
Mar2003cover.qxd 2/5/03 2:11 PM Page 1

Managing Software Quality With Defects
This article presents two simple approaches to measuring and modeling software
quality across the project life cycle so that it can be made visible to management.
Both approaches include developing a life-cycle defect profile.
by David N. Card

Lean Six Sigma: How Does It Affect the Government?
Although largely ignored by the government, Lean Six Sigma offers many benefits to
system acquisition that this author says should not be ignored, including a bottom-line
focus and requirements critical to customers.
by Dr. Kenneth D. Shere

What Is Requirements-Based Testing?
Here is an overview of the requirements-based testing process aimed at project
managers, development managers, developers, test managers, and test practitioners
who want to apply it in their organizations.
by Gary E. Mogyorodi

Determining Return on Investment Using Software Inspections
Using defined measurements, this article shows how an organization with solid parameters
for software inspection return on investment can derive its own return-on-investment metric.
by Don O’Neill

A Pair Programming Experience
Using his own experience, this author shows how he was able to improve programmer productivity
and reduce defects in a large software organization using pair programming techniques.
by Dr. Randall W. Jensen

Clarify the Mission:A Necessary Addition to the Joint Technical Architecture
This article discusses how a simplified version of the Unified Modeling Language component
diagram can connect the three JTA views to create a clarified environment for software development.
by Ingmar Ögren

Let’s Play 20 Questions:Tell Me About Your Organization’s Quality Assurance and Testing
This article presents 20 questions to determine and understand how mature the quality assurance and testing
environments are within an organization.
by Gary E. Mogyorodi

Cover Design by
Kent Bingham.

Models: Brice and
Heidi Anderson.
Photo by Kevin

Dilley.

3

7

28

29

30

31

DeparDepar tmentstments

Quality Quality SoftwarSoftwaree

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering March 2003

4

8

12

16

22

25

30

*** *** ****** ******

From the Publisher

Web Sites
Coming Events

STC Registration

Letter to the Editor

Call for Articles

BackTalk

CrossTalk Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Chelene Fortier

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 21.

Ogden ALC/MASE
7278 Fourth St.
Hill AFB, UT 84056-5205

Best Best PracticesPractices

Online Online ArArticleticle

*** *** ****** ******Open Open FForumorum

From the Publisher

Several years ago, I was supporting a software development effort at a commercial
company. My boss decided to add to my responsibilities by having me develop part

of the software using a database manager. I did not have any experience with database
development, and my management didn’t provide me with formal training. However,
they did provide me with tutorial textbooks, time to learn, and a customer support con-
tract with the software company so that someone could help me as I needed questions
answered. The end result was my software delivered on time, on budget, and with no

errors reported from the customer.
Not long after that, I was hired by another organization that wanted me to support their

database development. However, they wanted me to use an application of the database manag-
er that I had never used before. I told them that I had never used this application, but I knew
about it and wanted to learn it, so they promised to give me that opportunity. I naively assumed
that meant the same arrangement as my previous employer: books, time, and customer support.
I was wrong. I was given the books and told that I was expected to learn the application on my
own time (in addition to the eight hours of uncompensated overtime that they also told me I
was expected to work each week). No one else in the organization was familiar with this appli-
cation, so I also didn’t have anyone to answer questions. The results weren’t as successful as at
my previous employer. I finally left the company while the project was behind schedule, and we
didn’t know when we would be finished; I don’t know what the end result was.

The articles in this month’s issue provide some good insights on things that can be done to
help an organization develop quality software. I would like to add to these ideas by reminding
managers to provide their people with the tools needed for the job. By tools, I’m not recom-
mending more software packages; I’m recommending training, technology, and appropriate
time.

Getting to this month’s articles, David N. Card starts us out with Managing Software Quality
With Defects. Card is a leader in the software community on measurement, and he shares his
insights for quality measurements in this article. I believe in the concept that if you can’t meas-
ure it, you can’t manage it. If we want quality in our software, then we need to track and man-
age the quality while the software is being developed.

Next, Dr. Kenneth D. Shere gives an overview of Lean Six Sigma (LSS) in Lean Six Sigma:
How Does It Affect the Government? He starts his article by discussing what LSS is, then goes on to
discuss the benefits realized by several organizations using LSS, and how it can be used for
acquisition.

Gary E. Mogyorodi used to work with Richard Bender, the developer of requirements-based
testing. Mogyorodi shares the knowledge he gained from this association in What Is Requirements-
Based Testing? If you would like the opportunity to get more information directly from
Mogyorodi, he will be speaking at this year’s Software Technology Conference, held April 28-
May 1 in Salt Lake City. Don O’Neill also shares his insight in Determining Return on Investment
Using Software Inspections. If you’re not already using software inspections, you’re missing the boat;
I hope this article will motivate you to start.

The supporting articles in this issue should also provide some useful pointers. Dr. Randall
W. Jensen shares his first encounter with pair programming in A Pair Programming Experience.
Jensen discusses how this experiment was arranged, and how it turned out. We also share a dis-
cussion of software architectures in Ingmar Ögren’s Clarify the Mission: A Necessary Addition to the
Joint Technical Architecture. Lastly, Gary E. Mogyorodi presents 20 questions used to determine the
maturity of an organization’s quality assurance and testing environments in his online article
Let’s Play 20 Questions: Tell Me About Your Organization’s Quality Assurance and Testing.

I hope the managers and acquirers who read CrossTalk are using the insights shared by
software industry leaders to enable their people and contractors to develop the software they are
capable of developing. This requires working with those developers to determine realistic deliv-
ery schedules, providing resources for necessary training, and providing other support needed
to get the job done right the first time.

We Need the Right Tools for Quality Software

Elizabeth Starrett
Associate Publisher

March 2003 www.stsc.hill.af.mil 3

4 CROSSTALK The Journal of Defense Software Engineering March 2003

Many factors contribute to an increased
practical interest in managing software

quality. This means treating software quality
as a key dimension of project performance,
equal to cost (effort) and schedule.
Corporate initiatives based on the Capability
Maturity Model® (CMM®) [1], CMM
IntegrationSM (CMMISM) [2], and Six Sigma [3]
provide some examples of forces promoting
an interest in quality as a management con-
cern.

General management activities include
planning, monitoring, and directing. In order
to manage quality, it must be planned;
accomplishment of the plan must be
tracked, and appropriate corrective action
must be taken as necessary. Nearly all proj-
ects establish budgets for effort and/or cost
so that these dimensions can be managed.
These budgets are plans for the expenditures
of labor and/or dollars during the life of the
project. Budgets typically identify planned
total expenditures as well as expenditures
during specific intervals such as life-cycle
phases or months. Managing quality also
requires establishing a budget for quality.

This article presents a simple approach
to measuring and modeling software quality
across the project life cycle so that it can be
made visible to management. Next in the
article are examples of applying this measur-
ing and modeling approach in real industry
settings. Both of the examples presented
come from CMM Level 4 organizations.
Whether or not the CMM or CMMI explic-
itly requires this type of analysis is beyond
the intended scope of this article. More
importantly, the approach has been shown to

be practical and useful to project managers.

Software Quality and the
Defect Profile
There are many views of software quality.
The ISO/IEC 9126 [4] defines six:
• Functionality.
• Efficiency.
• Reliability.
• Usability.
• Maintainability.
• Portability.

Some of these quality factors are difficult
to measure directly. Intuitively, the occur-
rence of defects is negatively related to func-
tionality and reliability. Defects also interfere,
to some degree, with other dimensions of
quality. Both of the approaches discussed
here involve developing a life-cycle defect
profile. This defect profile serves as a quality
budget. It describes planned quality levels at
each phase of development just as a budget
shows planned effort (or cost) levels. Actual
defect levels can be measured and compared
to the plan, just as actual effort (or cost) is
compared to planned effort (or cost).
Investigating departures from the plan leads
to corrective actions that optimize project
performance.

Software development consists of a
series of processes, each of which has some
ability to insert and detect defects. However,
only the number of detected defects in each
phase can be known with any accuracy prior
to project completion. The number of
defects inserted in each phase cannot be
known until all defects have been found.
Confidence in knowing that approximate

number comes only after the system has
been fielded. Consequently, this approach
focuses on defects detected.

The techniques presented here depend
on two key assumptions:
• Size is the easily quantifiable software

attribute that is most closely associated
with the number of defects. The basic
test of the effectiveness of complexity
models and other indicators of defect-
proneness is to ask, “Does this model
show a significantly higher correlation
with defects than just size (e.g., lines of
code) alone?” [5].

• Defect insertion and detection rates tend
to remain relatively constant as long as
the project’s software processes remain
stable. While the rates are not exactly
constant, they perform within a recog-
nized range.
The first assumption appears to be inher-

ent to the nature of software. CMM Level 4
organizations actively work to make the sec-
ond assumption come true. That is, they are
acting to bring their processes under control.

An Empirical Model
The simplest approach to generating a defect
profile for intended projects within the
organization is to collect actual data about
the insertion and detection rates in each life-
cycle phase. This can be accomplished in the
following four steps:
• First, historical data are collected. Table 1

shows a simple spreadsheet used to tab-
ulate defect discovery and detection data
using example data. In addition, the size
of the project from which the defect data
is collected must be known. The size
measure must be applied consistently,
but this approach does not depend on
using any specific measure. Lines of
code, function points, number of classes,
etc., may be used as appropriate. (The
data in Table 1 are simulated, not real.)

• Second, an initial profile of the number
of defects found in each phase is gener-

Managing Software Quality With Defects1

David N. Card
Software Productivity Consortium

This article describes two common approaches to measuring and modeling software quality throughout the software life cycle
so that it can be made visible to management. Both approaches involve developing a life-cycle defect profile, which serves as a
“quality budget.” This article also provides actual examples using each approach.

Phase Inserted

Phase Detected Analysis Design Code
Developer

Test
System
Test Total

Analysis 0 0

Design 50 200 250

Code 50 100 300 450

Developer Test 25 50 150 0 225

System Test 18 38 113 0 0 169
Operation 7 12 37 0 0 56

Total 150 400 600 0 0 1,150

Table 1: Example of Empirical Defect Profile (Simulated Data)

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

SM Capability Maturity Model Integration and CMMI are serv-
ice marks of Carnegie Mellon University.

Quality Software

Managing Software Quality With Defects

March 2003 www.stsc.hill.af.mil 5

ated as shown in Figure 1. The bars in
that figure represent the totals in the last
column of Table 1.

• Third, this initial profile is scaled to
account for differences between the size
of the project(s) from which the profile
was developed and the size of the proj-
ect to which it is applied. This is accom-
plished by multiplying by the ratio of the
project sizes. For example, if the defect
profile in Figure 1 were to be used to
develop a defect profile for a project
twice the size of the project providing
the data that went into Figure 1, then the
bars of the profile representing the new
project would be twice the size of those
in Figure 1.

• Fourth, the scaled defect profile is
adjusted further to reflect the planned
performance of the project. For exam-
ple, if the project plan called for the
automatic generation of code from
design instead of hand coding as previ-
ously done, then the number of defects
inserted in the implementation phase
would be adjusted downward to reflect
this change in the coding process. Also,
changes in the project’s process may be
induced in order to reach a specified tar-
get in terms of delivered quality if previ-
ous performance did not yield the
required level of quality. The target
might be specified as a result of a cus-
tomer requirement or an organizational
goal.
Actual defect counts can then be com-

pared with this final plan (defect profile) as
the project progresses. Suggestions for this
activity are provided in a later section of this
article. Note that the defect profile does not
address defect status (i.e., open vs. closed prob-
lems/defects). All detected defects, regard-
less of whether or not they ever get resolved,
are included in the defect counts.

Figure 2 shows an example of a defect
profile developed empirically [6] for an actu-
al military project. This figure shows the pre-
dicted number of defects to be injected and
detected in each phase, based on previous
projects. However, only actual counts are
shown for the number of defects detected,
because the actual number injected cannot
be determined with any confidence until
after software delivery.

The project in Figure 2 was about two-
thirds of the way through software integra-
tion at the time data were reported. Two-
thirds of the predicted number of defects
had been found in software integration. The
project’s quality performance was tracking
the plan. This illustrates that the real value of
the defect profile lies in its ability to make
quality visible during development, not as a
post-mortem analysis technique.

The project in Figure 2 actually was
completed after this graph was prepared.
The planned and actual defect levels never
differed by more than 10 percent. The proj-
ect team handed their product over to the
customer with a high degree of confidence
that it met the targeted level of quality.

An Analytical Model
Defect profiles may also be generated analyt-
ically. Many early studies of defect occur-
rence suggest that they followed a Rayleigh
dispersion curve, roughly proportional to
project staffing. The underlying assumption
is that the more effort expended, the more
mistakes that are made and found.

Gaffney [7] developed one such model:

Vt = E (1 — exp(- B(t**2)))

Where:
Vt = Number of defects discovered by

time t.

E = Total number of defects inserted.
B = Location parameter for peak.

The time periods t can be assumed to be
equal to life-cycle phase transition bound-
aries in order to apply the model to project
phases rather than elapsed time. The location
parameter B fixes the time of the maximum
(or peak) distribution. For example, B=1
means that the peak occurs at t=1.

The analytical approach involves apply-
ing regression analysis to actual phase-by-
phase defect data to determine the values of
B and E that produce a curve most like the
input data. Many Software Productivity
Consortium member companies use our
proprietary software, SWEEP [8] (based on
the Gaffney model), to perform this analysis,
but it can easily be implemented in Microsoft
Excel.

The effectiveness of the analytical
approach depends on the satisfaction of
additional assumptions, including the follow-
ing:

95

33 36

195

52 50

0

89

60

0

115

0

0

20

40

60

80

100

120

140

160

180

200

D
ef

ec
ts

Design Implemetation Software Integration System Integration

Software Phase

M2.3+ Defects: Predicted vs. Actual

Predicted Defects Injected
Predicted Defects Detected
Actual Defects Detected

Figure 2: Example of Empirical Defect Profile (Actual Project Data)

0

250

450

225

169

56

Analysis Design Coding Developer
Testing

System
Testing

Operation

0

250

450

225

169

56

Analysis Design Coding Developer
Testing

System
Testing

Operation

Figure 1: Example of Defect Profile With Data From Table 1

Quality Software

6 CROSSTALK The Journal of Defense Software Engineering March 2003

• Unimodal staffing profile.
• Life-cycle phases of similar (not exact-

ly equal) duration (not effort).
• Reasonably complete defect reporting.
• Using only observable/operational

defects.
To the extent that these assumptions

are satisfied, this model gives better results.
Analytical models such as this are useful
when the organization lacks complete life-
cycle defect data or desires to smooth
existing data to provide an initial solution
for new projects without prior historical
data. The defect profile obtained from the
actual data can be easily adjusted to fit
projects with different numbers of life-
cycle phases and processes by selecting
appropriate values of E and B.

Figure 3 provides an example of a
defect profile for another actual military
project generated by SWEEP. The light
bars in Figure 3 represent the expected
number of defects for each phase, based
on the model. For this specific project, the
actual number of defects discovered is
substantially lower than planned during
design. Consequently, additional emphasis
was placed on performing rigorous inspec-
tions during code, with the result that
more defects than anticipated were cap-
tured during code, putting the project back
on track to deliver a quality project as
shown at post release.

A detailed discussion and analysis of
applying the Gaffney model to a military
project using SWEEP can be found in [9].

Interpreting Differences
During project execution, planned defect
levels are compared to actual defect levels.
Typically, this occurs at major phase transi-

tions (milestones). However, if a phase
extends beyond six months, then consider
inserting additional checkpoints during the
phase (as in the example in Figure 1 where
analyses were conducted at the completion
of each one-third of integration testing).
Since real performance never exactly
matches the plan, the differences must be
investigated. This involves three steps:
• Determine if the differences are signif-

icant and/or substantive. This might
be accomplished by seeking visually
large differences, establishing thresh-
olds based on experience, or applying
statistical tests such as the Chi-Square
[10].

• Determine the underlying cause of the
difference. This may require an exami-
nation of other types and sources of
data such as process audit results as
well as effort and schedule data. Many
techniques have been developed for
causal analysis (e.g., [11]), but they fall
beyond the scope of this article.

• Take appropriate action. This includes
corrective actions to address problems
identified in the preceding step, as well
as updates to the defect profile to
reflect anticipated future performance.
Differences between planned and actu-

al defect levels do not always represent
quality problems. Potential explanations of
departures from the plan include the fol-
lowing:
• Bad initial plan (assumptions not satis-

fied, or incomplete or inappropriate
data).

