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A Primer for Understanding Joint Kinetics 
 
 
 

Instructors: Thomas M. Kepple,  Nasreen F. Haideri 
  Biomechanics Laboratory, National Institutes of Health, Bethesda, MD  
   
 
 
     
 

Section 1:  Introduction 
 
 The purpose of this course is to provide a review of the mathematical techniques used to 
derive kinetic data and to present implications of these techniques on data interpretation. 
 The course will begin by introducing the equations of motion  (Σ τ  = I α    Σ  F = ma) and 
will demonstrate how they have been used in clinical biomechanics to determine joint forces, 
moments and powers.  The equations of motion will first be applied in the more traditional 
inverse dynamics approach.  A second method using generalized coordinates will be introduced.  
This method directly couples the equations in order to determine the influence that the moment at 
one joint will have on the other anatomical segments. Although the generalized method has been 
used extensively in computer simulation and surgical decision making models, it has not been 
widely taught in post-graduate motion analysis programs. 
 Finally, the implications of data interpretation using both approaches will be discussed. 
This discussion will include data from clinical cases as well as their application in computer 
simulations. 
 From this tutorial, the participant will learn to use the generalized form of the equations 
of motion to derive the simple relationships between joint kinetics and kinematics and thus be 
better equipped to understand and interpret their current motion analysis output. In addition, 
because this approach serves as the foundation for computer simulation, the participants will be 
better prepared to understand the result of surgical decision making models. 
  
 
 
 

Section 2: Joint Dynamics Principles and their Application 
 

 
 
2.1  Traditional form of the equations of motion as used for determining joint kinetics  
 
 Most commercial motion analysis software uses the inverse dynamics approach to 
generate kinetic information including joint forces, moments and powers.  A link segment model 
with rigid body segments is typically assumed.  To compute kinetics, the position and orientation 
of each of the segments must be known, as well as the accelerations, anthropometric measures 
and external forces, i.e. ground reaction forces. 
 There are some limitations to interpreting data generated in the traditional method.  
Specifically, some problems arise in determining the true role of the joint moments, forces and 
powers in generating motion.  A computer simulated case will be introduced and joint kinetics 
computed by inverse dynamics will be interpreted.  
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INVERSE DYNAMICS ANALYSIS 
 
 
Goal: To apply inverse dynamics techniques to compute kinetic information, including joint 
reaction forces, moments, and power.  A three link planar segment model will be evaluated for 
the purposes of this workshop. 

 
 
Input: 
 
1. Kinematic description of the body; joint positions (θ), accelerations (a), angular accelerations 

(θ
..

 ), segment lengths (l) and center of gravity locations ( r ).   
 
2. Anthropometric measures; mass moments of inertia (I), masses (m). 
 
3. External forces; ground reaction force, FG. 
 
 
Output of Computations: 
 
1. Joint reaction forces, F, and Moments, τ. 
2. Joint powers. 
3. Muscle moments. 
 
 
Assumptions: 
 
1. Each segment has a fixed mass whose location remains fixed at the Center of Mass, COM. 
2. The mass moment of inertia for each segment remains constant. 
3. The length of each segment remains constant. 
 
 
The validity of the results is dependent on the model and on accurate measures of segment 
masses, centers of mass, joint centers, and mass moments of inertia. 
 
Newton’s  Law 

Σ F = ma  Σ τ = I θ
..
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Planar Link Segment Example 
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Link 0 
 

      

 
 
 
Σ F = m0a0 
 
Σ F x = m0a0x   Σ Fy = m0a0y 
F1x + FGx = m0a0x  F1y – m0g + FGy = m0a0y 
F1x = m0a0x –  FGx  F1y = m0a0y  + m0g  –  FGy 
 

Σ τ = I0θ
..
 0 

τ1 + (-r0 x FG) + ((l0-r0) x F1) = I0θ
..

 0 

τ1 = I0θ
..

 0 – (-r0 x FG) –  ((l0-r0) x F1) = I0θ
..
 0  – (-r0xFGy + r0FGx) – ((l0-r0)xF1y – (l0-r0)yF1x) 
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Link 1 

 

 
 

 
 
Σ F = m1a1      
 
Σ Fx = m1a1x    Σ Fy = m1a1y 
F1x + F2x = m1a1x   F2y  –  F1y – m1g = m1a1y 
F2x = m1a1x + F1x   F2y = m1a1y + F1y + m1g 
F2x = m1a1x + m0a0x - FGx  F2y = m1a1y + (m0a0y  + m0g  – FGy )+ m1g 
 
 

Σ τ = I1θ
..
 1 

τ2 – τ1 + (-r1 x -F1) + ((l1-r1) x F2) = I1θ
..
 1 

τ2 = I1θ
..

