Cruise report

Atlantic Circulation and Climate Experiment

PALACE deployment cruise

TABLE OF CONTENTS

1 Cruise narrative
2 Description of measurement techniques
3 Preliminary analysis
4 Acknowledgements
5 Appendix
Table 1: CTD stations
Table 2: Mark 12 XBT deployments
Table 3: Mark 21 XBT deployments
Table 4: PALACE floats deployed
Table 5: Drifters deployed


    1 Cruise narrative

      1.1 Highlights

        1.1.1 Expedition

        R/V Seward Johnson 2000-01

        1.1.2 Chief scientist

        Claudia Schmid

        1.1.3 Ship

        R/V Seward Johnson, Captain V. Seiler

        1.1.4 Ports of call

        Fortaleza, Brazil

        1.1.5 Cruise dates

        10 January - 26 January 2000

      1.2 Principal Investigators

      Silvia Garzoli AOML garzoli@aoml.noaa.gov
      Robert Molinari AOML molinari@aoml.noaa.gov
      Claudia Schmid CIMAS/ AOML schmid@aoml.noaa.gov

      1.3 Cruise participants

      Douglas Anderson CTD watch, PALACE AOML anderson@aoml.noaa.gov
      Claudia Schmid Chief scientist AOML/ CIMAS schmid@aoml.noaa.gov
      Ryan Smith CTD watch, ADCP AOML rsmith@aoml.noaa.gov
      Derrick Snowden CTD watch AOML snowden@aoml.noaa.gov
      Gregg Thomas CTD watch, XBT AOML thomas@aoml.noaa.gov

      1.4 Abbreviations and addresses

      AOML National Oceanic and Atmospheric Administration
      Atlantic Oceanographic and Meteorological Laboratory
      4301 Rickenbacker Cswy, Miami 33149, FL, USA

      CIMAS Cooperative Institute of Marine and Atmospheric Science
      4600 Rickenbacker Cswy, Miami 33149, FL, USA

      1.5 Primary objective

      This cruise represents one of NOAA's contributions to the Atlantic Circulation and Climate Experiment (ACCE). ACCE is directed at increasing our understanding of the interaction between the Atlantic Ocean and the global climate. One objective is a follow up deployment of PALACE floats in the tropical Atlantic. This region is NOAA's area of interest which was seeded with PALACE floats in mid 1997. The PALACE floats drift freely at about 1000m depth and surface every 10 days to take a temperature profile. These data can be used to monitor the variability of the mixed layer heat content and the flow field at 1000m depth. Surface drifters are launched to increase the coverage of sea surface temperatures (SST) and to obtain more data about the surface circulation. The drifting buoys are part of the ENSO program.

      Additionally a closed box of CTD/LADCP stations in 6° S-4° N, 25.5° W-23° W as well as a section at 28° W were taken. A higher resolution in the upper ocean is achieved by XBT drops and velocity measurements from a vessel-mounted ADCP. The data set will be used to estimate the budgets of the box and to study the structure of the equatorial current system.

      This cruise is part of a multi-year program sponsored by NOAA and NSF. Funds to buy the Palace floats have been provided by NOAA/OGP.

      1.6 Scientific program and methods

        1.6.1 Cruise track

        Fig. 1: Cruise track. The symbols are: + = CTD/LADCP station x = XBT, P = PALACE float and D = surface drifter.}
         

        1.6.2 CTD/LADCP and water sampling

        44 CTD/14-bottle rosette stations (Table 1). All stations include LADCP. Water samples for salinity and oxygen were taken throughout the water column.

        1.6.3 XBT's deployed

        100 XBT with the Mark 12 system (Table 2).
        71 XBT Mark 21 tests (Table 3).

        1.6.4 PALACE floats and drifters deployed

        12 PALACE (Table 4)
        8 drifters (Table 5)

        1.6.5 Underway measurements

        Underway measurements included thermosalinograph (TSG) data and the various variables of the Seward Johnson's IMET system (surface temperature, conductivity, oxygen, meteorological parameters, GPS, ship speed, heading and bathymetry).

      1.7 Problems with scientific equipment

      One of the vessel-mounted ADCPs was not well secured in the well. It could move up and down and thus bang against the wall. The cause (two loose bolts) was quickly fixed on the second day at sea.

      The Mark 12 XBT computer is not Y2K compliant. The date on the Mark 21 computer was wrong during the whole testing phase of the Sippican board and software (it was thought to be not Y2K compliant, but this was not the case). Therefore the dates in all XBT files have to be corrected according to the log sheets.

