A

A

A

A

Collect Power
Data

A A

.....

Figure 3: The Soft Goal “Evaluate Avionics
Integration Feasibility”

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering February 2003

has to function. They must identify and
formalize not only the system require-
ments, but also the organizational setting
that better exploits the new system’s
capabilities.

In particular, benefits can be observed
in terms of requirements discovery and
early validation. Discovery and validation
are improved because of the visibility of
decisions made by the stakeholders as a
result of explicit organizational and goal
modeling. Each type of EMF model pro-
vides a specific knowledge representation
vehicle that the analyst can use to interact
with the stakeholders to capture require-
ments, reason about them, and eventually
reach an accepted formulation.

Soft goal models force the stakehold-
ers to reason about their own concepts of
quality (for example, the concept of real-
ism in Figure 4). Hard goal models allow
the stakeholders to understand and vali-
date their role within the organization,
whereas organizational models provide
management with a clear view of how the
business process will be changed or
affected by the introduction of the new
system (see Figure 2).

The resulting models also suggest that
EMF offers potential benefits in the post-
deployment phase. The clear links estab-
lished between organizational goals and
system requirements, in fact, allow the
analysts to quickly identify the influence
of organizational changes on the final
system requirements, supporting both sys-
tem maintenance and reuse in different
application contexts.

Although EMF addresses the early
stages of the RE process, the possibility
of combining its outcome with tech-
niques more suitable for dealing with fur-
ther system development phases has been
investigated [12]. For example, initial
results suggest that EMF can be usefully
applied as a forerunner to object-oriented
approaches such as those based upon the
unified modeling language [13].

Finally, the general principles upon
which the EMF is based allow it to be
deployed for a larger class of computer-
based information systems beyond SE's.
For example in [14], EMF has been
applied to define the requirements for a
workflow-based document management
system. Whereas in [15], it has been
adopted to analyze the organizational
impact and advantages of introducing a
corporate smart card as enabling plat-
form for accessing and using different e-
services delivered by the organizational
information technology system (e.g., dig-
ital signature, certified e-mail, documents

management systems, etc.).◆

References
1. Fickas, S., and B. R. Helm.

“Knowledge Representation and
Reasoning in the Design of
Composite Systems.” IEEE Trans-
actions on Software Engineering 18.6
(June 1992).

2. Yu, E. Why Agent-Oriented Require-
ments Engineering? Proc. of 3rd
Workshop on Requirements Engi-
neering for Software Quality.
Barcelona, Catalonia, June 1997.

3. Loucopulos, P., and V. Karakostas.
System Requirements Engineering.
UK: McGraw Hill, 1995.

4. Donzelli, P., and M. R. Moulding.
Developments in Application Domain
Modeling for the Verification and Val-
idation of Synthetic Environments: A
Formal Requirements Engineering
Framework. Proc. of the Spring ’99
Simulation Interoperability Workshop.
Orlando, Fla., Mar. 1999.

5. Donzelli, P., and M. R. Moulding. “A
Unified Approach to the Verification,
Validation and Accreditation of
Synthetic Environments: A Require-
ments Engineering Framework.”
Cranfield University Technical Report
Ver. 1. SE027E/TR1. Dec. 1999.

6. Hammer, M., and J. Champy.
Reengineering the Corporation: A
Manifesto for Business Revolution.
London: Nicholas Brealey Publishing,
1995.

7. Dardenne, A., A. Van Lamsweerde,
and S. Fickas. “Goal-Directed Re-
quirements Acquisition.” Science of
Computer Programming 20 (1993).

8. D’Inverno, M., and M. Luck.
Development and Application of an
Agent-Based Framework. Proc. of the
First IEEE International Conference
on Formal Engineering Methods.
Hiroshima, Japan, 1997.

9. Cantone, G., and P. Donzelli. “Goal-
Oriented Software Measurement
Models.” European Software Control
and Metrics Conference. Herstmon-
ceux Castle, East Sussex, UK, Apr.
1999.

10. Donzelli, P., and R. Marozza. Laser
Designation Pod on the Italian Air
Force AMX Aircraft: A Prototype
Integration. Proc. of the NATO/
RTO SCI Joint Symposium on
Advances in Vehicle Systems
Concepts and Integration. Ankara,
Turkey, Apr. 1999.

