
Nov03cover.qxd 10/2/03 3:24 PM Page 1

An Introduction to Real-Time Programming
This article provides a thorough walkthrough of considerations real-time programmers
make regarding hardware, operating system, and programming language options.
by Dennis Ludwig

The Ravenscar Profile for Real-Time and High Integrity Systems
Developers using this profile for real-time and high integrity systems can establish
high confidence levels in concurrency properties and requirements within international
standards early in the development life cycle.
by Brian Dobbing and Alan Burns

Software Static Code Analysis Lessons Learned
Here is a definition of static code analysis, reviews of some of the tools, and lessons
learned from a pioneer in this field, The United Kingdom Ministry of Defense.
by Andy German

Decision Point: Will Using a COTS Component Help or Hinder Your
DO-178B Certification Effort?
This article describes how the demands of DO-178B certification can be achieved with commercial
off-the-shelf modules if the vendor is a willing partner who understands the value, importance, and
professionalism that is expected under this type of grueling development and verification process.
by Timothy J. Budden

Defining a Process for Simulation Software Vulnerability Assessments
This article describes the process developed by the U.S. Missile Defense Agency and Auburn University
to evaluate the potential vulnerabilities in shared simulation software as a means of risk mitigation.
by Dr. John A. Hamilton Jr., Col. Kevin J. Greaney, and Gordon Evans

Developing a Stable Architecture to Interface Aircraft to Commercial PCs
These authors introduce a new developmental architecture that maintains the strengths of traditional
architectures and eliminates some of the weaknesses and inefficiencies.
by Dan W. Christenson and Lynn Silver

The Probability of Success
This article explains the statistical methods applied to the earned value indicators and cost and schedule
performance indexes, and introduces a Performance Window graphic as the outcome of this application.
by Walt Lipke

Cover Design by
Kent Bingham.

3

8

25

30

31

DeparDepar tmentstments

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering November 2003

4

9

13

18

22

26

30

From the Publisher

Coming Events

Top 5 Award Nomination
Information

Web Sites

BackTalk

CrossTalk Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela S. Bowers

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 21.

Ogden ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

DeDevvelopment elopment ofof Real-Real-TimeTime SoftwarSoftwaree

PPolicies,olicies, NeNews,ws, andand UpdatesUpdatesSoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

Online Online ArArticleticle

From the Publisher

Development of real-time software differs from the development of non-real-time
software because execution time must be considered. This brings the operating sys-

tem and the underlying hardware processor architecture (memory, processor speed,
bandwidth, etc.) into play. Also, in addition to new classes of defects related to stringent
timing requirements, defect management in general becomes more critical because real-
time applications are often life- or mission-critical.

Most real-time systems require a proprietary real-time operating system to run on, and
therefore the software is typically not transferable to other platforms. Because embedded systems
frequently are airborne (or spaceborne) platforms, the memory used for the software has weight
and power constraints. Bandwidth issues include the amount of memory available or the number
of memory cycles available. Defects can cost more than an inconvenience or money; depending
on the system, defects can cost lives. For example, if the real-time software is used in a military air-
craft, all data on an approaching missile is critical and time-sensitive. Only the most current data
will suffice – and older data (even if only a few seconds old) is useless. However, if the real-time
software is used in weather radar, and the current screen update is not available, then the last update
will probably be sufficient if it is recent enough.

With these additional real-time software requirements come additional testing and maintenance
requirements. The software is difficult to sustain since in many cases, changes to the software
require that all of the code be retested.

Our first article is an overview that discusses many topics that must be considered while devel-
oping real-time software. Dennis Ludwig’s article, An Introduction to Real-Time Programming, uses
terms that most software developers can understand as they try to learn about the different world
of real-time system development.

In The Ravenscar Profile for Real-Time and High Integrity Systems, Brian Dobbing and Alan Burns dis-
cuss this model for building safe and reliable real-time systems. The discussion includes the moti-
vation behind the creation of the Ravenscar Profile, a definition of its specification, the ways in
which it may be used with verification tools to produce evidence of dependability, and even a short
example. Although the Ravenscar Profile is specified in Ada terms, it is based on a language-inde-
pendent set of building blocks that are suitable for constructing typical real-time systems.

As discussed earlier, real-time software is often also safety-critical. Andy German shares his
experiences from developing safety-critical, real-time systems in Software Static Code Analysis Lessons
Learned. This article also presents a unique perspective for many readers since it comes from the
United Kingdom (UK) and shares UK standards.

Defense Order (DO)-178B certification is a standard for the development of aviation software;
however, much is expected under this type of grueling development and verification process. In
Decision Point: Will Using a COTS Component Help or Hinder Your DO-178B Certification Effort? author
Timothy J. Budden describes how the demands of DO-178B certification can be achieved with
commercial off-the-shelf (COTS) modules if the vendor is a willing partner. I am hoping this per-
spective on the ability to use COTS software will help many readers.

In this month’s supporting articles, Dr. John A. Hamilton Jr., Col. Kevin J. Greaney, and
Gordon Evans discuss a process to evaluate potential vulnerabilities in shared simulation soft-
ware in Defining a Process for Simulation Software Vulnerability Assessments. In addition, Dan W.
Christenson and Lynn Silver discuss issues for tying software and hardware together in Developing
a Stable Architecture to Interface Aircraft to Commercial PCs. Finally in our online article, Walt Lipke
writes about evaluating whether or not a project will be on time and within budget in The
Probability of Success.

Development of real-time software is often more tricky than development of other software,
and the resulting software’s performance is often more critical than other software. If you are cur-
rently developing real-time software, I hope you find new and useful information in this month’s
issue of CrossTalk. If you are in a position where you need to learn about real-time software
development, I hope these articles will start you down the right path.

Real-Time Software Development
Requires Rigid Constraints

November 2003 www.stsc.hill.af.mil 3

Elizabeth Starrett
Associate Publisher

Development of Real-Time Software

4 CROSSTALK The Journal of Defense Software Engineering November 2003

An Introduction to Real-Time Programming

Real-time programming requires that you consider things that are hidden from high-level application programmers. Some of
those considerations are choice of hardware, operating system, and programming language. Although these same choices have
to be made by every programmer, the real-time programmer makes the choice from a different set of options.

Real-time programmers must have a
intimate relationship with computer

hardware, and if there is one, the operat-
ing system. Thus, another name for real-
time programming is low-level program-
ming, and at this low level, the silicon
world looks a lot different from high-
level application programming. This arti-
cle will familiarize the reader with some
of the terms and considerations of real-
time programming like the selection of
hardware, operating systems, and high-
level language selection.

Definitions of real time vary [1].
Savitzky [2] provides two definitions, but
here, a real-time system is defined as one
in which the timing of the result is as
important as the logical correctness.
These systems can be classified as hard or
soft. In a hard real-time system, critical
computations have deadlines, and if the
deadlines are not met, the system has
failed. In a soft real-time system, missing
a deadline may not be a failure [3]. Soft
deadlines are based on average perform-
ance. To be considered hard, the compu-
tation times must be deterministic. A sys-
tem is deterministic if it has the ability to
respond to an event in a predictable peri-
od of time [4].

Another system classification is
embedded or not embedded. The most
common definition of an embedded sys-
tem is one that is part of a larger system.
The author prefers to define an embed-
ded system as one that does not interact
with a human. Inputs come from a sen-
sor and outputs go to a controller, as
opposed to the familiar keyboard input
and video display output. Most real-time
systems are embedded and consist of
machine communicating with machine.

Some real-time systems are synchro-
nous, but most are asynchronous. A syn-
chronous system has a clock that keeps
track of time and provides timing signals.
An asynchronous system can accept
inputs from the outside world at any
time; there is no common timing signal
to warn or to synchronize input. The
terms synchronous and asynchronous

are also applied to message passing,
where they have different meanings. In
message passing, synchronous means the
sender waits for the message to be
received; asynchronous means the sender
can proceed immediately after sending a
message [5].

Many real-time systems must do
simultaneous tasks, and making these
tasks coordinate available resources is
one aspect of real-time programming.
Available resources might be physical

such as access to hard storage, a printer,
an input/output (I/O) port, or they
might be logical such as a non-shareable
code segment. The following are the
types of issues that real-time program-
mers handle: “How long will each task
take to complete?” “How soon can
another task be scheduled and start to
run?” “Which task is most important?”
“What happens if one task takes too
long?” “Do the tasks have to communi-
cate, and if so, how?”

In designing real-time systems, choic-
es have to be made about hardware as
well as software. Software decisions
include operating system considerations
as well as language and algorithm choices.

Hardware
Inexpensive hardware choices for con-
trolling a real-time project include micro-
controllers like the Motorola 68HC11,

Intel 8051, or PIC 16F84. See [6] for an
overview of more choices. A personal
computer system could be used if the
operating system allows access to periph-
eral ports. The basic requirements are
input, some processing capability, and an
output.

A microcontroller is optimized for
data acquisition and control purposes. It
contains a central processing unit (CPU),
random access memory, read only mem-
ory, serial and parallel I/O ports, an ana-
log to digital converter, and a timer cir-
cuit. All of these systems communicate
via a data bus. Microcontroller folks do
not refer to the CPU as a microproces-
sor, just as the CPU [7]. However, a
microcontroller can be defined as a
microprocessor with special hardware
support [8].

There are hundreds of microproces-
sors classified as either eight, 16, or 32
bit. The Lego Mindstorms robot uses a
Hitachi eight-bit H8/3292 microproces-
sor [9]. Another classification is reduced
instruction set computing (RISC) or
complex instruction set computing
(CISC). RISC processors use simple
instruction sets, few memory references,
lots of registers, and pipelined instruc-
tion sets, but that does not make them
better for all tasks [10].

Real-time processors have one or
more interrupt request lines (IRQ) to
connect to peripherals. When a peripher-
al wants CPU attention, it asserts the
IRQ. This is considered an asynchronous
event. If the CPU services the request,
the current task is preempted, the pro-
gram counter and other registers are
saved on the stack, and a jump is made to
the location of an interrupt service rou-
tine (ISR). The ISR is the software asso-
ciated with the device causing the inter-
rupt. When the ISR is finished, the state
of the processor is restored, and execu-
tion is continued. The program counter
and register states for a task are called the
context of the program.

Computer program execution is a
sequence of synchronous events con-

Dennis Ludwig
Aeronautical Systems Center

“Many real-time systems
must do simultaneous

tasks, and making these
tasks coordinate

available resources is
one aspect of real-time

programming.”

trolled by a program counter and a sys-
tem clock. A software error, like a divide
by zero, may cause an exception or sys-
tem trap. Traps are not the same as inter-
rupts, but they are usually handled the
same way. Interrupts and asynchronous
events are externally caused while traps
are considered synchronous even though
they are unexpected. Traps usually result
from software errors.

Some items to consider when choos-
ing hardware are the amount of random
access memory needed, whether floating
point assistance is required and provided,
and the granularity of the system time
base. The number of processors used is
another decision that will also affect the
software needed. In a multiprocessor sys-
tem, several CPUs operate simultaneous-
ly and share the processing workload.

One method that is used to distin-
guish microprocessors is the millions of
instructions per second (MIPS) perform-
ance (or Meaningless Indicator of
Performance for Salesmen, according to
[10]). One form of MIPS ratings, called
relative MIPS, measures how many
instructions a VAX 11/780 could have
executed in the same amount of time a
given computer can run a benchmark
program. Different computer architec-
tures and other factors make this rating
less useful, even misleading, but it is still
used [11].

Clock speed is also useless as a meas-
ure of performance because processors
vary in the number of clock cycles
required for memory access and other
instruction executions [12].

Besides a complicated choice of hard-
ware issues, the real-time programmer
has different software issues to consider.
Data structures, control structures, and
operating systems look different from a
low-level perspective.

Data Structures
Real-time programmers have to deal with
some data structures that are normally
hidden from high-level programmers.
The task control block is where the CPU
stores the state of the last run task so it
can be restored.

The semaphore, invented by Edsger
Dijkstra1, is used to coordinate processes
and shared resources. There are two
types of semaphores: binary and count-
ing. A binary semaphore is used to pro-
vide mutual exclusion. A counting sema-
phore is used when a resource can be
used by more than one task at a time [13].
The basic counting type is an integer vari-
able that is accessed only through two
basic operations, wait and signal; howev-

er, an initialize operation is also usually
provided. Modifications to the integer
value of the semaphore must be execut-
ed without interruption.

A macro is a label that replaces a
block of instructions that is used more
than once, but only coded once. It differs
from a subroutine in that the assembler
inserts the code where the call is made
rather than having a jump-to-it com-
mand. It works by text substitution and is
usually faster than a subroutine but takes
up more memory.

A pipe is a stream of data used to
connect tasks, or to provide task commu-
nication. A buffer, like a first-in-first-out
buffer, can implement it. This eliminates
the need to use a file to store temporary
results. A pipe self-regulates its flow so
that it uses less disk space than a tempo-
rary file [14].

A script is a file of characters used for
input or instructions to a program. The
programmer can use it to simulate an

interactive user or other I/O device. A
script file could be a list of commands
for a command interpreter such as a
batch file [15].

A communications port consists of a
queue to hold messages and two sema-
phores. One semaphore controls produc-
ers, or the process that generates mes-
sages, and the other controls consumers,
which are the processes that use the mes-
sages.

Control Structures
Two basic software control structures are
the polling loop and event-driven sys-
tems. In a polling loop, the program
examines each input in turn to see if an
event has occurred. The program struc-
ture is a loop, and the inputs to be exam-
ined are predetermined. If an event
occurs, the polling is stopped, some
action is taken, and the polling continues.
Controlling refrigerator temperature

could be done with a simple polling loop.
The temperature would be read as input
and the compressor turned on or off
based on the reading. If the temperature
is within controlled limits, no action is
taken.

There are three kinds of event-driven
systems: foreground/background, multi-
tasking, and multiprocessor [16]. In an
event-driven system, the program loops
(sometimes called a spin loop) until an
interrupt occurs, at which time the loop
stops and services the interrupt, and then
continues. Interrupt latency is the inter-
val of time measured from the instant an
interrupt is asserted until the correspon-
ding ISR begins to execute. Remember
that an interrupt request is a request. The
processor may have some critical pro-
cessing to finish before it responds and
services the request.

Context switching time is the time the
operating system takes to store the state
of the processor or the contents of the
registers before it begins to process
another task. Because the context switch-
ing time and interrupt latency may not be
constant times, making the system pre-
dictable can be a challenge for the real-
time programmer.

Microcontrollers come with a moni-
tor program that allows programmers to
develop and execute software. Do not
confuse this monitor with the screen
monitor. The word monitor is also used
for a shared data structure that contains a
semaphore [2]. A monitor for a micro-
controller is a program that combines a
debugger, some device drivers, and a
bootstrap loader program. If provided, it
is usually part of the read-only memory.
The bootstrap program initializes the sys-
tem by setting the registers to known
states, and then it calls in or loads the rest
of the required software routines. A
monitor may include an assembler, which
is a program that translates source code
into object code, and can also produce a
listing file.

A linker combines one or more object
code files to produce a hex file. Two stan-
dard formats for the hex file are Intel hex
and Motorola S record files. These are
American Standard Code for Infor-
mation Interchange (ASCII) files so they
can be transported through serial ports.
A loader converts the hex file into an exe-
cutable form called a binary file [17].

The foreground/background system
is basically a polling loop with interrupts
enabled. The loop runs in the back-
ground. Only critical processing is done
inside the interrupt.

Multitasking is a technique to allocate

November 2003 www.stsc.hill.af.mil 5

An Introduction to Real-Time Programming

“Remember that an
interrupt request is a
request.The processor
may have some critical

processing to finish
before it responds and
services the request.”

Development of Real-Time Software

6 CROSSTALK The Journal of Defense Software Engineering November 2003

CPU processing time among several
tasks. While an executing task is using the
physical processor resources, other tasks
have their resources stored in memory.
These resources include the program
counter, stack memory area, and stack
pointer. These systems are classified as
preemptive or nonpreemptive depending
on whether they can preempt an existing
task or not. In a preemptive system, each
task is given a time slice.

Multiprocessor systems have more
than one processor. For more informa-
tion on design considerations for multi-
processor systems, see [18]. Multitasking
and multiprocessor systems usually
require an operating system to provide
task synchronization and inter-task com-
munication.

Operating Systems
Some operating systems are dedicated to
a particular controller board. Some are
designed exclusively for real time but not
a specific board, and others are general-
purpose programs that have been
enhanced to provide real-time services.

Other names used for software rou-
tines that control processing are the
executive, monitor, task manager, or ker-
nel. These terms are sometimes used
interchangeably. A program that sits qui-
etly in the background until it is called to
perform its task is called a daemon.

Some operating systems are available
with the source code, but many are not.
If a bug appears in the code, and source
code is not available, then the program-
mer has to work closely with the vendor
to resolve the problem. A freeware real-
time multitasking kernel with source
code can be found at Embedded Systems
Programming <www.embedded.com>
or at <www. ucos-ii.com>.

Information on some real-time oper-
ating systems (RTOS) can be found at
<www.rtlinux.org>, <www.aero.polimi.
it/~rtai>, <www.qnx.com>, <www.
windriver.com>, or <http://seg.iit.nrc.
ca/projects/harmony>. Other operating
systems could be used (like MSDOS) for
very simple real-time tasks even though
they are not optimized for real time as
long they provide access to the system
I/O ports. Usually a RTOS must support
multithreading, provide timing features,
be predictable, and run with low over-
head.

Operating systems are complex pro-
grams that interface hardware with user
programs. Some modules that make up
an operating system are the scheduler,
dispatcher, context switch, memory
manager, inter-process communication

module, real-time clock manager, inter-
rupt manager, and file system manager.

The scheduler is sometimes called the
dispatcher [19]. The purpose of the
scheduler is to select a process from
among those ready to run, schedule time
for it on the CPU, and maintain a list of
ready processes.

