
Aug2003cover.qxd 7/7/03 4:05 PM Page 1

Designing Highly Available Web-Based Software Systems
This article defines high availability and offers approaches for producing maintainable,
highly available Web applications to serve the warfighter, including an architecture that
designs away all single points of failure.
by Michael Acton

A Fire Control Architecture for Future Combat Systems
To support the U.S. Army’s Future Combat Systems program, a versatile, modular
fire control software architecture is being developed that is capable of satisfying the
flexibility and rapid mission reconfiguration requirements of this future combat vision.
by Dr. Malcolm Morrison, Dr. Joel Sherrill, Ron O’Guin, and Deborah A. Butler

Enterprise Engineering: U.S. Air Force Combat Support Integration
This author breaks down the daunting move to enterprise engineering into a series of
basic techniques of enterprise application development, which is exemplified in this
article of lessons learned from the U.S. Air Force’s Global Combat Support System enterprise.
by Eric Z. Maass

Technical Reference Model for Network-Centric Operations
This article discusses the benefits of basing platforms and systems on the Strategic Architecture Reference
Model: a communication and information architecture framework based upon commercial and government
interface standards, including its use, contents, and structure.
by Bradley C. Logan

New Spreadsheet Tool Helps Determine Minimal Set of Test Parameter Combinations
This article explains how to minimize test combinations using a new spreadsheet tool that can be used
immediately on software projects.
by Gregory T. Daich

Cover Design by
Kent Bingham.

3

8

15

25

31

DeparDepar tmentstments

NetwNetworkork--Centric Centric ArArchitecturchitecturee

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering August 2003

4

9

16

21

26
SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

Coming Events

Web Sites

Call for Articles

STC 2004 Call for Speakers

BackTalk

CrossTalk Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela S. Bowers

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 20.

Ogden ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

From the Publisher

The theme for this month’s CrossTalk is “Network-Centric Architecture.” The con-
cept of network-centric warfare has been center stage since the Joint Chiefs of Staff's

“Joint Vision 2010” paper was released in July 1996. Since that time, the direction has been
reinforced by Joint Vision 2020, and by the Department of Defense’s top leadership. Air
Force Chief of Staff Gen. John Jumper has been very vocal concerning the need to inte-
grate manned, unmanned, and space systems. “It is through such integration that we achieve
the greatest return on our investment in our war-fighting capabilities” says Jumper. “These

integration efforts include fully integrating combat, mobility, and space forces into a Joint Synthetic
Battlespace …”

The aim of this month’s CrossTalk is to explore various aspects of how to achieve this inte-
gration of software intensive systems. In the first article, Designing Highly Available Web-Based Software
Systems, Michael Acton of Lockheed Martin Mission Systems describes the basics of achieving highly
available systems. Approaches such as horizontal scaling and cloning are described for producing
maintainable, highly available Web applications for hosting on the Global Combat Support System-
Air Force (GCSS-AF).

Next, Dr. Malcolm Morrison, Dr. Joel Sherrill, and Ron O'Guin of OAR Corporation, and
Deborah A. Butler of the U.S. Army Aviation and Missile Command provide examples of how to
achieve mission adaptability in A Fire Control Architecture for Future Combat Systems. They describe the
need to encapsulate functionality in well-defined software components, to isolate hardware character-
istics in personality modules, and to use software architecture to classify components within domains.
This work is the foundation for the systems that will support the Army’s Future Combat System.

Enterprise Engineering: U.S. Air Force Combat Support Integration by Eric Z. Maass of Lockheed Martin
Mission Systems explores the fundamental considerations of developing to an enterprise engineering
vision, as well as enterprise application development techniques used on the GCSS-AF. An infra-
structure for development, known as the Integration Framework, provides a common set of services
and components for applications that join the enterprise. The framework reduces the cost of software
development by avoiding reintroduction of common services (e.g., security, messaging, etc.). Success
will allow stand-alone combat support systems to integrate in an efficient and secure manner, vastly
improving the value of information while reducing the cost of sustainment.

Next, Bradley C. Logan of The Boeing Company, in Technical Reference Model for Network-Centric
Operations, provides some background on why the shift toward network-centric warfare is needed, and
fundamental definitions. He then describes the Strategic Architecture Reference Model (SARM), a
technical reference model for network-centric warfare, and how it enables systems-of-systems inter-
operability. The SARM is a multi-layered model with lower level communications and information lay-
ers based on open systems, and higher levels where contractors compete based on their domain
expertise. The reference model addresses the need for a guiding framework and products that will
allow platforms and systems to become nodes on the Global Information Grid.

With the introduction of network-centric warfare comes increased complexity and the challenge
of developing efficient test methods. In New Spreadsheet Tool Helps Determine Minimal Set of Test Parameter
Combinations, Gregory T. Daich of the Software Technology Support Center, describes a new tool to
systematically identify a minimal set of test cases. The approach answers the question: “What is the
most effective, smallest set of test configurations that will find the majority of serious parameter inter-
action defects?”

Network-centric warfare brings increased combat power. Many years ago, it took 1,000 bombs to
destroy a target; now that same target can be destroyed by one bomb. What’s the difference between
those 1,000 bombs and this one bomb? It’s the information content of that one bomb. During
Operation Enduring Freedom and Operation Iraqi Freedom, we observed how advances in both
space-based and unmanned platform technologies allowed persistence over the battlefield, and how
advanced sensors provide more precise information. These new capabilities put networks with their
ability to quickly disseminate information at the center of military strategy. Our ability to exploit these
technologies depends on software professionals like you. We hope this issue will help you in con-
tributing to the design of adaptable, secure, highly available systems.

Network-Centric Warfare Brings
Increased Combat Power

August 2003 www.stsc.hill.af.mil 3

Lt. Col. Glenn A. Palmer
Director, Computer Resources Support Improvement Program

Network-Centric Architecture

4 CROSSTALK The Journal of Defense Software Engineering August 2003

Designing Highly Available Web-Based Software Systems

Michael Acton
Lockheed Martin Mission Systems

Highly available Web-based applications require designs that address issues not only of availability, but also of reachability
and performance. This article defines high availability and presents approaches for producing maintainable, highly available
Web applications. This author cites the Global Combat Support System-Air Force, a network-centric, common technical serv-
ices-based highly available system as one such example.

To guarantee the quality of service
(QoS) deployed warfighters need,

combat support systems and applications
should be designed to provide near 100
percent availability. Each design activity,
which includes usability design, functional
design, role-based access control design,
and component design, supports the
warfighter in some meaningful way. When
dealing with the vast technical challenges
related to combat support Web applica-
tion design, it is important not to lose
sight of this overarching objective.

The Global Combat Support System-
Air Force (GCSS-AF) Air Force Portal,
shown in Figure 1, is an example of a Web
application that provides dynamic person-
alized content to warfighters. The Air
Force Portal provides both functional and
informational capabilities; warfighters can
perform their mission using the hosted
combat support mission applications,
access U.S. Air Force resources and tools,
and read about current events. Critical
combat support mission applications

hosted on the GCSS-AF system, like the
Online Vehicle Interactive Management
System, Fleet Asset Status, and the
Combat Ammunition System, provide
excellent examples of the types of Web
applications that should be designed for
high availability.

One aspect of application develop-
ment that is often overlooked is ensuring
that applications are designed to provide
high availability (HA). Proper attention
must be given to HA during application
design and integration testing to avoid
fielding applications that cannot provide
100 percent up time. To illustrate this
point, consider the testing phase, which
occurs late in development. Why is it that,
when compared to functional testing,
which usually receives proper attention,
HA testing is scarcely considered?

There are many reasons why HA does
not receive proper attention during the
design phase. One reason is that engineer-
ing teams are rushed to meet schedules
and do not have the time for proper HA

design. Another reason is that many soft-
ware engineers do not have experience
with HA construction and instead focus
primarily on functionality. Finally, Web
application development is a relatively
new paradigm; at least the aspect of
developing for a shared enterprise is new.

The remainder of this article defines
HA, presents concepts of HA system
design, and introduces design approaches
for producing maintainable, highly avail-
able Web applications.

HA Described
As viewed, HA is comprised of three key
components: availability, reachability, and
performance. If any of these components is
deficient or fails, then the Web-based sys-
tem is essentially rendered degraded, or
worse, unusable to the warfighters
depending on its services.

A system is available when all of the
necessary system services are up and oper-
ating correctly. When the system is avail-
able, users can log in through the security
subsystem, navigate the Web site, and
access and use any of the hosted Web
applications for which they have permis-
sion. Required services are those that must
be operating for a user to receive service.
If just one required service goes down, the
entire system moves into a state of non-
availability and becomes incapable of pro-
viding any service to users. For example,
every essential service of the system may
be alive except the security subsystem
user-authentication service. Without this
one crucial service, the system is rendered
non-operational. However, system avail-
ability is only one element of HA, the sys-
tem must also be both reachable and per-
forming adequately.

A system is reachable when users can
access it over the network using a Web
browser. Reachability is primarily con-
cerned with assuring robust network serv-
ice. Problems such as network service
outages, improperly configured firewalls
and proxies, and router failures will make
even an available system unreachable [1].

Figure 1: The GCSS-AF Air Force Portal at <https://www.my.af.mil>

August 2003 www.stsc.hill.af.mil 5

Designing Highly Available Web-Based Software Systems

If the system is both available and reach-
able, users will receive service, and hope-
fully with good performance.

For a Web application to be in a high-
ly available state, availability and reachabil-
ity must be provided in a redundant man-
ner that effectively removes all potential
single points of failure. Fail-over is a system
capability that allows a failed service to
automatically be recovered (usually on a
secondary or redundant server) in such a
manner that the impact on both system
processing and users’ work is negligible.
To ensure fail-over, every server, software
service, and network component compris-
ing the system must have at least two inde-
pendent instances configured. In this
manner, users cannot be denied service by
any single system component failure.

The performance of HA Web applica-
tions must, at a minimum, adequately
support warfighters in accomplishing
their mission. Poor performance hinders
user efficiency, creates frustration, and
ultimately degrades U.S. Air Force opera-
tional capability. Anybody that has ever
used a dial-up modem to connect to the
Internet has experienced poor perform-
ance due to phone line throughput limi-
tations (see Figure 2). T1 network lines
provide markedly faster data transfer
rates. Imagine warfighters deployed in
the desert trying to use a dial-up connec-
tion to access critical combat support
capabilities.

A monitoring capability for HA sys-
tems and applications must be designed as
part of the overall solution. Using the sys-
tem’s HA requirements, a comprehensive
set of metrics must be established, moni-
tored, and reported to ensure that all
aspects of the systems are meeting the
required HA thresholds. HA testing is
best accomplished by using proactive
monitoring tools that actually perform the
same actions performed by users. Simple
ping-style monitoring tools are not suffi-
cient because they are only capable of
checking the system health at the operat-
ing system level. These are not capable of
monitoring any application-level services.
Some important metrics to consider track-
ing are: overall aggregate system availabil-
ity (which considers all system services
necessary to provide service); overall
aggregate system reachability from several
locations (i.e., several different bases); and
average round-trip time for heavily used
capabilities (i.e., a commonly used transac-
tion performed via a Web application).

HA System Design
In order to design HA applications,
developers must understand the HA

capabilities that the hosting system
allows. Two of the most critical design
aspects of HA systems are the physical
system architecture and session cluster-
ing. In order to design HA Web applica-
tions, it is necessary to understand how
the hosting system implemented these
design characteristics.

GCSS-AF has been designed as a high-
ly available system, and affords services
that allow Web applications to be hosted
on the system in an HA configuration.
Availability, reachability, and performance
have been painstakingly designed and
implemented in the GCSS-AF system to
ensure that it performs adequately and
that no single point of failure exists. This
means that every aspect of the system is
immune from any single system compo-
nent failure.

Every physical server and software
service of GCSS-AF is carefully examined
during the architecture phase to ensure
that at least two independent silos are built
and configured in such a way that if any
one silo were to go down, the remaining
silo(s) would pick up the workload. The
intent is to provide users a system where
they do not experience any interruption of
service.

Figure 3 illustrates a simplified, tiered,
physical-system architecture suitable for
hosting HA Web applications (the GCSS-
AF architecture is significantly more com-
plex, both in terms of tiers and services).
Three Web servers and three Web applica-
tion servers are interconnected to form a

set of redundant services. In the event of
any system component failure (i.e., server
crash), these networked servers automati-
cally reroute user requests to an available
Web application server.

Figure 3 also illustrates simple fail-over
at the database server tier. Should the pri-
mary database server fail, the hot standby
database takes over and provides service
to maintain availability. In this case, the
database servers have been configured in a
server cluster. The clustering software
runs on each of the database servers and
can determine when a failure occurs.
When this clustering software determines
a failure, it promotes the hot standby serv-
er to the master database server.

In addition to fail-over, this configura-
tion also provides load balancing of user
sessions (at the Web and Web application
server tiers). Load balancing coupled with
fail-over provides a better operational
solution than fail-over alone because it
provides for greater scalability and takes
advantage of all available capacity, where-
as a hot standby idles until needed.

In fact, all GCSS-AF system compo-
nents have been designed using the HA

T1
56k modem

Figure 2: T1 Network Connections are
Capable of Rates of 1.544Mbps Versus a
Dial-Up Modem That Is Limited to 56Kbps

Web Server 1 Web Server 2 Web Server 3

Web Application
Server 1

Web Application
Server 2

Web Application
Server 3

Database
Server

Database
Server

Figure 3: Simplified Tiered System Architecture for Hosting HA Web Application

Network-Centric Architecture

6 CROSSTALK The Journal of Defense Software Engineering August 2003

principle of eliminating every potential
single point of failure. At the network
layer, reachability and network perform-
ance are provided by modern redundant
routers and switches, which ensure multi-
ple access paths to the system. The system
is made up of state-of-the-art redundant
hardware components that provide excep-
tional performance and availability
(GCSS-AF employs SunFire technology).

At the application layer, performance
and availability are provided by redundant
software services, which are hosted on dif-
ferent servers to prevent a server failure
from impacting software service availabil-
ity. Additionally, each software component
has been designed and configured to sup-
port HA optimally. None of this hap-
pened by chance; this was all considered in
the earliest phases of design.

The second crucial topic relative to
HA system design is user session fail-over
assurance. A user session is nothing more
than a set of related requests and respons-
es between the user and a Web application
server. A session is established when a
user first accesses the Web application,
and is maintained until the user logs off. If
for any reason the user session is lost, the
Web application server will no longer be
able to associate the user with the work
they were doing; all of the user’s unsaved
work will be lost.

The most common causes of user ses-
sion loss are server and required software
service failures (usually in the form of
crashes or corruptions). Although the
architecture depicted in Figure 3 does pro-
vide multiple paths for traversing between
tiers, it does not automatically provide
user session fail-over. Session fail-over

must be designed into the system.
There are essentially three session

management approaches used in Web
application servers: no session fail-over,
database persistent sessions, and memory-
to-memory sessions [2]. No session fail-
over is unfortunately the most common,
and is the default for most Web applica-
tion servers. In the event of a server fail-
ure, all user sessions will be lost along with
any unsaved work. These users will be
forced to log on again and start over from
scratch.

The second approach, database per-
sistent sessions, requires session data to be
stored and maintained in a database while
the session is alive. If the server fails, then

the user’s session will be transferred trans-
parently onto another Web application
server. However, a performance drawback
exists with the database approach – ses-
sion data must be saved and retrieved
from the database in order to maintain the
session state.

The third approach, memory-to-mem-
ory sessions, is the best approach. In this
approach, session data is replicated among

the servers, providing session fail-over and
much better performance than the data-
base approach. Because sessions can be
transferred among any of the servers in
the cluster, both the database and the
memory-to-memory session techniques
are referred to as session clustering approach-
es. Session clustering is required for HA sys-
tems like GCSS-AF.

Although session clustering is docu-
mented as an open standard in the Java
Servlet 2.3 Application Program Interface
(API) Specification, clustering does not
generally provide fail-over across applica-
tion servers in different vendor imple-
mentations. For example, a Web applica-
tion hosted on IBM WebSphere cannot
fail-over to the Oracle 9iAS and vice-
versa. Therefore, session clustering must
be addressed separately for each support-
ed application server type (GCSS-AF sup-
ports four different Web application
servers: IBM WebSphere, Microsoft IIS,
Oracle 9iAS, and BroadVision IM; each is
independently configured for HA).

Now that some of the important
aspects of HA system design have been
addressed, we delve into the design con-
siderations for HA Web applications.

Web Application HA Design
Considerations
GCSS-AF treats Web applications as soft-
ware components. Consequently, GCSS-
AF hosted Web applications should be
designed using approaches similar to the
HA system design for software services.
The key design elements required for Web
application HA include scaling and
cloning, treatment of transient data, and
wise extension of user sessions with cus-
tom objects to provide a survivable stor-
age mechanism for transient data.

Scaling and Cloning
Horizontal scaling means that a Web
application has been cloned and is run-
ning on at least two independent servers
configured to ensure fail-over. Horizontal
cloning is required for Web applications to
operate in a HA state; it provides fail-over,
load balancing, additional user capacity,
and enables scalability.

Assuming the application has been
designed properly, cloning is a relatively
simple task to perform on most Web
application servers. For example, on
GCSS-AF, it takes about two hours to
horizontally clone a combat support mis-
sion application. Web application clones
can also be placed into a vertical scaling
scenario where multiple Web application
instances run on one application server.

Web Server 1 Web Server 2 Web Server 3

Web Application
Server 1

Web Application
Server 2

Web Application
Server 3

Web A pp 1

Web A pp 1

Web A pp 2

Web A pp 1 Web A pp 2

Figure 4: Web App 1 Is Scaled Both Horizontally and Vertically. Web App 2 Is Only Scaled
Horizontally. Horizontal Scaling Is Required for HA; Vertical Scaling Is Not

“Why is it that, when
compared to functional
testing, which usually

receives proper attention,
HA testing is scarcely

considered?”