11. Van Lamsweerde, A., R. Darimont,
and E. Letier. “Managing Conflicts in
Goal-Driven Requirements Engi-

neering.” IEEE Transactions on
Software Engineering 24. 11 (Nov.
1998).

12. Donzelli, P., M. R. Moulding.
Application Domain Modeling for the
Verification and Validation of Syn-
thetic Environments: From Require-
ments Engineering to Conceptual
Modeling. Proc. of the Spring 2000
Simulation Interoperability Workshop.
Orlando FL., Mar. 2000.

13. Rumbaugh, J., I. Jacobson, and G.
Booch. The Unified Modeling Lan-
guage Reference. Addison-Wesley, 23
Dec. 1998.

14. Antonelli, C., P. Donzelli, Masroianni,
R. Setola, S. Vinti, and S. Tucci. A
Web-Based Workflow Solution to
Support the Italian Government
Agenda Definition Process. Proc. of
the Italian Automatic Computation
Association 2000 Conference – Le
Technologie dell’Informazione e della
Communcazione come motore di
sviluppo del Paese. Taomina, Italy, 27-
30 Sept. 2000.

15. Donzelli, P., and R. Setola. Putting
the Customer at the Center of the IT
System – A Case Study. Proc. of the
EuroWeb 2001 Conference – The
Web in the Public Administration.
Pisa, Italy, 18-20 Dec. 2001.

About the Author

Paolo Donzelli, Ph.D.,
is an advisor with the
Department of Infor-
matics of the Office of
the Prime Minister in
Rome, Italy. A former

engineering officer with the
Operational Testing Center of the
Italian Air Force, Dr. Donzelli was a
senior research fellow with the
Computing Information Systems
Engineering Group, Royal Military
College of Science, Cranfield
University, United Kingdom. He has a
variety of interests in the software
engineering area, and his doctorate
thesis was in software process quality
modeling.

Presidenza del Consiglio
dei Ministri
Ufficio per l’Informatica,
la Telematica e la Statistica
Via della Stamperia 8, 00187
Roma, Italy
E-mail: p.donzelli@governo.it

February 2003 www.stsc.hill.af.mil 27

Improvement to an organization, proj-
ect, or process usually requires more

than just technical skills; it requires peo-
ple skills. The Amplifying Your
Effectiveness (AYE) conference strives
to give attendees the personal skills
required for improvement. As one of the
AYE hosts, Jerry Weinberg states, “[The
AYE] conference looks at technical prob-
lems from this human point of view.”

The AYE 2002 conference was held
in Phoenix, Ariz., from Nov. 3-6, 2002.
The attendees were from technical posi-
tions such as project managers, software
developers, software testers, and quality
assurance personnel. While they were
seeking new information on performing
their jobs better, they also appreciated the
atmosphere of the conference.

The AYE conference may be differ-
ent than other conferences you have
attended. Attendance is limited to the
first 100 registrants and use of slides dur-
ing a presentation is discouraged. The
AYE hosts want speakers to talk to atten-
dees, discussing information from their
own experiences instead of simply read-
ing from slides. As a result, speakers sit in
a circle with the presentation attendees
and discuss the topic of the presentation.
The presenter notes key points on a flip
chart during the discussions.

The range of issues at the AYE con-
ference dealt with personal skills such as
writing, presenting, dealing with different
personalities, working with differences,
working under stress, enhancing personal
influence, effective feedback, and
change-agent skills. Technical presenta-
tions addressed quality vs. speed, techni-
cal reviews, service level agreements,
sharing project status, and dealing with
project problems.

All the presentations included an
activity to use the ideas shared in the
presentation. The presenters then called
on the attendees to provide their solu-
tions before sharing solutions from the
presenters. One example of this was the
presentation “Building Writing Skills and
Confidence: A Writing Workshop” by
Johanna Rothman and Naomi Karten
(two well- respected authors). During this

presentation, the participants were chal-
lenged to write a story on a variety of
topics. The results of the exercise were
then shared, along with several tips for
effective writing. These tips are included
in the “Tips and Ideas for Building
Writing Skills and Confidence” box.