The dispatcher dispatches jobs to the
CPU, using the list created by the sched-
uler. Most real-time operating systems
use a priority-based preemptive sched-
uler to keep the system in order. Priority-
based means that some type of priority
scheme will be used to determine how
the schedule is made. Preemptive means
that a task can be stopped, or another
task can be preempted. In a nonpre-

emptive system, a task must run to com-
pletion or until it suspends itself.

A task gives up processor control
when it terminates, when it voluntarily
suspends, when its time slice is up, or
when a higher priority task becomes
available and the scheduler preempts the
running task to let the higher priority one
run. Preemptive ability reduces priority
inversion, which is having a higher prior-
ity task wait on a lower priority task.
Priority inversion cannot be prevented,
but it can be reduced. The scheduler also
preempts a task when its time slice is up
in order to keep one process from com-
pletely controlling the CPU and blocking
other tasks from running. The scheduler
is the part of the operating system that
decides who gets to do what and when.

If several tasks are allowed to have
the same priority, they are executed in
the order they become ready; this is
called round-robin scheduling. In a static

priority system, the priorities do not
change during run time. Changing the
priority of a task during run time is sup-
ported by some systems, and the algo-
rithms for assigning dynamic priorities
are different from the ones used for stat-
ic priorities. One dynamic scheduling
policy is the earliest-deadline-first algo-
rithm. A static priority policy can be ana-
lyzed so the system reaction is more pre-
dictable.

If higher priority tasks keep a lower
priority task from running, the condition
is called starvation. The number of tasks
should be kept to a minimum and careful
consideration given to priority choices.
The selection should be made based on
what the task does during run time.

In a deadlock, two tasks are waiting
for resources that are held by each other.
Neither task has all the resources needed
to complete, and will not be able to get
them all because the other task is holding
resources and waiting to get more. Tasks
should be required to get all needed
resources before proceeding, and they
must get the resources in the same order.

For an application that will be record-
ing, reporting, and storing data simulta-
neously, each task is a separate, sched-
uled instruction stream. In some sys-
tems, the instruction streams are called
processes, in other systems they are
called tasks, and sometimes they are
called threads. Since some tasks are more
important than others are, some sort of
prioritization is employed. If a piece of
code needs to be executed without inter-
ruptions or being preempted, a data
structure called a semaphore is used.

Real-Time Languages
A lot of real-time programming is done
in assembly language. C is popular, as
well as C++ and Forth. Although Forth
is an interpreted language, it is efficient
because of its stack-oriented design. Java
is also being used, or rather a form of
Java is being used.

A language with automatic garbage
collection is not a good choice for real
time because it hinders determinism, but
there is a working group making a real-
time version of Java, the Real-Time
Specification for Java.

Ada was designed for real time and is
the most powerful of those mentioned.
Annex D of the Ada language specifica-
tion is devoted to real-time issues, and
any compiler that implements annex D
will also implement annex C, which is the
Systems Programming Annex. The
strong type checking can be turned off to
increase speed by using a pragma, while

“Predictability is
extremely important in
real-time programming,

and to get it, you need to
keep track of time.

Response time is the
time it takes the

computer to recognize
and respond to an
external event.”

November 2003 www.stsc.hill.af.mil 7

representation clauses allow mapping to
the hardware. In Ada, a pragma is a direc-
tive to the compiler.

The Time Element
Predictability is extremely important in
real-time programming, and to get it, you
need to keep track of time. Response time
is the time it takes the computer to recog-
nize and respond to an external event.
Survival time is the time during which the
data will be valid. Throughput is the num-
ber of events that the system can handle
in a given time period [20].

As an example, consider a red traffic
light with a queue of cars waiting to go
through. When the light turns green, it
takes time for the first driver to compre-
hend that it is time to go. There is some
reaction time for them to move the foot
from the brake to the accelerator. The sec-
ond car undergoes the same time delay as
the driver recognizes that the first car is
moving, and he or she can now begin to
accelerate. Survival time is the time the
light remains green. Throughput is the
number of cars that get to go through the
light.

Time is a factor in reading, storing, or
recording data. For the system to store
data after it is sensed, a disk may be used.
When the read/write heads move to the
proper cylinder or track, there is some
seek time involved (about 25 milliseconds)
and some settling time. The electro-
mechanical movement has to settle before
the read begins. The proper head has to be
activated. Rotational delay is the time
spent waiting for the proper record to
rotate under the head. The data transfer
rate is the speed at which the data is trans-
ferred from the head to the storage medi-
um and is determined by the rotational
speed and density of the recording medi-
um. Because these times will be different
for each operation, the average times must
be calculated and the worst-case times
known for proper predictability to be
made.

Other time factors considered by a
real-time programmer are bus latency and
context switching time. Bus latency is the
delay incurred when the CPU needs to
acquire the bus to transfer a command or
data. Switching the CPU from executing
one process to executing another requires
saving the state, or context, of the old
process and loading the context of the
new process. The task that does this is
called a context switch, and it takes time
to execute. First, a process has to be
selected from those that are ready. This is
performed by the scheduler part of the
operating system, and the selection

process has more time to be considered
and accounted.

To conceptualize how processes have
to work together but still compete for
resources, most courses on real time use
Edsger Dijkstra’s dining philosophers
problem [21]. There are a group of
philosophers who spend their time either
thinking or eating. They sit at a round
table with a bowl of rice in the middle and
one chopstick on either side of them. In
order to eat, they have to acquire the
chopstick on the left and on the right of
them, and return the sticks when finished.
This is a classic synchronization problem
used to demonstrate allocating resources
between competing processes without
getting into a deadlock or starvation
mode. An Ada implementation for a solu-
tion can be found in [22] Chapter 11.

Tools
Some software tools used by real-time
programmers include simulators, debug-
gers, and analysis algorithms. An instruc-
tion level simulator now supports most
processors. The debugger is usually pro-
vided as part of the monitor package,
and the simulator will probably have a
debugger associated with it. A calculator
that has hex, octal, and binary capability
is very useful.

Another tool is a dump routine (the
Digital Command Language dump, not
the Linux dump) that allows one to
dump the binary contents of a file. On
Windows systems, this can be done with
the debug command. To find out more
about it, open a command prompt win-
dow and enter: C:>debug/?. For Linux, a
hex editor like KHexEdit can be used.

When comparing binary files or port-
ing from one computer to another, con-
sideration has to be given to the way
bytes are ordered within a word. In Big
Endian addressing, the address of a data
element is the address of the most sig-
nificant byte, while in Little Endian

addressing, the address of the data ele-
ment is the least significant byte [23].
Everyone agrees that there are eight bits
to a byte and four bits to a nibble, but the
definition of a word seems to vary. A
word is a grouping of bits moved and
processed as a unit in computing struc-
ture [24]. With that definition, a 16-bit
machine has a 16-bit word, a 32-bit
machine has a 32-bit word, and on an
eight-bit machine, a word and a byte are
the same thing.

If all of the task periods are known in
advance, a set of algorithms called Rate
Monotonic Analysis can be used to pre-
dict timing and throughput requirements.
Unfortunately, it is not always possible to
know the task periods in advance.

Useful hardware tools are a digitized
oscilloscope with memory, a logic analyz-
er, and a counter-timer. These tools can
be used to study timing execution of a
routine by altering it to set a bit on a port
that can be monitored, and then com-
pensating for the time used by the added
code. In-circuit emulators can produce
timing information, if one is available for
the processor.

Conclusion
Real-time programming involves keeping
track of time, coordinating tasks, and
within limits, making events predictable.
This requires an understanding of hard-
ware timing, operating system concepts,
and programming skills. Programming
skills involve assembly programming as
well as a high-level language. As this arti-
cle has shown, there is more involved in
real-time programming than in applica-
tion programming for a desktop comput-
er running a popular operating system.◆

References
1. Jensen, Douglas E. “Eliminating the

Hard/Soft Real-Time Dichotomy.”
Embedded Systems Programming
Oct. 1994: 28.

2. Savitzky, Steven R. Real-Time
Microprocessor Systems. New York:
Van Nostrand Reinhold, 1985.

3. Obenland, Kevin M. “POSIX in Real
Time.” Embedded Systems Program-
ming Apr. 2001: 137 <www.
embedded.com/2001/0104>.

4. Wood, Mike, and Tom Barrett. “A
Real-Time Primer.” Embedded
Systems Programming Feb. 1990.

5. Savitzky 75.
6. The EE Compendium <http://ee

cleversoul.com>.
7. Driscoll, Frederick F., et. al. Data

Acquisition and Process Control With
the M68HC11 Microcontroller. Mac-

An Introduction to Real-Time Programming

“If several tasks are
allowed to have the

same priority, they are
executed in the order

they become ready; this
is called round-robin

scheduling.”

Development of Real-Time Software

Millan Publishers Ltd., 1994: 25.
8. Herzog, James H. Design and Org-

anization of Computer Structures.
Franklin Beedle & Assoc., 1996: 576
<www.ee.furg.br/~silviacb/Arq1.
html>.

9. Sato, Jin. Jin Sato’s Lego Mindstorms:
The Master’s Technique. Trans. Arnie
Rusoff. San Francisco: No Starch
Press, 2002: 55.

10. Turley, Jim. “Ten Lies About
Microprocessors.” Embedded Systems
Programming Jul. 2003.

11. Hennessy, John L., David A. Patterson,
and David Goldberg. Computer Ar-
chitecture: A Quantitative Approach.
2nd ed. Burlington, MA: Morgan
Kaufmann, 1996: 57.

12. Savitzky 18.
13. Labrosse, Jean J. “Understanding

Semaphores.” Embedded Systems
Programming Oct. 1992.

14. Moritsugu, Steve, et al. Practical
UNIX: Contents at a Glance. Que
Corporation, 2000: 910.

15. Savitzky 121.
16. Savitzky 9.
17. Spasov, Peter. Microcontroller Tech-

nology: The 68HC11. 2nd ed.
Englewood Cliffs, NJ: Prentice Hall
College Div., 1996: 154.

18. Thompson, Linda M. “Designing
With Multiple Processors.” Embedded
Systems Programming May 1991.

19. Wood, Mike, and Tom Barrett. “A
Real-Time Primer.” Embedded
Systems Programming Feb. 1990: 23.

20. Savitzky 5.
21. Silberschatz, Galvin. Operating

System Concepts. Addison Wesley
Longman, 1998.

22. Department of Defense Ada Joint
Program Office. Ada 95 Quality and
Style: Guidelines for Professional
Programmers. Herndon, VA: Software
Productivity Consortium, Oct. 1995.

23. Hennessy, et. al 74.
24. Herzog 579.

Note
1. Edsger Wybe Dijkstra (1930-2002) is

best known for his battle to eliminate
the GOTO statement from program-
ming. He also developed an efficient
shortest path algorithm and he
designed and coded the first Algol 60
compiler. Many of his papers can be
found at <www.cs.utestas.edu/
users/EWD>.

Additional Reading
1. Clements, Alan. Microprocessor

Systems Design. PWS Publishers,
1987.

2. Comer, Douglas. Operating System
Design. Englewood Cliffs, NJ:
Prentice Hall, 1984.

3. Jones, Steve. “Managing Real-Time
Complexity.” Embedded Systems
Programming Apr. 1992.

4. Sasaki, Stan. “Evaluating Timing
Performance.” Embedded Systems
Programming Oct. 1992.

5. Spasov, Peter. Microcontroller
Technology: The 68HC11. 2nd ed.
Englewood Cliffs, NJ: Prentice Hall
College Div., 1996.

6. VanZandt, Lonnie. “Scheduling
Sporadic Events.” Embedded Sys-
tems Programming Dec. 2002 <www.
embedded.com/2002/0212>.

7. White Papers. “Why BlueCat Linux
and Real-Time LynxOS?” <www.lynux
works.com/products/whitepapers.
php3>.

8. E. Douglas Jensen’s Real-Time for the
Real World <www.real-time.org>.
(This site has a fun clock to play with
as well as much information about
real-time computing.)

9. Software Engineering for Real-Time
Systems Laboratory <www.enee.umd.
edu/serts/bib/index.shtml>.

10. University of North Carolina.
“Research in Real-Time Systems at
UNC” <www.cs.unc.edu/Research/
dirt/real-time.html>.

11. Jim Turley’s Silicon Insider <www.
jimturley.com>.

12. In-StatMDR. “Microprocessor Re-
port.” <www.MDRonline.com>.

8 CROSSTALK The Journal of Defense Software Engineering November 2003

About the Author

Dennis Ludwig is a
computer engineer at
the Simulation and
Analysis Facility, Aero-
nautical Systems Center
at Wright-Patterson Air

Force Base in Ohio. He has worked
with software for more than 20 years.
He has a Bachelor of Science in electri-
cal engineering from Louisiana Tech
University, a Master of Science
Administration from Georgia College,
and a Master of Engineering from
Mercer University.

ASC/HPEI
2180 8th St.
B145, R 225
WPAFB, OH 45433-7204
Phone: (937) 255-7887
DSN: (785) 255-7887
E-mail: dennis.ludwig@wpafb.af.mil

November 12-14
2003 Federal Chief Technology

Officer Summit
Washington, DC

www.vanheyst.com/CTOSummit/
home.htm

December 7-11
Association for Computing Machinery

SIGAda Annual International Conference
San Diego, CA

www.acm.org/sigada/conf /
sigada2003

December 8-10
Inside ID

Identification Solutions Conference
Washington, DC

www.insideid.com/conference.asp

December 9-10
Institute for Defense and Government

Advancement SoldierTech2003
Washington, DC
www.idga.org

December 11
Real-Time and Embedded

Computing Conference
Seattle, WA

www.rtecc.com/seattle

January 20-22, 2004
Institute for Defense and Government

Advancement Network Centric Warfare
Arlington, VA
www.idga.org

January 26-28
Third Annual Conference on the

Acquisition of Software-Intensive Systems
Arlington, VA

www.sei.cmu.edu/products/events/
acquisition

March 30-31
3rd Annual Southeastern Software

Engineering Conference
Huntsville, AL

www.ndia-tvc.org/SESEC

April 19-22
2004 Software Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

November 2003 www.stsc.hill.af.mil 9

The Ravenscar Profile is now estab-
lished as a state-of-the-art model for

building safe and reliable real-time sys-
tems. The profile was originally defined in
1997 at a workshop of international real-
time experts and is named after the village
of Ravenscar in northern England where
the workshop was held. It is specified as a
subset of concurrency features in Ada95
that exhibit determinism in key areas such
as timing, memory usage, and function
behavior. The original definition has been
slightly refined in light of the application
experience, and the final definition is
being incorporated into the next ISO stan-
dard revision of the Ada language [1].

Although the Ravenscar Profile is
specified in Ada terms, it is based on a lan-
guage-independent set of building blocks
that are suitable for constructing typical
real-time systems, and as input to analysis
tools that provide evidence that the con-
currency requirements of the system have
been met.

Traditional methods of implementing
concurrency in a predictable way have
focused on approaches such as using
cyclic executives that repeatedly execute a
set of functions in a fixed order in preset
time frames. However, such approaches
have become inadequate as system com-
plexity has increased and the burden of
maintaining correct static timelines during
system upgrade becomes prohibitive. This
has led to wider acceptance of concurrent
programming as the preferred approach.

Yet the quality of evidence for concur-
rency properties traditionally has been
rather low. This is because guarantees such
as sufficiency of scheduling to meet dead-
lines, accuracy in timing behavior, correct
execution-time ordering of events, and
correct levels of protection for access to
shared data are difficult to establish for all
possible operational scenarios by testing

alone. In addition, the tools that may be
used to provide this kind of evidence
require specialized inputs that define
deterministic timing behavior, often based
on using a specific kind of model or
restricted source language, and supported
by a real-time operating system with total-
ly deterministic timing characteristics.

The advent of implementations of the
Ravenscar Profile, including some with
supporting evidence certifiable to stan-
dards such as Radio Technical
Commission for Aeronautics, Inc.
(RTCA) Defense Order (DO)-178B [2]
level A, heralds the availability of the most
rigorous environment for developing
high-integrity concurrent programs. This
offers a unique opportunity to developers
of real-time and high integrity systems to
be able to demonstrate early in the life
cycle that nonfunctional requirements
(such as failure modes, timing and order-
ing constraints, and predictable resource
usage) are satisfied rather than discovering
deficiencies during the integration phase
when corrections are often very difficult

and costly to implement.
In this article, we present the follow-

ing: the motivation behind the creation of
the Ravenscar Profile, a brief definition of
its specification, the ways in which it may
be used with verification tools to produce
evidence of dependability, and a short
concluding example.

Motivation
The major drivers that influenced the def-
inition of the Ravenscar Profile are as fol-
lows:
• Inclusion of reliable and predictable

building blocks for real-time systems.
• Elimination of non-deterministic and

highly complex concurrency con-
structs.

• Support for a variety of application-
level analytical verification models and
techniques.

• Practical generation of formal evi-
dence of safety and reliability certifica-
tion for the implementation.
These drivers are highly complementa-

ry. The overall goal is twofold. First is the
ability to develop application software that
includes concurrency and interrupt-relat-
ed activity in such a way that is suitable for
analysis by sophisticated verification tools
and techniques. Second is the ability to
show early in the life cycle that the soft-
ware implementation meets high integrity
and safety-critical requirements.

