A Primer for Under standing Joint Kinetics

Instructors. Thomas M. Kepple, Nasreen F. Haideri
Biomechanics Laboratory, Nationa Institutes of Health, Bethesda, MD

Section 1: Introduction

The purpose of this course isto provide areview of the mathematical techniques used to
derive kinetic data and to present implications of these techniques on data interpretation.

The course will begin by introducing the equations of motion (St =la S F=ma)and
will demonstrate how they have been used in clinical biomechanics to determine joint forces,
moments and powers. The equations of motion will first be applied in the more traditional
inverse dynamics approach. A second method using generalized coordinates will be introduced.
This method directly couples the equations in order to determine the influence that the moment at
onejoint will have on the other anatomical segments. Although the generalized method has been
used extensively in computer simulation and surgical decision making models, it has not been
widely taught in post-graduate motion analysis programs.

Finally, the implications of data interpretation using both approaches will be discussed.
This discussion will include data from clinical cases as well as their application in computer
smulations.

From this tutorial, the participant will learn to use the generalized form of the equations
of motion to derive the simple relationships between joint kinetics and kinematics and thus be
better equipped to understand and interpret their current motion analysis output. In addition,
because this approach serves as the foundation for computer smulation, the participants will be
better prepared to understand the result of surgical decision making models.

Section 2: Joint Dynamics Principlesand their Application

2.1 Traditional form of the equations of motion as used for determining joint kinetics

Most commercial motion analysis software uses the inverse dynamics approach to
generate kinetic information including joint forces, moments and powers. A link segment model
with rigid body segments istypically assumed. To compute kinetics, the position and orientation
of each of the segments must be known, as well as the accelerations, anthropometric measures
and external forces, i.e. ground reaction forces.

There are some limitations to interpreting data generated in the traditional method.
Specificaly, some problems arise in determining the true role of the joint moments, forces and
powers in generating motion. A computer simulated case will be introduced and joint kinetics
computed by inverse dynamics will be interpreted.



INVERSE DYNAMICSANALYSIS

Goal: To apply inverse dynamics techniques to compute kinetic information, including joint
reaction forces, moments, and power. A threelink planar segment mode will be evaluated for
the purposes of this workshop.

Input:

1. Kinematic description of the body; joint positions (q), accelerations (a), angular accelerations
(q), segment lengths (1) and center of gravity locations (r ).

2. Anthropometric measures, mass moments of inertia (1), masses (m).

3. Externa forces; ground reaction force, Fg.

Output of Computations:

1. Joint reaction forces, F, and Moments, t.
2. Joint powers.
3. Muscle moments.

Assumptions:

1. Each segment has a fixed mass whose location remains fixed at the Center of Mass, COM.
2. The mass moment of inertiafor each segment remains constant.
3. Thelength of each segment remains constant.

The validity of the results is dependent on the model and on accurate measures of segment
masses, centers of mass, joint centers, and mass moments of inertia

Newton's Law

SF=ma St=1q



Planar Link Segment Example

{

ﬁ» x 'f




Link O

F,
S F =mya
S Fx = Mpaox SFy = mpay,
le + FGx = MpAox I:1y - mog + I:Gy = rTba()y
le = Mp3ox— FGX I:1y:rnOaOy +mog - I:Gy
St = quo

ty+ (-roX Fo) + ((lo-ro) X F1) = 190
t,= |od o— (-roX Fe)— ((lo-ro) X Fy) = |od 0= (-roxFoy + roFex) — ((lo-To)xF1y — (lo-ro)yFux)



1 I,
SF=ma
S Fx = Myayy S Fy = rnlaly
Fix+ Fox = Myayy Foy — Fiy —mg = may
Fax = may, + Fix Fay=may, + Fy + mg
Fax = Myay, + Mpydoc - Fox Fay = myayy + (Mydgy +Mog — Fgy )+ Mg
St = |1q 1

t,—t; + (-I‘l X ‘Fl) + ((ll-l‘l) X F2)= |1d1
t2 = Ilq 1 +1 1 —('rl X 'F]_)— ((|1-r1) X Fz)

t,= |1d 1+ oq 0o— (rOXFGy + IroFex) — ((IO'rO)xFly - (IO'rO)yle)) —( rFay— rlyle)
— ((Irro)uFay - (limry)yF2)

Joint powers can then be computed as the sum of proximal and distal segment power. Thisis
equivaent to the product of net joint force and net joint velocity plus the product of net joint
torque and net joint angular velocity.