 1  +  τ 1 – (-r1 x -F1) – ((l1-r1) x F2) 

τ2 = I1θ
..
 1  + (I0θ

..
 0   –  (r0xFGy + r0FGx) – ((l0-r0)xF1y  – (l0-r0)yF1x))  – ( r1xF1y – r1yF1x )  

– ((l1-r1)xF2y - (l1-r1)yF2x) 
 
 
Joint powers can then be computed as the sum of proximal and distal segment power.  This is 
equivalent to the product of net joint force and net joint velocity plus the product of net joint 
torque and net joint angular velocity. 
 
JP1 = P0 + P1 
JP1 =  (τ1θ& 0) + (-τ1θ& 1) + (F1V0) + (−F1V1) = τ 1 ( θ& 0 – θ& 1) 
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2.2  Limitations of the inverse dyamics approach 
 
 The limitations of the traditional inverse dynamics approach will be discussed and 
illustrated through a simple musculoskeletal model. These limitations can include: 
 
• Inadequate explanation for the sources of the observed joint movements. 
• Errors in determining the type of muscle contraction 
 
 
 
 
 
 
 
2.3  Coupled dynamics - Generalized coordinate form of the equations of motion as used for 
determining joint kinetics 
 
 Generalized coordinates are a common engineering method used to reduce the equations 
of motion to one independent variable for each degree-of-freedom in a link model. As an 
example, the equations of motion will be derived for a simple two-link planar model using 
generalized coordinates.  This example will be then used to illustrate the inherent relationships 
between joint kinetics and kinematics and demonstrate how each joint moment will produce 
accelerations at all of the joints in the body.  
 The resulting form of equations will be then be examined for their significance in 
understanding clinical motion analysis data.  This technique will be applied to the computer 
simulation previously presented and reviewed in further detail to demonstrate the differences 
between the two sets of kinetic data. 
 
 
 
References:  
 
Zajac, F.E., Gordon, M.E.  Determining Muscle’s Force and Action in Multi-Articular Movement, 
Exer. Sport Sci. Rev 1989; 17: 187-230. 
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 Generalized Coordinates: Minimum number of coordinates required to specify the 
configuration of the system. If each generalized coordinate can vary independently (holonomic 
system) then the number of generalized coordinates will equal the degrees of freedom of the 
system. 
 
 
 
Planar example (no constraints): 
 

  
 
 

The rigid body has 3 degrees of freedom (2 translational, 1 rotational); the configuration can be 
specified by three generalized coordinates x, y, θ. 
 
 
 
 
 
 
 
 
Planar example with constraint: 
 

 
 
 

A translational constraint (pin joint) has been added. The rigid body has 1degrees of freedom 
(rotational); the configuration can be specified by the generalized coordinate θ. 
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Example: Planar Two Link System 
 

Goal: To find an expression for the joint moments such that the moments are a function of only 

the generalized coordinates (θ1, θ2) and their derivatives (θ
.
 1, θ

.
 2,  θ

..
 1, θ

..
 2). 

 
 

 
 
 
 

Later in the tutorial it will be shown that the generalized form of the joint moments τ 1 and τ2  are: 

τ1 = (I1 + m2r2l1cos(θ1 −θ2) + m1r1
2 + m2l12) θ

..
 1  

        + (I2 + m2r2
2 + m2r2l1cos(θ1-θ2)  θ

..
 2   

       −  m2r2l1sin(θ1−θ2)(θ
.
 1)2 

       +  m2r2l1sin(θ1-θ2)(θ
.
 2)2 

 
       + (m2r2cosθ2 + m1r1cosθ1 + m2l1cosθ1)g 
 

τ2 = m2r2 l1cos(θ1 − θ2) θ
..
 1  + (I2 + m2r2

2) θ
..
 2 − m2r2 l1sin(θ1 − θ2) θ

.
 1

2 + m2r2cosθ2g 
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For simplicity introduce the substitutions: 
 
M11 = I1 + m2r2l1cos(θ1 −θ2) + m1r1

2 + m2l12 M12 = (I2 + mr2
2 + m2r2l1cos(θ1-θ2)  

M21 = m2r2 l1cos(θ1 − θ2)    M22 = (I2 + m2r2
2) 