The verification tools can provide evi-
dence to the highest levels of assurance
that the software meets the related
requirements while also being free from
run-time error. Examples of the kinds of
verification tools and techniques that may
be used with the profile include the fol-
lowing:
• Scheduling analyzers and response-

time analyzers to show that all hard
deadlines and data freshness require-

The Ravenscar Profile for
Real-Time and High Integrity Systems

Alan Burns
University of York

The Ravenscar Profile offers a unique opportunity to developers of real-time and high integrity systems. For the first time in
the history of our industry, there is direct support for constructing deterministic, concurrent software within an international
standard programming language. The Ravenscar Profile is founded on state-of-the-art, deterministic concurrency constructs
defined in ISO standard Ada95. This results in a set of building blocks that are basic enough for constructing most types
of real-time software, while also being sophisticated enough to minimize the risk of error associated with using low-level prim-
itives such as not releasing a lock on all paths. These building blocks are also amenable to the many forms of analyses that
can be applied during development to assure the correctness of complex real-time programs, including scheduling and response
time analysis, data and information flow analysis, exception freedom, and formal analysis using theorem provers and model
checkers. As a result, nonfunctional requirements such as timing and ordering constraints and resource utilization can be
established early in the life cycle with consequent reductions in cost, delays, and risk of failure.

Brian Dobbing
Praxis Critical Systems

“The advent of
implementations of

the Ravenscar Profile ...
heralds the availability
of the most rigorous

environment for
developing high-integrity
concurrent programs.”

ments are met.
• Model checkers to show that the

required system states exist and can be
reached, and that no undesired states
can occur.

• Static analyzers and formal proof tools
to show that the code has been cor-
rectly constructed to meet its design
specification and is free from run-time
exceptions.
The motivation behind the execution

environment to support implementations
of the profile is to satisfy the following
real-time and high integrity constraints:
the footprint is small; the scheduling, syn-
chronization, and timing characteristics
are deterministic; the timing accuracy is at
the resolution of the underlying system
clock; and the run-time support library is
simple enough to generate evidence of
predictability, reliability, and safety.

Definition
The Ravenscar Profile is formally defined
in terms of Ada95 constructs, and this
definition has been accepted for inclusion
in the revision to the ISO standard defini-
tion of the Ada language that is scheduled
for 2005 release. The full definition is con-
tained in a guide on using the Ravenscar
Profile for high integrity systems [3]. The
main components of a Ravenscar pro-
gram are as follows:
1. A fixed set of threads that may be

cyclic (time-triggered) or aperiodic
(event-triggered), including a thread
parameterization mechanism.

2. A fixed set of protected objects that
provide mutually exclusive access to
shared data, including a protected
object parameterization mechanism.

3. A fixed set of synchronization objects
that provide suspend/resume capabili-
ty for threads, including the communi-

cation of protected data as part of
resumption.

4. A fixed set of interrupt handlers that
may store data under mutually exclu-
sive protection.

5. A synchronous delay facility based on
absolute time values that are accurate
to the resolution of the underlying sys-
tem clock.

6. A deterministic fixed-priority preemp-
tive thread scheduling policy.

7. A policy to enforce mutual exclusion
that prevents deadlocks and minimizes
the worst-case time that a thread is
blocked due to contention.
Figure 1 illustrates the combination of

some of these components. In this small
example, a hardware interrupt is delivered
when fresh external data is available to the
system. The interrupt handler stores the
data and triggers a response thread to
process it. The processed data is stored in
a shared data store, and a cyclic thread
periodically obtains the latest version of
this data to further process it to drive a
system output.

Verification
Each thread of control is independently
verified for conformance to its specifica-
tion. This includes a demonstration of
meeting its functional, performance, and
resource utilization requirements, for
example, by performing requirements-
based testing or by using static analysis
methods. Then the program as a whole is
verified against all of its concurrency
requirements, which include the following:
• Synchronization and communication

interactions.
• Freshness of shared data.
• Execution order dependencies.
• Timing constraints such as meeting

deadlines.

In each of these cases, sophisticated
tools and techniques exist to automate the
verification process to show that concur-
rency requirements have been met and to
produce supporting evidence for a regula-
tory authority if necessary. The tool-based
approach can be used early in the devel-
opment life cycle and also simplifies the
process of re-verification (and perhaps re-
certification) after the system has under-
gone modification during maintenance or
a midlife update.

In the rest of this section we look at
three currently supported techniques for
concurrency verification:
1. Static analysis.
2. Scheduling analysis.
3. Formal analysis.

Static Analysis
Existing static analysis tools and tech-
niques can be used to achieve high levels
of proof of correctness and absence of
run-time errors in sequential programs,
for example, see [4, 5]. The SPARK lan-
guage recently has been extended to sup-
port the Ravenscar Profile as its concur-
rency model in such a way as to preserve
the same level of integrity assurance as is
possible for sequential programs [6]. This
is a major advance in the extent of achiev-
able confidence that concurrent programs
are provably correct and cannot result in
run-time exceptions being raised.

At the thread level, relating to an indi-
vidual task or interrupt handler, the analy-
sis is largely unaffected by the addition of
concurrency constructs. In particular, the
static analysis does not consider the tem-
poral aspects – for example, the thread-
level data and information flow analysis
assumes that the thread will be activated
after suspension at some stage.

The main change to existing sequential
flow analysis is that references to share-
able, protected objects must be considered
volatile at all times because the value read
may be generated by another program
thread at any time. In particular, if a
thread writes a shareable, protected object
and later reads it, there can be no assump-
tion that the value written will still be there
when the read is performed. This volatili-
ty is already supported for sequential pro-
grams that access external data such as via
an input/output port. Having modeled
the volatility of shared data in this way, the
existing benefits of proof of correctness
and absence of run-time errors can be
realized for each thread.

At the program level, the major exten-
sion to static analysis to support concur-
rency is to be able to describe the intend-
ed data and information flow across

Development of Real-Time Software

10 CROSSTALK The Journal of Defense Software Engineering November 2003

Interrupt
Data

Event-
Response

Thread
Hardware Interrupt

Get

Trigger

Time-
Triggered

Thread

Interrupt
Handler

Store

Processing

Processed
Data

GetRefresh

Processing

Clock Trigger

System
Output

Put

Figure 1: Examples of Ravenscar Profile Building Blocks in Combination

thread boundaries, and then to verify that
the actual program achieves it. The check
is realized by the composition of each
thread-level flow analysis with those of
the thread interactions via shareable, pro-
tected objects. The intended program-
wide flow relation can then be compared
automatically with the computed actual
flow, and any discrepancies reported as
errors.

A valuable side effect of this analysis is
in the assurance that the constructed pro-
gram is complete. If a thread were inad-
vertently omitted from the program build,
the computed flow analysis would not take
into account the data interactions caused
by that thread – hence the computed flow
analysis would report an error when com-
pared with the intended flows.

Scheduling Analysis
Recent research in scheduling theory has
found that accurate analysis of real-time
behavior is possible given a careful choice
of the scheduling/dispatching method
together with suitable restrictions on the
interactions allowed between threads, for
example, see [7] chapter 13. An example
of a scheduling method is preemptive fixed
priority scheduling. Example analysis
schemes are Rate Monotonic Analysis (RMA)
and Response Time Analysis (RTA).
Preemptive fixed priority scheduling is
generally used with a deterministic mutual
exclusion policy such as Priority Ceiling
Protocol (PCP) to avoid unbounded priori-
ty inversion and deadlocks. This provides
a model suitable for the scheduling analy-
sis of concurrent real-time systems that is
also scaleable to programs for distributed
systems.

This model supports cyclic and aperiodic
threads that communicate and synchro-
nize in a controlled way, and that each may
have timing deadlines. These deadlines
may be the following:
• Hard. When the failure to meet the

deadline is an unacceptable failure of
the system.

• Firm. When occasional missed dead-
lines can be tolerated but there is no
value in completing the action when
the deadline is missed.

• Soft. When occasional missed dead-
lines can be tolerated and there is value
in completing the action when the
deadline is missed.
The Ravenscar Profile requires using

the standard preemptive fixed priority
thread scheduling policy known as First-In-
First-Out (FIFO)_Within_Priorities, and
using PCP.

Extensive and mature tool support
exists for both RMA and RTA, and for the

static simulation of concurrent real-time
programs. The primary aim of analyzing
the real-time behavior of a system is to
determine whether it can be scheduled in
such a way that it is guaranteed to meet its
timing constraints. Whether the timing
constraints are appropriate for meeting
the requirements of the system is not an
issue for scheduling analysis. Such verifica-
tion requires a more formal model of the
program and the application of tech-
niques such as model checking (see
below).

Formal Analysis
The formal analysis of concurrent pro-
grams has been a fruitful research topic
for a number of years. Current standard
techniques allow many important proper-
ties of a concurrent program to be stati-
cally checked, for example the following:
• Dependability. The set of threads

should not enter any undesirable state
(for example deadlock, livelock).

• Liveness. All desirable states of the
set of threads must be reached eventu-
ally (that is, useful progress should
always be made).
In a real-time concurrent system, live-

ness becomes bounded liveness since desir-
able states must be reached by known
deadlines.

Standard programming languages do
not have their semantics defined in a for-
mal mathematical way. Hence it is neces-
sary to link a model of the program to the
program itself. This link cannot be formal,
but can be precise. Using standard pat-
terns as found in the Ravenscar Profile
helps this linkage. The formal model
could be derived from the code or, more
likely in an engineering process, the model
is derived from requirements, and the
code is obtained via a series of refine-
ments from the model.

Verification is via either a proof-of-
theoretic approach or model checking. An
algebraic description can be proved to be
deadlock free, for example, by using a the-
orem prover. Alternatively, a state transi-
tion description can be exercised by an
exhaustive search of the set of states the
program can enter. This checking of the
model can deduce that all desirable states,
and no undesirable states, can be reached.

For real-time systems, it is possible to
add time parameters to the concurrency
model and to then validate temporal
aspects of the program. A common for-
malism for this type of state transition
system is called a timed automaton. Tool
support for model checking sets of timed
automata is well advanced. One of the
very useful features of model checking

tools is that they all produce a well-defined
counter example for any failed check.

There is already experience using
model checking to validate Ravenscar pro-
grams. It is possible to add worst-case and
best-case execution times for state transi-
tions and to then check that deadlines are
never missed. Alternatively, model check-
ing can be used to validate the top-level
description of the timing constraints, leav-
ing scheduling analysis to check deadline
satisfaction once execution times from the
implementation are known. Typical of the
verification that can be achieved with this
approach is to check some end-to-end
deadline through a number of threads,
assuming that each thread itself meets its
timing requirements.

Implementations
There are several mature implementations
of the Ravenscar Profile in Ada95. These
include Ada run-time systems that execute
directly on the target board, and those that
rely on services provided by a commercial
off-the-shelf (COTS) real-time operating
system (RTOS). Some of these implemen-
tations are part of systems that have
achieved formal safety certification to the
highest integrity level, for example Radio
Technical Commission for Aeronautics,
Inc. (RTCA)/ Defense Order (DO)-178B
[2] Level A. In addition, there is growing
support for the profile’s building blocks
within COTS RTOSs in a high-level lan-
guage-neutral manner such that C pro-
grams can use them, for example.

Example
We can apply concurrency verification
techniques to the simple example in
Figure 1. By assigning deadlines to both
threads, model checking would be able to
verify that data from the interrupt was suf-
ficiently fresh when used to influence the
system output. Moreover once the execu-
tion times were known for the two threads
(and the interrupt handler), it would be
possible to use scheduling analysis to con-
firm that the deadlines for each thread
would indeed be met in all possible execu-
tions of the program. Finally, static analy-
sis could show correct system-wide data
and information flow, for example, that
the occurrence of the interrupt directly
affects the system output, as well as
absence of run-time errors.

Figure 2 (see page 12) shows some
Ada code fragments for the expression of
the example in Figure 1 using Ravenscar
Profile constructs.

Conclusion
The Ravenscar Profile offers a unique

November 2003 www.stsc.hill.af.mil 11

The Ravenscar Profile for Real-Time and High Integrity Systems

Development of Real Time Software

opportunity to developers of real-time
and high integrity systems to establish
high levels of confidence in the verifica-
tion of concurrency properties and
requirements early in the development life
cycle. The profile defines a set of building
blocks for constructing deterministic,
concurrent software. The benefits of
using the Ravenscar Profile include porta-
bility via international standardization,
plus support from a wide range of sophis-
ticated analysis tools. In addition, there
exist implementations of the profile to the
highest levels of safety certification. As a
result, there is the opportunity to mini-
mize the risk of deploying complex con-
current systems containing errors that are
hard to find by testing methods alone,
both during initial production and during
long-term maintenance.◆

References
1. Ada95 Reference Manual. Cambridge,

MA: Intermetrics, 1995. International
Standard ISO/IEC 8652:1995(E)
<www.adahome.com/rm95> and
<www.adapower.com/rm95/index.
html>.

2. RTCA-EUROCAE. Software Con-

siderations in Airborne Systems and
Equipment Certification. DO-178B/
ED-12B. Dec. 1992 <www.rtca.org>.

3. Burns, Alan, Brian Dobbing, and
Tuillo Vardanega. “Guide for the Use
of the Ada Ravenscar Profile in High
Integrity Systems.” York, United
Kingdom: University of York, Jan.
2003. Technical Report YCS 348
<www.cs.york.ac.uk/ftpdir/reports/
YCS-2003-348.pdf>.

4. Barnes, John. High Integrity Software
– The SPARK Approach to Safety and
Security. Addison-Wesley, 25 Apr.
2003.

5. Chapman, Rod, and Peter Amey.
Industrial Strength Exception Free-
dom. Proc. of ACM SIGAda, Hous-
ton, TX, 2002 <www.sparkada.com>.

6. Amey, Peter, and Brian Dobbing. High
Integrity Ravenscar. Proc. of Reliable
Software Technologies – Ada-Europe
2003, Toulouse, France, June 2003.
<www.sparkada.com/downloads/
high_ integrity_ravenscar. pdf>.

7. Wellings, Andrew J., and Alan Burns.
Real-Time Systems and Programming
Languages. 3rd ed. Addison-Wesley, 5
Apr. 2001.

12 CROSSTALK The Journal of Defense Software Engineering November 2003

protected Interrupt_Data is
 procedure Handler; -- The interrupt handler code
 pragma Attach_Handler (Handler, Interrupt);
 entry Get (New_Data : out Raw_Data); -- Retrieves the interrupt data
private
 The_Interrupt_Data : Raw_Data;
end Interrupt_Data;

protected Processed_Data is
 procedure Refresh (New_Data : Data); -- Updates the processed data
 procedure Get (Latest_Data : out Data); -- Gets the latest data
private
 The_Processed_Data : Data;
end Processed_Data;

task body Event_Response is
begin
 loop
 Interrupt_Data.Get (New_Data); -- Waits until new interrupt data is available
 Process (New_Data, Output_Data); -- Processes it
 Processed_Data.Refresh (Output_Data); -- Writes the new processed data
 end loop;
end Event_Response;

task body Time_Triggered is
begin
 loop
 delay until Next_Period; -- Waits until start of next cycle
 Processed_Data.Get (Latest_Data); -- Gets the latest processed data
 Process (Latest_Data, New_Output); -- Processes it further
 System_Output.Write (New_Output); -- Writes the new system output
 end loop;
end Time_Triggered;

Figure 2: Ada Code Fragments of Ravenscar Profile Constructs

About the Authors

Alan Burns is head of
the Computer Science
Department, personal
chair, and professor at
the University of York,
which he joined in

January 1990. He has worked for
many years on a number of different
aspects of real-time systems engi-
neering. His research activities have
covered all major aspects of real-time
and safety critical systems. Burns
recently retired as chair of the
Institute of Electrical and Electron-
ics Engineers’ Technical Committee
on Real Time and has chaired the
Real-Time Systems Symposium. He
has authored/co-authored more than
350 papers and reports and eight
books. His teaching activities include
courses in Operating Systems, Sched-
uling, and Real-Time Systems.

Department of Computer Science
University of York
Heslington
YO105DD
York, U.K.
Phone: +44 1904 432779
E-mail: alan.burns@cs.york.ac.uk

Brian Dobbing is a
principal consultant at
Praxis Critical Sys-
tems. He was a key
member of the Inter-
national Real-Time

Ada Workshop that defined the first
version of the Ravenscar Profile,
and has been heavily involved in the
evolution of the profile ever since.
He was the chief architect of the
first implementation of the profile,
the Aonix product ObjectAda/
Raven, that achieved formal safety
certification to RTCA DO-178B
Level A. He is a member of ISO
Working Group 9 (Ada) and of the
ISO Annex H Rapporteur Group
(high integrity systems).

Praxis Critical Systems Ltd
20 Manvers St.
BATH BA1 1PX
U.K.
Phone: +44 1225 823762
E-mail:brian.dobbing@praxis-cs.co.uk

November 2003 www.stsc.hill.af.mil 13

Most software errors are relatively
harmless, albeit annoying, such as

when a word processor crashes. However,
errors in some types of software can have
serious consequences such as the failure
of an aircraft’s flight control software,
which could be catastrophic. Software
that controls a system whose failure could
endanger human life or the aircraft is
termed safety-critical software. Its integrity is
of great concern to developers, users, the
public, and the certification/regulatory
authority.

Recent large-scale assessments of
avionics software have produced some
interesting results that show how impor-
tant language selection is when producing
safe and reliable avionics. This article
presents the following information:
• Covers some of the methods used to

identify safety-critical software and
functionality.

• Discusses some myths of static code
analysis.

• Describes some static analysis tech-
niques.

• Identifies some of the tools available.
• Provides some general results of the

practical application of static code
analysis.

Static Code Analysis
Safety-critical software must be shown
fully predictable in operation and have
the properties required of it [1]. In addi-
tion to dynamic testing, such code is also
subject to static testing: This is the rigor-
ous examination of software (without
running it dynamically) to establish the
properties that will always hold true
under any operating condition. It is an
examination of the code, the architectur-
al design, and the accompanying docu-
mentation, which together provides a pic-
ture of the completeness, or otherwise, of
the software system [2].

There are various techniques that
come under the umbrella term static code
analysis, and these can be characterized by

their nature and depth [3]. Nature refers
to the broad objectives of the analysis
and could be concerned with specific
properties such as portability. Depth
means the analytical depth of the tech-
nique.

