
Sept2003cover.qxd 8/6/03 12:23 PM Page 1

2003 U. S. Government’s Top 5 Quality Software Projects
Nominations have begun for your organization to enter to become a Top 5 winner.

The Bug Life Cycle
Want to improve testing and quality assurance efforts? These authors discuss careful
handling and tracking of software bugs by using a database and a little organization.
by Lisa Anderson and Brenda Francis

Comparing Lean Six Sigma to the Capability Maturity Model
A comparison of differences and commonalties between these two process improvement
efforts shows that adding Lean Six Sigma to the mix can further reduce software defects.
by Dr. Kenneth D. Shere

Managing Software Defects in an Object-Oriented Environment
This author presents a fault model and describes steps and opportunities to detect and
remove defects in an object-oriented environment.
by Houman Younessi

Defect Management Through the Personal Software Process
These authors quantitatively demonstrate defect reduction using the Personal Software
Process along with a substantial reduction in test time.
by Iraj Hirmanpour and Joe Schofield

Defect Management in an Agile Development Environment
This article discusses a set of best practices associated with the Agile+ methodology
that focuses on preventing both requirements and implementation defects.
by Don Opperthauser

Lessons Learned From Another Failed Software Contract
An examination of the failure of a major avionics modernization program reveals a list of timeless
development and management issues that continue today to derail software development projects.
by Dr. Randall W. Jensen

Defect Management: A Study in Contradictions
Management’s full support of defect reporting and documentation is key to utilizing the findings of
defect management in all phases of software development and maintenance.
by Raymond Grossman

Cover Design by
Kent Bingham.

NOTE: The code
on the front cover
under the loupe is
actual C code that

won the 1984
“International

Obfuscated C Code
Contest.” It simply
prints out “Hello,

World!” See
<www.ioccc.org>.

3

12

20

24

31

DeparDepar tmentstments

PPolicies,olicies, NeNews,ws, andand UpdatesUpdates

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering September 2003

4

5

9

13

17

21

25

28
Open Open FForumorum

From the Publisher

Coming Events

STC 2004 Call for
Speakers/Exhibitors

Web Sites

BackTalk

CrossTalk Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela S. Bowers

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 24.

Ogden ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

DefDefect ect ManaManaggementement

PPolicies,olicies, NeNews,ws, andand UpdatesUpdates

PPolicies,olicies, NeNews,ws, andand UpdatesUpdatesSoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

Many software managers and practitioners consider peer reviews to be a principal
defect management technique. The purpose of disciplined peer reviews is to find

and remove defects early, which in turn will reduce rework later. Peer reviews can take
place during all phases of a software project life cycle and can be a review of any work
product. Planning documents, schedules, requirements specifications, interface docu-
ments, test plans, and software code are examples of work products that can be peer
reviewed. Although this issue of CrossTalk is far from a piece of code, it is a work

product and has been subject to a formal review process similar to a peer review.
For those of you who have never had the opportunity to participate in a disciplined peer

review, here is some insight from my peer review experiences while on a software development
team. In most cases, I was given paperwork (code) to review approximately a week ahead of the
scheduled peer review meetings. I found it most comforting that the focus of the peer review
meeting was on the work products and not the software developers. We used checklists to guide
us in finding defects.

My roles in the peer reviews varied from leader, recorder, and reviewer to author. As a code-
writer (or author), the meetings were a great help to me as work product defects were uncovered
in a nonconfrontational team setting. The roles and responsibilities of the review members, as well
as the meeting goals, were well understood by all. This helped make the review process routine and
a time for team support. Through my peer review experiences, I gained an invaluable understand-
ing for project teams working together to meet the end goal of producing a quality product.

As we focus this month’s issue on defect management, we begin with The Bug Life Cycle by Lisa
Anderson and Brenda Francis. This article emphasizes the need for teams to carefully handle and
track software bugs throughout a project’s life cycle. Defect tracking through a database and
enforcing policies and procedures are some of the methods suggested to improve testing and qual-
ity assurance efforts.

Next, two approaches to acquiring and developing quality software are compared by Dr.
Kenneth D. Shere in his article Comparing Lean Six Sigma to the Capability Maturity Model. Shere dis-
cusses the primary differences and common goals between these process improvement approach-
es aimed at reducing software defects. Our issue continues with a look at defect management when
utilizing object-oriented approaches. In Managing Software Defects in an Object-Oriented Environment,
Houman Younessi presents a fault model and describes the many steps and opportunities to detect
and remove defects in an object-oriented environment.

The Software Engineering Institute’s Personal Software ProcessSM (PSPSM) is yet another disci-
plined method aimed at managing and reducing defects. Iraj Hirmanpour and Joe Schofield share
their experience with the PSP defect management framework in Defect Management Through the
Personal Software Process. They provide good insight into how the use of defect collection and analy-
sis metrics can benefit organizations engaged in software process improvement.

In Defect Management in an Agile Development Environment by Don Opperthauser, we are remind-
ed of the importance of finding defects in the requirements phase of software projects.
Opperthauser discusses a set of best practices associated with the Agile+ methodology that focus-
es on the prevention of requirements and implementation defects. In Lessons Learned From Another
Failed Software Contract, Dr. Randall W. Jensen’s examination of a failed major avionics moderniza-
tion program uncovers issues that continue to derail software development projects.

In our Open Forum section this month, Raymond Grossman brings us Defect Management: A
Study in Contradictions. Grossman discusses how the utility of defects can be diminished throughout
the software development process if management is not involved and supportive of defect report-
ing and documentation. Also in this issue, we are once again proud to announce the third annual
U.S. Government’s Top 5 Quality Software Projects contest. You can submit your 2003 nomina-
tion at <www.stsc.hill.af.mil> then select the CrossTalk site and click on the Top 5 option.

Special thanks to all of our authors this month for sharing their lessons learned and best prac-
tices regarding software quality and defect management. I hope you find this month’s issue help-
ful as you and your teams strive to learn more about handling and managing software defects to
meet the end goal of high quality work products for your customers.

Managing Defects Together

September 2003 www.stsc.hill.af.mil 3

Tracy L. Stauder
Publisher

Policies, News, and Updates

4 CROSSTALK The Journal of Defense Software Engineering September 2003

14 JUL 2003

MEMORANDUM FOR ALL GOVERNMENT SOFTWARE PROJECTS

SUBJECT: 2003 U.S. Government’s Top 5 Quality Software Projects

As the Department of Defense’s Executive Agent for Systems Engineering and
sponsor for activities aimed at improving software acquisition, I am pleased to announce the
search for the 2003 U.S. Government’s Top 5 Quality Software Projects.

Many organizations are using processes and practices that result in the successful
delivery of projects with significant software content to the United States Government.
Looking at past winners of this award, it is apparent that successful projects have used
well-defined and proven processes and practices to develop, manage, and integrate software.
This award intends to identify successful projects and highlight their efforts.

Access to contest details and to articles discussing previous winners can be found at
<www.stsc.hill.af.mil/top5projects>. CrossTalk will feature the Top 5 winners in the May
2004 issue, and winners will receive their awards at the 2004 Software Technology
Conference. The winning projects will then be highlighted in a series of articles in
CrossTalk’s July 2004 issue.

Mark D. Schaeffer
Director, Systems Engineering
Defense Systems

ACQUISITION,
TECHNOLOGY

AND LOGISTICS

September 2003 www.stsc.hill.af.mil 5

Defect Management

The Bug Life Cycle

Brenda Francis
PowerQuest Corp.

Bugs are everywhere! How do you keep track of them all and still make sure the bugs that need fixing get fixed, the fixed
bugs really are fixed, and the little bugs that do not make a difference do not crowd the schedule? Read on to discover how
the bug life cycle works and how a database, along with a little organization, will make all the difference in the world.

There are a lot of theories presented at
testing seminars. There are a lot of why

test classes, and a lot of classes on specific
techniques, but nothing on a couple of
practices that can improve the testing
process in a company. We are talking specif-
ically about setting up a defect tracking sys-
tem and enforcing policies and procedures
to resolve those defects. Setting up these
two things, more than anything else, can put
a company on the road to organizing its
testing and quality assurance effort. To fill
that gap, we have come up with the Bug Life
Cycle, as shown in Figure 1.

While we cannot claim it as our own, it
is what we have learned over the years as
testers. Many of you will find it familiar.
Anyone who can figure out that the soft-
ware is not working properly can report a
bug. The more people who critique a prod-
uct, the better it will be. However, here is a
short list of people who are expected to
report bugs:
• Testers/Quality Assurance Personnel.
• Developers.
• Technical Support.
• Beta Sites.
• End Users.
• Sales and Marketing Staff (especially

when interacting with customers).
When do you report a bug? When you

find it! Waiting means that you might forget
to write it down altogether, or important
details about the bug can be forgotten.
Writing it now also gives you a scratch pad to
make notes on as you do more investigation
and work on the bug.

Writing the bug when you find it makes
that information instantly available to every-
one. You do not have to run around the
building telling everyone about the bug; it is
in the database. Additionally, the informa-
tion about the bug does not change or get
forgotten with every telling of the story.

The easiest way to keep track of defect
reports is in a database. Keeping track on
paper works, but paper can get lost or
destroyed; a database is more reliable and
can be backed up on a regular basis.

You can purchase many commercially
available defect-tracking databases, or you

can build your own. It is up to you. We have
always built our own with something small
like Microsoft Access or SQL Server. It was
cheaper to build and maintain it on site than
to purchase it. You will have to run the
numbers for your situation when you make
that decision.

The rule of thumb is one (and only one)
defect per report (or record) when writing a
bug report. If more than one defect is put
into a report, the tendency is to deal with
the first problem and forget the rest.
Remember that defects are not always fixed
at the same time. With one defect per
report, as the defects get fixed, they will be
tested individually instead of in a group
where the chance that a defect is overlooked
or forgotten is greater.

A good bug report includes the follow-
ing items:
• Put the reporter’s name on the bug. If

there are questions, you need to know
who originated the report.

• Specify the build or version number of the
code being worked on. Is this the ship-
ping version or a build done in-house

for testing and development? Some
bugs may only occur in the shipping ver-
sion; if this is the case, the version num-
ber is a crucial piece of information.

• Specify the feature or specification or part of
the code. This facilitates getting the bug to
the right developer.

• Include a brief description of what the
problem is. For example, fatal error when
printing landscape is a good description; it
is short and to the point.

• List details, including how to duplicate
the bug and any other relevant data or
clues about the bug. Start with how the
computer and software are set up. List
each and every step (do not leave any-
thing out). Sometimes a minor detail can
make all the difference in duplicating or
not duplicating a bug. For example,
using the keyboard versus using the
mouse may produce very different
results when duplicating a bug.

• If the status is not new by default,
change it to new. This is a flag to the bug
verifier that a new bug has been created
and needs to be verified and assigned.

Reporter
creates bug

report
(NEW)

Bug evaluated
and assigned
(VERIFIED)

Developer
researches bug

(SOLVING)

Developer
assigns bug a

status

Tester assigns
a status

Insufficient information
exists to evaluate,

NEED MORE INFORMATION

Note: Owner: Lisa Anderson/Brenda Francis

Tester disagrees

Tester may set
status to
CAN'T

DUPLICATE

Tester
evaluates

status

Bug moved to
next project

Tester
agrees

Committee
assigns bug a

status

PENDING

VERIFIED

TESTED

Bug record
archived

CAN'T
DUPLICATE

WORKING AS
DESIGNED

ENHANCE

NEED MORE
INFORMATION

Sent to Bug
Committee
(DISCUSS)

FIXED

RESOLVED

DEFER

DUPLICATE

Start

Figure 1: The Bug Life Cycle

Lisa Anderson
Consultant

Things to Remember
Keep the text of the bug impersonal. Bug
reports will be read by a variety of people,
including those outside the department and
possibly the company. Please do not insult
people’s ancestors, their employer, the state
where they live, or make any other impulsive
or insensitive comment. Be careful with
humorous remarks; one person’s humor is
another person’s insult. Keep the writing
professional.

Be as specific as possible in describing
the current state of the bug along with the
steps to get into that state. Do not make
assumptions that the reader of the bug will
be in the same frame of mind as you are.
Please do not make people guess where you
are or how you got into that situation. Not
everyone is thinking along the same lines as
you are.

Prioritizing Bugs
While it is important to know how many
bugs are in a product, it is even more useful
to know how many are severe, ship-stop-
ping bugs compared to the number of

inconvenient bugs. To aid in assessing the
state of the product and to rank bug fixes,
bugs are prioritized. The easiest way to pri-
oritize bugs is to assign each bug a severity
rating and a likelihood rating. The bug
reporter does this assignment when the bug
is created. Each severity and likelihood cat-
egory has an associated value. The bug’s pri-
ority is calculated by multiplying the value of
the severity and likelihood ratings.

The severity tells the reader how bad the
problem is. Or in other words, it tells what
the results of the bug are. Table 1 shows a
common list for judging the severity of
bugs. Sometimes there is disagreement
about how bad a bug is.

To determine how likely it is for a bug to
occur, put yourself in the average user’s place.
While the tester may encounter this bug
every day with every build, if the user is not
likely to see it, how bad can the bug be?
Table 2 shows a rating of bug likelihood.

Severity x Likelihood = Priority
To compute the priority of a bug, multiply
the numeric value given to the severity and
the likelihood. Do the math by hand or let
your defect tracker do it for you. The trick is
to remember that the lower the number, the
more severe the bug is. The highest rating is
a 25 (5 x 5), the lowest is 1 (1 x 1). The bug
with a 1 rating should be fixed first, while
the bug with a 25 rating may never get fixed.

This system is just the beginning. A
more sophisticated or advanced way of pri-
oritizing bugs would be to weigh the fea-
tures and add a development risk value.
Each feature adds a different value to the
product. Some features are more important
than others are. In order to weigh the fea-
tures, consider each feature’s contribution
to the product, and weigh it accordingly on
a scale of one to five.

Development risk encompasses a num-
ber of things. How risky is it to fix a specif-
ic piece of code? How will this fix affect the
rest of the code base? If it is a minor fix but
affects most of the files in the code base by
forcing a recompile, then it is a serious fix.
This kind of fix could force regression test-
ing that could add significant time to the
schedule. Many features may depend on this
base feature; this would increase the devel-
opment risk. If the fix is to a help file that
does not affect any other files, then it is a
minor one and may be of acceptable risk.
This seems like a lot of questions, but the
answers can help you assign the proper
development risk to each feature.

Using these algorithms may cause bug
priorities to cluster around certain values. If
you notice this is occurring, you can adjust
the algorithm accordingly using a fudge factor
but that is beyond the scope of this article.

A listing of these bugs ordered by rating
means the most important ones will be at
the top of the list and should be dealt with
first. Sorting bugs this way lets management
know whether the product is ready to ship
or not. Use whatever criteria you select such
as, all bugs with a priority of 10 or less must be
fixed. If the number of these bugs is zero,
the product can ship. If there are any severe
bugs, then bug fixing must continue.

Other Useful Information
• Who is the bug assigned to? Who is going

to be responsible for fixing the bug?
• What platform was the bug found on (B,

Windows, Linux, etc.)? Is the bug spe-
cific to one platform or does it occur on
all platforms?

• What product was the bug found in? This
is important if your company is doing
multiple products.

• What company would be concerned
about this bug? If your company is
working with multiple companies, this is
a good way to track that information.

• Whatever else you want or need to keep
track of. Some of these fields can also
have value to marketing and sales. It is a
useful way to track information about
companies and clients.

Now We Have a Bug
At this point, it may be helpful to have
access to the bug life-cycle chart and refer
to it during the following discussion. Some
paths that a bug may take can be confusing;
the chart helps simplify the process.

The first step after the bug is created is
verification. A bug verifier searches the data-
base for all bugs with a New status. He
duplicates the bug by following the steps
listed in the details section of the bug. If the
bug is reproduced and has all the proper
information, the Assigned To field is changed
to the developer who will be fixing the bug,
and the status is changed to Verified. If the
bug is not written clearly, is missing steps, or
cannot be reproduced, it will be sent back
to the bug reporter for additional work.

The Assigned To field contains the
name of the person responsible for that
area of the code. It is important to note that
from this point forward, the developer’s
name stays on the bug. Why? There are usu-
ally more developers than there are testers.
Developers look at bugs from a standpoint
of what is assigned to me?. Testers have multi-
ple features to test, which means that testers
look at bugs from a standpoint of what needs
to be tested? Because of the different way
testers and developers work, developers
sort bugs by the Assigned To field and
testers sort bugs by the Status field. Leaving
the developer’s name on the bug also makes

Defect Management

6 CROSSTALK The Journal of Defense Software Engineering September 2003

Rating Value

Blue
Screen/Hang 1

Loss Without a
Workaround 2

Loss With a
Workaround 3

Inconvenient 4

Enhancement 5

Table 1: Bug Severity

Rating Value

Always 1

Usually 2

Sometimes 3

Rarely 4

Never 5

Table 2: Bug Likelihood

The Bug Life Cycle

September 2003 www.stsc.hill.af.mil 7

it easier to send the bug back to the devel-
oper for more work. The tester simply
changes the Status field to Verified, and
then automatically goes back to the devel-
oper.

The first thing the developer does is
give the bug a Solving status indicating that
he has seen the bug and is aware that it is his
responsibility to resolve it. The developer
works on the bug and, based on his conclu-
sions, assigns a status to the bug indicating
what the next step should be.