JP]_: Po+ Pl
JP1= (t10 o) + (410 1) + (FVo) + (- FiVa) =t 1 (do—0 1)



2.2 Limitations of the inver se dyamics approach

The limitations of the traditional inverse dynamics approach will be discussed and
illustrated through a simple musculoskeletal model. These limitations can include:

Inadequate explanation for the sources of the observed joint movements.
Errors in determining the type of muscle contraction

2.3 Coupled dynamics- Generalized coor dinate form of the equations of motion as used for
determining joint kinetics

Generaized coordinates are a common engineering method used to reduce the equations
of motion to one independent variable for each degree-of-freedom in alink model. As an
example, the equations of motion will be derived for a smple two-link planar model using
generdized coordinates. This example will be then used to illustrate the inherent relationships
between joint kinetics and kinematics and demonstrate how each joint moment will produce
accelerations at al of the joints in the body.

The resulting form of equations will be then be examined for their significancein
understanding clinical motion analysisdata. This technique will be applied to the computer
simulation previously presented and reviewed in further detail to demonstrate the differences
between the two sets of kinetic data.

References:

Zgec, F.E., Gordon, M.E. Determining Muscle's Force and Action in Multi-Articular Movement,
Exer. Sport Sci. Rev 1989; 17: 187-230.



Generalized Coordinates: Minimum number of coordinates required to specify the
configuration of the system. If each generalized coordinate can vary independently (holonomic
system) then the number of generalized coordinates will equal the degrees of freedom of the
system.

Planar example (no constraints):

The rigid body has 3 degrees of freedom (2 trandational, 1 rotational); the configuration can be
specified by three generalized coordinates x, y, q.

Planar example with constraint:

A trandational constraint (pin joint) has been added. The rigid body has 1degrees of freedom
(rotational); the configuration can be specified by the generalized coordinate g.



Example: Planar Two Link System

Goal: To find an expression for the joint moments such that the moments are a function of only

the generalized coordinates (0., g,) and their derivatives (1, 02 g1 q2).

180 + ( ©1 - B2)

01 — 02

01 - O2

Later in the tutorial it will be shown that the generdized form of the joint momentst ; andt, are:
t1 = (I, + merolicos(ay - @) + mur? + meli%) g4

+ (I + mpro® + mural,cos(0i-02) g2

- MprohSin(gs- 02)(d 1)

+ MyrhSin(0:-02) (0 2)°

+ (Myr,Cos, + My CoSty + Myl;cosa;)g

t, =y, hcos(Qr- G2) g1 + (I + Mory?) o= Mors hSin(Qy - Q) g4 + MLr0080.g



For simplicity introduce the substitutions:

My = |y + Myl cos(Q; - ) + myry® + myly”
My1 = mpr; l,cos(q: - o)

Cu1 = -mprahsn(:- gz) (q 1)2

Co = -mpraliSn(g; - Q) (q 1)2
Gi1 = Mpr,Cosg; + My Costy + Myl;c0S0:g

Thus:
ty = M11d1+ MlZdZ' Cut Cpt+ Gy
ts=Mu Qi+ MyQ,- Cu+ Cpt Gy

Reformulate as matrix agebra

S

81
82

My, = (|2 + mr22 + mzrzllcos(ql-QZ)
My, = (|2 + I’n2r22)

C1z = Myl SN(01-0,) (q 2)2

sz =0
Gy1 = mypr,cosg, g

11 Cig + [P
Cr1 Cae oy

The joint moments can be expressed in matrix notation:

t =M(@)q +C(@q) + G(a)

Solving for q:

Mg =t - C(aq)- G()

g =M¥ql- M*C@q)- M'G(q)
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Implicationsfor Gait Analysis

The following principals of joint kinetics can be uncovered:

1. A moment at ajoint will act to accelerate dl of the joints of the body.

2. The magnitude of the accelerations created by ajoint moment will be afunction of both the
magnitude of the moment and the positions of the segments.