Identification of
Safety-Critical Software
The United Kingdom (UK) Ministry of
Defense (MoD) adopted the safety argu-
ment approach in 1992, as retrospective
evaluation of avionics systems had
become complicated. The MoD still
operates the lessons learned/best practice
approach that is used as part of the safe-
ty argument evidence. The system design
standards are used to trap system safety
design requirements; these are Defense
Standard 00-970 [4] and Defense
Standard 00-971 [5] for aircraft. The
safety argument approach is now used
for the complete aircraft and has major
advantages; it does not limit the possible
design solution by being over-prescrip-
tive, and it can cope with rapidly chang-
ing technology.

The current preferred method for
safety-critical code functionality identifi-
cation (including system robustness) is to
use a top-down analysis starting with the
defined safety targets for tolerable cata-
strophic mishap rates, including aircraft
loss. Recent aircraft projects have shown
that bottom-up hazard identification pro-
duces somewhere between 700 and 1,500
hazards. The bottom-up approach does
not prioritize the hazards or show their
relationship to the system as a whole;
their true categorization is unknown.
These large numbers of hazards are diffi-
cult to manage, and so a top-down evalu-
ation is used to refine the argument.

The top-down approach normally
results in approximately 100 of the most
significant hazards being identified from
approximately 10 top-level accidents/
events. The Hazard and Operability
(HAZOP) [6] approach to system and
software functionality assessment has
demonstrated itself to be an invaluable

tool, particularly for defining system
robustness requirements. This approach
allows the system designer and regulatory
authorities to show, through reasoned
argument, that the following occur:
• Hazards are identified.
• Safety functionality is understood.
• Robustness requirements are identi-

fied.
• Hazards are mitigated to a tolerable

level.
The first and best step in hazard miti-

gation is to avoid using safety-critical
software wherever possible.

Why Use Static Code Analysis?
For UK defense projects, Defense
Standard 00-55 [7] is normally recom-
mended. This standard details two basic
approaches to safety critical software:
• The use of formal methods (correct

by design).
• The static analysis of the code (con-

formance with the design).
These are coupled with the following:
• Selection of a suitable high-level lan-

guage (including its subset definition
where appropriate).

• Defensive programming.
• Independence in verification and vali-

dation activities.
• Comprehensive documentation and

configuration management.
• Testing and test coverage.
• Compiler validation.
The formal methods approach has not
been widely adopted for the following rea-
sons:
• Some of the most recent aircraft

entering service started development
back in the late 1970s when formal
methods tool and support was severe-
ly limited. This is also prior to Defense
Standard 00-55 initial issue requiring
the use of formal methods.

• More recently, it is because of the
short lead times and hence the exten-
sive use of commercial off-the-shelf
components for which the Civil
Airworthiness Authorities do not man-
date the use of formal methods. The

Software Static Code Analysis
Lessons Learned©

The United Kingdom Ministry of Defense has been in the forefront of the use of software static code analysis methodologies,
including some of the tools and their application. This article1 discusses what is meant by static analysis, reviews some of the
tools, and considers some of the lessons learned from the practical application of software static code analysis when used to
evaluate military avionics software.

Andy German
QinetiQ Ltd.

© Copyright QinetiQ Ltd. 2003.

14 CROSSTALK The Journal of Defense Software Engineering November 2003

Civil Airworthiness Authorities sug-
gest that the use of formal methods be
considered [8].
The application of static code analysis

techniques in retrospect is not ideal; the
process is best suited and cheapest when
applied during software development.
Following the UK as low as reasonably practi-
cal approach [9] to risk, the retrospective
evaluation of safety-critical code is the
only reasonable method available at pres-
ent to reduce safety-critical anomalies to a
minimum – after all other mitigations have
been considered.

Static Analysis Myths
But We Test It
All software contains errors, and comput-
er programs rarely work the first time [10].
Usually, several rounds of rewriting, test-
ing, and modifying are required before a
working solution is produced [11]. Testing
usually involves running and evaluating
the software across its expected range of
operation. This process is limited by the
tester’s ability to predict this range of
operation, or rather, the range of inputs
that the program will receive. This is how
it is possible for large well tested software
packages to still fail periodically: The user
has done something not anticipated by the
tester. It would be nice to test every state
of a program, but such exhaustive testing
is impractical as it would take far too much
time and expense.

An argument often used against static
analysis is that “our software has been
extensively tested.” This argument does
not stand up. Radio Technical Commis-
sion for Aeronautics, Inc. (RTCA)
Defense Order (DO)-178B [8] Level A
requires extensive modified condition/
decision coverage testing while RTCA
DO-178B Level B does not require this
level of testing. When Level A was com-
pared to Level B, no significant difference
in anomaly rates identified by static analy-
sis was found. Unhappily, the hack-it-and-
bash-it methodology is still prevalent
among many software developers.

Static Analysis Means It Is Safe
The phrase “static analysis means it’s safe”
is heard quite often. Static analysis only
allows us to argue that the code is as fol-
lows:
• As compliant with the software

requirements as present evaluation
methods and technology allows.

• That coding errors have been minimized.
Static analysis does not prove that the

requirements the code was developed
from were correct or show that the com-
piled code is correct.

It Costs Too Much
Based on project experience, an average
10 percent of a military aircraft’s software
– or approximately 500,000 software lines
of code – are found safety critical. The
average cost of retrospective independent
analysis for an aircraft is less than $13 mil-
lion, and on average less than 0.4 percent
of the total development cost for an air-
craft. These costs can be further reduced
if the semantic analysis element is direct-
ed. It has been shown that the most cost-
ly element of static analysis is the seman-
tic element when comparing costs of the
activity to total percentage of anomalies
found. One important area for future
research is the justifiable targeting of
techniques.

If, however, the software is designed
and analyzed as part of the development
process, then the cost savings are likely
when compared to normal industry costs.
There are also considerable through-life
cost savings and system reliability benefits.

Dissimilar Systems
Although Defense Standard 00-55 [7]
allows the use of dissimilar systems to be
combined to create a safety-critical sys-
tem, this becomes a very difficult
approach to argue as being safe. The fol-
lowing issues need to be addressed:
• The comparison software or liveware

(pilots) becomes safety critical (70 per-
cent of aircraft accidents are due to
aircrew error).

• How do you prove dissimilarity?
• Reliability goes down, as the lower

integrity systems are likely to disagree
and fail more often.

• The warning system becomes more
critical.

• The cost of ownership goes up (sup-
porting multiple equipment, increase
aircraft weight, etc.).

• Designers tend to make the same mis-
takes.

Main Static Analysis Techniques
and Methods
Control Flow Analysis (Including
Cyclomatic Complexity)
Control flow analysis can be conducted
using tools or done manually at various
levels of abstraction (module, node, etc.)
and is done for the following reasons:
• Ensure the code is executed in the

right sequence.
• Ensure the code is well structured.
• Locate any syntactically unreachable

code.
• Highlight the parts of the code (e.g.,

loops) where termination needs to be
considered.

This may result in diagrammatic and
graphical representations of the code
being produced.

Data Flow Analysis
The objective of data flow analysis is to
show that no execution paths in the soft-
ware exist that would access a variable not
set to a value. Tools use the results of
control flow analysis in conjunction with
read/write access to variables. It can be a
complex activity, as global variables can
be accessed from anywhere. This analysis
can also detect other code anomalies such
as multiple writes without intervening
reads.

Information Flow Analysis
Information flow analysis identifies how
execution of a unit of code creates
dependencies between the inputs to and
outputs from that code. These dependen-
cies can then be verified against the
dependencies in the specification. This
analysis is often particularly appropriate
for a critical output that can be traced all
the way back to the inputs of the hard-
ware/software interface.

Information flow analysis may be aug-
mented in some tools by using annotations.
These are stylized comments that docu-
ment certain assumptions about func-
tions, variables, parameters, and types.
They enable an analysis to proceed more
efficiently because they give it more infor-
mation relevant to a particular block of
code.

Path Function Analysis (Also Called
Semantic Analysis or Symbolic Execution)
Path function analysis is used to verify
properties of a program by algebraic
manipulation of the source text, without
requiring a formal specification. It
involves checking the semantics of each
path through a program section or proce-
dure. Sophisticated tools give expressions
for the precise mathematical relationship
between inputs and outputs from a partic-
ular program section: They effectively give
the transfer function for that program sec-
tion [12]. They step through the code,
assigning expressions instead of values to
each variable. Thus the sequential logic is
converted into a set of parallel assign-
ments in which output values are
expressed in terms of input values – this
format is easier to interpret. The tools
produce an output for each path consist-
ing of the conditions that cause the path
to be executed, and the result of executing
that path.

Semantic analysis reveals exactly what
the code does in all circumstances for the

Development of Real-Time Software

November 2003 www.stsc.hill.af.mil 15

Software Static Code Analysis Lessons Learned

whole range of input variables for each
program section. However, there is still
the need for substantial human involve-
ment in comparing the tool’s output with
the specification. Compliance analysis
(formal code verification) provides a
reduction in human requirements and
greater automation.

Formal Verification
(Also Called Compliance Analysis)
This is the process of proving, in an auto-
mated process and as far as is possible,
that the program code is correct with
respect to the formal specification of its
requirements. All possible program execu-
tions are explored, which is not feasible by
dynamic testing alone. Depending on the
power of the tool being used, and its sim-
plification ability, the involvement of ana-
lysts may be large or small.

Verification conditions can enhance
compliance analysis. They consist of con-
ditions that should be valid at the start and
end of a block of code (pre- and post-
conditions) and are stated at the start of
that block. In a way, it is like a different
form in which the programmer can
explain the purpose of a block of code.
The analysis might start with the post-
condition and work backward to the start
of the block. If, on reaching the start, the
pre-condition is generated, then the block
of code is provably sound.

Compliance analysis effectively per-
forms a proof of the code against a low-
level mathematical specification. In this
respect, it is by far the most rigorous of
the static analysis techniques. However, its
value depends on the availability of a
specification expressed in a suitable form.
Furthermore, this rigor is at the expense
of cost; productivity is around five lines
of code per man-day.

Independent Evaluation
Since the 1970s, independent code inspec-
tions to reduce code error have been
found to be efficient and cost effective.
Experience from aircraft static code analy-
sis carried out to date shows that code
walkthrough finds about 60 percent of all
the anomalies found.

Other Techniques
Syntax Checks
Syntax checks aim to find language rules
violations such as using a variable of the
wrong type or before it is declared. The
compilers of some languages such as Ada
and Pascal will carry out syntax checks
automatically, whereas languages like C
and assembler need additional tools.

To allow the use of analysis tools,

reduce the number of likely coding viola-
tions and improve code readability. It is
normal to define a rule set when designing
safety-critical code to allow the tools to
carry out the analysis more readily and to
remove some of the more problematic
features. It has been found that the size of
the rule sets is dependent on the language,
such as the following:
• C has some 220 rules suggested [13].
• Ada 83 has approximately 80 rules.
• Southampton Program Analysis and

Development Environment (SPADE)
Ada Kernel (SPARK Ada) has an
extensively defined rule set; sometimes
a reduction in the rules can be agreed
on.

Range Checking
Range checking analysis aims to verify
that the data values remain within their
specified ranges, as well as maintain spec-
ified accuracy. This technique can detect
the following:

• Overflow and underflow analysis.
• Rounding errors.
• Array bounds.
• Stack usage analysis.

This is a form of shared resource
analysis that establishes the maximum
required size of the stack, and whether
there is sufficient physical memory to sup-
port it.

Timing Analysis
Timing analysis ascertains the temporal
properties of the input/output dependen-
cies, including the worst-case execution
time for the correct behavior of the over-
all system. It can be made difficult by lan-
guage features such as manipulation of
dynamic data structures, loops without
static upper bounds, and by using hard-
ware with built-in pipe and cache.

Other Memory Usage Analysis
This is required for any resource that is
shared between different partitions of
software. It reveals the absence of conflict
between the code and other low-level
components such as device drivers and
resource managers.

Object Code Analysis
Object code analysis demonstrates that
the object code is an accurate translation
of the source code and that the compiler
has introduced no errors. The analysis
may be carried out by manual inspection
of the machine code produced by the
compiler – this can be made easier if the
compiler vendor provides details of the
mappings from source code to object
code.

Limitations
Although the various forms of static code
analysis offer many advantages to the sys-
tem developer, they also impose some
constraints. Using these techniques
restricts language choices that may be used
and the choice of the structures used
within these languages. Furthermore,
these analytical methods require highly
skilled and experienced staff to carry out
the tests and analyze the results. It is not a
complete answer for the validation and
verification of safety-critical software
even with the use of automated tools.
Other forms of testing (for example
dynamic) are required to verify certain
aspects, like executing critical features.
Some of the restrictions of static analysis
using automated tools are the following:
• Multitask applications software must

be analyzed a task at a time. Another
form of testing is required to check
task interactions.

• Dynamic aspects of the software (for
example sequences of program execu-
tion) are difficult to model with static
analysis techniques.

• Most automated tools require transla-
tion to an intermediate language before
they can analyze the code. Automatic
translators are available for some lan-
guages, but for others one must either
translate manually or write a new trans-
lator. Some language features do not
have an equivalent in the intermediate
language even with the automatic
translators; they must be manually
translated. The static analysis of the
software depends on its translation
model and the more skilled the analyst,
the more skilled the model produced.
The validation of the intermediate lan-
guage model needs to be considered, as
this can be a major problem.

“All software contains
errors, and computer
programs rarely work
the first time. Usually,

several rounds of
rewriting, testing, and

modifying are required
before a working

solution is produced.”

Development of Real-Time Software

16 CROSSTALK The Journal of Defense Software Engineering November 2003

Air Vehicle Software Analysis
The practical application of static code
analysis has produced some interesting
results. The range of software systems
that have been subjected to analysis
include the following:
• Automatic flight control.
• Engine control.
• Fuel and center-of-gravity manage-

ment.
• Warning systems.
• Anti-icing systems.
• Flight management.
• Stores management.
• Air data units.
• Radio altimeters.
• Anti-skid brakes.

These systems vary in size from 3,000
lines of code to 300,000 lines of code
and include languages from assembler, C,
Pascal, Ada to Lucol, and SPARK Ada
[14].

Effects of Previous Development
Methodologies (RTCA DO-178B) [8]
It is worth reiterating that when compar-
ing RTCA DO-178B [8] Levels A and B
code, no discernible difference was found
by static code analysis demonstrating that
static code analysis is something you
carry out in addition to testing. Even the
most extensive testing does not remove
the anomalies found by static code analy-
sis. Surprising amounts of dead code have
been found in code developed to RTCA
DO-178B Levels A and B.

Effects of Language
The choice of language for a computer
program is important. Not only should
the functionality of the language itself be
considered, but also the availability and
quality of support tools and the expertise
within the development team. Unfor-
tunately, safety-critical software repre-
sents only a small subset of the global
programming effort; most languages are
not designed with high integrity require-

ments in mind. More commonly, com-
mercial factors such as productivity and
ease of use steer the development.

Some languages are better suited to
the production of safety-critical software
than others because they make it easier to
write dependable code, and easier to
demonstrate its freedom from errors.
However, you must bear in mind that the
language itself is a product that is sus-
ceptible to design flaws: Perfect code
could still produce errors when run.

The software lines of code per anom-
aly in Table 1 show some of the metrics
found from various programs. Table 1
shows that the poorest language for safe-
ty-critical applications is C with consis-
tently high anomaly rates. The best lan-
guage found is SPARK (Ada), which con-
sistently achieves one anomaly per 250
software lines of code. The average num-
ber of safety-critical anomalies found is a
small percentage of the overall anomalies
found with about 1 percent identified as
having safety implications. Automatically
generated code was found to have con-
siderably reduced syntactic and data flow
errors.

Software development is often per-
formed on a different system than that
used for the final application. Therefore,
the portability of the code is another fac-
tor to be considered when choosing a
language. That is, how easily it will run in
a different environment to the one in
which it was developed.

The quality of the available compilers
is also important. Modern programming
languages are very complex and sophisti-
cated and hence difficult to understand.
It is therefore challenging to write high
quality, dependable compilers for them
[15]. Widely used compilers and develop-
ment tools should be used whenever
possible, so that there has been plenty of
opportunity for errors to be found (and
hopefully rectified). This also applies to
the language used, reflecting why an

attractive (but little used) language such
as Modula-2 might not be chosen for a
safety-critical application.

Tools Available
There are a number of static code analy-
sis tools available. They offer different
depths of analysis, and some will only
operate on a few languages. Most of
them run on uncompiled source code
and first translate to an intermediate lan-
guage, which the analysis tool itself can
read.

The time taken for the tool to analyze
the code may be only a small fraction of
the time taken to carry out static analysis
of the code. Many tools produce reams
of data that must be laboriously analyzed
and processed; staff requires skill and a
lot of training.

Main Tools
There are three main, well-established
tools used on UK military programs.

Malvern Program Analysis Suite
Malvern Program Analysis Suite
(MALPAS) was developed by Royal
Signals and Radar Establishment
Malvern based on research they carried
out and by Southampton University in
the 1970s. It is now mature and since
1986 has been supplied and supported by
Advantage.

Although automatic translators exist
for most languages, the main ones cov-
ered are Ada and Pascal. There is no con-
cept of pointers in the MALPAS
Intermediate Language and so to analyze
C, for example, the code would first have
to be purged of the use of pointers – a
potentially formidable task.

SPARK
SPARK is a subset of Ada for high
integrity programming first formalized
by Bernard Carré and Trevor Jennings of
Southampton University in 1988. It has
continually evolved and nowadays it is
being more widely used and is gaining
general acceptance particularly as its
tools now run within a lunchtime for an
average-sized safety-critical avionics pro-
gram. In addition, SPARK now supports
tagged types, tasking (Ada95 Ravenscar),
and proof of exception freedom, which have
particular benefits in the context of
RTCA DO-178B [8].