Designing Highly Available Web-Based Software Systems

August 2003 www.stsc.hill.af.mil 7

Vertical scaling can provide additional
capacity, and does provide server-level
fail-over. Figure 4 illustrates Web applica-
tions in both horizontal and vertical scal-
ing configurations.

Prior to establishing redundancy
through horizontal scaling, a full capacity
analysis should be conducted to deter-
mine the system resources required to
serve the planned user base. The capacity
analysis catalogs the total number of
users, the average and peak concurrent
user load, required application Random-
Access Memory per instance, cumulative
required hard disk space, and other pro-
duction-related details to arrive at a physi-
cal fielding profile for the Web application.
The fielding profile depicts how many
Web application instances are necessary
and lays out precisely which application
servers they will reside on.

Additionally, it is important that
enough capacity is provided through
resource provisioning (Web and applica-
tion servers, Web application instances,
memory, storage, etc.) so that if any one
system or application component fails, the
average user load can still be served. In
other words, extra capacity must be allo-
cated by design to handle failures and
times of peak usage. The goal of GCSS-
AF is to run servers at not more than 40
percent capacity under average load con-
ditions; this allows the necessary excess
capacity.

Treatment of Transient Data
Strict separation between layers, as pre-
scribed by the Model-View-Controller
(MVC) logical design paradigm [3], results
in applications that have business logic
and data clearly separated (see Figure 5).
This decoupling of layers greatly reduces
complexity, fosters code reuse, enables
flexibility, and simplifies maintainability
throughout the life cycle. In short, MVC
provides the necessary logical design
foundation for developing maintainable
and HA applications.

MVC-designed applications should
not manipulate database data directly
using Java Database Connectivity (JDBC);
instead, they should take a pure object-ori-
ented approach and interact with data
using objects [4]. Data objects are imple-
mented as Entity Beans or simple
JavaBeans, and are buffered by the data
access layer, which directly communicates
with the database via JDBC.

Using the MVC logical design
approach results in Web applications that
are suitable for running in a HA mode
because they scale nicely (both horizontal-
ly and vertically). However, using MVC

does not prevent developers from making
HA design mistakes. For instance, MVC
does not preclude the use of transient ses-
sion data. Transient session data can best
be viewed as the user’s unsaved work on
the Web application server. If the server
fails, all transient data is lost, just like when
a workstation user experiences a power
outage with unsaved work. In the event of
a failure, HA-enabled Web applications
will fail-over to another server, however,
all transient data will be lost. HA Web
applications must be designed in such a
fashion that a session fail-over will not
result in the loss of any of the user’s work.
Specifically in Java 2 Enterprise Edition,
the servlets, JavaBeans, Java classes, and
Enterprise JavaBeans (EJBs) can contain
transient data [5].

Session EJBs illustrate the pitfalls of
using transient data in HA Web applica-
tions. Session EJBs can be either stateful
or stateless. Stateful session beans main-
tain transient state information (in-memo-
ry data) that is used to serve or converse
with the user. Stateful sessions are valu-
able because they allow data caching,
which can dramatically improve perform-
ance. However, they do have a dark side.
Should the application server fail, all of
this transient data is permanently lost. For
example, consider a warfighter placing an
order for communications equipment
(using a combat support mission Web
application similar to Amazon.com). As
the warfighter places items into the shop-
ping cart, the stateful session bean keeps
track of the requested items in-memory.
The EJB now has state, namely this in-
memory list of items. Completing the
order and checking out depends on the in-
memory state information remaining

available. The problem with this approach
for HA Web applications is that when a
server fails, this state information is lost
and cannot be recovered. The user will be
disrupted, and be forced to start over [6].

Properly designed HA Web applica-
tions can prevent users from experiencing
transient data loss by employing stateless
objects. Stateless session beans maintain
no in-memory state data that could be lost
in the event of a server failure. Each
method in a stateless session EJB executes
independently and does not rely on or
store any in-memory state data. Again,
consider the warfighter shopping cart
example; since a stateless session bean
does not maintain state data, the bean
must add the warfighter’s selected items to
a persistent object (which moves the data
into a database table via the Data Access
Layer, see Figure 5). At checkout, the
selected items will be retrieved from this
table and the transaction will be complet-
ed. In the event of a failure, the clustered
session would fail-over to another applica-
tion server, and upon checkout the new
application server would simply read the
list of selected items from a persistent
object (which pulls the data from the data-
base table) and complete the order.
Because of this resiliency, HA Web appli-
cations should only use stateless session
beans. This treatment of transient data
applies to servlets and regular JavaBeans
as well.

Customizing the Session Object
If a Web application has the need to store
information about a user in addition to
what the user session object provides, a
good approach is to extend the session by
adding custom objects. Returning to our

View (or Presentation) Layer: Provides the user interface capabilities.

Controller Layer: Provides an interface between the View and Model
Layers preserving the independence of these layers.

Model Layer: Provides the functional business logic APIs. This layer

Data Access Layer: Provides a mapping between the Business Logic
(Model) Layer and the Data Layer.

Data Layer: Provides the physical storage of data. This can be in a

also provides data objects used by the executable code.

database, data warehouse, data mart, etc.

Figure 5: Model-View-Controller Logical Tiered Architecture

Network-Centric Architecture

8 CROSSTALK The Journal of Defense Software Engineering August 2003

warfighter shopping cart example, we
could extend the user session object by
adding an object called SelectedItems
(which is a Java ArrayList of Equip-
mentItems). The warfighter’s selected
items can now be stored in the new
SelectedItems object of the user’s session.
To process the checkout, these items are
simply retrieved from this in-memory
object (assuming memory-to-memory ses-
sion clustering is used). In the event of a
server failure, these objects will be treated
as part of the user’s session and will be
subject to session clustering fail-over previ-
ously discussed. Thus, a server failure will
cause a complete fail-over of the user’s ses-
sion and transient data without the user ever
experiencing any interruption in service.
This approach also provides a gain in per-
formance because the SelectedItems are
stored in memory instead of the database.
This is a good approach for a relatively
small amount of data. Large amounts of
data should not be stored with the user ses-
sion object [2].

Conclusion
Developing HA systems and applications
is not about technology. It is about meeting
the needs of the warfighter. To serve the
warfighter, Web applications should be
designed up-front to provide HA, which
can be viewed as a composition of three
components: availability, reachability, and
performance. Each of these HA elements
must be designed into the hosting system
as well as the Web application. HA systems
must ensure that the architecture designs
away all single points of failure. The most
important consideration for HA Web
applications is horizontal scaling. Other
important aspects of HA design include
strict separation between layers (using
MVC), the use of session clustering and
fail-over, the treatment of transient data,
and extending the session object with cus-
tom objects.◆

References
1. Tanenbaum, A. Computer Networks.

3rd ed. New Jersey: Prentice Hall PTR,
1996.

2. IBM WebSphere Version Information
Center: Session Management Support
<http://publib7b.boulder.ibm.com/
wasinfo1>.

3. Alur, D. et al. Core J2EE Patterns:
Best Practices and Design Strategies.
New Jersey: Prentice Hall PTR, 2001.

4. Sun MicroSystems: Java Data Object
API Specification <http://java.
sun.com/products/jdo>.

5. Hall, M. Core Servlets and JavaServer
Pages. New Jersey: Prentice Hall PTR,
2000.

6. Monson-Haefel, R. Enterprise Java
Beans. 2nd ed. Sebastopol, CA:
O’Reilly, 2000.

Additional Reading
1. Alberts, David S. Network Centric

Warfare: Developing and Leveraging
Information Superiority. 2nd ed re-
vised. CCRP Publication Series, 2000.

2. Java and J2EE Timeline <http://java.
sun.com/features/2000/06/time-line.
html>.

3. Martin, J. “On Service Level Agree-
ments for IP Networks.” Proc. of the
IEEE Infocom 2002 Conference
<http://www.ieee infocom.org/
2002/papers/455.pdf>.

4. Pressman, R. Software Engineering, A
Practitioner’s Approach. 4th ed. New
York: McGraw-Hill, 1997.

5. Stevens, W. UNIX Network Program-
ming. 2nd ed. New Jersey: Prentice
Hall PTR, 1998.

6. Wang, Z. Internet QoS: Architectures
and Mechanisms for Quality of
Service. San Francisco: Morgan
Kaufmann, 2001.

About the Author

Michael Acton is a
software systems engi-
neer with Lockheed
Martin Mission Sys-
tems, a Capability
Maturity Model® Level

5 organization. As the Global Combat
Support System-Air Force (GCSS-
AF) Operations and Support chief
engineer, he is responsible for leading
multiple engineering teams that pro-
vide the services necessary to operate
the system, provide Level 2 help-desk
support, install new capabilities, and
integrate Java 2 Enterprise Edition-
based mission applications. He was
recognized as a 2002 GCSS-AF
Program Top Contributor. Acton is a
doctorate candidate at Auburn
University.

Lockheed Martin
Mission Systems
4520 Executive Park Drive
Montgomery, AL 36116
Phone: (334) 416-6029
Fax: (334) 273-5560
E-mail: michael.acton@gunter.af.mil

michael.acton@lmco.com

September 8-12
International Conference on Practical

Testing Techniques
Minneapolis, MN

www.psqtconference.com/2003north

September 15-18
Software Development Best Practices

Boston, MA
www.sdexpo.com/2003/east

September 14-19
International Function Point Users

Group Annual Conference
Scottsdale, AZ

www.ifpug,org/conferences/annual.htm

September 22-25
AUTOTESTCON 2003

Anaheim, CA
www.autotestcon.com

September 24-26
International Conference on Visual

Languages and Computing
Miami, FL

www.vlc03.cs.ucla.edu

October 15-18
Richard Tapia Diversity in

Computing Conference
Atlanta, GA

www.ncsa.uiuc.edu/Conferences/
Tapia2003

October 20-24
Quality Assurance Joint Conference on

Compressing Software Development Time
Baltimore, MD

www.qaiusa.com

November 18-21
International Conference on Software

Process Improvement
Washington, DC

www.software-process-institute.com

April 19-22, 2004
Software Technology Conference 2004

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office.

August 2003 www.stsc.hill.af.mil 9

The U.S. Army’s Future Combat Systems
(FCS) program is developing a net-

work-centric ensemble of systems capable
of performing a range of missions, from
warfighting to peacekeeping. Capabilities
envisioned for FCS include direct and indi-
rect fires, air defense, reconnaissance and
surveillance, transport, and resupply [1].
Current FCS vehicle concepts range from
unmanned aerial vehicles to manned 20-
ton wheeled or tracked vehicles to small
robots that weigh only a few pounds [2].

Developing systems that bring the FCS
vision to reality requires the collaborative
efforts of numerous communities.
Architecture descriptions of the FCS will
enable those communities to quickly and
efficiently engineer, procure, and deploy
advanced systems. The Fire Control-Node
Engagement Technology (FC-NET) soft-
ware architecture is being developed by the
U.S. Army Aviation and Missile Research,
Development, and Engineering Center as a
foundation for fire control systems that
support FCS. The essential characteristic of
FCS is mission adaptability, and FC-NET
provides a fire control software architec-
ture that is equally adaptable.

Fire control in general encompasses all
operations required to apply fire on a target
[3]. Fire control systems are categorized as
either tactical or technical. Tactical fire con-
trol systems are Command, Control, and
Intelligence systems that focus on the plan-
ning and evaluation aspects of fire control.
Tactical fire control systems are responsible
for such activities as identifying targets
based on data from multiple sources, prior-
itizing targets, assigning specific weapons
for use against specific targets, and assess-
ing damage after engagements.

Technical fire control systems are nor-
mally embedded in a weapon system and
focus on the computational and mechani-
cal operations required for that weapon
system to hit a specific target with a specif-

ic munition. Technical fire control systems
are responsible for interacting with tactical
fire control systems to obtain information
about targets. This information may be
used to direct fire or to further refine firing
solutions using organic sensors under the
control of the technical fire control system.

Once sensors have acquired a potential
target, the technical fire control system
assists in tracking the target until a decision
is made to engage and fire upon the target.
Platforms and vehicles provide mobility for
aiming weapons and sensors. Technical fire
control systems augment the soldier’s capa-
bility, enabling the soldier to fire on more
targets both more quickly and more accu-
rately. Figure 1 illustrates this role of tech-
nical fire control systems as force multipli-
ers for the individual soldier.

FC-NET is a technical fire control soft-
ware architecture. The architecture’s flexi-
bility ensures that FC-NET-based technical
fire control systems can readily interact
with tactical fire control systems and fully

exploit the information that the tactical sys-
tems provide. However, the architecture’s
structure emphasizes the technical actions
required to place munitions on targets.

As used in the remainder of this article,
the term fire control should be interpreted as
meaning technical fire control.

The FC-NET Architecture
FC-NET captures technical fire control
functionality in a modular software archi-
tecture that provides a plug-and-fight capabil-
ity for FCS. The following sections provide
a brief description of how the architecture
was developed from domain models, how
it is represented as a set of software com-
ponents, and how it is expected to evolve.

Domain Modeling
A domain is defined by systems that per-
form similar missions. For example, bullets,
rockets, and missiles all belong to the
Munition domain. A domain model is an
abstraction of the systems within a

A Fire Control Architecture for
Future Combat Systems

Deborah A. Butler
U.S. Army Aviation and Missile Command

The Future Combat Systems (FCS) program is developing a versatile, reconfigurable system of systems capable of perform-
ing a wide range of missions for the U.S. Army. In support of the FCS, the Fire Control-Node Engagement Technology
(FC-NET) program is developing a versatile, modular fire control software architecture capable of satisfying the flexibility
and rapid mission reconfiguration requirements of the FCS. The FC-NET software architecture achieves its flexibility
through domain-centric software components that encapsulate weapon-specific hardware devices and algorithms. This article
illustrates the structure and organization of the architecture using the Munitions domain as an example. A side benefit of
developing and testing the FC-NET architecture is the production of reusable artifacts that offer potential cost and schedule
savings on future FCS evolution and system integration efforts.

Dr. Malcolm Morrison, Dr. Joel Sherrill, and Ron O’Guin
OAR Corporation

GUNNER

Target Acquisition

Target Selection

Weaponeering

Weapons Assignment

Target Engagement

Damage Assessment

Estimator

Manager

Tracker

Track DB

Correlator

Targeting

WEAPON
SYSTEM

Munition

Launcher

Weapon

Weapon Suite

Acquisition

Tracking

Sensor

Sensor Suite

Position

Operator

Platform

Platform Suite

Environment

TARGETS

Figure 1: Technical Fire Control Is a Force Multiplier

Network-Centric Architecture

10 CROSSTALK The Journal of Defense Software Engineering August 2003

domain. A domain model is built for the
purpose of understanding the domain’s
requirements, information, and processes.
The top-level domain for the FC-NET
architecture is military fire control systems.
Therefore, the FC-NET architecture
domain model is a model of the require-
ments, information, and processes associ-
ated with military fire control systems.

The FC-NET domain modeling activi-
ty examined the information required by a
fire control system to execute a fire mis-
sion. Since fire control systems are com-
posed of a variety of sensors and electro-
mechanical devices, it was critical to classi-
fy the devices based upon the information
they provide and the roles they play. This
focus on devices helped draw a strong
boundary between the problem space
addressed by the FC-NET architecture and
that of subsystems with which a fire con-
trol system must interact. Examples of
such subsystems include battlefield man-
agement, avionics control, vehicle control,
and user interfaces.

Figure 2 identifies the roles and devices
that interact with the top-level fire control
system domain. Within the fire control sys-
tem domain, a number of other lower-level
domains (or sub-domains) have been iden-
tified such as Weapon and Munition. Each
of these lower-level domains represents a
significant area of functionality and serves
a coherent role in a military fire control sys-
tem. Each lower-level domain is further
decomposed into units called components.

Components
A component is a logically coherent, dis-
tributable unit of software composition.

The behavior of a domain emerges from
the interactions among its components and
between its components and the external
environment. The following criteria were
used to determine if an area of functional-
ity should be encapsulated into a single
component:
• Logically Coherent. Is there a collec-

tion of functional capabilities that
should be grouped because of interde-
pendencies?

• Distributable. Could this functionality
be distributed?

• Vendor Provided. Could a vendor pro-
vide this functionality as a standard
component?

• Special Expertise. Does a subject-
matter expert normally write this func-
tionality?

• Updateable. Could updates to this
functionality occur independently of
updates in other areas of functionality?

• Optional. Is this functionality only
required in some systems?
The following example makes using

these criteria clearer. A computationally
intensive algorithm for target recognition
might execute on a separate processor
from software controlling the sensor
devices. In this case, it would be desirable
to be able to make sensor control and tar-
get recognition separate components to
provide flexibility to the system designer
in assigning these to separate processors.
It is also likely that a subject-matter expert
would provide the target recognition algo-
rithm. The subject matter expert would
normally not be responsible for the soft-
ware interfacing with sensor devices.

Ideally, the manufacturer of the sensor
device would provide this functionality.
Finally, it is reasonable to expect improve-
ments to both target recognition algo-
rithms and sensor devices. It is likely that
these would occur independently of one
another.

In this example, the criteria suggest that
target recognition capabilities and sensor
device control be placed in separate com-
ponents. The separation of functionality
illustrated by this example is supported by
FC-NET’s adherence to an open system
model with standard component interface
definitions.

The FC-NET architecture identifies
components within each of the lower-level
fire control domains. The specifications for
individual components are defined in terms
of the attributes they possess, the services
they offer, and the asynchronous notifica-
tions they may generate.