When asked, a repeat attendee said
she liked the conference because she pre-
ferred the focus on people skills vs. tech-
nical skills. One of the key attributes of

this conference was the personal touch
from each host. When not presenting, the
hosts made themselves available to all
conference attendees to answer questions

and discuss issues. This invitation was
available during the welcome dinner, daily
lunches, and even anticipated for people
that may be sitting in the halls not inter-
ested in any presentations. However, I
was told the hosts never found this last
situation at the AYE conference.

A Few Example Models
Popular ideas shared at the conference
included the Satir method and models.
The Satir tools were developed by
Virginia Satir, a family therapist, as a
“self-esteem tool kit” and are aimed at
helping people realize that they own the
resources necessary to deal with daily sit-
uations but often forget to use them,
especially when feeling powerless.
Following are the tools included with
this kit:
• Wisdom Box. The ability to know

what is right and what is not right for
you.

• The Golden Key. The ability to open
up new areas for learning and practic-
ing, and to close them if they do not
fit for you at this time.

• The Courage Stick. The courage to

Highpoints From the
Amplifying Your Effectiveness Conference

Elizabeth Starrett
CrossTalk

Improvements within an organization require people skills as well as technical skills. The Amplifying Your Effectiveness
Conference held last November in Phoenix, Ariz., provided presentations for both sets of skills.

CONTINUED ON PAGE 30

1. Learn from others. Find role models – people whose writing you like – and
study their style. Read with intentionality. Notice what strikes you as good or bad
writing.

2. Writing anything is better than writing nothing. Practice makes less imperfect.
Make every writing opportunity an opportunity to develop your writing skills.

3. All good writing starts with the initial rough draft. Your first draft is just the
starting point. Learn to trust yourself and the process.

4. Don’t fall in love with your own words. Edit ruthlessly. Focus on tight writing.
Become best friends with your delete key.

5. Write like you speak. Eschew terminological obfuscation and fancy formality.
Write in a conversational me-to-you tone.

6. Let your subconscious do your writing for you. A great deal of writing happens
when you are away from the keyboard. Write, put it away, then look at it later on
with fresh eyes.

7. When (not if) you get stuck, notice your writing “shoulds.” Acknowledge them
and set them aside. Take a break, then write an email about what you are stuck
writing about.

8. Find a setting that is conducive to writing. Use your favorite font. Play your
favorite music. Find your favorite location. Use whatever approach works best
for you.

Tips and Ideas for Building Writing Skills and Confidence

“The Amplifying Your
Effectiveness conference
is geared to help those
with technical strengths

tap into their
interpersonal and
relational talents.”

Departments

28 CROSSTALK The Journal of Defense Software Engineering February 2003

About STC

The best way to describe STC 2003 is that it will be jam-packed! This
year's conference will include more than 180 events to choose from,
including general sessions, luncheons, plenary sessions, and
presentation tracks. If you work with software, STC provides
outstanding training and networking opportunities. Some
organizations report that they must send a small army to absorb all the
information that is important to their organizations.

In its fifteenth year, STC is the premier software technology
conference in the Department of Defense and is co-sponsored by the
United States Army, United States Marine Corps, United States Navy,
United States Air Force, the Defense Information Systems Agency
(DISA), and Utah State University Extension. We anticipate over 2,500
participants this year from the military services, government agencies,
defense contractors, industry, and academia.

STC is Endorsed by:

Lt Gen Harry D. Raduege, Jr., Director,
Defense Information Systems Agency

LTG Peter M. Cuviello, GS Chief Information
Officer/G6, U.S. Army

John M. Gilligan, Chief Information Officer,
U.S. Air Force

RADM Kenneth D. Slaght, Commander, Space and
Naval Warfare Systems Command, U.S. Navy

Robert L. Hobart, Deputy Commander, Command,
Control, Communications, Computers, and
Intelligence/Integration (C4II),
U.S. Marine Corps.

