
May2003cover.qxd 4/8/03 1:52 PM Page 1

Integrated Metrics for CMMI and SW-CMM
The Harris Corporation used a Goal-Question-Metric approach to develop an integrated
metrics set that helped it achieve Capability Maturity Model for Software Level 4.
by Gary Natwick

Information Assurance Post 9-11: Enabling Homeland Security
Protecting the U.S. homeland requires information sharing on an unprecedented scale
among agencies.
by David W. Carey

Securing Your Organization’s Information Assets
This article details the standard ISO 17799 “Code of Practice for Information Security
Management” and British Standard 7799-2 “Information Security Management Systems”
that provide frameworks for implementing security management systems.
by Dr. Bill Brykczynski and Bob Small

Improving Processes for Commercial Off-the-Shelf-Based Systems
These authors present how the Capability Maturity Model Integration should be interpreted for a
commercial off-the-shelf (COTS)-based system, including describing the Evolutionary Process for
Integrating COTS-Based Systems.
by Dr. Barbara Tyson, Cecilia Albert, and Lisa Brownsword

Planning and Managing the Development of Complex Software Systems
This article details an alternative to the “grand implementation approach” that leverages grand and
incremental design, incremental development, early incremental testing, rapid risk reduction, and the
re-calibrating of estimating data.
by Dr. Richard Bechtold

Interface-Driven, Model-Based Test Automation
Test engineers can develop more reusable models with the interface-driven approach described in this article,
which combines requirements modeling to support automated test-case and test-driver generation.
by Dr. Mark R. Blackburn, Robert D. Busser, and Aaron M. Nauman

Deployment: Moving Technology Into the Operational Air Force
To get the full measure of value from our technologies, close attention must be paid to a host of issues to
ensure that daily operations are enhanced, much the same way troops deploy for combat.
by Lt. Col. Scott B. Dufaud (Ret.) and Dr. Lynn Robert Carter

Cover Design by
Kent Bingham.

3

7

16

35

DeparDepar tmentstments

Best Best PracticesPractices

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering May 2003

4

8

12

17

23

27

31

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher:
U.S. Government’s Top 5
Quality Software Projects
Announcement

Coming Events

Web Sites

BackTalk

Open Open FForumorum

29 April, Track 7

30 April, Track 130 April, Track 8

29 April, Track 5

1 May, Track 8

CrossTalk Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address. You may e-mail or use the form on p. 34.

Ogden ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Chelene Fortier

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

30 April, Track 4

28 April, Track 3

30 April
Industry Plenary

From the Publisher

The CrossTalk staff just completed another effort to solicit and collect nomina-
tions for the U.S. Government’s Top 5 Quality Software Projects. The Software

Technology Support Center orchestrated a three-tier evaluation process of 70 nomina-
tions that resulted in the final selection process.

Reviewing the nominations was both motivating and educational. Collectively, the
nominations demonstrated concrete examples of trends toward rapid insertion of com-
mercial off-the-shelf technology, use of e-commerce, and application of Web services.

A new step added to the evaluation process involved contacting users of the system. It was clear
that users are becoming more sophisticated. Their
comments concerned the architecture, hardware inte-
gration, and quality of the software – way beyond the
“How did it work?” questions I was expecting. Users
recognize the implications of the design on ease of
upgrade and maintenance cost.

Adoption of industry standards for software
development practices was evident in most nomina-
tions, particularly those developing systems with real-
time requirements. Use of process asset libraries,
requirements databases, product verification tracking
systems, and collaborative development networks was
common.

Several projects involved rapid development of
applications and used end users in the design and test.
The Navy’s AutoREAD project, which allows flight-
critical preventative maintenance tasks to be sched-
uled and downloaded to Pocket PCs is one example.
Sailors collect readings using Pocket PCs that perform
automated calculations, tolerance, and range checking
to identify marginal and out-of-tolerance readings.
The system was developed and fielded, and was in use
aboard the carrier USS Harry Truman within four
months. There were several other similar efforts that
merged the use of Pocket PCs or Personal Digital
Assistants as end-user data entry tools that communi-
cated with distributed databases. At the other end of
the spectrum in terms of size were several projects
with millions of software lines of code and develop-
ment spanning the years.

Some other techniques I found intriguing were
embedding commercial data analysis and simulation
software packages within mission software, automated
software reengineering (e.g., ATLAS-to-C++,
JOVIAL-to-C), and development of common securi-
ty layers for Web services.

The nominations represent the wealth of knowl-
edge and talent applied to Department of Defense
software products, and show that we can learn by
examining what went right. Look for the Top 5 issue
of CrossTalk this July that will describe each of
the winning projects.

Top 5 Contest Nominations Reveal Trends in COTS,
E-Commerce, and Web Services

Lt. Col. Glenn A. Palmer
Director, Computer Resources Support Improvement Program

May 2003 www.stsc.hill.af.mil 3

U.S. Government’s Top 5
Quality Software Projects

CrossTalk is proud to announce
the following winners of the 2002
U.S. Government’s Top 5 Quality
Software Projects. Thank you to
everyone who submitted nomina-
tions; the quality of the entries was
outstanding and is a tribute to the pro-
grams throughout the government.
We look forward to presenting this
year’s awards at the 2003 Software
Technology Conference.

• Defense Civilian Pay System
Customer: Department of
Defense

• Enhanced Position Location
Reporting System
Customer: U.S. Army, CECOM,
PM TRCS

• Joint Helmet Mounted Cueing
System Software Upgrade
Customer: Joint Air Force/Navy
Program Office, ASC/FBH
Wright-Patterson AFB, OH

• Kwajalein Modernization and
Remoting
Customer: Space Missile Defense
Command/ U.S. Army Kwajalein
Atoll/Reagan Test Site

• OneSAF Testbed Baseline
Customer: Program Executive
Office – Simulation, Training, and
Instrumentation

At the Government Communications
Systems Division (GCSD) of Harris

Corporation, Melbourne, Fla., integrated
metrics is a key element of successful
quantitative management of every pro-
gram and engineering discipline. Harris
Corporation achieved the Software
Engineering Institute’s (SEISM) Capability
Maturity Model® (CMM®) for Software
(SW-CMM®) [1] Level 4 and is advancing
to CMM IntegrationSM (CMMI®) [2] Level
4 using integrated metrics across engi-
neering disciplines. A SEI authorized lead
appraiser performed the Level 4 SW-
CMM appraisal of Harris GCSD in June
2002.

Integrated engineering metrics focus
on quality, productivity, and predictability
providing support data for estimating
future jobs, tracking ongoing jobs, and
identifying and evaluating process
improvements.

Why Measure?
Harris is recognized in the industry for
developing and delivering quality prod-
ucts; however, to advance itself in a com-
petitive industry the company has to con-
tinually improve its overall program per-
formance. The reason many companies in
the industry are advancing their capabili-
ties by measuring engineering processes,
products, and resources is to accomplish
the following:
• Characterize – to gain understanding of

processes, products, resources, and
environments, and to establish base-
lines for comparisons with future
assessments.

• Evaluate – to determine status with
respect to plans. Measures are indica-
tors of when projects and processes
are drifting off-track so they can be
brought back under control. Eval-
uations also assess achievement of
quality goals and the impacts of tech-

nology and process improvements on
products and processes.

• Predict – to gain an understanding of
relationships among processes and
products so the values observed could
be used to predict others. This is done
to establish achievable goals for cost,
schedule, and quality so appropriate
resources can be applied. Predictive
measures are also the basis for trend-
ing so estimates for cost, time, and
quality can be updated based on cur-
rent evidence.

• Improve – to identify roadblocks, root
causes, inefficiencies, and other oppor-
tunities for improving product quality
and process performance. Measures of
current performance give us baselines
to compare whether or not improve-

ment actions are working as intended,
and what the side effects may be.
Good measures also help communi-
cate goals and convey reasons for
improving. This helps engage and
focus the support of those working
within processes to make them suc-
cessful.

Goal-Driven Metrics
Using the Goal-Question-Metric (GQM)
[3] approach, integrated engineering met-
rics was derived from strategic business
goals and best practices of our organiza-
tion, the industry, and government. The
main objective for integrated engineering
metrics is to objectively measure the pro-
gram health and status in relation to the
following organization’s goals:
• Project Management. Planning, esti-

mating, monitoring, and controlling a
project’s costs, schedules, and quality.

• Process Improvement. Providing
baseline data and measuring trends,
tracking root causes of problems and
defects, and identifying and imple-
menting changes for process improve-
ment.

• Organizational Vision. Effectively
applying unified end-to-end engineer-
ing processes and methods encom-
passing proven and emerging stan-
dards/approaches for the purpose of
delivering high-quality, cost-competi-
tive system solutions to our customers.

Approach
An action team (composed of systems
engineers, software engineers, program
managers, and assessment experts)
focused on defining the Harris GCSD’s
goals and ensuring the metrics needed to
measure the achievement of those goals

Best Practices

4 CROSSTALK The Journal of Defense Software Engineering May 2003

Integrated Metrics for CMMI and SW-CMM

Gary Natwick
Harris Corporation

As organizations move toward the Capability Maturity Model ® (CMM®) IntegrationSM

requiring the integration of technical and management processes across functional disci-
plines, the tool suites used to plan, manage, and monitor these integrated processes must also
evolve to support them. One example of this is an integrated engineering metrics set to rein-
force process deployment, provide effective management oversight, and ensure alignment with
organizational business goals. Harris Corporation used a Goal-Question-Metric approach
to develop an integrated metrics set for quantitative management of performance, progress,
cost, schedule, and resources across systems, software, and hardware engineering disciplines.
Institutionalization of this metrics approach resulted in achieving CMM for Software
Level 4.

Wednesday, 30 April 2003
Track 8: 3:50 - 4:30

Room 251 D - F

“One metric does not
tell the whole story.

You need integrated, and
many times, orthogonal
views of metrics to get

a complete picture;
trending is key.”

SM SEI, CMM Integration, and SCAMPI Lead Assessor are
service marks of Carnegie Mellon University.

® Capability Maturity Model, CMM, and CMMI are regis-
tered in the U.S. Patent and Trademark Office.

May 2003 www.stsc.hill.af.mil 5

Integrated Metrics for CMMI and SW-CMM

were being captured at all stakeholder
levels of the organization. Structured
interviews were conducted with individu-
als representing the following four levels
(from the highest to lowest) of stake-
holders:
• Division management.
• Business area leadership.
• Project management and technical

leadership teams.
• Functional owners of division

processes.
The protocols for the interviews

(individual and group) at each level of
the organization were based on the
results of the interviews from the previ-
ous level of the organization. Division
management was asked to rate the
importance of the goals in the division
Strategic Guide Plan (and the goals sup-
porting those in the plan). The business
area leaders then were interviewed and
asked to identify the subclass, questions,
and metrics that they used, or would like
to use, to achieve the goals identified by
division management. The project lead-
ership interviewees were asked to identi-
fy the questions and metrics that they
used, or would like to use, to achieve the
division goals and business area sub-
goals. The process owners were then
asked to identify the questions and met-
rics that they would use to measure the
process goals identified in the prior inter-
views as well as to achieve the improve-
ment goals that the process owners iden-
tified.

The interviews were structured to
correspond to the GQM [3] methodolo-
gy, where issues, problems, and objec-
tives led to the identification of meas-
ures. The interviewees were also asked to
prioritize both the reasons for desiring
the measurement information and the
importance of the specific measures they
recommended.

The Functional Analysis System
Technique (FAST) [4] was used to graph-
ically depict the linkage of each higher-
level goal to lower-level goals. FAST pro-
vided a mechanism for obtaining impor-
tance ratings, by interviews, on more
than 100 goals without losing the goals’
context. The team analyzed the impor-
tance rating and selected the highest-level
goals that spawned a set of lower-level
goals with a 90 percent or greater cover-
age. This generated a set of top-level
goals that were briefed to division man-
agement and used as the foundation for
organizational metrics.

The analysis identified division goals
and sub-goals: Based on the metrics cur-
rently used in the division, metrics from

the industry literature, and key practices
from the SW-CMM [1] and CMMI [2],
metrics were identified to measure the
success in achieving the goals and sub-
goals. GQM [3] concepts were used to
validate the results of the metrics derived
from the other sources and to identify
any metrics that might have been over-
looked. It should also be noted that sev-
eral existing division metrics were
dropped, as they were not directly attrib-
utable to the defined division business
goals. An example of a division goal
mapped to metrics using GQM follows:
• Goal: Project Management, i.e., plan,

estimate, monitor, and control project
quality.

• Sub-Goal: Improve customer satis-
faction by reducing defects.

• Question: Where are defects intro-
duced and removed?

• Metric: Defects detected in peer
reviews and testing.
A red team consisting of six project

teams reviewed the resulting metrics.
Each project team was composed of the
project’s program manager, chief system
engineer, chief software engineer, chief

hardware engineer, and quality assurance
engineers. A structured evaluation tech-
nique was used against each metric using
the following criteria:
• Utility to the customer.
• Utility to the project leadership.
• Utility to division management.
• Difficulty to collect.

Results
The metrics definition effort identified
metrics covering all aspects of project
management and engineering perform-
ance across systems engineering, soft-
ware engineering, and hardware engineer-
ing. The metrics were grouped into sets
that represented a theme or view of per-
formance familiar to each of the four
levels of the organization.

The metric groupings took the form

of the currently used division control
panels containing up to nine metrics each
(3 x 3). The control panels represented
the integrated project engineering met-
rics distributed across systems engineer-
ing, software engineering, hardware engi-
neering, and project engineering
resources. The derived metrics differed
from the pre-existing division metrics in
two major areas:
• More emphasis on product quality via

defect measurement and tracking.
• Additional measurement of the per-

sonnel resources’ training, develop-
ment, and tool support.
The metrics set supported the SW-

CMM [1] and CMMI [2] Level 4 objec-
tives of defined measurement standards.
Each metric has a specified value that
represents an enterprise performance
goal. As data are collected, the goals are
converted to control limits. The top six
metrics in the example of Integrated
Engineering Cost and Schedule Control
Panel, shown in Figure 1 (see page 6),
address the GQM as follows:
• Goal: Project Management, i.e., plan,

estimate, monitor, and control project
cost and schedule.

• Sub-Goal: Perform within planned
cost and schedule.

• Question: How effective is the
process execution versus the plan?

• Metric: Cost performance index
(CPI), schedule performance index
(SPI), and to-complete performance
index (TCPI).
Additional information provided in

the footer of these metrics is cost vari-
ance (CV), schedule variance (SV), and
variance at completion (VAC).

Integrated Metrics Process
Integrated engineering metrics is used to
gauge a project’s progress and to alert
program management of any potential
risks to its quality, cost, and schedule.
Each metric provides insight into sys-
tems/software/hardware engineering
development products and processes and
process improvement and/or organiza-
tional improvement through one of the
following four major indicator categories:
• Progress. The achievement or com-

pletion of goals or commitments.
• Resources. The availability or capabil-

ity of organizational assets.
• Quality. The problems and/or defects

with a product or process.
• Stability. The degree of change, com-

pleteness, or effectiveness.
Everyone who uses engineering

processes and/or develops engineering
products utilizes engineering metrics.

“Having an
organizational standard

tool is a must for
consistency; it should be

user friendly with
easy access.”

Best Practices

6 CROSSTALK The Journal of Defense Software Engineering May 2003

Program team members are responsible
for collecting and analyzing individual
metrics. Project team leaders are respon-
sible for collecting, analyzing, and report-
ing metrics to the program team and divi-
sion management. Division management
ensures the collecting and reporting of
metrics, and the engineering process
group conducts metrics analysis and
trending. The integrated engineering
metrics process has four steps: planning,
collecting, analyzing, and reporting.

Planning
Planning is the first step in the integrated
engineering metrics process. The collecti-
ing, analyzing, and reporting of metrics
are integrated into the project plans iden-
tifying the following:
• Metrics used to support quantitative

management.
• Planned and/or expected perform-

ance in the metrics, including any
required goals and/or control limits.

• Variance implication and corrective
action for metrics falling outside their
control limits.

• Source and collection mechanism of
the measurement data.

• Responsible persons for collecting
measurement data, analyzing of met-
rics, reporting the results, and manag-

ing the engineering metrics process.
Division control limits are statistically

based upon historical data. Projects use
the division control limits or statistically
determine their own.

Collecting
Collecting measurement data is the sec-
ond and continuing step in the integrated
engineering metrics process. The collec-
tion occurs at periodic intervals defined in
the project plans and is monitored for
completeness, integrity, and accuracy. The
primary source for planning data is in the
project plans. The primary source for
actual data is in the accounting systems
used to manage the project (e.g., financial
management, configuration management,
change management, and risk manage-
ment) and is input into the division stan-
dard metric tool each period.

Analyzing
Analyzing metrics and making objective
quantitative management decisions is the
true benefit step in the integrated engi-
neering metrics process.

Metrics are most often communicated
graphically conveying a clear and easily
understood message. It is better to have
many graphs than it is to have many mes-
sages on one graph.

Metrics are indicators that give warn-
ings of problems associated with issues.
An issue may be tracked with several met-
rics that may be based on different meas-
ures. Insight into an issue typically
requires statistical analysis of metrics over
time and is trend-based or limit-based as
follows:
• Trend-based metrics are used when

expected or planned values change
regularly over time. The analysis of a
trend-based metric involves determin-
ing whether the performance implied
in the trend is achievable.

• Limit-based metrics are used when the
expected or planned values remain rel-
atively constant over time. The analy-
sis of a limit-based metric requires
determining whether the performance
crosses its established bounds. Limits
can represent norms, expected values,
or constraints.
Detecting a difference, limit or trend,

between planned and actual recognizes
problems. If the difference exceeds the
threshold of acceptable risk, then the sit-
uation is investigated and corrected.

Reporting
Reporting integrated engineering metrics
is the final step in making quantitative
management decisions and communicat-

Figure 1: Integrated Engineering Cost and Schedule Control Panel

Integrated Metrics for CMMI and SW-CMM

May 2003 www.stsc.hill.af.mil 7

ing to project team members, manage-
ment, and customers. Reporting and
reviewing metrics are integrated into the
management process and occurs as soon as
possible after analysis has been completed
to assure that there is time for corrective
action. Any metric falling outside the con-
trol limits is reviewed for variance, and cor-
rective actions are recorded and tracked to
closure. Meeting minutes are kept that
record the variance explanations.

Integrated Metrics Tool
Integrated engineering metrics are collect-
ed, analyzed, and reported via the division-
standard metric tool (Web client/database
server) for consistency in application
across the division. A required set of inte-
grated engineering metrics is used by all
projects to advance the engineering process
maturity of the division.

Projects utilize additional metrics such
as customer-required metrics, to comple-
ment the division-standard metric tool. A
detailed definition of each engineering
metric is built into the metric tool, includ-
ing description, audience, purpose,
method, measures, metrics, control limits,
formulas, range of values, graphic informa-
tion, and references. Control panels are the
most common method for communicating
an integrated view of engineering metric
frames. A subset of the standard division
metrics is presented at all program reviews.

Lessons Learned
Lessons learned from implementing a met-
rics program and tool within an integrated
discipline work force are as follows:
• One metric does not tell the whole

story. You need integrated, and many
times, orthogonal views of metrics to
get a complete picture; trending is key.

• Project planning is key, and data collec-
tion is the hardest.

• Having an organizational standard tool
is a must for consistency; it should be
user friendly with easy access.

• Cultural change is hard, so train every-
one about the organizational metrics
program and tool to increase accept-
ance and buy-in.

Conclusion
Integrated engineering metrics are required
to provide effective management oversight
and to ensure alignment with organization-
al business goals. As organizations move
toward the CMMI [2] requiring the integra-
tion of technical and management process-
es across functional disciplines, the tool
suites used to plan, manage, and monitor
these integrated processes must also evolve
to support them.◆

References
1. Paulk, Mark C., Charles V. Weber,

Suzanne M. Garcia, Mary Beth Chrissis,
and Marilyn W. Bush. Key Practices of
the Capability Maturity Model®. Ver. 1.1.
CMU/SEI-93-TR-25. Pittsburg, PA:
Software Engineering Institute, Feb. 1993.