Attributes may be thought of as data
elements. However, they are only accessible
to clients of the enclosing component via
services that access or modify the attrib-
utes. These accessing services are known
informally as get and set and implicitly exist
for every attribute of a component. In
multi-threaded environments, accessing
services are assumed to be thread-safe and
provide atomic access to attributes.

Services define operations that can be
performed by the component. Services
may modify the values of attributes and
may invoke the services of other compo-
nents. Services may perform computations
or effect changes in the external environ-
ment. For example, a fire control system
must provide an Aim service that results in
parts of a weapon system being physically
repositioned so that munitions can be fired
at targets.

Notifications are asynchronous mes-
sages generated by a component when an
event of interest occurs. Other compo-
nents subscribe to receive those notifica-
tions in which they have an interest. For
example, the Department of Defense
defines a hang fire as a non-desired delay in
the functioning of a firing system [3]. A
hang fire occurs when a weapon is fired but
the munition does not physically leave its
launcher. A notification is used to pass
knowledge of this event to other compo-
nents that need to know when a hang fire
occurs.

For ease of modeling, the FC-NET
domain model classifies components with-
in each domain into one of five categories:
functional controls, knowledge stores,
device groups, algorithm containers, and
façades.

Functional controls encapsulate sets of

Fire Control System

Munition Launcher

Platform

Training

SMI

Gunner

Targeting
Maintenance

Safety

Communications

Security

Mapping

Vehicle

Library

Weapon
System

Weapon

Logistician

Driver

Communicator

Security Officer

Safety Officer

Weather
Sensors

Environment

Technician

Instructor

Soldier

Commander

Navigator

Biological
Sensors

Chemical
Sensors

Radiation
Sensors

Safety
Sensors

Security
Sensors

Recon.
Sensors

Munition
Devices

Tracking
Sensors

Launcher
Devices

Track
Acq.

Sensors
Platform
Devices

Loader
Devices

Navigation
Devices

Position

Figure 2: Fire Control Domain and Interactions

A Fire Control Architecture for Future Combat Systems

August 2003 www.stsc.hill.af.mil 11

functionality that have a similar purpose
and perform a specific role within a fire
control system. Since functional control
components have specific roles, they are
named according to their role. Functional
controls always have services but some-
times do not have attributes or notifica-
tions.

Knowledge stores encapsulate groupings of
related information. Each knowledge store
component provides controlled access to
its information, even in the face of concur-
rency. In general, knowledge stores are
global repositories of system data. All
knowledge stores are named according to
the type of data they encapsulate.
Knowledge stores tend to have attributes
and implicit accessing services for reading
and modifying the attributes, but rarely
have any explicit services or notifications.

Device groups encapsulate collections of
sensors or controllers that are used for sim-
ilar functions. Specific devices are not
defined within a device group. Since device
groups represent hardware components,
they are named according to the generic
hardware that they represent. Device
groups tend to have attributes, services,
and relatively many notifications.

Algorithm containers encapsulate compu-
tations that are highly complex, likely to be
system-specific, and typically written by
subject-matter experts. In the fire control
domain, examples include weapon/target
pairing, target identification, and ballistic
computations. Algorithm containers tend
to contain very few services and no attrib-
utes or notifications. Algorithm containers
normally operate in demand mode – exe-
cuting only in response to requests from
other components or as a result of system
events.

Façades provide high-level interfaces
that make complex subsystems easier to
use by encapsulating the data and function-
ality of the subsystems. A façade is espe-
cially useful when the subsystem is highly
complex, adheres to another domain
model, or is produced by an outside organ-
ization. Although façades tend to have
moderately complex interfaces, the imple-
mentation of a façade usually consists of
straightforward mappings between subsys-
tem and façade attributes, services, and
notifications. An example of a façade in the
FC-NET architecture is the Vehicle com-
ponent. The Vehicle component is respon-
sible for presenting the fire control system
with a unified interface to all the subsys-
tems that are part of (or are attached to)
the vehicle on which the weapons are
mounted. Common examples of such
vehicle-mounted subsystems include power
plant control and monitoring systems,

speed and position sensors, meteorological
sensors, and nuclear, biological, and chem-
ical detection systems.

Examples of these component cate-
gories are provided in a later section of this
article that presents a decomposition of the
Munition domain.

Architecting for the Future
FCS is being designed as a highly adaptable
and flexible fighting platform, but it is still
largely conceptual. The modular, compo-
nent-based modeling approach described
earlier provides the architectural adaptabili-
ty and flexibility required if FC-NET is to
support an evolving FCS. Although the
exact physical nature of FCS is not known
with certainty at present, initial concept
definitions hint at possible configurations.

Possible FCS Configurations
For this discussion, a weapon is defined as
the composition of a platform, one or
more launchers, and one or more muni-
tions. Weapons may be fixed or mobile. If
mobile, the weapon platform must be
mounted on some type of vehicle. The
overall movement capability of a weapon
depends on both the movement capabili-
ties of a vehicle and the articulation capa-
bilities of a platform. Likewise, sensors
used to acquire and track targets require
movement capabilities similar to the
weapons they help control. Conceptual
depictions of FCS to date embody, at min-
imum, the three different weapon and vehi-
cle configurations shown in Figure 3.

Figure 3(a) reflects the simplest case
where a weapon and its sensors are bore-
sighted along the same line. In this config-
uration, all sensors and weapons effectively
are aimed at the same point and moved at
the same time. Thus, aiming at and tracking
a target with a sensor results in the weapon
aiming at and tracking that same target.

A step up on the complexity scale has
each sensor or weapon located on a single
vehicle but capable of independent move-
ment. This configuration is shown in
Figure 3(b). When weapons and sensors
are mounted on the same vehicle, their
actions must be coordinated to avoid inter-
ference and ensure proper aiming and
alignment.

The most complex and most flexible
configuration allows sensors and weapons
to have completely independent move-
ment. This situation is depicted in Figure
3(c) and reflects the growing utilization of
unmanned ground and aerial vehicles.
Coordination of sensors and weapons is
still an issue, but the coordination may
need to be effected across significant dis-
tances.

Personality Modules
Isolation of the fire control system from
the underlying hardware configuration is
handled in FC-NET by using Personality
Modules (PMs). Similar to the device driv-
ers used by popular operating systems, PMs
encapsulate device-specific hardware char-
acteristics. A PM implements an architec-
ture-defined interface to the fire control
system. The PM translates abstract fire
control commands into device-specific
commands understood by the attached
device. Figure 4 (see next page) presents an
example.

The fire control system sends a Fire
command to the software component that
controls a missile launcher. The software
component passes the fire command to the
launcher hardware through a launcher-spe-
cific PM. The PM translates the fire com-
mand into a sequence of relay activation
commands that control electrical signals to
the launcher at the connector pin level.

Fire Control Foundation Classes
Although weapon system physical configu-
rations may vary widely, the fundamental
operations required to place fire on targets
remain relatively constant. Any fire control
system must acquire and track targets, com-
pute firing solutions, and deliver munitions
against targets. The FC-NET exploits this
functional consistency wherever possible
to support the FCS in all of its anticipated
weapon configurations.

The modular, domain-oriented struc-
ture of the FC-NET architecture promotes
commonality at an abstract level. The archi-
tecture is designed to encourage and

(c)

(a)

Vehicle

Platform

Launcher

Vehicle

Platform

Sensor

Munition

(b)

Vehicle

Platform

Launcher

Platform

Sensor

Munition

Vehicle

Platform

Launcher Sensor

Munition

Figure 3: Possible FCS Configurations

Network-Centric Architecture

12 CROSSTALK The Journal of Defense Software Engineering August 2003

accommodate reuse. The architecture itself
with its defined interfaces and services can
be reused, as can implementations of com-
ponents written in conformance with the
architecture. As the FC-NET architecture
is developed, a reference implementation
of the architecture and a set of fire control
foundation classes will be created along the
lines of Microsoft Foundation Classes
(MFC) [4]. An example of a potential fire
control foundation class is geospatial posi-
tion. Targets have positions, weapons have
positions, and munitions have positions
during their flight from weapon to target. A
reusable position foundation class has been
defined that provides position-related serv-
ices such as transformations between coor-
dinate systems. The position foundation
class can be instantiated or extended by any
fire control system implementer.

Just as the MFC are tightly coupled to
Microsoft’s Document-View application

architecture, the FC-NET fire control
foundation classes will be tightly coupled to
the FC-NET fire control architecture.
Unlike the MFC, however, the FC-NET
will be a non-proprietary open system
portable to a variety of operating systems
and central processing unit families.

Sample FC-NET Architecture
Domain
Concepts discussed in earlier sections are
illustrated by examining the part of the FC-
NET architecture that addresses munitions.
The FC-NET view of the Munition
domain appears in Figure 5. The figure
shows that the Munition domain contains
three interacting software components:
Munition, Munition Predictor, and
Munition Devices. These components
interact in turn with munition-related hard-
ware devices and with other software com-
ponents in the Launcher domain. Similarly,
the Launcher domain is also composed of
interacting software components that inter-
face to hardware devices and to software
components in yet other domains in the
architecture.

Munition is a functional control compo-
nent that is responsible for munition tar-
geting and launching functions. Example
services provided by this component
include activating, arming, and launching a
munition. The Munition component is
responsible for sending notifications of
events that occur during the course of its
operations. For example, this component
generates notifications when a munition is
launched or stowed. These particular noti-
fications normally originate in the
Munition Devices component and the
Munition merely propagates the notifica-
tions out to other components in the sys-
tem. The Munition component also main-
tains information about munition attrib-
utes. This information includes basic char-
acteristics, configuration information, and
dynamic state. Example attributes include
munition type and model number. Guided
munitions may have attributes for laser des-
ignator code or waypoint list.

Munition Devices is a device group com-
ponent that provides an interface for con-
trolling the devices and sensors associated
with a munition. It is used by the Munition
component to access a munition’s physical
hardware. This component provides many
of the same abstract services as the
Munition component, such as aim, arm,
and launch, but implements these services
at a lower, hardware-aware level. The
Munition Devices component generates
the same notifications as the Munition
component but does so at a lower level.

Munition Predictor is an algorithm con-
tainer component that provides an inter-
face for determining the necessary aiming
conditions required to ensure that the
munition’s kill zone intersects the target.
The Munition Predictor is used by the
Munition component to compute the aim
point for a munition. Like all algorithm
containers, the Munition Predictor has no
attributes and generates no notifications.
The only services provided are computa-
tion of munition flight time, aim angle, and
lead.

Design Trade-offs
Every software design involves trade-offs,
and the FC-NET is no different in this
regard. The FC-NET fire control architec-
ture reflects the hardware structure and
operational environment of modern
weapon systems. The architecture is highly
modular and assumes a hierarchical control
model among components. The current
version of the architecture defines 47 com-
ponents, along with some additional data
types and support services that collectively
capture the behavior of 18 domains.

At first glance, this breadth and level of
decomposition might seem excessive.
Although this observation might hold true
for many current fire control systems, the
FC-NET was not designed for current fire
control system. The FC-NET was designed
for future fire control systems. In particu-
lar, it was designed for the FCS fire control
system. The architecture was driven by the
need to support the highly adaptable and
reconfigurable weapon system that the FCS
will be. Of particular concern is the poten-
tial for future weapon systems to be com-
posed from cooperating, autonomous
robots or physically distributed subsystems.

There are costs associated with such a
modular and hierarchical architecture.
Architectural simplicity may be reduced, as
may implementation efficiency. The muni-
tion example presented earlier showed
three independent, interacting components
that together provide the necessary domain
behavior. Other device-centered domains
such as platforms and launchers also have

FC-NETFire

Launcher
Component

Personality
Module

+12V on J2-7

(Launcher-Specific Actions)

Figure 4: Personality Module Example

Munition
Devices

get aiming
information

Launcher
Domain

control
munition

control
 munition

control
munition
devices

Munition
Predictor Munition

Munition
Devices

Figure 5: FC-NET Munition Domain
Interaction

separate functional control and device
group components. For simple devices,
one could argue that this is design overkill.
Given a dumb launcher device that does
nothing more than transfer firing voltages
to its mounted missiles, multiple compo-
nents could introduce needless inefficien-
cies. Performance penalties can be
incurred due to cross-component commu-
nications. Added complexity and risk can
be incurred if it is necessary to locally
cache data needed by multiple compo-
nents.

Contrast this dumb launcher example
with that of an intelligent launcher device
with an autoloader, both mounted on an
autonomous robot. Cross-component
communications and local data caching
become inevitable consequences of the
hardware configuration. The architectural
complexity that seemed excessive for the
first example actually provides a smoother
implementation path for the second.

Although complexity and inefficiency
are legitimate concerns, current trends in
processing speed and communication
bandwidth ameliorate these disadvantages.
Computer hardware gets faster and cheap-
er every year. The IBM PowerPC 750FX is
a 32-bit processor that operates at speeds
up to one gigahertz and is representative
of high-end processors being used in new
embedded systems [5]. Powerful proces-
sors can be teamed with Flash memory to
provide large amounts of primary storage
and virtual file systems. Advanced proces-
sors such as the PowerPC family have dra-
matically increased the capabilities of
recent embedded systems, and the trend
toward more powerful hardware is expect-
ed to continue.

In the case of distributed fire control
systems, communications among physical-
ly independent components can have a
major impact on overall system efficiency.
The speed and reliability of network data
transmission is almost always less than the
speed and reliability of data transmission
within a single processing unit. It is antici-
pated that distributed communication
architectures such as Real-Time CORBA
[6] will continue to mature and grow in
reliability, performance, and usability to
the point where communications issues
cease to be a major performance concern
for the architecture.

In light of these disadvantages, what
advantages does the FC-NET architecture
provide? Although we believe that there
are potentially many, this article focuses on
only three: adaptability, interchangeability,
and vendor-independence.

An adaptable architecture allows fire
control systems to be easily modified,

extended, or reconfigured in the face of
changing requirements. Strategic defense
policy formulation requires long-term
planning. Long term in this context
involves time horizons of 10 or more
years as exemplified by Joint Vision 2010
[7] and Joint Vision 2020 [8].
Unfortunately, it is impossible to predict
with any certainty what will happen to
hardware and software technologies over
the same period. It is important to design
any new fire control system in such a man-
ner that new technologies can be readily
incorporated as they become available.
The highly modular character of the FC-
NET architecture provides numerous
locations where new technologies can be
inserted into the system with minimal
impact on other components in the fire
control system.

An architecture that provides easy
interchangeability of components allows
fire control systems to be readily modified,
extended, or reconfigured to better meet
current requirements. Individual compo-
nents of the fire control system can be
swapped out to incorporate improved
algorithms, more efficient component
implementations, or more sophisticated
decision aids that enhance the weapon sys-
tem’s ability to engage targets. As com-
mercial technologies mature and are
adopted by the Department of Defense,
new components that utilize these tech-
nologies can replace older components
based on more expensive military tech-
nologies.

For example, if a system moves from
MIL-STD-1553B-based communications
to Transmission Control Protocol/
Internet Protocol (TCP/IP), the FC-
NET architecture ensures that this change
only impacts boundary components
involved with hardware device communi-
cations. Most importantly, component
interchangeability supports the plug-and-
fight capability of the FCS to host differ-
ent combinations of weapons at different
times. For example, a FCS might be
quickly reconfigured by exchanging a
non-line-of-sight gun for a complement
of Netfires missiles and a remote armed
reconnaissance robot. The FC-NET is
designed to accommodate distributed fire
control systems, where fire control soft-
ware components physically reside in
weapon hardware. The required software
components are then automatically incor-
porated into the fire control system when
the weapon hardware is inserted into the
weapon system.

An architecture that provides vendor-
independence allows fire control systems
to be composed of components created

by different vendors. Vendors can work
independently to produce fire control
components that interoperate with com-
ponents provided by other vendors or
the government, using whatever in-
house expertise or methodologies pro-
vide their competitive advantage. Since
every component developer writes to
defined component interfaces, integra-
tion costs are reduced and subcontract-
ing becomes an effective means of
incorporating best-of-breed technology
into a fire control system.

Program Status
An initial version of the FC-NET soft-
ware architecture has been produced [9].
The FC-NET program is in the first phase
of a five-phase 50-month effort that will
refine the software architecture through
application to four different weapon sys-
tems constructed from five different
weapons.

Each weapon system will be composed
of two or more weapons and will consist
of some combination of real and simulat-
ed hardware. The weapons selected for
these systems will be representative of the
types of weapons the FCS expects to
mount. Example weapons include the
Low Cost Precision Kill Missile, Common
Missile, Compact Kinetic Energy Missile,
and an Objective Crew Serve Weapon.
Each weapon system will feature realistic
gunner interaction by utilizing an integrat-
ed crew station provided by the Army’s
Tank and Automotive Research, Develop-
ment, and Engineering Center.

The first phase of the program culmi-
nated in a June 2003 demonstration of a
weapon system that operates in a simulat-
ed environment. It is expected that the
FC-NET reference implementation and
fire control foundation classes described
earlier will be produced as by-products of
implementing the different weapon sys-
tems developed during the course of the
program. One intent of the demonstration
projects was to expose opportunities for
improving the current architecture. Early
implementation experience has already
resulted in many minor changes to com-
ponent interfaces. More substantial
changes to the architecture will be consid-
ered at the conclusion of each program
phase.

Conclusion
The FC-NET fire control software archi-
tecture provides the flexibility needed to
support the FCS and other new and evolv-
ing weapon systems. This flexibility is
achieved through the encapsulation of
functionality in well-defined software

A Fire Control Architecture for Future Combat Systems

August 2003 www.stsc.hill.af.mil 13

components and the isolation of hardware
characteristics in PMs. Fire control foun-
dation classes and a reference implementa-
tion of the architecture will be developed
in conjunction with this program. System
integrators can exploit these reusable arti-
facts to achieve cost and schedule
economies when developing fire control
systems for new configurations of the
FCS.◆

References
1. United States. Defense Advanced

Research Projects Agency. “DARPA
FCS Overview.” Washington: DARPA,
26 Mar. 2002 <www.darpa.mil/tto/
programs/fcs.html>.