• Wrong software size (more or less than
the initial estimate).

• Change in process performance (better
or worse than planned).

• Greater or lesser software complexity
than initially assumed.

• Inspection and/or test coverage not as
complete as planned.
Analyzing departures from the defect

profile early in the life cycle provides feed-
back for our understanding of the size and
complexity of the software engineering
task while there is still time to react.

Summary
Relatively simple models of software qual-
ity based on defect profiles are becoming
increasingly popular in the software indus-
try as organizations mature. These models
establish a quality budget that helps to make
trade offs among cost, schedule, and qual-
ity visible and reasoned, rather than choic-
es made by default. Defect profiles present
quality performance to the project manag-
er in a form that he or she understands.
Thus, the consequences of a decision such
as “reducing inspection and testing effort
to accelerate progress” can be predicted.
Unintended departures from planned
quality activities can be detected and
addressed.

Moreover, the ability to model quality
across the project life cycle is a necessary
prerequisite to implementing design for
Six Sigma techniques [3] in software devel-
opment. Achieving Six Sigma requires
measuring and managing quality at each
software production step, not just during
the final testing stages prior to delivery.

Defect models can become very rich.
The concept of orthogonal defect classifi-
cation [12], for example, involves develop-
ing separate profiles for each of many dif-
ferent defect types. These defect classifica-
tions facilitate the causal analysis process
when potential problems are identified.

This article discussed two very simple
approaches to building and using defect
profiles. These techniques make quality
visible so that it can be managed.◆

References
1. Paulk, Mark, et al. Capability Maturity

Model: Guidelines for Improving the
Software Process. Boston: Addison-
Wesley, June 1995.

2. Software Engineering Institute. Capa-
bility Maturity Model ® Integrated SM.
Pittsburgh: SEI.

3. Harry, Mikel J., and Richard Schroeder.
Six Sigma: The Breakthrough Manage-
ment Strategy Revolutionizing The
World's Top Corporations. New York:
Doubleday, Dec. 1999.

4. ISO/IEC Standard 9126.
“Information Technology – Software
Quality, Part 1.” 1995.

5. Card, David, and William Agresti.

Defect Profile

0

100

200

300

400

500

600

700

800

Req
uir

em
en

ts

Des
ign

Cod
e

Int
eg

rat
ion

Dry-
Run

Fo
rm

al
Te

st

Pos
t R

ele
as

e

D
ef

ec
ts

 D
is

co
ve

re
d Defects per Phase

Expected Defects per Phase

Post-release defects are those
reported within six months
following release of the software
to the field.

Figure 3: Example of Analytical Defect Profile (Actual Project Data)

Managing Software Quality With Defects

March 2003 www.stsc.hill.af.mil 7

“Resolving the Software Science
Anomaly.” Journal of Systems and
Software Vol. 7 (1990): 29-35.

6. Card, David. “Quantitatively Managing
the Object-Oriented Design Process.”
Canadian National Research Council
Conference on Quality Assurance of
Object-Oriented Software. Feb. 2000.

7. Gaffney, John. “Some Models for
Software Defect Analysis.” Lockheed
Martin Software Engineering Work-
shop, Gaithersburg, MD, Nov. 1996.

8. Software Productivity Consortium.
SWEEP Users Guide. SPC-98030-MC,
1997.

9. Harbaugh, Sam. “Crusader Software
Quality Assurance Process Improve-
ment.” Technical Report. Integrated
Software, Inc., 2002.

10. Hays, William, and Robert Walker.
Statistics: Probability, Inference, and
Decision. Austin, TX: Holt, Rinehart,
and Winston, 1970.

11. Card, David. “Learning From Our
Mistakes With Defect Causal Analysis.”
IEEE Software Jan. 1998.

12. Chillarge, R., et al. “Orthogonal Defect
Classification.” IEEE Transactions on
Software Engineering Nov. 1992.

Note
1. An earlier version of this article was

published in the proceedings of the
Institute of Electrical and Electronics
Engineers’ Computer Software and
Applications Conference, Aug. 2002.

About the Author

David N. Card is a
fellow of the Software
Productivity Consor-
tium where he pro-
vides technical leader-
ship in software meas-

urement and process improvement.
During 15 years at Computer Sciences
Corporation, Card spent six years as
the director of Software Process and
Measurement, one year as a resident
affiliate at the Software Engineering
Institute, and seven years with the
research team supporting the NASA
Software Engineering Laboratory.
Card is editor-in-chief of the Journal of
Systems and Software. He is the author
of “Measuring Software Design
Quality,” co-author of “Practical
Software Measurement,” and co-edi-
tor of ISO/IEC standard 15939:2002
“Software Measurement Process.”
Card is a senior member of the
American Society for Quality.

Software Productivity
Consortium
2214 Rock Hill Road
Herndon,VA 20170
Phone: (703) 742-7199
Fax: (703) 742-7200
E-mail: card@software.org

Software Quality HotList
www.soft.com/Institute/HotList
The Software Research Institute main-
tains a list of links to selected organiza-
tions and institutions that support the
software quality and software testing
area. Organizations and other references
are classified by type, by geographic area,
and then in alphabetic order within each
geographic area. The institute’s aim is to
bring to one location a complete list of
technical, organizational, and related
resources.

The Quality Assurance
Institute
www.qaiusa.com
The Quality Assurance Institute (QAI) is
exclusively dedicated to partnering with

the enterprise-wide information quality
profession. QAI is an international organ-
ization consisting of member companies
in search of effective methods for detec-
tion-software quality control and preven-
tion-software quality assurance. QAI pro-
vides consulting, education services, and
assessments.

Software Technology
Support Center
www.stsc.hill.af.mil
The Software Technology Support Center
is an Air Force organization established to
help other U.S. government organizations
identify, evaluate, and adopt technologies
to improve the quality of their software
products, efficiency in producing them,
and their ability to accurately predict the
cost and schedule of their delivery.

WEB SITES

March 24-28
International Symposium on

Integrated Network Management
Colorado Springs, CO

www.im2003.org

March 31-April 2
Association for Configuration and Data

Management’s Annual Technical and
Training Conference

San Diego, CA
www.acdm.org/main.htm

April 1-2
SecurE-Biz Summit

Arlington, VA
www.SecurE-Biz.net

April 8-10
FOSE 2003

(Federal Office Systems Exposition)
Washington, D.C.

www.fose.com

April 28-May 1
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

May 3-10
International Conference on

Software Engineering
Portland, OR

www.icse-conferences.org/2003

May 12-16
STAREAST ’03

Orlando, FL
www.sqe.com/stareast/

June 2-6
Applications of Software Measurement

San Jose, CA
www.sqe.com/asm

August 19-22
Software Test Automation Fall ’03

Boston, MA
www.sqe.com/testautomation/

COMING EVENTS

8 CROSSTALK The Journal of Defense Software Engineering March 2003

Lean Six Sigma (LSS) is the culmination
of a variety of process improvement

methods. These methods began in the
1920s with the development of time and
motion studies, and the principles of sta-
tistical quality control. Thirty years later in
the early 1950s, W. Edwards Deming and
Bonnie Small developed the foundations
of modern process improvement meth-
ods. Deming developed Total Quality
Management (TQM). Small made the
analyses of statistical quality control
accessible to people who were not profes-
sional statisticians and mathematicians
through her publication of “The Western
Electric Rules” [1].

Prior to the development of LSS,
process improvement methods were nar-
rowly focused. They did not address the
bottom line in terms of what is critical to the
customer and the cost of poor quality.

Lean manufacturing focuses on elimi-
nating nonvalue-added and unnecessary tasks.
Tasks are value-added when the customer
is willing to pay for them. Some tasks like
invoicing are nonvalue-added, but are nec-
essary for business operations. The lean
methodology is bottom-line focused but
does not address quality per se. Motorola
[2] developed Six Sigma to drive defects to
zero, but did not explicitly address the
elimination of unnecessary tasks.

LSS is an approach that combines lean
manufacturing and Six Sigma from a glob-
al perspective that takes both suppliers
and customers into account. This
approach tells us how to improve our
processes in a way that considers both the
costs of poor quality and issues critical to
customer requirements. In addition to
manufacturing processes, LSS has been
very successfully used in transactional and
service industries. It also directly applies
to software processes, but few organiza-
tions have applied it.

The companies that are the strongest
proponents of LSS include General
Electric Co., Sony Corporation, Honey-
well, TRW Inc., Bombardier, Johnson and
Johnson, The Dow Chemical Company,

Exxon Mobil Corp., J.P. Morgan Chase &
Co., Citibank, GMAC Mortgage
Corporation, and John Deere. In annual
meetings and letters to shareholders, these
companies have credited LSS with saving
billions of dollars in operational expenses.

Successful LSS application requires
committed leadership, education, and
institutionalization. Regardless of future

names and improvements, LSS as a con-
cept will continue. The approach is flexi-
ble in the sense that the methodology is
not intended to be static. LSS applies its
basics to itself, i.e., just as LSS is used to
continuously improve other processes, it
should be used to continuously improve
the improvement process.

Among process improvement ap-
proaches like TQM, business process
reengineering and the Capability Maturity
Model®, only LSS requires each of the fol-
lowing activities: (1) focusing on what is
critical to the customer, (2) emphasizing
the bottom line, (3) validating any claims
of success, and (4) institutionalizing the
process through extensive training pro-
grams and certification of expertise.

This methodology could be important
to the military for several reasons:
• LSS has been proven by industry to be

highly successful.
• Major prime contractors have imple-

mented LSS, including The Boeing
Company, Raytheon Company,
Lockheed Martin Corporation, TRW,
Honeywell, and Northrop Grumman
Corporation.

• LSS can help the military operate more
efficiently.

• LSS thinking can be applied to acquisi-
tions and software intensive systems.
This article provides some answers to

the following questions:
• What is LSS?
• Why should the government care

about LSS?
• How can LSS be applied to acquisi-

tion?

What Is LSS?
Six Sigma was developed by Motorola Inc.
in the mid-1980s to control variability in
processes. Simply stated, Motorola con-
cluded that they could not compete with
the Japanese using their current concept
of quality. The cost of poor quality was
too high. They developed Six Sigma to
produce essentially zero defects in their
products.

Lean manufacturing inspects the
process by analyzing each task or activity
to determine whether it is value-added, is
not value-added but necessary, or is not
value-added. A value-added activity is
something for which the customer is will-
ing to pay. An example of a value-added
activity is the maintenance of a satellite
operations center. If a contractor was
maintaining this center, then an example
of a nonvalue-added but necessary activi-
ty is an invoice payment. Activities that
neither add value nor are necessary should
be eliminated.

When a major program review is held,
like the critical design review for the soft-
ware of a major system, it is common for
the review to be attended by 150 high-
priced people and to last for a week.
These reviews are frequently dog-and-
pony shows in which no really critical
review takes place. A typical cost for this
review is more than $8/second (more

Lean Six Sigma:
How Does It Affect the Government?

Dr. Kenneth D. Shere
The Aerospace Corporation

Lean Six Sigma (LSS) is a combination of historical methods for process improvement that focuses on the bottom line and
critical-to-customer requirements. This method differs from previous process improvement approaches because it uses estab-
lished engineering principles and is based on institutionalization of the approach and independent validation of claims of suc-
cess. LSS has been highly successful in industry, but the government has largely ignored it. This article provides an introduc-
tion to LSS and describes how the government can benefit from using “LSS thinking” in system acquisition.

“This approach [Lean
Six Sigma] tells us how

to improve our processes
in a way that considers

both the costs of
poor quality and issues

critical to customer
requirements.”

Lean Six Sigma: How Does It Affect the Government?

March 2003 www.stsc.hill.af.mil 9

than $1 million for the week). Does this
review add value? How should it be
changed to add value? LSS thinking
addresses these questions.

LSS is a defined approach that synthe-
sizes the use of established tools and
methods. Its methods are generally divid-
ed into two approaches. One approach is
called design for Six Sigma. It is generally
used when designing new systems or
processes.

The other approach, used for process
improvement, is called the define-measure-
analyze-improve-control approach, which rep-
resents five phases. Some organizations
(and I agree with them) use six phases.
The difference between these representa-
tions is that the second approach divides
the define phase into vision and define.
These six phases of LSS are described
below.
• Vision. This phase is used to identify

critical-to-customer factors, teams, and
key stakeholders; to describe the busi-
ness impact; and to plan the process
improvement project.

• Define. This phase focuses on defin-
ing the as-is process. Frequently,
processes are understood by experi-
enced personnel but are not actually
written down. Simply gathering a
group of key people in a room and
asking them to define a process often
improves it. Sometimes the improve-
ments are significant, and the team
decides that it is good enough – no
further work is necessary.

• Measure. The purpose of this phase
is to measure the existing process.
Without these measurements, it is
impossible to determine how much a
process is improved or to validate sav-
ings. This phase is critical to future
analyses and suggested process
improvements.

• Analyze. During this phase, the caus-
es of poor quality are determined and
analyzed. Each step of the process is
assessed to determine waste from a
lean perspective. Problems are deter-
mined from historical data and
employee knowledge. Fishbone charts,
also called cause-and-effect charts, are
used to identify the most likely causes
of the defects. The process is usually
simulated to determine bottlenecks
and resource utilization, and the cost
of defects. These analyses form the
basis for design of experiments,
regression analysis, and other tech-
niques used to evaluate potential
improvements in the next phase.

• Improve. The focus of this phase is
to determine process improvements.

Processes are assessed from the per-
spectives of whether (1) each task
adds value to the product or service,
(2) there is a more cost-effective way
of performing the process, and (3) the
process meets or accounts for require-
ments critical to the customer.
Typically, the process is modeled and

simulated. New ideas are tried out in
simulation before they are implement-
ed. Sometimes it is necessary to per-
form a design-of-experiments analysis
to determine ways to improve a
process. This allows the analyst to
determine the value of adding people
or resources to a given task or taking
them away from another task. It also
allows the analyst to look at funda-
mental changes to the process. These
analyses are conducted from a bot-
tom-line perspective.

• Control. During this phase, the
improved process is implemented in a
controlled manner. Data are taken to
verify that the proposed improvement
(previously validated through simula-
tions) is real. The financial member of
the team serves as an independent
auditor and validates the savings.
Frequently, the process is initially

implemented as a prototype before full
implementation.
Each of these phases uses a defined

methodology. Training to become an
expert in LSS takes several weeks spread
over a five-month period. Between the
classes, students work on an actual proj-
ect, receiving consulting advice from the
trainer as necessary. When training is
completed, the student will have imple-
mented a successful LSS project. After
completing a second project in which the
student is the leader, and taking an exam,
the student is certified as a LSS expert, or
equivalent to a black belt in the field. There
are lesser levels of training for people who
help on LSS projects but are not the lead-
ers. LSS organizations provide training
internally, but consulting companies are
generally used in the early stages of imple-
menting LSS.

This article has talked about LSS as a
methodology, but it is more than that. It is
a way of thinking that is illustrated in the
following way. Consider the telemetry run
chart shown in Figure 1. A satellite opera-
tor looking at this chart in real time thinks
that everything looks pretty good. In fact,
it looks great – the process is running well
within its control limits.

If we apply LSS thinking to this chart,
we begin to analyze the process statistical-
ly. Applying well-known run-chart analysis
techniques [1] (which could be automat-
ed), we see that a statistically significant
event has already occurred and another
might occur soon. These events are iden-
tified in Figure 2 (see page 10).

The fact that a statistically significant
event has occurred does not necessarily
mean that something bad has happened.
It does mean that there is an anomaly that
needs explanation. This analysis would
trigger involvement by satellite engineers
to resolve the anomaly. If the event is
caused by something bad, the engineers
may be able to resolve it before additional
damage is done to the satellite. This exam-
ple shows how LSS thinking can lead to
early detection of anomalies.

“Lean manufacturing
inspects the process by
analyzing each task or
activity to determine

whether it is
value-added, is not
value-added but

necessary, or is not
value-added.”

