Ion Channels: Nano-mediators of Health, Disease and Therapy

Nanomedicine Roadmap Initiative, Project Launch May, 2004

S. A. N. Goldstein Yale University

Ion channels: sight, sound, thoughts, movement...

Ion Channels and disease

MICHELANGELO di Lodovico Buonarroti Simoni (b. 1475, Caprese, d. 1564, Roma); with thanks to

Ion channel principles I

- •Membrane-spanning, water-filled pores in all cell membranes
- •Two tasks under strict control: "gate" & "conduct"

Gate: open and close to a specific stimulus with exact timing

Conduct: pass specific ions (K, Na, Cl) with marked efficiency

Control as to where, number, activity

Ion channel principles II

I = N i Po

I, total current
N, number of channels
i, single channel current
Po, open probability
(environment)

Case

CC: Newborn female with LQTS

HPI: NSVD at 38 weeks.

With first feeding developed cyanos is and hypoton ia.

PE: WNL except for bradycardia.

Labs: ECG - SR @ 82, QTc 0.61 (nl<0.44).

Audiograms: bilateral sensory deafness.

F/U On propranolol without syncope, se izures or arrhythmia.

Seven months after delivery mother had a cardiac arrest and died.

The family was referred for genetic evaluation (~50).

25% had significantly prolonged QTc 55% had bo rderline elevations in QTc

11% had syncope

DNA analysis: a common mutation in one allele of a gene encoding an ion channel subunit in all affected family members.

Only the patient had a hearing deficit and two mutant alleles.

Action potentials: ion channel function

I = N i Po

Increased sodium channel activity

SCN5a

Bennett et al. 1995. Nature. 376:683-685

Decreased potassium channel flux

HERG

Sanguinetti et al. 1996. PNAS. 93:2208-2212

Topology of subunits in these cardiac ion channels

SCN5A

HERG

KvLQT1 + MinK

+

KvLQT1 + MinK forms I_{Ks}

I = N i Po

MinK is in an accessory subunit family

HERG + MiRP1 forms I_{Kr}

MiRP1 Mutations and Polymorphism Study II (Drug-induced LQTS)

T8A-MiRP1

M54T-MiRP1

I57T-MiRP1

A116V-MiRP1

I = N i Po

Ion channel principles III

- •Ion channels make hearts beats (AP) by opening and closing in an orchestrated fashion to pass specific ions
- •Normal function (I = N i Po)
- •Altered N, *i*, or Po can cause (or predispose to) disease and be result from mutant subunits or 2° events
- •Ion channels are complexes of pore-forming & accessory (& regulatory) subunits

Ion channels and nanomedicine: the promise

- •Alter N, i, Po of native channels to treat or prevent disease (drugs)
- •Gene therapy (alter function, replace absent or abnormal, or add new channels into normal or diseased tissue) with native or designed channel subunits
- •Sensors (in vitro and in vivo)

Ion channels & nanomedicine: needs

1661

Identify and catalog the plethora of channels and modulators in human tissues (cell biology)

- Location (cellular & sub-cellular)
- Subtypes and splice variants
- Partners (accessory)
- •Regulation of expression
- Modulation of activity

Identify genetic variations that alter function in populations and individuals (human genetics) in order to:

- Predict disease susceptibility (diagnosis and prevention)
- Predict drug response(optimize therapy)
- Avoid treatment side effects (adverse drug reactions)

Delineate function for each complex (macroscopic & single biophysics)

Identify and design agents to alter function (pharmacology & chemistry)

Table 1. K_d values of peptide and small-molecule modulators of Kv1.3 channels^{a-c}

Inhibitor	K _d value	Inhibitor	<i>K</i> _d value
Stichodactyla helianthus toxin	11 pM	Parabuthus toxin 3	492 nM
Heterometrus spinnifer toxin 1	12 pM	Parabuthus toxin 1	800 nM
ShK-F6CA	48 pM	Resiniferatoxin	3 μΜ
Pandinus imperator toxin 2	50 pM	Nifedipine (3)	5 μM
ShK-Dap22	52 pM	Nitrendipine (11)	5 μM
Hongotoxin	86 pM	lbu8	5 μM
Margatoxin	110 pM	Phencyclidine	5 μM
Agiotoxin-2	200 pM	Verapamil (2)	6 μM
Pandinus imperator toxin 3	500 pM	H37	10 μM
Kaliotoxin	650 pM	Hg ²⁺	10 μM
Noxiustoxin	1 nM	Quinine	14 μM
Psora4 (10)	3 nM	Cicutotoxin	18 μM
Charybdotoxin	3 nM	La ³⁺	20 μM
Titystoxin-Kα	4 nM	Trifluoperazine	20 μM
Pandinus imperator toxin 1	11 nM	Capsaicin	26 μM
Tetraphenylporphyrin 3* (1)	20 nM	Diltiazem	27 μ M
Bunodosoma granulifera toxin	39 nM	Progesterone	30 μM
trans-N-propyl-carbamoyloxy-PAC (7)	50 nM	к-Hefutoxin	40 μM
Correolide (6)	90 nM	Luteolin	50 μM
Sulfamidbenzamidoindane (8)	100 nM	Flecainide	60 μM
Maurotoxin	150 nM	4-AP	190 μΜ
CP339818	150 nM	Zn^{2+} , Co^{2+}	200 μM
WIN173173 (4)	200 nM	Ba^{2+} , Cd^{2+}	2 mM
UK78282 (5)	200 nM	TEA	10 mM
Dendrotoxin	250 nM	Mn ²⁺	20 mM
PAC	270 nM		

Define composition & structure of human ion channels (biochemistry & structural biology)

Kv4.2/KChiP (cardiac Ito) by EM

KcsA by X-ray.

Doyle et al. 1998. Nature. 280:69-77.

Success will accrue from interdisciplinary collaborations

Colleagues

Voltage-gated channels	Background channels	Fungal channels
Geoff Abbott*	Detlef Bockenhauer	Aamir Ahmed*
Peter Bowers	Nitza Ilan*	Maggie Butler
Marianne Buck*	Coeli Lopes*	Rosana GonzalezColaso*
Haijun Chen	Ann Kao*	Karen Ketchum [*]
Cyrus Komer*	Ita O'Kelly*	Natalia Nikoleva*
Leo Kim	Astrid Kollewe	Ted Shih
Dan Levy	Sindhu Rajan	Andrew Sellers*
Federico Sesti*	David Rosenthaľ	Jing-mei Wang*
Kwok-Keung Tai*	Jin Xie*	Shuhua Xu
Ke-Wei Wang*	Noam Zilberberg	Ting-Ting Zhang
I. Splaswki (Harvard)	Mark Pausch (Wyeth-Ayerst)	William Joiner (Yale)
M. Keating (Harvard)	Patrick Gallagher (Yale)	Leonard Kaczmarek (Yale)
A. George Jr. (Vanderbilt)		Steve Sturley (Columbia)
D. Roden (Vanderbilt)		
S. Bendahhou (Utah)		
L. Ptacek (UCSF)		

G. Fishman (NYU)

T. McDonald (Einstein)

N. Grigorieff (Brandeis)

NIH, DDCF