2. McElwee, J., and J. Gully. “Future
Combat Systems: Partnering for Rapid
Innovation and Transformation.”
Boeing Integrated Defense Systems, 4
Apr. 2002 <www.boeing.com/defense
space/ic/fcs/bia/mcelwee.zip>.

3. United States. Joint Force. DoD
Dictionary of Military and Associated
Terms, Joint Publication 1-02. Wash-
ington: Director for Operational Plans
and Joint Force Development (J-7), 12
Apr. 2001 (as amended through 15
Oct. 2001) <www.dtic.mil/doctrine/
jel/doddict>.

4. Prosise, J. Programming Windows
With MFC. Redmond, WA: Microsoft
Press, 1999.

5. IBM Microelectronics Division.
“PowerPC 750FX Product Brief.”
IBM Corporation, Apr. 2002 <www.
3.ibm.com/chips/techlib/techlib.nsf/
p r o d u c t s / P o w e r P C _ 7 5 0 X F _
Microprocessor>.

6. Schmidt, D. C., and F. Kuhns. “An
Overview of the Real-Time CORBA
Specification.” IEEE Computer. June
2000 <www.cs.wustl.edu/~schmidt/
PDF/orc.pdf>.

7. United States. Joint Chiefs of Staff.
Joint Vision 2010. Fort Belvoir, VA:
Defense Technical Information
Center, July 1996 <www.dtic.mil/
jv2010/jv2010.pdf>.

8. United States. Joint Chiefs of Staff.
Joint Vision 2020. Fort Belvoir, VA:
Defense Technical Information
Center, June 2000 <www.dtic.mil/
jv2020/jvpub2.htm>.

9. U.S. Army Aviation and Missile
Research, Development, and Engi-
neering Center. FC-NET Architecture
Description, v. 1.1. U.S. Army
AMCOM, June 2002.

About the Authors

Network-Centric Architecture

14 CROSSTALK The Journal of Defense Software Engineering August 2003

Ron O’Guin is execu-
tive vice president for
OAR Corporation with
25 years experience in
the development of
real-time operating sys-

tems, real-time applications, visual sim-
ulations, and weapon systems trainers.
As a principal author of the open-
source real-time operating system
RTEMS, he has been deeply involved
in numerous RTEMS-related develop-
ment efforts. O’Guin has an extensive
background in missile system research
and is a principal developer of the Fire
Control-Node Engagement Technol-
ogy (FC-NET) Technical Fire Control
Architecture. He currently serves as
the software manager for the FC-NET
STO Program.

OAR Corporation
4910-L Corporate Drive
Huntsville, AL 35805
Phone: (256) 722-9985
Fax: (256) 722-0985
E-mail: ron.oguin@oarcorp.com

Malcolm Morrison,
Ph.D., is a senior soft-
ware engineer for OAR
Corporation with 15
years experience as a
developer of informa-

tion and weapon systems, an educator,
and consultant. His focus has been on
software process management impacts.
Morrison has served as a full-time facul-
ty member at the University of Alabama
in Huntsville and Salisbury University in
Maryland. He is a developer of the Fire
Control-Node Engagement Technology
Technical Fire Control Architecture.

OAR Corporation
4910-L Corporate Drive
Huntsville, AL 35805
Phone: (256) 842-6937
Fax: (256) 722-0985
E-mail: malcolm.morrison@

oarcorp.com

Deborah A. Butler is an
electronics engineer with
the Aviation and Missile
Research Development
and Engineering Center
with more than 15 years

experience in the design, development,
and fielding of real-time military embed-
ded applications. As an experienced
hardware and software designer, Butler
has contributed to the successful design,
development, and demonstration of pro-
grams such as the Future Missile
Technology Integration Program, Long
Range Fiber Optic Guided missile,
Future Artillery Loiter Concept, Low
Cost Precision Kill, and Compact Kinetic
Energy Missile. She has an extensive
background in missile system research
and development and is the program
manager for the Fire Control-Node
Engagement Technology Science and
Technology Program.

U.S. Army Aviation and
Missile Command
ATTN: AMSAM-RD-MG-NC
(Deborah A. Butler)
Redstone Arsenal, AL 35898-5000
Phone: (256) 876-1303
Fax: (256) 842-9476
E-mail: deborah.butler@rdec.

redstone.army.mil

Joel Sherrill, Ph.D., is
director of Research
and Development for
OAR Corporation with
15 years experience in
the design, develop-

ment, and fielding of real-time embed-
ded applications in a variety of military,
commercial, and research domains. As
a principal author and current main-
tainer of the open-source real-time
operating system RTEMS, he has been
deeply involved in numerous RTEMS-
related efforts including the GNAT/
RTEMS validation. Sherrill is a found-
ing member of the Steering Committee
for the Free Software Foundation’s
GNU Compiler Collection.

OAR Corporation
4910-L Corporate Drive
Huntsville, AL 35805
Phone: (256) 722-9985
Fax: (256) 722-0985
E-mail: joel.sherrill@oarcorp.com

August 2003 www.stsc.hill.af.mil 15

Office of Naval Research Science and
Technology
www.onr.navy.mil/sci _tech/jtf _warnet/public/default.asp
The Joint Task Force WARNET leverages the successes of the
Extending the Littoral Battlespace Advanced Concept
Technology Demonstration, which included a highly mobile
wireless wide-area relay network in support of tactical forces,
designed to revolutionize joint expeditionary warfare. It demon-
strated a precise, near real-time, common tactical picture to squad
level, facilitated dynamic maneuver, enhanced naval fires, and
reduced fratricide.

Automation and Robotics Research
Institute's Enterprise Engineering
http://arri.uta.edu/eif
The Enterprise Engineering Program is part of the Automation
and Robotics Research Institute at the University of Texas, Fort
Worth. The Enterprise Engineering Program's mission is to
research, develop, and deploy methods, philosophies, and tools
for the implementation of the integrated enterprise. Its objective
is to develop the enterprise engineering discipline and to develop
reconfigurable manufacturing concepts for the agile enterprise.

Command and Control Research Program
www.dodccrp.org
The Command and Control Research Program (CCRP) within
the Office of the Assistant Secretary of Defense focuses on (1)
improving both the state of the art and the state of the practice of
command and control and (2) enhancing Department of Defense
understanding of the national security implications of the infor-
mation age. The CCRP pursues research and analysis in com-
mand and control (C2) theory, doctrine, applications, systems,
the implications of emerging technology, C2 experimentation and
develops new concepts for C2.

The American Society for the Advancement
of Project Management
www.asapm.org
The American Society for the Advancement of Project
Management (ASAPM) is a not-for-profit professional society
dedicated to advancing the project management discipline.
Working with members, ASAPM provides the leadership for pro-
fessional growth of both members and the profession. ASAPM is
working at the forefront of the project management discipline to
push practices, procedures, and techniques to their best use.
ASAPM will soon be offering a project manager (PM) certifica-
tion, and also expects to soon sponsor a federal government-ori-
ented PM conference.

Global Combat Support System
www.disa.mil/ca/buyguide/prodsrvcs/gcss.html
The Global Combat Support System Combatant Comman-
ders/Joint Task Force was developed by the Defense Information
Systems Agency to respond to the operational concept of focused
logistics articulated in Joint Vision 2010, and reinforced in Joint
Vision 2020. Focused logistics is the fusion of logistics informa-
tion and transportation technologies for rapid crisis response;
deployment and sustainment; the ability to track and shift units,
equipment, and supplies; and the delivery of tailored logistical
packages directly to the warfighter.

High Availability Linux Project
www.linux-ha.org
The High Availability (HA) Linux project goal is to provide a high
availability solution for Linux that promotes reliability, availabili-
ty, and serviceability through a community development effort.
This site is a collection of information for the Linux-HA project,
including a how-to on Linux-HA, available downloads, commu-
nication architectures, commercial software, and more.

If your experience or research has produced information that could be useful to
s, CrossTalk can get the word out. We are especially looking for articles
est Practices and Lessons Learned for upcoming issues. Below is the
ttal schedule for three upcoming issues:

Software Consultants and Mentors
February 2004

Submission Deadline: September 15, 2003

System Assessments
March 2004

Submission Deadline: October 14, 2003

The Software Edge, Enabling the Warfighter
April 2004

Submission Deadline: November 17, 2003

Please follow the Author Guidelines for CrossTalk, available on the Internet at:
tsc.hill.af.mil/crosstalk>. We accept article submissions on all software-related topics at

time, along with Open Forum articles, Letters to the Editor, and BackTalk submissions.

CCALL FORALL FOR ARTICLES

WEB SITES

16 CROSSTALK The Journal of Defense Software Engineering August 2003

The term enterprise engineering
describes a large gamut of engineering

practices and processes that enable an
organization to design, develop, stand up,
and maintain an enterprise-computing
environment. Facets of enterprise engi-
neering might range anywhere from mod-
els such as time-based competition, con-
tinuous improvement, and business
process reengineering to the real meat and
potatoes of enterprise application design,
deployment, and integration (enterprise
application integration) [1]. However,
from a technical engineering perspective,
how does a large organization tackle the
daunting task of integrating numerous
enterprise-class applications while main-
taining a single engineering vision?
Furthermore, how do multiple sub-organi-
zational structures work to develop first-
class enterprise applications for a single,
common infrastructure, enterprise envi-
ronment?

The first realization that must be
addressed is that enterprise engineering is

the future of the software engineering
world. Software, whether it is designed for
a home computer, large computing envi-
ronment, or mobile computing device, is
becoming increasingly powerful due to its
ability to interact, or integrate, with other
systems and their respective software. For
instance, after placing an order to pur-
chase an item on an Internet-based store,
typically the buyer would receive an e-mail
with the status of the order. To make this
happen, it could mean integration of sev-
eral systems and their software: a credit
card processing system to verify the credit
card used, a warehouse system to see if
the item is in stock, a third-party delivery
system to prepare delivery of the item, etc.

In the past, these systems were either
not integrated or were integrated in some
proprietary manner, which made them
very costly and not very flexible. Today,
the idea of enterprise engineering is
sweeping the software engineering world
with technologies such as Java 2
Enterprise Edition (J2EE), Web services,

and enterprise application integration
tools. Hence, we have the introduction of
enterprise engineering – the vision of
engineering software and systems that
integrate across various systems, use open
standards, and bridge the gaps between
legacy, stovepipe system mentalities (see
Figure 1).

In the case of the Air Force, building
an integrated combat support enterprise is
key to providing real-time, accurate, inte-
grated information to the warfighter.
Allowing stand-alone combat support sys-
tems to integrate in an efficient, robust,
secure manner vastly improves the value
of information available to those making
combat decisions. For example, being able
to integrate combat support systems could
provide a single user with the capability of
seeing not only what planes are available
for a mission, but also their mission readi-
ness, available personnel, financial data
relating to making that mission happen,
and so forth. Previously, this data might
only be available through many separate
systems that might have conflicting infor-
mation due to the fact that they were not
integrated and shared the same real-time
information.

Now that the end goal is clear, the
question becomes how to get there. A key
to success in such an enterprise engineer-
ing environment is to become a heavily
integrated organization built upon com-
mon services and open standards, and
employing rigorous application develop-
ment standards in the software engineer-
ing processes of the applications joining
the enterprise. Of course, there are multi-
tudes of accompanying business models
that will wrapper and compliment these
engineering practices.

The U.S. Air Force is currently creating
such an enterprise by building an integrat-
ed environment – one enterprise – that is
the platform of integration for the Air
Force’s vast combat computing systems.
The enterprise, known as Global Combat
Support System-Air Force (GCSS-AF),
draws upon currently operational mission

Enterprise Engineering:
U.S.Air Force Combat Support Integration

Enterprise engineering is quickly becoming a hot term used to describe the future movement of software engineering. This move-
ment, for both management and development organizations, can be daunting. Application developers will find though that this
model is useful in building a common enterprise from disparate organizations. This article covers fundamental considerations
for developing to an enterprise engineering vision and discusses basic techniques of enterprise application development as lessons
learned on the U.S. Air Force’s Global Combat Support System enterprise.

Eric Z. Maass
Lockheed Martin Mission Systems

Integration Performance Security
Multi-

Threading

Reusability

Graphics

Object
Management

Memory
Allocation

Data
Access

Network
Utilization

Application
Growth

Error
Handling

Component
Based
Design

Robust
Engineering

Enterprise
Resource
Utilization

Enterprise Engineering Vision

Figure 1: Enterprise Engineering Vision

Enterprise Engineering: U.S.Air Force Combat Support Integration

August 2003 www.stsc.hill.af.mil 17

applications in the combat support arena
to modernize applications in accordance
with a new integrated enterprise engineer-
ing vision. In doing so, from a pure engi-
neering perspective, there are many obsta-
cles to contend with – especially when
coordinating the efforts of multiple soft-
ware development organizations to inte-
grate under one enterprise.

One of the first technical obstacles is
enabling developers to understand the
vision! Within that vision are the technical
details regarding the enterprise architec-
ture, its shared and common services,
components and methods of integration,
compliance standards, and much more.
This article looks more closely at a subset
of these aforementioned aspects of an
enterprise, some commonly trusted best
practices when developing to such an
enterprise, and how these issues relate
directly to the Air Force’s GCSS-AF initia-
tive. The enterprise engineering vision,
being the super-set of the technical
aspects that will be discussed within this
article, can be viewed in Figure 1.

Building an Enterprise
Engineering Vision
Building an enterprise engineering vision
is one of the most important milestones
of successfully constructing an integrated
enterprise environment on such a grand
scale as the U.S. Air Force combat support
computing structure. The enterprise engi-
neering vision is fundamental to ensuring
that disparate software development
organizations understand their role in the
enterprise.

The GCSS-AF program delivers the
technical components of its enterprise
engineering vision through a platform –
an infrastructure for development –
known as the Integration Framework (IF).
The IF, a conglomerate of commercial
off-the-shelf products in a n-tier, Web-
based, J2EE-enabled architecture, pro-
vides a set of common services and com-
ponents for applications that join the
enterprise. The framework provides a living
space for application integration that
enforces standards while providing a way
for applications to join the enterprise and
reduce the cost of software development
by avoiding reintroduction of common
services (such as security, messaging, and
data warehousing).

The diagram depicted in Figure 2
demonstrates a typical set of common
services offered by the IF on GCSS-AF in
a four-tier enterprise. These tiers represent
a set of common services that are avail-
able to application developers as part of

their design for joining the enterprise.
The GCSS-AF environment, designed

to host a wide variety of disparate applica-
tions in a manner that is conducive to
forming a single, heavily integrated enter-
prise, is also faced with an interesting engi-
neering case: How does an organization
collectively ensure that such a conglomer-
ated environment operates efficiently and
successfully?

Modern Problems: A Return
to Basics
The idea of enterprise engineering may be
new to many development organizations,
but the fundamentals of making it work
are largely based on a model of software
engineering practices that far outdate the
modern concepts of enterprise engineer-
ing and most of the technologies that may
be present in that environment.

Each application is part of a phased
approach at reaching a vision of an inte-
grated enterprise. This means that enforc-
ing the use of the technologies present in
the enterprise will be key to following the
enterprise engineering vision; on that
same note, flexibility in the technology set
present in the enterprise is also important.
However, perhaps even more important is
ensuring that these services and technolo-
gies are being implemented correctly. This
brings us back to the basics!

Java may be a relatively new program-
ming language, but it shares much in com-
mon with its ancestors. This is relatively
true for most modern technologies – they
display tendencies and traits from their

ancestors that are important to note
because they may largely aid in successful-
ly implementing them in similar or new
ways than was done previously.

Let us quickly review some of the
basics of good software engineering prac-
tices and see how these might be applied
to modern-day enterprise engineering in
an environment such as GCSS-AF.

Component-Based Design
Every modern developer has heard the
term component-based design. The real
question is how many modern developers
fully extend its theory into their practices?
Furthermore, how many modern enter-
prise developers and architects consider
component-based design theories an inte-
gral part of their work? The answer is
always quite simple – not enough! [3]

When we speak in terms of Java enter-
prise development, component-based
design should be one of our first thoughts.
Java, being a multiplatform-compatible
programming language, employs tech-
nologies that tend to slow code execution
(in comparison to older, single-platform
languages) which, at the same time, makes
the language flexible. Unlike languages in
the past, Java therefore requires additional
attention to component-based design so
that the applications created in these envi-
ronments can perform on par with older,
quicker languages.

For example, take the following pseu-
do code design of procedures in a Pascal-
like application (see Figure 3, page 18) that
might be designed as follows:

Security Tier Services
Authentication, Authorization, Method-Level Security, LDAP,
JAAS, Container Managed Security, etc.
Security Services are shared enterprise resources.

Presentation Services
HTML, JSP, and all presentation delivery
services are shared in the enterprise.

Application Services
Enterprise Java Beans, Java Messaging Services, MQ Series
Messaging, Container Managed Security, Application Cloning and
Scaling, XA, and other primary application services are all shared
enterprise resources.

Data Services
Databases, Database Connection Pools, XA Lightweight Java
Database Drivers, Data Warehousing, Data Fail-Over and
Recovery Services, and other related Data services are all shared
enterprise resources.

Figure 2: The Integration Framework on GCSS-AF

Network-Centric Architecture

18 CROSSTALK The Journal of Defense Software Engineering August 2003

This pseudo code snippet demon-
strates a function and procedure
call in a Pascal-like application. The
function, CalcTotal, is used to calcu-
late a user’s shopping total by
adding the necessary sales tax and
perhaps other related calculations.
It then displays the grand total.