Remember, the developer does not
change the Assigned To field. His name
stays on the bug in case the bug has to go
back to him; it will make it back to his list.
This procedure ensures that bugs do not fall
between the cracks. The following para-
graphs list statuses that a developer can
assign to a bug.

The Fixed status indicates that a change
was made to the code and will be available
in the next build. Testers search the data-
base on a daily basis looking for all Fixed-
status bugs. Then the bug reporter or tester
assigned to the feature retests the bug,
duplicating the original circumstances. If
the bug passes, it gets a Tested status. If the
bug does not pass the test, it is given a
Verified status and sent back to the devel-
oper with information about the test per-
formed (for example, the build that was
used to test the fix). Notice here that since
the bug’s Assigned To field has retained the
developer’s name, it is an easy process for
the tester to send the bug back by simply
changing the status to Verified.

The Duplicate status bug is the same as a
previously reported bug. Sometimes only
the developer or someone looking at the
code can tell that the bug is a duplicate; it is
not always obvious from the surface. A note
referencing the previous bug number is
placed on the duplicate bug. A note is also
placed on the original bug indicating that a
duplicate bug exists. When the original bug
is fixed and tested, the duplicate bug will be
tested also. If the bug really is a duplicate,
when the original bug is fixed the duplicate
bug will be fixed as well. If this is the case,
both bugs get a Tested status.

If the duplicate is still a bug – while the
original bug is working properly – the dupli-
cate bug does not keep its Duplicate status.
It gets a Verified status and is sent back to
the developer. This is a fail-safe built into the
bug life cycle. It is a check and balance that
prevents legitimate bugs from being swept
under the carpet. However, here is a note of
warning: Writing lots of duplicate bugs can
give a tester a bad reputation. It pays to set
time aside daily to read all the new bugs
written the previous day to avoid re-report-
ing bugs.

Resolved means that the problem has
been resolved but no code has changed. For
example, bugs can be resolved by getting
new device drivers or third-party software.
Resolved bugs are tested to make sure that
the problem really has been resolved with
the new situation. If the problem no longer
occurs, the bug gets a Tested status. If the
Resolved bug still occurs, it is sent back to
the developer with a Verified status.

Need More Information indicates that the
bug verifier or developer does not have
enough information to duplicate or fix the
bug; for example, the steps to duplicate the
bug may be unclear or incomplete. The
developer changes the status to Need More
Information and includes a question or
comment to the reporter of the bug. This
status is a flag to the bug reporter to supply
the necessary information or a demonstra-
tion of the problem. After updating the bug
information in the Notes field, the status is
put back to Verified so the developer can
continue working on the bug. If the bug
reporter can no longer duplicate the bug, it
is given a Can’t Duplicate status along with a
note indicating the circumstances.

It is important to note that the only per-
son who can put Can’t Duplicate on a bug
is the person who reported it (or the person
testing it). The developer cannot use this sta-
tus; he must put Need More Information
on it to give the bug reporter a chance to
work on the bug.

This is another example of a fail-safe
built into the database. It is vital at this stage
that the bug be given a second chance. The
developer should never give a bug a Can’t
Duplicate status. The bug reporter needs an
opportunity to clarify or add information to
the bug or to retire it.

The developer may want to protest the
bug: Should it be included in this version of
the product, or perhaps not be fixed at all?
The status Discuss is used to send the bug to
the Bug Committee (test manager, develop-
ment lead, and/or development manager)
for further discussion. The developer
should be sure to include comments about
why the bug is being protested or needs fur-
ther discussion.

If the developer has examined the bug,
the product requirements, and the design
documents, and determined that the bug is
not a bug, it is Working as Designed. In other
words, what the product or code is doing is
intentional as per the design. Or as some-
one more aptly pointed out it is working as
coded!

This bug can go several directions after
being assigned this status. If the tester
agrees, the status remains and the bug is fin-
ished. The bug may be sent to documenta-
tion for inclusion in the help files and man-

ual. If the tester disagrees, the bug can be
appealed by putting a Discuss status on it to
send the bug to the Bug Committee. The
tester should include in the notes a reason
why, although the developer has given it a
Terminal status, it should be changed now.
The bug may also be sent back to the design
committee so that the design can be
improved.

Working as Designed is a dangerous sta-
tus. It is an easy way to hide annoying bugs.
It is up to the bug reporter to make sure the
bug does not get forgotten. Product man-
agers may also review lists of bugs recently
assigned Working as Designed.

The Enhance status means that while the
suggested change is a great idea, because of
technical reasons, time constraints, or other
factors, it will not be considered until the
next version of the product. This status can
be appealed by changing the status to
Discuss and adding a note specifying why it
should be fixed now.

Defer is almost the same status as
Enhancement. This status implies that the
cost of fixing the bug is too great given the
benefits it could produce. If the fix is a one-
liner to one file that does not influence
other files, it might be okay to fix the bug.
On the other hand, if the fix will cause the
rebuild of many files that would force prod-
uct retesting and there is no time to test the
fix before shipping the product, then the fix
would be unacceptable and the bug would
get a Defer status. To appeal the status, send
it back through the process again by putting
a Discuss status on it with a note stating
why it should be fixed now.

You may see the Not to be Fixed status
although we do not recommend making
this status available for use. There may be
extenuating circumstances where a bug will
not be fixed because of technology, time
constraints, a risk of destabilizing the code,
or other factors. A better status to use is
Enhance. To appeal the status, send it back
through the process again by putting a
Discuss status on it with a note saying why
it should be fixed now.

This is similar to the Working as
Designed status in that its use can be dan-
gerous. Be on the watch for this one.
Sometimes developers call this status the
you can’t make me status.

The Tested status is used only by testers
on Fixed, Resolved, and Duplicate bugs.
This status is an end-of-the-road status indicat-
ing that the bug has been verified as Fixed;
the bug has now reached the end of its life
cycle.

The Pending status is used only by testers
on Fixed bugs when a bug cannot be tested
immediately. The tester may be waiting on
hardware, device drivers, a build, or addi-

tional information necessary to test the bug.
When the necessary items have been
obtained, the bug status is changed back to
Fixed and is tested. It is critical that the bug
is tested just as thoroughly as any other bug
fix; make sure testing is not skipped.

The Can’t Duplicate status is used only
by the bug reporter; developers and man-
agers cannot use this status. If a bug is not
reproducible by the assigned developer or
bug verifier, the bug reporter needs a chance
to clarify or add to the bug. There may be a
hardware setup or situation, or a particular
way of producing a bug that is peculiar to a
specific computer or bug reporter and he
needs a chance to explain what the circum-
stances are. Limiting the use of this status to
bug reporters prevents bugs from slipping
between the cracks and not getting fixed.

It is important to note that before ship-
ping a product, all active bugs must be
addressed; that is, all bugs with a Fixed,
Need More Information, Resolved, or
Pending status must be taken care of. You
should also set a criteria based on bug prior-
ity; for example, the number of active bugs
rated five or less must be zero. These crite-
ria are excellent benchmarks for judging the
readiness of a product.

What Happens After Shipping?
All bugs with a Tested or Can’t Duplicate
status are archived. This means that the
records are either removed and placed in an
archive database, or are flagged to be hidden
from the current database view. Never
delete any bug records; it may be necessary
to do some historical research in the bug file
(What did we ship when? or Why did we ship with
this bug?).

Bugs with Enhance and Defer status are
moved to the New bug file or retained in the
current bug file. The statuses of these bugs
are then changed back to Verified.

This methodology not only shortens the
list of bugs to deal with, but it also moves
bugs that were not considered necessary for
the current product to ship into considera-
tion for the next version of the product.

Reports
The data in the bug file are not very useful
until sorted and presented in an organized
fashion; they then become information. For
example, sorting by developer, the informa-
tion becomes a to-do list sorted by rating.
Sorting by status lets the reader know how
many bugs are submitted or in progress;
sorting by feature asks, “How many open
bugs are there for a particular feature?”
“What feature needs more work?” and
“What feature is stable?” Sorting by product
is useful when more than one product is
being worked on simultaneously.

Be aware that there are certain metrics
or reports that should not be used. If you
use these reports you will destroy the credi-
bility of your bug file and it will be reduced
to a laundry list for developers. One of these
reports is “How many bugs did a tester report?”
and the other is “How many bugs did a develop-
er fix?” Neither one of these has any useful
purpose except to beat up people uselessly
[1].

A defect database that has all these fields
built into it and has a good query language
is able to sort defect data and turn it into
useful information. Setting up customized
queries should not be too difficult for the
average database administrator.

Conclusion
The challenges of following a bug life cycle
are far outweighed by the benefits derived.
A well planned and closely managed defect
database not only tracks current defects
against any number of builds and/or prod-
ucts, it also provides a virtual paper trail for
the overall progress of a product as it is
coded, tested, and released. If sufficient
time is provided for building a defect track-
er that works for your company, it is more
likely you will release a less buggy product,
or at least a product where most of the big
ones have not gotten away.◆

Reference
1. Kaner, Cem, et. al. Testing Computer

Software. 2nd ed. New York: Inter-
national Thomson Computer Press,
1993.

Additional Reading
1. Beizer, Boris. Software Testing Tech-

niques. 2nd ed. New York: International
Thomson Computer Press, 1990.

2. Hetzel, Bill. The Complete Guide to
Software Testing. 2nd ed. New York:
John Wiley & Sons, Inc., 1988.

3. Jones, Capers. Software Quality: Anal-
ysis and Guidelines for Success. New
York: International Thomson Com-
puter Press, 1997.

4. Kit, Edward. Software Testing in the
Real World. New York: Addison-
Wesley, 1995.

5. Mirrer, Barry. “Organize Your Problem
Tracking System: Cleaning Up Your
Bug Database Can Be as Easy as
Organizing Your Sock Drawer.”
Software Testing Quality Engineering
Sept./Oct. 2000: 34-39.

6. Myers, Glenford J. The Art of Software
Testing. New York: John Wiley & Sons,
Inc., 1979.

7. Patton, Ron. Software Testing. Indian-
apolis: Sams, 2000.

8. Institute of Electrical and Electronics
Engineers, Inc. IEEE Standard for
Software Test Documentation 829-
1998. New York: Institute of Electrical
and Electronics Engineers, Inc., 1998.

Defect Management

8 CROSSTALK The Journal of Defense Software Engineering September 2003

About the Authors
Brenda Francis is a
software quality engi-
neer at PowerQuest
Corp. She worked for-
merly for Novell and
WordPerfect in problem

resolution teams and has been in the
software quality assurance field since
1997. She has a bachelor’s degree in
international relations and a master’s
degree in American history.

PowerQuest Corp.
P.O. Box 1911
Orem, UT 84059-1911
Phone: (801) 437-8900
E-mail: brenda.francis@

powerquest.com

Lisa Anderson has
been a tester and quality
assurance engineer with
WordPerfect Corp.,
Novell, Inc., Corel, Inc.,
and PowerQuest Corp.

Anderson has also been a director of
Quality Assurance (QA) for a small
startup company and was a QA manag-
er at PowerQuest Corp. She has been
in the software QA field since 1991;
has attended STAR East 1999, 2000,
and 2001; participated in Software
Testing Manager Roundtable 4 and 5;
and is the sponsor of Mountainwest
Enterprise Testing Roundtable 2003.
Anderson has bachelor’s degrees in
education and computer information
systems and is currently working on a
master’s degree in computer informa-
tion systems.

Phone: (801) 319-5840
E-mail: lisaan@lisaan.com

September 2003 www.stsc.hill.af.mil 9

The Software Engineering Institute
(SEI) initially developed the

Capability Maturity Model® for Software
(SW-CMM®) [1] with the initial purpose
of providing a map for improving soft-
ware processes. The SW-CMM also pro-
vides a basis for assessing the maturity
of an organization’s software processes.
Because of its success, other capability
maturity models were developed. These
include the following:
• A Software Acquisition CMM by the

SEI [2].
• A testing capability maturity model

[3].
• Several systems engineering capabili-

ty maturity models [4, 5, 6].
Due to the growing variety of capa-

bility maturity models, the SEI devel-
oped a consolidated approach called the
CMM IntegrationSM (CMMI®) [7].
Capability maturity models have been a
topic of many articles in CrossTalk.
In this article, capability maturity model
is used generically. When a specific capa-
bility maturity model is intended, it is
identified explicitly.

Lean Six SigmaTM (LSS) is a systems-
engineering approach to defining, meas-
uring, analyzing, and improving process-
es. LSS was initially developed for man-
ufacturing, but has been successfully
applied to all types of processes –
including transactional processes, servic-
es, and software. A brief introduction to
this topic is given in [8, 9].

It is assumed here that the reader has
a reasonable familiarity with capability
maturity models and has at least an
introductory knowledge of LSS. The
purpose of this article is to compare
capability maturity models and LSS1.

In the first section, key features of
these two are contrasted. Having looked
at their differences, the next section will
focus on success factors. Lastly, two
examples are presented in which indus-

try has used Six Sigma in conjunction
with capability maturity models. This
article ends with some conclusions and
recommendations.

Contrasting Capability
Maturity Models and LSS
The following sections compare various
attributes of capability maturity models
and LSS. These attributes include insti-
tutionalization, assessment approaches,
focus, and measurement. The primary

differences between capability maturity
models and LSS derive from the fact
that capability maturity models are mod-
els, whereas, LSS is a method.

Basis
Capability maturity models are models;
they focus on what. The SEI’s CMM
specifies that policies, procedures, and
guidelines be explicitly defined, includ-
ing Key Process Areas (KPAs), goals
for each KPA, and practices associated
with each KPA. The CMM defines
maturity in terms of whether or not
management and engineering processes
have been defined, implemented, and
consistently used throughout the organ-
ization. The CMM has an underlying
assumption that defined processes are
good. It does not provide a procedure

for defining or evaluating processes.
Statistical methods are not explicitly
specified by the CMM. Experience has
shown that the CMM influences man-
agement’s behavior, but engineers seem
to perform the same way regardless of
the capability level of the organizations
[10].

LSS is a methodology; its focus is on
how. In a sense, LSS is simply codified
good systems engineering. One of the
foundations of LSS is statistical quality
control; LSS defines process perform-
ance in terms of its mean and variance.
A concept that permeates the method is
reducing the cost of poor quality. This
concept is viewed at the broadest possi-
ble level. LSS does not explicitly pro-
vide a list of procedures and policies
needed by an organization.

Institutionalization
Both the SEI’s CMM and LSS recognize
that institutionalizing processes is a key
to success, but their approaches are dif-
ferent. The CMM requires institutional-
ization by specifying the following:
• Written organizational policies that

exist regarding the use of engineer-
ing and management processes.

• Adequate resources are provided for
implementing processes.

• Appropriate oversight is provided
(which could have the form of
either taking certain measurements
or management reviews).
LSS does not ask the question of

whether a process is institutionalized. It
is successful only when LSS itself is
institutionalized. Specifically, LSS
requires an extensive training program.
All lead managers and engineers are
expected to become experts in LSS, and
are frequently referred to as Six Sigma
black belts. This status requires taking a
four- to six-week course over four
months while applying what is learned
in the course to a specific process
improvement task. Following this train-
ing, the trainee is required to lead two
more tasks and then take a test to be

Comparing Lean Six Sigma to the
Capability Maturity Model

Dr. Kenneth D. Shere
The Aerospace Corporation

The Capability Maturity Model® has been widely used by the government to evaluate contractors as part of the acquisition
process for large, complex systems and has been used by contractors to improve their software processes. Whereas this approach
makes sense, both the government and industry can do better by including Lean Six Sigma in their process improvement and
acquisition approaches. In this article, the two concepts are compared; examples of organizations using Lean Six Sigma for
software are presented.

“LSS [Lean Six Sigma]
was initially developed
for manufacturing, but
has been successfully
applied to all types

of processes – including
transactional processes,
services, and software.”

® Capability Maturity Model, CMM, and CMMI are regis-
tered in the U.S. Patent and Trademark Office.

SM CMM Integration is a service mark of Carnegie Mellon
University.

TM Six Sigma is a trademark of Motorola, Inc.

Defect Management

10 CROSSTALK The Journal of Defense Software Engineering September 2003

certified.
With LSS, everyone in the organiza-

tion is trained to a level that is job-
dependent. Training could be a one-
week course with application to a spe-
cific task for Six Sigma green belt status.
Other training is at the executive level in
which people take one- to three-day
courses to obtain a basic understanding
of the process.

Institutionalization is obtained by
training and application throughout the
organization. Institutionalization is
impossible to obtain for either LSS or
the CMM unless there is a long-term,
substantial corporate commitment.

Assessment Process Control
The CMM has the advantage of being
controlled by the SEI, which has devel-
oped a substantial body of material for
use in conducting capability maturity
assessments, and has conducted many
of these assessments. The SEI provides
training courses in this area, and people
can be certified as software capability
evaluators. Generally, an external audi-
tor assesses the CMM level by inspecting
several projects across an organization.
The organization provides all requested
documentation for review and access to
key people for interviews.

In the case of government procure-
ments, the CMM assessments provide
an indication of an organization’s matu-
rity based on other projects, but do not
guarantee that the same processes and
approach will be used for the system
being procured. To remedy this prob-
lem, some acquisitions require a period-
ic CMM assessment of the contractor’s
effort during system design and devel-
opment. The results of these assess-
ments are (theoretically) tied to award
fees.