Control flow analysis is not needed as
it is subsumed into the SPARK grammar,
and thus performed on the fly. Data and
information flow requirements have
been expressed as SPARK program
design rules.

Software
Language

Range Software
Lines of Code
Per Anomaly

Anomalies Per
Thousand Lines
of Code

Worst 2 500
Average 6 - 38 167 - 26

C

Best (Auto Code Generated) 80 12.5
Worst 6 167Pascal
Average/Best 20 50

PLM Average 50 20
Worst 20 50
Average 40 25

Ada

Best (Auto Code Generated) 210 4.8
Lucol Average 80 12.5
SPARK Average 250 4

Table 1: Software Language Anomaly Rates

About the Author

Software Static Code Analysis Lessons Learned

November 2003 www.stsc.hill.af.mil 17

Liverpool Data Research Associates
Ltd.Testbed
Liverpool Data Research Associates Ltd.
(LDRA) Testbed was founded in 1975 and
is the oldest developer and retailer of static
analysis tools. Many languages are covered:
Ada, C, C++, Cobol, Coral 66, Fortran,
Pascal, PL/1, PL/Mx86, and Intel and
Motorola assemblers. The LDRA Testbed
will perform the three flow analyses, with
information flow analysis enhanced by the
use of annotations.

Other Tools
Other tools include the following:
• SPADE.
• QA C Programming Research Ltd.
• Cantata and AdaTEST IPL [16].
• Alsys C-SMART – Certifiable Small

Ada Run-Time [15].
• Aonix RAVENSCAR.
• PC-Lint [17].
• LCLint [18].
• PolySpace Technologies [19].
• Compaq Systems Research Center –

Extended Static Checking (ESC) [20].

Conclusion
The safety argument approach should be
used so that safety-critical software is mini-
mized, safety functionality is clearly identi-
fied, and analysis required is justified.

Static code analysis is an effective soft-
ware analysis technique; hence, its use is
recommended in the context of safety-crit-
ical software particularly when conducted
constructively as part of the software
development process.

If it is conducted retrospectively, it is
necessary to specify the nature and depth of
any analysis carried out. Static analysis tech-
niques should be targeted by the safety
arguments. Techniques for targeted, rather
than blanket analyses are being investigated
by a number of organizations. Once devel-
oped, they may reduce the cost of analysis,
while maintaining the required depth in the
areas of interest.

Experience with retrospective static
analysis shows that independent code walk-
throughs are the most effective technique
for software anomaly removal. These seem
to find up to 60 percent of the errors pres-
ent in the code.

The use of automatic code generation
should be encouraged because this seems to
result in low syntactic and data flow errors.

A safe subset of Ada must be consid-
ered when selecting a language for safety-
critical systems, as this will ensure anom-
alies are minimized. SPARK continues to
prove it is the most reliable approach to
safety-critical software. However, C and its
associated forms should be avoided.◆

References
1. Barnes, John. High Integrity Software

– The SPARK Approach to Safety and
Security. Addison-Wesley, 2003
<www.sparkada.com>.

2. Graham, Buckle. Static Analysis of
Safety Critical Software. Proc. of the
16th Safety-Critical System Sym-
posium, Springer, United Kingdom,
1998 <www.safety-club.org.uk>.

3. Wichmann, B. A., A. A. Canning, D. L.
Clutterbuck, L. A. Winsbarrow, N. J.
Ward, and D. W. R. Marsh. “Industrial
Perspective on Static Analysis.” Soft-
ware Engineering Journal Mar. 1995:
69-75 <http://ieeexplore.ieee.org/
xpl/tocresult.jsp?isNumber=8550>.

4. Ministry of Defense. “Design and Air-
worthiness Requirements for Service
Aircraft.” Part 1, Issue 2. Defense
Standard 00-970 Dec. 1999 <www.
dstan.mod.uk>.

5. Ministry of Defense. “General
Specification for Aircraft Gas Turbine
Engines.” Issue 1. Defense Standard
00-971. 29 May 1987 <www.dstan.
mod.uk>.

6. Ministry of Defense. “HAZOP Stud-
ies on Systems Containing Program-
mable Electronics.” Part 1, Issue 2.
Defense Standard 00-58. 19 May 2000
<www.dstan.mod.uk>.

7. Ministry of Defense. “Requirements
for Safety Related Software in Defense
Equipment.” Part 1, Issue 2. Defense
Standard 00-55. 1 Aug. 1997 <www.
dstan.mod.uk>.

8. Radio Technical Commission for
Aeronautics. “Software Considerations
in Airborne Systems and Equipment
Certification.” RTCA DO-178B.
RTCA, Inc., Dec. 1992 <www.rtca.
org>.

9. Ministry of Defense. Regulation of
the Airworthiness of Ministry of De-
fense Aircraft. 4th ed. JSP318b. Nov.
1999.

10. TA Consultancy Services Ltd.
“MALPAS Training Course.” TACS/
9093/15. T A Consultancy, 12 Aug. 1992
<www.tagroup.co.uk/index.htm>.

11. Storey, Neil. Safety Critical Computer
Systems. Addison Wesley Longman,
1995.

12. Proc. of the Advisory Group for
Aerospace Research and Develop-
ment Conference 545 <www.rta.nato.
int/rtohistory/agard.htm>.

13. Hill, M., and L. Whiting. “Risk Reduc-
tion for C Coding.” Internal QinetiQ
Document. DERA Malvern, 1999.

14. Harrison, K. J. “Static Code Analysis
on the C-130J Hercules Safety-Critical

Software.” Aerosystems International,
UK, 1999 <www.damek.kth.se/RTC/
SC3S/papers/Harrison. doc>.

15. Aonix <www.aonix.com>.
16. AdaTEST and Cantata <www.

iplbath.com>.
17. Gimpel Software <www.gimpel.com>.
18. Networks and Mobile Systems

<http://lclint.cs.virginia.edu/guide/
index.html>.

19. Polyspace Technologies <www.poly
space.com>.

20. Compaq Extended Static Checking for
Java <www.research.digital.com/SRC/
esc/Esc.html>.

Note
1. This article is based on a paper that

was presented to the Safety Critical
Systems Club as “Air Vehicle Software
Static Code Analysis Lessons Learned
– Ninth Safety Critical Club Sympo-
sium,” Bristol, United Kingdom:
Springer, Feb. 2001, ISBN 1-85233-
411-8.

Additional Reading
1. Ministry of Defense. “Safety Manage-

ment Requirements for Defense Sys-
tems.” Part 1, Issue 2. Defense Stan-
dard 00-56 Part 2 Issue 2. 13 Jan. 1996
<www.dstan.mod.uk >.

2. QAC <www.programmingresearch.
com>.

Andy German leads a
group of software and
safety engineers for the
Test and Evaluation
Sector of QinetiQ Ltd.
This group provides the

United Kingdom (UK) Ministry of
Defense with independent certification
advice for large military aircraft and
Unmanned Air Vehicles. Andy has
worked in the UK defense sea and air
system sectors for the past 21 years and
will complete a Master of Science
degree in Safety Engineering from
Lancaster University this year.

QinetiQ Ltd.
Safety and Signature Evaluation
Test and Evaluation Services
Room G10, Bldg. 498
MoD Boscombe Down
Salisbury,Wilts SP4 OJF
Phone: +44 (0) 1980 66 3987
Fax: +44 (0) 1980 66 3035
E-mail: agerman@qinetiq.com

Nearly all embedded applications
intended for avionics deployment

must pass the rigorous certification guide-
lines developed by the Radio Technical
Commission for Aeronautics, Inc. (RTCA)
for use by the U.S. Federal Aviation
Administration (FAA) in certifying soft-
ware used in commercial aircraft. These
guidelines, known as RTCA Defense Order
(DO)-178B, prescribe the development
and verification process for software
intended for airborne systems and other
equipment that must meet certain FAA cri-
teria for airworthiness.

Generally, certification is required for
airborne systems and related equipment

whose failure will put human life at risk.
The two regulatory bodies that primarily
administer these safety-critical issues
include the U.S. FAA and the Joint Aviation
Authority in Europe. These agencies rec-
ognize DO-178B as an acceptable means
of compliance for software approval in air-
borne systems.

Certification of avionics equipment is
typically achieved through FAA authoriza-
tion of a type certificate, parts manufactur-
er approval, or a technical standard order.
Systems are categorized by DO-178B as
Level A through Level E, based on their
criticality in supporting safe aircraft flight.
Level A is the most critical, as a failure of

such a system could result in a catastroph-
ic failure condition for the aircraft. Level E
is the least critical, as a failure of such a sys-
tem has no effect on the operational capa-
bility of the aircraft or pilot workload.

Is the COTS Component
DO-178B Certifiable?
The conundrum regarding whether or not
commercial off-the-shelf (COTS) mod-
ules will help or hinder the developer is
better understood in the context of sys-
tem certification. DO-178B certification
requires applying stringent processes for
all software, including COTS components
that ultimately make up the end software
system. This includes generating software
life-cycle data items that support the
entire software system, including any
COTS software that may be incorporated
into the application.

It is important to note that although a
software component may have been pre-
viously included in other systems that
were certified under DO-178B, it does
not necessarily follow that the software
component will be certifiable in the new
system. This complicates the COTS deci-
sion. How does the software developer
determine whether to incorporate a
COTS component that claims to be certi-
fiable or is believed to be certifiable?

How a software component is used is
more important than its prior certifica-
tion history. It is not possible for COTS
vendors to receive standalone certifica-
tion for particular software components
they supply and to have that component
automatically be certified when incorporat-
ed into an application. Moreover, COTS
vendors who claim to be DO-178B certi-
fiable may not be certifiable to the level
(A through E) that is required.
Regardless, while it is not possible to cer-
tify a COTS module in isolation, it is pos-
sible to package that COTS component
in a form that facilitates certification by a
systems developer.

Decision Point:Will Using a COTS Component
Help or Hinder Your DO-178B Certification Effort?©

Avionics software developers today are continually challenged to cut costs and reduce time to market, without compromising the
safety of their application. Many project leaders look to commercial off-the-shelf (COTS) software components as a possible means
to reduce software development costs and development time. The requirements to “prove” software quality under Defense Order
(DO)-178B may be difficult, but the opportunity demands consideration of COTS module integration where possible.
Understand what is certifiable, how to get the right information from your vendor, and the importance of DO-178B traceability.

Timothy J. Budden
AVISTA, Incorporated

Is COTS
component
certifiable
under DO-

178B?

Is COTS
component

cerfiable
under level
needed?

Are data items
available for

COTS
component?

Can you get
necessary

information from
COTS vendor?

NONO/NOT SURE NO

YES YES

YES/NOT SURE

Integrate data items into
complete software

system.

Determine COTS
integrity:

prior certification,
restriction of functionality,

hardware partitioning,
software wrappers,
verification testing,

reverse engineering,
and service history.

Ask vendor for data items:
test scripts,

requirements documentation,
 coverage analysis data,

source code,
 and problem reports.

Are data items
robust enough
to be able to

use as basis for
certification?

Consider another COTS
vendor.

 Assist COTS vendor in
certification process.

Write it yourself.

A

A

NO

NO

YES

YES

YES

Figure 1: Decision Tree to Determine if COTS Component Is Certifiable

18 CROSSTALK The Journal of Defense Software Engineering November 2003

© Copyright VRTC Group 2003. As Seen in COTS Journal,
Feb. 2003

November 2003 www.stsc.hill.af.mil 19

Figure 1 displays a decision tree that
suggests the types of questions to ask a
COTS vendor when deciding whether or
not to use a COTS component as part of
your avionics application. The remainder
of this article focuses on the details of
each stage of inquiry as reflected in Fig-
ure 1.

The ideal situation is to purchase a
COTS component that provides all the
necessary life-cycle data items to support
DO-178B certification. However, it is by
no means a common option among
COTS vendors. You may need to do a bit
more research to determine if you and
the COTS vendor can work together to
satisfy DO-178B requirements to get the
necessary life-cycle data items for certifi-
cation for your entire avionics application.

Get the Right Information
From the COTS Vendor
Knowing what data items to get from your
potential COTS vendor will depend upon
your overall system approach to certifica-
tion. Moreover, the level of detail neces-
sary for certain data items varies based on
the level of DO-178B software certifica-
tion to which your avionics software appli-
cation must comply. The process of
obtaining the necessary information to
support certification from the COTS ven-
dor requires a formal business relationship
between your companies. At a minimum,
you should expect that the COTS vendor
would work closely with your system devel-
opers to ensure acceptance of the COTS
component within your avionics system.

Table 1 outlines the data items from

your software life-cycle process that are
expected as part of the overall certification
process. These data items are as follows:
• Planning documents that include Plan

for Software Aspects for Certification,
Software Project Development Plan,
Software Verification Plan, Software
Configuration Management Plan, and
Software Quality Assurance Plan.

• Standards documents that include
Software Requirements Standards,
Software Design Standards, and
Software Code Standards.

• Project development data that include
software requirements data, design
description, source code, and exe-
cutable object code.

• Software verification that includes
Software Verification Cases and

Software Life-Cycle Data Items Description DO-178B Level

A B C D E
Planning

Plan for Software Aspects of
Certification

Used by certification authority to determine whether applicant is proposing a software life
cycle commensurate with the rigor required for the level of software being developed.

XX1 XX XX X

Software Project Development Plan Includes objectives, standards, and software life cycles to be used in the software
development process.

XX XX XX X

Software Verification Plan Describes the verification procedures to satisfy the software verification process
objectives.

XX XX XX X

Software Configuration Management
Plan

Establishes methods to be used to achieve the objectives of the software configuration
process throughout the software life cycle.

XX XX XX X

Software Quality Assurance Plan Describes the methods used to achieve the objectives of the software quality assurance
process.

XX XX XX X

Standards

Software Requirements Standards Defines the methods, rules, and tools to be used to develop the high-level requirements. X X X
Software Design Standards Defines the methods, rules, and tools to be used to develop the software architecture

and low-level requirements.
X X X

Software Code Standards Defines the methods, rules, and tools to be used to code the software. X X X
Project Development

Software Requirements Data Describes the high-level requirements, including derived requirements. X X X X
Design Description Describes the software architecture and low-level requirements that will satisfy the

software high-level requirements.
X X X X

Source Code Consists of code written in source language(s) and the compiler instructions for
generating the object code from the Source Code, and link and loading data.

X X X X

Executable Object Code Consists of a form of Source Code that is directly usable by the central processing unit
of the target computer and is the software that is loaded into the hardware or system.

X X X X

Software Verification

Software Verification Cases and
Procedures

Details how the software verification process activities are implemented. XX 2 X X X

Software Verification Results Results that are produced by the software verification process activities. XX X X X

Additional Data Items Spanning Entire
Life Cycle

Software Life-Cycle Environment
Configuration Index

Identifies the configuration of the software life-cycle environment. The index aids
reproduction of the hardware and software life-cycle environment.

X X X X

Software Configuration Index Identifies the configuration of the software product. X X X X
Problem Reports Reports identify and record resolution to software product anomalous behavior, process

non-compliance with software plans and standards, and deficiencies in software life-
cycle data.

X X X X

Software Configuration Management

Software Configuration Management
Records

Results of the software configuration management process activities. X X X X

Software Quality Assurance

Software Quality Assurance Records Results of the software quality assurance process activities. XX 3 XX X X

Software Aspects for Certification

Software Accomplishment Summary Used as the primary data item for showing compliance with the Plan for Software
Aspects for Certification.

X X X X

1

2

3 Independence for all four levels

The number of X's indicates the level of rigor and detail expected for that specific data item for that level of certification.
Increasing in rigor and independence

Table 1: Data Items Necessary for DO-178B Certification

Decision Point:Will Using a COTS Component Help or Hinder Your DO-178B Certification Effort?

20 CROSSTALK The Journal of Defense Software Engineering November 2003

Procedures, and Software Verification
Results.

• Additional life-cycle data items that
span the entire life cycle, including
Software Life-Cycle Environment
Configuration Index, Software Config-
uration Index, and Problem Reports.

• Configuration management records.
• Software quality assurance records.
• Software accomplishment summary.

Detailed descriptions of these data
items can be found in various official pub-
lications governing DO-178B development
such as RTCA DO-178B, “Software
Considerations in Airborne Systems and
Equipment Certification,” Dec. 1, 1992. As
Table 1 suggests, different certification lev-
els may require different degrees of detail
or completeness in each data item.
Understanding the certification level that
you plan for your application is a necessary
precursor to the dialogue with your COTS
vendor regarding needed data items.

Mixing and matching COTS vendor
data items with your own data items can be
done in a variety of ways. For example, you
may wish to incorporate details of the
COTS vendor’s verification process into
your overall Software Verification Plan.
You may then decide either to include the
COTS vendor’s test case/procedure data
into your own Software Verification Cases
and Procedures document, or have it stand
alone as a cases and procedures document
solely for the COTS component. The key
is that the processes are documented and
followed, and that the data items are cap-
tured, regardless of how they are packaged.

The Importance of Traceability
and Independence
Traceability is a well-defined manner to
objectively assess the rigor applied to the
development and verification of the
entire system. That is, satisfying the trace-
ability requirements of DO-178B certifi-
cation involves documenting how down-
stream life-cycle elements link to
upstream life-cycle elements. For exam-
ple, design elements and test case/proce-
dure elements must be linked to originat-

ing requirement elements.
To verify your software, DO-178B

requires both a Requirements Coverage
Analysis (RCA) and a Structural Coverage
Analysis (SCA). The RCA requires trace-
ability and ensures that a test case/proce-
dure exists for every software requirement.
The SCA uncovers code elements that
were not covered through execution of
requirements-based tests. The rigor of the
SCA varies with the criticality level of the

software. Having top-to-bottom traceabili-
ty also facilitates regression analysis activi-
ties when change inevitably occurs. The
traceability flow is shown in Figure 2.