+ 1 sigma

- 1 sigma

-2 sigma

+ 2 sigma

Time

+ 1 sigma

- - 1 sigma

- 2 sigma

+ 2 sigma

Time

Figure 1: Sample Telemetry Run-Chart

Quality Software

10 CROSSTALK The Journal of Defense Software Engineering March 2003

Why Should the Government
Care About LSS?
LSS is a best practice for process improve-
ment. It applies to all processes – manu-
facturing, software, operational, transac-
tional, and service processes. All the
major space contractors use LSS, includ-
ing Lockheed Martin, Raytheon, Boeing,
TRW, Northrop Grumman, and
Honeywell. Furthermore, the presidents
of Lockheed Martin, Honeywell,
Raytheon, and TRW are among the lead-
ing advocates for LSS in the defense
industry.

Many of these companies actively pro-
mote its use. At Lockheed Martin, their
LM21 Operating Excellence program is
based on LSS. The Raytheon Learning
Institute is offering LSS services to exter-
nal companies as well as for training peo-
ple throughout Raytheon. Honeywell has
integrated LSS into its software processes.
TRW has a major training program under-
way that will touch every TRW employee.
To answer a question with a question: If
the major prime contractors believe in
LSS and are applying it in both their gov-
ernment and commercial business, why
has the government largely ignored it?

Lt. Gen. Brian A. Arnold, command-
er, Space and Missile Systems Center, Los
Angeles Air Force Base, was recently
quoted as saying, “I will tell you that in
virtually every one of our major programs
we are out of control on cost and sched-
ule” [2]. LSS is designed for process
improvement, but its principles can help
maintain both cost and schedule control.
LSS is based on two perspectives: require-
ments that are critical to the customer,
and satisfying these requirements at the
lowest possible cost.

The first perspective limits require-
ments creep – a major driver of both cost

and schedule growth. Before imposing a
new requirement, either in the specifica-
tion development phase or in the system
development phase, the program manager
should ask, “Is this requirement really crit-
ical to the customer?” Another way of
asking this is to determine what the cus-
tomer is willing to pay for the additional
requirement. The nice-to-have requirements
frequently fall by the wayside under this
type of scrutiny.

The second perspective is more com-
plicated because its answer depends on a
total system/result perspective. This per-
spective forces us to think about the cost
of poor quality. Providing requirements at
the lowest possible cost is a driver for
using a defined systems engineering
methodology. A defined methodology
with good documentation and built-in
quality significantly lowers the cost of
operations and maintenance. This claim is
not a logical but subjective conclusion.
Organizations that have, for example,
implemented the Software Engineering
Institute’s Capability Maturity Model®

(CMM®) to Level 4 or 5 have the data to
prove it. LSS companies also have the data
to prove it.

Knowledge of LSS is critical to gov-
ernment agencies. This knowledge could
be applied to do the following:
• Help operations groups improve their

processes.
• Help the transactional groups (e.g.,

finance, contracts, and human
resources) improve their processes.

• Specify contractor incentives to be
included in awards.

• Understand what performance infor-
mation to request from contractors.

• Evaluate contractor proposals.
• Assure that contractors apply best

practices to their customers’ programs.

A further discussion of how to apply
LSS to acquisition follows in this article.

How does LSS apply to the military?
The Advanced Extremely High Frequen-
cy (AEHF) satellite communications sys-
tem will cost $3.19 billion to produce two
satellites, each with 10 years of opera-
tional life [3]. Assume that there will be no
cost overrun, that each satellite will be
successfully launched with full operational
capability for its entire life, and that there
are no operations cost. With these assump-
tions, the straight-line amortized cost of
this satellite system will be about $437,000
per day per satellite throughout its opera-
tional life. A 95 percent uptime means that
the downtime costs $160 million (or one
year of operation). A 99 percent uptime
means that the downtime costs $32 mil-
lion (or 2.4 months of operation). LSS, or
99.9997 percent uptime, means that the
downtime costs $6.57 (or 1.3 seconds of
operation). The impact of downtime on
military operations is immeasurable.

For some organizations, applying LSS
seems pretty clear. Any group operating
and maintaining an information technolo-
gy enterprise cannot survive without
processes. These processes include help-
desk processes, logistics processes, prop-
erty management processes, and so on.
These activities sound like simple, mun-
dane stuff until you consider their size.
The information technology enterprise of
one of our customers requires more than
1,200 people for operations and mainte-
nance. Other potential applications are the
human resources and financial processes.
Note that each of the processes men-
tioned use a substantial amount of soft-
ware.

How Does LSS Apply to
System Acquisition?
Stating that LSS applies directly to system
acquisition because it is a process is cor-
rect, but it is a cop-out. The focus of this
section is how to use aspects of LSS dur-
ing pre-proposal activities, proposal evalu-
ation, and program evaluation. The gov-
ernment cannot require companies to use
LSS, just like they cannot require compa-
nies to use the CMM. However, these
items can be used as factors during an
evaluation.

Pre-Proposal Activities
The greatest value of LSS thinking is
obtained during the pre-proposal stage.
This is the time when program managers
can think proactively. During this phase,
key decisions are made involving the
structure of the future contract, the meas-

+ 1 sigma

-- 1 sigma

- 2 sigma

+ 2 sigma

Time Eight consecutive points on one side of
the center line – this event is nearly
statistically impossible.

Twelve points in a row within one sigma; watch out
because 15 in a row is nearly statistically impossible.

Figure 2: Run-Chart With Statistical Analyses Superimposed

Lean Six Sigma: How Does It Affect the Government?

March 2003 www.stsc.hill.af.mil 11

ures that will be used to evaluate contrac-
tor performance, and the criteria for eval-
uating bidders.

Every prime contractor has a set of
corporate engineering and management
processes that reflect best practices. Most
of these contractors have policies about
implementing LSS. Structure your request
for information (RFI) in a way that gets
the contract personnel to use these
processes. Some of the questions that
could be included in an RFI include the
following:
• What are your corporate processes

and policies related to LSS or process
improvement?

• What corporate processes will be used
on this contract?

• How will the performance of these
processes be measured?

• How do you improve your processes
during the performance of a contract?

• How do you assure that these corpo-
rate processes are used and improved?

• Are the key people who will be work-
ing on this effort trained and certified
in your corporate processes?

• How will you measure the improve-
ment?

• What is your process and criteria for
handling changes to requirements?

• What is your procedure for determin-
ing the cost of poor quality?

• What recommendations do you have
for structuring an incentive clause?

• What recommendations do you have
for measuring contractor perform-
ance?

Proposal Evaluation
Determine the extent to which the con-
tractor is using LSS thinking. For example,
in answering the question on require-
ments changes, does the contractor
address the issue of whether a change is
critical to the customer? If so, then the
cost and schedule impact of every change
needs to be determined. The contractor
then needs to meet with the government
and ask whether the government is willing
to pay for the change. The cost for this
change is more than simply money. From
an oversight perspective, additional cost
means overrun. It usually does not matter
whether the cost is due to a new, critical
requirement. The contractor needs to
determine the likely savings resulting from
future process improvements. These cost
savings might offset the budgetary impact
of a new critical requirement.

Government program offices need to
understand that they need to work with
the contractor on the issue of require-
ments criticality. Many contractors think

that any change requested by the contract-
ing officer's technical representative is
critical – the acquisition office is the cus-
tomer. From a government perspective,
there are multiple customers, including the
users (frequently operational forces),
Congress, and other agencies.

The contractor needs to be willing to
challenge whether a new requirement is
really critical. Current contracting
approaches force contractors to bid
unreasonably low under the assumption
that the deficit will be eliminated through
engineering change proposals. That is a
losing approach because overruns are
assured. Think about the win-win
approach used in LSS. Use incentive fees
for contractors to benefit from reducing
total cost to the government. Fund new
critical requirements to the maximum
extent possible from the government’s
share of the savings resulting from
process improvement.

Looking at the cost of poor quality
helps program managers address difficult
questions. Budgetary pressures and exter-
nal policies frequently drive program
managers to make decisions that they
know are penny-wise but pound-foolish. For
example, by separating development costs
from operations and maintenance costs,
program managers are driven to make
decisions favoring reduced development
cost even though a severe impact might be
realized in operations. A detailed cost of
poor quality analysis may enable program
managers to justify different decisions.
These types of decisions significantly
impact the system that will be built.

Program Evaluation
If LSS thinking was used during the pre-
proposal and proposal evaluation phases,
its use during program evaluation is mun-
dane. The metrics are defined, so the gov-
ernment can use them to evaluate con-
tractor performance. This approach
seems straightforward and simple, but its
proper execution requires program man-
agers to have some training in LSS; the
preferable level is equivalent to a green belt.
This training typically involves one week
of classwork followed by working on a
LSS project in a support role.

Obtaining this week of training is gen-
erally not a problem, but many program
managers will not have the time to actual-
ly work a process improvement effort
using LSS. I recommend that program
managers take a one-week course on LSS.
This training will provide a more thor-
ough understanding of the process, and
they will be able to ask appropriate ques-
tions of the contractor to verify that the

methodology is actually being used.◆

References
1. Small, Bonnie. The Western Electric

Rules. Code 700-444. AT&T Lucent
Technologies, 1984. Report of
Statistical Quality Control Handbook.
Western Electric Co., 1956.

2. Tuttle, Rich. “Arnold: Most Big Air
Force Space Programs Facing Cost,
Schedule Difficulty.” The Aerospace
Daily 200.43 (30 Nov. 2001): 1.

3. Jonson, Nick. “Lockheed Martin
Awarded $498 Million Contract for
AEHF System.” The Aerospace Daily
202.40 (24 May 2002): 4.

Additional Reading
1. Harry, Mikel J., and Richard Schroeder.

Six Sigma: The Breakthrough
Management Strategy Revolutionizing
the World’s Top Corporations. New
York: Doubleday, Dec. 1999.

2. Breyfogle, Forrest. Implementing Six
Sigma: Smarter Solutions Using
Statistical Methods. Hoboken, NJ:
Wiley-Interscience, June 1999.

3. Pande, Peter S., Robert P. Neuman,
and Roland P. Cavanagh, The Six
Sigma Way: How GE, Motorola, and
Other Top Companies Are Honing
Their Performance. Columbus, OH:
McGraw-Hill, Apr. 2000.

About the Author

Kenneth D. Shere,
Ph.D., is a senior engi-
neering specialist at
The Aerospace Cor-
poration where he pro-
vides systems and soft-

ware engineering, acquisition, and
strategic leadership support to various
government organizations. He is certi-
fied as a Lean Six Sigma green belt
and a software capability evaluator.
Shere has published 18 articles and
two books. He has a bachelor’s of sci-
ence degree in aeronautical and astro-
nautical engineering, a master’s of sci-
ence degree in mathematics and a
doctorate in applied mathematics, all
from the University of Illinois.

The Aerospace Corporation
15049 Conference Center Drive
Chantilly,VA 20151
Phone: (703) 633-5331
Fax: (703) 633-5006
E-mail: kenneth.d.shere@aero.org

12 CROSSTALK The Journal of Defense Software Engineering March 2003

The requirements-based testing (RBT)
process is comprised of two phases:

ambiguity reviews and cause-effect graph-
ing. An ambiguity review is a technique for
identifying ambiguities in functional1

requirements to improve the quality of
those requirements. Cause-effect graphing
is a test-case design technique that derives
the minimum number of test cases to cover
100 percent of the functional requirements.

Testing can be divided into the follow-
ing seven activities:
1. Define Test Completion Criteria.

The test effort has specific, quantifiable
goals. Testing is completed only when
the goals have been reached (e.g., testing
is complete when the tests that address
100 percent functional coverage of the
system all have executed successfully).

2. Design Test Cases. Logical test cases
are defined by four characteristics: the
initial state of the system prior to exe-
cuting the test, the data, the inputs, and
the expected results.

3. Build Test Cases. There are two parts
needed to build test cases from logical
test cases: creating the necessary data,
and building the components to sup-
port testing (e.g., build the navigation to
get to the portion of the program being
tested).

4. Execute Tests. Execute the test-case

steps against the system being tested
and document the results.

5. Verify Test Results. Testers are
responsible for verifying two different
types of test results: Are the results as
expected? Do the test cases meet the
test completion criteria?

6. Verify Test Coverage. Track the
amount of functional coverage
achieved by the successful execution of
each test.

7. Manage the Test Library. The test
manager maintains the relationships
between the test cases and the pro-
grams being tested. The test manager
keeps track of what tests have or have
not been executed, and whether the
executed tests have passed or failed.
Activities one, two, and six are

addressed by RBT. The remaining four
activities are addressed by test management
tools that track the status of test execu-
tions.

The RBT process stabilizes the applica-
tion interface definition early because the
requirements for the user interface become
well defined and are written in an unam-
biguous and testable manner. This allows
the use of capture/playback tools sooner in
the software development life cycle.

Relative Cost to Fix an Error
The cost of fixing an error is lowest in the
first phase of software development (i.e.,
requirements). This is because there are
very few deliverables at the beginning of a
project to correct if an error is found. As
the project moves into subsequent phases
of software development, the cost of fixing
an error rises dramatically since there are
more deliverables affected by the correc-
tion of each error. At the requirements
phase the cost ratio to fix errors is one to
one; at coding it is 10 to one; at production
it is from 40 to 1,000 to one.

A study by James Martin showed that
the root cause of 56 percent of all bugs
identified in projects is errors introduced in
the requirements phase. Of the bugs root-
ed in requirements, roughly half were due

to poorly written, ambiguous, unclear, and
incorrect requirements. The remaining half
was due to requirements that were com-
pletely omitted (see Figure 1).

Why Good Requirements
Are Critical
A study by the Standish Group in 2000
showed that American companies spent
$84 billion for cancelled software projects.
Another $192 billion was spent on software
projects that significantly exceeded their
time and budget estimates. The Standish
Group and other studies show there are
three top reasons why software projects
fail:
• Requirements and specifications are

incomplete.
• Requirements and specifications change

too often.
• There is a lack of user input (to require-

ments).
The RBT process addresses each of these
issues:
• It begins at the first phase of software

development where the correction of
errors is the least costly.

• It begins at the requirements phase
where the largest portion of bugs have
their root cause.

• It addresses improving the quality of
requirements: Inadequate requirements
often are the reason for failing projects.

A Good Test Process
The characteristics of a good test process
are as follows:
• Testing must be timely. Testing

begins when requirements are first
drafted; it must be integrated through-
out the software development life cycle.
In this way, testing is not perceived as a
bottleneck operation. Test early, test
often.

• Testing must be effective. The
approach to test-case design must have
rigor to it. Testing should not rely on
individual skills and experiences.
Instead, it should be based on a repeat-

What Is Requirements-Based Testing?
Gary E. Mogyorodi

Bloodworth Integrated Technology, Inc.

This article provides an overview of the requirements-based testing (RBT) process. RBT is comprised of two phases: ambi-
guity reviews and cause-effect graphing. An ambiguity review is a technique for identifying ambiguities in functional 1 require-
ments to improve the quality of those requirements. Cause-effect graphing is a test-case design technique that derives the min-
imum number of test cases to cover 100 percent of the functional requirements. The intended audience for this article is proj-
ect managers, development managers, developers, test managers, and test practitioners who are interested in understanding RBT
and how it can be applied to their organization.

Distribution of Bugs

Requirements
56%

10%
Code
7%

Other

Design
27%

Figure 1: Distribution of Bugs

What Is Requirements-Based Testing?

March 2003 www.stsc.hill.af.mil 13

able test process that produces the same
test cases for a given situation, regard-
less of the tester involved. The test-case
design approach must provide high
functional coverage of the require-
ments.

• Testing must be efficient. Testing
activities must be heavily automated to
allow them to be executed quickly. The
test-case design approach should pro-
duce the minimum number of test
cases to reduce the amount of time
needed to execute tests, and to reduce
the amount of time needed to manage
the tests.

• Testing must be manageable. The
test process must provide sufficient
metrics to quantitatively identify the sta-
tus of testing at any time. The results of
the test effort must be predictable (i.e.,
the outcome each time a test is success-
fully executed must be the same).

Standard Software
Development Life Cycle
There are many software development
methodologies. Each has its own character-
istics and approaches, but most software
development methodologies share the fol-
lowing six aspects:
• Requirements. There is a description

of what has to be delivered.
• Design. There is a description of how

the requirements will be delivered.
• Code. The system is constructed from

the requirements and the design.
• Test. The behavior of the code is com-

pared to the expected behavior
described by the requirements.

• Write user manuals/write training
materials. Documentation is created to
support the delivered system.