IEEE Computer Society CSDP Preparation Course and
Examination

STC is happy to partner with the IEEE Computer Society to offer a
preparation course and examination for the Certified Software
Development Professional (CSDP) program at STC 2003. The CSDP is
the Computer Society's certification program for software professionals.
Developed by industry experts in a rigorous three-year process, the new
CSDP credential is intended for software engineers, software developers,
software program managers and other professionals with 5 or more years
of experience. The CSDP exam is designed to measure an individual's
mastery of the fundamental knowledge required to perform the functions
of an experienced software engineer. The CSDP is the only certification
for computing professionals that carries the brand, reputation, and stan-
dards of the IEEE Computer Society. Complete details about CSDP are
available at <http://www.computer.org/certification>.

Conference Highlights

STC will host three concurrent speaker luncheons on Monday featuring
Stephen J. Mellor, Founder & Vice President, Project Technology, Inc.;
Dr. David A. Cook, Principal Engineering Consultant, Shim Enterprise,
Inc./Software Technology Support Center; and Charles Thomas
Burbage, Executive Vice President & General Manager, Joint Strike
Fighter-Lockheed Martin Aeronautics Co. The co-sponsors will join
together to discuss the services perspective on strategies and technologies
in a panel discussion Tuesday morning.

Wednesday's plenary session speaker is David W. Carey, Vice
President, Information Assurance, Oracle Government, Education &
Healthcare. Thursday, Dr. William E. Halal, Professor of Management,
George Washington University, will address the conference. STC will be
capped off in the Thursday afternoon Closing General Session with Tim
Border & Doug Nielsen, two of America’s most sought-after motiva-
tional speakers in the areas of personal development, motivation, leader-
ship, change, and customer service.

Special Sessions

Sponsored track presentations will be offered throughout the week by the
following organizations: Defense Information Systems Agency (DISA),
Institute of Electrical and Electronics Engineers (IEEE), International
Council on Systems Engineering (INCOSE), Joint Strike Fighter (JSF),
Office of the Secretary of Defense (OSD), Software Engineering Institute
(SEI), and Software Technology Support Center (STSC).

THE FIFTEENTH ANNUAL

Software Technology Conference
Strategies & Technologies: Enabling Capability–Based Transformation

28 APRIL - 1 MAY 2003 • SALT LAKE CITY, UT
Software design has long been viewed as an art. Software has also become so pervasive that many endeavor to reinvent software design as a
science. Many of the papers presented during past years have focused on how to accomplish this seemingly perpetual task. This year, STC will bring
the art of developing software a step closer to a science by focusing on how strategies and technologies can bring about transformation. A strategy
can be viewed as a science of implementing policy, a specific or defined method to reach compliance. Technologies are the tools for implementing
strategies. Implementing strategies through the use of technologies brings science into the art of software design. Join us in
defining how best to use strategies and technologies as a basis for transforming our capabilities by participating in STC 2003.

•Acquisition
•Architectures
•Business Technologies
•Development
•Innovations

•Inspections
•Interoperability
•Management
•Metrics
•Processes

•Programming
•Quality
•Requirements
•Security
•Testing

•Tools
•Trends

Track Topics on the Conference Agenda

Departments

February 2003 www.stsc.hill.af.mil 29

Special Events

STC 2003 features many networking opportunities such as the Opening
Welcome Reception on Monday evening and the Fifteenth Anniversary
Progressive Social featuring “Still Surfin’” musical entertainment on
Wednesday.

Registration
Completed registration form and payment must be received by
24 March 2003 to take advantage of the early registration fees. Credit
cards will not be charged until 1 April 2003. The conference fee
structure for STC 2003 is as follows:
Discounted registration fee (paid by 24 March 2003):

Active Duty Military/Government* $645
Business/Industry/Other $775

Regular registration fee (paid after 24 March 2003):
Active Duty Military/Government* $715
Business/Industry/Other $845

* Military rank (active duty) or government GS rating or
equivalent is required to qualify for these rates.

Housing
The Housing Bureau of the Salt Lake Convention and Visitors Bureau
(SLCVB), using the online Passkey system, handles housing
reservations. Housing has been available since May 2002; therefore,
some government rate guestrooms at specific hotels may not be
available. To access the Passkey system, log on to the STC Web site
at www.stc-online.org and select the Housing Reservation button. If
you prefer to make your reservation using a traditional method, a PDF
version of the housing form is available online.