Independence is also an important
DO-178B topic. Independence is the sepa-
ration of responsibilities that ensures the
accomplishment of objective evaluation.
For software verification process activities,
independence is achieved when a person(s)
other than the developer of the item being
verified performs the verification activity; a
tool(s) may be used to achieve equivalence
to the human verification activity. For the
software quality assurance process, inde-
pendence also includes the authority to
ensure corrective action.

A COTS vendor who provides data
items such as requirements-based test

cases/procedures may also need to prove
that these tests were produced by someone
other than the code developer for a given
set of requirements. Independence require-
ments vary with the software level, but they
are primarily related to verification and
software quality assurance activities.

Both parties understanding these ele-
mentary concepts of traceability and inde-
pendence often facilitate effective commu-
nication with your COTS vendor regarding
certification. The most prevalent obstacles
to incorporation of COTS modules are a
lack of life-cycle data items (e.g., require-
ments data, design data, and test
cases/procedures), traceability data, and
independence. The rigor of DO-178B
development is seldom adopted in com-
mercial applications and often not under-
stood or appreciated by embedded soft-
ware developers.

What if You Can’t Get the
Information You Need?
In the end, the COTS vendor may be either
unable or unwilling to provide the neces-
sary data items associated with the COTS
component. In this situation, you can pur-
sue one of the following alternatives:
1. Assist the COTS vendor in the certi-

fication process. The COTS vendor
may be interested in collaborating with
you to certify your application of their
product to DO-178B guidelines. This
option can be a win-win situation for
both parties. An example of a poten-
tially successful business arrangement
could include your company receiving
the source code of the COTS module
for little or no license fee in exchange
for your company’s assistance in work-
ing together to certify the module
under DO-178B. The COTS vendor
would presumably benefit from the
experience gained by having a library of
required life-cycle data items, as well as
the promotional value of having their
module(s) branded as certifiable.

2. Without assistance from the vendor,
determine the COTS component
integrity. One or more of the follow-
ing methods may be helpful as a process
to obtain the necessary information to
support compliance of the COTS mod-
ule with DO-178B certification:
• Reference prior certification

records in which the COTS compo-
nent was approved as part of an
earlier certified or qualified system
application.

• Restrict the functionality by only
using a subset of functionality and
certify only those functions. This

Test Results

Test
Case/Procedure

Code
Software
Design

Document

Software
Requirements
Specification

Product
Specification

Figure 2: Traceability Flow

Development of Real-Time Software

“More times than not,
your leadership will be
demanded in helping to
bridge understanding
with your proposed
COTS vendor of how
and what is required

to support the
certification effort.”

Decision Point:Will Using a COTS Component Help or Hinder Your DO-178B Certification Effort?

November 2003 www.stsc.hill.af.mil 21

may limit the amount of informa-
tion required for the certification.

• Partition the system. This method
prevents failures from noncritical
functions affecting critical functions
(such as implementing functions on
different processors or different
memory partitions).

• Use software protection wrappers to
limit the functionality exposed to the
certification-targeted application.
Wrapper software accompanies other
software to improve compatibility or
security such as the deactivation of
unneeded functionality, and/or
check the validity of parameters.

• Analyze the COTS vendor’s data
items for certifiability and
use/enhance as necessary.

• Reverse engineer the COTS data
items. This requires reconstructing
the data, which can be a difficult
task, perhaps requiring as much
effort as recreating the develop-
ment in-house. However, the
process will produce software life-
cycle data that can be reviewed and
analyzed to satisfy the DO-178B
objectives.

• Reference the service history of the
COTS component. This can pro-
vide previous in-service experience
of the component. However, the
data integrity of the service history
records must be validated, which
thus requires information about the
problem tracking process and the
software configuration manage-
ment process used originally by the
COTS vendor.

3. Write the functionality in-house.
This may be your best option, especial-
ly if there are no COTS vendors that
have the necessary DO-178B certifiable
component(s), or who are unwilling
and/or unable to provide you the nec-
essary data items. Despite the useful-
ness and appeal of COTS solutions, the
cost and time to develop the software
or systems component in-house may be
considerably less than attempting to
bludgeon your way into certification of
software never developed with inten-
tions of satisfying the stringent quality
concerns of DO-178B.

4. Consider another COTS vendor. If
there are other COTS vendors that
have the necessary DO-178B certifi-
able component(s), or are more willing
and/or able to give you the necessary
data items, then consider these vendors
as viable alternatives. The value of
working with vendors who have
already committed (or are willing to

commit) their energies to ensuring a
DO-178B quality product should be
readily apparent.

Conclusion
Certification under DO-178B is one of the
most grueling development and verifica-
tion processes developed, but for good rea-
sons. There can be no compromises to
software and systems quality when lives are
at stake both in the air and on the ground.
The requirements to prove software quality
under DO-178B may require you to think
again about your plan to incorporate a
COTS module in your application.
However, the opportunity to speed your
time to market and improve your develop-
ment productivity demands that you at
least consider COTS module integration
where possible.

As described in this article, the demands
of DO-178B certification can be achieved
with COTS modules if your vendor is a
willing partner who understands the value,
importance, and professionalism that is
expected of DO-178B development. More
times than not, your leadership will be
demanded in helping to bridge understand-
ing with your proposed COTS vendor of
how and what is required to support the
certification effort. The business payoff is
significant for all parties, and the quality
solution that results is of pride to all.

More information on RTCA DO-178B
is available online at <www. rtca.org>.◆

About the Author

Timothy J. Budden is
senior programs manag-
er at AVISTA, Inc-
orporated. His experi-
ence spans a wide range
of fixed- and rotary-

wing aircraft systems. He has developed
a working knowledge of all software
life-cycle phases and RTCA DO-178B
guidelines through years of successful
certification experience. Prior to joining
AVISTA 12 years ago, Budden was
employed by McDonnell Douglas. He
has a Bachelor of Science in electrical
and computer engineering from the
University of Notre Dame.

AVISTA, Incorporated
P.O. Box 636
1575 U.S. Highway 151 East
Platteville,WI 53818
Phone: (608) 348-8815
Fax: (608) 348-8819
E-mail: tim.budden@avistainc.com

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave.

Bldg. 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

NOV2002 " PUBLISHER’S CHOICE

DEC2002 " YEAR OF ENG. AND SCI.

JAN2003 " BACK TO BASICS

FEB2003 " PROGRAMMING LANGUAGES

MAR2003 " QUALITY IN SOFTWARE

APR2003 " THE PEOPLE VARIABLE

MAY2003 " STRATEGIES AND TECH.

JUNE2003 " COMM. & MIL. APPS. MEET

JULY2003 " TOP 5 PROJECTS

AUG2003 " NETWORK-CENTRIC ARCHT.

SEPT2003 " DEFECT MANAGEMENT

OCT2003 " INFORMATION SHARING

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

22 CROSSTALK The Journal of Defense Software Engineering November 2003

This may seem an obvious point to
CrossTalk readers, but many

members of the Department of Defense
modeling and simulation community are
not software engineers. Therefore, the
model’s software implementation must be
analyzed as well as the model itself.

The security model for many missile
defense simulations is similar to that used
in the heyday of the U.S. Army’s nuclear
weapons training. When virtually all U.S.
Army medium and heavy artillery batteries
were nuclear capable, it was necessary to
conduct training for units, particularly
Reserve Component units that did not
have secure facilities to handle classified
models. The result was an unclassified
training system that only provided classi-
fied results when given actual weapons
performance data. Soldiers were thus able
to train on how to do the targeting calcu-
lations without handling classified infor-
mation as shown in Figure 1.

Applying this model to missile defense
simulations is more difficult because the
calculations are much more complex, and
there are many more parameters to deal
with. Furthermore, these simulations are
implemented in software, and that increas-
es the complexity. Therefore, the Missile
Defense Agency’s Models and Simulation
Directorate (MDA/SES) developed a vul-
nerability assessment process in partner-
ship with Auburn University’s Infor-
mation Assurance Laboratory. We next
describe the process and the environment
that framed our process.

Assessing the Threat
U.S. missile defense programs, training,
tactics, and procedures are a matter of

intense interest to foreign intelligence
agencies. Intelligence agencies do not
face the same economic constraints, as
do practitioners of economic espionage.
For this reason, military-relevant soft-
ware may be attacked in ways that would
not be feasible for an industrial reverse-
engineering application.

An unclassified analysis of one mis-
sile defense simulation Web site showed
that nearly one third of the site’s hits

could be traced back to the People’s
Republic of China [1]. The largest num-
ber of recorded hits came from Beijing,
and this was more than twice the number
of hits from any other country, including
the United States. This obviously does
not include undetected intrusions.

Defining a Process
Information compiled into binary code is

not secure. Just because it is hard to
extract information from a binary file
does not mean it is impossible to do so
[2]. As shown in Figure 2, our process
analyzes inputs, outputs to the simulation
software, and the executable binaries.

Phase 1: Inputs
When analyzing the system inputs, we
look at how well we can simulate a sys-
tem based on open-source data. Next,
we search for buffer overflows. Given
the popularity of the C programming
language, it is usually not hard to find a
buffer overflow – either in the applica-
tion or in the operating system it is run-
ning on. Whether a buffer overflow can
be used to compromise sensitive infor-
mation in the application remains to be
seen. Theoretically, one could jump to a
code segment written to start dumping
out intermediate calculations. Operating
systems are written in C and are vulnera-
ble to buffer overflows, too.

Buffer overflows can be used for
more than just jumping a program to an
unauthorized code segment. We found
that entering control characters into an
entry screen would bring up a debugger
providing important clues on how the
program was originally compiled.

What if the simulation developers
used explicit bounds checking for every
input? One thing to look for is any sen-
sitive information that can be gleaned
from the bounds. An interceptor that has
actual minimum and maximum ranges as
bounds would be an example of a possi-
ble vulnerability.

Phase 2: Attacking the System
Simulation software runs on top of
operating systems. On distributed simu-
lation implementations, operating system
vulnerabilities may be exploited to
remotely compromise the simulation
software. It is often instructive to study
the installed files of a software distribu-

Defining a Process for
Simulation Software Vulnerability Assessments

Gordon Evans
Booz Allen Hamilton

The need for simulation software vulnerability assessment is being driven by three major trends. They are increased use of mod-
eling and simulation for training and operational planning, increased emphasis on coalition warfare and interoperability, and
increased awareness of the potential security risks inherent in sharing operationally useful software. This article will describe
in an unclassified manner the process developed by the U.S. Missile Defense Agency and Auburn University to evaluate poten-
tial vulnerabilities in shared simulation software.

Software Engineering Technology

Dr. John A. Hamilton Jr.
Auburn University

Col. Kevin J. Greaney
Missile Defense Agency

unclassified results

classified results
Weapons Effects

Calculations

notional weapons data

actual weapons data

Figure 1: U.S. Army Nuclear Weapons Training Model Circa 1980 (Unclassified)

“An unclassified
analysis of one missile

defense simulation Web
site showed that

nearly one third of the
site’s hits could be
traced back to the
People’s Republic

of China.”

November 2003 www.stsc.hill.af.mil 23

tion to learn more about the program
structure and contents.

A good definition for reverse engi-
neering can be found at [3]. Van Deursen
defines reverse engineering as,

The process of analyzing a sub-
ject system with two goals in
mind: (1) to identify the system’s
components and their interrela-
tionships, and (2) to create repre-
sentations of the system in anoth-
er form or at a higher level of
abstraction. [3]

In this process, we look at both disas-
sembly of code as well as decompilation.

Disassembly is reconstructing assem-
bly language code from a binary. Eric
Imsand and Adam Sachitano have disas-
sembled missile defense simulations
using dis on Solaris and a shareware pro-
gram called Hackman on Windows plat-
forms. Both dis and Hackman are disas-
sembly programs. They report the fol-
lowing:

The Hackman application ran eas-
ily. After launching the program,
it was simply a matter of selecting
the tool, either a hex editor or dis-
assembler, and choosing the file
to open. Hackman opened the file,
and disassembled it without fur-
ther user interaction. The entire
disassembly process took approx-
imately six hours running on a
400 MHz Intel Celeron processor
with 128 MB of RAM. [4]

Imsand and Sachitano produced
about one gigabyte of assembly code and
were later able to reassemble the binary
and successfully run it.

With assembly code in hand, it is pos-
sible to insert additional instructions to
create a modified binary that dumps

every variable value to an output device.
It is also possible to search for string lit-
erals.

Decompilation is the generation of
high-level source code from low-level
input [5]. We have experienced little suc-
cess in decompiling, primarily due to our
reliance on freeware and shareware tools.
Commercial decompilers are available
and the state of the art in this area con-
tinues to improve.

Weide, Heym, and Hollingsworth dis-
cuss reverse engineering of large legacy
software systems. They conclude that the
reverse engineering of such systems is
intractable in the sense that if one is given
real (high-level) legacy code, the time
required to show the validity of an expla-
nation for why it exhibits a certain
behavior is at least exponential compared
to the size of the source code [6].
However, their same paper asserts a
caveat that is repeated here: “This does
not mean that the task is impossible. It
means that it is prohibitively costly for
large systems” [6]. We would add that
what is prohibitively expensive in the
commercial sector is not necessarily pro-
hibitively expensive for a high-priority
intelligence effort.

Phase 3: Outputs
We attempt to determine the internals of
the programs by analyzing the outputs
and their sensitivity to changes based on

carefully chosen inputs. In general, we
believe that missile defense simulations
of any importance are too complicated
to make this a useful strategy for reverse
engineering the simulation. However, it
is possible to gain insight into specific
aspects of the simulation by constantly
running it and making minor changes to
the input and tracking the changes.
These one off test cases are constructed
by varying only one input parameter. If
the simulation is well documented, this
strategy can be used in conjunction with
an analysis of the documentation to
determine internal relationships between
parameters.

Refining and Applying the
Process for Different Levels
of Assurance
Given the costs associated with vulnera-
bility analysis, we defined three sets of
tasks providing three levels of assurance:
High, Medium, and Low. These cate-
gories reflect the level of effort required
for the analysis. The requirements for
each are enumerated in Table 1.

It is important to recognize that any-
thing sensitive in the source code is vul-
nerable. It is hard, time consuming, and
expensive to get at it – but it is naïve to
think that a hostile intelligence agency
would not make such an attempt. Next,
we address each item in Table 1.
• Source Code. A line-by-line verifica-

Defining a Process for Simulation Software Vulnerability Assessments

Simulation
Inputs (files or
interactives)

Simulation
Software
Program

Simulation
Outputs

1. Experimentation with "open
 source" system data.
2. Privilege escalation
 via buffer overflows.
3. Analysis of bounds
 checking if implemented.

1. Exploitation of operating
 system vulnerabilities.
2. Analysis of installed files.
3. Decompilation and
 disassembly of targeted
 executables.

1. Sensitivity Analysis of
 output based on input
 changes.
2. One "off" test cases to
 examine relationships.

Figure 2: Process for Simulation Software Vulnerability Analysis

High Assurance Level Medium Assurance Level Low Assurance Level

Line-by-line verification of source
code.

Line-by-line verification of selected
source code.

Line-by-line verification of selected
source code.

Professional decompilation of
executables.

String search on disassembled
code.

String search on disassembled
code.

Complete review of published
documentation.

Targeted review of published
documentation.

Targeted review of published
documentation.

Open source review of weapons and
systems data.

Open source review of weapons and
systems data.

Analysis of degree of
parameterization.

Analysis of simulation runs to
evaluate training, tactics, and
procedures.

Analysis of simulation runs to
evaluate training, tactics, and
procedures.

Analysis of degree of
parameterization.

Analysis of degree of
parameterization.

Table 1: Assurance Levels for Simulation Software Vulnerability Analysis

24 CROSSTALK The Journal of Defense Software Engineering November 2003

Software Engineering Technology

tion of a simulation with a million+
lines of code is nontrivial. Worse,
there is no guarantee that such a mas-
sive effort will uncover all potential
security issues. However, it is the best
way to detect problems. Software
engineering research has long held
that the best way to find any problem
in software is through desk-checking
the source code. In most cases, a line-
by-line verification will not be war-
ranted. If (and this is a big if) the sim-
ulation software is well structured,
then it is reasonable to exclude large
portions of the code and simply
focus on the modules that deal with
sensitive issues. It can be argued that
a more focused review of high-risk
code could potentially be more fruit-
ful than plowing through a massive
program in its entirety. Any source
code provided, as part of the distri-
bution must be reviewed. Source
code analysis can give you a worst-
case vulnerability assessment.

• Decompilation/Disassembly. De-
compilation and disassembly can be
used to provide an expected case
analysis. We pursue this to see what a
potential adversary can learn from the
binaries. For high assurance require-
ments, we recommend using profes-
sionals to decompile the binaries.
Open market decompilers (available
to a university anyway) are not yet to
a point where experienced software
engineers can gain useful results
through reasonable efforts. We have
no insight into what tools are avail-
able in the world of restricted access
programs, but we believe that much
better tools are theoretically possible
and practical. Dissemblers are readily
available and useful. It is reasonable
to write scripts to do string searches
on massive assembly code files and
prudent to do that. In all cases, the
binaries should be checked to make
sure that all debugging information is
stripped before the binaries are
released.

• Documentation Review. Documen-
tation of simulations must be includ-
ed in the distribution [7]. Some simu-
lations include more than 1,000 pages
of documentation. Documentation is
critical to the successful utilization of
a simulation. As Sargent notes:

Documentation on model ver-
ification and validation is usu-
ally critical in convincing users
of the ‘correctness’ of a model
and its results, and should be

included in the simulation
model documentation. [8]

The caveat to Sargent’s assertion is
that the documentation must be
reviewed to make sure that no sensi-
tive information is inadvertently
released. The physics of missile tra-
jectories are not sensitive; probability
of kill for a given system is very sen-
sitive.