The second, a function called
onMailingList, is used to determine
whether a customer is on the com-
pany’s mailing list. The procedure
does some set of operations (most
likely accessing some kind of data-
base) and would return a true or
false Boolean value reflecting the
customer’s mailing list status. Next,
we see that the function accesses
some private account data related
to the customer previously looked
up for membership on the mailing
list.

Finally, we have a procedure that
initializes the application. It most
likely would perform multiple
operations to initialize the applica-
tion such as displaying the compa-
ny name. In addition, this proce-
dure also determines whether or
not to initialize the user’s shopping
cart.

Agreeably enough, the above example
is not a great example of component-
based design, but in the case of a stand-
alone, single-user Pascal-like application,
the above would probably not be a terrible
setback for application performance. In an
enterprise engineering environment like
GCSS-AF, however, this example would
be a major contributing factor to deterio-
ration of system resources, application
performance, and overall enterprise engi-
neering vision for high-performance first-
class integration because the key funda-
mentals of sound, component-based
design have been overlooked.

In an enterprise with a vision of full
application integration, certain items are
of key concern [4]. These are explained in
the following sections.

Performance
Component-based design is necessary for
obtaining higher levels of enterprise appli-
cation performance. Separating out code
that is unnecessary for execution will help
mitigate the problems seen in slower lan-
guages such as Java.

As seen in the example, had the pro-
grammer separated out the arbitrarily
placed initialization of the user’s shopping
cart and moved this functionality to a
more appropriate part of the code, the
application would initialize quicker. For
instance, the programmer might have
decided to determine whether to initialize

the shopping cart only after the user elect-
ed to go shopping rather than just assuming
the user was ready to shop.

Reusability
Component-based design is also necessary
for obtaining code reusability. Although
this may not be particularly necessary in all
initial instances, having code in a reusable
format allows for quick transitioning to
higher levels of integration such as allow-
ing an application to offer parts of its
functionality as a Web service.

In the earlier example, the program-
mer should have broken out the function
CalcTotal into two separate functions: one
for calculating the total, and another for
displaying the results. This micro-managed
modular approach would (on a grander

scale) help the programmer quickly share
functionality and reusability of that func-
tionality in the future.

In the world of enterprise engineering,
this becomes especially important and is
an intricate part of the J2EE model. The
earlier example would therefore translate
to having all Hyper-Text Markup
Language generated in Java Server Page
code for displaying the total while the cal-
culation itself would take place, perhaps,
in a servlet or Enterprise Java Bean.

Security
Security is often overlooked and becomes
an afterthought in application design.
Component-based design is also necessary
for ensuring that the proper security is in
place for an enterprise application.

In the previous example, we see no
indications of security measurements.
However, we might assume that in an
enterprise application (especially one
residing in the GCSS-AF environment),
sensitive data will need to be filtered,
restricted, and monitored. Therefore,
implementing method-level security is,
typically, necessary in all applications.

In the function onMailingList, private
customer data is accessed after the user
has been looked up on the mailing list. If
this functionality is not necessary for
determining whether a user is on the mail-
ing list or not, it should be broken out into
a separate, secured procedure. Even if the
private customer data is not made avail-
able to the application user in the proce-
dure onMailingList, an application error,
for example, could cause unexpected
exposure of the data or privileged func-
tionality.

Learning to Live Inside the Box
Generally speaking, we would like applica-
tion developers to think outside the box while
still realistically considering that their
application must live inside the box.
Enterprise engineering is ultimately the
balance between the two.

When applications decide to join the
GCSS-AF enterprise, multiple considera-
tions need to be made in order to
account for the application’s capacity
resources, performance requirements,
compatibility with other GCSS-AF appli-
cations, and a multitude of other facets
that may impact the application’s ability
to reside onboard the program. While a
good number of these considerations
may be business-process related, another
good number is purely engineering issues
that must be addressed during an appli-
cation’s design phase.

Again, we are taking some steps back

Function calcTotal (var userTotal : integer);

Begin
 grandTotal := userTotal + (userTotal * salesTaxPer);
 writeIn 'Your total is: ' + grandTotal;
end; {calcTotal}

Function on MailingList (var mail : boolean);

Begin
 {... lookup if customer is on mailing list ...}
 {... access private account data ...}
end; {onMailingList}

Procedure initProgram;

Begin
 writeIn 'XYZ Company System';
 if user.onmailinglist = true then
 initShoppingChart;
end;

Figure 3: Pseudo Design Example: Pascal-
Like Application

“Today, the idea of
enterprise engineering is
sweeping the software
engineering world with
technologies such as

Java 2 Enterprise Edition
(J2EE),Web services, and

enterprise application
integration tools. Hence,
we have the introduction
of enterprise engineering.”

Enterprise Engineering: U.S. Air Force Combat Support Integration

August 2003 www.stsc.hill.af.mil 19

to the basics, but emphasis on these tech-
niques and viewpoints may, in the end,
determine an application’s success on
GCSS-AF or any other enterprise envi-
ronment [4].

Memory Allocation
Allocating too little or too much memory
is often not detrimental to a smaller stand-
alone application; however, when in a
J2EE environment, memory handling
becomes increasingly important as both
the application and enterprise weigh in [4].

Common memory allocation prob-
lems are as simple as using efficiency
when dealing with data types in an appli-
cation. For instance, allocating a 30-char-
acter array for a 10-digit code may waste
40 bytes of memory per user executing
that code snippet. With potentially thou-
sands of users executing that same code
simultaneously, one simple programming
error due to negligence could lead to a
significant amount of memory waste. An
application containing many of these
same mistakes in conjunction with other
forms of memory allocation errors could
easily bring down the application and
other applications in the enterprise that
are either dependent upon shared
resources or services provided by this
application.

Multi-Threading
Multi-threading is an application architec-
ture design point intended primarily to
allow an application to perform multiple
tasks at once in a safe, highly efficient
manner.

Multi-threading an enterprise applica-
tion is considerably important. Most J2EE
operations performed in a Web-based
application environment should be
designed as asynchronous, multi-threaded
calls. Depending on synchronous opera-
tions can drastically impede an enterprise’s
performance [2].

Data Access
Remember that your common services are
generally shared resources that are
accessed by various other applications.
This includes your data resources. It is
important to keep in mind that database
connections should be pooled, take
advantage of extensible architecture (XA)-
compliant database drivers, and be used as
efficiently as possible.

A few examples of this may include
the following: accessing a database con-
nection, Transmission Control Protocol/
Internet Protocol connection, File
Transfer Protocol connection, or other
connection type to an external resource

only when necessary [2]. As well, when
connected to the data resource, make sure
data are created, read, updated, and delet-
ed in the most efficient natures. For
instance, search a table based upon an
index – avoid scanning the entire table.
Other considerations may include termi-
nating connections when not in use, sim-
plifying data storage schemes (size and
complexity of records), transferring only
necessary parts of a record, and using the
smallest, most efficient data types in
records (i.e., the abbreviation AL instead
of Alabama).

Error Handling
A single application’s stability can poten-
tially impact the stability of the enterprise.
For example, if an application’s faulty
code continually tries to poll an enterprise

resource every second with a large query
due to a failure in the application, the
result would be troublesome for the enter-
prise resource and every other application
depending upon the availability of that
resource [4]. Many such problems can be
avoided with the use of rigorous error
handling and capturing [3]. Employing
tight regulations for error handling when
performing operations that may impact
the enterprise is extremely important and
must be designed into the application’s
functionality.

Clean Up
Garbage collection is Java’s native way of
conserving resources [2]. However, per-
forming such maintenance as garbage col-
lection is the obligation of design.
Unused objects should be discarded to
conserve memory resources; database
records that are no longer necessary

should be deleted; databases that are fre-
quently changed should be reorganized for
performance. Keeping an application’s
workspace and footprint small, tight, effi-
cient, and clean will help the entire enter-
prise be successful!

Help Keep the Roads Clear
Network congestion is one of the top
causes of poor Quality of Service (QoS).
In an enterprise, QoS is a shared respon-
sibility that starts with the QoS initiatives
of each application residing in the envi-
ronment.

A first-class enterprise application is
just as concerned with QoS as it is with
functionality and robustness of code.
QoS typically includes everything from
usability of user interfaces to responsive-
ness of requests to the application; how-
ever, one major aspect of QoS that will hit
every application hard will be network
congestion.

Typically, as an enterprise application
residing in a conglomerated environment,
the standards or availability of network
resources can be somewhat questionable.
Therefore, cleverly designing your applica-
tion to avoid potential QoS problems is
typically a wise decision. The following
sections are a few examples of design
aspects that would be beneficial to an
enterprise application’s QoS.

Graphics
Graphics are notorious for causing poor
QoS and are generally unnecessary for
most applications. If your application
must employ graphics, some general
guidelines should be followed:
• Use black and white graphics if possi-

ble.
• If color graphics are necessary, use the

lowest bit-depth possible (8-bit, 256
colors) to reduce image size.

• Use the highest compression available
on file formats. Using JPG or GIF for-
mats above BMP formats is such an
example.

• Keep the image dimensions as small as
possible while still keeping effective its
business purpose.

• Allow users the option of viewing
graphics instead of displaying them by
default.

• Display a minimum number of graph-
ics per page.

Packet Trips
Avoid using multiple round trips to
achieve what could be done in a more effi-
cient, perhaps larger, transmission. This
also includes reducing the amount of data
that is retransmitted or checked for

“Building an enterprise
engineering vision is one
of the most important

milestones of successfully
constructing an integrated
enterprise environment

on such a grand scale as
the U.S. Air Force
combat support

computing structure.”

Network-Centric Architecture

20 CROSSTALK The Journal of Defense Software Engineering August 2003

integrity.
A simple example in a Web-based

application would be static data retrans-
mission. Employing frames in an applica-
tion can maintain static data on the user’s
screen while allowing only the necessary
frame to update with a request.

Data Transmission
Send and collect only necessary data.
Avoid sending or collecting extraneous
data that would utilize enterprise
resources without gainful purpose. Some
examples of this may include the follow-
ing:
• Large cookies containing consequen-

tial or infrequently used data.
• Dynamic Web objects that require a

high frequency of refreshing (i.e., syn-
dicated news).

• Related but unrequested data. Giving
the user options to view this data con-
serves resources rather than sending
this data by default.

Keys to Success
From a developer’s standpoint, enterprise
engineering in a conglomerated enterprise
is not an easy task. However, as we have
reviewed here, sometimes taking a step
backwards and understanding the basics is
the key to providing a strong foundation
for an enterprise application. There will
inevitably be a gamut of hurdles to jump
over regarding application-specific engi-
neering, business process models, and so
forth; but, attacking the basic engineering
from these guidelines and building these
guidelines into the application’s model will
also inevitably aid the success of the appli-
cation and the enterprise as a whole.

In review, the points to remember
include the following:
• Design to the enterprise engineering

vision. Using (correctly) the resources
available from the enterprise will avoid
unnecessary development efforts and
help an application integrate into the
rest of the environment.

• Practice healthy, component-based
design techniques. Component-based
design has extremely important bene-
fits in the enterprise, including per-
formance, code reusability, and secu-
rity.

• Pay rigorous attention to detail.
Rigorous attention to programming
details will affect the success of an
enterprise application to a much
greater degree over a stand-alone
application.

• Conserve network resources.
Enterprise applications must share
network resources. Paying attention to

these details during design time will
allow all applications in the enterprise
to increase their QoS.
Enterprise engineering is the future of

large-scale organizational computing.
Understanding how to develop well per-
forming, integrated applications for such
an environment is the beginning step for a
successful experience.◆

References
1. Enterprise Engineering: An Infor-

mation Systems Perspective. 27 Feb.
2003 <www.eil.utoronto.ca/ papers/
mikePapers/eeg16.html>.

2. Farley, Jim, William Crawford, and
David Flanagan. Java Enterprise in a
Nutshell. Sebastopol, CA: O’Reilly and
Associates, 2002.

3. Joines, Stacy, Ruth Willenborg, and
Ken Hygh. Performance Analysis for
Java Web Sites. Boston, MA: Pearson
Education, Inc., 2003.

4. Maass, Eric. “Application Performance
for GCSS-AF.” GCSS-AF Guide to
Developing With the Integration
Framework. June 2002.

About the Author

Eric Z. Maass is a
software systems engi-
neer for Lockheed Mar-
tin Mission Systems in
Owego, N.Y., a
Capability Maturity

Model Level 5 organization. As a mem-
ber of the software integration and
development team on the Air Force’s
Global Combat Support System
(GCSS-AF) program, Maass’ primary
responsibilities include leading and sup-
porting architecture, development, and
integration of the enterprise’s security
services, leading systems performance
optimization research for the GCSS-AF
production enterprise, and providing
engineering support for application
integration into the GCSS-AF pro-
gram. Maass was recognized in 2002 as
a GCSS-AF Top Contributor. He is a
graduate of Syracuse University.

Lockheed Martin Mission Systems
1801 State Route 17C
MD 0605
Owego, NY 13827
Phone: (607) 751-2293
Fax: (607) 751-2538
E-mail: eric.maass@lmco.com

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave.

Bldg. 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

NOV2002 " PUBLISHER’S CHOICE

DEC2002 " YEAR OF ENG. AND SCI.

JAN2003 " BACK TO BASICS

FEB2003 " PROGRAMMING LANGUAGES

MAR2003 " QUALITY IN SOFTWARE

APR2003 " THE PEOPLE VARIABLE

MAY2003 " STRATEGIES AND TECH.

JUNE2003 " COMM. & MIL. APPS. MEET

JULY2003 " TOP 5 PROJECTS

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

August 2003 www.stsc.hill.af.mil 21

One thing agreed on among military
strategists is that dominance on the

21st century battlefield will be driven by
information superiority. Those who gen-
erate, manipulate, and use information in
a precise and timely manner will dominate
the battlefield of the future. The key to
such superiority is network-centric war-
fare:

Network-Centric Warfare (NCW):
We define NCW as an information
superiority-enabled concept of
operations that generates increased
combat power by networking sen-
sors, decision makers, and shooters
to achieve shared awareness,
increased speed of command,
higher tempo of operations,
greater lethality, increased surviv-
ability, and a degree of self-syn-
chronization. In essence, NCW
translates information superiority
into combat power by effectively
linking knowledgeable entities in
the battlespace. [1]

However, NCW is not just about connect-
ing weapon systems together on a com-
munications network. It is about utilizing
the connectivity of the network to trans-
form operations doctrine. This is done by
rapidly gathering raw data from across the
network, then fusing it together to trans-
form data into information about the bat-
tlespace. This correlation of information
from across the network transforms it
into an understanding of the battlespace
threats and assets. NCW is about the time-
ly utilization of that knowledge of the
battlespace state and events to rapidly
make better-informed decisions, both
proactive and reactive. NCW is about let-
ting computers do what they do best,
moving and manipulating data, and letting
humans do what they do best, making
informed decisions.

For example, recent operations in

Afghanistan and Iraq touched the tip of
the iceberg for transformation with voice
communications letting a soldier on the
ground request and guide air strikes from
air assets flying combat air patrol mis-
sions. Network-centric operations (NCO)
is about speeding up that process through
automation with the players as networked
nodes; with intelligent software taking
sensor data in, analyzing it, looking for the

best effector assets on the network; and
dispatching tasking orders in a fraction of
the time.

While this article focuses on military
applications, the principles of NCW apply
to civilian applications such as police and
fire-first responders. For the broader
application, we use the term NCO.

Stovepipe Systems
While some weapon systems can work
together, most of today’s deployed sys-
tems are islands of self-contained connec-
tivity, or stovepipe systems. That is, those
weapon systems components that were
designed at the same time to work togeth-
er can communicate and exchange data,
but that is the extent of their network
connectivity. At best, communication with

a disparate weapon system developed at a
different time on a different contract is
difficult and time consuming. This is a
vastly different vision compared to NCW
where weapon systems rapidly and easily
work together in large Command,
Control, Communications, Computers,
Intelligence, Surveillance, and Reconnais-
sance systems.

The proliferation of wireless commu-
nication systems using different protocols,
the difficulty for coalition forces to com-
municate over such systems, and the diffi-
culty of coordinating both police and fire
activities on Sept. 11 are examples of the
present state of stovepipe systems both
military and civilian. The enabler for
NCW is the interoperability of disparate
weapon systems to form systems of sys-
tems (SoS).

Interoperability: The ability of sys-
tems, units, or forces to provide
services to and accept services
from other systems, units, or
forces, and to use the services so
exchanged to enable them to oper-
ate effectively together. [2]

Boeing Strategic Architecture
Initiative
Moving to NCW via significantly
increased levels of interoperability will be
a transformational process. The Boeing
Strategic Architecture organization was
created and chartered to integrate all of
Boeing’s platforms, systems, and pro-
grams into a single common communica-
tion and information framework.

The main thrust of the organization is
to create, control, and disseminate the
Strategic Architecture Reference Model
(SARM), a communication, information,
application, and presentation architecture
framework. An enterprise-wide central
organization that has access to all pro-
grams and a cross-program perspective

Technical Reference Model for
Network-Centric Operations

The majority of today’s weapon systems are platform-centric; they work well within the same weapon system’s environment,
but do not readily collaborate with other weapon systems. The Strategic Architecture Reference Model (SARM) is a com-
munication and information architecture framework based upon commercial and government interface standards. Organized
to address system-wide network design issues, such as information assurance, the SARM is an enabling technology frame-
work to allow platforms and systems to interface to the Global Information Grid as interoperable nodes on the network. This
article discusses the benefits of having a SARM for platforms and systems, what is done with it, what should be in it, how
to understand its structure, and how to use the SARM.