• International translations. Code is
often executed in different countries
with different languages; the initial sys-
tem must be translated into the native
language of the target country.
In many software development

methodologies, testing does not begin until
after code is constructed. If a defect is
found after coding, there is a good deal of
scrap and rework to correct the code, and
possibly the design, test cases, and require-
ments as well. Defects must be tested out
of the system rather than being avoided in
the first place. Testing often is a bottleneck
activity. See Figure 2 for a graphical repre-
sentation of a standard development life
cycle.

Life Cycle With
Testable Requirements
In a software development life cycle with

testable requirements and integrated test-
ing, the RBT process is integrated through-
out the entire software development life
cycle. As soon as requirements are com-
plete, they are tested. As soon as the design
is complete, the requirements are walked
through the design to ensure that they can
be met by the design. As soon as the code
is constructed and reviewed, it is tested as
usual. But because testing begins at the
requirements phase, many defects are
avoided instead of being tested out of the
code.

This is a less costly and more timely
approach. User manuals and training mate-
rials can be developed sooner. The entire
software development life cycle is com-
pressed. Testing is performed in parallel
with development instead of all at the end,
so testing is no longer a bottleneck. There
are fewer surprises when the code is deliv-
ered (see Figure 3).

The RBT Methodology
The RBT methodology is a 12-step
process. Each of these steps is described
below.
1. Validate requirements against

objectives. Compare the objectives,
which describe why the project is being
initiated, to the requirements, which
describe what is to be delivered. The
objectives define the success criteria for
the project. If the what does not match
the why, then the objectives cannot be
met, and the project will not succeed. If
any of the requirements do not achieve
the objectives, then they do not belong
in the project scope.

2. Apply use cases against require-
ments. Some organizations document
their requirements with use cases. A use
case is a task-oriented users’ view of the
system. The individual requirements,
taken together, must be capable of sat-

isfying any use-case scenarios; other-
wise, the requirements are incomplete.

3. Perform an initial ambiguity review.
An ambiguity review is a technique for
identifying and eliminating ambiguous
words, phrases, and constructs. It is not
a review of the content of the require-
ments. The ambiguity review produces
a higher-quality set of requirements for
review by the rest of the project team.

4. Perform domain expert reviews. The
domain experts review the require-
ments for correctness and complete-
ness.

5. Create cause-effect graph. The re-
quirements are translated into a cause-
effect graph, which provides the follow-
ing benefits:
• It resolves any problems with alias-

es (i.e., using different terms for the
same cause or effect).

• It clarifies the precedence rules
among the requirements (i.e., what
causes are required to satisfy what
effects).

• It clarifies implicit information,

Figure 2: Standard Development Life Cycle

Figure 3: Life Cycle With Testable Requirements and Integrated Testing

Quality Software

14 CROSSTALK The Journal of Defense Software Engineering March 2003

making it explicit and understand-
able to all members of the project
team.

• It begins the process of integration
testing. The code modules eventual-
ly must integrate with each other. If
the requirements that describe these
modules cannot integrate, then the
code modules cannot be expected
to integrate. The cause-effect graph
shows the integration of the causes
and effects.

6. Logical consistency checks per-
formed and test cases designed. A
tool identifies any logic errors in the
cause-effect graph. The output from
the tool is a set of test cases that are 100
percent equivalent to the functionality
in the requirements.

7. Review of test cases by require-
ments authors. The designed test
cases are reviewed by the requirements
authors. If there is a problem with a test
case, the requirements associated with
the test case can be corrected and the
test cases redesigned.

8. Validate test cases with the
users/domain experts. If there is a
problem with the test case, the require-
ments associated with it can be correct-
ed and the test case redesigned. The
users/domain experts obtain a better
understanding of what the deliverable
system will be like. From a Capability
Maturity Model® IntegrationSM

(CMMISM) perspective, you are validat-
ing that you are building the right system.

9. Review of test cases by developers.
The test cases are also reviewed by the
developers. By doing so, the developers
understand what they are going to be
tested on, and obtain a better under-
standing of what they are to deliver so
they can deliver for success.

10. Use test cases in design review. The
test cases restate the requirements as a
series of causes and effects. As a result,
the test cases can be used to validate
that the design is robust enough to sat-
isfy the requirements. If the design can-
not meet the requirements, then either
the requirements are infeasible or the
design needs rework.

11. Use test cases in code review. Each
code module must deliver a portion of

the requirements. The test cases can be
used to validate that each code module
delivers what is expected.

12. Verify code against the test cases
derived from requirements. The final
step is to build test cases from the logi-
cal test cases that have been designed by
adding data and navigation to them, and
executing them against the code to
compare the actual behavior to the
expected behavior. Once all of the test
cases execute successfully against the
code, then it can be said that 100 per-
cent of the functionality has been veri-
fied and the code is ready to be deliv-
ered into production. From a CMMI
perspective, you have verified that you
are building the system right.

An Ambiguity Review
Here is a sample of a requirement written
in first draft. It is not testable because it
contains ambiguities.

ATMs shall send an alert to the
information technology (IT) depart-
ment when the ATM has been tam-
pered with. In the event that the
ATM is opened without the key and
security code, the ATM will alert the
IT department immediately so the
appropriate action can be taken.

After performing an ambiguity review
of the requirements, the following ambigu-
ities are identified:
• What type of alert does the ATM issue

to the IT department?
• What is the definition of tampered with?
• Is tampered with the same as “in the

event that the ATM is opened without
the key and security code?”

• What happens if the key is used and an
invalid security code is entered?

• What is the alert text?
• What is the appropriate action?

The requirements are revised so that
the ambiguities are eliminated. The require-
ments are now testable.

ATMs shall send a tamper alert to
the IT department when the ATM
has been tampered with, i.e., opened
without the key and the valid securi-
ty code.

Case 1: (1) If the service oper-
ator enters the key into the ATM,
then the following message displays
on the ATM console: “Please enter
the valid security code.” (2) If the
service operator enters the valid
security code, then the ATM opens.

Case 2: After entering the key

in the ATM, if the service operator
enters an incorrect security code,
then (1) the following message dis-
plays on the ATM console:
“Security Code invalid. Please re-
enter.” (2) The service operator now
has three tries to enter the valid
security code. If a valid security
code is entered in less than or equal
to three tries, then the ATM is
opened. Each time an invalid securi-
ty code is entered, the following
message is displayed on the ATM
console: “Security code invalid.
Please re-enter.”

Case 3: If a valid security code
has not been entered by the third
try, then (1) the following message
displays on the ATM console:
“Security code invalid. The IT
department will be notified.” (2)
The ATM alerts the IT department
immediately.

Case 4: In the event that the
ATM is opened without the key and
the valid security code, then the
ATM sends a tamper alert to the IT
department immediately.

A Cause-Effect Graphing
Example
Consider a check-debit function whose
inputs are new balance and account type, which
is either postal or counter, and whose out-
put is one of four possible values:
• Process debit and send out letter.
• Process debit only.
• Suspend account and send out letter.
• Send out letter only.
The function has the following require-
ments and is testable:
• If there are sufficient funds available in

the account to be in credit, or the new
balance would be within the authorized
overdraft limit, then process the debit.

• If the new balance is below the author-
ized overdraft limit, then do not process
the debit, and if the account type is
postal, then suspend the account.

• If a) the transaction has an account type
of postal or b) the account type is
counter and there are insufficient funds
available in the account to be in credit,
then send out letter.

The causes for the function are as follows:
• C1 – New balance is in credit.
• C2 – New balance is in overdraft, but

within the authorized overdraft limit.
• C3 – Account type is postal.
The effects for the function are as follows:
• E1 – Process the debit.
• E2 – Suspend the account.
• E3 – Send out letter.

Figure 4: Cause-Effect Graph

What Is Requirements-Based Testing?

March 2003 www.stsc.hill.af.mil 15

A cause-effect graph shows the relation-
ships between the conditions (causes) and
the actions (effects) in a notation similar to
that used by designers of hardware logic cir-
cuits. The check-debit requirements are
modeled by the cause-effect graph shown in
Figure 4. C1 and C2 cannot be true at the
same time.

The cause-effect graph is converted into
a decision table. Each column of the deci-
sion table is a rule. The table comprises two
parts. In the top part, each rule is tabulated
against the causes. A T indicates that the
cause must be TRUE for the rule to apply
and an F indicates that the condition must
be FALSE for the rule to apply. In the bot-
tom part, each rule is tabulated against the
effects. A T indicates that the effect will be
performed; an F indicates that the effect will
not be performed; an asterisk (*) indicates
that the combination of conditions is infea-
sible and so no effects are defined for the
rule. The check-debit function has the deci-
sion table shown in Table 1.

Only test cases one through five in Table
1 are required to provide 100 percent func-
tional coverage. Rule No. 6 does not provide
any new functional coverage that has not
already been provided by the other five rules,
so a test case is not required for rule No. 6.
No test cases are generated for rule Nos. 7
and 8 because they describe infeasible condi-
tions since C1 and C2 cannot be true at the
same time. The final set of test cases with
sample-data values is described in Table 2.

Real-Life Problem Test Cases
With a real-life problem, there are usually far
more than three inputs (causes). As an
example, in one application where RBT was
applied, there were 37 inputs. This allowed a
maximum of 2**37, or 137,438,953,472
possible test cases. RBT resolved the prob-
lem with 22 test cases that provided 100 per-
cent functional coverage.

Consider the following thought experi-
ment: Put 137,438,953,450 red balls in a
giant barrel. Add 22 green balls to the barrel

and mix well. Turn out the lights. Pull out 22
balls. What is the probability that you have
selected all 22 of the green balls? If this does
not seem likely to you, try again. Return the
balls and pull out 1,000 balls. What is the
probability that you now have selected all 22
of the green balls? If this still does not seem
likely to you, try again. Return the balls and
pull out 1,000,000 balls. What is the proba-
bility that you now have selected all 22 of the
green balls? This is what gut-feel testing really
is.

For most complex problems it is impos-
sible to manually derive the right combina-
tion of test cases that covers 100 percent of
the functionality. The right combination of
test cases is made up of individual test cases,
and each covers at least one type of error
that none of the other test cases covers.
Taken together, the test cases cover 100 per-
cent of the functionality. Any more test
cases would be redundant because they
would not catch an error that is already cov-
ered by an existing test case.

Gut-feel testing often focuses only on
the normal processing flow. Another name
for this is the go path. Gut-feel testing often
creates too many (redundant) test cases for
the go path. Gut-feel testing also often does
not adequately cover all the combinations of
error conditions and exceptions, i.e., the pro-
cessing off the go path. As a result, gut-feel
testing suffers when it comes to functional
coverage.

Summary
In summary, the RBT methodology delivers
maximum coverage with the minimum num-
ber of test cases. This translates into 100
percent functional coverage and approxi-
mately 70 percent to 90 percent code cover-
age. RBT also provides quantitative test
progress metrics within the 12 steps of the
RBT methodology, ensuring that testing is
adequately provided and is no longer a bot-
tleneck. Logical test cases are designed and
become the basis for highly portable cap-
ture/playback test scripts.◆

Note
1. A functional requirement specifies what

the system must be able to do in terms
that are meaningful to its users. A non-
functional requirement specifies an
aspect of the system other than its
capacity to do things. Examples of non-
functional requirements include those
relating to performance, reliability, serv-
iceability, availability, usability, portabili-
ty, maintainability, and extendibility.

Rules 1 2 3 4 5 6 7 8

C1: New balance is in credit. F F F T T F T T

C2: New balance is in overdraft,
but within the authorized limit. F F T F F T T T

C3: Account is postal. F T F F T T F T

E1: Process the debit. F F T T T T * *

E2: Suspend the account. F T F F F F * *

E3: Send out letter. T T T F T T * *

Table 1: Decision Table

CAUSES EFFECTS

Current
Balance

Debit
Amount

Difference Overdraft
Limit

New
Balance

Account
Type

 Action

1 -$70 $50 -$120 -$100 -$70 Counter Send out letter.

2 $420 $2,000 -$1,580 -$1,500 $420 Postal Suspend the account;
send out letter.

3 $650 $800 -$150 -$250 -$150 Counter

4 $2,100 $1,200 $900 -$1,000 $900 Counter Process the debit.

5 $250 $150 $100 -$500 $100 Postal Process the debit;
send out letter.

Process the debit;
send out letter.

Test
Case

Action

Table 2: Test Cases

About the Author

Gary E. Mogyorodi is
a senior consultant
with Bloodworth Inte-
grated Technology,
Inc., consulting, train-
ing, and mentoring in

software testing, and specializing in
requirements-based testing. He has
more than 29 years of experience in
the computing industry and has pre-
sented at numerous conferences,
including the Software Technology
Conference, Software Quality Forum,
Toronto SPIN, Starwest, and more.
Mogyorodi has a bachelor’s degree in
mathematics from the University of
Waterloo, and a master’s degree in
business administration from
McMaster University.

Bloodworth Integrated Technology,Inc.
36A Mendota Road #8
Toronto, Ontario
Canada M8Y 1E8
Phone: (416) 521-7200
Fax: (419) 831-6407
E-mail: garym@bitspi.com

Did this article pique your
interest?
You can hear more from Gary E.
Mogyorodi at the Fifteenth Annual
Software Technology Conference Apr.
28-May 1, 2003 in Salt Lake City, UT. He
will be presenting in Track 1 on Monday,
Apr. 28, at 3:10 p.m.

16 CROSSTALK The Journal of Defense Software Engineering March 2003

To deliver superior quality, many
organizations have made commit-

ments to initiatives on the Software
Engineering Institute’s (SEI) Capability
Maturity Model® (CMM®), ISO 9001, or
Six Sigma. Each of these initiatives has
one thing in common: software inspec-
tions.

Managers are interested in knowing
the return on investment to be derived
from software process improvement
actions. The software inspection process
gathers some of the data needed to
determine this [1]. Software inspections
are structured to serve the needs of qual-
ity management in verifying that a soft-
ware artifact complies with its standard
of excellence for software engineering.
The focus is on verification, on doing
the job right. The software inspection is
a formal review held at the conclusion of
a life-cycle activity and serves as a quali-
ty gate with exit criteria for moving on to
subsequent activities [2].

The National Software Quality
Experiment (NSQE) is a mechanism for
obtaining core samples of software
product quality. The NSQE includes a
micro-level national database of product
quality populated by a continuous stream
of samples from industry, government,
and military services. The centerpiece of
the experiment is the software inspection
lab where data collection procedures,
product checklists, and participant
behaviors are packaged for operational
project use. The NSQE is providing
valuable insights on the practice of soft-

ware inspections through its database of
thousands of software inspection ses-
sions from dozens of organizations con-
taining tens of thousands of defects
along with the pertinent information
needed to pinpoint their root causes [3].

To review NSQE description and data
summaries, please visit the Web resource
listed in [4].

The model in this article for return

on investment bases the savings on the
cost avoidance associated with detecting
and correcting defects earlier rather than
later in the product evolution cycle. It is
defined as net savings divided by detection
cost, where net savings is cost avoidance less
cost to repair now; detection cost is the cost
of preparation effort and the cost of
conduct effort. Savings result from early
detection and correction, which avoids
the increased cost multiplier associated
with detection and correction of defects
later in the life cycle.

A major defect that leaks from devel-
opment to test may cost two to 10 times
more to detect and correct than if done
earlier. Some of these defects leak fur-
ther from test to customer use and may
cost an additional two to 10 times to
detect and correct. A minor defect may
cost an additional two to four times to
correct later. The defined measurements
collected in the software inspection lab
may be combined in complex ways to
form the derived metric for return on
investment. These involve an additional
cost multiplier, defect detection rate,
cost to repair, and detection cost.

Software Product
Engineering Method
The values for these complex parameters
revolve around the Software Product
Engineering (SPE) key process area
being practiced, which is a CMM Level 3
key process area. Three levels of
achievement of SPE are identified as fol-
lows:
1. Ad-hoc programming is character-

ized by a code-and-upload life cycle
and a hacker coding style. This is
common in low software process
maturity organizations, especially
those facing time-to-market
demands.

2. Structured software engineering
employs structured programming,
modular design, and defined pro-
gramming style, and pays close atten-
tion to establishing and maintaining
traceability among requirements,

Determining Return on Investment
Using Software Inspections

Don O’Neill
Consultant

This article examines the defined measurements used to form the derived metric for return on investment. These measurements
involve additional cost multiplier, defect detection rate, cost to repair, and detection cost. This article further examines the
behavior of these measurements and metrics for various software product-engineering styles using data collected in the National
Software Quality Experiment.