      CTD station 1 (test station) had to be terminated near the surface because no data could be recorded. After the termination as well as the slider and the brush were fixed a test station could be taken (CTD station 2). The data recording worked well but the closing of the bottles did not function properly. Only 4 of the 14 bottles were closed and their depth was not consistent with the tripping depth. The software configuration was changed in an attempt to solve the problem.

      During CTD stations 3 through 7 only 8 or 9 out of 14 bottles were closed. All of them tripped at the correct depth. Thus the changing of the software configuration was successful. Since working on the carousel had not lead to any changes we finally decided to replace it. This improved the things considerably: All except for one bottle closed. After firing that bottle a dozen times on deck it worked from station 14 on.

      The software of the vessel-mounted ADCPs had problems with bad data cycles from the p-code GPS. Since this problem might lead to gaps in the data we decided to use the ship-GPS for the on-line processing. This proved to be a much more stable configuration. In the final processing the p-code GPS can be used.

      The NMEA was causing problems during the CTD casts. Thus it was turned off from CTD station 17 on. This does not pose any problems since the NMEA only adds GPS time and position to the file header. The time is also taken from the PC clock and the position is routinely typed in.

      During CTD stations 43 and 44 the data quality deteriorated quickly. The profiles became increasingly spiky. After the spikes are filtered out the profiles are of good quality. The wiring of the CTD was thought to be the problem. After working on it we got much less error counts. We could not test it insitu since we already had reached the Brazilian waters.

      1.8 Other incidents of note

      The Seward Johnson had to stop in San Juan, Puerto Rico since the hydraulic of the A-frame leaked. A technician and spare parts had to be flown in and the ship had to stay in port for about 1 day. Thus they arrived in Fortaleza a couple of hours later than scheduled. The departure time from Fortaleza had to be rescheduled from mid-morning to 16:00 on January 10.

      Nearly everybody caught the flu during this cruise. Due to the high motivation of everyone this did not cause any problems in keeping up with the workload.
       

    2 Description of measurement techniques

      2.1 CTD/LADCP/rosette

      A CTD with two sensors of temperature, conductivity and oxygen was used. 14 Niskin bottles were available. After each cast water samples for oxygen and salinity were taken. These samples were analyzed on board and the resulting data will be used for the insitu calibration of the conductivity and oxygen sensors.

      The LADCP is a RDI Broadband 150 kHz ADCP.

      2.2 XBT

      Two XBT systems were available on board. The Mark 12 system was used to achieve a higher resolution of the temperature field.

      The Mark 21 system is a prototype which went through its first blue water test during this cruise. The XBTs were dropped adjacent to CTD casts to allow a comparison of the profiles. The system mostly worked well, but it was very sensitive and thus produced many loop resistance errors which are indicative for bad probes. These supposedly bad probes were later used with the Mark 12 system without any obvious problems.

      2.3 Vessel-mounted ADCP

      The data from two vessel-mounted ADCPs were recorded throughout the survey. The used instruments are a RDI Broadband Ocean Surveyor 38 kHz ADCP and a RDI Narrowband 150 kHz ADCP. Combining the data from the two ADCPs will result in velocity profiles over the upper nearly 1000 m with a higher resolution in the upper 350-400 m.

      2.4 PALACE float deployments

      The PALACE floats were programmed to surface after 10 day long periods of submerged drift to take pressure-temperature profiles. After an 18 hour long surface period, during which they transmit their data, they go back to their target pressure of 1000 dbar. The instruments were launched after selected CTD casts.

      2.5 Drifter deployments

      Each surface drifter was launched together with a PALACE float. The drifters measure the sea surface temperature and they are tracked by ARGOS. Their drogue is at 15 m.

      2.6 Underway measurements

      Underway measurements included thermosalinograph (TSG) data and the various variables of the Seward Johnson's IMET system (surface temperature, conductivity, oxygen, meteorological parameters, GPS, ships speed, heading and bathymetry).

    3 Preliminary analysis

    Preliminary data products generated on the R/V Seward Johnson are presented. The hydrographic sections show the major water masses (Figs. 2 - 4). Maps of LADCP velocity vectors at different levels are also presented.

    The water masses in the upper 2000 m of the tropical Atlantic are the Tropical Surface Water (TSW), the Subtropical Underwater (SUW), the Central Water (CW), the Antarctic Intermediate Water (AAIW) and the North Atlantic Deep Water (NADW). The highest temperatures and lowest salinities of the TSW are observed north of the equator (1° N-3° N). At these latitudes the surface salinities at 23° W are lower than at 25.5° W due to heavy rain. Further down the thermocline with varying thickness is found. At 6° S it extends over 150 m whereas at 3° N the thermocline is only 50 m thick. The salinity maximum of the SUW is most pronounced at 6° S and in 2° S to 1° N (Fig. 5). It strengthens again from 3° N on northward. Around the equator the SUW coincides with the eastward Equatorial Undercurrent (EUC). North and south of the EUC the flow is weaker and the flow direction is more variable. Around 3° N to 4° N the flow is eastward at about 10 cm/s whereas it is mostly westward at and south of 3° S.