3. The accelerations created by ajoint moment are independent of the velocity of the joint. Thus, the
accelerations created by a given joint moment are independent of type of contraction (eccentric vs.

concentric.)

2.4 Clinical case and examples
A clinical case will be used to compare the traditional and generalized methods. The

clinical case will demonstrate how the generalized method can be used to directly measure the
compensatory mechanics used in a patient with lower extremity weakness.

2.5 Discussion and questions

We hope to initiate discussion among participants who are involved in clinica
interpretation of kinetic data as well as those involved in forward dynamic modeling.
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Section 3: Computation of the Net Joint Dynamics

3.1 Derivation of the Joint Moment Equations (Generalized Form)

Example: Planar Two Link System

Goal: To find an expression for the joint moments such that the moments are a function of only

the generalized coordinates (g, q,) and their derivatives (q1, 42, q1.q2).

180 + ( ©1 — O2)

01 — B2

01 — 92



Basic Equations:

Link 2

Equations of Motion: St =1 S F=ma

t,+ (12X F2)=145 F2 - Mg = Myayeg

Trig relationships: I ox = 120080 Fay = 1,900,
le = |1C05q1 Ily = |1§nq1

Relative Motion Equations:

where:

thus:

cross product terms:

collecting the terms:

ach = a-Ljoint"' az_tangent + aLnormal
a2_tangent= CI 2 XTI
A_normal = q 2 X (q 2 X r2)

A_joint :dl)(ll + C.MX(Clllel)

B  =Q1Xli+ g1X@1Xl)+ gaXry + gaX (@2 XT2)
X terms y terms

(@1 X 1)=-lyd @1x1)y =11

@1 X @1 x11))x=-l(q0)? @1x @1 x 1))y =-ly@1)°

(@2XT2)x =20 @2XT2)y =202

(@2X @2 X T2))x= T2(0 2)? @2x(@2 x r2))y = ‘rzy(q 2)

(Boco)e = -l1y0 1 + 11 1)° + 120 2 + -T2y(q2)*

= -l SN0, 1 + -Lcosqu(q 1)? + -LSN0aq 2 + -1C0S02(q 2)°
(Beca)y = 11+ -11,(@ 1) + 120 2+ 12(q2)°

= 1,004 1 + -hSNGL(q1)* + RLOOSAL > + ~12SNC( 2)°



Find the torque at joint 2:
tr+ (X F)= 10,

t, =10, - (-T2x F)

By vector algebra:
to= 10y + raFoy - ayFa
ty =10, + COSULFay - 1,SNQFoy
Find theforce at joint 2 (F»):
F2 - Mg = Myaneg
F2 = Myapeg + Mg
Find the components of F,:

Faox = My(8gcg)x

Fox = mp(-l1S n%d 1t '|1COSCI1(q 1)2 + 'rzgnQZd 2 t ‘rzCOSCIZ(q 2)2)

I:2y = rnZ(aZ(:g)y + ng

Foy = Mp(1,COSC] 1 + -hSNQu(Q 1)* + 10080 2 + -T28NC(q 2)° + )

Substituting F,, and Fxinto t ,:

13

to =19, + Mr,cosg[l:cosquq 1 + -hsSna:(q1)° + LCOSUg » + r8NGx(q2)° + 9]

- mzrzgn%['llsmmd 1t '|1COSQ1(q 1)2 + 'rzgnQ2d 2 t 'rZCOSqZ(q 2)2]

Collecting like terms:

t2 = (I + (Mer,008Q)° + (MeroSind2)”) d 2
+ M, |y (cosgcosap + SNg.SNgy) g 1
+ My, |y (-siNQ; €0, + CoSCuSiNGy) 4 4