10

8

6

4

2

0

 Software Product Engineering Method

DSE SSE AHP

Additional Cost Multiplier

Major Defects

Minor Defects

M
ul

tip
lie

r

Figure 1: Additional Cost Multiplier

“The NSQE is providing
valuable insights on the

practice of software
inspections through its

database of thousands of
software inspection

sessions from dozens of
organizations containing

tens of thousands of
defects along with the
pertinent information

needed to pinpoint their
root causes.”

Determining Return on Investment Using Software Inspections

March 2003 www.stsc.hill.af.mil 17

specification, architecture, design,
code, and test artifacts. This is the
minimum expectation for CMM
Level 3 [5].

3. Disciplined software engineering is
more formal and might be patterned
after cleanroom software engineer-
ing, Personal Software Process, Team
Software Process, and extreme pro-
gramming techniques [6, 7, 8]. This is
the expectation for SEI CMM Level
4 and 5 organizations [5].

Additional Cost Multiplier
Since savings result from avoiding the
increased cost multiplier associated with
detection and correction of defects later
in the life cycle, the question of the cost
multiplier must be answered to deter-
mine the return on investment.

Some set the additional cost multipli-
er for finding and fixing a defect detect-
ed after delivery at 100 times earlier
detection [9]. Others have measured it
more precisely and found it to be 10
times more for each life-cycle activity.
IBM Rochester, Rochester, Minn., win-
ner of the Malcolm Baldrige National
Quality Award in 1990, reported that
defects leaking from code to test cost
nine times more to detect and correct,
and defects leaking from test to the field
cost 13 times more to detect and correct
[10].

Why Is There a Multiplier?
An example may help illustrate why a
leaked defect costs more. A code defect
that leaks into testing may require multi-
ple test executions to confirm the error
and additional executions to obtain
debug information. Once a leaked defect
has been detected, the producing pro-
grammer must put aside the task at hand,
refocus attention on correcting the
defect and confirming the correction,
and then return to the task at hand. The
corrected artifact must then be reinsert-
ed into the SPE or product release
pipeline and possibly into user opera-
tions.

Keep in mind that software changes
experience high defect rates. In addition,
the span of impact from defects intro-
duced during different activities of the
life cycle varies. The number of source
lines affected by a requirement defect
might exceed 100 lines; by a design
defect, 10 to 100 lines; by a coding
defect, less than 10 lines; and by a cleri-
cal defect, one line.

What Is the Multiplier?
It is reasonable to expect the additional

cost multiplier to be linked to the SPE
method practiced. Figure 1 portrays the
additional cost multiplier by SPE
method.
1. Ad-hoc programming (AHP) is likely

to experience a multiplier of eight to
10 times in detecting and correcting
major defects in spaghetti-bowl cod-
ing that lacks order and consistency.
The multiplier for minor defects is
likely to be four times.

2. Structured software engineering
(SSE) is likely to experience a multi-
plier of five to seven times in detect-
ing and correcting major defects in
the production of well structured,
consistently recorded components
with organized relationships among

modules and traceability among life-
cycle artifacts. The multiplier for
minor defects is likely to be three
times.

3. Disciplined software engineering
(DSE) with its formal focus on qual-
ity may experience a multiplier of
two to four times in detecting and
correcting major defects. The multi-
plier for minor defects is likely to be
two times.

What Effect Does the
Multiplier Have?
In summary, an undetected major defect
that leaks to the next phase of the life
cycle may cost two to 10 times more to

1.0

0.8

0.6

0.4

Software Product Engineering Method

DSE SSE AHP

Development Detection (DD)

R
at

e

Figure 3: Development Detection

Defect Leakage Model

Development

DD

DL Test

TD

Customer UseTL

DD - Development Detection
DL - Development Leakage
TD - Test Detection
TL - Test Leakage

Figure 2: Defect Leakage Model

0.25
0.2

0.15
0.1

0.05
0

Software Product Engineering Method

DSE SSE AHP

Test Leakage (TL)

R
at

e

Figure 4: Test Leakage

Quality Software

18 CROSSTALK The Journal of Defense Software Engineering March 2003

detect and correct. A minor defect may
cost two to four times more to detect
and correct. The resulting net savings
then may be up to nine times for major
defects and up to three times for minor
defects.

Defect Detection Rate
The model shown in Figure 2 illustrates
that defects are detected in development
(DD) and test (TD), defects leak from
development (DL), and defects leak
from test (TL). Defect detection rate
equals the number of defects detected
divided by the number of defects pres-
ent.

It is reasonable to expect the defect

detection rate to be linked to the SPE
method practiced, including the software
inspection process followed. Figures 3
and 4 illustrate DD and TL using empir-
ically derived values for the defect leak-
age model factors of each SPE method.
While the defect DD rates are based on
the results of the NSQE, the expected
TD uses a notional value in order to
complete the analysis.
1. AHP is likely to experience a defect

DD rate in the range of 0.50 to 0.65.
While the TL depends on the ade-
quacy of the test process, AHP is
likely to experience TL in the range
of 0.175 to 0.25 based on an expect-
ed TD of 0.50.

2. The SSE is likely to experience a
defect DD rate in the range of 0.70
to 0.80, and a TL in the range of 0.1
to 0.15 based on an expected TD of
0.50.

3. DSE may experience a defect DD
rate in the range of 0.85 to 0.95, and
a TL in the range of 0.025 to 0.075
based on an expected TD of 0.50 [4].

Cost to Repair
The cost to repair a defect detected in
the life-cycle activity in which it was
inserted depends on the SPE method
practiced and the business environment
in which it is operating. This must be
supplied by the organization based on its
actual cost history and the superior
knowledge of its personnel.

In determining the cost to repair, the
organization needs to obtain this cost-
by-defect type. During the software
inspection lab session, each detected
defect is assigned a type, including inter-
face, data, logic, input/output, perform-
ance, functionality, human factors, stan-
dards, documentation, syntax, maintain-
ability, and others. The defect type distri-
bution revealed by the NSQE is shown
in Figure 5 [3, 11, 12].

For purposes of the software inspec-
tions’ return-on-investment analysis, the
cost-to-repair factor is included in the
expression for net savings discussed
later. For analysis here, the cost to repair
is set at one hour for a major defect and
one hour for a minor defect.

Major defects are those that affect
execution; minor defects do not affect
execution but may still be important.
Some practitioners mistakenly assign a
major classification to defects that
require extensive rework, and a minor
classification to defects that require little
rework. When this mistake is made, the
major rework metric will systematically
exceed the minor rework metric.

In actual practice, as measured by the
NSQE during the past 10 years, certain
major defects such as eliminating magic
numbers or inserting a when others clause
require one or two line changes in the
code. Also, some minor defects such as
lack of traceability or adding prologue
and version history commentary may
have more pervasive impact.

During software inspections, many
defects are detected; many are trivial and
require little cost-to-repair effort. Others
may be more complex and require sub-
stantial effort. Where the organization
has superior knowledge of the cost-to-
repair metric, it should use that informa-

50

40

30

20

10

0

Software Product Engineering
DSE SSE AHP

Defects Inserted

Major

Minor

D
ef

ec
ts

Figure 6: Defects Inserted Per Thousand Lines

50.00

40.00

30.00

20.00

10.00

0.00

Percent of
Defect Types

National Software Quality Experiment: 1992-2001

In
te

rfa
ce

Da
ta

Lo
gi

c

I/O
Pe

rfo
rm

an
ce

Fu
nc

tio
na

lity

Hu
m

an
 R

es
ou

rc
es

St
an

da
rd

s
Do

cu
m

en
ta

tio
n

Sy
nt

ax

Te
st

 E
nv

iro
nm

en
t

Te
st

 C
ov

er
ag

e
M

ai
nt

ai
na

bi
lity

O
th

er

P
er

ce
nt

Figure 5: Defect Type Distribution

Determining Return on Investment Using Software Inspections

March 2003 www.stsc.hill.af.mil 19

tion. Where the organization lacks meas-
ured results, using one hour for cost to
repair is an initial value that many have
found valid.

Defect Detection Cost
The cost of defect detection includes the
participants’ efforts to prepare and con-
duct the software inspection. Time to
conduct the inspection includes the actu-
al physical time consumed by the soft-
ware inspection meeting. Effort to con-
duct the inspection includes the actual
time it takes to complete the inspection
multiplied by the number of partici-
pants. Factors used to determine detec-
tion cost include the size of the artifact
being inspected, the number of defects
inserted, and the relationship between
the effort to prepare and conduct the
inspection.

It is reasonable to expect the defect
detection cost to be linked to the SPE
method practiced, including the software
inspection process followed. Figure 6
illustrates the following defect insertion
rates by the SPE method.
1. AHP may experience a preparation

effort divided by a conduct effort
ratio of approximately 0.60 in
inspecting artifacts of 400 to 600
lines of code, as experienced by
CMM Level 1 organizations in the
NSQE [6, 8, 10]. These organizations
may experience a defect insertion rate
of 40 to 60 defects per thousand
lines of code.

2. SSE may experience a preparation
effort divided by a conduct effort
ratio of approximately 0.80 in
inspecting artifacts of 200 to 400
lines of code, as experienced by
CMM Level 3 organizations in the
NSQE [6, 8, 10]. These organizations
may experience a defect insertion rate
of 20 to 30 defects per thousand
lines of code.

3. DSE may experience a preparation
effort divided by a conduct effort
ratio of approximately 1.0 in inspect-
ing artifacts of less than 200 lines of
code. These organizations may expe-
rience a defect insertion rate of 10 to
15 defects per thousand lines of
code.

Reasoning About ROI
Software inspections’ return on invest-
ment is equal to net savings divided by
detection cost. Evaluating the following
expression assists in reasoning about
return on investment:

ROI = Net Savings/Detection Cost

Reasoning About Net Savings
Net savings is equal to cost avoidance
minus cost to repair now. Evaluating the
following expression assists in reasoning
about net savings:

Net Savings =
Cost Avoidance - Cost to Repair

Now

Cost avoidance results from avoiding
the higher costs that occur from deferred
detection and correction. The additional
cost multiplier comes into play in the fol-
lowing ways:
• M1 is the additional cost-to-repair

multiplier for development to test
major defect leakage.

• M2 is the additional cost-to-repair
multiplier for test to customer-use
major defect leakage.

• M3 is the additional cost-to-repair
multiplier for minor defect leakage.

Evaluating the following expression
assists in reasoning about cost avoid-
ance:

Cost Avoidance =
Major Defects x {(M1 x DD) + (M1 x

DD) x (M2 x TL) x C1} + Minor
Defects x M3

The cost to repair now, simply the cost
of defect correction, is subtracted from
cost avoidance to yield net savings.
Evaluating the following expression
assists in reasoning about net savings:

Net Savings = Major Defects x {(M1
x DD) + (M1 x DD) x (M2 x TL) x C1 -

C1} + Minor Defects x (M3 - C2)

Simplifying the expression results in the
following:

Net Savings =
Major Defects x {C1 x [(M1 x DD) x
(1 + (M2 x TL))] - 1} + Minor Defects

x (M3 - C2)
Where:
• M1: (2 - 10) Additional Cost-to-

Repair Multiplier for Development to
Test Major Defect Leakage.

• M2: (2 - 10) Additional Cost-to-
Repair Multiplier for Test to
Customer Use Major Defect Leakage.

• M3: (2 - 4) Additional Cost to Repair
for Minor Defect Leakage.

• DD: (0.5 - 0.95) Defect Detection
Rate for Development to Test.

• TL: (0.05 - 0.5) TL Rate for Test to
Customer Use.

• C1: Average Cost to Repair Major

Defect (in hours of effort).
• C2: Average Cost to Repair Minor

Defect (in hours of effort).

Reasoning About Detection
Cost
Detection cost is equal to preparation
effort plus conduct effort. Evaluating
the following expression assists in rea-
soning about detection cost:

Detection Cost =
Preparation Effort + Conduct Effort

Preparation effort is the total minutes
of preparation effort. Conduct effort is
the minutes of conduct time multiplied
by the number of participants.
Substituting the resulting expression is
the following:

Detection Cost =
{Minutes of Preparation Effort +

(Minutes of Conduct Time x
Participants)}/60

Where:
• Participants: (4-6) Number of partic-

ipants.
• 60 minutes per hour.

A Worked Example
The return on investment is determined
by using the expression for net savings
specified above and setting the parame-
ters for cost-to-repair multiplier, defect
detection, and defect leakage. For exam-
ple, to determine the expression for
return on investment to be used in a
project spreadsheet, the following exam-
ple is offered:
1. Setting the parameters: M1=5,

M2=10, M3=2, DD=0.6, TL=0.25,
C1=1, and C2=1.

2. Using the expression:

Net Savings = Major Defects x
{(M1 x DD) + (M1 x DD) x (M2 x
TL) x C1 - C1} + Minor Defects x
(M3 - 1)

3. Substituting for the values of the
worked example:

Net Savings = Major Defects x
{(5 x .6) + (5 x .6) x (10 x .25) x
1- 1} + Minor Defects x (2-1)

4. The following expression for Net
Savings results:

Net Savings = 9.5 x Major Defects +
Minor Defects

The result of the worked example is

Quality Software

20 CROSSTALK The Journal of Defense Software Engineering March 2003

a simplified expression for net savings of
the type used to derive the return-on-
investment metric in the NSQE. Figure 7
illustrates the range of practice for
return on investment.

Selecting Parameter Values
Where an organization possesses superi-
or knowledge of its software operation,
it should utilize the parameter values that
best reflect this understanding.
Candidate parameter values for each
SPE method are shown in Table 1 for
DSE, SSE, and AHP.

Computing Return on
Investment
Software process improvement goals
involve both cost and quality. The

achievement of these goals varies
according to the SPE method practiced,
and these variations are illustrated in the
application of the selected parameter
values (see Table 2). AHP practitioners
derive substantial net savings and return
on investment, but a high incidence of
defect leakage into customer use. The
SSE practitioners experience attractive
net savings and return on investment,
and a reduced defect leakage into cus-
tomer use. DSE practitioners barely
recoup the investment but achieve a very
low incidence of defect leakage into cus-
tomer use.

Transition From Cost to
Quality
In using software inspections, the goals

vary with the SPE method used, transi-
tioning from cost to quality.

By necessity, the focus of AHP prac-
titioners is on reducing cost by detecting
as many defects as possible. With 40 to
60 defects inserted per thousand lines of
code, a defect detection rate of 0.5 to
0.65, and an additional cost multiplier of
eight to 10, the result is a net savings of
234.8 to 285 labor hours and a defect
leakage expectation of 8.75 to 12.5 per
thousand lines of code, numbers that
promote a focus on cost. For this group,
finding defects is like finding free money,
and there are always more defects to find;
however, managers struggle to meet cost
and schedule commitments.

The SSE focus is split between reduc-
ing cost and improving quality. With 20
to 30 defects inserted per thousand lines
of code, a defect detection rate of 0.70
to 0.80, and an additional cost multiplier
of five to seven, the result is a net savings
of 65 to 85.23 labor hours and a defect
leakage expectation of 2.5 to 3.75 per
thousand lines of code, numbers that
promote an attraction to both goals. For
this group, there is constant dithering
between cost and quality.

Without question, the focus of DSE
practitioners is on eliminating every
possible defect even if defect detection
costs exceed net savings and the return
on investment falls below the break
even point. With 10 to 15 defects insert-
ed per thousand lines of code, a defect
detection rate of 0.85 to 0.95, and an
additional cost multiplier of two to
four, the result is a net savings of 12.49
to 18.55 labor hours and a defect leak-
age expectation of 0.3125 to 0.9375 per
thousand lines of code, numbers that
promote a focus on quality. For this
group, every practitioner is riveted on
achieving perfection.

Summary
In studying the issues associated with
the new realities of the workplace and
the new software engineering responses
to the issues, the answer lies in first
understanding what the enterprise is
trying to do, and then in how the enter-
prise does it.