2. Carnegie Mellon University. CMMI SM for
Systems Engineering/Software Engi-
neering, Ver. 1.1, Staged Represen-
tation. CMU/SEI-2002-TR-002. Pitts-
burg, PA: Carnegie Mellon University,
Dec. 2001.

3. Park, Robert E., Wolfhart B. Goethert,
and William A. Florac, Goal-Driven
Software Measurement – A Guide-
book. CMU/SEI-96-HB-002. Pitts-
burg, PA: Software Engineering Insti-
tute, Aug. 1996.

4. Kaufman, J. Jerry. Value Engineering for
the Practitioner. Raleigh, NC: North
Carolina State University, 1990.

About the Author
Gary Natwick is the
metrics leader for the
engineering process
group responsible for
Harris Corporation
achieving the Software

Engineering Institute’s (SEISM)
Capability Maturity Model® for
Software (SW-CMM®) Level 4 and
advancing to CMM IntegrationSM Level
4. Previously, he led the software engi-
neering process group responsible for
Harris Corporation achieving SW-
CMM Level 3. Natwick has 30 years of
software and systems engineering
experience (management, develop-
ment, and process improvement) with
the U.S. Air Force (USAF) and Harris
Corporation. He received the USAF
Commendation Medal for Meritorious
Service, and the Engineering Process
and Golden Quill awards for advancing
Harris Corporation. Natwick has a
Bachelor of Science in Electrical
Engineering from the University of
Miami, Fla. He is a SEI Authorized
Lead Appraiser (SCAMPISM and CBA
IPI methods), and “Introduction to
CMMI®” course instructor.

Harris Corporation
P.O. Box 37
Melbourne, FL 32902-0037
Phone: (321) 729-3970
E-mail: gary.natwick@harris.com

June 2-6
Applications of Software Measurement

San Jose, CA
www.sqe.com/asm

June 7-14
Federated Computing Research

Conference
San Diego, CA

www.acm.org/fcrc

June 9-13
International Conference on Practical

Software Testing Techniques
Washington, DC

www.psqtconference.com

June 25-28
Agile Development Conference

Salt Lake City, UT
www.agiledevelopmentconference.com

August 25-29
QAI’s Annual eXtreme Conference

Las Vegas, NV
www.qaiusa.com

September 14-19
International Function Point Users

Group Annual Conference
Scottsdale, AZ
www.ifpug,org

September 22-25
AUTOTESTCON 2003

Anaheim, CA
www.autotestcon.com

October 21-24
18th International Forum

on COCOMO and Software
Cost Modeling

Los Angeles, CA
http://cse.usc.edu

April 19-22, 2004
Software Technology Conference 2004

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

Whether the objective is thwarting
terrorists beyond U.S. borders,

making arrests on U.S soil, or protecting
this country’s critical infrastructure, the
ability to share information and to do it
securely is the key to an effective home-
land security regime. This is a staggering
undertaking.

In the new Department of Homeland
Security alone, a complete information-
sharing system will have to encompass
some 22 current agencies, many of which
are not accustomed to working with one
another. These agencies must also be con-
nected to the intelligence community, the
Department of Defense (DoD), and
other civilian agencies. In essence, most
of the federal government needs to be
involved. Now add state and local organi-
zations from law enforcement to public
health and the private sector, which –
after all – controls most of our critical
infrastructure.

The need for information assurance is
paramount. For organizations that gather
critical information – especially the law
enforcement and intelligence communi-
ties – to be willing to share quality infor-
mation, the computer infrastructure must
be secure. This is particularly true if the
information that is to be shared in a time-

ly manner between these federal, state,
and local entities and private sector organ-
izations is actionable. If officials in these
organizations do not trust that the infor-
mation they provide will be protected and
that it will only be shared appropriately,
the information may be either withheld or
sanitized to the point of uselessness.

To build this data-sharing infrastruc-
ture, a set of technical, policy, and cultur-
al issues must be addressed. The technical
issues are complex but in some ways easi-
er to deal with than the policy and espe-
cially the cultural challenges.

Information Sharing
Architectures
For some time now, the problem for law
enforcement and intelligence organiza-
tions has not been a lack of information.
On the contrary, authorities are often
swamped with information, but it resides
in separated, isolated, and discrete sys-
tems. The problem is exacerbated when
the data are stored in different formats in
those different systems.

Much of the time the problem is the
lack of sufficient capability to establish
relationships between these various bits of
information. Real knowledge is found in
these relationships, often more so than in
the data itself. As seen in the days and
weeks after 9-11, there were lots of facts
about the individual terrorists responsible
for the attacks. Because these facts were
not brought together, however, no one
could see the whole picture.

Of course, there are numerous ways to
create the needed information-sharing
system. One approach would be to create
a single, national, homeland security infor-
mation system that integrates data from all
organizations involved. This is typical of

data warehousing architectures (See
Figure 1). Data are first extracted from a
system. The data typically undergo some
type of sanitization and transformation to
normalize structure and meaning. Finally,
the finished product is loaded, perhaps
also combined with other system data,
into a large database called the data ware-
house. This process is known as extrac-
tion, transformation, and loading.

Whether or not this approach is feasi-
ble technically – and many people have
suggested it is not – practical realities
make it a solution that is not only
unwieldy but also unlikely. Persuading all
the agencies and organizations involved
to defer to some central repository to pro-
tect and disseminate their information –
with the concomitant loss of control that
this implies if not actually entails – would
be the equivalent of tilting at numerous
cultural windmills in each of the agencies
involved. Nor would this approach be
without significant political challenges
and hurdles.

Another approach would be to allow
some central authority – with appropriate
certificates and clearances – to reach into
the myriad of databases involved and
extract just that information needed for
the task at hand. This distributed query
approach (see Figure 2) also faces signifi-
cant technical hurdles to ensure that a
given query is formatted so that all the
databases involved are queried in a like
manner. Without that assurance, it would
be impossible to have any confidence in
any answer produced. Moreover, from a
cultural perspective, this approach –
which seemingly gives the keys to the
kingdom to the enquirer – would likely be
just as unpalatable as the first approach, if
not more so.

8 CROSSTALK The Journal of Defense Software Engineering May 2003

Software Engineering Technology

Information Assurance Post 9-11:
Enabling Homeland Security

David W. Carey
Oracle Corporation

The demands of homeland security require information sharing on an unprecedented scale.
This includes sharing information among many agencies such as foreign intelligence, domes-
tic law enforcement, the Department of Homeland Security, the Department of Defense,
federal, state, local entities, and the private sector. Most of these entities have not worked
together before, and those that have will need to work even more closely together in the future.
For example, a single bioterrorism incident – or the threat of one – requires that elements
in agribusiness, public health, law enforcement, and foreign intelligence work seamlessly. It
will take more than legislation to enable this transformation. A host of technology, policy,
and cultural issues will need to be addressed. Information assurance will play a pivotal role
in establishing the trust that will enable this critical transformation.

Figure 1: Data Warehousing

Wednesday, 30 April 2003
Industry Plenary: 8:00 - 9:00

Ballroom

Information Assurance Post 9-11: Enabling Homeland Security

The challenge then is to devise an
architecture that deals with legacy systems,
which probably have not been fully inven-
toried yet much less understood, and that
does so in a way consistent with the orga-
nizational cultures involved. Although we
do not have the luxury of starting with a
blank piece of paper, we can make it pos-
sible for the various organizations
involved to build or alter their systems in
such a way that they can work in concert.
These loosely integrated systems could
work together to support a national strat-
egy for homeland security. Each of the
entities involved must be able to meet its
organization’s requirements and fit into its
organization’s infrastructure while adher-
ing to standards for information sharing.

The resulting architecture would allow
each organization to publish to a database
that it still controls, allowing that organi-
zation to ensure that the data provided
meets the requirements levied but does
not contain inappropriate material (see
Figure 3). Information from such individ-
ual repositories could then be amalgamat-
ed and made available to appropriate
users. For example, if that newly con-
structed database were a terrorist watch
list, then users would have an up-to-date
repository of all the watch lists now
extant with a pointer system to direct
them to the appropriate agency for more
in-depth information.

Standards
Above all, creating such an information-
sharing system would require a commit-
ment to standards. Those standards fall
into three categories: data, integration,
and security.

Data
When sharing data, it is not only impor-
tant to establish data format standards,
but also to understand the semantics of
data fields and data quality, including how
the data were collected. This makes it pos-
sible for organizations to compare data
and establish relationships.

For example, the Department of
Justice has defined a data standard called
the National Incident-Based Reporting
System (NIBRS). This standard defines
guidelines for collecting and storing infor-
mation related to a criminal incident. For
example, it defines a data element for stor-
ing a person’s eye color: the codes repre-
senting the allowed values for eye color,
and the color corresponding to each code.

In this way, if two systems are NIBRS-
compliant, the data in each can be com-
pared easily because both use the same
code to represent blue eyes, for example.

Data standards like this one are critical for
ensuring that once connectivity is estab-
lished between systems, users will be able
to compare and interpret the results.

Integration
Integration standards define how a system
exposes its data and services to other sys-
tems. Web services are the emerging tech-
nology area currently being investigated
for integration. Web services consist of
several technologies that are standards-
based. Some examples of standards for
Web services include the following:
• Web Services Description Language is

an Extensible Markup Language
(XML) for describing Web services.

• The Universal Description, Discovery,
and Integration is an open framework
for describing services, discovering
businesses, and integrating business
services using the Internet.

• The Simple Object Access Protocol is
an XML/HTTP-based protocol for
accessing services, objects, and servers
in a platform-independent manner.
These standards define how a system

wraps up and publishes its data to other
systems along with what services it pro-
vides and how to interact with these serv-
ices. A system can use these standards to,
in effect, say the following:

I know all about licenses for air-
plane pilots in the state of Virginia.
If you give me a social security
number, I will check your creden-
tials and then give you XML in the
following format that includes that
person’s license information.

With this approach, the user does not
care how the system was built, only that it

can accept and answer the question.
Because the federal, state, and local sys-
tems are all going to be built independent-
ly, integration standards are required for
them to effectively share information.

Security
Perhaps the most important information
standards are those related to security.
Again, the most significant barrier to
information sharing will not be the tech-
nical issue; it will be the concerns that
organizations have about exposing their
data to potentially insecure systems. This
means that the organizations have to
establish trust relationships.

To do so, at least four basic tenets of
security need to be honored. First, securi-
ty has to be part of the design. That is,
security has to be built into the system and
not bolted on afterward. When a bank is
built, for example, the architects and con-
struction personnel have thought about
how people will try to break in. They will
have gone through extra measures to
ensure the bank’s security is sound and
robust. The same attention should be
focused on security in information-shar-
ing systems. Trying to secure an insecure
system after it has been built simply does
not work – at least elegantly.

May 2003 www.stsc.hill.af.mil 9

Figure 2: Distributed Query Infrastructure

Integrated
Messaging

Publish

Publish

Publish

Figure 3: Selected Information Sharing

Software Engineering Technology

10 CROSSTALK The Journal of Defense Software Engineering May 2003

Second, defense in depth is needed. By
providing layers of security, assurance is
given that a failure in any single defense
measure does not compromise the entire
system. Returning to the bank example,
the architect is likely not only to use locked
doors but also a time-operated bank vault,
security cameras, and bulletproof glass.
The bank managers are likely to add vet-
ting procedures for bank personnel and
guards.

Third, it is important to the security
process that people realize risk has to be
managed. While maximum security is a
laudable goal, achieving that goal has to be
balanced with other competing factors
such as system performance, usability,
administration, and even cost. A system
with every possible safeguard generally
suffers such performance problems that
the system is not used. The workarounds
devised generally sacrifice security entirely.
Security is the delicate balance in risk man-
agement to secure our assets while still
maintaining a usable, cost efficient, and
manageable system.

Fourth, it is important to be careful
about the products used. Just as there are
different qualities in building materials,
there are different qualities in security
products. While it is largely accepted that
most security is centered in the process of
configuring and properly using the prod-
ucts, they are the foundation by which
everything is built. As with most endeav-
ors, if the foundation is weak, then it does
not matter what else has been done; the
system will not function appropriately.

Within the U.S. government, a level of
trust is established in an operational sys-
tem through the certification and accredi-
tation process. System certification is the
technical and non-technical evaluation of
a system that produces the necessary evi-
dence that is presented to the accrediting
authority. The evidence needs to be com-
prehensive enough so that the accrediting
authority can make a decision about the
risk of allowing a system to be operational
and to connect to other systems.

Within the government’s executive and
civil branches, the National Institute of
Standards and Technology (NIST) is tak-
ing the lead in establishing standards and
guidelines for system certification and
accreditation. For the executive branch,
the NIST recently released the draft publi-
cation “Guidelines for Security
Certification and Accreditation of Federal
Information Technology Systems.”

For the DoD, the Defense Infor-
mation Systems Agency (DISA) has estab-
lished the “DoD Information Technology
Security Certification and Accreditation

Process (DITSCAP)” [1]. The DITSCAP
defines both the secure design and certifi-
cation process and requirements, and
applies to systems within the DoD that do
not include special intelligence data.
Systems that process special intelligence
data are certified by the Defense
Intelligence Agency against the Director
of Central Intelligence Directive 6/3 [2]
that is similar to the DITSCAP but more
stringent in its requirements.

In developing accreditable systems, it
has become increasingly important to use
products that have been evaluated against
the security standards. This is especially
true for products that support system
security or provide cryptographic services.
In the United States, the National
Information Assurance Partnership, a col-
laboration between the National Security
Agency and NIST, manage product evalu-
ation. They manage the standards and
independent evaluation processes
required to ensure that technology
providers are implementing secure prod-
ucts. Security products are evaluated
against standards promulgated by the ISO,
specifically ISO 15408, and the “Common
Criteria” [3]. Encryption technology is
evaluated against Federal Information
Processing Standards 140-2 [4].

These evaluation standards should be
enforced across this information-sharing
system. To ensure that every possible step
is being taken to secure data at its source,
the government has taken steps to do just
that for national security information sys-
tems. In July 2002, a National Infor-
mation Assurance Acquisition policy went
into effect for systems that contain infor-
mation related to national security.
National Security Telecommunications
Information Security Systems Policy No.
11 [5] requires that products that have
undergone independent security evalua-
tion be used on these systems. It is imper-
ative that policies like this one be strength-
ened and, more importantly, enforced
through procurement policy. This policy
was reiterated in DoD Directive 8500.1 [6]
in October 2002.

The good news is that, in essence, the
technology to build a secure information-
sharing system is available today.
Information can be shared widely with
assurance that only the people who should
see the information are granted access.
Systems can be protected and users audit-
ed. And systems can be configured so that
they will be available even in the event of
a catastrophe. Some of the technology is
already robust while other technology will
become so with demand and high expecta-
tions.

In describing these secure systems,
security clearances and national security
classifications have not been mentioned.
These protections are especially important
within the intelligence community and
other parts of the federal structure that are
required to protect sources and methods.
But it is possible to get actionable infor-
mation to the people who need it without
worrying about whether or not they have a
national security clearance. In this case, the
secure in secure information sharing
means that only appropriate users are
accredited to the system and that they only
have the access needed to discharge their
responsibilities.

Building a system that will meet these
requirements is not cheap or easy, but it is
doable. While reality in the information
technology industry sometimes falls short
of claimed performance, there are ways to
ensure that does not happen. As noted,
independent evaluations provide a meas-
ure of assurance that actual functionality
lives up to a vendor’s claims; moreover,
employing evaluated products makes certi-
fication and accreditation of information
technology systems easier.

It is important to buy commercial off-
the-shelf products and to limit the urge to
customize. Too often such customization
is justified because we are special. This is
invariably an expensive trap; the mission
of homeland security is special but often
the information sharing and information
assurance needs are not. Point solutions or
those that require 20/20 hindsight should
be avoided; rather, the infrastructure to
enable solutions should be created.

Other Challenges
Of all the impediments and hurdles, the
technical challenges – while far from triv-
ial – may be the easiest. As with any mas-
sive change, the principal challenge will be
policy and culture.

A major policy challenge has already
been met; the president has said, “Do it.”
Of course, myriad policy issues will have
to be addressed to get it done. Setting the
standards that have been discussed
involves a number of key decisions. Even
deciding who makes the decisions may be
controversial. Who will fund and control
the coordinating systems and mecha-
nisms? Who will fund the upgrades and
migration programs for the legacy systems
involved, remembering as noted earlier
that in the critical infrastructure communi-
ty most of these entities are in the private
sector? There will also be the policy deci-
sions regarding who has access to what
information.

Next are the cultural issues. At least the

Information Assurance Post 9-11: Enabling Homeland Security

May 2003 www.stsc.hill.af.mil 11

technical and policy issues can be identi-
fied and worked directly. The challenge
that must be faced is to build a trust rela-
tionship, frequently a challenging task
when the parties know each other well.
Dealing across cultural divides is often
problematic in part because of the diffi-
culty in defining the specific issues that
need to be addressed.

The intelligence and law enforcement
communities at the federal level work
more closely together than they ever have.
But there are still distinctly different cul-
tures forged by the nature of the work.
There is a common language with differ-
ent definitions. For example, at the Federal
Bureau of Investigation an agent is a gov-
ernment employee; at the Central
Intelligence Agency (CIA), an agent is
someone you recruit to provide intelli-
gence or access to a foreign target; where-
as in the public health arena an agent is a
pathogen.

The same issues are associated with the
use of acronyms. Within the CIA the
National Intelligence Council – NIC –
produces assessments called NIEs or
National Intelligence Estimates. While
within the Drug Enforcement Admin-
istration there was at one time the
National Narcotics Intelligence Coordi-
nating Committee – NNICC – which
issued NIEs or Narcotics Intelligence
Estimates. And, of course, CI means
counterintelligence to one group in the
CIA, current intelligence to another, confi-
dential informant to most law enforce-
ment organizations, and a computer inci-
dent within the IT community. These are
purposely trivial examples, but they are
symptomatic of the different mindsets
forged by different missions.

These different cultures and mindsets
come to the forefront when information
sharing is on the table. Some of what peo-
ple see as resistance to sharing is based on
legal requirements. As stated earlier, by law
the director of Central Intelligence is
charged with protecting sources and meth-
ods. The issue of how much information
can be released without revealing either
source or method is legitimate. Against
that backdrop though, a risk avoidance
culture will ensure that less rather than
more is shared. Each agency has its own
security vetting process, and at present
there does not appear to be a shared
appreciation for what information needs
to flow where.

The Task
Despite these challenges, progress can be
made. Indeed, it must be made. The key is
found in two old saws that fit today’s chal-

lenge. The first is “think big, start small,
and scale fast.” Assuming that the new
Department of Homeland Security will be
tasked to develop this integration capabili-
ty and given the appropriate authority and
budget, a number of things need to hap-
pen under their auspices to start small, rec-
ognizing that in this instance small is a rel-
ative term; the task is enormous. If some
other entity is given this responsibility, the
tasks remain the same:
• A pilot program needs to be defined

that identifies the first set of informa-
tion that must be shared across organ-
izations. This pilot must be large
enough to cross organizational bound-
aries but small enough to allow results
to be accomplished quickly. To facili-
tate the pilot, no more than three
organizations should be involved. This
also keeps to a minimum the number
of security accrediting authorities that
would need to be involved.

• Memorandums of understanding
between the organizations need to be
established along with a trust relation-
ship at the personnel.

• Several efforts need to be started in
parallel:
• Development of system integra-

tion and data-sharing standards.
• Design of a system architecture.
• Definition of the security accredit-

ing authority, process, and require-
ments, and the definition of the
security policy and architecture.

• Development of a prototype sys-
tem to shake out the interoperabil-
ity, security, and system functionali-
ty issues.

The lessons learned from this effort
can then be used to scale fast, that is to
move the prototype system to operational
status and then to start a phased effort to
integrate additional organizations and sys-
tems. Again, the task is huge, but it is
imperative to bite off something that can
work and can be done rapidly – both to get
things moving and to model the culture
and behavior you will need to get the big-
ger job done. Then scale fast.

The other old saw that is appropriate
is, “the perfect is the enemy of the good.”
In other words, it is important to get
something good started and make it better
as we move along.