C11 =  −m2r2l1sin(θ1−θ2) (θ
.
 1)2    C12 = m2r2l1sin(θ1-θ2) (θ

.
 2)2 

C21 =  −m2r2l1sin(θ1 − θ2) (θ
.
 1)2    C22 = 0 

G11 = m2r2cosθ2 + m1r1cosθ1 + m2l1cosθ1 g G21 = m2r2cosθ2 g 

 

 
Thus: 

τ1 = M11 θ
..
 1 +   M12θ

..
 2  −  C11+  C12+ G11 

τ2 = M21 θ
..
 1 +   M22θ

..
 2  −  C21+  C22+ G21 

 
 
Reformulate as matrix algebra: 
 
 

 
 
 
  
The joint moments can be expressed in matrix notation: 

τ = M(θ)θ
..

  + C(θ,θ
.
 ) +  G(θ) 

 
 
 
 
 

 Solving for θ
..
 : 

M(θ)θ
..

  = τ −  C(θ,θ
.
 ) − G(θ) 

 

θ
..

  = M-1(θ)τ−  M-1 C(θ,θ
.
 ) −  M-1G(θ) 
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Implications for Gait Analysis 

 
 
 
The following principals of joint kinetics can be uncovered: 
 
 
1. A moment at a joint will act to accelerate all of the joints of the body. 

2. The magnitude of the accelerations created by a joint moment will be a function of both the 

magnitude of the moment and the positions of the segments. 

3. The accelerations created by a joint moment are independent of the velocity of the joint. Thus, the 

accelerations created by a given joint moment are independent of type of contraction (eccentric vs. 

concentric.) 

 

 
 
 
2.4 Clinical case and examples 
 
 A clinical case will be used to compare the traditional and generalized methods. The 
clinical case will demonstrate how the generalized method can be used to directly measure the 
compensatory mechanics used in a patient with lower extremity weakness. 
  
 
 
 
2.5 Discussion and questions  
 
 We hope to initiate discussion among participants who are involved in clinical 
interpretation of kinetic data as well as those involved in forward dynamic modeling. 
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Section 3: Computation of the Net Joint Dynamics  
 
 
3.1 Derivation of the Joint Moment Equations (Generalized Form) 
 
 

Example: Planar Two Link System 
 

 
 
Goal: To find an expression for the joint moments such that the moments are a function of only 

the generalized coordinates (θ1, θ2) and their derivatives (θ
.
 1, θ

.
 2,  θ

..
 1, θ

..
 2). 
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Link 2 
 
 
Basic Equations : 
 

Equations of Motion: Σ τ = I θ
..
    Σ  F = ma 

   τ2 + (-r2 x F2)= I2θ
..
 2  F2 - m2g = m2a2cg 

 
 
Trig relationships: r2x = r2cosθ2  r2y = r2sinθ2 

   l1x = l1cosθ1  l1y = l1sinθ1 

 

 
 
 
Relative Motion Equations: a2cg = a2_joint +  a2_tangent + a2_normal 

 where:   a2_tangent = θ
..

 2 x r2 

    a2_normal = θ
.
 2 x (θ

.
 2  x r2 ) 

    a2_joint    = θ
..

 1 x l1  +   θ
.
 1 x (θ

.
 1  x l1 ) 

thus:   a2cg       = θ
..
 1 x l1  +   θ

.
 1 x (θ

.
 1  x l1 ) +  θ

..
 2 x r2   +  θ

.
 2 x (θ

.
 2  x r2 ) 

    
cross product terms:       x terms     y terms  

(θ
..

 1 x l1) x = -l1yθ
..

 1        (θ
..
 1 x l1) y = l1xθ

..
 1 

  (θ
.
 1 x (θ

.
 1  x l1 )) x = -l1x(θ

.
 1)2      (θ

.
 1 x (θ

.
 1  x l1 )) y = -l1y(θ

.
 1)2 

  (θ
..

 2 x r2) x = -r2yθ
..

 2        (θ
..
 2 x r2) y = r2xθ

..
 2 

  (θ
.
 2 x (θ

.
 2  x r2 )) x = -r2x(θ

.
 2)2      (θ

.
 2 x (θ

.
 2  x r2 )) y = -r2y(θ

.
 2)2 

 

collecting the terms: (a2cg)x = -l1yθ
..