Delta Airlines Special Discounted Airfare

Delta Airlines is our official host airline for all STC 2003
attendees. Take advantage of the five-percent discount off Delta’s
published round-trip fares within the continental U.S. A ten-percent
discount is offered on Delta’s domestic system for travel to STC 2003
based on the published unrestricted round-trip coach (Y06) rates.
Book your flight by calling Delta Meeting Network® Reservations at
1-800-241-6760, Monday-Sunday 8:00 a.m. – 11:00 p.m. Eastern
Time, or have your travel agent call for you. You must refer to File
Number 189840A when making your reservations.

Trade Show

STC 2003 will again feature its accompanying trade show, providing
180+ exhibitors the opportunity to showcase the latest in software and
systems technology, products, and services. This year's schedule has
been adjusted to allow participants more time to interact with the
vendors without conflicting with conference presentations.

Exhibit space is sold in increments of 10' x 10' at a rate of $1575 if
application is received on or before 14 February 2003. Should space
still be available after this date, booth space will be sold at the rental
rate of $1775 per 10' x 10' space. Special fees and restrictions may
apply to certain types of booth space. Complete trade show rules, reg-
ulations, and updated hall layout are available on the STC Web site.

All badged exhibit personnel wishing to attend the entire conference
are eligible for a discounted conference registration fee. Please utilize
the conference registration form that was mailed to the exhibit
manager in early January to register for the conference.

Ada Core Technologies, Inc.
AFIT Software Professional

Development Program
Army Small Computer Program
Barrios Technology, Inc.
Battelle
BMC Software
Boeing Co.
Borders Books & Music
CDW Government, Inc.
Centech Group, Inc.
Cognos Corp.
Compliance Automation, Inc.
Crystal Decisions
DCS Corp.
DDC-I, Inc.
Defense News Media Group
DISA

EDS PLM Solutions
Galorath, Inc.
HQ Standard Systems Group
IBM
IEEE Computer Society
Integrated System

Diagnostics, Inc.
Joint Advanced Weapons

Systems Sensors Simulation
and Support

JOVIAL Program Office
Marine Corps System Command
Microsoft
Military Information Technology
NASA GSPC SEWP
Northrup Grumman

Information Technology
Objective Interface Systems, Inc.

OO-ALC/MAS
pragma Systems Corp.
Praxis Critical Systems Ltd.
Quality Plus Technologies, Inc.
Quantitative Software

Management, Inc.
Rational Software
Real-Time Innovations, Inc.
SAIC
Sciforma Corp.
SEEBEYOND
Software Productivity

Consortium
Software Technology

Support Center (STSC)
Space Dynamics Laboratory
SPAWAR
TeamQuest Corp.

Tecolote Research, Inc.
TeraQuest Metrics, Inc.
The Aerospace Corp.
The Software Revolution, Inc.
U.S. Air Force
USAA
USACECOM SEC
Utah State University

Innovation Campus
Vitech Corp.
Wind River

STC 2003 Exhibiting Organizations (As of 11/18/02)

General Information
stcinfo@ext.usu.edu

435-797-0423

Trade Show Inquiries
stcexhibits@ext.usu.edu

435-797-0047

Technical Content Inquiries
stc@hill.af.mil
801-777-7411

Media Relations
stcmedia@ext.usu.edu

435-797-0089

www.stc-online.org
Source Code: CT5A

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering February 2003

try new things, and to risk failure.
• The Wishing Wand. The ability to

ask for what you want, and to live
with not getting it.

• The Detective Hat. The ability to
examine data and to reason about
those data.

• The Yes/No Medallion. The ability
to say yes, the ability to say no (thank
you), and the ability to mean what you
say.
Another model discussed was the

Congruence Model (Figure 1). The intent
of this model is to remind the user that
in dealing with different situations, the
person should consider oneself, others
involved in the situation, and the context
of the situation. The inclusion or exclu-
sion of any of these elements results in a
stance that that may be blaming, placat-
ing, overly reasonable, or congruent.

A similar model shared at the confer-
ence was the Thomas-Kilmann Conflict
Mode Instrument (TKI) (Figure 2). This
model describes possible reactions to
conflict based on consideration of self

vs. consideration of others. The five pos-
sible reactions are displayed in Figure 2.