Bradley C. Logan
The Boeing Company

“Network-centric
warfare is about letting
computers do what they

do best, moving and
manipulating data, and
letting humans do what

they do best, making
informed decisions.”

Network-Centric Architecture

22 CROSSTALK The Journal of Defense Software Engineering August 2003

ensures a system-wide architecture to
directly address key network and node
design issues.

The Strategic Architecture organiza-
tion is also forming an industry consor-
tium1 of infrastructure providers and
users to promote adoption of the frame-
work across non-Boeing products and to
ensure the framework is developed and
evolves with the best industry practices
and products. The intention is to create
open industry standards of the interoper-
ability infrastructure lower levels via the
consortium. Contractors then compete at
the higher levels of the model where their
application domain expertise provides
added value and the open infrastructure
provides a common foundation upon
which the applications are built. Thus, the
SARM is an enabler for SoS interoper-
ability.

Vision to Achieve Information
Superiority
The Global Information Grid
Computer networks are transforming
business processes globally by allowing
closer and more rapid collaboration and
coordination both internally and external-
ly among a business, its suppliers, and its
customers. Timely network access to data
from its business environment allows
executives to correlate, fuse, and trans-
form the data into critical operating
knowledge used to make timely informed
decisions, and allows using the same net-
work to disseminate directives to effect
change to achieve business goals.

This paradigm applies across organiza-
tions where data are gathered, processed,
and acted upon: commercial businesses,

civil service, and the military. While net-
works such as the Internet may be suitable
for many applications, the military has
unique and stringent needs in its business
environment.

The Global Information Grid (GIG)
is the vision of the assistant secretary of
defense for Command, Control,
Communications, and Intelligence for
achieving information superiority. The
GIG is a single, secure grid providing
seamless end-to-end capabilities to all
warfighters, national security, and support
users. It supports the Department of
Defense and intelligence community
requirements from peacetime business
support through all levels of conflict. The
GIG provides plug-and-play interoper-
ability for the joint services and coalition
users with high capacity network opera-
tions. It also provides interoperability at
the strategic, operational, tactical, and
base/post/camp/station levels [3, 4].

Operational Benefits of NCO
The power of information superiority
achieved by networking assets together
can be illustrated by analogy with phased
array technology. A single non-directional
sensor by itself may detect the presence of
an object, but putting two sensors togeth-
er with time-of-arrival measurement capa-
bility allows the raw data of the two sen-
sors to be correlated to yield a direction
for the object. As more and more sensors
are added, the precision of the location
data increases. The data have been
changed into more robust information
about the object, which enables refined
object tracking.

In NCO, capabilities for sensing, com-
manding, controlling, and engaging are

robustly networked via digital data links.
The source of the increased power in a
network-centric operation is derived in
part from the increased content, quality,
and timeliness of information flowing
between the nodes in the network. This
increased information flow is key to
enabling shared battlespace awareness,
and increasing the accuracy of the infor-
mation. These operational benefits are
derived from having the GIG enabling
technology represented by the SARM
guiding the development of nodes that
plug and play on the network; they are not
benefits of the SARM itself.

Reference [1] provides a much more
complete discussion on the benefits of
NCO.

Technical Approach
Why Have A SARM?
Network System Design: To work well,
the fundamental architecture of networks
and their nodes are designed together as a
system. Creating and managing the SARM
can ensure the following:
• The components used to build up the

SARM are integrated into a system-
wide architecture so that fundamental
network system design issues such as
information assurance are addressed
by the design as a whole from the
beginning.

• The single consistent framework of
the SARM is implemented on all plat-
forms and systems connecting to the
network.

• This system-wide architecture will
enhance the ease of integration of
platforms and programs as nodes on
the network and the level of interop-
erability between them, while main-
taining the precepts of information
dissemination control within an infor-
mation assurance doctrine.
Reusable Components: The univer-

sal use of the products in SARM instanti-
ations will foster the creation of reusable
components that provide common data
and functionality across platforms and
systems. This will bring the expected ben-
efits of decreased development costs,
faster time to market, extensive use of
commercial off-the-shelf (COTS) prod-
ucts, decreased maintenance costs, open
standards, and robust products suitable
for many environments.

The goal is to quickly get to the point
where the SARM guides node interface
design based upon a product catalog of
qualified and tested products that form
instantiations of the framework. This will
enable many programs to take the prod-
ucts and use them directly off the shelf.

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information

Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

Sensor Processing

Domain Services

Software Architecture Framework

IIOP NTP SNMP

Network QoS Layer

TCP UDP

IP

COTS Native IP Network

Legacy Sensor Application

Sensor Information Adapter

Software Architecture Framework

IIOP NTP SNMP

Network QoS Layer

TCP UDP

IP

COTS Native IP Network

COTS Native IP
Network

Native IP Mobile
Applications

Legacy Terminal
Equipment

IP

IP Security

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Terminal
Equipment

Infosphere Services Software Architecture Framework

Comm Adapter

Legacy
Communication

Applications

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

Fu
si

on

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
InformationApplications

Legacy HMI
Adapter

Comm
Adapter

Legacy
CommunicationApplications

Comm Control
HMI

HMI Application

COTS Native IP
Network

Native IP Mobile
Applications

Legacy Terminal
Equipment

IP

IP Security

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Terminal
Equipment

Infosphere Services Software Architecture Framework

Comm Adapter

Legacy
Communication

Applications

UDP, RTP, ...)

cols

ure

T
el

ep
ho

ny
S

er
vi

ce
s

M
ul

tim
ed

ia
S

er
vi

ce
s

V
id

eo
S

er
vi

ce
s

P
la

nn
-

T
as

k
S

en
se

C
om

m
A

pp
s

F
us

e
A

ss
es

s
-D

ec
id

e

UDP, RTP, ...)

cols

ure

T
el

ep
ho

ny
S

er
vi

ce
s

M
ul

tim
ed

ia
S

er
vi

ce
s

V
id

eo
S

er
vi

ce
s

P
la

nn
-

T
as

k
S

en
se

C
om

m
A

pp
s

F
us

e
A

ss
es

s
-D

ec
id

e

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information

Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

Sensor Processing

Domain Services

Software Architecture Framework

IIOP NTP SNMP

Network QoS Layer

TCP UDP

IP

COTS Native IP Network

Legacy Sensor Application

Sensor Information Adapter

Software Architecture Framework

IIOP NTP SNMP

Network QoS Layer

TCP UDP

IP

COTS Native IP Network

COTS Native IP
Network

Native IP Mobile
Applications

Legacy Terminal
Equipment

IP

IP Security

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Terminal
Equipment

Infosphere Services Software Architecture Framework

Comm Adapter

Legacy
Communication

Applications

COTS Native IP Network

IP

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information

Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP

Network
Native IP Mobile

Applications

Legacy Terminal

Equipment

IP

IP Security

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

Terminal

Equipment

Infosphere Services Software Architecture Framework

Comm Adapter

Legacy

Communication

Applications

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

COTS Native IP Network

IP

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

COTS Native IP Network

IP

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information

Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information

Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP

Network
Native IP Mobile

Applications

Legacy Terminal

Equipment

IP

IP Security

TCP UDP

NetworkQoS Layer

IIOP NTP SNMP

Terminal

Equipment

Infosphere Services Software Architecture Framework

Comm Adapter

Legacy

Communication

Applications

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal

Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

F
us

io
n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy
Information

Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy
Communication

Applications

Comm Control
HMI

HMI Application

Sensor Processing

Domain Services

Software Architecture Framework

IIOP NTP SNMP

Network QoS Layer

TCP UDP

IP

COTS Native IP Network

Legacy Sensor Application

Sensor Information Adapter

Software Architecture Framework

IIOP NTP SNMP

Network QoS Layer

TCP UDP

IP

COTS Native IP Network

COTS Native IP
Network

Native IP Mobile
Applications

Legacy Terminal
Equipment

IP

IP Security

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Terminal
Equipment

Infosphere Services Software Architecture Framework

Comm Adapter

Legacy
Communication

Applications

Sensor Processing

Domain Services

Software Architecture Framework

IIOP NTP SNMP

Network QoS Layer

TCP UDP

IP

COTS Native IP Network

Sensor Processing

Domain Services

Software Architecture Framework

IIOP NTP SNMP

Network QoS Layer

TCP UDP

IP

COTS Native IP Network

COTS Native IP Network

IP

TCP UDP

Network QoS Layer

IIOP NTP SNMP

Legacy
Terminal
Equipment

Software Architecture Framework

Domain Services

P
la

nn
in

g

S
en

so
rs

Li
nk

s

Fu
sio

n

A
ss

es
sm

en
t

W
ea

po
ns

Data Display HMI

Information
Adapter

Legacy

Information
Applications

Legacy HMI
Adapter

Comm
Adapter

Legacy

Communication
Applications

Comm Control
HMI

HMI Application

Embed a Common
Architecture Across

All Systems

Figure 1: Notional Deployment of SARM With Different Implementations Suited to Each Platform

Technical Reference Model for Network-Centric Operations

August 2003 www.stsc.hill.af.mil 23

This will free the programs from spending
resources on what should be common
infrastructure, and instead allow them to
concentrate their assets on solving their
unique programmatic challenges.

What Will You Do With a SARM?
Figure 1 provides a notional idea of what
you do with a SARM: instantiate the
framework across the platforms and sys-
tems that are to become nodes on the net-
work. The photos represent the platforms
and systems, while the boxes to the sides
represent different instantiations of the
SARM – some larger, some smaller.
Realize that each of the platforms may
have different needs for interoperability
and therefore different instantiations of
the SARM. For example, the kind and
amount of information needed by a hand
held device will differ from systems need-
ed by an operations center.

What Do You Want in a SARM?
Based Upon Standards: A fundamental
design decision in creating the SARM is to
base it upon standards such as the
Internet Protocol (IP) [5] as the basis for
the infrastructure. With the rapid and far-
reaching success of the Internet, this
brings many benefits, including open
commercial standards, multiple compet-
ing sources for compatible products
resulting in reduced costs and increased
maintainability, mechanisms for technolo-
gy insertion, and wealth of existing appli-
cation technology guidelines for robust
product development. The SARM also
promotes the use of government stan-
dards, including the Joint Technical
Architecture [6] and the Defense Infor-
mation Infrastructure Common Oper-
ating Environment [7].

Common Interface and Function-
ality: To be part of a network, a platform
must comply with the common interfac-
ing standards defined by the network. The
Internet works because every node on the
network complies with the agreed-upon
standards for basic connection and data
exchange. This infrastructure can be com-
mon among the nodes in the network and
be the foundation upon which applica-
tions residing on the network nodes are
based.

Common Ontology: Once the physi-
cal connection is made to the network and
the data moves through the communica-
tions layers of a node to become IP pack-
ets delivered by the operating systems to
applications, the remaining key to interop-
erability is the consistent syntax and
semantics of data that are exchanged on
the network. This is referred to as ontology,

an explicit formal specification of how to
represent the objects, concepts, and other
entities that are assumed to exist in some
area of interest along with the relation-
ships that hold among them. The richness
and extent of the ontology supported on
a platform relates to the level of interop-
erability on the network supported by that
node.

Understanding the SARM
Hierarchy Diagrams: The discussion of
the SARM follows a top-down approach,
as shown in Figure 2, from an abstract
decomposition of the functional units of
a network node to specifications for the
component pieces used to implement the
functionality.

Top Level: The SARM is a hierarchical
structure with increasing levels of detail
and specificity at each successive level.
The first level serves to divide the network
node into broad categories of functionali-
ty and responsibility as shown in Figure 3
and as follows:

• The communications layer represents
essential communications functions
and services provided by the IP-cen-
tric network. Provision is made for
legacy communications mechanisms
to allow them to become nodes on the
network.

• The information layer provides services
that support the interchange and man-
agement of information between
applications and the external environ-
ment. The key to this layer is a com-
mon ontology for the information
flowing on the network and residing
on the nodes.

• The application layer implements pro-
gram-specific functional processing,
e.g., position/navigation, sensor, con-
trol of real-time systems, and analysis
of order of battle.

• The presentation layer implements pro-
gram-specific human-machine inter-
face (HMI) requirements.
The Strategic Architecture organiza-

tion concentrates its efforts on the com-

Top Level
First concepts to decompose a network node

Service Layer
Broad categories of like functionality

Component Layer
Basis for implementation products

Abstract

Concrete

Figure 2: Discussion of SARM Structure Follows a Top-Down Design Paradigm

Communications Core

IP Communications Applications
Legacy

Communications

Information Core

Information Applications Legacy Applications

HMI Applications

IN
FO

R
M

A
TI

O
N

C
O

M
M

U
N

IC
A

TI
O

N
S

P
R

E
S

E
N

TA
TI

O
N

A
P

P
LI

C
A

TI
O

N

Figure 3: Top Level of the SARM Divides the Model Into the Major Functional Areas

munication and information layers since
these are the common infrastructure lay-
ers that enable interoperability between
nodes. The application and presentation
layers are more specific to the needs of a
program. However, when application
functionality that is common across pro-
grams is identified and data models and
methods manipulating that data are gener-
alized, these data and functions can be
moved into the information layer for
reuse across programs.

Service Layer: The next level further
refines the decomposition into major
services within the top-level decomposi-
tion and is shown in Figure 4.
• The communications services follow the

layered guidelines of the Open System
Interconnection (OSI) seven-layer
model and the IP model, but imple-
ment only the bottom layers: physical,
data link, network, and transport serv-
ices. The diagram shows further
decomposition into a variety of net-
works dependent upon the mobility of
the platforms. Legacy communication
systems are supported, both those that
are IP and non-IP based.

• The information services are not strictly
layered as the communication layers.
The information services are applica-
tion program interfaces (API) that
provide operating system services,
data management, information assur-
ance, and similar services that perform
fundamental control, access, and
manipulation of information in a net-
worked SoS model.

• The application and presentation services
are notional in this diagram since the
efforts of the Strategic Architecture
organization concentrate on the other

layers and leave these layers to the pro-
grams for their value added. The intent
is that program-specific processing
and functionality is implemented in a
network node at these levels.
Component Layer: At present, the

SARM diagrams go down one more level
in the communication and information
layers to decompose them into compo-

nents. The idea is that each of the com-
ponents would be implemented or
mapped to COTS or government off-the-
shelf (GOTS) products that provide the
functionality defined by the component.
The components are intended to be ter-
minal or leaf nodes in the hierarchy tree.
The software components of the SARM
will have standard APIs defined for them
so that applications may call the services
independent of the implementation
details. The common defined API will
make the components independent of the
underlying implementation and the hard-
ware/software platform on which it exe-
cutes. In this way, applications may be
written to depend upon a platform-inde-

pendent environment provided by the
SARM.

At this level of detail, the layered com-
munications services model progresses in
the protocol stack (read from bottom up)
from the physical, data link, network serv-
ices, and transport services. Provision is
made for fixed location, mobile, and lega-
cy systems as network nodes. Network
quality of service and information assur-
ance components exist in the layers as part
of the overall design.

The structure of the information serv-
ices layer progresses from basic operating
system, to SoS services that provide
underlying infrastructure for information
management in a distributed networked
environment. For example, a component
provides networked directory services
such as the Lightweight Directory Access
Protocol.

Using The SARM
Component Catalog and Portal:
Products that implement the functionality
of the SARM components are being col-
lected from COTS, GOTS, and other
sources and put into a database along with
tested configurations of the products that
can be used to construct instantiations of
the framework on different platforms. A
Web portal interface is being developed to
interface with the database. The portal
interface will help users search for combi-
nations of products that meet a program’s
functional needs to become a node on the
GIG.

SARM Evolution
The SARM is not complete and it will
never be complete. It represents an
expandable framework that will evolve
with technology and time. Each of the
layers in the reference model will expand
at least horizontally to include new tech-
nologies fulfilling the same kind of func-
tionality as existing services and compo-
nents, while vertical expansion would
include possibly new common functional
capabilities. For example, as new commu-
nication protocols are developed with
higher bandwidths, lower latency, and
higher levels of information assurance,
these can be added to the communication
layer in the fixed or mobile networks.

Populating the SARM
One organization should be the custodian
of the SARM, but it alone does not create
the SARM and does not populate the
component catalog solely on its own. This
is an industry-wide effort that spans pro-
grams that act to supply products to
implement components as well as use

Network-Centric Architecture

24 CROSSTALK The Journal of Defense Software Engineering August 2003

Physical
Services

Data Link
Services

P
R

E
S

E
N

TA
TI

O
N

IN
FO

R
M

A
TI

O
N

C
O

M
M

U
N

IC
A

TI
O

N
S

A
P

P
LI

C
A

TI
O

N

Fixed Networks

Internet Network Services

Internet Transport Services

Legacy/
Application

Specific
Communication

(Non-IP)

OS Services for Information

Information Infrastructure (Basic OS Svc for Info, OS Abstraction Svc, Infrastructure Svc,
SoS Framework Svc, SoS Operations Svc)

Common Domain Applications and Services, Legacy Application Adapters

Legacy
Applications

HMI Adapter Legacy HMI Adapter

HMI Application

COTS
Packages

Domain Specific Apps

V
eh

ic
le

M
is

si
on

B
us

in
es

s

A
dm

in

Mobile Networks

Legacy/Application
Specific

Communications
(IP-Based)

Figure 4: Service Layers Further Decompose the Framework Into More Specific Functional Categories

“While some weapon
systems can work

together, most of today’s
deployed systems are

islands of self-contained
connectivity, or

stovepipe systems.”

Technical Reference Model for Network-Centric Operations

August 2003 www.stsc.hill.af.mil 25

those supplied by others. The NCO con-
sortium is a critical part of proliferating
this framework across the industry and
will be the long-term custodian of the
standards.