Both of these old saws contain an
underlying note of urgency that is relevant
to the task of enabling data sharing for
homeland security. The formation of the
new Department of Homeland Security
has been likened by many to the formation
of the DoD in the post-World War II era
because of the enormity and otherwise

daunting nature of the two undertakings.
The main difference, of course, is that the
DoD was formed in the aftermath of war
while the new department is being formed
during what unfortunately is in all likeli-
hood the early phase of a war. The only
acceptable result is success.◆

References
1. DoD Information Technology

Security Certification and Accredita-
tion Process <http://iase.disa.mil/
ditscap>.

2. Director of Central Intelligence
Directive 6/3 <www.fas.org/irp/off
docs/DCID_6-3_20Policy.htm>.

3. Common Criteria/ISO 15408
<www.commoncriteria.org> and
<http://csrc.nist.gov/cc/index.htm>.

4. Federal Information Processing
Standards 140-2 <www.itl.nist.gov/
fipspubs/index.htm>.

5. National Security Telecommunica-
tions Information Security Systems
Policy No. 11 <http://niap.nist.gov/
ccscheme/nstissp_11.pdf>.

6. DoD Directive 8500.1 <http://
iase.disa.mil> and <http://niap.nist.
gov/cc-scheme/d850001p.pdf>.

About the Author
David W. Carey is vice
president of Infor-
mation Assurance at
Oracle Corporation. He
built and currently
directs Oracle’s Infor-

mation Assurance Center, located in
the company’s Reston, Va., facility. The
center provides a venue to demonstrate
Oracle’s security-related technology
and for Oracle customers and partners
to address a wide array of information
assurance and security challenges.
Before joining Oracle, Carey worked
for the Central Intelligence Agency.
During his 32-year career there, Carey
held several senior positions, including
executive director. He is a graduate of
Cornell University and the University
of Delaware.

Oracle Corporation
1910 Oracle Way
Reston,VA 20190
Phone: (703) 364-2126
Fax: (703) 734-1374
E-mail: dave.carey@oracle.com

All employees, whether in the public or
private sector, are inextricably

dependent on information in the work-
place. Therefore, an organization’s infor-
mation assets, whether tangible or intangi-
ble, are essential. They are necessary for
day-to-day productivity and for the ongo-
ing viability of missions. Information
assets are pervasive in contemporary
organizations.

Information exists in many forms, and
different types of information have differ-
ent values to an organization. The impact
of threats to confidentiality, integrity, and
availability of information also depends
on the information and an organization’s
mission. As information systems become
increasingly interconnected, the opportu-
nities for compromise increase.

Consider the following questions:
• Do all of your employees understand

their responsibilities to protect the
organization’s information assets?
How safe are your information assets
from competitors or inadvertent
exposure by your partners or cus-
tomers?

• If an employee lost a laptop comput-
er, how confident are you that you
could recover from the loss with min-
imal disruption and compromise?
What is your risk tolerance for such a
loss?

• Are you protecting your intangible
information assets, e.g., intellectual
property (IP) and proprietary infor-
mation, as well as your tangible infor-
mation assets, e.g., computers and
routers? Do your security investments
complement each other to form a sys-
tem of protection? Are your informa-
tion assets protected in proportion to
their value to the organization?

• Can your chief executive officer
(CEO) tell your board of directors
that your company has made a con-
certed effort to protect all tangible and

intangible information assets?
Imagine if your company were to be

sued by a customer for disclosure of sen-
sitive financial information. The existence
of an information security management
system (ISMS) that was certified as meet-
ing the requirements of a recognized
standard (e.g., British Standard [(BS)]
7799-2 “Information Security
Management Systems – Specification with
Guidance for Use”) would provide a
strong defense against negligence.

Recent developments have created
new tools and techniques to help organi-
zations gain and maintain control of the
complex problem of effectively securing

their information assets. Before getting
into the details, the following will clarify
some terms:
• Information is what an organization

has compiled or its employees know. It
can be stored and communicated, and
it might include customer informa-
tion, proprietary information, and/or
protected (e.g., by copyright, trade-
mark, or patent) and unprotected (e.g.,
business intelligence) IP.

• Information assets are intangible
information and any tangible form of
its representation, including printed
copies, computer files, and databases.

• Information security generally refers
to the confidentiality, integrity, and
availability of the information assets.

• Information security management
includes the controls used to achieve
information security and is accom-
plished by implementing a suitable set
of controls, which could be policies,
practices, procedures, organizational
structures, and software functions.

• ISMS is the life-cycle approach to
implementing, maintaining, and
improving the interrelated set of poli-
cies, controls, and procedures that
ensure the security of an organiza-
tion’s information assets in a manner
appropriate for its strategic objectives.

ISO 17799 and BS 7799-2
In 2000, the ISO adopted the British
Standard (BS) 7799-1 (Part 1) as ISO
17799, “Code of Practice for Information
Security Management” [1]. ISO 17799 is a
best practices framework for information
security management. The standard is
structured in the following 10 sections
(i.e., control areas):
1. Security policy.
2. Organizational security.
3. Asset classification.
4. Personnel security.
5. Physical and environmental security.
6. Communications and operations man-

agement.
7. Access control.
8. Systems development and mainte-

nance.
9. Business continuity planning.
10. Compliance.

Within these control areas are 36 con-
trol objectives and 127 controls. The con-
trol objectives provide guidance to the
ISMS implementers on the standard’s
intention in a particular section. The con-
trols are enablers; they are succinct speci-
fications of best practices that might be
incorporated into the ISMS. The controls

12 CROSSTALK The Journal of Defense Software Engineering May 2003

Securing Your Organization’s Information Assets

Dr. Bill Brykczynski and Bob Small
Software Productivity Consortium

Leading companies are recognizing the criticality of their information assets and are imple-
menting information security management systems (ISMSs) to systematically identify and
protect these assets. ISO 17799 “Code of Practice for Information Security Management”
is an international standard that provides a best practices framework for implementing secu-
rity controls. British Standard (BS) 7799-2 “Information Security Management Systems
– Specification with Guidance for Use” provides a life-cycle framework for implementing
ISMSs. Accredited certification bodies have certified that more than 200 organizations
worldwide meet the requirements of BS 7799-2.

Tuesday, 29 April 2003
Track 7: 1:00 - 1:40

Room 251 A - C

“Information security
generally refers to the
confidentiality, integrity,
and availability of the
information assets.”

May 2003 www.stsc.hill.af.mil 13

do not explain how they should be imple-
mented – simply that they might be
required. The standard is explicit that
these controls might not be sufficient for
all situations. Organizations that imple-
ment an ISMS in accordance with the
standard are encouraged to create their
own controls to provide additional guid-
ance as necessary.

The following illustrates a control objec-
tive (from Section 3.1, Information
Security Policy Document):

Objective: To provide manage-
ment direction and support for
information security. Manage-
ment should set a clear policy
direction and demonstrate support
for, and commitment to, informa-
tion security through the issue and
maintenance of an information
security policy across the organiza-
tion. [1]

The following is an example of an
enabling control for the previous control
objective (from Section 3.1.1,
Information Security Policy Document):
A policy document should be approved
by management, published, and commu-
nicated, as appropriate, to all employees
[1].

Section 3.1.1 also provides guidance
on what should be included in the policy
document, and how it should be commu-
nicated to the users.

Whereas ISO 17799 provides guidance
for information security controls, BS
7799-2 states the following:

…specifies the requirements for
establishing, implementing, oper-
ating, monitoring, reviewing,
maintaining, and improving a doc-
umented ISMS within the context
of the organization’s overall busi-
ness risks [emphasis added]. [2]

The succinct requirements found in
BS 7799-2 provide the basis for inde-
pendent, third-party certification. BS
7799-2 also requires a life-cycle support
system for the ISMS and recommends
using the Plan-Do-Check-Act (PDCA)
model. Figure 1 shows the PDCA model
and illustrates the activities that occur in
each phase.

To summarize, ISO 17799 is a frame-
work (not a specification) that provides
best practices for information security
management. To actualize the appropriate
set of controls requires the implementa-
tion of an ISMS. The BS 7799-2 specifies
how an ISMS is developed and main-

tained in order to make operational the
controls in ISO 17799.

Accreditation, Certification,
and Compliance
The terms accreditation, certification, and
compliance are used in a variety of con-
texts, even within the broad area of infor-
mation security. Therefore, it is important
to briefly present what these terms mean
in the context of ISMS:
• Accreditation is the means by which an

authorized organization (i.e., the
accreditation body) formally recog-
nizes the competence of a certification
body to assess and certify/register the
ISMS of an organization with respect
to published ISMS standards (e.g., BS
7799-2).

• Certification (or registration) is con-
ferred by an accredited certification
body on an organization upon the suc-
cessful completion of an independent
audit, attesting that the management
system meets the requirements of a
particular standard (e.g., BS 7799-2).

• Compliance is a self-assessment per-
formed by an organization to validate
that it has implemented a system in
accordance with a standard.

Figure 2 illustrates the hierarchy of these
types of organizations and credentials.

In the United States, the Registrar
Accreditation Board (RAB) is the predom-
inant accreditation body for quality man-
agement systems (ISO 9001) and environ-
mental management systems (ISO 14000)
[3]. The RAB accredits certification bodies
to issue certificates to organizations fol-

Securing Your Organization’s Information Assets

Establish
the ISMS

Establish
the ISMS

Monitor and
Review ISMS

Monitor and
Review ISMS

Implement and
Operate the ISMS

Implement and
Operate the ISMS

Maintain and
Improve ISMS

Maintain and
Improve ISMS ActAct DoDo

PlanPlan

CheckCheck

• Plan: The organization shall:
– Define ISMS scope and policy.
– Identify and assess the risks.
– Manage risks through control

objectives and controls.
– Prepare Statement of

Applicability.

• Do: The organization shall:
– Formulate and implement a risk

mitigation plan.
– Implement controls selected to

meet the control objectives.

• Check: The organization shall:
– Perform monitoring procedures.
– Conduct periodic reviews of

ISMS for effectiveness.
– Review level of acceptable

and residual risk.
– Conduct internal ISMS audits

at planned intervals.

• Act: The organization shall:
– Implement identified

improvements in ISMS.
– Take appropriate corrective

and preventive actions.
– Maintain communications with

all stakeholders.
– Validate improvements.

Figure 1: Principal Activities in the Plan-Do-Check-Act Cycle

Accreditation
Body

Accredited
Certification

Bodies

Certified ISMSs

In the U.K.
United Kingdom

Accreditation
Service (UKAS)

British Standards
Institution (BSI)

Unisys, Ltd.

Det Norske
Vertitas (DNV)

GTECH, Ltd.

Figure 2: The Hierarchy of Credentials Leading to Certification

14 CROSSTALK The Journal of Defense Software Engineering May 2003

lowing successful audits within these two
broad areas.

In the United States today, there are no
domestic accreditation or certification
bodies for BS 7799-2. In the United
Kingdom, the United Kingdom Accredi-
tation Service offers accreditation to certi-
fication bodies for BS 7799-2 and other
management systems standards.

For an organization considering the
implementation of an ISMS, compliance
is obviously a weaker claim than certifica-
tion, although it is a necessary first step.
For organizations that wish to implement
the information security best practices in
ISO 17799 today, BS 7799-2 is the com-
panion specification for deploying and
managing an ISMS. ISO has begun the
formal study period on ISMSs (e.g., BS
7799-2) that will presumably lead to an
ISO standard.

To date, more than 200 organizations
worldwide have been certified using BS
7799-2 [4]. The Software Productivity
Consortium sees increasing interest
among its members in pursuing certifica-
tion or at least compliance. The following
three subsidiaries or divisions of consor-
tium members have publicly acknowl-
edged BS 7799-2 certificates:
• Fuji-Xerox in Japan.
• GTECH in Ireland and the United

Kingdom.
• Unisys, Ltd. in the United Kingdom.

Unlike certification, achieving compli-
ance is based on a self-assessment and is
not a rigorously controlled credential. An
organization might declare itself ISO
17799 compliant if it has implemented the
information security best practices in this
standard via some process. ISO 17799 is
not concerned with how it is implemented
and does not use the term ISMS.

Achieving BS 7799-2 certification
requires achieving compliance as a first
step. The PDCA model must complete at
least one cycle to produce the records
from the ISMS and give management the
opportunity to monitor, review, and
improve the system. Typically an ISMS
must be in operation for at least three
months before it has produced the arti-
facts required for audit.

An organization wishing to achieve
certification for its ISMS must contract
with a certification body that will assign a
lead auditor to the job. As in other man-
agement systems, the size of the audit
team will depend on the size and com-
plexity of the system being audited, as well
as any special domain knowledge require-
ments.

The audit consists of a documentation
review in which the auditors review the

objectives of the ISMS, and an implemen-
tation audit in which the auditors sample
the artifacts of the system throughout the
PDCA life cycle. The audit includes inter-
viewing stakeholders to validate that they
understand their roles and responsibilities
within the ISMS.

The lead auditor will debrief the
organization at the conclusion of the
implementation audit and share the audit
team’s recommendation for certification.
The certification body, in almost all cases,
acts in accordance with the lead auditor’s
recommendation.

Critical Success Factors for
Implementation
A successful ISMS, like most systems,
depends on the careful balance and inter-
action between people, process, and tech-
nology. The principal result is to reduce
risk to the organization from the potential
compromise of any information asset.

Three critical success factors must be

taken into account to achieve a successful
ISMS implementation: effective informa-
tion security, responsive management sys-
tem, and organizational change manage-
ment.

In theory, risk is equal to the product
of the probability of a compromising
event and the impact of the compromise.
Note that if either the probability is high
or the impact is high, then the risk might
be high. In practice, however, it is difficult
to know the likelihood of most compro-
mises, and most intangible assets do not
have a monetary value. Therefore, risk
analysis is not a rote exercise.

The point of implementing the ISMS
is to reduce risk to the organization by
improving the security of its information
assets. The requisite risk analysis and miti-
gation planning require sound judgment
to provide a solution that effectively pro-
tects the information assets from compro-
mise to their confidentiality, integrity, and
availability. In addition, confidentiality and

availability may not be equally critical from
organization to organization, but integrity
is generally considered to be essential –
without integrity, what value are the infor-
mation assets?

Like other management systems, the
ISMS must be designed to meet certain
functional requirements, have clearly
defined stakeholders with roles and
responsibilities clearly defined, and include
appropriate mechanisms for collecting
feedback and using it to improve the sys-
tem. Management systems require a com-
mitment of time and resources.

In the final analysis, if the ISMS imple-
mentation does not change people’s
behaviors within the organization, it
becomes shelfware. In every organization,
people are already busy and do not need
another set of things to do in addition to
their full-time jobs. The ISMS must be
intrinsic to each person’s job and not
merely be something else to do. Each must
understand what is expected.

Peter Senge wrote the following about
organizational change:

If I stand back a distance and ask,
“What’s the score?” how much
learning has actually been accom-
plished? I have to conclude that
organizational inertia is winning by
a large margin … Of course, there
have been enough exceptions to
indicate that learning is possible.
However, there are many more
organizations that haven’t gotten to
first base when it comes to real
learning, and many others that have
given up trying. [5]

Business Case for
Implementing an ISMS
So why would an organization choose to
make the investment in an ISMS and have
it certified? Several questions were posed at
the beginning of this article to illustrate
merely a few important information secu-
rity questions that might be difficult to
answer. Most organizations do, in fact,
have many information security controls in
place. In the absence of a formal ISMS,
however, these tend to be independent
point-solutions rather than a unified
approach to a pervasive organizational
problem.

The problem is complex due to the fol-
lowing factors:
• The enormous quantity of information

assets in most organizations.
• Assets’ inherent vulnerabilities and the

potential threats to their confidentiality,
integrity, and availability.

Software Engineering Technology

“In the final analysis,
if the ISMS

implementation does
not change people’s
behaviors within the

organization, it
becomes shelfware.”

May 2003 www.stsc.hill.af.mil 15

• The many requirements for informa-
tion security, including legal and regula-
tory, marketplace requirements from
customers and partners, and corporate
governance.
There are several reasons why an

organization should make the investment
in obtaining certification of an ISMS; these
are outlined in the following sections.

Comprehending the Problem
In today’s environment, effectively manag-
ing risk is a significant undertaking. The
old adage about a chain being as strong as
its weakest link certainly applies here.
There are too many information assets and
interfaces to be managed effectively with-
out an ISMS. Defense in depth is an essen-
tial strategy; ultimately, however, there is
no such thing as absolute security. First,
understand which information assets are
most important, how they might be com-
promised, and what the impact of a loss
might be. Then, determine risk tolerance
and put appropriate controls in place to
ensure their security.

Earning and maintaining customer
trust and protecting your organization’s IP
and the IP that it licenses are essential
objectives in information security manage-
ment. A company’s reputation can easily be
tarnished if management fails to take due-
diligent steps to prevent compromise.

A Concrete Example
Identity theft is the fastest growing crime
in the United States [6]. The largest identi-
ty-theft ring to date was broken in
November 2002. It was reported that the
principal suspect in the crime was a former
employee of a New York company that
provided software to banks and other
financial institutions. The employee left the
firm in March 2000 after less than a year of
employment but continued to have access
to private data through his own computer.
This was how he was able to steal private
information for criminal use [7].

What would the CEO of this company
say about the need for a systematic ISMS?
What would it be worth to this company to
have been spared any association with this
crime?

Had this company implemented an
ISO 17799-compliant or BS 7799-certified
ISMS, it is very likely that they would have
identified many (or all) of the links in the
chain of events that led to this disastrous
outcome. They would have established
controls and procedures to create a defense
in depth that would have served them very
well.

No one likes bad news, but informa-
tion security risks are a part of life, and an

ISMS is not a guarantee that bad things will
not happen. An effective ISMS can go a
long way toward reducing risk by identify-
ing the most important assets, building
appropriate risk-management solutions,
and changing the culture of the organiza-
tion so that information security manage-
ment is intrinsic to everyone’s job. In the
worst outcomes, the organization is best
prepared to deal with bad news, should it
arise.

Organizations that have achieved certi-
fication that their ISMS meets the require-
ments of BS 7799-2 have objective, third-
party evidence that they have taken due-
diligent actions to protect the security of
their information assets. At the end of the
day, that is the best that can be done.

Outlook for ISO 17799
This technology is still in the early adopter
phase. If ISO adopts an auditing specifica-
tion for 17799, the authors believe that will
significantly increase demand for certifica-
tion in the United States.

ISO 9000/9001 began life as a British
standard. In 1995, there were almost 9,000
certificates in the United States. This grew
to more than 37,000 by the end of 2001.
The U.S. marketplace has hovered at
around 7 percent of the global market [8].
Figure 3 illustrates the growth in the
United States and worldwide markets. This
might be a bellwether for ISO 17799.

Even before ISO might adopt an audit-
ing specification for 17799, the consortium
sees interest by several of its member com-
panies to achieve BS 7799-2 certification as
a discriminator in the marketplace. Others

are working toward ISO compliance now
as a first step toward certification in the
future.

Acknowledgements
This article is based in part upon work
sponsored by the Defense Advanced
Research Projects Agency under Grant
MDA972-01-1-0006. This article also ben-
efited from technical review by Doron
Becker, Justus Riek, Geetha Elengical, and
Bernard Eydt.◆

References
1. ISO. Information Technology – Code

of Practice for Information Security
Management. ISO/IEC 17799:2000.
Geneva, 2000.

2. British Standards Institution. Infor-
mation Security Management Systems
– Specification With Guidance for Use.
BS 7799-2:2002. London, 2002.

3. Registrar Accreditation Board. About
RAB. 2002 <www.rabnet.com/ab_
main.shtml>.

4. One 7799 World, Ltd. International
Register of BS 7799 Accredited
Certificates <www.xisec.com>.

5. Senge, Peter, Art Kleiner, Charlotte
Roberts, Rick Ross, George Roth, and
Bryan Smith. The 5th Discipline:
Dance of Change. New York:
Doubleday/Currency, 1999.

6. Identity Theft Resource Center. Facts
and Statistics: Find Out More About
the Nation’s Fastest Growing Crime.
May 2002 <www.idtheftcenter.org/
html/facts_and_statistics.htm>.