• Open Source Review. There is a
great deal of published information
on missile and missile defense sys-
tems, particularly older ballistic mis-
sile systems such as scuds. One way
to exercise a simulation is to create

models from open source material
and then experiment with them.

• Analysis of Simulation Runs.
Using open source inputs provides
the means to develop simulation runs
and analyze the outputs. The objec-
tive is to reduce the number of
unknowns in the system. The more
known information that can be input,
the easier the analysis.

• Analysis of Degree of Parameter-
ization. Essentially, we want to verify
that the model is unclassified and that
classified results are only produced
when classified parameters are used.
If there are default values, then those
values need to be checked to see if
any are sensitive in nature. In general,
the greater the degree of parameteri-
zation, the closer the simulation
approximates the model in Figure 1.

Conclusion
In most cases, we believe that a medium
assurance assessment is sufficient.
Before we share simulations (missile
defense or others) with our coalition
partners, it is essential to know what we
are sharing.

This research has demonstrated a
viable, scaleable means of assessing the
vulnerability of complex simulation soft-
ware. We believe this methodology is
appropriate for use with other simulation
programs. It is always difficult to prove a
negative. We do not claim that our
process can prove the absence of vulner-
abilities or find every vulnerability in
every software implementation. How-
ever, this process can provide an impor-
tant means of risk mitigation. We believe
the process defined here can successfully
identify vulnerabilities in simulation soft-
ware.◆

References
1. Mann, Steve. “Default Report Web

Site Visitors.” WebTrends. NetIQ
Corporation, Internal Report. 17 May
2002: 41.

2. Viega, John, and Gary McGraw.
Building Secure Software. Boston,
MA: Addison-Wesley, 2002: 109.

3. Van Deursen, Arie. “Reverse
Engineering.” Jan. 2003 <www.
program-transformation.org/twiki/
b i n / v i e w / Tr a n s f o r m / Re ve r s e
Engineering>.

4. Imsand, Eric, and Adam Sachitano.
“Analyzing Security Vulnerabilities in
National Missile Defense Simulation
Software.” Unpublished, Nov. 2002.

5. Breuer, Peter T., and Jonathan P.
Bowen. “Decompilation: The Enu-
meration of Types and Grammars.”
ACM Transactions on Programming
Languages and Systems 16. 5 (1994).

6. Weide, Bruce W., Wayne D. Heym, and
Joseph E. Hollingsworth. Reverse
Engineering of Legacy Code Exposed.
Proc. of the 17th International
Conference on Software Engineering,
Seattle, WA. New York: ACM Press,
1995: 327-331.

7. Chatham, Wade. “A Vulnerability
Analysis with an Emphasis on Using
Documentation.” Unpublished, Nov.
2002.

8. Sargent, R. “Verifying and Validating
Simulation Models.” Proc. of the 28th
Winter Simulation Conference,
Coronado, CA. New York: ACM
Press, 1995: 55-64.

“It is important to
recognize that anything
sensitive in the source

code is vulnerable.
It is hard, time
consuming, and

expensive to get at it –
but it is naïve to

think that a hostile
intelligence agency would

not make such an
attempt.”

November 2003 www.stsc.hill.af.mil 25

Defining a Process for Simulation Software Vulnerability Assessments

About the Authors

Col. Kevin J.
Greaney, U.S. Army, is
the director, Models
and Simulations, Mis-
sile Defense Agency.
Prior to his assign-

ment, Greaney served as the com-
mander of the Communication
Electronics Command Software
Engineering Center-Meade from
September 1997 through September
2000. Greaney was selected as a
Distinguished Military Graduate prior
to his commission as a second lieu-
tenant. He has a Bachelor of Arts
from Northeastern University, a
Master of Science from Shippens-
burg University, a Master of Arts
from Webster University, and is cur-
rently pursuing a doctorate in soft-
ware engineering from the Naval Post
Graduate School.

Missile Defense Agency
Pentagon
Washington, D.C.
Phone: (703) 697-4360
Fax: (703) 695-6133
E-mail:kevin.greaney@bmdo.osd.mil

John A. “Drew”
Hamilton Jr., Ph.D.,
is an associate profes-
sor of computer sci-
ence and software engi-
neering at Auburn

University and director of Auburn
University’s Information Assurance
Laboratory. Prior to his retirement
from the U.S. Army, he served as the
first director of the Joint Forces
Program Office and on the staff and
faculty of the U.S. Military Academy,
as well as chief of the Ada Joint
Program Office. He has a Bachelor of
Arts in journalism from Texas Tech
University, masters degrees in systems
management from the University of
Southern California and in computer
science from Vanderbilt University,
and a doctorate in computer science
from Texas A&M University.

Auburn University
107 Dunstan Hall
Auburn, AL 36849
Phone: (334) 844-6360
Fax: (334) 844-6329
E-mail: hamilton@eng.auburn.edu

Gordon Evans is a
consultant for Booz
Allen Hamilton work-
ing on-site at the
Missile Defense Agen-
cy (MDA). His areas of

concentration have been in systems
engineering, command and control,
modeling and simulations, interna-
tional programs, and technology
transfers. He has been the lead MDA
designer and investigator for its
Modeling & Simulation Vulnerability
Assessment program. Evans retired
from the U.S. Army in 1992 as a lieu-
tenant colonel. During his military
service, he served in multiple Field
Artillery and Military Intelligence
assignments. Overseas assignments
have been in Germany, Korea, and
Vietnam.

Booz Allen Hamilton – MDA/SES
Pentagon
Washington, DC
Phone: (703) 697-4582
Fax: (703) 695-6133
E-mail: gordon.evans-contractor

@ bmdo.osd.mil

20
03

 U
.S

. G
O

V
E

R
N

M
E

N
T

'S

TOP 5 QUALITY SOFTWARE PROJECTS

CROSSROSSTALKALK
The Journal of Defense Software EngineeringThe Journal of Defense Software Engineering

FOR MORE INFORMATION OR TO ENTER,

PLEASE VISIT OUR WEB SITE

wwww.stsc.hill.af.mil/crosstalkww.stsc.hill.af.mil/crosstalkww.stsc.hill.af.mil/crosstalkwwww

2003 U.S. Government's Top 5 Quality Software Projects

The Department of Defense and CrossTalk are currently accepting
nominations for the 2003 U.S. Government's Top 5 Quality Software Projects.
These prestigious awards are sponsored by the Office of the Under Secretary of
Defense for Acquisition, Technology, and Logistics, and are aimed at honoring
the best of our government software capabilities and recognizing excellence in
software development.

The deadline for the 2003 nominations is December 5, 2003. You can review the
nomination and selection process, scoring criteria, and nomination criteria by
visiting our Web site. Then, using the nomination form, submit your project for
consideration for this prominent award.

26 CROSSTALK The Journal of Defense Software Engineering November 2003

In response to a growing need within the
U.S. Air Force (USAF) to lower operat-

ing costs, a significant amount of research
has been initiated to find logical, support-
able opportunities to utilize commercial
products and to replace products that
have historically been custom-designed.
Multiple development efforts have helped
to refine concepts that have proven their
utility at lowering acquisition costs while
other efforts have proven to have lower
sustainment costs. Recent efforts have
shown that by managing the architecture
of the developed equipment, it is possible
to lower the overall life-cycle cost, while
providing long-term, technically viable,
and user-friendly equipment.

The current USAF loader/verifier of
choice eliminates the obsolescence of
computer hardware and software used on
traditional loader/verifiers by being non-
proprietary in its design. This allows the
USAF to upgrade to newer personal com-
puter (PC) platforms without a lot of
expense.

Background
For the past decade, the Department of
Defense (DoD) has faced budget cuts that
have translated into lost personnel,
slashed weapon systems development
budgets, curtailed maintenance budgets,
and extended weapon systems lifetimes.
In this era of doing more with less, one of
the easiest implemented directives was to
use, to the greatest extent possible, com-
mercial off-the-shelf (COTS) products.

However, since the DoD does not
command a significant part of the elec-
tronics market share, it has little ability to
affect the direction of the overall market-
place and thus COTS products. This has
been further underscored by the cancella-
tion of most military standards, because,
among other reasons, the standards them-
selves could not be updated quickly
enough to allow military product develop-

ers the opportunity to use current tech-
nology before it became obsolete.

Some of the first uses of COTS
included applying commercial PCs to air-
craft back-shops and flight lines. Several
generations of COTS PC products have
been in use by the USAF.

Each of the PC products introduced
into the DoD has faced a similar set of
initial requirements that could not be
updated quickly enough to utilize current
technology. Each has taken a similar path
to implement the requirements, and each
has had similar problems at the end of the
short product lifetime. These PCs are
used for a variety of uses, including user
interfaces for embedded computers,
memory loader/verifiers for embedded
computers, test equipment, test equip-
ment controllers, technical order delivery
systems, and digital communications
equipment.

A recent picture that ran in many aero-
space and local publications highlights the
problem that the USAF is facing. The pic-
ture was a family photo of a B-52 com-
mander, his father, and grandfather – all
three had served on the same aircraft. As
weapon systems lifetimes are extended,
the opportunities to update the systems
becomes more challenging. While every
electronic system in the B-52 may have
been updated, remnants of the original
infrastructure remain. Much like today’s
railroads that have track separation dis-
tances based on the wheelbase of Roman
chariots, the avionics systems of the
USAF have interface specifications that
have outlived their authors.

When the F-4 left the USAF invento-
ry in the 1990s, it retained interface
descriptions that reflected its Resistor
Transistor Logic (RTL) roots from the
1950s. The F-16 discrete signal interface
descriptions that were written in the late
1970s have specifications most easily
implemented by switches and relays.

Only in the last 10 years has the AIM-
9 missile provided an interface that did
not reflect its original servo-type interface
developed in the 1950s. For many years,
both the aircraft and the weapon imple-
mented the original archaic analog inter-
face, using a mixture of analog and digital
circuitry only because it was the easiest
way to make sure the weapon and weapon
systems would be interoperable. Ulti-
mately, just as in the case of the AIM-9
missile interface, the designer of today’s
computer-to-aircraft interface is forced to
be compliant with the existing weapon
systems interfaces.

Traditionally with each new embedded
computer, a new method to communicate
with and to control it was introduced.
This is extremely unfortunate for today’s
interface design engineer. When you
examine the historical rationale, there
were at least four significant reasons to

Developing a Stable Architecture to
Interface Aircraft to Commercial PCs

This article introduces a new concept of utilizing commercial personal computer products to interface with military and com-
mercial aircraft regardless of their product life-cycle mismatch. Existing products are described, architecture for each imple-
mentation is derived, and their strengths and weaknesses are explored. An attempt to define the root causes for the problem
of implementing interface architectures in this environment is presented. In addition, a new developmental architecture is intro-
duced that is designed to maintain the strengths of the traditional architectures and eliminate some of the weaknesses and
inefficiencies. A series of hardware/software co-development projects are described to demonstrate this new architecture. The
relative performance of the architecture has been evaluated and refined by multiple implementations. These are described and
future implementations examined.

Dan W. Christenson and Lynn Silver
Ogden Air Logistics Center

“It has only been
since the late 1970s
that any significant

communication
standards have existed
for aircraft. If a designer
is to interface with many

different aircraft
interface types, flexible
interface techniques
must be developed.”

Developing a Stable Architecture to Interface Aircraft to Commercial PCs

create a unique protocol:
1. Aircraft-unique throughput or com-

munications needs forced unique solu-
tions.

2. Standards that would meet the needs
were not well known.

3. It was chosen because of management
concerns.

4. It was chosen because of convenience.
In many cases this uniqueness extends

to voltage levels, drive current, timing, and
data protocol. The number of electrical
interface standards now exceeds 100; the
number of data protocol standards is sev-
eral times that number. This means that in
most cases, each interface that the design-
er approaches is different from the last. It
has only been since the late 1970s that any
significant communication standards have
existed for aircraft. If a designer is to
interface with many different aircraft
interface types, flexible interface tech-
niques must be developed.

As this set of issues was evaluated, it
became apparent that addressing this
problem was the central issue for the
architecture. Because aircraft and com-
mercial PC life cycles are so far out of
synchronization, and because that gap is
growing, providing a long-term, support-
able method to buffer the two environ-
ments is the essential artifact of this archi-
tecture. A graphical representation of the
concept is shown in Figure 1.

With each new interface type, the
adapter between the aircraft and the PC
had to be addressed as part of the design;
the logical place to build a standard was at
that point, named the Aircraft Adapter
Group (AAG). The name was chosen
because the predecessors of this architec-
ture used AAGs to interface their stan-
dards loader/verifier to the weapon sys-
tems. Therefore, this historical name was
chosen because it is somewhat analogous
to the function.

Examples of PC-Based
Support Equipment
Three USAF examples of aircraft support
equipment based on PC technology
include the Automatic Test
Systems/Product Group Manager’s
Digital Computer System (ATS/PGM’s
DCS), the F-16 Enhanced Diagnostics
Aid (EDNA), and the F-15
Programmable Loader/Verifier – NT ver-
sion (PLV-NT). Each of these PC-based
systems was introduced into the USAF
inventory in the last 15 years.

Each was acquired with similar stan-
dards that have traditionally been levied
on all support equipment. Virtually none

of the PC products utilized for aircraft
support equipment has been used without
modification. The necessity to modify the
interface was driven by additional require-
ments associated with the unique environ-
ment of use. These environmental
requirements fall into three basic cate-
gories:
1. Security environment to avoid com-

promise of classified data when the
equipment is operated in the close
proximity of those who had no need-
to-know.

2. A physical environment requiring that
all input/output (I/O) is installed
inside the PC.

3. The PC was required to be environ-
mentally compatible with a USAF
flight line.

Forcing the PC to comply with these
requirements has at least three negative
effects:
1. They drive up the acquisition cost

because the COTS PC selected is vir-
tually a custom product.

2. They drive up the re-host cost because
the new PC has to be re-procured
from the original source because of
proprietary data issues.

3. Compliance drives down the overall
performance because the custom
computer market lags behind standard
PCs by as much as two years.
As these pieces of equipment were

introduced into the inventory, they were
initially well received, but quickly were
considered archaic when compared to tra-
ditional PC equipment. Their lag-behind
technology, the inability to use current
hardware and software products, and the
cost to acquire and maintain the equip-
ment made them unpopular. Within a

November 2003 www.stsc.hill.af.mil 27

18 Month
Life Cycle

COTS

20 Year
Life Cycle

Weapon
System

LRU*
AAG

PC

*Line Replaceable Unit

Figure 1: Loader/Verifier Derived Architecture

Definitions

• Ethernet — A high-speed serial data bus generally used to implement Local
Area Networks. Ethernet was not designed to power peripherals; it is therefore
required that a separate power cable/supply be used.

• Firewire — A high-speed serial data bus generally used for video/audio pro-
cessing peripherals. Firewire was designed to provide a limited amount of
power to peripherals. Firewire has the liability that it is not as widely accepted
in the marketplace as a Universal Serial Bus (USB) is and that with a few
exceptions (like Sony), it is not generally implemented in laptops.

• IEEE 488 — An eight-bit parallel bus common on test equipment. The IEEE
488 standard was proposed by Hewlett-Packard in the late 1970s and has
undergone a couple of revisions. It allows up to 15 intelligent devices to share
a single bus with a maximum data rate of one megabit per second.

• MIL-STD-1553 — A military standard that is slower than most modern serial
busses and does not provide power to any peripherals. Because of the com-
plexity of the protocol, expensive integrated circuits are required to implement
the interface. Its redundancy and noise immunity have made it a popular inter-
face for aircraft use.

• Parallel Bus — A bus consisting of multiple signal lines that simultaneously
transfer data in a parallel method.

• RS 232 — A simple, universal low-power serial bus that can be found in many
different applications from modems to PCs, where the length and quality of the
cable depends on the data speed.

• RS 422 — A differential serial bus designed for greater distances and higher
baud rates than the RS 232. Data rates of up to 100,000 bits/second and dis-
tances up to 4,000 feet can be accommodated with the RS 422.

• SCSI — A Small Computer System Interface designed originally to communi-
cate between a computer and disk drives has been used when high-speed
communication is necessary. Because of the number of wires required, SCSI
cables are generally bulky. SCSI was never designed to power peripherals; it
is therefore required that a separate power cable/supply be used.

• Serial Bus — A bus consisting of a limited number of signal lines (usually one
or two) that transfer data in a serial (one bit at a time) fashion.

• Universal Serial Bus — A USB is a high-speed serial bus universally available
on all PC products. It provides a minimal amount of power, allowing imple-
mentation of simple peripherals that do not require additional power supplies.

28 CROSSTALK The Journal of Defense Software Engineering November 2003

fraction of the traditional USAF product
lifetime, each was considered obsolete and
in need of update and/or replacement.

The USAF has not ignored this prob-
lem and as early as seven years ago, efforts
were made to begin creation of support
equipment standards. Efforts have also
been made on the weapon systems acqui-
sition system to drive standardization. At
this point, the electrical interface standards
fall into the following standards: IEEE
488, RS 232, RS 422, MIL-STD-1553, and
unique. Depending on the weapon system
type, about 60 percent of the interfaces
are MIL-STD-1553, and 20 percent are
RS 422, RS2 32, and IEEE 488. The re-
maining 20 percent are unique; many are
simply the electrical interface between the
microprocessor and its memory.

Techniques to address these interfaces
have been developed. There are interface
devices that implement all standard inter-
faces; with the development of the Field
Programmable Gate Array (FPGA), inter-
facing to unique interface standards was
greatly simplified. The unique interface
timing as a minimum can be fully imple-
mented. In the case of Transistor-
Transistor Logic-based standards, the
electrical portion of the interface can be
addressed as well. These technologies
were incorporated into F-16 EDNA and
the F-15 PLV-NT, driving the acquisition
costs to one-third of the traditional
loader/verifier. These systems are illus-
trated in Figure 2.