What the enterprise is trying to do
revolves around the management of
commitments and the drive toward
product perfection. The management
of commitments is primarily associated
with time to market but also perform-
ance to budget. The drive toward prod-
uct perfection is associated with satisfy-
ing and delighting the customer with a
continuous stream of the right capabil-

DD M1 TL M2 M3 Net
Savings

Detection
Cost

ROI
Per K

Leaks

DSE

0.95 2 0.025 2 2 12.49 16.33 0.76 0.3125

0.90 3 0.050 3 2 15.26 16.33 0.93 0.6250

Disciplined
Software
Engineering

0.85 4 0.075 4 2 18.55 16.33 1.14 0.9375

SSE

0.80 5 0.100 5 3 65.00 14.67 4.43 2.5000

0.75 6 0.125 6 3 74.38 14.67 5.07 3.1250

Structured
Software
Engineering

0.70 7 0.150 7 3 85.23 14.67 5.81 3.7500

AHP

0.65 8 0.175 8 4 234.80 13.00 18.06 8.7500
Ad Hoc
Programming 0.60 9 0.200 9 4 261.20 13.00 20.09 10.0000

0.55 10 0.225 10 4 288.75 13.00 22.21 11.2500

0.50 10 0.250 10 4 285.00 13.00 21.92 12.5000

Table 2: Computing Return on Investment

M1 M2 M3 Major
Per K

Minor
Per K DD TL Prep

Min
Conduct

Min Participants

DSE 2-4 2-4 2 2.5 10 0.95-0.85 0.025-0.0075 500 120 4

SSE 5-7 5-7 3 5 20 0.70-0.80 0.075-0.150 400 120 4

AHP 8-10 8-10 4 10 40 0.50-0.65 0.175-0.250 300 120 4

Table 1: Candidate Parameter Values

10

8

6

4

2

0

National Software Quality Experiment

Return On Investment
S

av
in

gs
/C

os
t

Figure 7: Return on Investment

Determining Return on Investment Using Software Inspections

March 2003 www.stsc.hill.af.mil 21

ities and features packaged in a defect-
free container.

How the enterprise does this
revolves around its software product
engineering practice. The three modes
of practice in software product engi-
neering include AHP, SSE, and DSE.

What is actually occurring is a com-
petition among stresses, not all of
which can be satisfied. In reasoning
about new software engineering, it is
important to explicitly acknowledge
that choices must be made. The drive
toward perfection clashes with the drive
to achieve time to market. In the short-
term environment of today, the suc-
cessful enterprise makes the strategic
selection and accepts any collateral
damage.

When an organization has superior
knowledge of the parameter values for
software inspections return on invest-
ment, it is able to derive its own return-
on-investment metric. To perform this
computation, simply visit the tool at
<http://members.aol.com/ONeillDon
/nsqe-roi.html>.◆

References
1. McGibbon, T. “A Business Case for

Software Process Improvement.”
Rome Laboratory DACS Report, 30
Sept. 1996.

2. O’Neill, Don. “Peer Reviews.”
Encyclopedia of Software Engineer-
ing. Wiley Publishing, Inc., Jan.
2002.

3. O’Neill, Don. “National Software
Quality Experiment: A Lesson in
Measurement 1992-1997.” Cross-
Talk 11.12 (Dec. 1998)
<www.stsc.hi l l .af.mi l/crossta lk

/ f r a m e s . a s p ? u r i = 1 9 9 8
/12/oneill.asp>.

4. O’Neill, Don. National Software
Quality Experiment Description and
Data Summaries <http://members.
aol.com/ONeillDon/nsqe-results
.html>.

5. Paulk, Mark C. The Capability
Maturity Model: Guidelines for
Improving the Software Process.
Reading, MA: Addison-Wesley,
1995: 270-276.

6. Prowell, Stacy J., Carmen J.
Trammell, Richard C. Linger, and
Jesse H. Poore. Cleanroom Software
Engineering: Technology and
Process. Addison Wesley Longman,
1999: 17, 33-90.

7. Humphrey, Watts. Introduction to
the Personal Software Process.
Reading, MA: Addison-Wesley,
1997.

8. Wells, J. Donovan <www.extreme
programming.org>.

9. Basili, Vic, and Barry Boehm. “Top
Ten Defect Reduction List.” IEEE
Software Jan. 2001.

10. Lindner, Richard J., and D. Tudahl.
Software Development at a Baldrige
Winner. Proc. of ELECTRO ’94,
Boston, MA, 12 May 1994: 167-180.

11. O'Neill, Don. “National Software
Quality Experiment: Results 1992-
1999.” Software Technology Con-
ference, Salt Lake City, UT, 1995,
1996, and 2000.

12. O’Neill, Don. National Software
Quality Experiment: A Lesson in
Measurement 1992-1997. First
International Software Assurance
Certification Conference. Chantilly,
VA, 1 Mar. 1999: 1-14.

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 " TESTING & CM

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

OCT2002 " AGILE SOFTWARE DEV.

NOV2002 " PUBLISHER’S CHOICE

DEC2002 " YEAR OF ENG. AND SCI.

JAN2003 " BACK TO BASICS

FEB2003 " PROGRAMMING LANGUAGES

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

About the Author

Don O’Neill is a 43-
year veteran software
engineering manager
and technologist cur-
rently serving as an
independent consult-

ant. He conducts defined programs for
managing strategic software improve-
ment, including implementing an orga-
nizational software inspections pro-
cess, directing the National Software
Quality Experiment, implementing
software risk management on the proj-
ect, conducting the Project Suite Key
Process Area Defined Program, and
conducting Global Software Compet-
itiveness Assessments. O’Neill is a

founding member of the Washington,
D.C.-based Software Process Improve-
ment Network and the National
Software Council and serves as the
executive vice president of the Center
for National Software Studies. He has
a bachelor’s of science degree in math-
ematics form Dickinson College, and
has completed a three-year residency at
Carnegie Mellon University’s Software
Engineering Institute.

9305 Kobe Way
Montgomery Village, MD 20886
Phone: (301) 990-0377
E-mail: oneilldon@aol.com

Best Practices

22 CROSSTALK The Journal of Defense Software Engineering March 2003

Agile methods and extreme program-
ming have risen to the forefront of

software management and development
interest during the last few years. Two defi-
nitions of agile are (1) able to move quickly
and easily, and (2) mentally alert. Both defi-
nitions rely on the capabilities of the people
within the development process.

The “Agile Manifesto” [1] published in
Software Development in 2001 created a new
wave of interest in the agile philosophy and
reemphasized the importance of people.
One of the points highlighted in the mani-
festo is, “We value individuals and interac-
tions over processes and tools.” That does
not mean processes and tools are evil. It
implies that individuals and interactions
(people) are of higher priority than process-
es and tools.

Textbooks [2, 3] describe the impor-
tance of people in these new software
development approaches that have demon-
strated improved productivity and product
quality. Extreme programming (XP) [4] is one
member covered by the umbrella of agile
methods. Pair programming [5] is a major prac-
tice [6] of XP. The official definition of pair
programming is two programmers working
together, side by side, at one computer col-
laborating on the same analysis, design,
implementation, and test. In other words,
consider it like two programmers using one
pencil.

We have all experienced elements of the
pair-programming concept in one way or
another during our lives. How many times
have you been stuck removing an error
from a design or program with no success?
When everything else failed, you went to
your neighbor programmer, the casual observ-
er, to see if you could get some assistance.
While explaining the problem, you have a
flash of inspiration, and the problem is
quickly solved. How much time did you
waste before asking a neighbor for insight?
Can you relate this to pair programming?

I was introduced to pair programming
indirectly as an undergraduate electrical
engineering student in the 1950s. The class
and laboratory workload were such that any
free time during the four-year program was
more wishful thinking than reality. Working
part time made the program even more
daunting. Fortunately, two other electrical
engineering students in the same academic
program were struggling with different sets
of outside commitments. We decided to
work together on homework assignments,
lab work, and test preparation to lighten the
course load.

We successfully maintained this
approach through the entire program in
spite of having been conditioned through-
out our lives to perform solitary work. Our
educational system does not condone or
encourage teamwork. That education phi-
losophy supports individual student evalua-
tion, but works against learning. The team-
work concept became ingrained in my
thinking as well as in my programming and
management research activities.

Much later, I was asked to find ways to
improve programmer productivity in a large
software organization. The undergraduate
experience led me to propose an experiment
in the application of what we called two-per-
son programming teams. The term pair pro-
gramming had not been coined at that time.

The experiment results are the subject of
the remainder of this article.

Development Task
Problem
Providing a description of the results
achieved through pair programming with-
out knowledge of the project or develop-
ment task underlying the experience would
be meaningless. The software to be devel-
oped in this project was a multitasking real-
time system executive. The product consist-
ed of six independent components contain-
ing a total of approximately 50,000 source
lines of code. The product contained no
reused or commercial-off-the-shelf compo-
nents. Fortran was the required software
development language. The real-time execu-
tive was to be used to support the develop-
ment of a large, complex software system
by the developing organization. The devel-
opment schedule for the executive was crit-
ical and short.

Team Composition
The development team consisted of 10
programmers with a wide range of experi-
ence and one manager. I tend to divide
managers into two primary groups: Theory
X1 and Theory Y2 [7, 8]. The manager for
this task was experienced and from the
Theory Y group.

The 10 programmers assigned to the
executive development had prior experi-
ence that ran the gamut from an expert sys-
tem programmer to a couple of fresh,
young college graduates. None of these
programmers had any experience working
in a team environment. As a collection, I
would place them as about average for that
development organization.

The manager grouped the program-
mers into five teams according to their
experience level. Each team pair was com-
posed of the most experienced and least
experienced programmer of the remaining

A Pair Programming Experience
Dr. Randall W. Jensen

Software Technology Support Center

Agile software development methods, including extreme programming, have risen to the forefront of software management and
development interest during the last few years. The “Agile Manifesto” published in 2001 created a new wave of interest in
the agile philosophy and re-emphasized the importance of people, along with the idea of “pair programming.” As defined,
pair programming is two programmers working together, side by side, at one computer collaborating on the same analysis,
design, implementation, and test. I was introduced to teamwork and pair programming indirectly as an undergraduate elec-
trical engineering student in the 1950s. Later in 1975, I was asked to improve programmer productivity in a large software
organization. The undergraduate experience led me to an experiment in pair programming. The very positive results of this
experiment are the subject of the case study in this article.

“The second major
benefit demonstrated in

this experiment – a
three order-of-magnitude

improvement in error
rate – is hard to ignore.”

March 2003 www.stsc.hill.af.mil 23

A Pair Programming Experience

group. The first team consisted of the
expert system programmer and a person
who had just returned from a six-year leave
of absence. The fifth team consisted of
two programmers of near equal capability
and experience. These first and fifth pro-
gramming teams were important in the way
they impacted the project. I will address
their impacts in the Lessons Learned sec-
tion of this article.

No special changes from normal were
made to the development environment.
The facilities were essentially two-person
cubicles. The programming pairs were col-
located in these cubicles. Each cubicle con-
tained two computer workstations, two
desks, and a common worktable. The pair-
programming approach dictated that the
pair (remember: two programmers, one
pencil) use only one development terminal
located on the common worktable. The
second terminal was to be used for docu-
mentation, etc., not related to the team’s
assigned development.

One programmer of the pair func-
tioned as the driver operating the keyboard
and mouse, while the second programmer
functioned more as a navigator or co-pilot.
The navigator reviewed, in real time, the
information entered by the driver. The
roles of the two programmers were not
permanent; frequent role changes occurred
daily. The navigator was not a passive role
at any time.

Results
A Priori
Project individuals could not directly
obtain a productivity and error baseline for
the project, but data was available from
past projects that allowed them to project
productivity and error averages for the
project. The average productivity and error
rates in most organizations with consistent
management style and processes are near
constant and quite predictable. The base-
line productivity was determined to be
approximately 77 source lines per person-
month. The error rate for the development
organization was normal for the aerospace
industry. The numerical error rate value is
not significant for this presentation, and
will remain unknown.

Formal design walkthroughs and soft-
ware inspections were not scheduled for
this project. It would follow a classic water-
fall development approach, which is incon-
sistent with today’s agile methods. Formal
preliminary and critical design reviews, as
well as a final qualification test were
planned. Formal review and test documen-
tation were reduced to essential informa-
tion; that is, all elements necessary to pro-
ceed with the development.

A Posteriori
The productivity achieved in the real-time
executive development was 175 source lines
per person-month as shown in Table 1. We
hoped for a productivity gain of anything
greater than 0 percent. Any small gain
would have compensated for the two pro-
grammers loading on each task. The 127
percent gain achieved was phenomenal and
a cause for celebration.

The error analysis showed the project
had achieved an error rate that was three
orders of magnitude less than normal for
the organization. Integration of the first
two components (approximately 10,000
source lines) was completed with only two
coding errors and one design error. The
third component was integrated with no
errors. The remaining three components
had more errors, but the number of errors
for these components was significantly less
than normal.

The continuous walkthrough assumption
was demonstrated to be very effective and
more than compensated for the lack of for-
mal walkthroughs. The formal preliminary
and critical design reviews, as well as a final
qualification test, were effective in keeping
the five teams coordinated. Few problems
were uncovered in the review and test activ-
ities.

After the experiment was completed,
the development manager presented the
very positive results to the organization’s
management staff. The project managers’
reaction to the results was memorable –
they claimed that their senior programmers
would quit before they would team with
another programmer. The use of pair pro-
grammers was never implemented in that
organization.

Lessons Learned
Several positive and some negative charac-
teristics were observed during the pair-pro-
gramming experiment. In general, the
attributes of the college experience were
exhibited here. The positive attributes, not
necessarily in any order, are as follows:
• Brainstorming. According to the pro-

grammers, active real-time collaboration
produced higher quality designs than
would have been achieved working
alone. Little time was lost optimizing
code with more than one brain working.

• Continuous Design Walkthrough.
The design and code were reviewed in
real time by both programmers who

ultimately produced fewer errors in each
team product. Classic walkthroughs and
inspections are, whether we like it or
not, somewhat adversarial. The continu-
ous walkthroughs within the team were
more positive and supportive.

• Focused Energy. The individual teams
appeared to be more focused in their
activities. The highly visible aspect of
this attribute was that programmers
took fewer breaks for restrooms, coffee,
outside discussions, etc.

• Mentor. When we started work in this
industry, we were usually told about on-
the-job training that never materialized.
Pair programming, when the two pro-
grammers were not of the same experi-
ence level, provided a crafts-
man/apprentice relationship that elevat-
ed the junior programmer’s skill quickly.
Conversely, the craftsman’s skill is
extended by the apprentice’s questions
and thinking outside of the box.

• Motivation. In general, the program-
ming pairs appeared much more moti-
vated than their single counterparts. The
motivation level cannot be solely attrib-
uted to the pair concept or the experi-
ment itself. Some of the motivation
must be attributed to the project manag-
er. Some must be attributed to rapid
progress and the product quality. One of
the Theory Y assumptions is that moti-
vation occurs at the social, esteem, and
self-actualization levels, as well as physi-
ological and security levels.

• Problem Isolation. The time wasted
with two pairs of eyes (or brains) was
significantly less than the amount of
time wasted trying to solve a problem in
isolation.
Conversely, the negative observations

cannot be ignored. The important observa-
tions, not necessarily in order of impor-
tance, are as follows:
• Counter-Productivity. Pairing pro-

grammers of the same experience and
capability level is often counter-produc-
tive. The most troublesome pairs we
dealt with during the experiment were
two teams in which both members were
near the same capability level. The
worst-case team consisted of two prima
donna programmers. The programming
pair theoretically has equal responsibility
for the team’s efforts and product. We
found teams functioned more smoothly,
in spite of the members equally being

Topic Historical Pair Results Gain
Productivity (lines/person-month) 77 175 127 percent
Error Rate 0.001 x normal

Table 1: Pair Programming Productivity and Error Rate Gains

Best Practices

24 CROSSTALK The Journal of Defense Software Engineering March 2003

driver and navigator, if one member
was slightly more capable than the
other was. I read a statement by a soft-
ware industry leader that stated hiring
software engineers from the top 10
percentile of the top 10 universities
would produce the best software devel-
opment teams. I cannot imagine the
stress that many egos can create on
one project. Two strong egos of any
caliber on a team create chaos until
they recognize the power of two
minds.

• Common Area. Coordination
between the five teams would have
improved if the teams had been work-
ing in a common area. Each team was
located in a two-person cubicle, which
limited the interaction between the
teams. I use the term war room (or
skunk works) to describe the ideal
open environment, which would be a
large area with worktables in the center
and cubicles around the outside.
Some additional characteristics of the

successful experiment are noteworthy.
First, one of the manager’s principle
responsibilities was to buffer the teams
from outside interference. The manager
listed other important responsibilities that
included referee (in the case of the prima
donnas), arbitrator, coordinator, planner,
cheerleader, and supplier of popcorn and
other junk food.