7. Weiser, Benjamin. “Identity Ring Said

Securing Your Organization’s Information Assets

Adoption of ISO 9000 and 9001:2000

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

1995 1996 1997 1998 1999 2000 2001

C
er

ti
fi

ca
te

s
G

ra
n

te
d

 i
n

 t
h

e
U

n
it

ed
 S

ta
te

s
0

100,000

200,000

300,000

400,000

500,000

600,000

C
er

ti
fi

ca
te

s
G

ra
n

te
d

 W
o

rl
d

w
id

e

United States Worldwide

Figure 3: Adoption of ISO 9000 as a Bellwether for ISO 17799

to Victimize 30,000.” New York Times
26 Nov. 2002.

8. ISO. Adoption of ISO 9000 and
9001:2000. <www.iso.ch/iso/en/
prods-services/otherpubs/pdf/survey
11thcycle.pdf>.

Additional Reading
1. For an overview of how accreditation

bodies achieve their credentials, see
ISO/IEC 17011, One Standard for
Accreditation of All Conformity
Assessment: Challenges for ISO/
CASCO Working Group 18 <www.
iso.ch/iso/en/commcentre/pdf/Casc
o0102.pdf>.

2. The ISO 17799 and BS 7799-2 stan-
dards may be obtained from <www.
ceem.com/infosecurity_standards.
asp>, which also contains some case
studies and Web seminars.

16 CROSSTALK The Journal of Defense Software Engineering May 2003

About the Authors

Bill Brykczynski,
Ph.D., leads the securi-
ty program at the Soft-
ware Productivity Con-
sortium. His profes-
sional and research

interests include applied security
research and software inspection
processes. He has a Bachelor of
Science in systems science from the
University of West Florida, a Master of
Science in information management
from George Washington University,
and a doctorate in information tech-
nology from George Mason University.

Software Productivity
Consortium
2214 Rock Hill Road
Herndon,VA 20170-4227
Phone: (703) 742-7134
Fax: (703) 742-7350
E-mail: bryk@software.org

Bob Small is a princi-
pal member of the
technical staff at the
Software Productivity
Consortium. His areas
of interest include

applied security research and building
communities of practice. He has a
Bachelor of Science in economics
from Ursinus College and a Master of
Science in computer science from the
University of New Haven.

Software Productivity
Consortium
2214 Rock Hill Road
Herndon,VA 20170-4227
Phone: (973) 984-8213
Fax: (703) 742-7350
E-mail: small@software.org

Software Engineering Technology

WEB SITES

Software Metrics Sites
http://user.cs.tu-berlin.de/~fetcke/measurement
The Software Metrics Sites is a guide to Internet resources
on software measurement, process improvement, and relat-
ed areas. Topics include electronic papers, bibliographies,
and conferences on software measurement, object-oriented
metrics, functional size measurement, and software process
improvement. Several mailing lists that are used for discus-
sions and the exchange of ideas can be found as well as soft-
ware measurement tools that are available for downloading.

USC Center for Software Engineering
http://sunset.usc.edu/index.html
The University of Southern California’s Center for Software
Engineering was founded in June of 1993 by Dr. Barry W.
Boehm to provide an environment for research and teach-
ing in the areas of large-scale software design and develop-
ment processes, generic and domain specific software archi-
tectures, software engineering tools and environments,
cooperative system design, and the economics of software
engineering. A main goal of the center is to perform
research and development of practical software technolo-
gies that can reduce cost, customize designs, and improve
design quality by doing concurrent software and systems
engineering.

Software Technology Conference
www.stc-online.org
In its 15th year, the Software Technology Conference (STC)
is the premier software technology conference in the
Department of Defense and is co-sponsored by the United

States Army, United States Marine Corps, United States
Navy, United States Air Force, Defense Information Systems
Agency, and Utah State University Extension. The STC
planners anticipate more than 2,500 participants this year
April 28 – May 1 in Salt Lake City from the military serv-
ices, government agencies, defense contractors, industry,
and academia.

MITRE
www.mitre.org
MITRE is a not-for-profit national resource that provides sys-
tems engineering, research and development, and information
technology support to the government. It operates federally
funded research and development centers for the DoD, the
FAA, and the IRS, with principal locations in Bedford, Mass.,
and northern Virginia. MITRE publishes numerous periodi-
cals and newsletters, maintains a news center, hosts numerous
technology information centers, and more.

Institute for Software Research
www.isr.uci.edu
The Institute for Software Research’s (ISR) mission is to
advance software and information technology through
research partnerships. The ISR supports research projects,
develops technology, and sponsors technical and professional
meetings. It works with established companies, start-ups, gov-
ernment agencies, and standards bodies to develop and transi-
tion the technologies to widespread and practical application.
ISR was established July 1, 1999 from the Irvine Research Unit
in Software.

Bob Small will also be speaking at
STC 2003 on “Reducing Internet-
Based Intrusions” on Wednesday, 30
April, Track 7, Room 251 A-C, from
1:50-2:30 p.m.

May 2003 www.stsc.hill.af.mil 17

For many programs, commercial off-
the-shelf (COTS) products offer the

promise of rapid delivery to end users,
shared development costs with other cus-
tomers, and an opportunity to expand
business and mission capabilities and per-
formance as improvements are made in
the marketplace. But the promise of
COTS products is often not realized in
practice. Why? An important factor is
that organizations tend either to assume
that COTS products can be simply
thrown together, or they fall back on
familiar, traditional development skills,
which have been shown not to work in
developing and maintaining a COTS-
based system [1].

Practical experience shows that build-
ing systems using COTS products requires
new skills, knowledge, and abilities;
changed roles and responsibilities; and dif-
ferent processes [1]. Many organizations
find that COTS-based systems can be
complex and are often costly to build and
maintain. Moreover, practitioners are find-
ing that management and engineering
processes for a COTS-based system1 must
be more (not less) disciplined.

This article characterizes the unique
aspects of defining, building, fielding, and
supporting a COTS-based system; des-
cribes the Evolutionary Process for Inte-
grating COTS based systemsSM (EPICSM)
(which was designed to show how COTS
aspects can be addressed [2]), and identifies
high-level guidance to facilitate the defini-
tion of appropriate work processes for
both developers and maintainers of COTS-
based systems using the Capability Maturity
Model® IntegrationSM (CMMI®) [3].

Demands of COTS-Based
Systems
In custom development, a system can be
created to meet the demands of a particular
operating environment. A COTS-based
system, for the most part, is composed of
products that exist off-the-shelf. COTS
products introduce unique dynamics and
constraints that must be accommodated
by any set of work processes that build,
field, and support COTS-based systems
such as the following:
• COTS products are developed and

enhanced in response to the vendor’s per-
ception of the needs of a broad set of cus-
tomers – the commercial marketplace
– not a particular customer’s needs.

• COTS products include implicit
assumptions about the way the product will be
used, which seldom match the prede-
fined operational processes of the pro-
ject’s end users.

• COTS products include implicit
assumptions about the way the product will
interact with other products and the enter-
prise infrastructure, including depend-
encies on specific versions of other

COTS products.
• The vendor often provides limited visi-

bility into the assumptions, design,
quality, and behavior of the COTS
products.

• COTS products often behave in unpre-
dictable ways when used in combination.

• The vendor controls the frequency and
content of COTS product releases. In a
competitive market segment, COTS
products may add and/or delete func-
tionality frequently.

• The vendor maintains the COTS prod-
uct, retains data rights to the source
code, and intends for the products to
be used without product modification 2.
Despite these differences, many organ-

izations have tried to use the more tradi-
tional approach as shown on the left in
Figure 1. This approach defines the
requirements, forms an architecture to
meet them, and then searches the com-
mercial marketplace for COTS products
that fit into that architecture. This
approach is rarely successful. COTS prod-
ucts do not fit. Organizations either resort
to custom development or try to make
COTS products fit by modifications. Either

Improving Processes for Commercial
Off-the-Shelf-Based Systems

Dr. Barbara Tyson, Cecilia Albert, and Lisa Brownsword
Software Engineering Institute

Organizations using commercial off-the-shelf (COTS) products in critical business and mis-
sion systems find that the traditional process of defining requirements, formulating an archi-
tecture, and then trying to find COTS products to meet the specified requirements within the
defined architecture rarely works. Instead, new processes, skills, and roles are required.
Many organizations that have derived substantial benefits through process improvement
using capability maturity models want to know, “How should the Capability Maturity
Model® IntegrationSM (CMMI®) be interpreted for organizations building, fielding, and sup-
porting a COTS-based system?” This article answers that question and describes the
Evolutionary Process for Integrating COTS based systemsSM, which was designed to show
how COTS aspects could be addressed; it also identifies high-level guidance to facilitate the
definition of appropriate work processes for developers and maintainers of COTS-based
systems using the CMMI.

Tuesday, 29 April 2003
Track 5: 1:50 - 2:30

Room 150 D - G

Traditional
Approach

Required Approach

Requirements

Architecture and
Design

Implementation

Programmatics/
Risk

Business Processes

Architecture/
Design

Marketplace

Stakeholder Needs/

Simultaneous
Definition

and Trade-Offs

Note: Adapted from COTS-Based Systems for Program Managers [4]

Figure 1: Fundamental Engineering, Management, and Business Change

SM EPIC and Evolutionary Process for Integrating COTS
based systems are service marks of Carnegie Mellon
University.

way, they incur significant cost and schedule
impacts that are repeated with each product
upgrade.

In contrast, the Software Engineering
Institute’s experience in examining more
than 50 projects attempting to build
COTS-based systems shows a fundamental
change is required, as shown on the right in
Figure 1. To effectively leverage COTS
products, knowledge of how the products
behave in the operational context and a
projection of how that behavior is likely to
change over time must influence the defi-
nition of the solution’s requirements and
end-user business processes, and will drive
the definition and implementation of the
resulting solution. Successful projects
emphasize a balance among the following
four competing spheres of influence
throughout the project’s life:
• Stakeholder 3 Needs and Business

Processes. An understanding of the
relationship between project success and
the organization’s business drivers. How
end-users will use the system with
emphasis on the implications for end-
user business processes. What the stake-
holders want with emphasis on the min-
imum number of must have requirements.

• Marketplace. An awareness of market-
place drivers that are likely to affect the
COTS products over the system’s life.
Knowledge of current and emerging
COTS products, technologies, and stan-
dards relevant to the project.

• Architecture and Design. The essen-
tial elements of the system, any other
systems or infrastructure with which it
interacts, and the relationships among
them (including structure, behavior,
usage, etc.) so the components can work
and evolve together.

• Programmatics and Risk. An under-
standing of the management aspects of
the project, including the impact of

implementing any needed changes to
the end users’ operational processes.
What the project and end-user commu-
nity can tolerate in terms of cost,
schedule, and risk.
While three of the spheres from the

required approach in Figure 1 have ana-
logues in traditional development processes,
the marketplace is a potent addition. To
accommodate the marketplace, each sphere
must be defined based on knowledge of the
marketplace.

For example, a stakeholder need may
be stated such that any known COTS
product cannot satisfy it. Similarly, a poten-
tial COTS product may not be compatible
with the organization’s existing infrastruc-
ture or use a licensing strategy that would
be cost prohibitive.

Therefore, as information among
spheres is analyzed, trade-offs among the
spheres are identified that must be resolved
through negotiation among the disparate
stakeholders. In practice, this drives the
practitioner to gather a little, synthesize
and negotiate a little, and then gather a lit-
tle more and synthesize and negotiate fur-
ther. Due to COTS products’ volatility, this
cycle of gather, synthesize, and negotiate
must be repeated until the system is
replaced or retired. Further, the new
release of an already selected COTS prod-
uct may change system behavior.

An Evolutionary Integration
Process
The EPIC evolved from a U.S. Air Force
need to institutionalize a process that
implements the necessary simultaneous
definition and trade-offs of the required
COTS approach. EPIC is documented [2]
to provide an overview and detailed
instruction. An Air Force organization and
a commercial financial institution have
started using EPIC across their programs.

EPIC does not simply evaluate and select
COTS products. Rather, it leverages many
of the elements of the Rational Unified
Process [5] to integrate COTS lessons
learned and disciplined spiral engineering
practice [6] to define, develop, field, and
support COTS-based solutions4.

The EPIC Framework
To maintain the required balance between
the four spheres through the life of the
solution, EPIC creates an environment that
supports an evolving definition of the solu-
tion while systematically reducing the trade
space within the spheres. As shown in
Figure 2 and discussed in the following
paragraphs, this environment consists of
iteratively converging decisions and accu-
mulating knowledge while increasing stake-
holder buy-in.

Iteratively Converging Decisions
Reduce the Trade Space
While trade-offs are common in any engi-
neering endeavor, trade-offs in EPIC are
driven by an increasingly detailed knowl-
edge of the COTS products’ marketplace
capabilities. Initially, as shown at the left of
Figure 2, the trade space may be large, with
great flexibility for negotiating trade-offs
among the four spheres. However, a deci-
sion in one sphere influences, and is influ-
enced by, decisions in the other spheres.

Over time, as the stakeholders’ under-
standing of the solution evolves, decisions
cause the spheres to converge. As they
converge, the spheres become more inter-
dependent, and the available trade space
shrinks. Elements of the solution will con-
tinue to evolve until the solution is retired
as business or operational needs change
and new releases of COTS products
become available.

Accumulating Knowledge Through
Disciplined Risk-Based Spiral Practices
As the trade space diminishes, knowledge
about the solution grows more detailed,
which is reflected in the set of artifacts or
work products necessary to build, field, and
support the solution. Most of the artifacts
are started in a rough form very early in the
process and are expanded as more informa-
tion is gathered and refined.

Due to marketplace volatility, keeping
current knowledge about it is particularly
important. In some cases, market events
may invalidate already agreed-upon deci-
sions (e.g., support for a product is dropped,
a new product is introduced, or a product
feature is added). While these disruptions
have no easy resolution, relationships with
vendors can provide warning of impending
changes so appropriate actions can be taken.

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering May 2003

Increasing Stakeholder Buy-In

Accumulating Knowledge

Trade Space

Simultaneous
Definition

and Trade-Offs

Iteratively Converging

Decisions

Time

Figure 2: The EPIC Environment

Improving Processes for Commercial Off-the-Shelf-Based Systems

May 2003 www.stsc.hill.af.mil 19

Increasing Buy-In Through Continuous
Negotiation Among Stakeholders
An environment that includes all affected
stakeholders is essential for timely resolution
of mismatches between the available COTS
products, the desired end-user business
processes, and the stated stakeholder needs.
In EPIC, stakeholders include the broadest set
of individuals and organizations affected by
the solution (or their empowered representa-
tives). End users, one set of stakeholders,
must be involved day-to-day to evaluate each
COTS product’s impact on the end-user
business processes. In addition, the end-user
needs will mature and change as their under-
standing of available COTS products
increases. Concurrently, engineering stake-
holders ensure that the COTS products con-
sidered can be effectively integrated with the
organization’s existing systems to meet
required performance parameters and other
system qualities. Business analysts ensure
that viable vendors support the products.
Vendors, another class of stakeholders, pro-
vide enhanced visibility into the COTS prod-
ucts’ capabilities and gain potential insight
into the organization’s needs.

Using EPIC
To implement this environment, EPIC uses a
risk-based spiral development process that
keeps the requirements and architecture fluid
as they are discovered and adjusts them to
optimize using COTS products. The follow-
ing sections summarize the COTS implica-
tions on the iteration and phase structure in
which project and system activities take
place.

Spheres of Influence Are Balanced in
Every Iteration
Like other spiral development approaches, a
series of iterations is defined across the life
of the solution to mitigate specific project
risks while addressing the most critical func-
tions. In EPIC, each iteration consists of the
fixed set of activities shown in Figure 3.

Each iteration begins with creating a
detailed plan to meet defined iteration objec-
tives. While many view the activities within
an iteration to be a mini-waterfall, with COTS,
information must be simultaneously gathered
from each of the four spheres, as it is refined
through analysis and stakeholder negotiation.
Due to the interaction among spheres, many
cycles of gathering and refining information
may be required to produce a consistent set
of information across all spheres to meet the
iteration objectives. An executable represen-
tation of the solution is assembled to
demonstrate the current understanding
among the stakeholders. The iteration ends
with an assessment of whether the objectives
were met.

Iterations Are Managed Through Clearly
Defined Anchor Points
While the activities are the same for each
iteration, the focus, depth, and breadth
tend to change in character across the life
of the system. As shown in Figure 4, EPIC
uses the four Rational Unified Process
phases (Inception, Elaboration, Construc-
tion, and Transition) and three correspon-
ding anchor points (Life-Cycle Objectives,
Life-Cycle Architecture, and Initial
Operational Capability) to manage spiral
development activities across the life cycle.

Like other spiral development process-
es, each phase consists of one or more iter-
ations designed to meet explicit phase
objectives and ends with an anchor point
that provides an opportunity to review exit
criteria, ensure continued stakeholder com-
mitment, and decide to proceed, change
project direction, or terminate the project
based on progress to date. The following
paragraphs summarize the goal of each
phase and highlight some of the changes

made in EPIC to accommodate the unique
character of COTS-based solutions.

Inception Phase: The Inception Phase
establishes a common understanding among
stakeholders of what the solution will do and
why. It ends with the Life-Cycle Objectives
anchor point when it is demonstrated that
one or more, albeit high-level, candidate
solutions can be integrated into the organiza-
tion’s broad architecture, in a reasonable peri-
od of time, at affordable cost, and for
acceptable risk. In EPIC, candidate solutions
may be formed around substantially different
COTS products and, therefore, may address
different user processes and stakeholder
needs, use different architectures, and have
different programmatic implications.

EPIC users have been surprised at the
magnitude of the effort necessary to achieve
the objectives of this phase. This is due in
part to a lack of experience with spiral devel-
opment processes. Just as significant, howev-
er, has been the need to reconcile a variety of

 Plan
Iteration

Gather Information

Assess
Iteration

Refine into
Harmonized Set Assemble

Executable

Executable

Programmatics/
Risk

Business Processes

Architecture/
Design

Marketplace

Stakeholder Needs/

Simultaneous
Definition

and Trade-Offs

Note: Adapted from A/APCS [5]

Figure 3: An EPIC Iteration

Simultaneous
Definition

and Trade-Offs

Life-Cycle
Objectives

Life-Cycle
Architecture

Initial
Operational
Capability

Converging

Decisions

Inception Elaboration Construction Transition

Figure 4: EPIC Phases

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering May 2003

program mandates, which have included pre-
selection of one or more COTS products by
senior leadership, a predefined architectural
framework, predefined target business
processes, and arbitrary schedule and cost
objectives. Identifying and negotiating these
issues while the cost of resolving them was
low has proven beneficial.

Elaboration Phase: The Life-Cycle
Objectives anchor point marks a change in
intensity. During the Elaboration Phase,
stakeholders conduct in-depth experiments
with candidate COTS products in a context
that closely represents the operational envi-
ronment. This phase ends with the Life-
Cycle Architecture anchor point when all
stakeholders agree that the defined solution
provides sufficient operational value; the
requirements, end-user business process, and
architecture are sufficiently stable; and the
solution can be assembled for acceptable
cost, schedule, and risk.

While every effort is made to stabilize the
solution, inevitably some unanticipated
changes will occur in development and main-
tenance. In particular, new versions of the
selected COTS products will require evalua-
tion. Monitoring the marketplace for advance
notice of these changed versions is required
through the life of the solution.

Some EPIC users have applied this phase
differently. One user views elaboration as an
opportunity for rapid prototypes. Another
uses EPIC to validate the utility of imple-
menting a COTS-based versus custom solu-
tion. In both cases, this phase is used to con-
verge on a stable definition of the solution to
be implemented and then fielded.

Construction Phase: The Construction
Phase focuses on preparing a production
quality release of the solution suitable for
fielding, and any necessary preparations in
the target organizations to facilitate the initial
fielding. In addition to developing any cus-
tom components, production rigor is applied
to tailoring5 COTS products, developing inte-
grating code (including wrappers, glue, etc.)
and fully testing the system. The
Construction Phase ends with the Initial
Operational Capability anchor point when
the solution is of sufficient quality for initial
fielding to a subset of operational users.

No organization has yet progressed to
this phase using EPIC.