 1 + -l1x(θ
.
 1)2 + -r2yθ

..
 2 + -r2y(θ

.
 2)2 

          = -l1sinθ1θ
..
 1 + -l1cosθ1(θ

.
 1)2  + -r2sinθ2θ

..
 2   +  -r2cosθ2(θ

.
 2)2 

  (a2cg)y = l1xθ
..
 1 + -l1y(θ

.
 1)2 + r2xθ

..
 2 + r2y(θ

.
 2)2 

           = l1cosθ1θ
..

 1 + -l1sinθ1(θ
.
 1)2  + r2cosθ2θ

..
 2   +  -r2sinθ2(θ

.
 2)2 

 
 
   
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
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Find the torque at joint 2: 

 τ2 + (-r2 x F2)= I2θ
..
 2  

  τ2 = I2θ
..
 2  − (-r2 x F2)  

 
 
By vector algebra: 

τ2 =  I2θ
..
 2  +  r2xF2y −  r2yF2x 

  τ2 = I2θ
..
 2  +  r2cosθ2F2y − r2sinθ2F2x 

 
Find the force at joint 2 (F2): 
   

  F2 - m2g = m2a2cg 

   

  F2 = m2a2cg + m2g 

          
  Find the components of F2: 
 

 F2x = m2(a2cg)x  

F2x = m2(-l1sinθ1θ
..

 1 + -l1cosθ1(θ
.
 1)2  + -r2sinθ2θ

..
 2   +  -r2cosθ2(θ

.
 2)2) 

 
F2y = m2(a2cg)y + m2g  

F2y = m2(l1cosθ1θ
..
 1 + -l1sinθ1(θ

.
 1)2  + r2cosθ2θ

..
 2  + -r2sinθ2(θ

.
 2)2 + g) 

 
Substituting F2y  and F2x into τ 2: 

τ2 = I2θ
..
 2  +  m2r2cosθ2[l1cosθ1θ

..
 1 + -l1sinθ1(θ

.
 1)2  + r2cosθ2θ

..
 2   + r2sinθ2(θ

.
 2)2 + g]  

                  − m2r2sinθ2[-l1sinθ1θ
..
 1 + -l1cosθ1(θ

.
 1)2  + -r2sinθ2θ

..
 2   +  -r2cosθ2(θ

.
 2)2] 

 
Collecting like terms: 

τ2 = (I2 + (m2r2cosθ2)2 + (m2r2sinθ2)2) θ
..
 2 

       + m2r2 l1(cosθ1cosθ2 + sinθ1sinθ2) θ
..
 1 

       + m2r2 l1(-sinθ1cosθ2 + cosθ1sinθ2) θ
.
 1

2 

         + m2r2
2(-sinθ2 cosθ2 + sinθ2 cosθ) θ

.
 2

2 

 

             + m2r2cosθ2g 
 
Finally via algebra and trig: 

τ2 = (I2 + m2r2
2) θ

..
 2 + m2r2 l1cos(θ1 − θ2) θ

..
 1 − m2r2 l1sin(θ1 − θ2)  θ

.
 1

2 + m2r2cosθ2g 
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Link 1 
 
 
Basic Equations : 
 

Equations of Motion: Σ τ = I θ
..
      Σ  F = ma 

τ1 + (-τ2)  + (-r1 x F1) + ((l1 - r1) x (-F2)) = I1θ
..
 1   F1 + (-F2) − m1g = m1a2cg 

 
 
Trig relationships: r1x = r1cosθ1  r1y = r1sinθ1 

   l1x = l1cosθ1  l1y = l1sinθ1 

 

Relative Motion Equations: a1cg = a1_join t +  a1_tangent + a1_normal 

 where:   a1_tangent = θ
..

 1 x r1 

    a1_normal = θ
.
 1 x (θ

.
 1  x r1 ) 

 
    a1_joint = 0 

 

thus:   a1cg = θ
..
 1, x r1  +   θ

.
 1 x (θ

.
 1  x r1 )  

 
cross product terms:        x terms     y terms  

(θ
..

 1 x r1) x = -r1yθ
..