Conclusions
The information age is transforming busi-
ness practices with the ability to network
organizations internally and externally to
their customers and suppliers. The mili-
tary sees the need to follow similar para-
digm shifts with the vision of a GIG
where information flows securely between
sensors, effectors, and decision-makers in
the battlespace for unparalleled degrees of
collaboration. To enable this level of
interoperability requires a network sys-
tem-wide guiding framework and prod-
ucts that implement that framework. The
Strategic Architecture Reference Model
addresses those issues and will enable
NCW by providing the infrastructure for
platforms and systems to become nodes
on the GIG.◆

References
1. Alberts, David S., John J. Garstka, and

Frederick P. Stein. Network Centric
Warfare: Developing and Leveraging
Information Superiority. 2nd ed. (Rev.)

<www.c3i.osd.mil/NCW/ncw_0801.
pdf>.

2. Joint Vision 2020 <www-kntwgs-22.ds.
boeing.com/reports/OSD-Annual/
jv2020b.pdf>.

3. U.S. Government. GIG, Enabling the
Joint Vision. Chairman, Joint Chiefs.
Jan. 2000 <www.dtic.mil/jcs/j6/
enablingjv.pdf>.

4. Capstone Requirements Document,
Global Information Grid (GIG).
JROCM 134-01, 30 Aug. 2001 <http:
//xanadu.ds.boeing.com/~moody/
docs/grid/GIG_CRD_(Final).pdf>.

5. Internet Protocol. IPv4 and IPv6,
RFC 791 and 2460, respectively
<www.ietf.org/rfc.html>.

6. U.S. Government. DoD Joint Tech-
nical Architecture. Department of
Defense <www-jta.itsi.disa.mil>.

7. U.S. Government. Defense Infor-
mation Infrastructure Common
Operating Environment. Defense
Information Systems Agency <http:
//diicoe.disa.mil/coe>.

Note
1. For more information on the consor-

tium, please contact Karen Mowrey at
karen.m.mowrey@boeing.com or call
(714) 742-2157.

About the Author

Bradley C. Logan is a
senior systems engineer
with Boeing’s Integra-
ted Defense Systems
where he works net-
work-centric modeling

and simulation efforts along with net-
work infrastructure architecture defini-
tion. Previously, Logan worked both
commercial and defense sectors in
application domains from image and
signal processing to reactive control
systems. He has a Master of Science in
electrical engineering from U.C. Berk-
eley and a Bachelor of Science in engi-
neering from Harvey Mudd College,
Claremont, Calif.

The Boeing Company
Strategic Architecture
Integrated Defense Systems
3370 Miraloma Ave.
MC 031-DB20
Anaheim, CA 92803-3105
Phone: (714) 762-3255
E-mail:bradley.c.logan@boeing.com

Your manager assigns you a new testing
project. “I want you to take over the

system integration testing of the Web Time
Charging System (TCS). We’ve got three
weeks to get it out the door and we’re con-
cerned about the integration of all the
Web-TCS components.”

The neural cogs in your head start
churning. You know the Web TCS must
run on your standard Brand X and Brand Y
central processing units and the company’s
current operating systems (OS): Win 98,
Win NT, Win 2000, and Win XP. Each of
these platforms must support Microsoft
Internet Explorer Version 5.5 and 6.0 and
Netscape Version 7.0.

Your manager interrupts your daze and
says, “And I don’t have to remind you
about what that last delivered bug cost us.”

“What? Oh yeah! I’ll get right on it,”
you profess, while your manager hurries off
to another meeting.

The Web TCS has two operational net-
work modes: internal intranet and modem
remote. Employees can log their time in
both modes. Various default parameters are
established depending on the user’s type of
employee classification, including salaried,
hourly, part-time, or contractor. These
parameters include default shift, available
paid holidays, etc. Also, the user can set the
time increment in minutes to six, 10, 15, 30,
or 60.

These features and parameters will be
combined into various test configurations,
however, one key question is, “What is the
most effective, smallest set of test configu-
rations that will find the majority of serious
parameter interaction defects?” (I’ll answer
that soon.)

The TCS is defined by five principal use
cases1. System-level test scenarios will be
defined to exercise each use-case in the var-
ious test configurations chosen. The use-
cases are listed as follows:

1-Login
2-Log Time
3-Submit Time Sheet
4-Maintain Charge Codes
5-Select Time Period

The test group has already defined 15
test scenarios to use to test each test con-
figuration. Test scenarios for the Login
use-case include (1) successful login on first
attempt, (2) successful login after one failed
attempt, and (3) unsuccessful login after
three failed attempts. Twelve similar test
scenarios were defined for the other four
use-cases.

Management has expressed concern
about integration defects delivered in
recent releases. Any seriously defective
interactions between features and various
user-assigned and system configuration
parameters could prove fatal to the Web
TCS upgrade effort and the future of your
group (you’ve heard this before). At any
rate, you need to test each parameter paired
with every other parameter to be sure that
there are no incompatibilities. I will discuss
a simple, straightforward approach for
obtaining or getting very close to a mini-
mum set of test configurations that the
reader will be able to immediately use on
his or her project.

This approach or technique will answer
the question posed earlier, “What is the
most effective, smallest set of test configu-
rations that will find the majority of serious
parameter interaction defects?” Notice the
qualification “majority of serious …
defects.” Remember that no amount of
testing can find all defects. However, most
people accept as self-evident that effective
testing techniques can lead to increased
confidence and to fewer delivered defects
and happier customers. This does not
mean that these techniques should displace
other effective and efficient means for
improving or assuring the quality of the
system.

What Have We Got?
Essentially, there are six parameters called
test factors that are of most interest from a
system integration testing perspective.
Table 1 lists the six test factors with their
associated options. If all combinations of
these factors were tested, that would
require the following:

2x4x3x2x4x5 = 960 test configurations

Since each test configuration requires 15
system-level test scenarios, the result is a
total of 960 x 15 = 14,400 test scenarios
that must be executed. There is not time to
execute all 14,400 test-scenarios in three
weeks. Say that it takes about three hours to
execute the 15 test scenarios for each con-
figuration, which includes setup and report-
ing. If you consider that there are about six
hours per day of productive test execution
time, not counting unpaid overtime that
you covertly plan to minimize, that gives
you 90 hours or 30 test configurations that
you have time to perform. Is there hope?
Can you test all important combinations of
parameters in less than 30 test configura-
tions?

One approach in minimizing the num-
ber of test configurations that some organ-
izations use is to test the most common –
or important – configuration and then vary
one or more parameters for the next test
configuration and then test that. Looking at
Table 1, you can see that a minimum of five
test configurations (rows) are required to
test all options at least once. Just look at
each row and pick the assigned values. For
columns that have dashes, use the preced-
ing value. However, the concern is to test
for possible bad interactions between
parameters. This method will not be ade-
quate. Madhav Phadke and others have
focused on combinatorial testing tech-
niques that arguably “have the highest
effectiveness, measured in terms of the
number of faults detected per test” [3].

Identifying a minimum set of tests that
check each parameter interacting with every
other parameter (i.e., all pairs of parame-
ters) is often a very difficult venture if pur-
sued in an ad hoc, non-systematic fashion.
Orthogonal arrays (OAs) provide a system-
atic means for identifying a minimal set of
highly effective tests. Unfortunately, some
training in combinatorial software testing
techniques available in the industry today is
not very helpful in teaching this. But before
discussing how to use OAs effectively to

26 CROSSTALK The Journal of Defense Software Engineering August 2003

Software Engineering Technology

New Spreadsheet Tool Helps Determine Minimal Set
of Test Parameter Combinations

Gregory T. Daich
Software Technology Support Center

Combinatorial testing is a method for identifying incorrect interactions between various parameters called test factors, usually
with a goal to run a minimum number of tests. “Give us your tired, your poor, your huddled … (testers) yearning to breathe
free” [1] from executing endless and senseless combinations of test cases. This article explains how to minimize test parame-
ter combinations using a new spreadsheet tool called ReduceArray2.

August 2003 www.stsc.hill.af.mil 27

find that minimal set, I need to outline a
basic fault model of interest when conduct-
ing integration testing, and introduce a little
terminology.

Basic Fault Model
Jeremy Harrell published a technique that
he calls the Orthogonal Array Testing
Strategy (OATS) for manually computing a
set of tests from published OAs that is very
effective [4]. He does a good job of charac-
terizing a basic fault model that is the foun-
dation for using the OATS technique,
which is as follows [4]:
• Interactions and integrations are a

major source of defects.
• Most … defects are not a result of

complex interactions such as, “When
the background is blue and the font is
Arial and the layout has menus on the
right and the images are large and it’s a
Thursday then the tables don’t line up
properly.” Most of these defects arise
from simple pair-wise interactions such
as, “When the font is Arial and the
menus are on the right the tables don’t
line up properly.”

• With so many possible combinations of
components or settings, it is easy to
miss one.

• Randomly selecting values to create all
of the pair-wise combinations is bound
to create inefficient test sets and test
sets with random, senseless distribution
of values.
Phadke adds to this basic fault model

with his discussion about the following test-
ing techniques [3]:
• One-Factor-at-a-Time Testing. This

method varies one factor at a time and
would require more than the minimum
five tests mentioned earlier. But this
makes it easier to identify the defective
parameter. However, this technique
does not expect to encounter any bad
interactions between the given parame-
ters since it does not attempt to cover all
the pairs of parameters. It only finds
what Phadke calls single-mode faults.

• Exhaustive Testing. For any non-triv-
ial system, this will not be possible.
Even if all 960 test configurations were
tested, which would find nearly every
bad interaction between the given
parameters, there will be many more
tests with varying circumstances that
could be conceived that could take a
lifetime and more to conduct.

• Deductive Analytical Method. This
method attempts to cover all important
paths in the code. Any testing strategy
should be augmented by some of this
type of testing. In fact, this is one type
of testing that developers should con-

duct on their new components prior to
integration testing.

• Random/Intuitive Method. This is
the most common method used by
independent test organizations. This
method can be very effective at finding
defects but the level of coverage is
often questionable.

• Orthogonal Array-Based Testing.
This method finds all double-mode
faults that are two parameters conflict-
ing with each other. An example of a
double-mode fault is one parameter
overshadowing another, inhibiting
required processing of that other
parameter.

Terminology
Some introductory terms for understand-
ing OAs include the following [4]:
• Orthogonal Array. Two-dimensional

arrays that possess the interesting
quality that by choosing any two
columns in the array you receive an
even distribution of all the pair-wise
combinations of values in the array.

• Runs. The number of rows that are
the potential test configurations or
test cases.

• Factors. The number of columns
that are variables or parameters of
interest.

• Levels. The number of options or
values for each factor.

• Strength. The number of columns it
takes to see each option equally often.

• OAs. These are named OA(N, sk, t) or
OA(N, sk) if its strength is two. This
indicates an OA with N runs, k fac-
tors, s levels, and strength t.

• Mixed Arrays. These are named
MA(N, s1k1, s2k2, etc.). This indicates a
mixed-level, asymmetric OA with N
runs, k1 factors at s1 levels, k2 factors
at s2 levels, etc., and with strength 2
(assume strength 2 if it is not stated).
Note that the number of runs is

dependent on the number of factors, lev-
els, and strength. For example, OA(9,43)
means you have 9 runs required to cover
4 test factors with 3 options each (see
Table 2). Since the strength is assumed 2,
this OA covers all pairs of parameters.
OA(64,64,3) means you have 64 runs

required to cover all three-way combina-
tions (strength 3) of six test factors with
four options each. Look these up on the
Web or in a book on statistics2.

A Powerful Technique
It is not easy to create non-trivial OAs,
which are OAs with more than three fac-
tors. Furthermore, some currently avail-
able automated tools that produce sets of
tests covering all pairs of parameters do
not create actual OAs or a minimum set
of tests. After all, it is a very difficult, dis-
crete mathematics problem to create
OAs. These tools may come fairly close
to a minimum set but if you can save
yourself from having to run even one
more test, you are going to want to find
that minimal set, especially if it does not
require investing any more time. There
are tools that can compute OAs or all pair
combinations resulting in a minimal set
of tests for all reasonable numbers of
factors and options but they may cost
much more than you may want to spend3.

The OATS technique for manually
generating a minimal or near minimal set
of tests is actually better than some tools
I have seen. In other words it produces a
smaller set of tests that exercise all pair-
wise combinations of parameters. OATS
is simple and straightforward and should
be used by a lot more organizations to
help with software and system integration
testing efforts. Briefly, it includes the fol-
lowing steps [4]:
1. Decide the number factors to test.
2. Decide which options to test for each

factor.
3. Find a suitable OA with the smallest

number of runs to cover all factors
and options.

New Spreadsheet Tool Helps Determine Minimal Set of Test Parameter Combinations

A B C D E F

CPU OS Browser Network Type of Employee Time Increment

Brand Y NT IE 6.0 Modem Salaried 6

Brand X 98 IE 5.5 Internal Hourly 10

-- 2000 NS 7.0 -- Part-Time 15

-- XP -- -- Contractor 30

-- -- -- -- -- 60

Table 1: Test Factors and Options

2 1

2 0
2 0 2

2 0 2 2

A B C D
1
2
3

0 0 0 0

4

0 1 1 2

5

0 2

6

1 0 1 1

7

1 1

8

1

2 1 0 1
9 2 2 1 0

Table 2: OA(9,43)

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering August 2003

4. Map the factors and options onto the
array.

5. Choose values for any options that are
not needed (call them leftovers) from
the valid remaining options and delete
any columns (factors) that are not
needed. A given test situation may not
need all the factors or all the options
that a particular OA provides.

6. Transcribe the runs into test cases,
adding additional combinations as
needed.
The selection of which OA to use can

pose a bit of a challenge. The good news
is that you do not generally need to com-
pute a new OA for many test situations.
As the technique discusses, if there is not
a specific OA for your test situation, you
can use one that is similar, delete extra
factors (columns), and choose values for
the extra options consistent with your
test situation. In other words, the real
work in creating the arrays has already
been done. And it only takes a few min-
utes to apply the array to a specific test

situation. That is pretty powerful, but not
enough people know about it.

Techniques vs.Tools
When using the OATS technique to identi-
fy a minimal set of tests, you may encounter
an OA where each pair appears more than
once but the same number of times (even-
ly). This may be considered overkill from a
software testing perspective since all you
usually want is to test each pair once.
However, identifying the actual minimum
set and eliminating any overkill is generally
difficult and time consuming without the
aid of a tool to quickly and easily see the
pair combination counts. Thus, I have pre-
pared an Excel spreadsheet tool called
ReduceArray2 that computes the total num-
ber of pairs of parameters possible based
on the array’s factors and options, and it
identifies any missing pairs4. It counts the
number of unique pairs in the array for
each row from top to bottom so you can
compare it with the total number of pairs.
It also computes the number of occur-

rences of each pair in the array and displays
them in the spreadsheet in a concise and
easily analyzed form.

Table 3 shows the results of analyzing
OA(9,43) using the ReduceArray2 tool. The
top row identifies the columns in the
spreadsheet. The left column identifies the
rows in the spreadsheet. This makes it fairly
simple to identify any extra test cases so that
rows can be deleted to reduce the size of
the array. Extra test cases are rows with no
unique pairs. Note that every pair in
OA(9,43) is unique, thus every one is need-
ed. However, the OATS technique will
often have values that are not needed (called
leftovers) that will create redundant pairs
that can be rearranged to create rows with
no unique pairs that can then be deleted.

In order to identify a set of tests for the
factors and options in Table 1 using the
OATS technique, you could use OA(25,56).
This would result in 25 tests. Additional
rows could be deleted after rearranging
some pairs but that would require some
fairly labor-intensive study and manual
effort without tool support. Also, using one
automated tool with which I am familiar
produced 26 tests for the test situation in
Table 1.

Using ReduceArray2 to assist in finding
extra tests, I was able to reduce the set to
20, which is the minimum number of con-
figurations to test all pairs for this situation.
The minimum count of 20 was derived
from the two factors with the most options.
The Time Increment factor has five options
and the OS factor has four options. Thus,
we know that there must be at least 5 x 4 =
20 runs to cover all combinations of those
two options. The trick is to cover all the
other pair combinations in those 20 runs.
With the visibility provided by the
ReduceArray2 tool, this became a much
easier task.

Demonstration
The following uses the OATS technique
augmented with a few extra steps to identi-
fy a minimal set of tests to cover all pairs.
To simplify the demonstration and reduce
the number of tests, only look at the test
factors and options A, C, D, and E in Table
4. The following lists each OATS step with
our actions in italics:
1. Decide the number of factors to test.

We chose the four test factors in Table 4.
2. Decide which options to test for each

factor. The options for test factors A, C, D,
and E are listed in Table 4.

3. Find a suitable OA with the smallest
number of runs to cover all factors and
options. A suitable OA was selected that is
OA(9,43), see Table 2. A suitable array has
at least the number of factors and options with

A B C D E F G H I J K L M N
TP 54

2 A B C D TC# RP UP A:B A:C A:D B:C B:D C:D

3 0 0 0 0 1 6 6 1 1 1 1 1 1

4 0 1 1 2 2 6 6 1 1 1 1 1 1

5 0 2 2 1 3 6 6 1 1 1 1 1 1
6 1 0 1 1 4 6 6 1 1 1 1 1 1
7 1 1 2 0 5 6 6 1 1 1 1 1 1
8 1 2 0 2 6 6 6 1 1 1 1 1 1
9 2 0 2 2 7 6 6 1 1 1 1 1 1
10 2 1 0 1 8 6 6 1 1 1 1 1 1
11 2 2 1 0 9 6 6 1 1 1 1 1 1
12 SP 54

TP = Total Pairs (54)
UP = Unique Pairs (Six on Each Row)

SP = Sum of Pairs (54)TC# = Test Case Number

RP = Number of New Pairs on a Row (Six on Each Row)
A:B = Column A Paired With Column B, etc.