Transition Phase: The Transition Phase
fields and supports the solution across the
user community. This requires proficiency in
using the solution. As required, bugs are
fixed, features are adjusted, new COTS prod-
uct releases and patches are evaluated and
considered for integration, and missing ele-

ments are added to the fielded solution in
maintenance releases. The Transition Phase
ends only when the solution is retired and/or
replaced by a new solution.

Implications of COTS-Based
Systems on CMMI Work
Processes
Capability maturity models integrate total
quality management, best practices targeted
to an organization’s domain, and organiza-
tional development practices to guide
improvement to an organization’s processes
and its ability to manage the development,
acquisition, and maintenance of goods6 or
services. Many organizations have derived
substantial benefits [4] from process improve-
ment using capability maturity models.

The CMMI [3] currently contains four
disciplines: Systems Engineering, Software
Engineering, Integrated Product and Process
Development (IPPD), and Supplier
Sourcing. Each is critical to building, fielding,
and supporting a COTS-based system.
Systems Engineering and Software
Engineering disciplines provide a basis for
the necessary development and maintenance
activities. IPPD provides for the timely stake-
holder involvement to support negotiations
among the spheres of influence. Supplier
Sourcing provides practices for selecting and
managing subcontractors that may be
extended to COTS vendors.

Process areas7, the primary building
blocks for the CMMI, are not a process – nor
are they process descriptions. It is intended
that practices in the CMMI process areas be
interpreted using an in-depth knowledge of
the organization, the business environment,
and any other relevant circumstances to
define and implement work processes that
meet the organization’s needs.

As illustrated in EPIC, the required
COTS-based systems approach demands
development and maintenance environments
and work processes that support the follow-
ing behaviors:
• Concurrent definition and evolution of

the four spheres:
• Business process engineering be-

comes integral to system engineering.
• Requirements are formed through

discovery of what is available in the
commercial marketplace and any
other sources.

• A flexible system architecture is
defined early and maintained until the
system is retired.

• Awareness of potential market-
place changes is kept current
throughout system development
and maintenance.

• Cost, schedule, and risk implications

for implementing the system and any
required business process changes are
an integral part of all trades.

• Continuous negotiation among stake-
holders.

• Disciplined spiral or iterative practices
with frequent executable representations
of the evolving system.
In the following sections, selected CMMI

process areas are identified for each of these
behaviors with guidance for interpreting the
process area for COTS-based systems. Not
all affected process areas are discussed nor is
a full treatment of the needed interpretations
provided. Although all process areas are
important in a COTS-based system, this arti-
cle focuses primarily on the project manage-
ment and engineering process areas, with ref-
erences to other process areas of particular
relevance.

Concurrent Definition and Evolution of
the Four Spheres
Development of a COTS-based system is
essentially an act of reconciling the four
diverse spheres of influence. The discovery
of requirements, the solution design, and the
formation of project parameters must be
fully integrated with stakeholders’ discovery
and analysis of capabilities in the market-
place. In addition, periodic disruptions to this
discovery must be accommodated. This
implies the following:
• Decision Analysis and Resolution. Well-

established, robust decision processes are
required to manage continuous negotia-
tion among the solution’s stakeholders.

• Technical Solution. Alternative solutions,
including solutions using mixes of differ-
ent COTS products, must be continuous-
ly developed and analyzed to reflect
changes across all four spheres.

Business Process Engineering Integral to
System Engineering
COTS products implement the vendor’s
assumptions about how end-user business
processes operate. This is very different from
a custom development situation where the
system is created to meet the demands of
predefined operational processes. For
COTS-based systems it means that the end-
users must be willing to modify their business
processes as they learn about candidate
COTS products. And, end-user business
processes may need to be redetermined and
renegotiated with new releases of the COTS
product across the life of the system.

The CMMI does not address changes to
the processes in the functional units of the
enterprise. However, the concepts in
Organizational Process Focus can be
expanded in application to plan and imple-
ment enterprise business or operational

May 2003 www.stsc.hill.af.mil 21

process improvement. In addition, a shared
vision of success among stakeholders, suit-
able incentives, and leadership (as described
in the concepts in Organizational
Environment for Integration) are critical to
aligning business processes with alternative
solutions.

Requirements Formed Through Discovery
of What Is Available
For COTS-based systems, it is unrealistic to
form a detailed set of requirements at the
start of a project and force the system to
meet that set. Three conditions cause this to
be true. First, as previously discussed, to
leverage the marketplace, requirements must
be informed by an understanding of available
COTS products. Second, as end users inter-
act with candidate COTS products and better
understand the capabilities in the marketplace
their expectations for the solution tend to
change. Third, the marketplace changes
product capabilities and introduces new tech-
nologies that provide unforeseen opportuni-
ties and challenges. Thus, requirements need
to be fluid enough to respond appropriately
to changes in the marketplace across the life
of the solution. This implies the following:
• Requirements Development. To aid in

making trades, prioritizing the require-
ments is an essential practice for a
COTS-based system. Stakeholders must
agree on a minimum set of must-have
requirements.

• Requirements Management. It is particu-
larly important to begin disciplined and
controlled requirements management at
project start to track identified and nego-
tiated trades.

Early Definition and Maintenance of a
Flexible System Architecture
Since the COTS products are owned by the
vendors, the framework by which the COTS
products and other components of the sys-
tem are combined to provide desired func-
tionality – the architecture – becomes an
important strategic asset. And, evolvability of
the system becomes a critical quality attribute.

The architecture must be based on cur-
rent and predictive knowledge of both the
enterprise and the underlying technologies of
relevant COTS products, and carefully craft-
ed to insulate parts of the system from
changes in other parts. The structure and
cohesiveness of the architecture must be
maintained while allowing the system to
respond efficiently to continuous COTS
product upgrades, technology advances, and
new operational or business needs until the
system is retired. This implies the following:
• Technical Solution. Alternate solutions

need to describe the project standards or
protocols (often referred to as glue code

or wrappers) that will be used to link
COTS products and other system com-
ponents. Previous make-or-buy decisions
may need to be revisited when an existing
product changes or a new product
becomes available.

Continuous Awareness of Changes
in the Marketplace
Relevant market segments and products must
be monitored to anticipate and track any
changes that could potentially affect the solu-
tion. Knowledge of key COTS products
must be sufficiently detailed to understand
their potential impacts and benefits to the
system. Hands-on evaluation of key COTS
products and prototypes of combinations of
products is essential.

The vendor is an important stakeholder
for the project providing unique insights into
ways that products work. Developing and
maintaining relationships with the vendors
who supply key COTS products may help
influence a vendor’s product direction (vendors
do not often respond to direction from a cus-
tomer). The specific nature of the relation-
ship will depend on the importance of the
COTS product to the solution and the ven-
dor involved. Not all vendors will encourage
(or entertain) a close-working relationship.
This implies the following:
• Integrated Supplier Management. Part-

nering with key vendors is critical.
Vendors, however, will seldom allow
process monitoring. Therefore, to deter-
mine product suitability, it is important
to conduct a hands-on evaluation of
each vendor’s product releases (includ-
ing any patches) in the context of their
use in the system. In addition, establish-
ing and maintaining relationships to
influence (not direct) future product
capabilities is critical. Relationships with
key vendors’ other customers, while not
explicitly covered in CMMI, may ampli-
fy this influence.

Cost, Schedule, and Risk Implications
Integral to All Trades
Each alternative solution must evaluate team
skills and expertise required to implement,
field, and support it as well as the associated
cost, schedule, and risks. In addition, fielding
of a COTS-based system includes the cost,
schedule, and risks of implementing business
process changes for the functional units that
are affected by the solution as part of the
total cost of ownership. This implies the fol-
lowing:
• Technical Solution. Engineering trades

must include the risk, cost, schedule, and
other programmatic factors that are asso-
ciated with each alternative solution.
Estimates of work product and task

attributes should be generated for each
alternative.

Continuous Negotiation Among
Stakeholders
Communication and effective decision-mak-
ing processes are critical to a COTS-based
system. Stakeholders who reflect the full
diversity of interests must be available to
quickly resolve mismatches among elements
in the four spheres of influence as they are
discovered, and agree that the evolving defi-
nition of the system will meet their needs.
Stakeholders must be actively involved in the
development process, particularly stakehold-
ers who will use the system to meet enter-
prise objectives.

Integrated teaming among disparate
stakeholders (as described in the process
areas within the IPPD discipline) throughout
development and maintenance is essential.
The end users must be involved to confirm
the results of any and all negotiations.

Disciplined Spiral or Iterative Practices
With Frequent Executables
COTS-based systems are particularly suited
to spiral development work processes. In spi-
ral development, critical attributes of the
solution are concurrently discovered through
an evolutionary and continuous exploration
of the highest risk elements of the system.
Spiral development encourages frequent and
direct feedback from stakeholders while
reducing the risk of misunderstandings by
producing and validating executable repre-
sentations (prototypes or production releas-
es) of the evolving solution. This implies the
following:
• Project Planning. If not already imple-

mented, extensive effort may be needed
to revamp planning and engineering
processes to align with a risk-based spiral
development approach.

• Risk Management. The risk-management
strategy needs to be robust enough to
allow risk to (re)direct and manage the
project. Tracking the effectiveness of risk
mitigation is essential.

• Technical Solution and Product Integra-
tion. Frequent executable representations
of the evolving alternative solutions pro-
vide critical insights into how the solution
will operate and how the COTS products
will be integrated to achieve essential
solution behaviors.

Summary
COTS-based systems introduce unique chal-
lenges that demand fully integrated work
processes to accommodate the volatility of
the marketplace throughout the life of the
system. In particular, COTS products and
end-user operations must be reconciled – and

Improving Processes for Commercial Off-the-Shelf-Based Systems

Software Engineering Technology

re-reconciled – as new product releases
become available. This forces linkage
between business process, engineering, and
system development activities. Extensive
communication and strong decision-making
processes are necessary to facilitate cooper-
ation, negotiation, and continuous validation
of the evolving definition of the solution
across potentially disparate stakeholders.

EPIC illustrates a way to realize the
promise of COTS using a risk-based spiral
development process to actively manage and
balance knowledge across four spheres of
influence. EPIC is more than a way to select
a specific product. Rather, it shows a way to
define, develop, field, and support a coher-
ent solution composed of one or more
COTS products, any required custom code,
and implementation of any changes
required to end-user processes.

As with any CMMI application, the
unique aspects of COTS-based systems
must drive the development of effective
work processes. Developing and maintain-
ing a COTS-based system is more than
selecting products.

The authors solicit feedback from
organizations implementing EPIC or similar
processes.◆

References
1. United States Air Force Science Adviso-

ry Board. Report on Ensuring
Successful Implementation of
Commercial Items in Air Force Systems.

SAB-TR-99-03. Washington, D.C.: SAB,
2000.

2. Albert, C., and L. Brownsword. Evo-
lutionary Process for Integrating COTS-
Based Systems (EPIC): An Overview.
CMU/SEI-20030TR-009. Pittsburgh,
PA: Software Engineering Institute,
2002 <www.sei.cmu.edu/publications/
documents/02.reports/02tr009.html>.

3. Software Engineering Institute. CMMI
Product Team: Capability Maturity
Model® Integration, Version 1.1.
CMU/SEI-2002-TR-11. Pittsburgh, PA:
Software Engineering Institute, 2002.

4. Goldenson, D., and J. Herbsleb. After
the Appraisal: A Systematic Survey of
Process Improvement, Its Benefits, and
Factors That Influence Success.
CMU/SEI-95-TR-009. Pittsburgh, PA:
Software Engineering Institute, 1995.

5. Kruchten, P. The Rational Unified
Process: An Introduction. 2nd ed.
Addison Wesley Longman, Inc., 2000.

6. Boehm, B. “A Spiral Model of Software
Development and Enhancement.”
IEEE Computer May 1998: 61-72.

Notes
1. A COTS-based system can be one sub-

stantial COTS product tailored to pro-
vide needed functionality or multiple
components from a variety of sources,
including custom development, integrat-
ed to collectively provide functionality.

2. We use the term modification to mean

changes to the internals of a hardware
device or the software code. This does
not include vendor-provided mecha-
nisms for tailoring the product to specif-
ic operational environments.

3. A stakeholder is any person or organiza-
tion with a vested interest in the out-
come of a project, including customers,
developers, engineers, managers, manu-
facturers, end-users, etc.

4. In EPIC, a solution is the integrated
assembly of one or more COTS prod-
ucts or other reuse components, any
required custom code (including wrap-
pers and glue), appropriate linkage to the
organization’s broad architecture, and
any necessary end-user business process
changes.

5. Tailored means non-source code adjust-
ment necessary to integrate the COTS
products into an operational system, e.g.,
scripts.

6. Goods are any tangible output intended
for delivery to a customer or end user
(CMMI uses product).

7. To distinguish them from generic
process names, CMMI process area
names are underlined.

22 CROSSTALK The Journal of Defense Software Engineering May 2003

About the Authors

Barbara Tyson, Ph.D.,
is a senior member of
the technical staff in
the Software Engi-
neering and Process
Management Group at

the Software Engineering Institute. She
develops and promulgates software
engineering processes and organiza-
tional change. Tyson provided software
development and systems engineering
technical and management support in
industry, federal, and academic envi-
ronments. She has taught graduate
courses in marketing, management,
organizational change, and information
systems at Johns Hopkins and
Marymount Universities.

Software Engineering Institute
4301 Wilson Blvd. Suite 902
Arlington,VA 22203
E-mail: btyson@sei.cmu.edu

Cecilia Albert is a sen-
ior member of the
technical staff in the
Commercial Off-the-
Shelf-based systems
Initiative at the Soft-

ware Engineering Institute. Albert
served in the U.S. Air Force where she
developed major software programs
for simulation, command and control,
and mission processing of national
satellite systems. She taught at the
Industrial College of the Armed
Forces, and managed the archive and
dissemination programs at the
National Imagery and Mapping
Agency.

Software Engineering Institute
4301 Wilson Blvd. Suite 902
Arlington,VA 22203
E-mail: cca@sei.cmu.edu

Lisa Brownsword is a
senior member of the
technical staff in the
Commercial Off-the-
Shelf-based systems
Initiative at the Soft-

ware Engineering Institute. Browns-
word was on staff at the Computer
Sciences Corporation in support of
NASA/Goddard’s Software Engineer-
ing Lab and has worked for Rational
Software Corporation where she pro-
vided consulting to managers and tech-
nical practitioners in the use of transi-
tioning to software engineering prac-
tices, including architecture-centered
development, product lines, object
technology, and Ada.

Software Engineering Institute
4301 Wilson Blvd. Suite 902
Arlington,VA 22203
E-mail: llb@sei.cmu.edu

Cecilia Albert and Lisa Brownsword
will also be speaking at STC 2003 on
“Evolutionary Process for Integrating
COTS-based systems (EPIC)” on
Tuesday, 29 April, Track 8, Room 251
D-F, from 3:00-3:40 p.m.

May 2003 www.stsc.hill.af.mil 23

In the initial decades of the computer
industry, systems were built in isola-

tion. Large problems typically were
solved through the development of
numerous, stand-alone, vertical solutions.
As computer systems started covering
progressively larger segments of the
problem space, they began to overlap and
often failed to integrate.

The solution to this problem was part
systems engineering, and part grand design
and grand implementation. The premise
behind these grand approaches was to
think of the entire problem and to imple-
ment a total solution. Although on the sur-
face this seems perfectly reasonable, the
problem is that this strategy, especially
when coupled with a Waterfall Model
life-cycle development approach, simply
does not reliably scale up to implement-
ing large, complex systems.

Depending on whose data you refer-
ence, there is anywhere from a 50 percent
to an 80 percent likelihood that any given
software system project will fail [1]. That
is, the project will require substantially
more time than originally planned, cost
substantially more than originally budget-
ed, or will deliver substantially less func-
tionality than originally expected, or any
combination of the preceding. Further-
more, the larger the project, or the longer
the planned duration, the greater the like-
lihood of failure.

After nearly 25 years in the software
industry and 10 years of conducting
process appraisals using the Software
Engineering Institute’s Capability
Maturity Model® for Software, I have
repeatedly observed that it is exceedingly
rare for complex, large-scale, multi-year,
grand implementation software projects
to deliver all expected functionality with-
in the originally planned schedule and
budget. But are these failures truly due to

the grand implementation approach, or is
it something else?

Grand Implementation
Problems
In this article, grand implementation
approaches are considered to be coupled
with a Waterfall Model life-cycle develop-
ment approach. Although large, complex
systems often need a grand design to
ensure overall architectural integrity, hav-

ing such a design does not mean that the
next step must be a grand implementa-
tion. Nevertheless, after a grand design is
completed development often com-
mences for the entire system. When the
entire system is ready, it is put though
integration test, system test, and accept-
ance testing: classic Waterfall Model
development. While this can be a very
effective approach for small systems or
short duration projects, it becomes a
much less successful approach as project
duration and complexity increase.

Part of the problem is requirements
volatility. The traditional response to this
problem is to require the customer to

freeze their requirements – as if that were
possible. Frozen requirements make
absolutely no sense for the simple reason
that all systems are basically built to
address one root requirement: solve the
customer’s problems. If a system is being
built during several years, what is the like-
lihood that the customer’s problems will
remain unchanged throughout this entire
period?

I do not know what the aggregate
staff-year transition point is regarding
when a grand implementation project
crosses over from being more likely to
succeed to being more likely to fail, but it
does not seem like a very large number.
Certainly a grand implementation
approach to a four-person, three-month
project will likely work. Maybe a grand
implementation approach can even work
on a 10-person, 18-month project if you
are really good. But what about a 100-
person, five-year, legacy systems modern-
ization project? Can we reliably apply
grand implementation thinking to this
scale of a project, or should we consider
another approach?

There is still another problem with
the grand implementation strategy. Even
if you can get it to work, you have likely
created an absolute nightmare for whoev-
er will build the eventual replacement
system. Too often, people who design
systems do not think about an incremen-
tal approach to that system’s retirement. If
you do not design the system for incre-
mental retirement, then in all likelihood
you will not be able to conduct an incre-
mental retirement.

Typically, this forces the replacement
system to also be based upon (yet anoth-
er) grand implementation, all-or-nothing
solution. Replacement systems are usual-
ly much more complex than the systems
they replace, so the problem of total solu-

Planning and Managing the
Development of Complex Software Systems

Dr. Richard Bechtold
Abridge Technology

With the ongoing evolution of information systems and computer technologies, it is becom-
ing progressively easier to leverage incremental design, development, and testing strategies.
This article briefly examines the problems inherent in the traditional “grand, all-at-once”
implementation approach. Next, an alternative approach is described that leverages grand
and incremental design, incremental development, early incremental testing, rapid risk
reduction, and the re-calibration of data used for estimation. Key benefits to this approach
include easily developed and highly reusable estimation data, early verification of system fea-
sibility, early management of customer expectations, and early validation of system usabil-
ity and acceptability.

Wednesday, 30 April 2003
Track 4: 1:50 — 2:30

Ballroom D

“Depending on
whose data you

reference, there is
anywhere from a 50

percent to an 80
percent likelihood that

any given software
system project will fail.”

tion replacement – often referred to as legacy
system modernization – can lead to projects
that are progressively more likely to
repeatedly fail [2].

Designing and Planning
Complex Software Systems
The remaining sections of this article
look at a systematic alternative approach
for complex systems’ construction. For
simplicity, this discussion generally focus-
es on the design, estimation, planning,
and management of the construction and
delivery of complex Web-based systems
or systems that include Web-based sub-
systems, but the principles are also appli-
cable to the construction of other types
of software-intensive systems.

Micro-Incremental Development
Incremental development is not a new
concept, but the eXtreme Programming
(XP) community has given further defini-
tion to some of the principles. In partic-
ular, XP advocates using a highly incre-
mental approach, and building testable
functionality in much smaller and shorter
duration steps [3]. The approach advo-
cated in this article adds additional details
to this foundation.

When commencing system decompo-
sition, strive to allocate high-level func-
tionality into regions, partitions, and
frames. For this article, regions are
defined as major subsystems that can be
separately implemented, tested, main-
tained, and replaced. At the design level,
regions capture required system function-
ality but defer physical implementation
details.