 1        (θ
..
 1 x r1) y = r1xθ

..
 1 

  (θ
.
 1 x (θ

.
 1  x r1 )) x = -r1x(θ

.
 1)2      (θ

.
 1 x (θ

.
 1  x r1 )) y = -r1y(θ

.
 1)2 

 

collecting the terms: (a2cg)x = -r1yθ
..
 1 + -r1x(θ

.
 1)2 

          = -r1sinθ1θ
..
 1 + -r1cosθ1(θ

.
 1)2 

  (a2cg)y = r1xθ
..
 1 + r1y(θ

.
 1)2 

           = r1cosθ1θ
..
 1 + -r1sinθ1(θ

.
 1)2   

 
 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
 
 
The torque at joint 1: 

 τ1 + (-τ2)  + (-r1 x F1) + ((l1 - r1) x (-F2)) = I1θ
..
 1  

 τ1 = I1θ
..
 1 + τ2 − (-r1 x F1) − ((l1 - r1) x (-F2)) 

 
By vector algebra: 

τ1 = I1θ
..
 1 + τ2 + (r1 x F1) + ((l1 - r1) x (F2)) 
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 τ1 = I1θ
..
 1 + τ2 + (r1 x F1) +  (l1 x F2) − (r1 x F2) 

 τ1 = I1θ
..
 1 + τ2  + r1x F1y − r1y F1x + l1x F2y − l1y F2x − r1x F2y + r1y F2x 

 
Collecting like terms: 

 τ1 = I1θ
..
 1 + τ2  + r1x(F1y − F2y) − r1y(F1x – F2x) + l1x F2y − l1y F2x 

 
Find expression for F1 – F2: 
 
  F1 + (-F2) − m1g = m1a2cg 

   

  F1 − F2 = m1a2cg + m1g  

 
 
  Find the components for F1 – F2: 
 
  F1x − F2x  = m1(a2cg)x 

 

  F1y − F2y  = m1(a2cg)y + m1g 
 
 
Substituting (F1x − F2x) and (F1y − F2y)  into τ1: 

τ1 = I1θ
..
 1 + τ2  + r1x(m1(a2cg)y + m1g) − r1y(m1(a2cg)x) + l1x F2y − l1y F2x 

 
 
Substituting for r1x, r1y, l1x, and l1y: 

τ1 = I1θ
..
 1 + τ2  + m1r1cosθ1((a2cg)y + g) − m1r1sinθ1(a2cg)x + l1cosθ1F2y − l1sinθ1F2x 

 
 
By algebra: 

τ1 = I1θ
..
 1 + τ2  + m1r1cosθ1(a2cg)y+ m1r1cosθ1g − m1r1sinθ1(a2cg)x  

       + l1cosθ1F2y − l1sinθ1F2x 

 
 
Substituting for (a2cg)y and (a2cg)x  from Relative Motion Equations: 
 

τ1 = I1θ
..
 1 + τ2  + m1r1cosθ1(r1cosθ1θ

..
 1 + -r1sinθ1(θ

.
 1)2) + m1r1cosθ1g 

        − m1r1sinθ1(-r1sinθ1θ
..

 1 + -r1cosθ1(θ
.
 1)2) + l1cosθ1F2y − l1sinθ1F2x 
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Use the results of link 2 to substitute for  τ 2, F2x, F2y: 

  τ1 = I1θ
..
 1   

      + (I2 + m2r2
2) θ

..
 2   + m2r2 l1cos(θ1 − θ2)θ

..
 1 − m2r2 l1sin(θ1 − θ2)θ

.
 12 + m2r2cosθ2g 

      + m1r1cosθ1(r1cosθ1θ
..
 1 + -r1sinθ1(θ

.
 1)2) + m1r1cosθ1g 

        − m1r1sinθ1(-r1sinθ1θ
..
 1 + -r1cosθ1(θ

.
 1)2) 

      + l1cosθ1(m2(l1cosθ1θ
..

 1 + -l1sinθ1(θ
.
 1)2  + r2cosθ2θ

..
 2  + -r2sinθ2(θ

.
 2)2 + g)) 

      −  l1sinθ1(m2(-l1sinθ1θ
..
 1 + -l1cosθ1(θ

.
 1)2  + -r2sinθ2θ

..
 2   +  -r2cosθ2(θ

.
 2)2)) 

 
 
 
Collecting like terms: 

τ1 = (I1 + m2r2l1cos(θ1 −θ2) + m1r1
2cos2θ1 + m1r1

2sin2θ1 + m2l12cos2θ1+ m2l12sin2θ1) θ
..
 1  

       + (I2 + m2r2
2 + m2r2l1cosθ1cosθ2 + m2r2l1sinθ1sinθ2) θ

..
 2   

       + (−m2r2l1sin(θ1−θ2) − m1r1
2sinθ1cosθ1 + m1r1

2sinθ1cosθ1 − m2l12sinθ1cosθ1 + m2l12sinθ1cosθ1)(θ
.
 1)2  

       + ( − m2r2 l1cosθ1sinθ2 + m2r2 l1sinθ1cosθ2)(θ
.
 2)2 

 
       + (m2r2cosθ2 + m1r1cosθ1 + m2l1cosθ1)g 
 
 
Simplifying: 
 