LSS has no organization that is con-
sidered either the governing body or the
standard bearer. Consequently, every
Six Sigma organization defines it some-
what differently. This situation exists
because the development and use of
LSS has been driven by industry – in
contrast to the CMM whose develop-
ment was funded by the government
and implemented by a federally funded
research and development center. No
external body exists to declare whether
or not an organization is LSS.
Nonetheless, there are recognized best
practices associated with Six Sigma.

To complicate matters, Six Sigma
organizations do their own certification.
Thus, certification from one organiza-
tion might not be accepted by another

organization. In practice, anybody who
is certified by one company is generally
recognized as a Six Sigma expert by
other organizations. However, if a certi-
fied expert (a Six Sigma black belt)
changes organizations, he or she still
needs to take Six Sigma training at the
new organization to assure that he or
she would be applying the methodology
consistently with other people in the
new organization.

If an organization claims to be a
LSS organization in a proposal, assess-
ing the veracity of this claim is relative-
ly straightforward. The buyer could
conduct a review of (1) the organiza-
tion’s training and certification pro-
gram, (2) the certification of people
committed to the program, and (3) the
process documentation and perform-
ance data (for all processes to be used in
the proposed acquisition).

Focus
The CMM is introspective. This focus is
due to the nature of the model.
Assessments determine whether meas-
urements are being taken, policy exists,
resources are applied, people are trained
in the process, and products are
reviewed internally. When the model
looks outward, as it does in the
Subcontract Management KPA, it is
from the perspective of whether the
internal management processes and
policies exist to handle subcontracts.

LSS is inherently focused outward.
The primary criterion used in assessing
whether a process is lean is to determine
whether each activity in the process
adds value – i.e., it provides something
the customer is willing to pay for. The
Six Sigma part of LSS looks at the cost of

poor quality. This criterion is directly tied
to customer satisfaction and the supply
chain (including subcontractors). Many
companies also tie this criterion to their
business plans and strategic goals.

Measurement
The process improvement approach of
Six Sigma is partitioned into five phas-
es: define, measure, analyze, improve,
and control. Having defined an existing
process in the first phase, the next
phase is to measure its performance.
Performance measurements of
throughput and quality are taken.
Throughput is the number of items
produced, services rendered, etc. Wait
time and cues are also measured.
Quality is expressed statistically as the
process mean and variation. The cost of
each step of the process is measured in
terms of currency, time, and resources.
The physical layout between process
stages is measured to determine wait
time and cost, or transportation
expense between stages.

Various analyses are then per-
formed, which include defect analysis
(for example, cause and effect or fish-
bone charts) and analysis of variance.
Simulations based on experiments’
design are performed to determine can-
didate improvements. During the
improvement phase, a prototype or ini-
tial improvement is made and meas-
ured. The results are compared with the
simulation results to validate the
improvement before it is implemented
for the process. The improvement is
implemented as an operational change
in a controlled manner while measure-
ments are taken to validate the proto-
type results. Measurement is a way of
life in Six Sigma.

For measurement in capability matu-
rity models, this discussion shall focus
on the CMMI because it is the most
recent and comprehensive model [11].
Measurement permeates throughout
the CMMI. In the staged model, Level 4 is
Quantitatively Managed. The purpose of
this level is to obtain the data needed
for the organization to effectively opti-
mize its processes. Level 5 is
Optimization. It is clear from thinking
about the purposes of Levels 4 and 5
that at their core the CMM and Six
Sigma have a great deal in common.

Unlike other capability maturity
models, the CMMI has a process area
(PA) Measurement and Analysis. This PA
[12] specifies that a measurement capa-
bility be established to support manage-
ment needs. The Measurement and

“The primary criterion
used in assessing

whether a process is
lean is to determine

whether each activity in
the process adds value –

i.e., it provides
something the customer

is willing to pay for.”

Comparing Lean Six Sigma to the Capability Maturity Model

September 2003 www.stsc.hill.af.mil 11

Analysis PA is oriented toward system-
atically collecting typical program data
(defect density, activity logs, peer review
coverage, and so on). Measuring
process capability, as such, could be
included in this PA, but it is not a core
purpose.

In the CMM, common features that
contain key practices organize each
KPA. The common features are ability
to perform, activities performed, meas-
urement and analysis, and verifying
implementation. The CMMI slightly
modifies the common features by
replacing directing implementation with
measurement and analysis. The CMM doc-
umentation is good at indicating the
types of items that might be measured
for each process, but does not explicitly
say what to measure. The CMM docu-
mentation indicates that analysis of the
data is necessary, however, neither type
of analysis nor analytical procedures are
explicitly discussed.

Success Factors for Lean Six
Sigma and the CMM
Both LSS and CMM are based on insti-
tutionalizing defined processes, per-
forming quantitative measurement of
the processes, and improving the
processes based on these measurements.
Both approaches address the systemic
problems that have existed in our
approach to software and systems engi-
neering. Neither approach will be suc-
cessful unless a substantial corporate
commitment is made. This commitment
includes the following:
• No-nonsense leadership from the

top.
• Training (to various levels) of every-

body in the organization.
• An up-front financial investment to

get the process started.
• Organizational recognition of the

importance of a capability maturity
model or LSS.

• Rewarding people who are success-
fully implementing capability maturi-
ty models or LSS.
Organizational recognition does not

mean that a big bureaucracy is needed.
For example, Dow Chemicals had 2001
sales of $27.8 billion; they have more
than 50,000 employees distributed over
more than 40 countries. Six Sigma is
implemented throughout the company
with training materials in 13 languages.
More than 90 percent of Dow employ-
ees will be involved with Six Sigma in
some way by 2003 [13]. Their corporate
staff for Six Sigma is about five people.
There are also a few staff-level people in

each of their operating businesses.
Rewards are critical because employ-

ees pay attention to a leader’s actions
more than his or her words. When
rewards are primarily given to people for
being a hero – working a large number
of problems to save a program in trou-
ble – that is what people believe is
expected. Rewards need to be given pri-
marily to people who did the job right in
the first place, i.e., within budget and
schedule.

Both approaches have been used
successfully. The SW-CMM Level 5
organizations have the data to prove
that they can deliver projects on time
and within budget. It has been reported
that variation between the actual cost
and schedule to the estimated cost and
schedule for projects performed by
these organizations is usually within 3
percent [14]. Even Level 3 organizations

have benefited dramatically from SW-
CMM. For example, John Vu of The
Boeing Company has provided statistics
that demonstrated variation of labor
hours went from historical figures
(Levels 1 and 2) of +20 percent to –145
percent to a Level 3 variance of +20 per-
cent to –20 percent [15]. He also provided
data to show that simply implementing a
formal review and inspection procedure
caused an increase of design effort by
four percent and a decrease of rework
by 31 percent. That change represents a
cost benefit ratio of 1:7.75 – almost an
order of magnitude.

Corporate presidents have discussed
the benefits of LSS in terms of profit
added to the bottom line. For example,
at the 1999 Annual Meeting of General
Electric, Jack Welch said that the Six
Sigma effort at GE had already saved
$3.5 billion beyond their investment of
$1 billion, and they were just at the knee
of the curve [16].

Integrating Lean Six Sigma
and the CMM
These two approaches to process

improvement have the same goal. In
fact, if an organization is truly a CMM
Level 5 organization, it is also in spirit, if
not in fact, a Six Sigma organization.
Conversely, a true Six Sigma organiza-
tion is in spirit, if not in fact, a CMM
Level 5 organization. In each case,
processes must be defined, data must be
collected, and data used quantitatively to
improve the processes. Some organiza-
tions do not begin integrating LSS with
CMM until Level 3 has been attained (so
processes have been defined), whereas
others use LSS techniques to help define
processes during the lower levels of
maturity.

Examples of companies that have
integrated Six Sigma with the CMM are
Motorola, Tata Consultancy Services
(TCS), Honeywell, and PS&J Software
Six Sigma.

Motorola Labs used multivariate
analysis techniques of Six Sigma to
determine the causes of delays in clo-
sure of corrective action reports, and to
improve their audit process. How to
apply multivariate techniques to soft-
ware processes is included in the
Motorola University I-Cubed Presen-
tation Series [17]. Motorola has several
facilities evaluated at CMM Level 5, and
is the founder of Six Sigma.

TCS also combined Six Sigma with the
CMM. They specifically applied Six Sigma
to their software review process and to
decisions on program metrics [18]. This
work was done for their Chennai, India,
engineering center for General Electric.
This TCS center has been evaluated as a
CMM Level 5 organization.

Honeywell and PS&J Software Six
Sigma introduced Six Sigma techniques
into the Personal Software Process as
defined by Watts Humphrey at the
Software Engineering Institute [19].

Conclusions
The SEI’s CMM and LSS have inde-
pendently changed the way many major
corporations think about their processes
by addressing systemic problems in a
constructive manner. These approaches
are complementary. They both apply to
the acquisition and development of
complex systems. Their successful appli-
cation depends on committed leaders,
training, institutionalization, demon-
strating a positive return on investment,
and continuous reinforcement and
reward.◆

References
1. Humphrey, Watts. Managing the

Software Process. Reading, MA:

“Rewards need to be
given primarily to people
who did the job right in
the first place, i.e., within
budget and schedule.”

Defect Management

12 CROSSTALK The Journal of Defense Software Engineering September 2003

Addison-Wesley, 1990.
2. Cooper, Jack, and Matthew Fisher,

Eds. Software Acquisition Capability
Maturity Model ® (SA-CMM ®). CMU/
SEI-2002-TR-010. Pittsburgh, PA:
Software Engineering Institute, Mar.
2002.

3. Burnstein, Ilene, Taratip Suwannasart,
and C. R. Carlson. “Developing a
Testing Maturity Model.” CrossTalk
9.8, 9.9 (Aug., Sept. 1996).

4. Shere, Kenneth D., and Mark J. Versel.
Extension of the SEI Software
Capability Model to Systems. Proc. of
the 18th Annual International
Computer Software and Applications
Conference, Los Alamitos, CA, 1994.
New York: IEEE Computer Society
Press, 1994: 195-200.

5. Software Productivity Consortium. A
Systems Engineering Capability Matur-
ity Model Ver. 1.0. SPC-95007-CMC.
Herndon, VA: Software Productivity
Consortium, May 1995.

6. Arunski, Karl, et. al. Systems
Engineering Capability Model. EIA/ IS
731. Arlington, VA: Electronic Indus-
tries Alliance, 17 Jan. 1999 <www.
geia.org/sstc/G47/731 dwnld.htm>.

7. Software Engineering Institute. Capa-
bility Maturity Model Integration
(CMMI®), Ver. 1.1: CMMI for Systems
Engineering, Software Engineering,
Integrated Product and Process
Development, and Supplier Sourcing
V1.1 CMMI-SE/SW/IPPD/SS. Pitts-
burgh, PA: Software Engineering
Institute, Mar. 2002.

8. Shere, Kenneth D. “Lean Six Sigma –
How Does It Affect the Govern-
ment?” CrossTalk 16.3 (Mar. 2003):
8-11.

9. Siviy, Jeannine. Six Sigma: Software
Technology Review. Pittsburgh, PA:
Software Engineering Institute, 1 May
2001 <www.sei.cmu.edu/str/descrip
tions/sigma6_body.html>.

10. Humphrey, Watts S. “What Is
Excellence?” International Conference
on Software Process Improvement.
College Park, MD, Nov. 2002 <www.
software-process-institute.com>.

11. Software Engineering Institute. Capa-
bility Maturity Model Integration
(CMMI ®), Version 1:1: CMMI for
Systems Engineering, Software
Engineering, Integrated Product and
Process Development, and Supplier
Sourcing V1.1 CMMI-SE/SW/ IPPD/
SS. Pittsburgh, PA: Software Engi-
neering Institute, Mar. 2002.

12. Ibid: 163-180.
13. Parker, Mike. “Special Commemora-

tive Issue.” Around Dow. Midland, MI:

Dow Chemical Company, 2000: 31, 44
<www.dow.com/webapps/lit/litorder.
a sp?ob j id=09002f13800ba251&
filepath=/noreg>.

14. Johnston, Margaret. “Integrators Aim
High on Software Methodology.”
Federal Computer Week 25 Jan. 1999
<www.fcw.com/fcw/articles/1999/
FCW_ 012599_ 53.asp>.

15. Vu, John. “What Justifies a Rating of
CMM Level 5?” Software Engineering
Process Group Conference. New
Orleans, LA, Mar. 2001.

16. Welch, Jack. “Presentation of the
Chairman of the Board.” Annual
Meeting. Fairfield, CT: General Electric,
1999.

17. McCarty, Tom. Private Communi-
cation. Motorola, 2003.

18. Moorthy, Vinay. Private Communi-
cation. Tata Consultancy Services, 2003.

19. George, Ellen, and Steve Janiszewski.
“SPC Is the Perfect Tool for PSP Post-
Mortem Data Analysis.” PS&J Software
Six Sigma, 2001 <www.SoftwareSix
Sigma.com>.

Note
1. For another comparison of Six Sigma

to the Capability Maturity Model, cf.
Card, David. “Sorting Out Six Sigma
and the CMM.” IEEE Software.
May/June 2000: 11-13.

About the Author

Kenneth D. Shere,
Ph.D., is a senior engi-
neering specialist at
The Aerospace Cor-
poration where he pro-
vides systems and soft-

ware engineering, acquisition, and
strategic leadership support to various
government organizations. He is certi-
fied as a Lean Six Sigma green belt
and a Software Engineering Institute
Software Capability Evaluator. Shere
has published 18 articles and two
books. He has a bachelor’s of science
degree in aeronautical and astronauti-
cal engineering, a master’s of science
degree in mathematics, and a doctor-
ate in applied mathematics, all from
the University of Illinois.

The Aerospace Corporation
15049 Conference Center Drive
Chantilly, VA 20151
Phone: (703) 633-5331
Fax: (703) 633-5006
E-mail: kenneth.d.shere@aero.org

October 15-18
Richard Tapia Diversity in

Computing Conference
Atlanta, GA

www.ncsa.uiuc.edu/Conferences/
Tapia2003

October 16-17
Six Sigma Software Development

Conference
Boston, MA

www.frallc.com/infotech.asp#c112

October 17-19
Pop! Technology Conference

Camden, MA
www.poptech.org

October 20-24
Quality Assurance Joint Conference on

Compressing Software Development Time
Baltimore, MD

www.qaiusa.com

October 21-23
7th IEEE International Symposium on

Wearable Computers
White Plains, NY

www.cc.gatech.edu/ccg/iswc03

October 27-31
STARWEST ‘03

San Jose, CA
www.sqe.com/starwest/

November 2-5
Amplifying Your Effectiveness Conference

Phoenix, AZ
www.ayeconference.com

November 17-21
2nd International Conference on

Software Process Improvement
Washington, DC
www.icspi.com

April 19-22, 2004
Software Technology Conference 2004

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

September 2003 www.stsc.hill.af.mil 13

The benefits of the object-oriented
(OO) paradigm are well publicized.

Less so are the areas where this paradigm
actually creates challenges and difficulties.
One such area is defect management.
This article looks at why object-orienta-
tion might present such challenges, and
what it is like to manage defects in an OO
environment.

In general, OO systems score lower in
terms of testability compared to proce-
dural systems [1]. The reasons for such
low testability can be traced to the struc-
tural composition of OO systems dis-
cussed in the following sections. Each
section begins a brief definition of the
issue under discussion, a short synopsis
or some explanation closely relating to the
issue at hand, and a description of the
defect management problems that are rel-
evant. Each problem is numbered along
with its corresponding solution(s), for
example, (1) Abstraction Reduces
Observability. Keep in mind there may be
more than one corresponding solution to
each preceding problem.

Abstraction
Abstraction is that essential property that
allows the selection of a logical and
coherent conceptual boundary so that the
object is identifiable by its essential char-
acteristics; these are those characteristics
that define what it is and what it does
without heed to how such is accom-
plished. While abstraction is of potential-
ly great benefit to the modeler, the
designer, the user, the maintainer, and the
reuser, it is often of hindrance to the
defect manager.

Problems
(1) Abstraction Reduces Observability
[1]. Observability, or internal state visibil-
ity, is the ability to examine the internal
state of an object at any one time. Given
that abstraction, in essence, masks access
to a lot of this information, it dramatical-
ly reduces observability.
(2) Partial/Distributed Implemen-
tation. An abstract class is one in which

the implementation of at least one feature
is deferred to another class. This creates a
problem in testing because all the features
are not there.

Solutions
(1) Inspector Routines. These are pub-
lic routines written to examine the value
of each relevant attribute that otherwise
will not be accessible. This may be helpful
but unfortunately it is cumbersome to

create such classes. Even if these meth-
ods are present, they may be defective,
making the job of testing that much more
difficult.
(1) Memento Design Pattern. A varia-
tion of the approach above is to design
each class as part of a Memento Design
Pattern [2].
(1) Encapsulation Breaking Mechan-
isms. Friend functions in C++ belong to
this category. These can be defined to cut
across the encapsulation wall of an
object. They can then access the internal
state of an object, yet have inherent side
effects that make their use inadvisable in
an OO system.
(2) Inspection. Inspection has proven
effective in defect management of partial
or distributed implementations. Inspec-
tion techniques specialized for object
technologies have been developed [3].