Each region consists of several parti-
tions that can be separately implemented,
tested, maintained, and replaced. At the
design level, partitions reflect not only
functional requirements but also capture
all important physical implementation
details.

Lastly, each partition is divided into
several frames. Frames are low-level or
atomic software components such as Java
class files that can be separately assigned
to small software teams for parallel con-
struction and unit testing.

Generally, a large system can be
designed with five to 10 distinct regions,
each with five to 10 distinct partitions.
Completed regions should deliver actual
usability to the customer or system end-
users. Within each region, completed par-
titions should deliver actual functionality.
Although functionality does not neces-
sarily translate into usability, it does allow
the customer or system end-users to eval-

uate system characteristics and perform-
ance, and to provide early feedback to the
development team [3].

Hot-Swappable Partitioning
One of the key tenants of this approach
is that each partition is hot-swappable or
capable of being replaced with little or
no adverse impact on the rest of the sys-
tem. Given the preceding guidelines of
five to 10 regions, each with five to 10
partitions, your design will contain
between 25 and 100 separately imple-
mentable, testable, and replaceable parti-
tions. To facilitate this, partitions can be
designed to interact with each other pri-
marily through message passing and file
input/output.

Of course, there are trade-offs to be
addressed. Partitions that communicate
via file input/output will suffer a severe
performance penalty. Additionally, as sys-
tems evolve and grow larger, there is a
general tendency for them to become
increasingly interconnected. Avoiding
this will usually require periodic efforts to
reduce partition coupling and to increase
partition cohesion, both of which trans-
late into increased time, money, and
effort. However, by taking steps to
ensure hot-swappable partitioning there
is an increased likelihood that you can
more easily fix or upgrade individual par-
titions without adversely impacting the
rest of the system.

Nevertheless, given the preceding
issues it is clear that 100 percent hot-
swappable partitioning is more of an
ideal than it is a practical reality. At a min-
imum, however, it is certainly critical to
avoid the all-or-nothing implementation

where the system is either completely
working or completely useless. Within the
limits of system performance, project
budgets, and schedule constraints, hot-
swappable partitioning should be a top-
priority design objective and built into as
many partitions as possible.

Commitment Deferral
A third key concept is the deferral of
technical commitments, and especially
architectural commitments, to the great-
est extent possible. Again, in some areas
commitment deferral may be impossible
or, indeed, not even desirable. Neverthe-
less, during design you may have some
opportunities to allocate certain tech-
nologies to partitions that you plan to
build towards the end of the project. By
deferring commitments you increase the
likelihood that you can more easily
respond to changing requirements,
changing technologies, or evolving solu-
tion alternatives.

Early Detection/Agile Response
Further leveraging XP, a fourth key con-
cept is to plan for a development and
implementation approach that allows for
early detection of any problems, and for
agile and rapid response to those prob-
lems. Given that you have designed for
both usable releases (regions) and func-
tional releases (partitions), system com-
ponents can be developed, tested, and
immediately delivered to key stakehold-
ers. In addition to early detection and
correction of defects and improved cus-
tomer communications, this approach
will allow you to perform highly effective
customer expectation management.

Partition and Frame Estimation
Even though the preceding guidelines
will result in a system where functionality
is implemented across 25 to 100 parti-
tions, these partitions may still be too
large to accurately estimate required
work. Therefore, as indicated earlier, each
partition can be further decomposed into
five to 10 frames. The primary objective
of frames is to facilitate planning, con-
struction, unit testing and integration
testing, and to support risk management
(more on this later).

Each frame should be assigned to one
person or to a very small team (such as
with pair programming). Additionally,
each frame should generally appear to
require somewhere between one and four
weeks of work. When it is obvious that
less work will be required, frames can be
combined. Conversely, if more work is
obviously required, frames can be further

24 CROSSTALK The Journal of Defense Software Engineering May 2003

“Even if you can get it
[grand implementation

strategy] to work,
you have likely

created an absolute
nightmare for whoever
will build the eventual
replacement system ...
you will not be able

to conduct an
incremental retirement.”

Software Engineering Technology

Planning and Managing the Development of Complex Software Systems

May 2003 www.stsc.hill.af.mil 25

decomposed.
The next step is to analyze the key

attributes of each frame and to use those
attributes as the basis for schedule and
cost estimation. Although key attributes
will vary substantially between different
software systems, some attributes will be
almost universally important, such as a
system’s diagnostic capability [4].

For example, the following are five
key attributes to consider for systems that
include Web-based partitions:
• Artwork or static content.
• Logic or core dynamic content.
• Diagnostics or the ability to detect mis-

use or system intrusions.
• Security or the ability to prevent mis-

use or system intrusions.
• Containment and Recovery or the ability

to perform damage control and
repair.
As shown in Figure 1, each attribute is

analyzed and rated using a five-block by
five-block grid. To rate the preceding five
different attributes, you would use five
separate tables. Figure 1 shows an empty
grid for estimating required security for a
particular frame.

The rows of the grid indicate the rela-
tive amount of work to be done. Rows are
labeled top-down from E to A indicating
an extremely high amount of work to an
extremely low amount of work, respec-
tively. The columns of the grid indicate
the relative complexity of the work to be
done. Columns are labeled left to right
from 1 to 5 indicating extremely low
complexity to extremely high complexity,
respectively. Since the outermost rows
and columns represent extremes, most
attributes should be rated in rows B, C, or
D and in columns 2, 3, or 4.

As each of the five grids is complet-
ed, the estimator determines a confi-
dence level of low, medium, or high and
then documents this in the upper left cor-
ner. In Figure 2, the estimator indicated
they had a low level of confidence in
their estimate and that security complex-
ity is rather low (column 2) for this frame.
However, the amount of work related to
implementing security features is shown
as extremely high (row E).

After the five key attribute grids are
done, the estimator uses them as support
information for the composite grid. The
composite grid, as shown in Figure 3, is
used to estimate overall staff-days for
constructing a frame. The cells of the
composite grid contain values represent-
ing the expected staff days, and the esti-
mator simply circles one of the values.
Note that there is a general, but not algo-
rithmic, relation between the key attribute

basis grids and the composite grid. For
example, if most of the basis grids were
marked in the upper right regions, it
would normally occur that the composite
grid would likewise have a cell selected
from the upper right region.

As a final step, the estimator uses the
upper left square in the composite grid to
indicate low, medium, or high confidence
in the accuracy of their selection for
expected staff-days duration.

The default values shown in Figure 3
were deliberately selected so that normal
work would span from one to three
weeks (the interior three rows and
columns). Recall that the work for each
frame was initially intended to be obvious-
ly between one and four weeks. The
default values in the composite grid actu-
ally accommodate ranges from 40 per-
cent of the obvious minimum to 150
percent of the obvious maximum, or
work that spans from two days (A1) to six
weeks (E5).

Given these default values, project
durations can span from approximately
one staff-year (five regions, each with five
partitions, each with five frames, each
estimated at two days) to approximately
120 staff-years (10 regions, each with 10
partitions, each with 10 frames, each esti-
mated at six weeks). Decomposition can
be reduced, or increased, to accommo-
date shorter or longer project durations,
respectively. Similarly, the default values
in the composite table can – and indeed
should – be adjusted over time to better
reflect your actual projects and perform-
ance [5].

When you have completed these
design and planning steps, you will have a
comprehensive and detailed foundation
from which to commence managing and
controlling your project.

Managing and Controlling
Complex Software Systems
Development
As mentioned previously, one of the
objectives of the third level decomposi-
tion (the frame level) is to support risk
management. To accomplish this, it is
recommended that you commence actual
development with the easiest two regions.
Within each of those regions, commence
development on the easiest two parti-
tions. Within each of those partitions,
commence work on the easiest two
frames. The objective of this approach is
twofold. First it helps ensure that the
development team’s learning curve
occurs in the least challenging parts of
the overall system. Second, you quickly

accomplish finished frames.
When you are done with the easiest

frames, then commence work on what
appear to be the hardest frames.
Likewise, commence work in the same
pattern with partitions and regions. The
objective here is – after much of your
learning curve is behind you – to reduce
project risk as rapidly as possible. By rap-
idly undertaking the hardest or most
challenging parts of the system, you can
more quickly discover whether or not
there are any insurmountable hurdles. On
the outside chance that you may have to
revisit your design, or may need to resort
to an alternative solution, these recovery
steps are happening much earlier than
they might otherwise. Because they are
occurring earlier, and because, as dis-
cussed earlier, one of your design goals
was also to defer commitments even in
the event that you need to take an alter-
nate approach, you have a much greater
likelihood that you will be able to keep a

Security
1 2 3 4 5

E

D

C

B

A

Figure 1: Key Attribute Analysis

Security
Low 1 2 3 4 5

E X

D

C

B

A

Figure 2: Example Ranking

Composite (Staff Days)
1 2 3 4 5

E 5 10 15 20 30
D 4 10 15 15 20
C 3 5 10 15 15
B 3 5 5 10 10
A 2 3 3 4 5

Figure 3: Composite Grid

greater percentage of the system already
developed.

Another benefit to first doing the eas-
iest work, then doing the hardest work,
and then doing the average work is that
data collected during development rapid-
ly becomes directly usable to recalibrate
your estimations and to more accurately
predict the remaining work on the proj-
ect. Depending on the total number of
frames, when you are as little as 20 per-
cent into the project you may have a
highly reusable set of actual data relating
to frames built, estimated time to build
them, and actual time to build, test, and
debug. This data can be used to further
improve the accuracy of estimates relat-
ing to the rest of the project.

An important part of this approach is
to take a few moments after a frame is
completed and do a retrospective estima-
tion worksheet. The format for these
worksheets is identical to the original
worksheets – the only difference is the
time they are completed. By taking this
approach, each frame will ultimately have
a minimum of two estimation work-
sheets. One worksheet was done before
work commenced, and another one was
done after work was completed. By com-
paring these before and after estimation
worksheets, you can analyze and adjust
your estimation approach if, for example,
you see a clear tendency to underestimate
either the amount or complexity of work
relating to one or more of the key attrib-
ute types.

As you develop the system, to the
greatest extent possible strive to rapidly
deliver partitions to the primary stake-
holders. This will allow for stakeholder
evaluation and feedback, and for you to
take a proactive approach when address-
ing conflicting expectations among the
stakeholders. Ideally, you can provide
early access and insight to end users, pro-
gram managers, procurement specialists,
subject-matter experts, and anyone else
who may have a strong and influential
opinion about the usability and accept-
ability of the final system.

Lastly, when tracking and reporting
progress, perform only binary accounting
at the frame level. That is, do not ask
developers for a percent complete esti-
mate on a given frame (we all know what
they will tell you). Instead only ask,
“Have you started working on it?” and
“Have you finished working on it?”
Before a frame is completely done, its per-
cent complete is zero. After a frame is com-
pletely done, its percent complete is 100.
At the partition and region level you can
easily calculate and report actual percent

complete as a function of the percentage
of completed underlying frames.

Conclusions
Grand implementation solutions and the
Waterfall Model life cycle were perfectly
acceptable approaches during the 1970s
and even the 1980s. However, as systems
continue to become progressively more
distributed and exponentially more com-
plicated there are significant opportunities
to deliberately design these systems so
that they can be incrementally construct-
ed, incrementally tested, incrementally
delivered, and incrementally evaluated.
This approach directly supports early ver-
ification of system feasibility and early
validation of system usability and accept-
ability.

Arguably, at least as important as the
preceding benefits, this approach also
directly supports the creation of systems
that can be incrementally upgraded, incre-
mentally retired, and ultimately incremen-
tally replaced.

Acknowledgments
Various individual aspects of this
approach have been in use for years on
systems and software engineering proj-
ects, XP projects, Capability Maturity
Model®-compliant projects, and else-
where. However, it is hoped that this arti-
cle presents a new and integrated view of
these various individual best practices, and
combines them in a way that will provide
substantial and reliable risk reductions.

The design, planning, development,
and management life cycle described in
this article, i.e., micro-incremental implemen-
tation and evaluation, hot-swappable parti-
tioning, commitment deferral, early
detection/agile response, and partition and frame
estimation is something I have advocated
for years. However, the technique for
basis estimation of key attributes, and
then using that as inputs to composite
tables, occurred to me while I was listen-
ing to a presentation being given by Rita
Hadden on “Credible Estimation for
Small Projects” at the 1st International
Conference on Software Process
Improvement in Washington, D.C., in
November 2002. I’m not exactly sure
what the specific connection is, but some-
one else might see one. In any event, her
presentation was not only practical and
informative, but also a source of inspira-
tion.◆

References
1. The Standish Group. Chaos. Boston,

MA: The Standish Group, 1994.
2. Bechtold, Richard. The Fatal Flaw of

the Information Systems Industry:
Failing to Design for Incremental
System Retirement. Accepted for
Proc. of the Project Management
Institute Seminar, PDS 2003. San
Antonio, TX, June 2003.

3. Beck, Kent, and Martin Fowler.
Planning eXtreme Programming.
Addison-Wesley, 2001.

4. Bechtold, Richard. Diagnostic Soft-
ware Architectures. Proc. of the
Second International Workshop on
Development and Evolution of
Software Architectures for Product
Families. Las Palmas de Gran Canaria,
Spain, Feb. 1998.

5. Bechtold, Richard, and Patricia Larsen.
Planning and Estimating Complex
Web-Based Projects. Proc. of the
Software Engineering Process Group
Conference. Boston, MA, Feb. 2003.

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering May 2003

About the Author
Richard Bechtold,
Ph.D., is president of
Abridge Technology.
He is an independent
consultant who assists
industry and govern-

ment with organizational change and
systematic process improvement, espe-
cially in the area of implementing
effective project management. Bech-
told has nearly 25 years of experience
in the design, development, manage-
ment, and improvement of complex
software systems, architectures, pro-
cesses, and environments. This experi-
ence includes all aspects of organiza-
tional change management, process
appraisals, process definition and mod-
eling, workflow design and implemen-
tation, and managerial and technical
training. Bechtold also teaches gradu-
ate-level courses in software project
management, systems analysis and
design, principles of computer archi-
tectures, and object-oriented Java pro-
gramming at George Mason University.
The second edition of his latest book,
“Essentials of Software Project
Management,” is scheduled for publi-
cation in 2003.

Abridge Technology
42786 Oatyer Court
Ashburn,VA 20148-5000
E-mail: rbechtold@rbechtold.com

May 2003 www.stsc.hill.af.mil 27

Model-based test automation has helped
reduce cost, provide early identification

of requirements defects, and improve test
coverage [1, 2, 3, 4, 5, 6]. Industry use of
model-based test automation has provided
insight into practical methods that use inter-
face-driven analysis with requirements mod-
eling to support automated test generation.
However, the term interface is used loosely
in this article.

An interface is a component’s inputs and
outputs, along with the mechanism to set
inputs, including state and history informa-
tion, and retrieve the resulting outputs.
Recommendations are provided to perform
the modeling of textual requirements in con-
junction with interface analysis to support
reuse of models and their associated test
driver mappings.

Test-driver mappings specify the relation-
ships between model variables and the inter-
faces of the system under test. The insights
are useful for understanding how to scale
models and the associated test-driver map-
pings to support industry-sized verification
projects, while supporting organizational
integration that helps leverage key resources.

We have applied the model-based test-
automation method called the Test
Automation Framework (TAF) since 1996.
TAF integrates various government and
commercially available model-development
and test-generation tools to support defect
prevention and automated testing of systems
and software. TAF supports modeling meth-
ods that focus on representing requirements
such as the Software Cost Reduction (SCR)
method as well as methods that focus on
representing design information such as
Unified Modeling Language (UML)-based
tools or Mathwork’s Simulink, which sup-
ports control system modeling for automo-
tive and aircraft systems.

With model translation, requirements-
based or design-based models are converted
into test specifications. T-VEC is the test
generation component of TAF that uses the
test specification to produce tests. T-VEC

supports test-vector generation, test-driver
generation, requirements test-coverage
analysis, and test results checking and report-
ing. Test vectors include inputs as well as the
expected outputs with requirement-to-test
traceability information. The test-driver
mappings and the test vectors are inputs to
the test-driver generator that produces test
drivers. The test drivers are then executed
against the implemented system during test
execution.

There are papers that describe require-
ments modeling [7] and others with exam-
ples that support automated test generation
[3, 8, 9, 10]. Aissi provides a historical per-
spective on test-vector generation and
describes some of the leading commercial
tools [11]. Pretschner and Lotzbeyer briefly
discuss extreme modeling that includes
model-based test generation [12], which is
similar to uses of TAF. There are various
approaches to model-based testing and
Robinson hosts a Web site that provides use-
ful links to authors, tools, and papers [13].

Why Interface-Driven Modeling?
It may seem appropriate first to develop
models from the requirements, but when
developing models for testing purposes, the
models should be developed in conjunction
with analysis of the interfaces to the compo-
nent or system under test. Modeling the
behavioral requirements is usually straight-
forward and easier to evolve once the inter-
faces and operations are understood because
the behavioral requirements, usually defined
in text, must be modeled in terms of vari-
ables that represent objects accessible
through interfaces.

A verification model is a refinement of the
requirements specified in terms of the com-
ponent’s interfaces. Verification modeling
from the interfaces is analogous to a test
engineer developing tests in terms of specif-
ic interfaces of the component under test.
The test engineer’s role involves developing
verification models from requirements. The
requirements engineers, sometimes synony-

mous with system engineers, continue to
develop textual requirements as well as any
other type of analytical model. Design engi-
neers should focus on identifying the com-
ponents of the system architecture, and pro-
vide the component interfaces to the test
engineer.

These requirements and interfaces can
then be used by test engineers to construct
formalized verification models (in a tool like
SCR). The test engineer can use TAF tools to
perform model analysis and correct any
inconsistency, as well as produce test vectors
and test drivers. Once completed, the textual
requirements and models, as well as the for-
malized verification models are passed to the
designers and implementers.

Once code is created, the generated test
drivers can be used to test the implementa-
tion. TAF translators convert verification
models into a form where the T-VEC system
generates test vectors and test drivers, with
requirement-to-test traceability information
that allows failures to be traced backwards to
the requirement. The designer/implementer
can then use the test drivers to test the imple-
mented system, continuously and iteratively.

Figure 1 on page 28 provides a perspec-
tive of the verification modeling process
flow. A modeler is supplied with various
inputs. Although it is common to start the
process with poorly defined requirements,
inputs to the process can include require-
ment system and software specifications
(e.g., System Requirements Specification
[SRS], Software Requirements Specifications
[SWRS]), user documentation, interface con-
trol documents, application program inter-
face documents, previous designs, and old
test scripts.

A verification model is composed of a
model and one or more test-driver mappings.
A test driver consists of object mappings and
a schema (pattern). Object mappings relate
the model objects to the interfaces of the
system under test. The schema defines the
algorithmic pattern to carry out the execu-
tion of the test cases. Models are typically

Interface-Driven, Model-Based Test Automation

Dr. Mark R. Blackburn, Robert D. Busser, and Aaron M. Nauman
Software Productivity Consortium

This article describes an interface-driven approach that combines requirements modeling to
support automated test-case and test-driver generation. It focuses on how test engineers can
develop more reusable models by clarifying textual requirements as models in terms of com-
ponent or system interfaces. The focus of interface-driven modeling has been recognized as
an improvement over the process of requirements-driven, model-based test automation.
Model-based testing users identified the insights and recommendations for applying this
approach when they began to scale their model-based testing efforts on larger projects.

Thursday, 1 May 2003
Track 8: 9:15 - 9:55

Room 251 D - F

developed incrementally. The test-vector
generator also detects non-testable modeled
requirements (i.e., requirements with contra-
dictions).

Table-based modeling, like the SCR
method, has been effective and relatively easy
to learn for test engineers [2]. Design engi-
neers commonly develop models based on
state machines or other notations such as the
UML. However, users and project leaders
observed that test engineers found it easier to
develop requirements for test in the form of
tables (See [8] for details). The modeling
notations supported by tools for the SCR
method have well-defined syntax and seman-
tics allowing for a precise and analyzable def-
inition of the required behavior.