Array1 Results

Table 3: Results of Analyzing OA(9,43)

A C D E
CPU Browser Network Type of Employee

Brand X IE 5.5 Internal Salaried

Brand Y NS 7.0 Modem Hourly

-- -- -- Part-Time

Table 4: Subset Test Situation

B C D
1
2 A C D E
3 0 0 0 0
4 0 1 1 2
5 0 2 2 1
6 1 0 1 1
7 1 1 2 0
8 1 2 0 2
9 2 0 2 2
10 2 1 0 1
11 2 2 1 0

Array
A

00

1
1

1
0

0 0

0

Table 5: Subset Test Situation With Leftovers
Highlighted

A B C D
1
2 A C D E
3 0 0 0 0
4 0 1 1 2
5 0 0 0 1
6 1 0 1 1
7 1 1 1 0
8 1 1 0 2
9 0 0 1 2
10 1 1 0 1
11 0 0 1 0

Array

Table 6: Subset Test Situation With Leftovers
Assigned

New Spreadsheet Tool Helps Determine Minimal Set of Test Parameter Combinations

August 2003 www.stsc.hill.af.mil 29

a minimum of leftovers. In this case, there are
no leftover factors (columns) and factors A, C,
and D each have one leftover option.

4. Map the factors and options onto the
array. Table 5 identifies the leftovers that are
the highlighted boxes.

5. Choose values for any leftovers from
the valid remaining options and delete
any columns that are not needed. Harrell
[4] rightly suggests that we assign alternating
values for each factor as shown in Table 5. The
array with the newly assigned options is shown
in Table 6.
5a. (Extra step) Delete any rows that

have no unique pairs. Table 7 shows
the results of analyzing our subset test sit-
uation. Spreadsheet row 11 contains no
new pairs in the row (see under RP head-
ing). This row can be deleted. After delet-
ing row 11, reanalyze the array to produce
Table 8.

5b. (Extra step) Rearrange cell values to
create a row with no unique pairs. If
this cannot be done, then quit; oth-
erwise, go back to step 5a. Row 10
column M shows that the B:D columns
pair is unique (only one occurrence). Move
that pair combination to row five by assign-
ing the value one to B5 (note that this is the
spreadsheet cell location) as shown in Table
8. The results of reanalysis after reassign-
ing cell B5 are shown in Table 9.
Continuing steps 5a and 5b produces
Table 10 with six resulting test cases.

6. Transcribe the runs into test cases,
adding combinations as needed. Table
11 (see page 30) shows the transcribed values
that define the configurations for testing interac-
tions between test factors A, C, D, and E in
Table 4.
“Wait a minute!” you say. “Steps 5a and

5b are easier said than done.” You are right,
especially if you have more factors! The
ReduceArray2 tool displays the number of
unique pairs automatically in each row so
that you can identify any rows that are not
adding new pairs of parameters. They are,
in other words, overkill, so you can delete
them. After deleting a row, you need to
recompute the pair counts so you can iden-
tify other rows with no unique pairs that
can be deleted. If no rows can be deleted,
then you would try to rearrange cell values
to create a row with no unique pairs.

Further Automation
Now that I have described the OATS tech-
nique and my extensions to further reduce
the number of test combinations using the
ReduceArray2 tool, I have some more good
news. ReduceArray2 also does steps 5a and
5b automatically using its embedded
ReduceArray2 macro. In other words, do
steps one through five and then use the

ReduceArray2 macro to automatically
rearrange parameter values and delete extra
rows without losing any pair combinations.

ReduceArray2 provides a near minimal
set of tests using simple one-cell-at-a-time
rearrangements. If you start with a better
initial arrangement, you may be able to
reduce it further. ReduceArray2 saves a lot
of time and effort and will find a minimum
set for some configurations. Furthermore,
you can define specific combinations that
are required and specific combinations that

are to be excluded. I would be happy to
walk you through a demonstration on this.
Another macro called Names automatically
transcribes the OA values to the names in
Table 11, page 30.

Epilogue
Go back to the original test situation. Using
ReduceArray2, you can create a set of 20
test configurations from the test factors and
options in Table 1. You have time to run 15
test scenarios in each of the 20 test config-

A B C D E F G H I J K L M N
1 Array TP 30 Result

A C D E TC# RP UP A:B A:C A:D B:C B:D C:D
0 0 0 0 1 6 1 4 3 2 3 2 1
0 1 1 2 2 6 2 1 2 2 2 2 1
0 0 0 1 3 3 1 4 3 1 3 2 2
1 0 1 1 4 5 2 1 2 2 2 2 1
1 1 1 0 5 4 2 3 2 1 2 1 2
1 1 0 2 6 4 1 3 2 1 2 2 2
0 0 0 2 7 1 1 4 3 2 3 1 2
1 1 0 1 8 1 1 3 2 2 2 1 2
0 0 1 0 9 0 0 4 2 2 2 2 2

12 SP 30
Note: Cells with X can be any valid value (called "do not cares")

3
4

2

5
6
7
8
9
10
11

Table 7: Subset Test Situation Results of Analysis

A:B

A B C D E F G H I J K L M N
TP 30 Result

2 A TC# RP UP A:DA:C B:C B:D C:D
0 0 0 0 1 6 3 3 3 1 3 1 1

4 1 1 2 6 3 1 1 2 2 2 1
0 0 0 1 3 3 1 3 3 1 3 2 2
1 0 1 1 4 5 3 1 2 2 1 2 1

7 1 1 1 0 5 4 3 3 2 1 2 1 1
1 1 0 2 6 4 1 3 2 1 2 2 2
0 0 0 2 7 1 1 3 3 2 3 1 2
1 1 0 1 8 1 1 3 2 2 2 1 2

11 SP 30

Array1

3

5
6

8
9
10

0

EC D

2

A B C D E F G H I J K L M N

1 TP 30 Result

2 A C D E T RP UP A:B A:C A:D B:C B:D C:D
3 0 0 0 0 1 6 3 2 3 1 2 1 1
4 0 1 1 2 2 6 2 2 1 2 2 2 1
5 0 1 0 1 3 4 1 2 3 1 3 2 2
6 1 0 1 1 4 6 4 1 2 2 1 1 1
7 1 1 1 0 5 4 3 3 2 1 2 1 1
8 1 1 0 2 6 3 1 3 2 1 3 2 2
9 0 0 0 2 7 1 1 2 3 2 2 1 2
10 1 1 0 1 8 0 0 3 2 2 3 2 2
11 SP 30

Array

C#

Table 8: Subset Test Situation Reanalysis After Deleting a Row

A B C D E F G H I J K L M N
TP 30

2 A C D E RP UP A:B A:C A:D B:C B:D C:D
3 0 0 0 0 1 6 4 2 2 1 1 1 1
4 0 0 1 2 2 5 4 2 1 1 2 1 1
5 1 0 1 1 3 5 4 1 2 1 2 1 1
6 1 1 1 0 4 5 4 2 2 1 1 1 1
7 1 1 0 2 5 5 4 2 1 1 2 1 1
8 0 1 0 1 6 4 4 1 2 1 2 1 1

309

Array Result1

TC#

SP

Table 9: Subset Test Situation Reanalysis After Reassigning Cell B5

Table 10: Final Results Six Test Cases

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering August 2003

urations within the timeframe mandated by
management. And you even have time to
rerun some tests if you encounter some
defects and must retest the system.

By the way, I meant no disrespect in this
article’s preface to the poem written by
Emma Lazarus enshrined on a plaque near
the Statue of Liberty. But since I have seen
literally thousands of tired testers yearning
for more effective and more efficient test
techniques in my software test-consulting
career, I thought I would borrow the theme.

The test situation in this article was con-
trived. Details about actual feature require-
ments were ignored to simplify the discus-
sion. But it does make the point that, when
you know the features and parameters that
could possibly interact incorrectly with each
other, then you can follow a simple system-
atic approach to identify a minimal or near
minimal set of tests to test all parameter
pairings. That is a powerful capability. You
can still pick and choose which test runs to
ignore and which additional ones to add.
However, identifying the test factors and
options in the first place is often very diffi-
cult. More research is needed in this area.

It is interesting to note that Phadke’s
perspective back in 1997 was that,

… the number of tests needed for
(the OA testing) method is similar to
the number of tests needed for the
one-factor-at-a-time method, and
with a proper software tool (likely
his Robust Testing Method tool),
the effort to generate the test plan

can be small. [3]

Harrell’s article [4] and this article show
you how to create tests without expensive
tools; if you have Internet access, download
some OAs. Also, I have shown you how to
augment the OATS technique with a few
additional steps to reduce the number of
tests for many types of test situations where
you have leftovers. This method also works
when the OA has multiple occurrences of
pairs that are common when the number of
factors is higher. Of course, the Reduce
Array2 tool makes it even easier to do this.

Whether you are following formal prac-
tices, using defined processes advocated by
the Software Engineering Institute’s
Capability Maturity Model®, or you are
applying agile exploratory testing [5] meth-
ods, this combinatorial testing technique
will certainly help you obtain better integra-
tion test coverage. When you are concerned
about various features and parameters
interacting incorrectly with each other, use
this OATS technique augmented with the
ReduceArray2 tool or purchase and use a
tool such as Automatic Efficient Test
Generation. It may not be worth the risk of
letting those defects get delivered to your
customer.◆

References
1. Lazarus, Emma. “The New Colossus.”

Statue of Liberty plaque.
2. Rational Unified Process, 2001, Use

Case Template.
3. Phadke, Madhav S. “Planning Efficient

Software Tests.” CrossTalk Oct.
1997.

4. Harrell, Jeremy M. “Orthogonal Array
Testing Strategy (OATS) Technique.”
Seilevel, 2001 <www.seilevel.com/
OATS.html>.

5. Bach, James. “Exploratory Testing
Explained.” Ver. 1.1. Satisfice, Inc., 19
Jan. 2003 <www.satisfice.com>.

Notes
1. A use case is a description of a

sequence of actions that a system per-
forms that yields an observable result of
value to a particular actor (user) [2].

2. See Sloane, N. J. A. “A Library of
Orthogonal Arrays” <www.research.
att.com/~njas/oadir>. Also see Sher-
wood, George. “On the Construction
of Orthogonal Arrays and Covering
Arrays Using Permutation Groups”
<http://home.att.net/~gsherwood/
cover. htm>.

3. See the Automatic Efficient Test
Generation System by Telecordia
Technologies at <http://aetgweb2.
argreenhouse.com>.

4. Available at no cost at <www.stsc.
hill.af.mil>.

About the Author

Gregory T. Daich is a
senior software engi-
neer with Science
Applications Interna-
tional Corporation
currently on contract

with the Software Technology
Support Center (STSC). He supports
STSC’s Software Quality and Test
Group with more than 26 years of
experience in developing and testing
software. Daich has taught more than
100 public and on-site seminars
involving software testing, document
reviews, and process improvement.
He consults with government and
commercial organizations on improv-
ing the effectiveness and efficiency of
software quality practices. He has a
master’s degree in computer science
from the University of Utah.

Software Technology
Support Center
OO-ALC/MASEA
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820
Phone: (801) 777-7172
E-mail: greg.daich@hill.af.mil

A C D E

CPU Browser Network Type of Employee

Brand X IE 5.5 Internal Salaried

Brand X IE 5.5 Modem Part-Time

Brand Y IE 5.5 Modem Hourly

Brand Y NS 7.0 Modem Salaried

Brand Y NS 7.0 Internal Part-Time

Brand X NS 7.0 Internal Hourly

Table 11: Transcribed Options

The Software Technology Support Center’s
No-Cost Service Offer

If you will identify the factors and options for your particular system, the Software
Technology Support Center (STSC) can either help you to identify a minimal or near
minimal set of tests to test all pair-wise combinations, or the STSC can identify these
for you. Information can be easily received by e-mailing a spreadsheet formatted like
Table 1 to the STSC HelpDesk. This is a no-cost service offer to Department of
Defense (DoD) organizations. Go to <www.stsc.hill.af.mil> for more information. Of
course, non-DoD organizations are welcome to inquire also. We have seen the develop-
ment costs for many organizations reduced because of the information we have shared
with DoD organizations and their contractors.

BACKTALK

August 2003 www.stsc.hill.af.mil 31

As the software industry continues to
mature we often look for examples or

analogies from industries that have experi-
enced similar evolution. While studying the
coffee industry as a commodity investment, I
found some interesting similarities between
the coffee and software industries.

Old Brew, New Brew, or
Strange Brew
The coffee industry started by shipping
ground coffee beans in cans to home and
restaurant percolators. Customers chose
between Juan Valdez and Maxwell House’s
“good to the last drop” coffees. It was all
about volume.

Coffee epicureans emerged out of the
search for the perfect cup of joe. Not trusting
peasant production, epicureans bought beans,
roasters, grinders, and high-end percolators.
This new market was about margins – mak-
ing a lot of money on a smaller group of
affluent buyers.

Out of the northwest came the preten-
tious coffee crowd. This new market had little
to do with coffee and more to do with
where and with whom you drank your
coffee. Suppliers integrated bean, brew,
backdrop, and boutique to create
ambiance. It was about selling an expe-
rience.

Instead of forcing a single market
delivery system, coffee suppliers grew mar-
kets around their customer’s lifestyles and
desires, strengthening the industry as a whole.
This made room for more industry partici-
pants and serviced percolators, epicureans,
and the pretentious alike.

The software industry materialized from
the need to tame monolithic computing
machines. Solutions, like our patrons, were
simple and similar. The market was seen with
an eye single to software – one problem, one
method, one process, one technique, all
solved by the Holy Grail of software. During
the industry’s myopic search, its customers
have matured with a plethora of software
uses and desires.

We can learn from the coffee industry’s
divide-and-conquer strategy. Divide and con-
quer, found in algorithms like Heapify, Merge
Sort, Quicksort, and Fast Fourier Transforms,
yields elegant, simple, and often efficient solu-
tions. It allows software suppliers, like coffee
suppliers, to compliment customer lifestyles
and desires, and strengthen the market.

This is not requirements management –
determining what a customer wants – but

macro-requirements management: determin-
ing what a market wants and will bear. It
requires focus on specific domains and tailor-
ing processes, skills, and techniques to serve
each market. It’s a best-of-breeds versus best-
of-show approach.

Available vs. Fresh
How do restaurants balance the desire for
quick and fresh coffee? Do they brew a lot of
coffee that gets stale or make customers wait
for each fresh pot? The solution was to place
a one-third-full line on each pot. When the
coffee reaches the line, a new pot would be
started and available when the current pot ran
out. A simple process change resolved the
competing requirements of quick and fresh.

Software customers also want their appli-
cations quick and fresh (latest features). The
software industry offers speed or quality but
seldom both. Let’s take a cue from coffee
servers and focus on effective, memorable,
and easy-to-implement processes rather than
defining processes ad infinitum. The com-
plexity of serving coffee does not compare to
software development but in reality software
is developed using process habits versus a
process cookbook.

Good Beans
With coffee, taste begins with the bean.
Delivery processes make little difference if
you have bad beans. To deliver quality coffee,
you have to start with quality beans.

Quality software begins with good peo-
ple. A good process implemented by inept
managers, engineers, and personnel will pro-
duce poor software every time. A poor
process, while limited in capability, can be
overcome by a good team. In fact, in the long

run a good team leads to the development of
good processes. More time, resources, and
effort should be spent on hiring, retaining,
and motivating first-class software teams.

Don’t Forget the Caffeine
Coffee has taken many forms like espresso,
latte, mocha, cappuccino, and frappuccino.
Customer wants and needs have led to varia-
tions on a basic way to deliver the energizing
kick of caffeine. Extracting and prioritizing
customer wants and needs helps to develop a
good coffee menu.

Extracting and prioritizing software
requirements lead to customer satisfaction.
While trivialized, customer requirements
extraction can be extremely difficult.
Prioritizing requirements can be hard and
tying them together even harder. Like cof-
fee’s basic premise of delivering the energiz-
ing kick of caffeine, software’s basic prem-
ise is effective automation and one should

not stray from that principle. Always ask
yourself how are you making your cus-

tomer’s life easier.

Would You Like Coffee
With Your Condiments?
Watching modern day coffee preparation is
like watching Dustin Hoffman in the movie

“Rain Man” preparing for the Wheel of
Fortune. It’s all about ritual, timing, and the
condiments. Adding cream, sugar, steam,
ice, whipped cream, and flavorings it’s

often hard to find the coffee for the condi-
ment. What happened to “give it to me
black?”

It's time to face the fact that software, an
enabling technology, is more a condiment
than main course. It is useless in and of itself
but makes that which it enables better.
Software should develop its own variation of
BASF’s marketing slogan: “We don't make a
lot of the products you buy. We make a lot of
the products you buy better®.” In our indus-
try, we don’t make the computer; we make the
computer interactive. We don’t make the net-
work; we make the network communicate.
We don’t make the bombs; we make the
bombs smart. We don’t make the espresso; we
make the espresso machine accurate.

Let’s strive to make software good to the
last bit.

– Gary Petersen
Shim Enterprise, Inc.

Softbucks

® BASF slogan is registered in the U.S. Patent and
Trademark Office.

CrossTalk / MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

Aug2003cover.qxd 7/7/03 4:03 PM Page 2

	Cover
	Index
	From the Publisher
	Designing Highly Available Web-Based Software Systems
	Coming Events
	A Fire Control Architecture for

Future Combat Systems
	Web Sites
	Call for Articles
	Enterprise Engineering:

U.S.Air Force Combat Support Integration
	Technical Reference Model for

Network-Centric Operations
	STC 2004 Call for Speakers
	New Spreadsheet Tool Helps Determine Minimal Set

of Test Parameter Combinations
	BackTalk
	Back Cover