(2) Leaf Class Testing. This is a testing
technique that evaluates the abstraction
structure using its concrete implementa-
tions [1, 3].

Encapsulation
In encapsulation, an object is defined as a
collection of interrelated concerns
wrapped into a logically cohesive unit. In
OO, applying encapsulation is not
restricted to the composition of classes
and objects but also applies at higher lev-
els, for example to form packages and
sub-systems.

Problems
(1) Scope Escalation. The routine no
longer can be considered the logical unit
for testing. That honor now must go to
the class. This does not in any way mean
that the routines of a class are not tested,
but that unit testing in OO must be done
in the context of a class.
(2) Hierarchy Integration. How can
you test whether the higher encapsulation
levels are communicating with each other
in the expected fashion?

Solutions
(1) Inspection. Inspection techniques
specialized to OO could focus on the
algorithmic, initialization, and temporal
characteristics of individual routines in a
way that is not possible when testing.
(1) Context Testing. This is the idea of
giving up individual testing of the individ-
ual routines and instead testing them in
the context of their operation and collab-
orations. This is of course risky, as the
routines will only be tested in known con-
texts.
(2) Inspection. Inspection allows evalua-
tion of interaction of packages at integra-
tion level.
(2) Multi-Table Class-Responsibility-
Collaboration (CRC). This is a simula-
tion technique that allows the evaluation
of the design of a system from the per-
spective of package integration and
reduction of coupling [3]. The technique
is applied during design evaluation.

Managing Software Defects in an
Object-Oriented Environment

Managing defects when developing object-oriented systems has its own challenges. In this article, the impact of adopting the
object-oriented paradigm on how we manage defects at various phases of the software process is discussed. Specific issues relat-
ing to both the structural implications and the environmental and process considerations are named and discussed, with solu-
tions provided.

Houman Younessi
Rensselaer Polytechnic Institute-Hartford Graduate Campus

“While abstraction is of
potentially great benefit

to the modeler, the
designer, the user, the
maintainer, and the
reuser, it is often of
hindrance to the
defect manager.”

14 CROSSTALK The Journal of Defense Software Engineering September 2003

Defect Management

Genericity
Genericity is the principle of type inde-
pendence. To facilitate reuse, it is most
useful to write components (e.g., classes)
that work with a variety of types under a
variety of situations. While not all pro-
gramming languages provide for generic-
ity at the moment, it is likely that its
implementation and use would increase
in the future. Eiffel [4] is one of the few
OO languages that implement this con-
cept effectively.

The rules are quite straightforward.
We simply declare the type to be of some
generic identifier and then use that same
identifier as a placeholder or name when-
ever a given type is referred to. As such,
generic classes are not classes in the
strictest sense; they are templates for
classes that hold at least one unspecified
type. Only when all the unspecified types
are pinned down does a class emerge. This
means that you can write a generic class
but you cannot create an object of that
generic class. For that to happen, you
have to first specify all the generic type
placeholders using valid extant types,
thus creating a true class. Only then can
you create (instantiate) an object. Using
genericity, it will then become possible to
provide a wide range of libraries of very
useful reusable classes such as container
(object structure) and graphical user
interface classes.

Problem
(1) Type/Behavior Variability. The
varying behavior of an object based on
the type or combination of types with
respect to which it has been instantiated

creates a test case explosion.

Solution
There is no established calculus here, and
problems may emerge from many unex-
pected corners. No good sure-fire solu-
tion exists here. Care, a good deal of
anticipation of potential problem areas,
and lots of testing with a wide range of
potential types is best. Some guidelines
(not really solutions) to this end appear
in [4].

Inheritance
Inheritance is a kind of relationship
between classes. It is one of the central
features of object orientation. While it is
not necessary to have inheritance in
order to have an OO system, most such
systems do incorporate inheritance.
Inheritance can bring a lot of advantages;
the most frequently cited is, of course,
facilitating reuse.

A class should implement a particular
type A sub-class, therefore, it is best to
implement a corresponding sub-type. In
other words, our class hierarchy should
mirror our type hierarchy. This is usually
called generalization. Other forms of
inheritance do exist that do not follow
this mirror image principle, including
specialization and restriction, which do
provide particular testing challenges.

Problems
(1) Substitutability Problem. Although
a sub-type does satisfy and only strength-
ens (extends) the preconditions of its
parent type, a sub-class does not neces-
sarily do so. As such, a sub-type (general-
ization) can substitute for the parent
class but objects built on specialization
or restriction cannot. Such substitutions
are, however, among the most common
errors in OO.

For example, there is a case of restric-
tion when you take a class such as SIM-
PLE_INTEREST_ACCOUNT and sup-
press the interest calculating features of
it altogether to sub-class it into the new
type NO_INTEREST_ACCOUNT.
This new type does not have interest cal-
culating features and thus cannot act as a
sub-type of SIMPLE_INTEREST_
ACCOUNT although it is a sub-class of
it. This creates a problem in testing in
that you do not quite know whether to
test the suppressed features (as they are
still part of the inheritance structure and
implementation) or to ignore them (as
they are not part of the type being imple-
mented).

Under such circumstances, the testers
will have a tendency to look at the con-

tract for the restricted type and then only
test according to that contract, leaving
behind all the potential side effects of
the suppressed features.
(2) Mixing Inheritance Styles. Many
designers mix different forms of inheri-
tance in the one-class hierarchy.
Although like many of the previous
issues discussed, this is ultimately a
design issue, it does impact the way you
can effectively test a system. In other
words, it can contribute to defects in the
system and therefore within the scope of
our interest, albeit more from a preven-
tive aspect rather than a corrective one.

Imagine the situation depicted in
Figure 1: The issue here is that class (D)
is a sub-type of (C) and can be substitut-
ed for it. Class (C), which may be instan-
tiated (or not), is however not a sub-type
of (B), making (D) also not a sub-type of
(B). Class (B) is a sub-type of (A), but
nothing below it is, even though there
might be a lot of further levels. How
would you adequately test such a hierar-
chy?
(3) Deeply Nested Hierarchies. Even
generalization, the sub-typing form of
inheritance, presents challenges in defect
management. In such a hierarchy, the
tendency would be only for the leaf
nodes to be instantiable. This, however,
does not mean that all the features of all
of the abstract classes are deferred, far
from it. If a class cannot be instantiated,
it cannot be tested directly.

Testing a class indirectly must ensure
that the class is tested with respect to all
possible permutations of the hierarchy
down to each individual leaf level that
can be instantiated. In a deep hierarchy
that is also wide, this creates a combina-
torial issue. There are issues, even in the
case of a deep but narrow hierarchy. The
complete contract of a leaf class is really
the union of the contracts of all the par-
ent types, many of them with some
implemented operations; it is very possi-
ble to miss testing some of them.
(4) Multiple Inheritance. It is possible
for a class to inherit from more than one
super class directly. Multiple inheritance
itself can be of two principal types: sim-
ple multiple inheritance and meshed
inheritance also known as repeated
inheritance. Meshed or repeated inheri-
tance is the case where at least two of the
super classes have a common ancestry.

The most obvious issue with testing
in a multiple inheritance situation is that
a sub-class may inherit a feature with the
same name from more than one parent.
The child class could use one or the
other, but testing with respect to one may

Abstract_Class_A

abstract_do_X()
abstract_do_Y()
concrete_do_Z()

Abstract_Class_B

abstract_do_W()
concrete_do_V()

Abstract_Class_C

abstract_do_T()
concrete_do_Z()
concrete_do_V()
concrete_do_X()

Class_D

concrete_do_Y()
concrete_do_W()
concrete_do_R()
concrete_do_T()

over-riding
concrete_do_V and
concrete_do_Z

Generalization

Generalization

Specialization

Figure 1: Testing Class Hierarchies

September 2003 www.stsc.hill.af.mil 15

Managing Software Defects in an Object-Oriented Environment

not be adequate when the other is used.
The object may interact with other
objects, including a shadow or alias of
itself with many strange and unexpected
consequences, including method run-
time clashes.

Solutions
(1) Inspect the Formal Contracts. If
each type is written as a contract with its
pre- and post-conditions and invariants
carefully expressed, it would be possible
to easily inspect the contracts of classes
in a hierarchy to see if one is a sub-type
of the other. There are simple rules that
can be applied during an inspection ses-
sion such as the precondition of the child class
must only extend or strengthen the precondition
of the parent class or leave them unchanged.
(1) Redesign. All hierarchies based on
specialization or restriction can be
rearranged into hierarchies of generaliza-
tion.
(1) Use of Context Testing. This is giv-
ing up testing the individual routines
individually and testing them in the con-
text of their operation and collabora-
tions. This is of course risky, as the rou-
tines will only be tested in known con-
texts.
(2) Redesign, Avoid Mixing Styles. It
is a simple matter of avoiding the mixing
of styles during design; you can always
convert to generalization (see above).
(2) Segregate Styles. If it is not practi-
cal to convert styles, say when you have
inherited the code and cannot redesign it,
then you should consider each type set as
a separate hierarchy and test accordingly.
This means that starting from the leaf
level, every time the inheritance style
changes, all levels below are to be con-
sidered (logically abstracted into) one
class in a current style relationship with
the class above the current location.
(3) Avoid Deeply Nested Hierarchies.
One solution is to avoid the problem
altogether. As a rule of thumb, hierar-
chies of more than four to five deep are
to be avoided unless they are structurally
necessary (e.g., graphical user interface).
(3) Use Flattening Tools. High quality
flattening tools – those that assist in pro-
ducing a unified contract by collapsing
the contracts involved in a hierarchy –
can be of help but the problem is also
one of logic and of testing, not of visu-
alization alone.
(4) Avoid Multiple Inheritance.
Current advice by many leading practi-
tioners in OO is to avoid multiple inher-
itance if it is not absolutely necessary
(very rarely is it so).
(4) Inspection. Use inspection rather

than testing to trace through the logic of
multiple inheritance. Again, those inspec-
tion systems designed specifically for
OO would provide facilities to deal with
such issues.

Polymorphism
Polymorphism is the ability of an object
to be many forms. A powerful, impor-
tant, and useful mechanism available in
most OO programming environments,
polymorphism is considered the ability to
substitute one type for another, or in
other words bind a reference to multiple
instances of different types, and is often
closely linked to the concept of dynamic
binding. Dynamic binding allows the
binding of an object to be deferred to as

late as run time, thus permitting the use
of different object types, depending on
the context.

Problems
(1) Incorrect Binding in a Homo-
genous Hierarchy. In homogeneous
systems when various methods belong-
ing to a polymorphic structure are close-
ly related both conceptually and opera-
tionally, testing might not easily reveal a
binding to an incorrect method.
(2) Server-Side Change. A polymor-
phic server might change without any
regard to the client. Under such circum-
stances, an unchanged client may no
longer be able to bind with the server.

Solutions
(1) No Real Good Solution Exists.
Extreme care and extensive value testing
are to be employed. Some techniques
such as evaluating against an explicit
post-condition might be helpful but this
is not a complete solution.
(2) Inspection. Logic of the binding

between the server and the client can be
clear during inspection.
(2) CRC. Anthropomorphization
through the use of CRCs assists in clari-
fying the role of the server and its obli-
gations. This is in essence a simulation
and is employed during design or
redesign. Of course, this technique is
ineffective when the server is changed
without knowledge of the client side.

Process Issues, Managing Defects
It is important to realize that virtually
every step in the software process is an
occasion to introduce a defect that would
ultimately manifest itself in the product
being constructed. Conversely, every step
of the software process should be con-
sidered an opportunity for defect man-
agement. As software engineers, you
must consider opportunities to prevent
defects and opportunities to detect and
therefore remove defects that have
already been injected.

Another important realization, how-
ever, is that no defect management tech-
nique by and of itself is purely a preven-
tive or a corrective one. For example,
engaging in design inspection might pro-
vide the potential to identify and correct
many defects that, if not resolved, would
lead to defects in code. From the per-
spective of the design activity, this is cor-
rective (as you are correcting the design)
whereas from the perspective of imple-
mentation, it is preventive (as you are
preventing the propagation of defects to
implementation).

A number of such solutions and the
software process stage in which they may
be used are shown in Table 1 (see page
16). Software engineers must therefore
select and utilize techniques that con-
tribute to production of high quality
requirements. These techniques assist in
preventing the injection of defects of
omission and commission into our spec-
ification document. This early preventive
treatment has the potential to save you
much defect management of the correc-
tive kind later in the process.

Follow this by employing corrective
techniques that attempt to identify and
help remove defects already extant in the
requirements document. Furthermore,
you should deal with techniques that
concern design, so you may generate
defect-free design as much as possible.
Designs, irrespective of the effort
expended to generate them, will rarely be
defect free. We still need to deal with
design defect identification techniques
such as design inspections. Program code
defect identification through testing and

“It is important to
realize that virtually

every step in the
software process is an
occasion to introduce a

defect that would
ultimately manifest itself

in the product being
constructed.”

Defect Management

September 2003 www.stsc.hill.af.mil 16

code inspection will also be needed for
the same reason.

Finally you must deal with integration
and defect management at the system
level. Specific techniques for all these lev-
els are available in the literature [3] and
due to space limitations shall not be fur-
ther discussed here.

Summary
This article presents a fault model for the
OO paradigm of software development.
This fault model concentrated on specif-
ic issues, whether product-based or
process-based, that pertained principally
to the object paradigm or resulted from
its application. In doing so, however, no
representations were made in terms of
the absence or impossibility of other
forms of faults that can arise independ-
ently of the paradigm utilized. As such,
the model as presented is partial and
focused.

The fault model describes the many
potentials for producing defective soft-
ware that might emerge as a consequence
of utilizing the OO approach. It also dis-
cusses the difficulties that might possibly
be encountered in managing and reduc-
ing the ultimate defect content of the

OO code.◆

References
1. Voas, J. “Object-Oriented Testability.”

3rd International Conference in
Achieving Quality in Software.
Chapman and Hall, 1996: 270-290.

2. Gamma, E., R. Helm, R. Johnson, and

J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Design.
Addison-Wesley, 1995.

3. Younessi, H. Object-Oriented Defect
Management of Software. Prentice
Hall, 2002.

4. Meyer, B. Eiffel: The Language.
Prentice Hall, 1992.

Software Engineering
Process Stage

Preventive (P)
or

Corrective (C)*
Task Technique

Specification P 1. Construct Common Dictionary
2. Set Focus/Goal
3. Build Consensus
4. Cover Model Space
5. Cover Functionality
6. Cover Non-Functional

Requirements

1. Process Element Dictionary (PED)
2. Quality Matrix
3. State-Behavior Modeling (SBM)
4. UML, Formal Specification (e.g., Object Z)
5. Use Cases
6. Architecture

Specification C 1. Validate Requirements
2. Verify Requirements

1. Requirements Inspection
2. Requirements Inspection, CRC, Formal

 Methods

Design P 1. Ensure Traceability
2. Cover Design Space

1. Requirements Traceability Table (RTT)
2. Architectural Patterns, Design Patterns,

Formal Derivation, Contracts

Design C 1. Validate Design
2. Verify Design

1. Requirements Traceability Check (RTC)
2. CRC, Formal Proofs, Design Inspection,

Design Simulation

Implementation P 1. Ensure Uniformity
2. Ensure Traceability
3. Ensure Design Proximity
4. Ensure Accuracy

1. Coding Standards
2. RTT
3. RTT, Feedback
4. Pair Programming

Implementation C 1. Defect Identification
2. Failure Detection
3. Integration

1. Code Inspection, Static Analysis,
Automated Analysis

2. Dynamic Testing; Specification Testing, Use
Case-Based Testing

3. Integration Testing (e.g., Couple Testing,
Pair-WiseTesting or Binary Testing),
Regression Testing

* Indicates whether the technique in the right column has a preventive or corrective effect on the stage on the left.

Table 1: Defect Prevention Techniques

About the Author

Houman Younessi is
professor of Computer
Science at Rensselaer
Polytechnic Institute-
Hartford Graduate Cam-
pus. He is a leading
educator, practitioner,

and consultant in object technology.
Houman is the originator of the Single
Building Model methodology and also
a key member of the Object-Oriented
Process, Environment, and Notation
(OPEN) consortium and one of the
designers of the OPEN Process. He is
author of three books, including
“Object-Oriented Defect Manage-
ment of Software.” Younessi has been
instrumental in the formulation, evalu-

ation, and promulgation of the ISO
15504 Software Process Improvement
and Capability Determination stan-
dard for software process capability
measurement. Younessi is an interna-
tional speaker, and has spoken at the
International Conference on Software
Engineering, the Conference on Tech-
nology of Object-Oriented Systems
USA, and the Asia-Pacific Software
Engineering Conference.

Department of Computer Science
Rensselaer Polytechnic Institute
Hartford Graduate Campus
275 Windsor St.
Hartford, CT 06074
E-mail: houman@rh.edu

September 2003 www.stsc.hill.af.mil 17

Metrics here, metrics there,
metrics metrics everywhere.
ERA and GPA, MPH and MPG;
LDL and HDL, UCL and LCL,
RPM and RBI, BPS and DPI,
upper limits, lower limits,
in-bounds, out-of-bounds,
on schedule, on budget,
out of scope, out of hope!