This was considered a great feat until
it was recognized that although the new
devices were designed to last 10 years, the

products became obsolete in less than
three years. This made the products no
cheaper than their predecessors did. The
lesson learned is that not only must the
acquisition cost be lower, but also the
product acquired must be an add on so that
neither internal installation nor modifica-
tion to the PC is required. This allows the
PC, weapon systems, and the AAG to be
independently modified to accommodate
updates.

Requirements Development
In 1997, a team of users (Next
Generation Loader/Verifier users
group), program managers, and engi-
neers were convened to begin looking at
the growing problem. The support
equipment requirements that forced
modification to the PC were addressed.

At the core of this development
effort is the requirement to address a
problem that plagues the entire DoD:
commercial product lifetimes are becom-
ing shorter while DoD product lifetimes

are becoming longer. As the evaluation
proceeded, the basic requirement for
developing a stable architecture emerged:
Develop a suite of standards-based tools
and products that can be functionally
implemented with many technologies.

The significant driving function, as
mentioned earlier, is the rapid develop-
ment cycle of the commercial PC. The
PC must be allowed to change to utilize
current technology. For this reason and
for this application, the USAF has adopt-
ed a nontraditional approach, allowing
functional configuration instead of tradi-
tional physical configuration. This means
no effort is to be taken with the new
equipment to physically configure the
PC. Any PC that complies with the func-
tional configuration document is accept-
able for use.

The need to modify the PC to accom-
modate security requirements was
replaced with tests and procedures that
accomplished the intent of the modifica-
tion. These tests must be accomplished
on a relatively small sample lot and are
the basis for the technical data that
describe additional security protocols
that are necessary to protect the classi-
fied information being processed.

The need to have an integrated PC
that addressed all the interface require-
ments was replaced by a lightweight PC
with a small number of external inter-
faces that address each type of aircraft
interface.

To accommodate MIL-STD-1553
remote terminal and monitor functions,
without any significant local buffer in the
AAG, any external interface must exceed
one megabit/second (mbit/sec).
Realistically the interface should be at
least 10 mbit/sec to allow time for data
processing and calculation of responses.
This limited the commercial standards
that were examined to accommodate the
needs of Small Computer System
Interface, Ethernet, firewire, MIL-STD-
1553, and Universal Serial Bus (USB).

Since the external interface would
have to be powered, an interface that
could provide the needed power was
desirable for two reasons. First, if the
interface standard did not provide power,
as in the case with MIL-STD-1553, then
an external power supply would have to
be used. Second, this power supply
would also have to be ground-isolated to
allow the system to interface with the
ground reference of the aircraft. These
requirements limited the selections to
firewire and USB.

USB was chosen because it is part of
the commercial PC standard and is back-

a

Host Computer

Host USB
Port

FPGA LRU

Unique Interface

Target
USB

Interface

Personality
 Module
Option

Unique
Drivers

ADDR

DATA

a

Micro Controller

1553

1553 Interface

Target
USB

Interface

ADDR

DATA

Micro Controller

Figure 3: Detailed Architecture System Diagram

Software Engineering Technology

Figure 2: F-16 EDNA and F-15 PLV-NT

“At the core of this
development effort is the
requirement to address a
problem that plagues the

entire DoD:
commercial product

lifetimes are becoming
shorter while DoD

product lifetimes are
becoming longer.”

Developing a Stable Architecture to Interface Aircraft to Commercial PCs

November 2003 www.stsc.hill.af.mil 29

ward compatible (i.e., USB 1.0 devices
will work with USB 2.0).

As implementations were examined,
it became obvious that MIL-STD-1553
would be best accommodated in a sepa-
rate interface, and because of the avail-
ability of commercial USB-IEEE 488,
initial implementations were procured
commercially. Figure 3 represents the
block diagrams of the interface elements
that currently implement the AAG archi-
tecture.

The strengths of prior developments
include utilization of FPGAs to imple-
ment most of the weapon systems inter-
faces and PC-based user interfaces to
lower the recurring costs. Those
strengths are preserved with this archi-
tecture. Additionally, by limiting the host
PC interface to one type, in this case
USB, and by limiting the dependence to
only two points, if the interface type
becomes obsolete, the amount of re-host
required to update to current technology
is minimized. While USB is current in the
PC environment, the host PC can be
updated independently of the AAG
hardware.

Possibly, the most exciting aspect of
this is the blending of hardware tech-
niques into the software arena. All of the
customization of the hardware to accom-
plish the needed AAG functions is done
with data that is stored on the PC. The
FPGA data, the micro-controller
firmware, and the 1553 configuration
data are all stored in the PC as data and
are effectively executed on the I/O ele-
ments. Any additional functions needed
to implement the AAG are put in a
Dynamic Link Library. A Computer
Program Identification Number manages
these data.

Prior Implementations
Variants of this architecture have been
successfully utilized with minor variation
to implement USAF subsystems in the
following areas:
1. The Ogden Data Device (ODD). This

device is used to interface with data
transfer cartridges on F-16 and A-10
aircraft. The ODD has been utilized
for mission planning purposes for
more than seven years with only
minor modifications and updates to
the driver software.

2. The Personal Computer Memory
Loader Verifier. The USAF used this
device for F-4 reprogramming during
Desert Shield. It has been in continu-
ous use by allied countries for more
than eight years, and has performed
flawlessly.

Additional Benefits
Because the development tools can be
hosted on the computer that is being uti-
lized to host the interface, a simple, quick,
and mobile development environment
can be established. This allows the devel-
opment environment to be taken to the
integration environment during integra-
tion. This is extremely convenient when
no local hot bench or integration facility is
co-located with the AAG development
environment. Many times the equipment
to be interfaced is in remote, otherwise
inaccessible locations.

The equipment is usable in multiple
environments: flight line, back-shop,
development, and integration facility.
Because the equipment is based on prior
implementations, the development costs
can be lowered by reuse of development
artifacts.

The ideas presented have been imple-
mented in the Common Aircraft Portable
Reprogramming Equipment (CAPRE).
The CAPRE has been chosen by the
USAF to be the next generation
loader/verifier as shown in Figure 4.

Conclusion
The benefits of this implementation

include the following:
1. Long-term supportability.
2. Simple re-host.
3. Supports shorter PC life cycle and

longer weapon systems life cycle.
4. Supports hosting of the development

tools on target platform.
5. Mature and stable technology.
6. Useful in multiple environments:

development, back-shop, as well as
flight line.
This program is being implemented

under program direction of Warner
Robins Air Logistics Center with technical
implementation accomplished by Ogden
Air Logistics Center/MASMD.◆

Figure 4: The CAPRE System

About the Authors

Lynn Silver is Section
Chief for the Automatic
Test Equipment and
Weapons Systems
Interface Engineering
Section, Maintenance

Directorate, Ogden Air Logistics
where he directs a 50-person organiza-
tion that specializes in automatic test
equipment. He has previously worked
as an electronic design engineer and
was part of the Quality Engineering
Support Team that established process
quality assurance for the Software
Engineering Division and later earned
Capability Maturity Model Level 5
recognition. Silver is a former publisher
of CrossTalk. He has bachelor’s
and master’s degrees in electrical engi-
neering from the University of Utah.

Ogden Air Logistics Center
Software Engineering Division
(OO-ALC/MASM)
7278 4th St., Bldg. 100
Hill AFB, UT 84056-5205
Phone: (801) 777-3823
E-mail: lynn.silver@hill.af.mil

Dan W. Christenson is
branch chief for the
Weapon Systems Soft-
ware Engineering Branch,
Maintenance Director-
ate, Ogden Air Log-

istics, and supervises a 146-person
organization that specializes in auto-
matic test equipment development and
maintenance. He began his career as an
electronic design engineer and has con-
tinued to act as a systems design engi-
neer for major projects, including
avionics design for the F-16 and F-22.
Christenson has a bachelor’s degree in
electrical engineering from Brigham
Young University and a Master of
Science in computer science from Utah
State University.

Ogden Air Logistics Center
Software Engineering Division
(OO-ALC/MASM)
7278 4th St., Bldg. 100
Hill AFB, UT 84056-5205
Phone: (801) 777-9863
E-mail: dan.christenson

@hill.af.mil

30 CROSSTALK The Journal of Defense Software Engineering November 2003

Technical Committee on Real-Time
Systems
www.cs.bu.edu/pub/ieee-rts/Home.html
The Institute of Electrical and Electronics Engineers Computer
Society’s Technical Committee on Real-Time Systems addresses
issues in real-time systems, including embedded systems, control
systems, monitoring systems, and multimedia systems. The
committee promotes and facilitates the exchange of research
results and development in the areas of applications, databases,
distributed and parallel systems, formal methods and timing
analysis, networks, operating systems and middleware, program-
ming languages, scheduling and resource management, security,
and verification and validation.

Real-Time Application Interface
http://www.aero.polimi.it/~rtai/index.html
This is the home page of the Real-Time Linux Application
Interface for Linux, which lets you write applications with strict
timing constraints for your favorite operating system. Like Linux
itself, this software is a community effort.

embedded.com
http://www.embedded.com
Design engineers and engineering managers use embedded.com
as a resource for embedded industry news and technical design
information. Editorial features include daily news feeds and
product information covering the latest happenings in the

embedded industry, and weekly Web columns and polls. The site
features 15 years of downloadable code, an archived and indexed
database of product demos, information on embedded systems
conferences, and the monthly issue of Embedded Systems
Programming.

eg3.com
http://www.eg3.com/real
eg3.com is a community resource – an edited Yahoo for design
engineers, original equipment manufacturers, and programmers.
Founded in 1994, eg3.com identifies the best of the Web for
embedded, digital signal processing, board-level, system-on-a-
chip, real-time operating system/real-time, and open source for
embedded systems. Also featured is a free-text search engine and
a comprehensive search spider.

Real-Time Software Engineering Code 584
www.wff.nasa.gov/~code584
NASA’s Real-Time Software Engineering Branch develops
ground data systems for integration and test and on-orbit opera-
tions of Earth and space science missions. Branch personnel par-
ticipate in teams with flight projects, principal investigators, other
Applied Engineering and Technology Directorate centers and
other organizations to develop integrated hardware and software
systems for real-time mission support. Branch products include
assembled commercial off-the-shelf systems, custom capabilities,
components, consulting, and brokering on behalf of customers.

WEB SITES

Online Article

Approximately 15 years ago, both pri-
vate and public organizations were try-

ing desperately to improve their product
quality. The U.S. government and its indus-
tries felt significant pressure from Japan’s
success in improved product quality. The
U.S. automotive industry was in serious
financial trouble. Everyone went to classes
to learn about Dr. W. Edwards Deming
and Statistical Process Control (SPC). Total
Quality Management was in vogue.

In reaction to this concentration on
quality, the country experienced a quality
revolution. This, in turn, spawned more
refined quality efforts such as the Software
Engineering Institute’s (SEI) model for
software process improvement [1] and the

Six Sigma program developed by Motorola
[2]. Regardless of the refinement, the foun-
dation of quality understanding was the
same: Statistical Process Control, the cre-
ation of Walter Shewhart about 75 years
ago [3].

In the Software Division’s efforts to
improve software development process
efficiency and product quality, the SEI
model cited previously was used. Over sev-
eral years of improvement efforts, our divi-
sion integrated the use of two management
methodologies, Earned Value Management
(EVM) and SPC. During this period of
time, we developed several extensions and
applications that can be used by a project
manager in the following ways:

• Anomalous performance identifica-
tion [4].

• Project result prediction [4].
• Project/risk planning from historical

data [4, 5].
• Measurement of process improve-

ment [4, 5].
• Management reaction to project status

[6].
• Preparation of a project recovery

strategy [6].

Due to space constraints, CrossTalk was not
able to publish this article in its entirety. However,
it can be viewed in this month’s issue on our Web
site at <www.stsc.hill.af.mil/crosstalk> along
with back issues of CrossTalk .

The Probability of Success
Walt Lipke

Oklahoma City Air Logistics Center

What are the chances of completing this project on time? What are the chances of completing this project at cost? These are
extremely intriguing questions. Being able to answer them would provide project managers with very significant information.
Knowing the answers, project managers would have a greater likelihood of responding appropriately to their project’s status.
This article discusses the concepts underlying the computation of the project performance probabilities. The statistical meth-
ods applied to the earned value indicators for cost and schedule performance are explained. The resultant of the application
is a graphic intended for management presentation, which has been termed a Performance Window. This article is intended
for project managers and their earned value performance analysts. The article will be more meaningful to those having an
understanding of Earned Value Management. An understanding of statistics will be helpful, but is not absolutely necessary.

In the military, we are often concerned
with real-time programming. A typi-

cal scenario would be an attack aircraft
approaching its target. The onboard
radar-warning receiver is reporting the
ground-based search radar that is paint-
ing the aircraft from several kilometers
away. As the target nears, another radar
pops up with the signature sweep of
tracking radar. The search was success-
ful and another stage of the game
begins. The attacker becomes a target.

On the aircraft, the electronic signa-
tures speak of launch mode, and then
launch. A digital signal processor ana-
lyzes the signature, and decisions are
made in real time. Is the missile radar
guided? What frequency is it using?
What is the power level? How many are
there? From which direction is it
approaching? How fast is it approach-
ing? How is it being guided? Is the radar
on board the missile, or is it ground-
based and passing guidance information
to the missile via a communications
channel? What frequency is the commu-
nication channel? Is the missile using
infrared seeking? The electronic brains
put together a counter measures plan
and send command signals to activate
the jammers and expend the flares if
they are needed.

First comes the boost phase; the
missile comes to life and gets its speed
up to intercept the attacker. Usually
there is no guidance available at this
time. The electronics and
hydraulics are activated. The
internal brain comes to life.

In the second phase, the
missile is up to speed and
being vectored to its target
by the target tracking radar.
Like a teenager, it quickly
develops its own field of
view and sets out to prove
itself. Modern missiles, like
modern teenagers, are smart.
Onboard processors are sift-
ing through incoming data
streams looking for counter
measures from its quarry so
it can apply counter-counter
measures. It compares its
electronic signatures with the
sun to make sure it isn’t
tracking the sun. If it is, it
goes back into search mode
to reacquire the target. It

might compute the track path and filter
out the vertical velocity, then compare it
to the acceleration of gravity to make
sure it is not tracking a free-falling flare.
If it is, it needs to re-acquire the target.

The aircraft counter measures are
pumping out electromagnetic energy
and flares to create false targets and
misinformation about angle or range.
However, is it working? Occasionally
the silicon brains have to do a look-
through to see if the foe is still in pur-
suit. If so, they have to make another
decision. Can they handle it themselves?
Should they pop another flair and hope
the distraction is long enough to cause a
miss? Is it time to warn the pilot and tell
him to get us out of here? What would
R2D2 do? Unlike a human heart, the
clock-ticks of the onboard processors
remain steady. Real-time decisions are
made as to whether the missile has
taken the bait, or if it has seen through
the spoof and another tactic needs to
be applied.

Back and forth they go, counter
measures versus counter-counter meas-
ures. The last phase of this scenario is
called the endgame. Here it will be
decided who has the best technology or
tactics. Sometimes good tactics can
counter good technology. Yet fast
processors, fast algorithms, and effi-
cient code play an important part in the
final decision. Good pilot training is

essential. It all happens in real
time.

However, was

it real or simulated? It seems like cut-
ting-edge software is mostly developed
for the military or the gaming industry.
We seem to oscillate between trying to
amuse ourselves or kill ourselves, and
with some of the games on the market
today, well, we won’t go there.

For example, here are some games
(well, OK, the first are the titles that we
should have, followed by the real titles).
Seems to fit well with the Department
of Defense (DoD) mindset, right?
• “Finding Demo.” (“Finding

Nemo.”)
• “Madder ’n Hell 2004.” (Madden

NFL 2004.)
• “Freaky Flyers.” (No kidding – this

is a real title from Midway.)
It seems to follow that advances in

technology in the real world translate
quickly to advances in simulation tech-
nology, which also mirrors gaming tech-
nology. In a few years, we are going to
have the first generation of pilots and
warfighters in the DoD that was raised
on state-of-the-art warfighting simula-
tions. I wonder if they will find the Joint
Strike Fighter a letdown?

– Dennis Ludwig
Aeronautical Systems Center

Wright-Patterson Air Force Base

Real Time – Military Style

BACKTALK

November 2003 www.stsc.hill.af.mil 31

CrossTalk / MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

THE DOOR TO THE CMMI IS
WAITING FOR YOU ...

DO YOU HAVE THE RIGHT KEYS?

THE DOOR TO THE CMMI IS
WAITING FOR YOU ...

If you want your organization to use common, integrated, and
improved processes for both Systems and Software, we can help.
The Software Technology Support Center will show your organ-
ization how to implement the process improvement method-
ology of the Capability Maturity Model® IntegrationSM (CMMI®), which
addresses productivity, performance, costs, and stakeholder
satisfaction. Make sure you have the right keys. Call us.

Software Technology Support Center
MASE • 6022 Fir Avenue • Building 1238 • Hill AFB, UT 84056 5820
801 775 5555 • DSN 775 5555 • FAX 801 777 8069 • www.stsc.hill.af.mil

® Capability Maturity Model and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Nov03cover.qxd 10/2/03 3:22 PM Page 2

	Front Cover
	Table of Contents
	From the Publisher
	An Introduction to Real-Time Programming
	Coming Events
	The Ravenscar Profile for

Real-Time and High Integrity Systems
	Software Static Code Analysis Lessons Learned©
	Decision Point:Will Using a COTS Component Help or Hinder Your DO-178B Certification Effort?©
	Defining a Process for Simulation Software Vulnerability Assessments
	Top 5 Quality Software Projects
	Developing a Stable Architecture to Interface Aircraft to Commercial PCs
	Online Article: The Probability of Success
	Web Sites
	BackTalk
	Back Cover