What Are Some Modeling
Perspectives?
Specification languages, usually supported
through graphical modeling environments,
describe models. Specification languages
provide abstract descriptions of system and
software requirements and design informa-

tion. Cooke et al. developed a scheme that
classified specification language characteris-
tics [14]. Independent of any specification
language, Figure 2 illustrates three specifi-
cation categories based on the purpose of
the specification. Cooke et al. indicate that
most specification languages usually are
based on a hybrid approach that integrates
different classes of specifications.

Requirements specifications define the
boundaries between the environment and
the system and, as a result, impose con-
straints on the system. Functional specifica-
tions define behavior in terms of the inter-
faces between components, and design
specifications define the component itself.
A verification model, in the context of this
article, is best classified as a functional spec-
ification.

Design-for-Test Supports
Interface Accessibility
It is best to understand the interfaces of the
system under test before modeling the
behavioral requirements to ensure that the

interfaces for the resulting test-driver map to
actual inputs or outputs of the system under
test. If the interfaces are not formalized or
completely understood, requirements mod-
els can be developed, but associated object
mappings required to support test-driver
generation must be completed after the
interfaces have been formalized.

This can make the object-mapping
process more complex because the model
entities may not map to the component
interfaces. In addition, if the component
interfaces are coupled to other components,
the components are typically not completely
controllable through separate interfaces. This
too can complicate the modeling and testing
process. Consider the following conceptual
representation of the set of components and
interfaces shown in Figure 3.

There is a specific way to support a sys-
tematic verification approach that can be
performed in stages where each component
is completely verified with respect to the
requirements allocated to it. The interfaces to
the component should be explicitly and
completely accessible, either using global
memory or, better, through get-and-set
methods/procedures in Figure 3.

For example, if the inputs to the B.2
component of higher-level component B are
completely available for setting the inputs to
B.2, and the outputs from the B.2 functions
can be completely observed, then the func-
tionality within B.2 can be completely speci-
fied and systematically verified. However, if
interfaces from other components such as
B.1 are not accessible then some of the func-
tionality of the B.2 component is coupled
with B.1, and the interfaces to B.2 must also
include interfaces to B.1 or to other upstream
components such as component A. This
interface coupling makes the test-driver
interfaces more complex to describe, but also
forces the behavioral modeling to be
described in terms of functionality allocated
to combinations of components.

The coupling reduces components’ reuse
and increases the regression testing effort
due to the coupled aspects of the system
components. The problems associated with
testing highly coupled systems can be prob-
lematic for model-based testing and also neg-
atively affect any type of testing. We have
observed that interface-driven modeling has
helped foster better system design by reduc-
ing the coupling, but also has helped provide
better testing support.

Understanding Interfaces
One of the most noted results of the TAF
was its application to the Mars Polar Lander
(MPL). NASA launched the MPL project on
Feb. 7, 1994. Six years later on Dec. 3, 1999,
after the MPL had traveled more than 35

28 CROSSTALK The Journal of Defense Software Engineering May 2003

Software Engineering Technology

Requirements
(come in many forms)

Verification Model
Interfaces
Data Types
Variables
Constants

Behavior
Conditions

Events
State Machines

Functions

+

Test Engineer
(Modeler)

Test Driver

mapping

schema

Test Driver

Mapping

Schema

Test
Vectors Test Driver

Generator

• C, C++, SQL, PLI, JCL, Ada, XML
• Java – GUI, JDBC, Oracle
• Perl – ODBC, Oracle, and Interbase
• Proprietary, WinRunner, DynaComm

Test Engineer
(Automation Architect)

Designer/Implementer

Test Vector
Generator

System

Test
Drivers

Test
Results

Component Interfaces

Types of Existing Schema

Requirements Engineer

TIME

• SRS
• SWRS
• Function List
• Change Request
• API

Figure 1: Interface-Driven, Model-Based Test Automation Supports Continuous Verification and Validation

Requirements Specification : : Defines
the boundary between the environment
and the system.

Functional Specification : Defines
the interfaces within the system.

Design Specification: Defines
the component.

Environment

System

Note: D. Cooke et al., 1996

Figure 2: Specification Purposes

Interface-Driven, Model-Based Test Automation

May 2003 www.stsc.hill.af.mil 29

million miles and was minutes away from its
scheduled landing, all contact with the craft
was lost. The MPL cost $165 million to
develop and deploy.

After the fact, we had the opportunity to
use the TAF to see if it would have found
the bug. We deliberately did not look at the
code before creating our tests. Instead, we
created them by modeling the English-lan-
guage requirements in a tool based on the
SCR method. We modeled the Touchdown
Monitor (TDM) requirements using the TAF
tools and were able to identify the software
error associated with the MPL’s landing pro-
cedures in fewer than 24 hours.

The TDM is a software component of
the MPL system that monitors the state of
three landing legs during two stages of the
descent. As shown in Figure 4, a real-time
multi-tasking executive calls the TDM mod-
ule at a rate of 100 times per second and
receives information on the leg sensors from
a second module. These two modules estab-
lish the interfaces to TDM. During the first
stage, starting approximately five kilometers
above the Mars surface, the TDM software
monitors the three touchdown legs.

There is one sensor on each leg to deter-
mine if the leg touched down. When the legs
lock into the deployed position, there was a
known possibility that the sensor might indi-
cate an erroneous touchdown signal. The
TDM software was to handle this potential
event by marking a leg that generates a spu-
rious signal on two consecutive sensor-reads
as having a bad sensor. During the second
stage, starting about 40 meters above the sur-
face, the TDM software was to monitor the
remaining good sensors. When a sensor had
two consecutive reads indicating touchdown,
the TDM software was to command the
descent engine to shutdown.

There is no absolute way to confirm
what happened to the MPL. It is believed
that one or more of the sensors did have
two consecutive reads before the 40 meter
point; the leg-sensor information was stored
in TDM program memory. When the MPL
crossed the 40-meter point, the TDM
changed states and read the memory associ-
ated with the leg-sensors during the first
stage of descent. Because the memory indi-
cated two consecutive reads engineers
believe that the engine thruster was shut off
at about 40 meters above the Mars surface.
Developers could have designed and imple-
mented the requirement in many ways, but
the essence of the design flaw is that the
program variables retained the state of the
bad sensor information.

Organizational Best Practices
Interface-driven modeling can be applied
after development is complete; however,

significant benefits have been realized when
it is applied during development. Ideally,
test engineers work in parallel with develop-
ers to stabilize interfaces, refine require-
ments, and build models to support itera-
tive test and development. Test engineers
write the requirements for the products
(which in some cases are poorly document-
ed) in the form of models, as opposed to
hundreds or thousands of lines of test
scripts. They generate the test vectors and
test drivers automatically.

During iterative development, if the
component behavior, the interface, or the
requirements change, the models are modi-
fied and test cases and test drivers are regen-
erated and re-executed. The key advantages
are that testing proceeds in parallel with
development. Users like Lockheed Martin
state that test is being reduced by about 50
percent or more, while describing how early
requirement analysis significantly reduces
rework through elimination of requirement
defects (i.e., contradiction, inconsistencies,
and feature interaction problems) [2, 15].

Other Applications
TAF has been applied to applications in var-

ious domains, including critical applications
for aerospace, medical devices, flight naviga-
tion, guidance, autopilots, display systems,
flight management and control laws, engine
controls, and airborne traffic and collision
avoidance. TAF has also been applied to
noncritical applications like databases, client-
server, Web-based, automotive, and telecom-
munication applications. The related test-
driver generation has been developed for
many languages (e.g., C, C++, Java, Ada,
Perl, PL/I, SQL, etc.) as well as proprietary
languages, COTS test-injection products
(e.g., DynaComm, WinRunner) and test
environments. Most users of the approach
have reduced their verification/test effort by
50 percent [2, 15].

Summary
This article provides pragmatic guidance for
combining interface analysis and require-
ments modeling to support model-based test
automation. The model-based testing
method and tools described here have been
demonstrated to significantly reduce cost
and effort for performing testing, while also
being demonstrated to identify requirements
defects that reduce costly rework.

B.1 B.2 B.3

Well-Defined Interfaces
Support direct

controllability and
observability for

component.

Coupled Interfaces
Complicate access to
component and limit

controllability that
requires test inputs

to be provided upstream.

A B CA B C

Key

Well-Defined Interface

Coupled Interface

Figure 3: Conceptual Components and Interfaces of a System

Mars Surface

40 Meters
CMD_disable_enable = enable

TDM Module
Interfaces

Leg
Sensors

TDM
Module

Executive

CMD_disable_enable
TDM_started

Sensor Value
for Each of Three

Legs

TDM Module
Interfaces

Leg
Sensors

TDM
Module

Executive

CMD_disable_enable
TDM_started

Sensor Value
for Each of Three

Legs

5 KM
TDM_started = TRUE

Mars Lander Descent Path

TDM
Interfaces

First
Stage

Second
Stage

Figure 4: Mars Polar Lander Details

These recommendations for defining
interfaces that provide better support for
testability are valid for all forms of testing.
Organizations can see the benefits of
using interface-driven, model-based test-
ing to help stabilize the interfaces of the
system early, while identifying common
test-driver support capabilities that can be
constructed once and reused across relat-
ed tests. Finally, parallel development of
verification modeling is beneficial in
development and helps identify require-
ment defects early to reduce rework.

The TAF is a framework that inte-
grates various commercial and govern-
ment tools, however, the Software
Productivity Consortium does not provide
licenses for these tools. For additional
information on obtaining these tools, con-
tact the authors. Finally, many referenced
papers in the article can be downloaded
from the Software Productivity
Consortium Web site <www.software.
org/pub/taf/Reports.html>.◆

References
1. Rosario, S., and H. Robinson.

“Applying Models in Your Testing
Process, Information and Software
Technology.” 42.12 (1 Sept. 2000).

2. Kelly, V., E. L. Safford, M. Siok, and
M. Blackburn. “Requirements
Testability and Test Automation,”

Lockheed Martin Joint Symposium,
June 2001.

3. Blackburn, M. R., R. D. Busser, A. M.
Nauman, R. Knickerbocker, and R.
Kasuda. “Mars Polar Lander Fault
Identification Using Model-Based
Testing.” Proc. in IEEE/NASA 26th
Software Engineering Workshop, Nov.
2001.

4. Busser, R. D., M. R. Blackburn, and A.
M. Nauman. “Automated Model
Analysis and Test Generation for
Flight Guidance Mode Logic.” Digital
Avionics System Conference. Indiana-
polis, IN, 2001.

5. Statezni, David. “Test Automation
Framework, State-Based, and Signal
Flow Examples.” Twelfth Annual
Software Technology Conference. Salt
Lake City, UT, 30 Apr.-5 May 2000.

6. Statezni, David. “T-VEC’s Test Vector
Generation System.” Software Testing
and Quality Engineering. May/June
2001.

7. Heitmeyer, C., R. Jeffords, and B.
Labaw. “Automated Consistency
Checking of Requirements Specifica-
tions.” ACM TOSEM 5.3 (1996): 231-
261.

8. Blackburn, M. R., R. D. Busser, and A.
M. Nauman. “Removing Requirement
Defects and Automating Test.” STAR-
EAST. Orlando, FL, May 2001.

9. Blackburn, M. R., R. D. Busser, and A.
M. Nauman. “Eliminating Require-
ment Defects and Automating Test.”
Test Computer Software Conference,
June 2001.

10. Blackburn, M. R., R. D. Busser, A. M.
Nauman, and R. Chandramouli.
Model-Based Approach to Security
Test Automation. Proc. of Quality
Week, June 2001.

11. Aissi, S. “Test Vector Generation:
Current Status and Future Trends.”
Software Quality Professional 4.2
(Mar. 2002).

12. Pretschner, A., and H. Lotzbeyer.
Model-Based Testing with Constraint
Logic Programming: First Results and
Challenges. Proc. of 2nd ICSE Intl.
Workshop on Automated Program
Analysis, Testing, and Verification.
Toronto, Canada, May 2001.

13. Robinson, H. Model-Based Testing
<www.model-based-testing.org>.

14. Cooke, D., A. Gates, E. Demirors, O.
Demirors, M. Tankik, and B. Kramer.
“Languages for the Specification of
Software.” Journal of Systems
Software 32 (1996): 269-308.21.

15. Safford, Ed L. “Test Automation
Framework, State-Based and Signal
Flow Examples.” Twelfth Annual
Software Technology Conference. Salt
Lake City, UT, 30 Apr.-5 May 2000.

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering May 2003

About the Authors

Mark R. Blackburn,
Ph.D., is a Software
Productivity Consor-
tium fellow with 20
years of software sys-
tems engineering expe-

rience in development, management
and applied research of process, meth-
ods, and tools. He has made more than
30 presentations at conferences and
symposia, and is involved in consulting,
strategic planning, proposal and busi-
ness development, as well as develop-
ing and applying methods for model-
based approaches for requirement
defect removal and test automation.

Software Productivity
Consortium
2214 Rock Hill Road
Herndon,VA 20170
Phone: (703) 742-7136
Fax: (703) 742-7350
E-mail: blackbur@software.org

Robert D. Busser is a
principal member of
the technical staff of
the Software Product-
ivity Consortium. He
has more than 20 years

of software systems engineering expe-
rience in development, and manage-
ment in the area of advanced software
engineering, and expertise in software
engineering processes, methods and
tools. He has extensive experience in
requirement and design methods, real-
time systems, model-based develop-
ment and test generation tools, model
analysis, and verification.

Software Productivity
Consortium
2214 Rock Hill Road
Herndon,VA 20170
Phone: (954) 753-9634
Fax: (703) 742-7350
E-mail: busser@software.org

Aaron M. Nauman is
a senior member of the
technical staff of the
Software Productivity
Consortium. He has a
wide range of systems

and applications development experi-
ence in both real-time and information
systems domains. Nauman is involved
in the development of model-based
transformation tools for automated
model analysis and test generation. He
has experience in object-oriented tech-
nologies, distributed and client/server
systems, Web-based and components-
based software and systems integra-
tion.

Software Productivity
Consortium
2214 Rock Hill Road
Herndon,VA 20170
Phone: (703) 742-7104
Fax: (703) 742-7350
E-mail: nauman@software.org

May 2003 www.stsc.hill.af.mil 31

There are some things America's armed
services do really well. No other mili-

tary force in the world projects resources
and power to the battlefield the way we do.
We train for wars and disasters realistically,
and then we execute the way we trained. We
demonstrate the realm of possibilities in
our spectacular air shows and say to every-
one, “This awe-inspiring display of team-
work shows what training and discipline
can accomplish. Would you like to be part
of something much larger than just you?”
We are able to deliver when it really counts
despite a host of problems and challenges,
be they problems with new technology,
problems communicating, or the most
common of all, problems that come from
being human.

There are, however, some areas where
improvement would be helpful and within
the realm of possibility. More practice
understanding, communicating, and coor-
dinating could reduce parochial behavior
between stovepipe and functional commu-
nities. We have wonderfully effective teams,
yet many leaders and team members fail to
appreciate what it takes to form a truly
high-performance team that can sustain
consistent execution at what often appears
to be superhuman levels.

Oftentimes, we hold too closely to the
paths and the techniques that got us where
we are and fail to embrace change when it
is truly a win-win proposition. In the
domain of software-intensive technological
systems, which form the core of our mili-
tary capabilities, our warriors and those
who support them often face the prospect
of changes to the status quo. Unfortunately,
we are not always as successful as we could
be. We might consider looking at how the
operational U.S. Air Force excels in address-
ing change and ask why we cannot employ
those lessons in our own domain.

A case in point is the deployment of a
new software-intensive system into a wing
command post. All too often, from our
perspective, it appears as if the task of tran-

sitioning new technologies and mission
capabilities into operational use ends with
the physical delivery of the system. (We
have this image of a C-130 low-altitude
parachute drop late at night, and then learn
that the system has been deployed the fol-
lowing morning on CNN Headline News!)

We know this is not the method used to
deliver a new aircraft or other more tradi-
tional weapon systems. From numerous
field tests to tremendous amounts of oper-
ational training, the operators, air crews,

and commanders for these new weapon
systems are fully prepared for live combat
before anyone would say their systems have
been fully and effectively deployed. Why
cannot the deployment of new software-
intensive systems into wing command post
operations follow the same proven process?

From our perspective, the way the Air
Force deploys troops and assets for combat
is close to perfection. Rather than focus on
the differences, focus on what we can learn
and what we might adapt to improve how
we deploy mission-critical software-inten-

sive systems into the command post.

How Does the Air Force
Deploy for Combat?
At the heart of the Air Force’s capability to
deploy for combat is a standard process
that serves in training as well as in real-
world situations. This process demands
realism and skills development in the con-
text of their use. Backing up this realism is
independent and objective observation,
which provides real-time performance
feedback and reinforcement. When people
perform as instructed, opportunities
become available. When performance dif-
fers from what others expect, there are con-
sequences: more training and evaluation.
Repeated shortfalls result in career conse-
quences.

The Air Force cannot afford to have cre-
ative solutions to standard problems with-
out careful coordination. Costly lessons we
have learned about the fog of war necessitate
that everyone must operate on the trust and
faith that everyone else is doing what they
are expected to do. Uncoordinated creative
solution deviations often mean equipment
and, more importantly, people, are not
where they are supposed to be. The conse-
quences of this in actual combat are dire.

The list of critical components for the
Air Force’s deployment process begins with
the individual. Is the individual properly
trained and equipped with the tools to per-
form the mission? Has the individual com-
pleted all legal and other family prepara-
tions so these concerns do not become
awkward distractions? Have all medical pre-
cautions been honored so that the warrior
is truly ready for worldwide duty?

With a properly prepared group of indi-
viduals, the team becomes the next focus.
Teams train for deployment together, they
go through the pre-deployment process
together, and they deploy to combat
together. Upon arrival, they will live togeth-
er. The training makes the situation seem

Open Forum

Deployment: Moving Technology
Into the Operational Air Force

Dr. Lynn Robert Carter
Software Engineering Institute

Just purchasing and installing new technology does not bring lasting mission value; the real
tasks begin only after the acquisition is completed. If we expect to get the full measure of
value from our technologies, we must pay close attention to a whole host of issues to ensure
that daily operations are enhanced to obtain full utilization of our technology assets. Monday, 28 April 2003

Track 3: 4:00 - 4:40
Ballroom C

Lt. Col. Scott B. Dufaud (Ret.)
Software Engineering Services, Inc.

“We have wonderfully
effective teams, yet many

leaders and team
members fail to

appreciate what it takes
to form a truly

high-performance team
that can sustain

consistent execution at
what often appears to
be superhuman levels.”

32 CROSSTALK The Journal of Defense Software Engineering May 2003

familiar, and the presence of teammates
reinforces that familiarity. Everyone sup-
ports one another to honor their roles and
responsibilities, just as they were trained.

Prior to actual combat operations, the
current rules of engagement are reviewed
and made personal. What actions are per-
missible, and what implementation options
are there? Backing up the rules of engage-
ment is the commander’s intent, which is a
description of the purpose of the opera-
tion and its intended end state. The com-
mander’s intent helps to explain what the
commander wishes to occur, so that every-
one is equipped with additional informa-
tion to help fill in the blanks. Oftentimes,
reality provides a situation well outside of
the bounds imagined by those who created
the explicit guidance or the rules of engage-
ment. Commander's intent is key to helping
personnel to navigate these situations in
which some or all of the rules may no
longer apply, or no longer provide suffi-
cient guidance.

The moment the transport stops mov-
ing at the deployment point, the set-up
phase begins. From securing the site from
hostile action to the more mundane acts of
providing for water, food, latrines, and
places to sleep, everyone plays a role and
takes part honoring many months of prac-
tice.

From a secure and properly established
base of operations, warriors fight and learn
from each engagement. How can the mis-
sion be performed so that the warriors and
resources are available to ensure not just a
successful operation today, but tomorrow
and the next day, until the conflict is over?

A recurring issue is the shifting list of
unknowns and the often more troubling
unforeseen unknowns. Survival depends on
recognizing new patterns and appreciating
that proven solutions may become obsolete
at the most inopportune times. Knowing
when to stop Plan A and resort to Plan B is
not something that can be easily taught, yet
it is a skill that must be mastered.