The TKI reactions are as follows:
• Competing. The goal is to win.
• Avoiding. The goal is to delay or

avoid.
• Compromising. The goal is to find a

middle ground.
• Collaborating. The goal is to find a

win-win situation.
• Accommodating. The goal is to

yield.
To use the models when in an

uncomfortable confrontation, the user
should take a moment to consider where
he or she is relevant to the model and
where he or she would like to be. Then,
modify behavior appropriately.

Many attendees considered the clos-
ing session to be the highlight of the
AYE conference, since it was an oppor-
tunity to network those who still had
questions or other needs with people
who could help.

The AYE conference is geared to
help those with technical strengths tap
into their interpersonal and relational tal-
ents. It aims to demonstrate that these
types of talents can be learned in the
same way that technical skills can be
learned.

In the interest of sharing technical
expertise, the AYE 2003 conference is
providing one scholarship to each of the
winning projects of CrossTalk’s 2002
U.S. Government’s Top 5 Quality
Software Projects contest. This will
ensure attendees the opportunity to
interface with some of the best software
developers in the United States. Readers
interested in learning more about this
conference can access the AYE Web site
at <www.ayeconference.com>.◆

Competing

Avoiding Accommodating

Compromising

Collaborating

Self

Others

Figure 2: Thomas-Kilmann Conflict Mode Instrument

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

JUN2002 " SOFTWARE ESTIMATION

JUL2002 " INFORMATION ASSURANCE

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

OCT2002 " AGILE SOFTWARE DEV.

NOV2002 " PUBLISHER’S CHOICE

DEC 2002 " YEAR OF ENG. AND SCI.

JAN 2003 " BACK TO BASICS

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

CONTINUED FROM PAGE 27

Self

Context

Others

Figure 1: Congruence Model

BACKTALK

February 2003 www.stsc.hill.af.mil 31

The foldout poster in this issue of
CrossTalk based on Eric

Levenez’s research is a fascinating pedi-
gree. Adding fruit to that tree,
BackTalk offers the First Book of
Etymology of Programming Patois
(EPP).

1. In the beginning was the com-
puter. The computer was void of instruc-
tion and darkness was upon the face of
the screen.

2. Engineers said, “Let there be
light,” and there was light. Engineers saw
the light and divided the light from the
darkness. They called the light Software
and the darkness Hardware.

3. The prophet Moore foretold of
computing hardware whose capacity
swelled as its size shrunk. Following
Moore, the seer Parkinson dreamt of a
growing cistern filled with software that
incessantly replenished the cistern such
that it was forever full. Engineers were
perplexed and dismayed.

4. Assembly, the first to take on the
paradoxical Goliath, was a young, brash,
autodidact language. He was disdained by
the scholars who thought him more idiom
than language. Undeterred, his speed bri-
dled the giant. While arduous to preserve,
engineers swore their alliance to Assembly
till the day their languages are without
root or branch.

5. Fortran followed Assembly.
Blessed with longevity and filled with
virility Fortran begat Algol. Intelligent yet
often misconstrued, Algol was a captivat-
ing mistress who brought forth several
programming languages.

6. Algol’s firstborn was CPL who
begat BCPL who begat B who begat C
who with his objective son C++ emerged
as a fruitful and prominent language. A
true blue-collar language, C was healthy,
reticent, and, at times, explosive.

7. The malodorous language B-O
begat Flow-Matic, of infomercial fame,
who in turn begat COBOL, a lad who
exited the womb in a three piece suit and
briefcase in hand.

8. COBOL seized an incestuous
opportunity to pair the mistress Algol and
Fortran the IV, Fortran’s great great
grandson. The union engendered Algol’s
second language PL/I. Harsh to the eye
and large in the thigh, suitors eschewed
PL/I who languished in obscurity.

9. Algol’s third language, Simula, was

ahead of her time and crowned the
Princess of Objectivity. Simula was
beguiled by Lisp, a parenthetical language
from the League of Ivy, and they begat
Smalltalk who was offered at the altar of
Xerox. Several years later, Simula’s daugh-
ter collaborated with C to begat C++, an
objective, robust yet capricious language.

10. Lisp also beguiled Algol and her
fourth language, Scheme, was born.
Favoring elegance over practicality,
Scheme had a proclivity for genetics but
was a stranger to success. Scheme had a
tryst with Sir Lambda of Calculus that
produced Haskell. Haskell was a lazy
polymorphic language who begat Eddie,
the annoying friend of Wally who was the
brother of Beaver.