+ rT12"22('9.nqz 0sQ + SNQ, CoSa) q e

+ MpI,COs0g

Finaly viaalgebra and trig:

ty = (I, + Myr2) g2+ Mpry LCOS(Gr - ) 01~ Mary LSN(Q - Qo) G4 + MLr00S0.g
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Link 1
Basic Equations:
Equations of Motion: St =1 S F=ma
ta+(42) + (X F) + ((h-r1) X (-F>)) =g Fi+ (-F2) - Mg = Myapg
Trig relationships: l'1x = r1C0SQ; riy = rSng;
le = |1C05q1 Ily = |1§nq1

Relative Motion Equations: Aucg = A joint T A1_tangent T 81_normal

where: A_tangent — g 1 X1

A4 _normal = q 1 X (q 1 X rl)

ay_jont =0

thus: Big =01, XF + Q1 X (1 XTr1)

Cross prOdUCt terms. Xterms Yy terms
(dlxrl)x:'rlydl (dlxrl)y:rlxdl

(@1 X @1 X 1)) x= 10 2)? @:x@1x r))y= -rly(d W)

collecting theterms.  (8uog)x = T, 1 + -F1x(q 1)°
= 1,8NQuq 1 + -HCOSHL (G 1)°
(Bacg)y = r1><d 1t rly(q W)

= rlcOS(hd 1t 'rlgn%(q 1)2

Thetorque at joint 1:
ty+(t2) + (X Fr) + (- 1) X (-F2)) = 101
ty=hoy +to- (X F) - (k- 1) X (-F))
By vector algebra:

ti=hgq +to+ (X Fy) + (- r1) X (F2))



ty =g+t + (X F) + (IixFp)- (rux Fy)

ty=hqq+ty + oy Fay - Fy Fo# iy Foy - by Fay - Ty Foy + 1y Foy
Collecting like terms:

ty=hqs+ty + r(Fuy - Fay) - Fiy(Fix— Fa) + lix Foy - by Fx
Find expression for F;— F»:

Fi+ (-F2) - Mg = myayg

I:l - FZ = mla2cg + rnlg

Find the components for F,— F:
le - F2x = ml(aZ(:g)x

I:1y - I:Zy = rnl(ach)y + rnlg

Substituting (Fix - F2x) and (Fyy - Fpy) intot:

1:l = |1C] 1 +t2 + I’lx(rnl(ang)y + mlg) - rly(ml(aZOQ)x) + le F2y - I1y I:2x

Substituting for riy, ry, lix, and lqy:

ty=1hQq +t, + myry0080;((Becg)y + Q) - Mur1SNQ: (Bocg)x + hCOSTsFoy - ,SNGFoy

By algebra:
ty=1Qq +t, + Myr,0080; (Becg)y+ Mri00SG:G - MyF;SNG (Bocg)x
+ 100801 Fpy - 19NQ1F2«

Substituting for (8c4)y and (axcg)x from Relative Motion Equations:

ty=hq +ty + Myrycosg(ncosgq  + -rSnds(q1)?) + MiriCostg

- myrSingy(-r8NQ.Q 1 + -1coso(q 1)°) + hcosasFoy, - SN, Fay
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Use the results of link 2 to substitute for t ,, Fo, Fay:
ti=1q;
+ (I + Mor2’) Q2 + Merz hCOS(Gr - G2) 2 Merz hSin(d1 - G2)d1° + Mer00SQ.g
+ My ;0080 (1;100S0HQ 1 + -1:8inQ(Q 1)°) + Murcosthg
- MyrSN0(-r:SNQ.q 1 + -rcosou(q 1)%)
+1,0050y(M,(1,c0S01q 1 + -hSiNGL(Q 1)* + 1C0STY 2 + ~1289N02(q 2)° + 7))
- h8ngy(my(-hsingd 1 + -hoosth(@ 1) + Fo8N0q, + -r0080A(q 2)%))

Collecting like terms:
ty = (I, + mpral;cos(q; - @) + My cos’gy + My ’an’ay + myly®cos’cy+ myly’sn’ay) q 4
+ (I + mpr? + myrol;c0Sg.C0S0, + MprohSNg;Singy) q 2
+ (- Myl SN(Qs- G) - MunSNg,COST, + Mury*SNgLCoSas - Myl *SiNg;Cost + Myl *iNg,cosqy)(d 1)?