τ1 = (I1 + m2r2l1cos(θ1 −θ2) + m1r1
2 + m2l12) θ

..
 1  

        + (I2 + m2r2
2 + m2r2l1cos(θ1-θ2)  θ

..
 2   

       −  m2r2l1sin(θ1−θ2)(θ
.
 1)2 

       +  m2r2l1sin(θ1-θ2)(θ
.
 2)2 

 
       + (m2r2cosθ2 + m1r1cosθ1 + m2l1cosθ1)g 
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Restating our expressions for τ1 and τ2: 

τ1 = (I1 + m2r2l1cos(θ1 −θ2) + m1r1
2 + m2l12) θ

..
 1  

        + (I2 + mr2
2 + m2r2l1cos(θ1-θ2)  θ

..
 2   

       −  m2r2l1sin(θ1−θ2)(θ
.
 1)2 

       +  m2r2l1sin(θ1-θ2)(θ
.
 2)2 

 
       + (m2r2cosθ2 + m1r1cosθ1 + m2l1cosθ1)g 
 

τ2 = m2r2 l1cos(θ1 − θ2) θ
..
 1  + (I2 + m2r2

2) θ
..
 2 − m2r2 l1sin(θ1 − θ2) θ

.
 1

2 + m2r2cosθ2g 
 
 
 
For simplicity introduce the substitutions: 
 
M11 = I1 + m2r2l1cos(θ1 −θ2) + m1r1

2 + m2l12 M12 = (I2 + mr2
2 + m2r2l1cos(θ1-θ2)  

M21 = m2r2 l1cos(θ1 − θ2)    M22 = (I2 + m2r2
2) 

C11 =  −m2r2l1sin(θ1−θ2) (θ
.
 1)2    C12 = m2r2l1sin(θ1-θ2) (θ

.
 2)2 

C21 =  −m2r2l1sin(θ1 − θ2) ( θ
.
 1)2    C22 = 0 

G11 = m2r2cosθ2 + m1r1cosθ1 + m2l1cosθ1 g G21 = m2r2cosθ2 g 

 

 
Thus: 

τ1 = M11 θ
..
 1 +   M12θ

..
 2  −  C11+  C12+ G11 

τ2 = M21 θ
..
 1 +   M22θ

..
 2  −  C21+  C22+ G21 

 
 
Reformulate as matrix algebra: 
 

 
 
 Matrix Notation: 
 

τ = M(θ)θ
..

  + C(θ,θ
.
 ) +  G(θ) 
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 Solve for θ
..
 : 

 

M(θ)θ
..

  = τ −  C(θ,θ
.
 ) − G(θ) 

 

θ
..

  = M-1(θ)τ−  M-1 C(θ,θ
.
 ) −  M-1G(θ) 

 

  

 

3.2 Basis for Computer Simulation 

 

The generalized form of the equations of motion can be used as the basis for computer simulation. 

Computer simulation is conducted by specifying initial values for the joint positions and velocities (the 

state variables) and solving for the accelerations using the equation above. Numerical integration can 

then be applied to the accelerations in order to predict the state variables (joint positions and velocities) 

for a small time forward in time. After obtaining the new state variables, the equations of motion are then 

used to solve for the new acceleration. This process is repeated to produce simulated movements. 

 
References:  
 
Nikravesh, P.E. Computer-Aided Analys is of Mechanical Systems. Prentice Hall, 1988. 
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Appendix 
 

Equations of Motion:  Σ τ = I θ
..
    Σ  F = ma 

 
 
Cross Product  A = B x C: 
  Ax = By Cz – Bz Cy Ay = Bz Cx – Bx Cz Az = Bx Cy – By Cx 

 

 
 
Representing a set of equation in matrix form: 
 

 
 
 
 
Relative Motion Equations: acg = aend +  atangent + anormal 
 

 
 
where:  acg = translation acceleration at a segment’s center of gravity 
  aend = translation acceleration at a segment’s end 

atangent = θ
..

  x r   anormal = θ
.
  x (θ

.
   x r ) 

and:  θ
.
  = angular velocity θ

..
  = angular acceleration  

r = vector from the segment end to the center of gravity 
 

 
 
Trigonometric Identities: sin2θ + cos2θ = 1   

sin(θ ± φ) = sinθcosφ  ± cosθsinφ  

cos(θ ± φ) = cosθcosφ  
_
+ sinθcosφ  
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