Can there be any doubt that metricssur-
round us [1]? Measurement and met-

rics are foundational for understanding
an engineering process. In the software-
engineering world, the collection of met-
rics has been problematic, yet its need
persists for process improvement and
product quality monitoring. Project
measures that predict cost and schedule
are easier to obtain and are widely used.
However, collecting software defects to
measure quality is more difficult and thus
not as pervasive as other project meas-
ures.

The key measure related to software
quality is, of course, defects. According
to Watts Humphrey, developer of the
Personal Software ProcessSM (PSPSM),
“The defect content of software prod-
ucts must first be managed before other
more important quality issues can be
addressed” [2]. Any organizational claims
that software quality is improving are
unreliable sans defect measures. This
article focuses on the PSP defect man-
agement system, and reveals how a sys-
tematic approach to defect collection and
analysis provides individual engineers
with the ability to remove defects early in
the software development life cycle.

Personal and peer reviews are pri-
mary sources of defect detection. Test
results are another source of defect
detection, albeit a more resource inten-
sive activity. Worse yet, change requests
and trouble reports are evidence of defects
that have made their way to the cus-
tomer. The PSP’s focus on quality soft-

ware products ameliorates the collateral
damage associated with defects discov-
ered by the customer. Despite large
investments in testing strategies, the
average U.S. software defect removal rate
is about 85 percent [3]. These dismal
results are the consequence of using less
disciplined software-engineering prac-
tices that rely on code and test cycles to
remove defects.

Given that software engineers inject
defects, they should be responsible for
identifying and removing them. Our
experience with the PSP, supported by
the Software Engineering Institute (SEI),
indicates that the application of disci-
plined methods such as PSP reduces the
number of defects injected in the
process and the amount of test time
required to detect and remove them.
This reduction is achieved primarily by
lowering the number of defects that are
introduced and secondarily, by removing
defects early in the life cycle rather than
in testing. Using the PSP defect manage-
ment framework, this article will demon-
strate how software engineers can
improve their defect management
process.

The PSP Framework
The PSP framework is a data-driven
feedback system that allows individual
software engineers to continuously

improve their personal processes by
applying statistical process control tech-
niques at the individual level. A PSP
practitioner uses a defined software
process to apply a set of practices to
develop products, while collecting data
as part of the development process.
Figure 1 illustrates how the collected
measurements are used to analyze and
assess the impact of a practice on the
product and/or process using a feedback
loop. This feedback becomes an inherent
part of all future product development
processes. The framework therefore,
offers a road map for collecting data. By
analyzing the data, engineers are able to
modify their practices and thus improve
predictability and quality.

The framework depicted in Figure 1
shows the seven process steps numbered
from PSP0 to PSP3. On the left are the
new practices that are introduced at that
process step. In PSP 1.1 process step, for
example, task planning and scheduling
planning practices are introduced. It is
important to notice that all previous
process steps evolved into the schedule
planning and tracking process of PSP
1.1. In other words, process steps are
evolutionary and cannot be skipped.

A PSP practitioner decides to use one
of these process steps to produce soft-
ware artifacts. The SEI recommends
using practices embodied in PSP 2.1 that

Defect Management Through the
Personal Software Process

Software quality improvement begins with defect-free software. The Personal Software ProcessSM (PSPSM) defect management
framework provides individual software engineers with the tools to prevent and remove defects early in the life cycle. Our expe-
rience with the PSP indicates that the application of discipline methods such as PSP provides a mechanism for defect pre-
vention as well as early defect removal and substantial reduction in test time. In this article, we describe the PSP defect man-
agement framework and quantitatively demonstrate the reduction of defects by using the PSP defect management methods

Best Practices PSP Processes

Analysis Synthesis

Product
Development

Cyclic Development PSP3

Design Templates PSP2.1

Code Review/Design Review PSP2

Task Planning/Schedule Planning PSP1.1

Size Estimating/Test Reporting PSP1

Coding Standard/Size Measurement/Process Improvement PSP0.1

Time Recording/Defect Tracking/Defect Type Standard PSP0

Product

Product Quality

Process Quality

Schedule and Cost

Direct Feedback
Data

Figure 1: The Personal Software Process Framework

SM Personal Software Process and PSP are service marks of
Carnegie Mellon University.

Joe Schofield
Sandia National Laboratories

Iraj Hirmanpour
AMS, Inc.

Defect Management

18 CROSSTALK The Journal of Defense Software Engineering September 2003

inherits all previous practices. The prod-
uct development process of a PSP prac-
titioner, regardless of which process step
is employed, produces two classes of
output: the project product and a set of
metrics on process and product.
Contrast this approach with the classic
code and test approach that emphasizes
the maturation of the product by remov-
ing defects (or discovering requirements)
during the test phase.

The PSP Defect Management
The goal of any defect management
process is to eliminate defects from soft-
ware products. Unfortunately the prac-
tice often merely tends to reduce defects
[3]. The PSP framework promotes defect
management. While learning and practic-
ing the PSP, engineers are required to
collect and record data on the process
and product during development, includ-
ing defect data. Starting with the first
PSP process step, engineers are intro-
duced to a defect collection method.
Within the PSP, a defect is defined as

anything that will result in failure of soft-
ware to operate, causing rework to cor-
rect it [4]. The defect collection method
consists of establishing a defect classifi-
cation scheme and recording defect
attributes.

For each defect identified, engineers
record the defect type based on the clas-
sification scheme in Table 1, as well as
the following: the injection phase,
removal phase, and correction time [5].
To improve a process, it is necessary to
know the current state of the process. By
writing a program using the first PSP
process step, engineers gain insight into
their process by exploring the question,
“What is my current defect injection/
removal rate?”

This defect collection process contin-
ues until the fifth step of the PSP during
which students would have written seven
programs. Once sufficient defect data are
collected, engineers are required to deter-
mine defect injection and removal rates,
and the associated correction time.
Armed with this information, engineers
produce a design review checklist and a
code review checklist based on their per-
sonal defect profile. A typical defect pro-
file created by PSP defect data is shown
in Figure 2.

Furthermore, the PSP framework
provides a structured review process that
the engineer follows using the checklist
to review his or her work. In the example
data shown in Figure 2, the engineer will
have defect types 50, 20, and 80 on the
checklist because according to personal
data, they are injected most often and
consume the largest repair time. The
fifth process step of the PSP (PSP2)
introduces the design review and code
review activities as part of the process.

The goal is to remove all defects before
compiling and testing.

The PSP review framework consists
of process scripts, checklists, and time
and defect collection forms. The engi-
neer follows the review script that speci-
fies three phases: review, correct, and
check. For each item on the checklist,
engineers review each line of design or
code from beginning to end. Each time a
defect is found it is corrected and its cor-
rectness is verified. Time spent fixing the
defect and the type of defect are record-
ed in the defect log. The PSP review
process, therefore, is a structured and
measured process. The collected review
data includes the time spent in review,
the number of defects found, the time
spent fixing defects, and the number of
lines of design or code reviewed.

From these measures, you can derive
metrics such as lines of code (LOC) per
hour reviewed and defects detected per
hour. During the post-mortem phase of
the project, two additional metrics are
derived called yield and appraisal to failure
ratio (AF/R). Yield is defined as percent
of defects removed before the first com-
pile. AF/R is defined as the ratio of per-
centage of the total time that engineering
spent reviewing a product (appraising)
and percentage of time that engineering
spent compiling and testing a product
(correcting failures). An AF/R ratio of
two reveals that twice as much time was
used to review the product compared to
compiling and testing it.

Data gathered during the PSP class is
then used to assess the quality of the
review and to develop an improvement
strategy. Some of the PSP historical data
suggests that a review rate must be less
than 200 LOC per hour, the yield goal
should be around 80 percent, and the
AF/R should be greater than the number
two.

Unfortunately, the data collected on
current practices of software engineers
indicates that the opposite is true.
Engineers prefer to rush through the
coding phase with little or no design,
minimize reviews, and then correct
defects during the compile/test phase.

The PSP Class Defect Data
As described earlier, PSP students devel-
op 10 programs following progressively
evolving practices using the PSP while
collecting data on their work. The first
seven programs are written using plan-
ning, design, code, compile, test, and
post-mortem as process phases.
Although activities within each phase
grow in sophistication, phases stay the

Defect Types
10 Documentation
20 Syntax
30 Build, Package
40 Assignment
50 Interface
60 Checking
70 Data
80 Function
90 System

100 Environment

Table 1: PSP Defect Types

Defects Removed By Type

0

2

4

6

8

10

12

50 20 80 40 30 10 60 70 90 100

N
um

be
r

of
 D

ef
ec

ts

Types of Defects

Figure 2: Defect Profile of a PSP Student

Defect Management Through the Personal Software Process

September 2003 www.stsc.hill.af.mil 19

same until program eight, at which time
quantitative management practices are
introduced and two new phases – design
review and code review – are introduced.
The expanded and complete PSP con-
sists of the six process phases listed ear-
lier with an additional review phase fol-
lowing both the design and code phases
respectively.

The first program is written using the
PSP0 process to establish a baseline of
current state. Table 2 shows defect data
for five PSP classes. Students attending
these classes are practicing engineers; all
are college graduates. Fifty percent of
the students have a master’s degree and
an average of 11 years experience. As
depicted in Table 2, the range of defects
varies from 69 to 124 (variation of 55
percent) among classes with an overall
average defect rate of 100 per thousand
lines of code (KLOC). Similarly, the test
defect range varies from 25 to 55 (varia-
tion of 45 percent) for each of the five
classes and contains an average test
defect of 38 defects per KLOC. Data
from PSP classes consistently shows a
wide variation in performance among
software engineers. Variation in defects is
no exception.

These data form the baseline from
which performance improvement is
measured. In addition to helping engi-
neers, this data is also useful to the
organization. If this organization were
suddenly required to estimate defect
injection rate as part of preparing a qual-
ity plan, 100 defects/KLOC would be a
valid estimate based on historic perform-
ance. In lieu of these measures, the
organization is void of quantitatively
determining its defect profile or the
amount of time engineers use to fix the
bugs.

Once all of the defect management
practices are introduced, a sharp drop in
both total defects and test defects is
achieved. As shown in Table 2 in all
classes, the overall average in process
defects improved by 50 percent and
overall average test defect improved by
63 percent. Since testing removes only a
fraction of defects [2], fewer defects dis-
covered in test, while performing similar
levels of defect removal, equates to
fewer defects in the final product.
Measured quality improvements are an
additional benefit of following these
process steps.

The next question is, “Do engineers
who learn and apply PSP in their work
processes produce higher quality prod-
ucts than non-PSP trained engineers?”
To answer the question, three recent

graduates of a PSP class agreed to collect
and share data on their projects based on
the PSP model. They gathered data on
13 small maintenance projects with a
total of 13,914 LOC. As shown in Table
3 on those 13 projects, the total defects
per KLOC were 22 and test defects per
KLOC were reduced to four.

While not a statistically viable study,
the similarity between the results over
five classes and those from 13 actual
projects based on the PSP model rein-
forces the fact that dramatic improve-
ment can be achieved if graduates con-
tinue to follow the PSP process.

Summary and Conclusion
Software quality begins with the removal
or substantial reduction of software
defects before other quality attributes
such as maintainability, portability, relia-
bility, or usability can be considered. A
defect is referred to as anything that caus-
es the software not to function as speci-
fied and requires efforts to correct it.
Needless to say, a major source of soft-
ware defects is missing or incomplete
requirements, which are not addressed in
this article and relate to the requirements
engineering process.

However, once a set of requirements
is agreed upon, the next challenge is to
design and build software that satisfies
the requirements and is defect free, that
is, it functions as specified. Once the
requirements are specified, defects enter
the product during design and coding
phases. Since software engineers are
engaged in the design and coding activi-
ties during which defects are injected,
they should also remove them. The qual-
ity principle of do it right the first time stip-
ulates that these defects be detected and
removed by the engineers while in devel-
opment and not during test or deploy-
ment.

The PSP defect management frame-
work enables software engineers to pre-
vent defects and then to identify and
remove injected defects early to avoid

costly corrections later in the life cycle.
There are two components to defect
management: defect prevention and
defect detection. The PSP defect data
collection system provides the necessary
information to use statistical methods to
identify the root causes of defects and to
develop strategies for preventing defect
injection. The PSP’s structured and meas-
ured review process enables software
engineers to detect and remove defects
early. The measurements taken during the
review are analyzed to improve the effi-
ciency of the review process, thus pro-
viding a continuous improvement mech-
anism.

Our experience with teaching classes
and collecting data on students supports
the notion that as engineers use PSP
defect management practices, their defect
injection rate is reduced substantially
(defect prevention), and defect removal
efficiency (defect detection) is increased
resulting in reduced test and repair time.
Lower costs and higher customer satis-
faction follow naturally.

Metrics abound in the construction of
software, as in other engineering disci-
plines. We have attempted to demon-
strate how the use of metrics, in this case
defect collection and analysis, contributes
to measured improvement in software
quality and a reduction in development
and support time. Addi-tional benefits
accrue to organizations as their software
engineers continue to practice the PSP as
part of their daily activity. The PSP pro-
vides a framework for software process
improvement. Its processes can sustain

Start of
class

End of
class

After
class

Total
Defects/
KLOC

100 50 22

Test
Defects/
KLOC

38 14 4

Table 3: Average Defect Rates

Number of
Students

Defects
Per KLOC

Start

Defect Per
KLOC
End

Test Defect
Per KLOC

Start

Test Defect
Per KLOC

End
Class 1 8 69 40 25 9

Class 2 7 108 28 40 11

Class 3 10 83 24 33 21

Class 4 7 124 74 35 10

Class 5 11 119 83 55 17

Average 100 50 38 14

Table 2: Comparison of Defect Profile at Start and End of the PSP Class

About the Authorsenhanced practices within an organiza-
tion’s software engineering community
long after the class has concluded.◆

References
1. International Function Point Users

Group, et. al. IT Measurement: Pro-
fessional Advice from the Experts.
Addison-Wesley, 17 Apr. 2002: 221.

2. Humphrey, W. S. A Discipline for
Software Engineering. Addison-
Wesley, 1995.

3. Jones, Capers. Software Quality.
International Thomson Computer
Press, 1997: 400.

4. Humphrey, W. S. A Discipline for
Software Engineering. Addison-
Wesley, 1995: 12.

5. Ibid: 44.

Additional Reading
1. Khajenoori, S., and I. Hirmanpour. An

Experiential Report on the Impli-
cations of Personal Software Process
for Software Quality Improvement.
Proc. of the Fifth International Con-
ference on Software Quality, Austin,
TX, Oct. 1995 <www.sei.cmu.edu/
tsp/recommended-reading.html>.

Defect Management

20 CROSSTALK The Journal of Defense Software Engineering September 2003

Joe Schofield is a tech-
nical staff member at
Sandia National Lab-
oratories, a multi-pro-
gram laboratory operat-
ed by Sandia Corpora-

tion, a Lockheed Martin Company, for
the United States Department of
Energy. He chairs the organization’s
Software Engineering Process Group,
is the Software Quality Assurance
Group leader, and is accountable for
the introduction of the Personal
Software ProcessSM and the Team
Software ProcessSM. He has dozens of
publications and conference presenta-
tions in the software engineering realm
and has taught graduate level software
engineering classes since 1990.

Sandia National Laboratories
MS 0661
Albuquerque, NM 87185
Phone: (505) 844-7977
Fax: (505) 844-2018
E-mail: jrschof@sandia.gov

Iraj Hirmanpour is a
principal of AMS, Inc.,
a software process im-
provement firm and a
Software Engineering
Institute Personal Soft-

ware ProcessSM/Team Software Pro-
cessSM (PSPSM/TSPSM) transition part-
ner. He is a SEI-certified PSP instruc-
tor and TSP launch coach. Hirman-
pour is also a visiting scientist with the
Carnegie Mellon Software Engineering
Institute collaborating on the transi-
tion of PSP and TSP into academic
curricula.

AMS Inc.
421 7th St. NE
Atlanta, GA 30308
Phone: (386) 405-4691
E-mail: ihirman@earthlink.net

September 2003 www.stsc.hill.af.mil 21

There are a number of methodologies
and approaches to agile development.

For the sake of this article, the discussion
will center on how we at AgileTek handle
defect management within the context of
a software project that uses our Agile+
methodology1. There is sufficient overlap
between the various agile methodologies
that this discussion should have ample
application to any of them

Software defects only exist if, at the
end of the day, someone says, “This soft-
ware is not accomplishing the purpose for
which it was written with the accuracy, effi-
ciency, and ease of use that was intended.”

This article discusses defect manage-
ment in two broad categories: require-
ments defects and implementation defects.
The term requirements is used in a broad
definition to include all types of require-
ments, functional specifications, and other
means to define what the software is sup-
posed to do and, from a functional per-
spective, how it is supposed to do it.
Implementation defects refer to defects in
architecture, design, coding, installation, or
any other aspect of the technical imple-
mentation of a software development
project.

Let me begin with a case in point. More
than a decade ago, I and the other future
AgileTek co-founders received a function-
al specification from a large ($13 billion
today) consumer products company. It was
not an overly complex system, but the
functional specification ran to more than
400 pages. The painstaking detail of the
document was impressive; every detail of
the user interface, validation rules, and
exactly how everything was to work was all
spelled out. We got the job.