+ (- myr; licosq Sng; + Myr; |15an1COSq2)(q 2

+ (Impr,0os0, + Myr00Sa, + Myl;CoS0)g
Simplifying:

t1 = (I, + merolicos(ay - o) + mur? + meli%) g4
+ (I + Myr? + Myl coS(0h-2) 2
- MyrahSin(Gs- 2)(d 1)’
+ MyrohSin(Gs-0)(0 2)°

+ (Mypr,Cosg2 + My CoSty + Myl;CoSa;)g



Restating our expressionsfor t; and t ,:

t1 = (I + mprolicos(gs - &) + mur? + moh?) g+
+ (I + mr,? + mpr,l,cos(0:-0) q 2
- MproliSin(gy- 02)(0 1)
+ MprlySin(01-02) (0 2)°

+ (IMpr,0os0, + MyrCoSa, + Myl Cos0:)g

t,=mpr, ,cos(Qs- Qo) Q1 + (Io + Mory) go- Myry hSN(Qy - 02) q1° + Myrcos0.g

For smplicity introduce the substitutions:

Mus = |3+ mprlicos(dy - ) + mury” + myl,® Miz = (I + mra® + myralicos(cp-of)

My = mpr; 1.coS(qs - Gp) My = (I + myryY)
Ci = -mprahsin(g:- gz) (q 1)2 Ci2 = mproliSNn(Q:-qz) (q 2)2
Co = -murohSn(ar - Q) (Clll)z Cr=0

Gi1 = Mpr,Cosg; + My Costy + Myl;cosa; g Gy1 = mypr,cosg, g

Thus:
ty = M11a1+ MlZdZ - Cut Cpt Gy

t,= M21d1+ Mzzdz' Cut Cupt Gy

Reformulate as matrix algebra:

Tu = M1 M _B_l
T Meyr  Ma: a:
Matrix Notation:

t =M(@)q +C@q) + G(q)

11 Ci + 1
Cr Ca iy

17
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Solvefor q:

Mg =t - Caq)- G()

g =M ql- M*C@q)- M'G(q)

3.2 Basisfor Computer Simulation

The generalized form of the equations of motion can be used as the basis for computer simulation.
Computer simulation is conducted by specifying initial values for the joint positions and velocities (the
state variables) and solving for the accelerations using the equation above. Numerical integration can
then be applied to the accelerations in order to predict the state variables (joint positions and velocities)
for asmall time forward in time. After obtaining the new state variables, the equations of motion are then

used to solve for the new acceleration. This process is repeated to produce simulated movements.

References:

Nikravesh, P.E. Computer-Aided Anaysis of Mechanical Systems. Prentice Hall, 1988.




Appendix
Equationsof Motion: St =Iq S F=ma

Cross Product A=B xC:
A,=B,C,-B,C, A,=B,C,-BC, A,=B«C,-B,Cy

Representing a set of equation in matrix form:

Y1 = M +  DMeH: W, - Mii Mo ¥
Mei¥1 +  MnXe ¥e Mer D e

M
1

Relative Motion Equations: Acg = end + Aangent + Bnormal

O
where: acy = trandation acceleration at a segment’s center of gravity
3eng =trandation acceleration at a segment’s end
atangentzd Xr anormalzq X(q XTr)
and: q =angular velocity g = angular acceleration

r = vector from the segment end to the center of gravity

Trigonometric I dentities: sn’q +cos’q =1
sn(g £ f)=sdgnqgcod =+ cosganf

cos(q +f ) = cosgeosf T snqcosf
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