11. Algol’s fifth language, Pascal,
resembled Algol’s great great grandson C
and had a penchant for higher learning.
Pascal begat three daughters: Modula,
who followed her father into education;
Mesa, who dabbled in woodwork; and
Ada, the love child of the Sirens of War
who was reared to be the only language.
In the right hands this well-defined, mul-
titasking, polymorphic prodigy could be
an industrious lady. Yet, in the wrong
hands she was a fickle corpulent popin-
jay. The three sisters now languish in an
old code home.

12. Algol’s last progeny Algor, born
with the mark of the ass, inspired the
movie “Love Story” and invented the
information superhighway on which all
languages would, in time, journey. Algor,
like his mother, fell from an ivory tower.
Many blame the Earl of Chad, although
suicide is a more likely suspect.

13. Prolog from Ether was a self-
made language that preferred matching
solutions to solving problems. For com-
mon users, Prolog induced recursive
headaches and algorithmic nausea. For
fuzzy addicts, he excelled in fabricating
exquisite neural lattices.

14. In the Land of Ice, the language
Snobol manipulated strings to scale
Mount Data. This pioneer, now obsolete,
journeyed on a virtual machine – a con-
cept that would be instrumental in the
navigation of Algor’s superhighway.

15. Rooted in small towns and vil-
lages across the country, BASIC was the
language of the mediocre. At an early age,
BASIC shunned complexity and took a
vow of isolation. BASIC was reincarnated

as Visual BASIC and pursued Nirvana,
which disbanded after Cobain’s grungy
demise. Limited by scale, many discarded
Visual BASIC as slang but his ubiquitous
force continues to appeal to the masses.

16. C begat Awk and Awk begat
Nawk and Nawk enticed Sh, the quiet
interpreter, who begat Perl. A natural nav-
igator, Perl toils on the River Script
extracting, distributing, and dealing data.
Often used but seldom loved, Perl is
known as the Swiss Army Chainsaw for
the callous methods she employs to extri-
cate quandaries aptly referred to as Perl
Jams.

17. Angered by his great-grand-
daughter’s lack of classiness, C connived
with ABC and Modula-3 to supplant and
string up Perl. They hatched Python, a
smooth broker who haunts the banks of
the River Script constricting the inter-
rupts of his rival Tcl; not to be confused
with TLC who lost her left eye in
Honduras.

18. In a defiant move, Perl collabo-
rated with Python, Smalltalk, and Ada’s
towering daughter, Eiffel, to ameliorate
their dominion of the River Script. The
result was Ruby. Inheriting Perl’s resilien-
cy, Python’s elegance, and Smalltalk’s
autonomy, Ruby traverses the River Script
and Algor’s Web- encrusted highway with
ease.

19. During the French revolution
ML begat SML, a nasty language who tor-
tured his users to the delight of his father.
While incarcerated in the Palace de
Cristal, SML begat CAML. After con-
tracting emphysema, CAML begat CAML
Light who moved to Ireland and begat
O’CAML who objectively surmounted
his innate humps.

20. Mesa begat Cedar who joined
with Scheme, Smalltalk, and C++ to har-
vest a solid language called Oak. Oak
begat Java who was sun-roasted for mass
distribution. Brewed in early popularity,
Java has percolated through harsh rays of
criticism on her way to maturity. Only
time will tell if she will amount to a hill of
beans.

21. And thus ended the first period of
the proliferation of programming patois.

— Gary Petersen
Shim Enterprises, Inc.

The First Book of EPP

CrossTalk / MASE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

Feb2003cover.qxd 1/8/03 10:54 AM Page 2

	Cover
	Index
	From the Publisher
	Evolutionary Trends of Programming Languages
	Call for Articles
	Language Considerations
	SEPR and Programming Language Selection
	Web Sites
	International Standardization in Software and Systems Engineering
	Coming Events
	An Enterprise Modeling Framework for Complex Software Systems
	Highpoints From the Amplifying Your Effectiveness Conference
	STC 2003 Conference Registration
	BackTalk
	Back Cover