While the software was intended for
use by the field sales force, our customer
was the information technology (IT)
organization. We suggested that perhaps it
would be wise for our development team
to sit down with some of the intended
users and review the specifications. We
were told that the IT folks had already
done that and, moreover, the effort had
taken up more of the users’ time than they

wanted to give; there was no need for any
further review. All we needed to do was to
build and test the software to spec – what
we call spec conversion in our business.

What seemed like a straightforward
task of turning the specifications into bits
and bytes got complicated when we dis-
covered that what it said on page 83 con-
tradicted what it said on page 183 and so
forth. Could we have possibly analyzed,
absorbed, and understood those 400 pages

well enough to catch such problems before
we began? Of course not. More impor-
tantly, do you think that anyone in the sales
force really analyzed, absorbed, and under-
stood those 400 pages even though they
approved the specification? Most assured-
ly not! Their eyes probably glazed over
around page 20, and they had no choice
but to approve a specification they neither
had the time nor skill to understand.

Eventually the questions were all
answered (by the IT folks, not the users),
the system was installed in a test environ-
ment, and a group of users came to town
for user acceptance testing. At the end of
the first day of explaining how the system
worked with the users and letting them get
some hands-on experience, my architect
asked the user-group’s supervisor what
she thought of the software. “This isn’t
the software we need!” was her disheart-
ening reply.

I relate this story to underline the
importance of building the right software.

Requirements defects of any nature are
the most disastrous and costly. How are
requirements and requirements defects
managed in Agile+, a software develop-
ment methodology1? Several of the com-
ponents of this methodology speak direct-
ly to this issue.

Customer at the Center of
the Project
One of the problems in the anecdote
above was the fact that the people who
really needed the system to do their work
were isolated from the people who were
building the system. Some development
organizations try to keep the customer at
arm’s length. By building a lot of customer
involvement into our projects, we ensure
that we are getting adequate and frequent
feedback to keep the project on target.

In Agile+, the customer is treated as a
full-fledged member of the development
team with access to all the information to
which the rest of team is privy (e.g., defect
logs, issue lists, etc.). Once on the team,
constant effort is made to ensure that the
customer is an integral part of that team.
An Agile+ project is steered by a dedicat-
ed individual (customer or customer
proxy) who is empowered to determine
requirements, set priorities, and answer
programmers’ questions as they arise.

This is one of the most critical issues
in managing requirements defects. There is
no substitute for adequate client involvement.
Clients must invest the right amount of
time from the right people if they are
going to get an effective result.

Flexibility to Meet Client’s
Special Needs
If there is any conflict between the prod-
ucts produced by our methodology and
the customer’s needs, the methodology is
adapted to serve the customer. For exam-
ple, Agile+ takes a minimal approach to
documentation – only enough to ensure
proper execution and maintenance.

Defect Management in an
Agile Development Environment

Don Opperthauser
AgileTek

Agile development practices are sometimes thought of as an undisciplined approach to software development, lacking such
things as effective defect management. However, agile development does not hinder the use of formal defect management process-
es in any way. On the contrary, agile development does much to reduce the incidence of defects in the first place. This article
will paint the picture of defect prevention and management within an agile development environment.

“There is no substitute
for adequate client

involvement. Clients must
invest the right amount
of time from the right

people if they are going
to get an effective

result.”

Defect Management

22 CROSSTALK The Journal of Defense Software Engineering September 2003

However, in regulated environments such
as pharmaceutical research, painstakingly
detailed documentation is almost always a
required byproduct of any related software
development. In such a case, normal doc-
umentation procedures are modified to
meet project requirements.

Business Process Analysis
A thorough understanding of the business
objectives that the software must achieve is
crucial to reaching desired results. Too
often the development team does not get
involved early enough in the process to
define the software to be built. The discus-
sions that take place during iteration plan-
ning sometimes are not enough to ensure
an understanding of the underlying busi-
ness process to be supported. By the way,
I am using the term business process in the
broadest sense, to include manufacturing
processes, military processes, or any
process that needs to be carried out to
accomplish the goals of an organization.

A formal, facilitated business process
analysis (BPA), with the entire development team
present, should begin any development
effort. It is usually not enough for some
BPA professionals to work for days and
weeks to produce a BPA document, hand
it to the development team, and say, “Read
this.” The discussions and nuances that
occur during the BPA sessions cannot all
be put into words, and certainly the devel-
opment team cannot gain the depth of
understanding needed to design and build
the right application without personal par-
ticipation in the BPA.

There is a very important point behind
all of this. Despite all of our processes and
technologies, software development is a
rather new industry compared to some-
thing like building houses, which we have
been doing for thousands of years. There
are too many variables in building soft-
ware, too many nuances, and too many
possible user actions and paths through
the system. Time to gain a personal under-
standing is needed, and the BPA is the per-
fect vehicle.

User Stories and Story Actors
Expressing requirements in terms that
everyone can understand goes a long way
to ensure you are building the right soft-
ware. Many approaches to requirements
definition produce results that are all but
incomprehensible to the customers who
really understand what the software needs
to be.

In Agile+ and many other approaches
to agile development, requirements for the
system are gathered through user stories
(sometimes referred to as use cases) that

are developed through customer interac-
tion. A user story does not fully define a
requirement; rather, it defines an underly-
ing business need from which the require-
ments can be determined. Later during
architecture development, these stories
inform the scenarios that are used to help
validate the architecture.

We have added to the concept of stories
the concept of story actors. Actors are per-
sonifications of the various categories of
users that the system will encounter.
Thinking of the requirements in terms of
actors brings the requirements to life, and
unmasks nuances that would otherwise
remain invisible to both the developers
and the customer. It enables the require-
ments to be written in terms of how the
system will be used versus desired func-

tions. Finally, by associating who is doing
what, it helps conceptualize and compart-
mentalize the functions.

This approach allows high-level
requirements to be expressed in terms
understandable to users who really know
what the system needs to do and to execu-
tives who must approve them.

Iterative Development
Short iterations allow the customer to see
completed functionality very early on so
that feedback is not only meaningful, but
also received in time to keep the project on
track with respect to the final project goals.

The key tenet in all agile software
development methods is iterative develop-
ment and the unforgiving honesty of
working code. The concept of iterative
development has been around for a long
time and is perhaps best known through
the application of spiral development.

Our iterations are kept short, generally
no more than three to five weeks.
Iterations begin with an iteration planning
session during which the customer and
project team select the user stories to be
implemented during the iteration. Once
the user stories are selected, the iteration
planning continues with consideration of

such elements as screen designs, user
workflow, data input/output, etc. This is
then input to a period of design (days of
design) wherein business analysts and devel-
opers work together to develop specifica-
tions and produce component designs.
Tests for these designs are developed prior
to writing the code; the code is then exer-
cised using these tests.

At the end of each iteration, we deliv-
er working code for the stories implement-
ed and review it with the customer. This
enables our customer and us to evolve our
understanding, challenge assumptions, and
make informed choices and decisions.
Using the information gained during the
iteration review, we are in a much better
position to plan the next iteration.

A software development effort meet-
ing its requirements is analogous to a pro-
jectile hitting its target. In effect, each iter-
ation is an opportunity to provide the
development project mid-course guidance.
By keeping the time period between itera-
tions to no more than five weeks, the feed-
back loops are kept short, thus providing
frequent guidance and ensuring the project
never gets far off-track. Iterative development
is perhaps the single most important vehicle for
managing requirements defects.

In addition to building the right soft-
ware, i.e. effectively managing require-
ments and requirements defects, the more
traditional concept of defect management,
building the software right, must also be
addressed. Implementation defects are a
major source of project trouble in tradi-
tional methodologies where late-stage inte-
gration brings system modules together
near the end of the project. This usually
results in an unbelievable number of
defects. The development team goes into
near paralysis while they try to get their
newly integrated, defect-ridden system
repaired to the point where meaningful
system testing can even begin.

One of my colleagues for many years
liked to refer to “Larry’s two-phase soft-
ware development methodology – defect
creation and defect removal!” Agile+ takes
a two-pronged approach to implementa-
tion defects. Some of the practices help
prevent defects from ever getting into the
software, and others facilitate early detec-
tion and repair.

Let us examine the practices of Agile+
that impact implementation defects.

Identifying System
Components and Interfaces
Clearly defined components and interfaces
are key to quality code. Especially for com-
plex systems, it is important to assure con-
ceptual integrity in the final product. Also,

“The key tenet in all
agile software

development methods is
iterative development and
the unforgiving honesty

of working code.”

Defect Management in an Agile Development Environment

September 2003 www.stsc.hill.af.mil 23

because complex systems can be large, it is
important to enable the system to be
developed in an environment of distrib-
uted ownership.

Architecting a system simply means
identifying the constituent components of
the system and defining the interrelation-
ship(s) between them. The best architec-
tures are isomorphic (one-to-one) map-
pings between problem and program
space. This ensures that a system’s under-
lying structure and components mirror
the problem being solved. This means that
for the program to change requires that
the problem changes, and as a result, you
are change-proofing your program. While
there may be more efficient ways to solve
a problem (e.g., creating one module to
perform similar functions by invoking it in
a context sensitive way), this efficiency will
almost always come at the expense of
time spent debugging and later modifying
the program if one or more of the func-
tions change.

However, it also means something
more. By defining the relationships
between the various components, you have
gone most of the way toward establishing
agreements for the interfaces. The power
of interface agreements is that they serve
as restrictive liberators. In other words, the
individuals working on various system
components are free to design the inter-
nals of those components without regard
for potential untoward effects on the rest
of the system – so long as the interface
agreements are honored.

As you can see from this discussion, a
rigorous approach to identifying compo-
nents and adherence to well-defined inter-
faces severely limits the effect that defects
can have, thus making it easier to localize
and repair defects when they do occur.

Collective Ownership
The team approach leverages the entire
team’s thinking on critical problems and
ensures that no one is working in a vacu-
um, possibly going off in the wrong direc-
tion. The pride of ownership diffuses
through the entire team, creating a high
degree of motivation to write good,
defect-free code. Peer pressure is very
effective if there is someone on the team
who is creating more than his or her share
of defects, thus creating problems for
everybody.

Continuous Integration
Software development history is strewn
with projects that failed at the critical junc-
ture of integration – bringing all of the
components together near the end of the
project. Continuous integration uncovers

integration issues early. In this manner,
integration defects, if any, are introduced
one at a time as small pieces are integrated
into the system and therefore are resolved
more easily.

Relentless Testing/Automated
Contract and Regression Testing
Requiring developers to submit virtually
defect-free code to start with ensures not
only a high quality product, but also con-
sistent quality throughout the project.
Agile+ requires that software contracts be
written and automated tests designed
before coding begins2. Contracts define
the pre-conditions, post-conditions, and
class invariants for any function to be
written, and the automated tests check for
these.

Before a developer can check code
into the configuration management sys-
tem, he or she must have a build of the
entire system, including new code on
either his or her development computer or
on a test system designated for that pur-
pose. The developer must then run not
only his or her newly written automated
test for the new code, but also all auto-
mated tests that exist for the entire system.
Only when all tests return defect-free
results may the developer add his or her
new code to the project. In this way, very
few defects are introduced into a project
build and the system under development
is maintained in a relatively defect-free
state at any given time.

Refactoring3

Designs and architectures are boldly
changed when needed to maintain the
correct architecture throughout the proj-
ect. Development that proceeds without
fully automated tests on the entire system
as described above soon reaches the
point where major changes in architec-
ture become too risky. Developers then
will use workarounds, kludges, and other

poor programming practices to avoid
doing what they should do – make the
major changes necessary to make the sys-
tem work the way it really should.
Refactoring is what enables this architec-
tural and design rework. It keeps the sys-
tem clean and contributes greatly to min-
imizing defects and making it easier to
identify and repair defects that do occur.

Pair Programming
“Two heads are better than one” (and
sometimes cheaper, too). Putting two
developers on very complex or high-risk
tasks decreases the risk of poor results.

Coding Standards
The maintainability of code is directly
affected by having good coding stan-
dards, not the least of which is guidelines
for properly commenting code.

In addition to these best practices
designed to prevent defects, you will of
course need some system for tracking
defects, defect repairs, certification of
repair after retesting, documentation of
items found in system testing that are not
really defects but future enhancements,
etc. These tracking systems may be more
or less sophisticated depending on proj-
ect complexity and client requirements.

In some regulated environments, such
as pharmaceutical or Department of
Defense environments, it may be neces-
sary to track defects and repairs back to
the original affected requirements. The
goal of defect tracking in Agile+ is to
have no more tracking than necessary to
achieve project goals, legal or client
requirements, and metrics desired to ana-
lyze effectiveness of the software devel-
opment effort.

Defect management systems should
track a number of basic things, including
the following:
• An accurate description of the defect,

including detailed steps for reproduc-
ing the defect and as much informa-
tion as possible about the application
environment at the time the defect
was discovered.

• History of the defect, including who
discovered it, who is assigned to
repair it, when it was fixed, who is
assigned to verify and certify the
repair.

• Where the defect originated. In other
words, why is this defect here? Is it a
mistake in requirements, architecture,
design, coding, or perhaps faulty tools
such as a compiler defect, etc?
Too often defect management is so

focused on defect repair and getting the
software out the door that we fail to learn

“Too often defect
management is so

focused on defect repair
and getting the software
out the door that we fail

to learn from what is
happening.”

Defect Management

24 CROSSTALK The Journal of Defense Software Engineering September 2003

from what is happening. Analysis should
take place to determine why the defect
occurred, not just where. Was it bad
information, inadequate skills to do the
job right, careless execution, or some
other cause? Knowing why the defect
occurred will help us continuously
improve our processes and performance.

In conclusion, Agile+ provides a set
of practices that focus on prevention of
both requirements and implementation
defects while facilitating the effective and
efficient identification and repair of
defects that do get into the project.◆

Notes
1. Agile+ is a further refinement of Code

Science, which is described in
“Odyssey and Other Code Science
Success Stories,” CrossTalk Oct.
2002: 19-21.

2. Bertrand Meyer introduced the idea of
Design by Contract. For more on this,
see his book Object-Oriented Software
Construction. 2nd ed. Prentice Hall,
1997.

3. Martin Fowler defines refactoring as
“the process of changing a software
system in such a way that it does not
alter the external behavior of the code
yet improves its internal structure.” For
more on refactoring, see his book

Refactoring: Improving The Design of
Existing Code. 1st ed. Addison-Wesley,
1999.

About the Author
Don Opperthauser’s
software development
career has spanned
responsibilities from
head-down program-
mer to senior executive

responsible for multi-million dollar
projects for Fortune 100 companies.
He successfully managed a multi-mil-
lion dollar software project for the
third largest U.S. corporation. The
project, which was critical to the
client's product development, was
completed in a record five-month peri-
od. Software developed under his lead-
ership was key in providing the
enabling software for the most prof-
itable business unit of another Fortune
100 Company.

Phone: (847) 770-1637
Fax: (847) 813-4903
E-mail:dopperthauser@agiletek.com

Software Certifications
www.softwarecertifications.com
The goal of Software Certifications is to
offer an independent professional certifi-
cation that carries weight in the informa-
tion services marketplace, and is consid-
ered valuable to all of those professionals
who seek and attain one of the certifica-
tions. The Quality Assurance Institute
Professional Certification division spon-
sors and administers the software certifica-
tion programs. Available certifications
include the Certified Software Quality
Analyst and a newly added Certified
Software Project Manager.

Institute of Configuration
Management
www.icmhq.com
The Institute of Configuration Manage-
ment is known for its CMII process,
which is an advanced version of configu-
ration management (CM). CM is the
process of managing products, facilities,
and processes by managing their require-
ments, including changes, and assuring
conformance in each case. CMII is CM
plus continuous improvement in these

five areas: (1) accommodate change, (2)
accommodate the reuse of proven stan-
dards and best practices, (3) assure that all
requirements remain clear, concise and
valid, (4) communicate (1), (2) and (3)
promptly and precisely, and (5) assure that
the results conform in each case. CMII
expands the scope of CM (beyond design
definition) to include any information
that could impact safety, quality, schedule,
cost, profit, or the environment.

International Society of Six
Sigma Professionals
www.isssp.com
The International Society of Six Sigma
Professionals (ISSSP) exclusively promotes
the interests of Six Sigma professionals. It
is a global community comprised of indi-
viduals seeking to learn how Six Sigma
might be introduced – or integrated – into
their business processes, deployment and
implementation experts, and businesses
that are implementing Six Sigma and
other change management practices.
ISSSP is committed to the advancement of
education, research and implementation
of the Six Sigma methodology.

WEB SITES

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave.

Bldg. 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

NOV2002 " PUBLISHER’S CHOICE

DEC2002 " YEAR OF ENG. AND SCI.

JAN2003 " BACK TO BASICS

FEB2003 " PROGRAMMING LANGUAGES

MAR2003 " QUALITY IN SOFTWARE

APR2003 " THE PEOPLE VARIABLE

MAY2003 " STRATEGIES AND TECH.

JUNE2003 " COMM. & MIL. APPS. MEET

JULY2003 " TOP 5 PROJECTS

AUG2003 " NETWORK-CENTRIC ARCHT.

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

Software Engineering Technology

September 2003 www.stsc.hill.af.mil 25

One of the most dominant and serious
complaints arising from the ongoing

software crisis is the inability to estimate
with acceptable accuracy the cost,
resources, and schedule required for a soft-
ware development. Traditional intuitive
estimation methods have consistently pro-
duced optimistic results that have con-
tributed to the too familiar cost overrun
and schedule slippage.