Second, project managers must be sup-
portive of the pair programming process.
A classic (Theory X) manager observed a
programming pair working on a design
over a period of time. This manager sug-
gested to their supervisor that one of the
two programmers be laid off because only
one was doing anything constructive. (The
driver always gets the credit.) When the
supervisor heard the suggestion, he
replied that these programmers were the
most productive people in the organiza-
tion. The manager then asked that the
programmers keep their office door closed
so others would not get the same idea.

Summary
Most managers who have not experienced
pair programming reject the idea without
trial for one of two reasons. First, the con-
cept appears redundant and wasteful of
computing resources. Why would I want
to use two programmers to do the work
that one can do? How can I justify a 100
percent increase in person-hours to use
this development approach? The project
cannot afford to waste limited resources.

The second reason is the assumption
that programmers prefer to work in isola-
tion. Programmers, like most other people,

have been trained to work alone. Yet
according to the 1984 Coding War Games
sponsored by the Atlantic Systems Guild,
only one-third of a programmer’s time is
spent in isolation; two-thirds of the time is
spent communicating with team members.
Managers wonder about the necessary
adjustments to another’s work habits and
programming style. They also worry about
ego issues and disagreements about the
product’s implementation.

This experiment demonstrated strong-
ly that programmers can work together
effectively and efficiently to produce a
quality product of which both program-
mers can be proud. Prior programming
experience is not an issue. There are initial
situations, especially with a team of equal
experience and ego, where disagreements
arise over who will be the driver. Those sit-
uations are generally transient. The bene-
fits listed in the results section over-
whelmed any personality issues that arose.

The second major benefit demonstrat-
ed in this experiment – a three order-of-
magnitude improvement in error rate – is
hard to ignore. Repairing defects after
developments is much more expensive
than uncovering and fixing the defects
where they occur. The benefits of devel-
oping and delivering a stable product
faster, reducing maintenance costs, and
gaining customer satisfaction certainly
minimize the risk of using pair-program-
ming teams.◆

References
1. The Agile Alliance. “The Agile

Manifesto.” Software Development 9.8
(Aug. 2001).

2. DeMarco, Tom, and T. Lister.
Peopleware. New York: Dorset House
Publishers, 1977.

3. Weinberg, G. M. The Psychology of
Computer Programming Silver Anni-
versary Edition. New York: Dorset
House Publishers, 1998.

4. Beck, Kent. Extreme Programming
Explained: Embracing Change.
Reading, MA: Addison-Wesley, 2000.

5. Williams, L., R. R. Kessler, W.
Cunningham, and R. Jeffries.
“Strengthening the Case for Pair
Programming.” IEEE Software 17.4
(July/Aug. 2000): 19-25.

6. Beck, Kent. “Embracing Change with
Extreme Programming.” Computer
Oct. 1999: 71.

7. Hersey, P., and K. H. Blanchard.
Management of Organizational Be-
havior, Utilizing Human Resources.
Englewood Cliffs, NJ: Prentice-Hall,
1977.

8. McGregor, D. The Human Side of

Enterprise. New York: McGraw-Hill,
1960.

Note
1. Theory X assumes the following: (1)

Work is inherently distasteful to most
people. (2) Most people are not ambi-
tious, have little desire for responsibility,
and prefer to be directed. (3) Most peo-
ple have little capacity for creativity in
solving organizational problems. (4)
Most people must be closely controlled
and often coerced to achieve organiza-
tional objectives.

2. Theory Y assumes the following: (1)
Work is as natural as play, if conditions
are favorable. (2) Self-control is often
indispensable in achieving organization
goals. (3) The capacity for creativity in
solving organizational problems is wide-
ly distributed in the population. (4)
People can be self-directed and creative
at work if properly motivated.

About the Author
Randall W. Jensen,
Ph.D., is a consultant
for the Software
Technology Support
Center, Hill Air Force
Base, with more than

40 years of practical experience as a
computer professional in hardware
and software development. He devel-
oped the model that underlies the Sage
and the GAI SEER-SEM software
cost and schedule estimating systems.
Jensen received the International
Society of Parametric Analysts
Freiman Award for Outstanding
Contributions to Parametric Estima-
ting in 1984. He has published several
computer-related texts, including
“Software Engineering,” and numer-
ous software and hardware analysis
papers. He is currently preparing
“Extreme Software Estimating” for
Prentice-Hall, Inc. Dr. Jensen has a
bachelor’s of science degree in electri-
cal engineering, a master’s of science
degree in electrical engineering, and a
doctorate in electrical engineering
from Utah State University.

Software Technology Support Center
7278 4th St.
Bldg. 100 G58
Hill AFB, UT 84056
Phone: (801) 775-5733
Fax: (801) 777-8069
E-mail: randall.jensen@hill.af.mil

Open Forum

March 2003 www.stsc.hill.af.mil 25

The Joint Technical Architecture
(JTA) was created to establish a stan-

dard to provide interoperability among
the Department of Defense (DoD) sys-
tems [1]. The JTA is a very ambitious and
important document with great impact
on creating and updating military sys-
tems in the United States. Over the long
term, it also has considerable impact on
civilian and foreign systems since its
objectives and approaches go well
beyond the U.S. defense sector. The
objectives and main content of the JTA
are best explained with a few citations
from the standard itself:
• The JTA provides DoD systems with

the basis for needed seamless inter-
operability.

• The JTA core contains the minimum
set of JTA elements applicable to all
DoD systems to support interoper-
ability.

• The DoD JTA provides the mini-
mum set of standards that, when
implemented, facilitates this flow of
information in support of the
warfighter. The JTA standards pro-
mote the following:
• A distributed information-pro-

cessing environment in which
applications are integrated.

• Applications and data independ-
ent of hardware to achieve true
integration.

• Information-transfer capabilities
to ensure seamless communica-
tions within and across diverse
media.

• Information in a common format
with a common meaning.

• Common human-computer inter-
faces for users, and effective
means to protect the information.

The JTA defines three interrelated
views within the architecture as shown in

Figure 1: operational architecture (OA)
view, technical architecture (TA) view,
and systems architecture (SA) view.

These three views are described in the
following subsections (citation from the
JTA). The article continues with the dif-
ficulties in consolidating these views.

The OA View
The OA view is a description of the tasks
and activities, operational elements, and
information flows required to accom-
plish or support a military operation. The
OA contains descriptions (often graphi-
cal) of the operational elements, assigned
tasks and activities, and information
flows required to support the warfighter.
The OA defines the types of information
exchanged, the frequency of exchange,
which tasks and activities are supported
by the information exchanges, and the
nature of information exchanges in
detail sufficient to ascertain specific
interoperability requirements.

The TA View
The TA view is the minimal set of rules
governing the arrangement, interaction,
and interdependence of system parts or
elements, whose purpose is to ensure
that a conformable system satisfies a
specified set of requirements.

The TA view provides the technical
systems-implementation guidelines upon
which engineering specifications are

Clarify the Mission:
A Necessary Addition to the Joint Technical Architecture

Ingmar Ögren
Tofs Inc.

The Joint Technical Architecture (JTA) was published to provide the Department of Defense with the basis for needed seam-
less interoperability across its systems. The JTA contains three architectural views: operational, technical, and systems. The
operational architecture view shows the tasks and activities for a system, while the other two views show supporting elements.
It is important to understand how the three views relate to each other and how the parts of the technical architecture view sup-
port the overall system’s missions and operators. This article discusses how a simplified and extended version of the Unified
Modeling Language “component diagram” can be used to connect the three JTA views and consequently create a clarified envi-
ronment for a system’s software with a resulting increased probability that the right software will be built.

Operational
Architecture View

Identifies Warfighter
Relationships and Information Needs

Technical
Architecture View

Prescribes Standards and
Conventions

Relates Capabilities and Characteristics
to Operational Requirements

Systems
Architecture View

Processing and Levels of

Inform
ation Exchange

Requirem
ents.

Basic Technology

Supportability and

New Capabilities.

Pro
cessing and In

ter-N
odal

Levels of In
fo

rm
atio

n

Exchange R
equire

ments.

Systems A
ssociatio

ns

to
 N

odes, A
ctiv

itie
s,

Needlin
es, a

nd

Require
ments.

Specific Capabilities
Identified to Satisfy
Information-Exchange
Levels and Other
Operational Requirements.

Technical Criteria Governing
Interoperable Implementation
Procurement of the Selected
System Capabilities.

Figure 1: Three Interrelated Views of Joint Technical Architecture

“... as a software
developer, it is not

sufficient to understand
the technical system; you

must also understand
the mission(s) and the
expected and possible

behavior of the
operating roles ...”

Open Forum

26 CROSSTALK The Journal of Defense Software Engineering March 2003

based, common building blocks are
established, and product lines are devel-
oped. The TA includes a collection of
the technical standards, conventions,
rules, and criteria organized into pro-
file(s) that govern system services, inter-
faces, and relationships for particular sys-
tems architecture views, and that relate to
particular operational views.

The SA View
The SA view is a description, including
graphics, of systems and interconnec-
tions providing for, or supporting,
warfighting functions. For a domain, the
SA view shows how multiple systems link
and interoperate, and may describe the
internal construction and operations of
particular systems within the architecture.
For the individual system, the SA view
includes the physical connection, loca-
tion, and identification of key nodes
(including materiel-item nodes), circuits,
networks, warfighting platforms, etc., and
specifies system and component per-
formance parameters (e.g., mean time
between failure, maintainability, and avail-
ability). The SA view associates physical
resources and their performance attrib-
utes to the operational view and its
requirements following standards defined
in the technical architecture.

Inherent Problems with
Interfacing
When you talk to anyone responsible for a
complex system with multiple operators
and a high content of software, you are
likely told: “We concentrate on the mis-
sion, and our qualified people are our
most important resource.”

Modern defense systems include per-
sonnel (warfighters) to complete missions,
with complex interaction between opera-
tor roles and technical system parts. This
means that, as a software developer, it is
not sufficient to understand the technical
system; you must also understand the mis-
sion(s) and the expected and possible
behavior of the operator roles, which are
required to complete the mission(s)
together with the technical system parts.

Furthermore, when you look at Figure
1 and the accompanying text, you see a
multitude of relationships. However, they
are rather informal and do not really tell
you much about the common core behind
the three views. Still further, when you
look at the extensive definitions and stan-
dards for human-computer interfaces,
they are lopsided, meaning that they limit
their descriptions to the computer part of
the interface and leave the human part to
the reader’s imagination.

The conclusion is that we have the fol-

lowing set of problems defined when
working with the JTA in systems design:
• How do you really connect the three

views to each other?
• How do you show how the elements

of a system support the system’s mis-
sion(s)?

• How do you clarify the human part of
the human-computer interface?

Introducing Mission and
Operator Objects
One way to solve these problems is to
start from the Unified Modeling
Language’s1 (UML) component diagram
with its basic relationships: depends on and
included in. Furthermore the diagram
should be extended to include not only
software objects but also mission objects,
operator objects, and hardware objects.
As a result you get a set of object cate-
gories as shown in the entity-relationship
diagram2 in Figure 2.

Figure 2 is a general entity-relation-
ship diagram with objects and attributes
to objects as entities drawn as boxes.
Relationships are drawn as arrows and the
diagram should be read along each arrow:
<entity> <relation> <entity>. The dia-
gram also applies the principle of boxes
within boxes to show how smaller entities
are parts of larger entities (the three JTA
views). Note that the standards included
in the TA view of the JTA concern all
object categories through the general object,
although they are primarily applicable to
hardware objects.

This diagram shows one way to solve
the problems identified above:
• How do you really connect the three

views to each other? As shown in
Figure 2, the elements in the OA view
depend on the SA view, and all ele-
ments are derived from the general
object. Consequently, the standard
requirements of the TA view concern
all objects as applicable.

• How do you show how the elements
of a system support the system’s mis-
sion(s)? Mission objects are introduced
in the OA view to define missions on
the system level and also on lower lev-
els.

• How do you clarify the human part of
the human-computer interface?
Through introduction of operator
objects, it is possible to define not
only the computer side of human-
machine interface, but also the human
side with definition of the human
operator’s behavioral space to match
the software’s behavior.
The main message of Figure 2 is that

Software
Object

Hardware
Object

General
Object

Standards
Requirements

can be

are attributes to

Technical
Architecture
View

Systems
Architecture
View

Operational
Architecture
View

Mission
Object

Operator
Object

depends on

Figure 2: Object Categories and JTA Views

Clarify the Mission:A Necessary Addition to the Joint Technical Architecture

March 2003 www.stsc.hill.af.mil 27

you can work with a general object con-
cept that includes objects of categories:
mission, operator, software, and hard-
ware. To understand how a mission
depends on system parts for completion,
you use dependencies to define how each
mission depends on other missions and
on objects of other categories. This dia-
gram also shows how this view of sys-
tems complies with the three views of the
JTA.

Command and Control
Example
Let us look at a hypothetical command
and control (C2) example to illustrate the
principles described above. (It is hypo-
thetical since real systems are most often
classified and too large for a short arti-
cle.) While the JTA talks about com-
mand, control, computing, communica-
tion, intelligence, surveillance, and recon-
naissance, this example will concentrate
on the core mission, C2, without the sup-
port technology, which may or may not
be included in a particular C2 system.

Figure 3 shows the top part (main
missions) for a C2 system as four mission
objects, drawn as a simplified UML com-
ponent diagram. Note that the methods
in the component diagram are represent-
ed by abilities required for the missions.

Figure 3 also shows how the compo-
nent diagram can be compacted as a tree
or as an indented list to show only the
object types involved and their depend-
encies. This compact form, called the
Tree Graph, can be used to show a some-
what more detailed view of the C2 sys-
tem, as shown in Figure 4.

The Tree Graph is where you can see
how the three aspects of the JTA can be
managed together, clearly connected in
the dependency tree as follows:
• The missions shown (C2 supported

by plan tactical mission, train person-
nel, and develop tactics) together with
the operator roles shown (planning
officer, training officer, and tactics
development officer) belong to the
OA view in the JTA.

• The software system parts shown
(planning support, training support,
and tactics development) belong to
the SA view in the JTA.

• The hardware parts shown (C2 com-
puting system) are governed by the
standards contained in the TA part of
the JTA.
Here, the experienced reader may

have the following objection: “You need
much more to build a C2 system!” That is
correct, and there are two reasons why so

little of the C2 system is included in
Figure 4. One is to limit the information
to a reasonable amount for a journal arti-
cle. The other is that this figure also con-
centrates on demonstrating how the Tree
Graph can be used to show how a system
depends on another system (visualizing
systems of systems).

You can see how the three software
objects shown depend on a communica-
tion network and on some external sys-
tem to provide simulation services. This
makes it possible to keep the C2 system
and the simulation system separate and
still clarify their interdependencies.

Practical Experiences
The principles related here have been
applied in various real systems, primarily
C2, communication, simulation, and
avionics. The experience is that the prin-
ciples work and result in system descrip-
tions that are understandable both to end
users and developers. However, since this
is a new way of viewing a system, the fol-
lowing indications of uneasiness have
been noted:
• Software engineers find it strange to

work with the human part of human-
computer interfaces. However, after
some time they will most often accept
that this is needed to build the neces-
sary understanding to create the right
software.

• Some end users might be afraid that
working with the missions together
with a contractor might result in too
much knowledge of classified principles
on doctrine with strategic and tactical

principles. This may be a very real
problem. Managing it requires an
understanding that it is next to
impossible for a contractor to pro-
duce a useful system without knowl-
edge of why it is built, and how it
should be used.

• Operator end users may be hesitant
when contractors try to describe their
work as system components (opera-
tor role objects). However, as soon as
they really study these descriptions,
they often get fascinated and produce
some extremely valuable comments
and criticism, which will be a real help
to building the right system.

• People will consider it unnecessary to
define the mission since “everyone

Figure 3: Component Diagram and Tree Graph for the Top Missions of a C2 System

Figure 4: Tree Graph for a C2 System

knows what the mission is.” This is
correct, but when you start defining
the mission, it is sometimes surpris-
ing how many different understand-
ings you find within what everyone
knows.
Perhaps the most important result of

introducing mission objects, operator
objects, and dependency trees is that they
provide a common ground for end users
and technical system developers to meet,
which results in an increased probability
of common understanding of the sys-
tem.