    Between 500 and 1000 m the AAIW is found (Figs. 2 - 4). It is characterized by a low salinity, which increases slightly towards the north. Salinities below 34.5 reach further north at 25.5° W than at 23° W (to 0° 40'N instead of 0° ). The flow in this layer is quite variable when compared with the SUW flow (Figs. 5 - 6). Two currents can be identified easily. These are the Northern and Southern Intermediate Countercurrents (NICC, SICC) at 1° N to 2° N and at 2° S. There also is a westward flow band at 3° S (intermediate Southequatorial Current, SEC) and an eastward current at 6° S (intermediate Southequatorial Countercurrent, SECC). At the equator the upper part of the AAIW layer is governed by westward flow and the zonal velocities in the lower part are eastward (Figs. 2 - 4). The transition between west- and eastward flow is very close to the salinity minimum at 23° W and deepens toward the west, especially between 23° W and 25.5° W. This fact lies behind the change of the flow characteristics between 23° W and 25.5° W (Fig. 6).

    All three sections show the surface SEC in the mixed layer (Figs. 2 - 4). Both at 25,5° W and at 28° W the current is split into two branches by the EUC. Only at 23° W the EUC is beneath a very thin layer of westward flow. South of the equator the eastward Southequatorial Undercurrent (SEUC) was found at 4° S to 5° S, 23° W and at 3° S and 4° S at the other two longitudes. It typically extends from the thermocline down to about 400 m with a westward current in and below the AAIW layer at the same latitudes. Only at 23° W the underlying intermediate depth flow is eastward underneath part of the SEUC. The geostrophic flow (not shown) at this location is not eastward and the eastward velocity derived from the LADCP is less than 5 cm/s. Thus it seems likely that this difference is due to a tidal current.

    The equatorial flow at the target depth of the PALACE floats (1000 m) is eastward in 2° S to 2° N (Fig. 7). During a previous survey in the summer of 1997 the equatorial current was westward at this depth. This supports earlier studies which hypothesized that this current might be seasonal. At 3° S to 4° S the flow is westward, and at 6° S the velocities are eastward again. No preference of direction is observed at 3° N and 4° N.

    4 Acknowledgements

    We want to thank the officers and crew of the R/V Seward Johnson as well as the personnel at HBOI. Their expertise and high motivation were important for the successful completion of our work program. The excellent work of the University of Miami technicians and the AOML personnel made it possible to obtain a high quality data set. The help and instructions from employees in Miami before and during the cruise are much appreciated. The cruise was sponsored by NOAA.


Figures 2 - 4
Fig. 2: Section at 23W Fig. 3: Section at 25.5W Fig. 4: Section at 28W

Fig. 5-7: Salinities and LADCP velocities at different depths:
Fig. 5: Salinity and velocity in the salinity maximum of the Subtropical Underwater (STUW). Fig. 6: Pressure and velocity in the salinity minimum of the Antarctic Intermediate Water (AAIW). Fig. 7: Salinity and velocity at 1000 dbar (target depth of the PALACE floats).

    5 Appendix

Table 1: CTD stations
 
Station
Date
Time(UTC)
Latitude
Longitude
Bottom
Max Pres.
comment
1
12-Jan-2000
23:16
5.283 S
29.000 W
5281
-
test
2
13-Jan-2000
14:43
5.824 S
26.334 W
5411
2002
test
3
13-Jan-2000
20:59
6.000 S
25.501 W
5698
2000
 