Several schedule and cost estimation
methods have been proposed over the last
decade with mixed and partial success due,
in part, to capability and stability limita-
tions of the estimation models. A signifi-
cant part of the estimate failures can be
attributed to a lack of understanding of
the inner workings of the software devel-
opment process and the impact of that
process on parameters used in the sched-
ule and cost estimates.

For example, a major avionics modern-
ization program was started in the mid-
1980s. The development contract award
for the system development was issued,
but by 1990 it was apparent the software
product would not be delivered. The gov-
ernment accepted the incomplete software
and completed the software in-house. The
failure of another software development
is, by itself, not noteworthy.

Unfortunately this example is very
common. Industry software delivery statis-
tics are quite dismal. Fifty percent of com-
mercial software products are delivered
over schedule, 33 percent are cancelled,
and 75 percent are operational failures.
Government software delivery statistics
are similar.

The following lessons learned discus-
sion is based upon a post-mortem analysis

of this avionics software development.
The intriguing analysis results show this
project was neither unique nor abnormal.
The problems that surfaced during the
project’s life were common in the mid-
1980s environment and are still common
today.

The purpose of this article is to high-
light the major software development and
management issues that led to this pro-
ject’s failure. The issues presented here are
timeless; that is, they are as likely to arise
today as they were at any time in the past.

Lessons Learned
This analysis was a classic study of proj-
ects gone awry. There are many lessons
that can be extracted from the contract
history. Since my experience is largely cen-
tered on the relationship between software
development and methods for predicting
cost and schedule, I focused my attention
on the development environment impact
on the cost and schedule of the avionics
program software. I will not touch upon
other areas such as risk management that
contributed to this project’s failure.

There is no implied order of impor-
tance to the lessons enumerated here.
Each of these issues contributed signifi-
cantly to the software development failure.
Taken together the issues spelled disaster.

Software Reuse and COTS
The magic elixir reuse was the solution to
the industry’s software cost and schedule
problems in the 80s. That was a time when
the new programming language Ada and
the concept of reusable software compo-
nent libraries were very popular. Reused
software in a mid-1980s development

equated to free software much as commer-
cial off the shelf (COTS) software does
in a development environment today.
Unfortunately, software component
libraries never became widely available,
and the cost savings associated with
reusable software were not as large as pre-
dicted.

The concept of COTS software is eas-
iest to understand through a black box anal-
ogy. A COTS component is a black box
that can be fully utilized with no knowl-
edge of the box content. White box
behavior, on the other hand, requires some
knowledge of the internal box workings. A
software component is a white box when
(1) modification is required to meet system
requirements, (2) the component reliability
is in question, or (3) the knowledge of the
component and its documentation are
inadequate for the application. When the
white box condition occurs, the effort to
implement the software system must be
increased to account for reverse engineer-
ing the component, coding the component
changes, and additional testing required to
assure proper component performance
after the modification.

The reusable software baseline pro-
posed for this avionics system develop-
ment was in development by a competitor
for this project. The competitor’s system
had a different architecture and different
operational and performance require-
ments. The delivery schedule for the base-
line system that contained the reusable
software was from six months to a year
following the start of development for the
proposed avionics system.

The contractor defined about 90 per-
cent of the existing avionics system soft-

Lessons Learned From
Another Failed Software Contract

Dr. Randall W. Jensen
Software Technology Support Center

Software project failure has been with us for a long time. Volumes have been written about the list of potential problem areas
in the acquisition of large, complex software systems. The list includes simple things like the cost of reuse, the acquisition
process, unrealistic expectations, and the development environment. The list has not changed much in the last 30 years.
Unrealistic cost and schedule estimates are causes for project failure as often as inadequate technology. Source selection is a
critical acquisition process step. Proper preparation and diligence in this step is key to a successful software project. There are
several activities essential to successful project planning and acquisition, including risk assessment. This lessons-learned dis-
cussion is based upon a post-mortem analysis of an avionics software development. The intriguing analysis results show this
project was neither unique nor abnormal. The problems that surfaced during the project’s inception and following downhill
plunge were common in the mid-80s environment and are still common today. The purpose of this discussion is to highlight
the major software development and management issues that led to this project’s failure. The issues presented here are time-
less; that is, they are as likely to arise today as they were at any time in the past.

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering September 2003

ware as reusable with only about 10 per-
cent of the source lines to be developed as
part of the modernization program. The
assessment was made with only high-level
design information from the baseline sys-
tem. In reality, there was little reusable
software available for the program. Even if
the existing software had been available at
the start of development, the new soft-
ware requirements for the system would
have precluded any benefit from reuse.
The baseline software was not being devel-
oped with reuse as an attribute, nor could
its developer have been expected to be
more than minimally cooperative with the
adaptation of that software to the new
requirements.

Lesson 1: Reusable (COTS) software
never was, is not now, and never will be
free.

There is always some development
effort expended in the use of reusable
software components to engineer and inte-
grate those components into a software
system.

Proposal Evaluation
Source selection is a critical step in the
acquisition process. Proper preparation
and diligence in this step is key to a suc-
cessful software project. There are several
activities essential to successful project
planning and acquisition, including risk
assessment. This analysis focuses only on
the schedule and cost estimate evaluation.

Proposals are typically divided into
technical and cost portions. The technical
proposal is carefully analyzed and evaluat-
ed by a team of application and technolo-
gy experts. A second team of financial
experts evaluates the cost proposal. There
are two potential problems with this two-
team structure. First, the two teams often
perform the evaluations independently.
Technical risks that impact the cost esti-
mate are not communicated adequately, as
happened in this project.

Second, the cost evaluation team is
often relatively inexperienced in using soft-
ware estimating methods and tools. This
does not mean the team is inexperienced
in financial and accounting methods.
Software estimating is a specialty that
requires training and experience. Training
for this discipline is typically little more
than keyboard training; that is, “What key
do I press to get a cost profile?”

It appears the technical and cost evalu-
ation teams were working independently
during the proposal evaluations on this
source selection. The reuse issue created
by the overlap between the modernization

program and the reusable software devel-
opment should have been a major con-
cern. The high reuse level, or extremely
low size estimate, was obviously a key in
the contractor’s proposal strategy. Neither
the cost evaluation team, nor the technical
team, questioned the high reuse percent-
ages. The teams also failed to be con-
cerned about the low size estimate.

Lesson 2: Technical proposal evalua-
tion should be tightly coupled with
cost and schedule evaluation. Isolation
of the two activities leads to contract
disaster.

A should-cost estimate should be com-
pleted prior to the source selection phase
to establish a project plan and provide the
cost evaluation team with a sanity check
for the upcoming proposal evaluation. The
sanity check will vary considerably as con-
tractor capability and risk assessments are
refined during source selection. The cost
evaluation team should provide the
should-cost estimate.

A technique to strengthen the sanity
check is through using an independent
third-party estimate. This type of estimate
is frequently requested by the acquisition
team to validate and refine the cost team
estimate.

Estimating Practices
It is important to develop a reasonable
estimate at the outset of any software
acquisition. The estimated cost and sched-
ule projections are vital for proper project
planning, source selection, resource man-
agement, and risk management. The
absence of a valid estimate is a primary
cause of cost and schedule overruns, pro-
grams that spiral out of control, and failed
programs. Estimate importance is often
ignored or minimized in the rush to get the
project underway.

A significant part of estimate failures
can be attributed to a lack of understand-
ing of the inner workings of the software
development process, and the impact of
that process on the parameters used in the
schedule and cost estimates. One of the
poorly understood variables in the devel-
opment process is the impact of manage-
ment on the ultimate cost and schedule of
the delivered product. The style and envi-
ronment imposed by the project manager
is a major driver in the software equation.

Several methods of schedule and cost
estimation have been available (academic
and commercial) and proven since the
early 1980s. These estimating methods
generally consider the impact of size and
the development environment on the

resulting delivery schedule and resource
requirements. The methods do not arrive
at the resource estimates automatically.
The estimator must understand the
method to input correct parameters to the
tool. This knowledge is only available
through training and experience.

The estimating methods can also pro-
duce incorrect or misleading estimates.
This project is an ideal example of esti-
mate misuse. The contractor’s proposal
estimate grossly erred in the size of the
development task by overestimating the
availability and benefits of reusable soft-
ware components. Other key issues (other
than size) were ignored in proposal esti-
mate. These omissions included the avion-
ics application experience and JOVIAL
language experience of the remote devel-
opment team. Volatility of the develop-
ment environment and experience with
that environment at both development
sites were ignored. Communication diffi-
culties between the sites were dismissed.

The proposal cost evaluation team
noticed a large discrepancy in the pro-
posed software cost when comparing the
cost proposed by the incumbent developer
and the new contractor. The cost evalua-
tion team notified the new contractor that
the team believed the contractor either did
not understand the tasks or that for some
other reason had not bid enough engineer-
ing hours. The contractor responded that
the costs had been verified using a proven
cost model and they did not believe they
made a mistake. The contractor subse-
quently reduced its bid about 15 percent.
An experienced software estimator would
have raised a serious cost risk concern fol-
lowing the contractor response.

Lesson 3: Estimating skill and experi-
ence is essential in software acquisition
and development.

Modern Development Practice
There has been considerable effort in
establishing the importance of good soft-
ware practices and a manageable develop-
ment process in successful software devel-
opment. The trail to modern software
development begins in the 1950s (before
software was born) with the work of W. E.
Deming1. Deming’s work became a basis
for the current Capability Maturity
Model®. We all recognize that large-scale
software development must be well man-
aged to have any possibility of success. In
the mid-1980s, the Waterfall Model repre-
sented the most commonly used software
development approach. The impact of
process and process management was yet
to be defined outside of the software esti-

Lessons Learned From Another Failed Software Contract

September 2003 www.stsc.hill.af.mil 27

mating methods.
One issue that arises almost constantly

is the cost and schedule impact of change.
A change can be as simple as changing
word processors, or as complex as chang-
ing the entire development process. How
long does it take to become proficient in
the Ada programming language? Thirty
days? It is not likely. Historic data places
Ada mastery at more than a few years.
How long does it take to install a new
computer network? A weekend? We have a
tendency as humans to trivialize the effort
to master any new technology. The larger
the number of concurrent changes or
magnitude of a single change, the more
amount of time and cost it takes to accom-
plish that change. This project demonstrat-
ed the human frailty.

The contractor proposed integrating
in-house tools on a state-of-the-art com-
puting system, and supplementing those
tools with government-furnished equip-
ment software to complete the develop-
ment system. The proposal also stated the
need to link a remote test subcontractor to
the new development system. The com-
puter program development plan (CPDP)
was still in outline form at contract award.
The new technology and lack of experi-
ence present in this development environ-
ment should have triggered several risk
issues. Each of the issues involved person-
nel training and experience, system refine-
ment, and testing. None of the environ-
ment problems were considered in the
development cost.

The contractor added a new geograph-
ically remote development site for the
avionics software development almost
immediately after the contract award. This
new organization was not mentioned in
the program proposal or in the preliminary
CPDP. The new remote staff was unfamil-
iar with the contractor organization and
development process (the CPDP had not
been approved), the application area
(avionics), the required programming lan-
guage (JOVIAL), the development tools
and environment, or the network connect-
ing the two development sites. The con-
tractor had not successfully ported the
avionics software tools to the development
computer at the time of this acquisition.
No cost or schedule impact was included
for this set of circumstances. All major
cost estimating methods available at the
time assumed a major impact.

Lesson 4: Instant experience is a myth.

Software development is largely a com-
munication problem. Paper and electronic
interfaces between software engineers

have not proven to be as effective as face-
to-face communication. This is primarily
due to interface complexity and the devel-
opment product clarity. The major soft-
ware estimating tools reduce the software
organization’s productivity for the use of
multiple organizations and/or multiple
development sites.

The new software development organ-
ization that was acquired at the outset of
development was not only new, but was
separated by thousands of miles from the
contractor’s primary site. The communica-
tion between these two sites was intended
to be electronic – yet another new tech-
nology that was not proven. The new per-
sonnel were not only unfamiliar with the
development environment, but also had
no experience or knowledge of the con-
tractor. The organization’s development
practices and procedures were at best doc-
umented, however, seldom followed. The
computing network between the two sites
was still not operational almost two years
after the contract award.

Since the software estimate totally
ignored these issues, as well as the experi-
ence issues, the logical assessment is they
assumed the volatility of the development
environment was also no problem.

Lesson 5: Multiple development sites
and organizations increase risk and
decrease productivity.

Summary
Software project failure has been with us
for a long time. Volumes have been written
about the list of potential problem areas in
the acquisition of large, complex software
systems. The list has not changed much in
the last 30 years. Unreal cost and schedule
estimates are causes for project failure as
often as inadequate technology is.

The acquisition team and the contrac-
tor must share the responsibility of this
classic failure. The proposal never should
have been submitted, and the contract
never should have been awarded. The con-
tractor’s proposal could not have been
based on their experience in the develop-
ment of this type of system. Buzzwords
and hype often cloud judgement, but reuse
has been around much longer than the
hype. Great expectations overrode com-
mon sense in their cost proposal planning
and estimates.

On the other hand, the proposal cost
evaluation team did not have a baseline
with which the proposed costs could have
been compared. The team did compare the
two proposed estimates, noted the large
discrepancy, and acted accordingly. The
cost evaluation team notified the new con-

tractor that the team believed the contrac-
tor either did not understand the tasks or
that for some other reason had not bid
enough engineering hours. The contractor
response was that the costs had been veri-
fied using a proven cost model, and they
did not believe they made a mistake. The
contractor subsequently reduced its bid
about 15 percent. The response should
have at least initiated a serious analysis of
the proposal.

Lesson 6: The major lesson learned
from this software acquisition is “never
make an uninformed decision.”◆

Note
1. Dr. W. Edwards Deming is known as

the father of the Japanese post-war
industrial revival and was regarded by
many as the leading quality guru in the
United States. He passed on in 1993.

About the Author
Randall W. Jensen,
Ph.D., is a consultant
for the Software Tech-
nology Support Center,
Hill Air Force Base,
with more than 40 years

of practical experience as a computer
professional in hardware and software
development. He developed the model
that underlies the Sage and the GAI
SEER-SEM software cost and sched-
ule estimating systems. Jensen received
the International Society of Parametric
Analysts Freiman Award for
Outstanding Contributions to Para-
metric Estimating in 1984. He has
published several computer-related
texts, including “Software Engineer-
ing,” and numerous software and hard-
ware analysis papers. He is currently
preparing “Extreme Software
Estimating” for Prentice Hall, Inc.
Jensen has a bachelor’s of science
degree in electrical engineering, a mas-
ter’s of science degree in electrical
engineering, and a doctorate in electri-
cal engineering from Utah State
University.

Software Technology Support Center
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820
Phone: (801) 775-5742
Fax: (801) 777-8069
E-mail: randall.jensen@hill.af.mil

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering September 2003

Just as beauty is in the eye of the beholder,
what constitutes a defect is guided by

the personal biases and the organizational
position of the person making the evalua-
tion. Is a bug found by a developer during
unit testing a reportable defect, or just a
normal, non-quantifiable part of the devel-
opment process?

To some (many) developers, the latter
is true. Their contention may be that the
whole point of unit testing is to uncover
problems; if they were forced to docu-
ment every bug as a defect, the job would
never be accomplished on time and on
budget. However, if a process engineer
were asked the same question, he or she
might suggest that the uncovering of a
problem during testing is an opportunity
to examine the cause of the problem, to
determine in what phase the defect was
introduced, and to reveal what earlier
process failed to find the defect.

Management, in this scenario, is at
cross-purposes. On one hand it has sched-
ule obligations and does not want to bur-
den its developers with doing extra paper-
work. On the other hand, a process savvy
management is aware of the economy of
finding defects as early in the development
life cycle as possible and thinks any oppor-
tunity for process improvement should be
pursued.

A seemingly more straightforward sce-
nario is to document defects at peer
review meetings. These types of reviews
can take many forms, but their basic task
is to have a product (requirements, design,
code, document, etc.) reviewed by a group
of interested and knowledgeable individu-
als. The output of peer review meetings is
a list of action items or defects that must
be addressed or fixed in a timely fashion.
Even in organizations that have defined
peer review processes, there are often
areas of contention when recording
defects. Many times the line that divides
the definition of action items versus

defects is vague, and defects are incorrect-
ly classified as action items. In other cases,
several discovered defects, which seem
similar in nature, are grouped under one
defect identifier. While this seems expedi-
ent, valuable information required for
defect causal analysis is being lost.

Defect Management
Impediments
You might wonder why it is so difficult to
get buy-in from most developers and
many managers if all the software process
models are treating defects as useful and

even desirable byproducts of develop-
ment. The problem lies in the definition of
the term defect that is found in most ref-
erence sources. As a prime example,
Webster’s Dictionary3 defines a defect as
“a blemish; fault, flaw.” It is difficult to see
the positive value in such a definition. Can
you imagine a teacher of a poorly per-
forming class meeting with the principal
and being congratulated for finding all the
defects in their student’s test papers? Or

can you imagine the president of an auto-
mobile company who gives bonuses to his
engineering staff after they have failed
several crash-test categories? We have
been programmed to equate defects as
failures against the developer, teacher,
manufacturer, etc. Is it any wonder that a
developer would be reluctant to admit
finding defects in his or her work product?