How We Should Deploy
Technology for Operational Use
The successful principles used to train
combat warriors are not being used to train
information technology (IT) personnel to
be successful in using new software-inten-
sive systems being deployed. It is natural to
assume that a console operator with years
of experience should be able to figure out
the features of a new system, yet no one
would be so cavalier when it comes to air-
craft and pilots. Certifications and qualifi-
cation on one type of aircraft mean little
when it comes to a new type of aircraft. If

the proper certifications and qualification
for a particular aircraft have not been
earned, the warrior is not combat-ready in
this new aircraft. Given the critical role that
many software-intensive systems play in
our operations, can we really believe that
mistakes in this domain are not as devas-
tating?

Since systems and their roles are so dif-
ferent, no single path to success is possible.
Therefore, we should interpret the success
of the Air Force combat-deployment
process into a series of questions for those
who are charged with deploying software-
intensive systems into the operational Air
Force. If we follow the process for combat
deployment, the deployment of a new
software-intensive system begins with the
individual as follows:
• Are all individuals properly trained, cer-

tified, qualified, and skilled to the
degree that the individual is predictably
able to perform the new roles and
honor the new responsibilities demand-
ed by the new system? Is this training at
the same breadth and depth as typical-
ly employed with more traditional
weapon systems?

• Has the individual been trained in a
team setting with the same team likely
to use the system?

• Has the team had enough realistic
training, performance evaluation, and
feedback to ensure mission capability?

• Have clear rules of engagement been
defined so it is clear to each and every
member of the team (and those who
lead them) what is to be done, how to
do it, and how to employ the comman-
der’s intent when issues fall outside the
scope of the planned scenario?

• Does everyone have a clear under-
standing of the following:
• The new system’s role.
• What kind of information does it

provide?
• Who needs the information?
• The key interfaces and outputs for

the system.
• Has the new system changed the

nature of the work being per-
formed?

• Has everyone participated in the
activities to put everything together
properly and ensure it is working as
it worked in training?

• Has everyone who must work seam-
lessly together moved from the old way
of thinking and acting during pre-
deployment to the new way of thinking
and acting now that the system is about
to go operational?

• Once the system goes operational, how
do we ensure that we are honoring our

training, the rules of engagement, and
the commander’s intent?

• How do we distinguish between the
normal jitters and the real performance
problems of our people on the new
technology? (There are a lot of war-
riors out there who are able to provide
solid advice on this.)

Experience From a
Command Post
We offer the following real-world experi-
ences as an example of lessons learned
about the efficient deployment of soft-
ware-intensive mission systems. While the
example is simple and the solution might
appear obvious, the fact remains that it was
a serious operational problem that required
significant time and resources to correct.

A wing command post has access to a
wing commander and his or her staff at
any time and any place, day or night. This
is a unique role given to no other unit, and
carries with it tremendous responsibility
and mission-critical consequences.

Accurate and efficient notification to
wing leadership is one of the primary
responsibilities of the command post. In
order to achieve this, three things are
required: accurate and complete informa-
tion concerning the situation, efficient and
timely contact with wing leadership, and
effective communication of pertinent
information.

One of the authors was a command
post chief whose early days were riddled
with complaints that his troops were not
executing their notification duties very well.

Upon investigation, the three require-
ments listed above were assessed.
Collecting accurate and complete informa-
tion about situations was not the problem;
analysis of the complaints verified this.
There were checklists covering almost
every conceivable situation, and the
author’s controllers had most of them
memorized by heart. They could instantly
locate the appropriate checklist, and docu-
mentation showed that they accurately
recorded all the pertinent information
related to each event.

Achieving efficient and timely contact
with the appropriate leader was not the
problem either. The command post has a
large screen on the wall that displays all
contact information. Every wing leader is
listed along with their current location, cur-
rent contact phone number, and every
other means of contact available. As lead-
ers go about their activities, they update
their contact information and location each
and every time it changes. Change logs and
related documentation showed no problem

Open Forum

May 2003 www.stsc.hill.af.mil 33

Deployment: Moving Technology Into the Operational Air Force

here. An assessment revealed that the
problem was in the effective communica-
tion of pertinent information between
command post controllers and senior wing
leaders.

Some context is required to fully appre-
ciate the scope of this problem and the
complexity of solving it. Command posts
are generally staffed with young, inexperi-
enced, and relatively lower-ranking individ-
uals. They are still learning what the Air
Force is all about and often do not even
realize the criticality of their duties.
Because of their age and limited experi-
ence, most controllers lack confidence in
their abilities to interact with senior leader-
ship. When you consider that their primary
customers are very experienced field-grade
officers in leadership positions, it is easy to
understand the pressure and intimidation
they feel when trying to communicate mis-
sion-critical information in pressure situa-
tions.

The study showed that, under pressure,
young and inexperienced controllers would
often make incomplete and inaccurate
statements. It characterized the problem as
one of frame of reference. Due to a lack of
knowledge and lack of experience, there
was no way for these young controllers to
know what information was most impor-
tant for the leader to know. The controller,
having no insight to the questions the
leader needed to answer in order to take
appropriate action, was not able to wade
through the data already collected in order
to highlight the truly important facts.
Having never been in a wing leadership
position, the controller did not have the
necessary experience to craft a proper mes-
sage to support the leader’s thought
process about what action to take in
response to the situation. To make a bad
situation worse, these incidents always
seem to occur at 3 a.m. when the general is
sleeping and the spouse answers the phone!

A review of the training program,
employing the checklist above, revealed
shortfalls that led to the current perform-
ance issues. The training program focused
on what information to collect, and on
ensuring it was accurately recorded.
Controllers were well trained to make effi-
cient and timely contact and were provided
with the necessary tools to accomplish this.
When it came to effective communication
of pertinent information, however, training
failed to give the controllers the skills and
confidence they would need to perform
adequately. While there was scenario train-
ing that taught the proper identification of
checklists, collection of pertinent data, and
taking proper actions, controllers were
never required to practice their communi-

cation skills or never given specific experi-
ences to develop knowledge and insight
that would enable them to craft more
value-added messages.

The solution was to modify the training
to provide more mission knowledge and
insight, and to emphasize the development
of their real-time skills. Scenario training
was expanded to include mock phone calls
with, among other things, a belligerent and
sleepy general and a list of likely concerns
about the event. A confidence-building
component was also added to the training
that served to empower the controllers to
be more than just a relay mechanism. Their
role is not just to pass on information;
rather, it is to assist the leader to take the
appropriate action in a timely manner.
Depending on the situation, the controller
is often more knowledgeable about the
proper course of action than the leader
they are talking to.

Controllers are experts in emergency
actions and responses whereas wing leaders
generally are not. In these situations, it is
imperative that the controller be able to
assume the proper role of an advisor and
make specific recommendations to the sen-
ior leader. Without the confidence that they
were an active and contributing component
of the process and fearful of making tech-
nical mistakes with the data, our controllers
were unable to perform their critical role
effectively.

The results from the changes to the
training program were outstanding.
Controllers gained the confidence neces-
sary to not only execute their duties more
effectively, but many also became quite
comfortable speaking with the wing leader-
ship. Seeing the new confidence from com-
mand post controllers, wing leaders soft-
ened their demeanor, which further
removed pressure leading to even better
performance. In fact, many wing leaders
began to know most of the controllers on
a first-name basis. This was certainly a con-
fidence and morale boost for the troops as
they began to receive informal recognition
for their efforts and improved perform-
ance.

It is common for warriors in IT jobs to
be trained in the technical aspects of the
job (e.g., the equipment, the data, the pro-
cedures, and the checklists) and not in how
these systems are being used by others to
provide mission value. The application of
scenario training that more realistically
reflected real-world situations seems obvi-
ous, but it was not obvious to the people
who developed the previous training. The
simple fact is that the controllers had not
been trained under the same conditions
and circumstances in which they would

actually do the work.
It is also common for people to under-

estimate the amount of information an
event might generate and to ignore the
potential benefit derived from reordering
information. Armed with the context pro-
vided by commander’s intent, properly
trained and skilled controllers become a
powerful data processing component in a
complex system. Their understanding and
insights can shave crucial seconds from the
critical path to an informed decision.

Lastly, it is important to understand
who is on the team, the role each person
plays, and how to flawlessly interact with
each and every one on the team. Excluding
the leaders from our definition of team
was a mistake. Since the whole team did
not train together in realistic situations, we
did not have the insights needed to build
the trust and confidence necessary to oper-
ate at the required performance level.
When we applied standard Air Force war-
rior training concepts to jobs, the same
kinds of benefits were achieved.

Conclusion
It is so easy to get consumed with the tech-
nical challenges that we forget the painful
lessons we have learned over and over
again. We in the Air Force have learned
that everyone, under pressure, will fall back
to behaviors that may not align with cur-
rent mission needs.

In the early days of aviation, the loss of
too many aircraft due to wheel-up landings
resulted in creating a specific landing gear
checklist item and performing drills upon
drills to always use the checklist. The Air
Force realized that experienced pilots,
under pressure and interrupted in the land-
ing process, were unable to do a perfect
context-switch from landing to interrup-
tion and then back to landing as required in
order to remember which landing stage
they were in. Was it the last landing where
the gear had already been lowered, or was it
this landing where they had not?

The solution to the wheels-up landing
problem was not more training about tech-
nical aspects of landing and the role of the
gear. The solution was to recognize the
important role humans play in the total sys-
tem, to understand their limitations, and to
develop mechanisms to help these dedicat-
ed warriors to act more perfectly than most
would believe is humanly possible.

If our software-intensive systems are
critical for mission success, we should
leverage proven Air Force methods to
ensure everyone performs as required, be it
a combat deployment or an IT system
deployment.◆

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave.

Bldg. 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

SEP2001 " AVIONICS MODERNIZATION

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

OCT2002 " AGILE SOFTWARE DEV.

NOV2002 " PUBLISHER’S CHOICE

DEC2002 " YEAR OF ENG. AND SCI.

JAN2003 " BACK TO BASICS

FEB2003 " PROGRAMMING LANGUAGES

MAR2003 " QUALITY IN SOFTWARE

APR2003 " THE PEOPLE VARIABLE

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

Open Forum

34 CROSSTALK The Journal of Defense Software Engineering May 2003

About the Authors

Scott B. Dufaud is a
senior program manag-
er for Software Engi-
neering Services, Inc.
based in Omaha, Neb.
He is a retired Lt. Col.

from the U.S. Air Force. During his
military career, Dufaud was the direc-
tor for the U.S. Air Force Software
Process Improvement and deputy
director for the U.S. Air Force Year
2000 Program Management Office.
Since retirement, he has worked as a
senior member of the technical staff at
the Software Engineering Institute and
as principal management consultant
for SERENA Software Inc.

Software Engineering Services, Inc.
1508 JFKennedy Drive, Suite 201
Bellevue, NE 68005
Phone: (800) 244-1278
Fax: (402) 292-3271
E-mail: sdufaud@sesc-us.com

Lynn Robert Carter,
Ph.D., is a principal fel-
low at the Institute for
Software Research
International at Car-
negie Mellon University

(CMU) where he has been a senior
researcher and educator for nearly 14
years. At the Software Engineering
Institute, his work included software
technology adoption support to
numerous Air Force, Navy, Marine
Corp, and commercial customers. He is
currently supporting the development
and deployment of professional mas-
ter’s degree programs at CMU’s West
Coast campus at Moffett Field, Calif.
Prior to CMU, Carter developed soft-
ware at commercial firms for 17 years.

E-mail: lrc@sei.cmu.edu

BackTalk Answers
1.The Hundred Years’War lasted 116

years,from 1337 to 1453.
2.Panama hats traditionally come from

Ecuador.
3.Sheep (sometimes horses) give us catgut.
4.The October Revolution is celebrated in

November.
5.Squirrels give us camelhair brushes.
6.The Canary Islands are named for the

large number ofdogs there.Remember
that the Latin word for dog is canis.The
original name for the island was
Insularia Canaria:Island ofthe Dogs.

7.Queen Victoria expressed a desire that
no future king be called Albert.Thus,in
1936,when Albert ascended the throne,
he respected her wish and took the
name King George VI.

8.It’s a bright crimson.
9.The tasty berries are from New Zealand.
10.Well,why else would it be named the

Thirty Years’War? Actually,there were
two Thirty Years’Wars,one from 1618-
1648,and another from 1733-1763.The
second war consisted ofthree wars:the
War ofPolish Succession,the War of
Austrian Succession,and the Seven
Years’War.The War ofPolish
Succession was not fought in Poland,
but in Belgium,Lorraine,Lombardy,
Naples,and Sicily.The Seven Years’
War,ofcourse,lasted seven years

1
.

11.Gotcha! He was the son ofa Roman
official and his British wife.He was
Welsh.He ended up in Ireland after
being kidnapped at the age of16 and
taken there by Irish pirates

2
.

12.Comes from China,ofcourse.
13.Well,she was born in April;April 21,

1926 to be exact.However,in Britain
her birthday is officially celebrated on
the third Saturday ofJune.In Canada,
the Queen's birthday is celebrated on
the Victoria Day holiday in May.In
Australia,the Queen's birthday will be
celebrated this year on Monday,June 9,
2003,with the exception ofWestern
Australia,which will celebrate on
Monday,Sept.29,2003

3
.

14.Your call.
15.Well,OF COURSE!

Notes
1.The Cave Online.“The Thirty Years’

Wars.”<www.thecaveonline.com/
APEH/thirtyyearswar.html>.

2.Bryson,Bill.The Mother Tongue –
English and How It Got That Way.
Perennial Press,2001:49 Footnote.

3.“Birthday ofQueen Elizabeth II,the
Queen ofAustralia”<www.statusquo.
org/birthday.htm> and “Frequently
Asked Questions About Queen
Elizabeth II”<www.mun.ca/library/
ref/qeiifaq.html>.

BACKTALK

May 2003 www.stsc.hill.af.mil 35

How well do you think you did?
Since we’re all software develop-

ers, I know you have already checked
your score. In fact, you probably
checked out each question as soon as
you read it, didn’t you?

Then you know it seems that a lot of
commonly accepted things are not
exactly so, huh? One of the lessons that
I learned many years ago is that an array
named Sorted_Data might not actually
contain data that is sorted. Calling it
sorted doesn’t actually make it so – you
have to examine the code yourself and
verify that it is sorted correctly.
Likewise, just having a file named
Completed SCRs doesn’t really mean
that the software change requests
entered there have actually been com-
pleted, does it? There has to be some
verification and validation process to
make sure they are really completed.

Here’s a current example. I’m writ-
ing this column while at the annual
SEPG conference in Boston. Scanning
the headlines in the local paper, I read
about the project known as the “Big
Dig.” To quote the Web site from the
History Channel2:

Boston's Big Dig is the most com-
plex and expensive highway project
ever undertaken in the United
States. The city is replacing an out-
dated highway infrastructure with a

new state-of-the-art highway sys-
tem, most of which will be under-
ground or underwater.

The 11-year project was scheduled to
cost $10.8 billion, but the current budget
is now $14.6 billion. The Boston Globe ran
an article titled “Group Questions Big
Dig Savings3.” Imagine that – there have
been cost overruns and schedule delays.
First, an oversight committee said that
the Big Dig schedules are unrealistic,
promising opening dates for the tunnels
that continually slip. It said that “failures
in coordination” have lead to “persistent
scheduling problems.” Also, it concluded
that Big Dig managers do not undertake
“sufficient analysis” to justify expensive
work acceleration to meet schedules.

There were also comments on ques-
tionable cost savings, too much manage-
ment, and a need for independent peer
review. In addition, the oversight com-
mittee disputed the project’s claim of
saving more than $1 billion by “fast-
tracking” (i.e., starting actual construc-
tion before the design is completed). In
their report, they said, “The committee
does not believe that the full cost impact
of changes, claims, and delays from
incomplete coordination of work pack-
ages has been fully considered.”

The private sector managers, of
course, dispute some of the oversight
committees’ findings.

You know, this story is just like almost
every software project that I’ve ever par-
ticipated in! Why did I find this project so
interesting? Because just the other day, a
workshop student asked me, “Whose
metrics do I trust? There always seem to
be multiple interpretations of what the
metrics mean, and I don’t know whom to
believe!”

He hit the heart of the problem –
what do the numbers mean? You see, a
measurement (which is a piece of data)
doesn’t indicate anything; it’s only a num-
ber. Put enough measurements together
though, and you get a metric – a trend
analysis that gives you indicators of how
you are doing – whether you are doing
better or worse than you were doing
before.

But what do they mean?
Unfortunately, that’s where the problem
lies. It’s the interpretation of the metrics
that causes problems. We don’t really
know what is good or bad; we only know
if the numbers are higher or lower than
before.

I’m already out of space, and I’ve
barely covered the problem. Remember
that numbers are just numbers. The
meaning you attribute to them is a result
of analysis. Do you trust the numbers?
Do you trust the analysis? Just because a
number says you are doing well, remem-
ber that the numbers are not reality but
only somebody’s reflection and interpre-
tation of reality. In short, it’s not neces-
sarily true just because everybody says so!

–David A. Cook
Software Technology Support Center/

Shim Enterprises, Inc.
david.cook@hill.af.mil

Notes
1. I wish I could take credit for this quiz.

Various versions have been floating
around on the Web forever. So, no
authorship claimed. (OK, I added
questions 11, 12, 13, 14 and 15.)

2. HistoryChannel.com <www.history
c h a n n e l . c o m / c g i - b i n / f r a m e
it .cgi?p=http%3A//www.history
channel.com/exhibits/bigdig>.

3. Raphael Lewis. “Group Questions
Big Dig Savings.” The Boston Globe
22 Feb. 2003: B1.

Everybody Knows It’s True!

Before you read this column, please take the following short quiz1. In
the 15 statements listed below, circle any that are false (see answers on
page 34).

1. The Hundred Years’ War lasted 100 years.
2. Panama hats come from Panama.
3. Catgut comes from cats.
4. Russians celebrate the October Revolution in October.
5. A camelhair brush is made from camels.
6. The Canary Islands are named after the large number of canaries

found there.
7. The first name of King George VI was George.
8. A purple finch is purple.
9. Chinese gooseberries come from China.
10. The Thirty Years’ War lasted 30 years.
11. Saint Patrick was Irish.
12. India Ink comes from India.
13. Queen Elizabeth, who was born in April, celebrates her birthday on

Queen’s Birthday in April.
14. My metrics tell me the status of my software projects.
15. The Software Technology Conference is the best place to find new

ideas to improve your day-to-day software efforts.

CrossTalk / MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

We Are Your Partner for Dynamic Solutions

Software Technology Support Center
MASE • 6022 Fir Avenue • Building 1238 • Hill AFB, UT 84056-5820

(801) 775-5555 • FAX (801) 777-8069 • www.stsc.hill.af.mil

Aligning software technologies and processes with your organization’s strategy, infrastructure,
and personnel gives you an advantage in today’s environment of tight budgets, information
overload, and changing customer requirements.
We provide knowledge, experience, and results for government organizations in:
 • Capability Maturity Model® and
 Capability Maturity Model IntegrationSM
 • Configuration Management
 • Documentation and Standards
 • Independent Expert Program Reviews
 • Independent Verification and Validation
 • Interim Profiles and CMM® Appraisals
 • Object-Oriented Adoption, Transition,
 and Migration
 • Personal Software ProcessSM or Team
 Software ProcessSM

 • Process Definition

 • Programming Language Support
 • Project Management
 • Requirements Engineering and
 Management
 • Risk Management
 • Software Acquisition
 • Software Cost Estimation
 • Software Measurement
 • Software Process Improvement
 • Software Quality, Inspection, and Test
 • Strategic and Action Planning
 • Theory of Constraintsy

May2003cover.qxd 4/8/03 1:50 PM Page 2

	Cover
	Index
	From the Publisher
	Integrated Metrics for CMMI and SW-CMM
	Coming Events
	Information Assurance Post 9-11: Enabling Homeland Security
	Securing Your Organization's Information Assets
	Web Sites
	Improving Processes for Commercial Off-the-Shelf-Based Systems
	Planning and Managing the Development of Complex Software Systems
	Interface-Driven, Model-Based Test Automation
	Deployment: Moving Technology Into the Operational Air Force
	BackTalk
	Back Cover