Summary
The problems concerning the JTA’s diffi-
culties to consolidate its three views and to
clarify system missions and operator
roles in system architecture have been
discussed. A possible solution based on a
simplified and extended UML compo-
nent diagram has been presented with a
small C2 example. Furthermore, some
experience from practical application of
the principles presented has been
described.

From the software engineer’s point of
view, this means that the software’s envi-
ronment is investigated and clarified
prior to software design and program-

ming. This will increase the software
engineer’s understanding of the software
requirements and consequently also
increase the probability that the right
software is built.◆

Reference
1. JTA Development Group. Joint

Technical Architecture. Ver. 3.1. U.S.
Department of Defense, 31 Mar.
2000 <www-jta.itsi.disa.mil>.

Notes
1. The following Web sites provide infor-

mation on the UML component dia-
gram: <www.sparxsystems.com.au/
EAUserGuide/component_diagram
.htm> and <http://jliusun.bradley.edu
/ ~ j i a n g b o / u m l / B o o c h _ u m l
/sld019.htm>.

2. The Tofs Web site provides information
about the tool used for diagrams in this
article <www.toolforsystems .com>.

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering March 2003

About the Author
Ingmar Ögren has
worked with the Swedish
Defense Material Ad-
ministration and various
consulting companies in

systems engineering tasks associated
with communications, aircraft, and
command and control. He is currently a
partner and chairman of the board for
Tofs Inc. and Romet, a systems engi-
neering consulting company mainly uti-
lizing the Objects for Systems develop-
ment method. He also teaches systems
and software engineering and has had

several papers accepted at international
conferences. Ögren is a member of
Modeling and Simulation in Sweden
and International Council of Systems
Engineering. He has a master’s of sci-
ence in electronics from the Royal
University of Technology in
Stockholm.

Tofs AB
Fridhem 2
S-76040 Veddoe, Sweden
Phone: (+46) 176-54580
Fax: (+46) 176-54441
E-mail: iog@toolforsystems.com

March 2003 www.stsc.hill.af.mil 29

Departments

Dear CrossTalk Editor,

In your December 2002 issue dedicated to engineers and
scientists, two articles written by authors from the Air Force
Materiel Command (AFMC) discussed the present plight of
these occupations. Both articles discussed the problems in
recruiting and retaining these skills for government service,
especially for software engineering.

Also, within the last few months the secretary of the Air
Force (SAF), and more specifically Lt. Gen. Stephen B.
Plummer, principal deputy, Office of the Assistant SAF for
Acquisition, has recognized the present and future prob-
lems of employing scientists and engineers. Plummer is
principal deputy, Office of the Assistant Secretary of the
Air Force for Acquisition, Washington, D.C., and the mili-
tary director, U.S. Air Force Scientific Advisory Board.

However, in comparing the AFMC effort to the direc-
tion of SAF, there appears to be a conflict between the ini-
tiatives. The AFMC indicates a salary increase is needed,
whereas the SAF reports survey results indicating that engi-
neers do not consider pay to be a big issue.

Frankly, I wonder who participated in the survey the
SAF referenced. Pay is a huge issue! In August 2000, the
AFMC software organizations were surveyed to answer a

question posed by Air Force Information Logistics: “Will
the organic software functions be able to grow to meet the
anticipated growth in software work?” The result of the
survey at this Air Force base [Tinker] stated emphatically
that salary is an issue that affects both hiring and retention.

At that time, the difference in salary between govern-
ment and industry for comparable jobs ranged from 15 per-
cent to 70 percent with government being lower. During
the survey, we cited the Pay Comparability Act of 1990 and
made the point very clearly that engineer and scientist pay
should be in accordance with the law.

Shortly after this survey was performed, personnel in
the information technology (IT) field, many of whom are in
a nonprofessional job series and do not possess a college
degree in computer science or engineering, received on
average a 15 percent salary increase. In many cases this
action caused IT personnel to be paid more than engineers,
when their job responsibility was less. A request was made
to include the software engineers into the IT salary action.
No positive action occurred.

From that time until now, the situation has worsened.
Our software organization has lost some of its better soft-
ware engineering talent. Many of our former engineers have
taken industry positions and have received significant pay
raises. We foresee this to be an increasing trend if the gov-
ernment salary is not corrected to comparability with indus-
try. In supporting two major weapon systems, there are
partnering agreements between this software organization –
the weapons manager, and his prime contractor for soft-
ware support. The government software engineers work
with contractor engineers to field common or integrated
software products. It is more than a little distressing for
government engineers to know what their counterparts are
paid for equivalent responsibility.

Recently, we performed a study to determine the present
salary difference between government and industry engi-
neers. The results are tabulated in Table 1. As is seen, even
with the severe economic downturn, the pay comparability
situation is still very poor and appears to have worsened for
personnel in management positions. In some cases, the gov-
ernment salary for software engineering management lags
the average salary of industry by 70 percent to 80 percent.

Government software engineers deserve more than talk.
Some amazing software capabilities have been created with-
in the Air Force; two, specifically, are recognized as being
world-class. The government functions compare favorably
with anyone; they deserve to be paid commensurately. If an
action is not implemented to overcome the pay differential
between government and industry, it is safe to say these fine
organizations will erode.

Here is something to think about: People organize to
overcome unfair treatment by their employer. If pay dispar-
ity persists, government engineers and scientists are ripe for
unionization.

Walt Lipke
Software Division
Tinker AFB, OK

LETTER TO THE EDITOR

Equivalent
Responsibility

10th

Percentile Average
90th

Percentile

Government

Step 1 Average Step 10
NSPE – V
= GS-123 $58,441 $78,881 $97,010 $54,275 $62,069 $70,555

NSPE – VI
= GS-134 $69,583 $88,444 $112,300 $64,542 $78,753 $83,902

NSPE – VII
= GS-145 $72,150 $98,234 $133,500 $76,271 $96,608 $99,150

NSPE (non-
(supervisory)
= GS-136 $53,292 $77,037 $93,260 $64,542 $78,753 $83,902

NSPE
(5-9 prof supv)
= GS-137

$72,000 $96,103 $135,000 $64,542 $78,753 $83,902

NSPE
(10-49
prof supv)
= GS-137

$79,550 $120,015 $169,000 $64,542 $78,753 $83,902

NSPE
(>50 prof supv)
= GS-14
Branch Chiefs8

$92,185 $172,448 $293,800 $76,271 $96,608 $99,150

NSPE
(>50 prof supv)
= GS-14
Division
Deputy9

$92,185 $172,448 $293,800 $76,271 $96,608 $99,150

NSPE
>50 prof supv)

= GS-15
Division Chief 10

$92,185 $172,448 $293,800 $115,633

Notes

3. The GS-855-12 is the working level engineer in the GSO. Of the 397 GS-855s in the
 GSO, 25 are GS-855-12s.

4. The GSO employs 79 GS-855-13s consisting of approximately 1/3 supervisors, 1/3 team
leads and 1/3 technical leads all utilizing the same pay scale.

5. The GS-855-14 position represents management at the branch level.
6. The GSO utilizes non-supervisor GS-855-13s as technical leads.
7. Most sections have a GS-855-13 section chief and team lead, and some GS-855-13 team

leads are responsible for five to nine professionals supervised (prof supv).
8. There are seven GS-855-14 branch chief positions within the GSO.
9. The GS-855-14 deputy chief of the GSO manages half of the GSO, as well as standing in

for the chief when necessary.
10. The GS-855-15 chief of the GSO manages 475 professionals, 531 total.

1. This comparison utilizes information from the National Society of Professional Engineers
2002 Income and Salary Survey Report.

2. The general schedule pay scale and number of personnel within the Government Software
Organization (GSO) are current as of 31 Oct. 02.

(

Salary Comparison Electrical and Electronics Engineers 1, 2

NSPE

Table 1: Salary Comparison

Online Article

30 CROSSTALK The Journal of Defense Software Engineering March 2003

Currently, I am a senior consultant spe-
cializing in requirements-based test-

ing. I have been in the computing industry
since 1973. In 1993, I began specializing
in testing and quality assurance. I have
been teaching students how to write
testable requirements, how to perform
requirements-based testing, and how to
find ambiguities in their requirements
since 1998. Each time I teach a class, I
find that I ask students the same questions
about quality assurance and the testing
environments within their organizations.
Therefore, I have derived 20 questions
that I use to try to understand how mature
the quality assurance and testing environ-
ments are for each organization. After all,

an organization that has good quality
assurance and testing practices tests early
and tests often throughout its software
development life cycle.

I have ordered these questions so that,
in my experience, the beginning questions
are the easiest for an organization to com-
ply with, and they become progressively
harder to comply with as an organization
proceeds through the questionnaire.

One point is awarded for each of the
first four questions, two points for each of
the next set of four questions, three
points for the next set, and so on. In my
experience, the last four questions are the
hardest for organizations to comply with
and are worth five points each. A perfect

score is 60 points; I would expect very few
organizations to score perfectly.

The questionnaire can act as a self-
appraisal of the quality assurance and test-
ing activities within an organization. A
sample scorecard is included in this article.

The questionnaire does not cover
every aspect of software development and
testing.

Due to space constraints, CrossTalk was
not able to publish this article in its entirety.
However, it can be viewed in this month’s issue on
our Web site at <www.stsc.hill.af.mil/
crosstalk> along with back issues of
CrossTalk.

Let’s Play 20 Questions:Tell Me About Your Organization’s
Quality Assurance and Testing

Gary E. Mogyorodi
Bloodworth Integrated Technology, Inc.

This article presents 20 questions used to determine and understand how mature the quality assurance and testing environ-
ments are within an organization. The questions are ordered to begin with those easiest to answer and become progressively
more difficult for organizational compliance. An organization that has good quality assurance and testing practices tests early
and tests often throughout its software development life cycle.

If your experience or research has produced information that could be

useful to others, CrossTalk can get the word out. We are especially

king for articles in several specific, high-interest areas. Upcoming

ues of CrossTalk will have special, yet non-exclusive, focuses on

g tentative themes:

Call for Articles

Information Sharing/Data Management
October 2003

Submission Deadline: May 19, 2003

Development of Real Time Software
November 2003

Submission Deadline: June 16, 2003

Management Basics
December 2003

Submission Deadline: July 21, 2003

Ple for CrossTalk, available on the Internet at:
www.stsc.hill.af.mil/crosstalk. We accept article submissions on all software-related topics at any

time, along with Open Forum articles, Letters to the Editor, and BackTalk submissions.

BACKTALK

March 2003 www.stsc.hill.af.mil 31

Question: What do you call a formal
afternoon reception or social gather-

ing of furry, bear-like arboreal Australian
marsupials, where they drink the boiled
glossy leaves of an Asian evergreen shrub?

Answer: A “koala tea.” Oh, wait – the
issue this month was about quality, not
koala tea. That’s my mistake. I guess I real-
ly didn’t know the correct definition of
quality, which is “trait, characteristic or
property, degree or grade of excellence1.”
But then, perhaps my first def-
inition is just about as good as
the second. It depends on the
user’s needs.

As usual with my
columns, let me start with a
story. Back in 1974, I was a
young airman stationed at
wonderful, beautiful Offutt
Air Force Base. (Once you get
on it, you can’t get Offutt – the
Air Force base with its own ceme-
tery!) As an applications program-
mer at SAC (remember the
Strategic Air Command?), a user
asked me to sort a file of
data for him. Being young
and eager, I immediately set
forth to write the ultimate sort
routine to end all sort routines.

I had recently completed
an undergraduate course in
sorting and searching tech-
niques, and I recalled a par-
ticularly cool sort from
class (something like a
combination polyphase-cas-
cade-merge sort). It required sev-
eral temporary files, but the machine we
were using at the time was pretty limited.
Does anyone remember the World Wide
Military Command and Control System2

(WWMCCS) Honeywell H6000? It had
96K of RAM. Not much memory space at
all. However, it did have multiple tape
drives, so I wrote a program that sorted
using four tapes.

Of course with only five tape drives
for the entire system, running my job took
a bit of scheduling. In fact, it usually took
a full day to actually run the job once I had
submitted it. After a few weeks of devel-
opment and testing, I was ready to unveil

the program to my long-suffering user.
After explaining that there was a one-

day delay between program submission
and the results, I saw the look of dismay
on his face. Come to find out, the data he
wanted sorted consisted of exactly eight
10-character strings. A six-line bubble sort

routine would (and eventually
did) sort the data online

in less than a sec-

ond. The lesson I
learned: Find out exactly

what the user needs before writing the
program. I had fallen into the trap of let-
ting my biases and experience influence
me into giving the user what I thought he
needed, rather that giving him what he
really wanted.

Well, I’m a bit older and wiser now (as
my friends would point out, a lot older,
maybe a little wiser) and frequently find
myself teaching this lesson to others. It
shouldn’t be a secret; lots of people know
about it. In fact, Simon and Garfunkel
must have been software engineers. Back
in the ’70s, they produced their “Bridge
Over Troubled Waters” album. If my
memory serves me, on side two song No.
11 was titled “Keep the Customer

Satisfied”(words and music by Paul
Simon, 1970). Great song. Great message.
“Just trying to keep my customers satis-
fied, satisfied.”

You want a definition of quality? OK:
Keep the customer satisfied. Do you
know what customers want? Do you know
what they really need? Are they part of the
decision-making process when it comes to

making trade-off decisions in the
architecture and design? Are they
part of the decision process when
deciding what is part of a release,
and what gets put off until the

next release?
You see, you are not really ready

to discuss quality until you know
the users’ needs. If their overwhelm-

ing requirement is accuracy, then
speed might not impress them.

If their overwhelming require-
ment is consistent uptime,
then no matter how accurate
and fast the system is, if it
crashes frequently, they are
not impressed. If their
need is for a reliable sys-
tem, and you forget to
implement a quick-and-
easy-to-use backup and
recovery system, then they
won’t be impressed.

Remember – the latest and
greatest languages don’t

impress them if the resulting
system is slow, unreliable, and

buggy. A reliable Fortran pro-
gram might just impress them more

than a spiffy (but buggy) program
written in Java Plus Plus Sharp
(or whatever the language of

the month is).
You want quality? Talk to your users.

Find out what they need (and what they
want). Involve them in trade-off deci-
sions. Write the programs that will make
them satisfied. Save the polyphase-cas-
cade-merge sort for another time.

Oh – and yes – I do know that getting
the real requirements out of some users is
only slightly harder than communicating
with the dead. I’ll save that discussion for
another column!

– David A. Cook
Software Technology Support Center/

Shim Enterprise, Inc.

Did I Say “Koala Tea?”

1 All definitions are from Microsoft Encarta Encyclopedia,
1999 edition.

2. If you remember WWMCCS, then check out “Defense
Department Classic Becomes Object of History” at
<www.af.mil/news/Jul1997/n19970717_970866.html>.

CrossTalk / MASE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

FEELING A LITTLE TIED UP?
Why not get some free h

ONE FREE CONSULT
Get Some Help with Softw
Process Improvement

Good for assistance with
configuration management,
appraisals, personal and team
software process, systems
engineering, requirements,
project management, software
acquisition, Capability Maturity
Model®‚ software quality and test,
and process improvement.

That's right -one free consultant. If you
are a manager, a practitioner, or a
software engineering process group
member who is committed to
improving your software process, we
can help you.

Software Technology Support Center
(STSC) software process improvement
(SPI) veterans can help answer
questions and research your problems
for up to an hour without charge to
Department of Defense organizations.
We can answer questions about starting

SPI, key process areas, training, best
practices, return on investment, and
appraisals. And if our
veterans can't produce
an immediate solution,
we will get you headed
in the right direction.

Call the SPI Hotline at 801-
777-7214 DSN 777-7214 or
send us an e-mail at
larry.smith4@hill.af.mil and
mention this offer. And let
us help you get untied.

ONE HOUURONE HOURONE HOUONE HOUURR

Mar2003cover.qxd 2/5/03 2:09 PM Page 2

	Cover
	Table of Contents
	From the Publisher
	Managing Software Quality With Defects
	Coming Events
	Web Sites
	Lean Six Sigma: How Does It Affect the Government?
	What Is Requirements-Based Testing?
	Determining Return on Investment Using Software Inspections
	A Pair Programming Experience
	Clarify the Mission: A Necessary Addition to the Joint Technical Architecture
	STC 2003 Registration
	Letter to the Editor
	Let's Play 20 Questions: Tell Me About Your Organization's Quality Assurance and Testing
	Call for Articles
	BackTalk
	Back Cover