Even in the best-case scenario in
which developers record defects during
peer reviews and testing phases, there are
practices employed in the development
life cycles that make the use of defects, as
a quality measure, questionable. Among
these is the correcting of problems and
errors prior to the formal peer review
processes. Commonly during all life-cycle
phases, regular discussions occur between
developers and system and test engineers.
In many cases, these discussions lead to
changes in documentation, design, and/or
code. These changes are, in the majority of
cases, not formally documented. By the
time formal peer reviews for these prod-
ucts are conducted, most of the question-
able details have been resolved leading to
few if any defects uncovered at the
reviews.

From a process quantitative perspec-
tive, little can be learned from these
reviews. All the pre-review defect infor-
mation has been lost due to the lack of
documentation; defects found at the
reviews, which potentially could be used
to provide insight into the capability of
the review process, are minimal. The sta-
tistical process charts tracking these
reviews over time may resemble a flat-line
electrocardiogram with little or no defect
variation. Figure 1 shows the results of
reviews that have been pre-reviewed with-
out defects being documented. Figure 2
shows a normal distribution of defects
over time (note: points are almost equally
above and below control limit midline).

Testing processes present their own

Defect Management: A Study in Contradictions

Raymond Grossman
L-3 Communication Systems-East

In today's defense business environment, many software and system development contracts require mandatory compliance with
standardized software or integrated process models such as ISO 9000, the Capability Maturity Model® (CMM®) or CMM
IntegrationSM. One component that all these models have in common is the use of defects as a measure of process and prod-
uct quality. Entire key process areas1 and process areas2 are devoted to defect prevention and defect causal analysis and reso-
lution. With such a reliance on this metric as a key indicator, it would seem that the definition and interpretation of the term
defect would be universally understood and accepted. However, nothing could be further from the truth.

“We have been
programmed to equate

defects as failures
against the developer,
teacher, manufacturer,

etc. Is it any wonder that
a developer would be

reluctant to admit finding
defects in his or her

work product?”

Defect Management: A Study in Contradictions

September 2003 www.stsc.hill.af.mil 29

unique impediments to accurate defect
reporting. In the traditional Waterfall Model
for software development, unit testing is the
process immediately succeeding coding. It
has the potential of removing a great deal
of defects and uncovering weaknesses in
earlier life-cycle processes. Yet, in many
organizations, few or no defect measure-
ments are recorded and analyzed. Usually,
the only quantitative measures that can be
determined are the number of passed and
failed unit tests.

Even in organizations that do capture
unit test defects, the documentation is
vague and usually does not include casual
analysis parameters that would pinpoint
the life-cycle event that failed to detect the
defect that was found during the unit test.
Once again the prime culprit for the lack
of defect reporting is fear of retribution
by the developer or team leader. Unlike
other tests such as system-level testing, the
individual who created the code normally
performs unit testing. To report defects
that are found during unit testing is, in
their minds at least, an admission of
incompetence.

A second but no less common expla-
nation for the lack of defect reporting is
time. If done diligently, it takes some effort
to analyze each defect found, to determine
why it was introduced, and to specify
which prior process failed to find it.

While both of these explanations are
understandable, it still makes the unit test
process far less useful as a quality tool.
The same problems may be found in the
software integration phase in those com-

panies where the developer of the code
also writes the integration test procedures
and performs the tests. In some organiza-
tions, however, independent test groups
perform this phase so defect reporting
may be more accurate and complete.

While the usefulness of defect man-
agement analysis is compromised by the
sins of omission, as in the non-reporting
of defects illustrated in the previous cases,
equally damaging is the reporting of inac-
curate defect information. Bad defect
reporting leads to the phenomenon some-
times known in the computing world as
garbage in, garbage out. Simply put, if the
data reported is bad, the analysis and
resulting conclusions will be wrong as
well.

The reasons behind the incorrect
reporting of defects may range from
expedient reporting of defects on manda-
tory forms to the misunderstanding of
defect definitions (as discussed earlier in
this article). In the process-oriented envi-
ronment found in most defense organiza-
tions today, developers are required by
their organization’s standard defined
processes to transcribe defects at various
life-cycle milestones. Pressured by sched-
ules and wary of possible management
criticism, some developers may choose to
fill in the required defect fields with infor-
mation that does not necessarily reflect
the true nature of the problem and/or
cause. The resultant analysis may lead to
incorrect conclusions about the causes of
the defects and thus dilute or eradicate any
benefit derived from the process.

Utilizing Defects for Quality
and Process Improvement
Up until this point, this article has painted
a rather bleak picture of the utility of
defects as a quality measure. Typically,
metrics such as peer review defect density will
yield little benefit as a measurement of
quality if only small numbers of defects
are being reported during the process.
However, there are still process improve-
ment opportunities to be gained by deter-
mining the root causes4 of those defects
that are reported during the software
development life cycles.

If a particular phase seems more
prone to producing defects, the related
process may have to be reviewed and
subsequently updated or changed. This
idea can be applied to the examples pre-
sented earlier in order to show the possi-
ble benefits of finding and analyzing
defects. If the school teacher with the
poorly performing class uses those nega-
tive test results as a basis for changing his
or her style or teaching methods to be
more in compliance with the students’
special needs, the performance of the
students may improve. Similarly, if the
poor crash-test results in the automobile
company cause the improvement of the
related quality assurance methods, future
test results will most likely be positively
affected.

Thus far, only defects found during
the software development life-cycle
processes have been considered. Once a
product has been put under configuration
management and delivered to the cus-

35

30

25

20

15

10

5

0
Jan 2003 Feb 2003 Mar 2003 Apr 2003 May 2003 Jun 2003 Jul 2003

(X, Moving R) Control Chart for: Defect Distribution

UCL (1) LCL (1)

Figure 1: Distribution of Review Defects with Pre-Review Defects not Documented

35

30

25

20

15

10

5

0
Jan 2003 Feb 2003 Mar 2003 Apr 2003 May 2003 Jun 2003 Jul 2003

(X, Moving R) Control Chart for: Defect Distribution

CL (9)()

LCL (0)

UCL (34.70922)

Figure 2: Normal Distribution of Review Defects

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering September 2003

tomer (internal or external company),
defects are uncovered during field-testing,
system testing, and normal customer
usage. These defects are then reviewed,
verified, and categorized and submitted
back to the development team for resolu-
tion. These defects differ in several ways
from those discovered during the develop-
ment life cycle.

First, the reporting reluctance the
developer wrestled with during the devel-
opment life cycle is eliminated. The defect
has been found and now must be dealt
with. In the same vein, the time-to-document-
the-defect dilemma has been removed from
the developer’s plate. Time and budget
have been allotted to analyze and fix the
defect. Finally, the fear of retribution is, if
not eliminated, made less significant. The
defect exists and, no matter how it was
caused or whose fault it was it now must be
corrected.

The key benefits of post-development
cycle defects are that they can be used as
the basis of product and process quality
measurements as well as for process
improvement identifiers. Quality metrics,
such as product defect density, can be cal-
culated from the post-development cycle
defects and used as a basis of comparison
against other projects in order to set prod-
uct goals and to predict future budgets
and schedules. Performing causal analysis
on post-development cycle defects will
enable the process team to determine the
development cycle processes’ defect inser-
tion, removal, and leakage rates and make
the appropriate process adjustments.

The Team Approach to
Improving Defect Management
In an effort to assist developers in distin-
guishing true defects from action items
and to expedite the proper use of tech-
niques such as root-cause analysis and
quantitative process management, some
organizations have established defect
analysis teams (DATs). These teams, usu-
ally consisting of members of the organi-
zation’s Software Engineering Process
Group, are tasked with reviewing the
defect documentation generated by devel-
opers during the various development
processes.

DATs examine questionable items
such as missing fields, inconsistent or
contradictory defect descriptions, or flag
other anomalies. Interviews with the
appropriate developers are held where the
team’s findings are discussed. At these
meetings, the developer and the team
review defect definitions and related
causal analysis concepts, and the defect

documentation is completed to all partic-
ipants’ satisfaction. At times, even pre-
sumably correctly completed documents
are discussed with developers in an effort
to reinforce the defect management con-
cepts.

In most organizations employing this
teaming technique, it is the goal of the
DATs to review selected documentation
from every appropriate software project
in the organization. The employment of
DATs helps foster more consistent and
complete defect reporting and may act as
a catalyst to the institutionalization of
defect management techniques through-
out the organization.

Conclusion
In the best of all possible worlds where
no schedules, egos, or calendars exist,
defect management would be an extreme-
ly useful and informative process in all
phases of software development and
maintenance. However, due to the rea-
sons mentioned in this article, the utility
of defects is diminished during the soft-
ware development processes. Is this an
insurmountable problem with no correc-
tive actions possible? The answer largely
depends on factors outside the control of
the software developer.

Training must be given and constantly
reinforced to change the perception of
defect reporting being purely negative
and self-indicting. The value of uncover-
ing defects and concepts of causal analy-
sis must be part of this training.
Management must also be made aware of
the cost and maintenance savings oppor-
tunities in defect removal in the earliest
possible life-cycle phase. The employ-
ment of DATs is an effective way of
mentoring and reinforcing defect report-
ing concepts and processes. Finally, but
most importantly, management must
assure developers that it supports and

encourages defect identification and doc-
umentation.

While these suggestions are few, they
may look daunting to organizations who
have long histories of treating defects
purely as problems and to developers who
believe that their performance reviews are
negatively affected by the number of
defects found in their products.◆

Notes
1. This is Capability Maturity Model®

nomenclature.
2. This is Capability Maturity Model

Integration nomenclature.
3. PSI & Associates Inc. New Webster’s

Dictionary & Thesaurus. 1991.
4. The root cause is the identified reason

for the presence of a defect or prob-
lem. The most basic reason, which if
eliminated, would prevent recurrence.
<www.isixsigma.com/dictionary/
Root_Cause>.

About the Author

Raymond Grossman
is a senior software
process engineer with
L-3 Communications-
East in Camden, N.J.
He is responsible for

creating and implementing a metrics
program and in helping the organiza-
tion transition to the Capability
Maturity Model® Integration model.
Grossman has more than 30 years
experience in all phases of software
development, including project man-
agement. For the past seven years, he
has been involved in process improve-
ment and software measurements and
metrics, and has been a key player in
several Capability Maturity Model
(CMM) evaluations. Grossman was part
of a team that helped his former organ-
ization achieve a CMM Level 5 rating.
He has a bachelor’s degree in engineer-
ing from the City College of New York
and has been awarded Certified
Professional Management Credentials
from James Madison University.

L-3 Communication Systems–East
1 Federal St.
Camden, NJ 08103
Phone: (856) 338-6220
Fax: (856) 338-2425
E-mail: raymond.grossman@

L-3com.com

“The reasons behind the
incorrect reporting of

defects may range from
expedient reporting of
defects on mandatory

forms to the
misunderstanding of
defect definitions.”

BACKTALK

September 2003 www.stsc.hill.af.mil 31

Back in 1974, I was an application pro-
grammer at the U.S. Air Force

Strategic Air Command (now STRAT-
COM) headquarters, Offutt Air Force
Base. I worked in support of targeting.
My end-user, which at the time was a
Marine lieutenant colonel, needed a sim-
ple program to filter out spurious data
from digitized photoreconnaissance data.
Recognizing my true worth as a top-notch
applications program-
mer (and not having
anybody else to sup-
port his needs), he
asked me to write the
program for him.

In gathering the requirements, I
noticed that there would be hundreds of
data sets each night. Obviously, I couldn’t
run 100 different jobs, so I grouped the
data together into one large nightly run. I
needed a card (yes, it was that long ago –
we used punched cards) to separate the
data streams, so I asked the end-user what
special characters would be present in the
final data. The user replied, “No special
characters are used at all.”

Since I couldn’t get real data to test
(security issues), I faked up some data
separating each data stream using a single
card with a ‘!’ in column one. My test
worked, and I cut the program over to the
operational side of the system.

The very next morning at 2 a.m., I
received a call from the computer opera-
tor (yes, it was that long ago – we had real
live operators to run the card decks)
telling me that my job terminated with
0.001 seconds of CPU time. Now, I am a
hotshot coder, but nothing ran that fast in
Cobol (yes, it was that ... oh, you know). I
threw on a uniform, went in, and after
getting permission to access the real data,
poured through my core dump (yes, it was
that ... never mind) and saw that the very
first data stream had multiple ‘!’s embed-
ded in it. My program had seen each ‘!’ as
a data stream separator, and did not find
enough data in each stream to analyze.

Being righteously indignant, I was
waiting for my user to show up at 0730. I
quickly pointed out to him that he had
asserted that there would be no special
characters, but ‘!’ was used frequently in
the data. His response was to say, “Well, ‘!’
isn’t special. We use it all the time.” At
that point, I became a Zen master when I
realized that the user and I did not speak

the same language. What I had logged as
a defect was, in reality, nothing more than
a simple miscommunication. Isn’t it funny
how that often tends to be the case?

One of the major failings in the way
we currently develop software is that so
many things can hide under the cover of
a defect. Forgot to include a feature? It’s a
defect. Have bad code? It’s another
defect. As a Personal Software ProcessSM

instructor, I teach that not all defects are
created equal. Some come from simple
problems and are simple to fix. Others
have complex causes and are complex to
fix. Frequently, we have defects resulting
from simple errors that are costly to fix.
And, very occasionally, we hit those that
have complex causes, but are simple to
fix.

In BackTalk, we sometimes write
columns that are cynical and sarcastic.
Sometimes we write columns that are
funny. And – as in this column – some-
times I get to point out the obvious. The
following are “obvious things about
defects you (1) probably already know, or
(2) should know, or (3) wish your
user/developer knew:”
1. If you have ever thought of it as

something that can go wrong, it’s not
unexpected any more, is it? It really
can’t be an error anymore – it’s some-
thing you thought of, made a value
judgment/risk assessment about, and
decided to ignore.

2. If any error can occur, it will eventual-
ly. At 3 Gigahertz, lots of instructions
are executed every second. Eventually,
the most bizarre timing occurrences
happen.

3. There is no such thing as foolproof.
Nature and genetics are producing 248
births each minute. Some of them are
bound to do foolish things at an
alarming rate. Don’t ever think,
“Nobody would be so dumb as to ...”
They are. They will. It’s your fault.

4. Quit hiding poor requirements as
defects. Make sure you do root-cause
analysis on each defect – and fix the
problem, not the symptom. If you
have lots of defects due to poor

requirements elicitation and valida-
tion, fix your requirements process
instead of just hiring additional devel-
opers to fix the so-called defects.

5. Don’t settle for large numbers of
defects. If your code is bad, train and
educate your developers to make bet-
ter code. If your design is bad, get
some true designers to help with your
architectural, data, and interface

design. Designing
code is not what
design is about. Most
of your errors will
occur due to poor
architectural design,

poorly thought-out interfaces, or inef-
ficient data. On the other hand, if
your defects are from poor require-
ments, see No. 4.

5. Developers, you have to give the users
what you agreed to give them. If you
need to slip requirements or postpone
deliverables, communicate that to the
users. If you surprise them with
incomplete or defect-ridden code, they
are going to be unhappy.

6. Users, you have to explain what you
need to get code that meets your
needs. If you won’t commit to what
you really need, then you won’t get
what you really need.

7. Developers, before you move to the
next step in your life cycle, verify and
validate what you have. There is no use
proceeding until you know that what
you have so far is correct.

8. Users, if you want it badly, you’ll get it
badly. If you ask for too much, it will
take too much time. You have to com-
promise. Understand that it takes time
to create a software product. You have
a choice – the more you push for fast
delivery, the less quality you will get.

9. No matter how bad the defect is, it
could have been worse. In fact, wait a
while, and you’ll remember your cur-
rent problem as the good old days.
(OK, I just couldn’t keep the cynicism
and sarcasm totally out).

– David A. Cook
david.cook@hill.af.mil

Software Technology Support Center/
Shim Enterprises Inc.

P.S.It’s a column about defects – of course
the list is misnumbered!

Defect Mismanagement

CrossTalk / MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

2
0
0
3
 U

.S
.
G

O
V

E
R

N
M

E
N

T
'S

 TOP 5 QUALITY SOFTWARE PROJECTS

CCROSSROSSTALKALK
The Journal of Defense Software EngineeringThe Journal of Defense Software Engineering

c.hill.af.mil/crosstalk

IF OU LIKE INFORMATION OR TO ENTER,

VISIT OUR WEB SITE

IIIFFF OUOUOU LIKE INFORMATION OR TO ENTER,

VISIT OUR WEB SITE

h ll f l/ lkw c.hill.af.mil/crosstalkc.hill.af.mil/crosstalkwwwwwwwwww

Sept2003cover.qxd 8/6/03 12:21 PM Page 2

	Cover
	Index
	From the Publisher
	2003 U.S. Government's Top 5 Quality Software Projects
	The Bug Life Cycle
	Comparing Lean Six Sigma to the Capability Maturity Model
	Coming Events
	Managing Software Defects in an Object-Oriented Environment
	Defect Management Through the Personal Software Process
	STC 2004 Call for Speakers/Exhibitors
	Defect Management in an Agile Development Environment
	Web Sites
	Lessons Learned From Another Software Contract
	Defect Management: A Study in Contradictions
	BackTalk
	Back Cover