4
14-Jan-2000
3:46
4.999 S
25.501 W
4913
2003
 
5
14-Jan-2000
10:14
4.002 S
25.502 W
5493
2001
 
6
14-Jan-2000
16:55
3.001 S
25.500 W
5206
2000
 
7
14-Jan-2000
23:31
2.002 S
25.498 W
5217
2000
 
8
15-Jan-2000
6:10
0.999 S
25.497 W
3560
2002
 
9
15-Jan-2000
9:40
0.666 S
25.499 W
3620
2001
 
10
15-Jan-2000
12:50
0.334 S
25.499 W
3317
1999
 
11
15-Jan-2000
16:00
0.002 N
25.502 W
3576
2001
 
12
15-Jan-2000
19:42
0.333 N
25.500 W
2670
2002
 
13
15-Jan-2000
23:20
0.667 N
25.496 W
2374
2001
 
14
16-Jan-2000
3:01
1.000 N
25.499 W
3645
2003
 
15
16-Jan-2000
9:38
2.001 N
25.502 W
3911
2002
 
16
16-Jan-2000
15:58
3.000 N
25.498 W
4407
2000
 
17
16-Jan-2000
22:25
4.001 N
25.498 W
3903
2000
 
18
17-Jan-2000
6:06
4.001 N
24.249 W
3923
2004
 
19
17-Jan-2000
13:59
4.002 N
23.004 W
4189
2000
 
20
17-Jan-2000
21:29
3.005 N
23.001 W
4596
2001
 
21
18-Jan-2000
4:34
2.001 N
23.001 W
4308
2000
 
22
18-Jan-2000
11:50
1.001 N
23.001 W
3247
2002
 
23
18-Jan-2000
15:18
0.666 N
23.002 W
3821
2002
 
24
18-Jan-2000
18:54
0.333 N
23.001 W
3871
2004
 
25
18-Jan-2000
22:35
0.002 S
23.000 W
3928
1999
 
26
19-Jan-2000
1:58
0.335 S
23.000 W
4573
2004
 
27
19-Jan-2000
5:10
0.667 S
23.001 W
3519
2003
 
28
19-Jan-2000
8:25
1.002 S
23.000 W
3250
2004
 
29
19-Jan-2000
15:10
2.001 S
23.000 W
5198
2001
 
30
19-Jan-2000
21:39
3.002 S
23.001 W
5390
1999
 
31
20-Jan-2000
4:05
4.001 S
23.001 W
5580
2003
 
32
20-Jan-2000
10:33
5.000 S
22.999 W
5101
2003
 
33
20-Jan-2000
16:56
6.000 S
23.001 W
5089
2003
 
34
21-Jan-2000
0:38
6.000 S
24.252 W
5785
2003
 
35
21-Jan-2000
8:16
6.001 S
25.498 W
5691
2004
 
36
22-Jan-2000
2:43
5.999 S
28.000 W
5520
2002
 
37
22-Jan-2000
9:11
4.999 S
27.999 W
5373
2002
 
38
22-Jan-2000
15:40
4.000 S
28.001 W
5171
2000
 
39
22-Jan-2000
21:58
3.001 S
27.999 W
5031
2000
 
40
23-Jan-2000
4:30
2.002 S
27.998 W
4969
2003
 
41
23-Jan-2000
10:52
1.000 S
28.001 W
3694
2002
 
42
23-Jan-2000
13:50
0.623 S
27.999 W
4055
2002
 
43
23-Jan-2000
16:58
0.335 S
28.002 W
3895
2004
 
44
23-Jan-2000
20:28
0.001 S
27.999 W
3935
2000
 

 

Table 2: Mark 12 XBT deployments
 
XBT
Date
Time(UTC)
Latitude
Longitude
comment
201
12-Jan-2000
22:27
5.274 S
29.134 W
test
202
12-Jan-2000
23:03
5.294 S
29.030 W
test
1
13-Jan-2000
19:03
-
-
test
2
13-Jan-2000
19:08
5.942 S
25.799 W
test
3
13-Jan-2000
23:56
5.700 S
25.501 W
 
4
14-Jan-2000
1:02
5.510 S
25.500 W
 
5
14-Jan-2000
2:19
5.248 S
25.498 W
 
6
14-Jan-2000
6:16
4.763 S
25.500 W
 
7
14-Jan-2000
7:31
4.513 S
25.500 W
 
8
14-Jan-2000
8:56
4.232 S
25.500 W
 
9
14-Jan-2000
13:04
3.763 S
25.503 W
bad
10
14-Jan-2000
13:08
3.747 S
25.503 W
 
11
14-Jan-2000
14:22
3.495 S
25.500 W
 
12
14-Jan-2000
15:38
3.257 S
25.500 W
 
13
14-Jan-2000
19:48
2.752 S
25.501 W
 
14
14-Jan-2000
20:54
2.507 S
25.500 W
 
15
14-Jan-2000
22:15
2.240 S
25.500 W
 
16
15-Jan-2000
2:16
1.748 S
25.498 W
 
17
15-Jan-2000
3:26
1.500 S
25.500 W
 
18
15-Jan-2000
4:42
1.263 S
25.500 W
 
19
15-Jan-2000
8:40
0.840 S
25.500 W
 
20
15-Jan-2000
11:51
0.515 S
25.502 W
 
21
15-Jan-2000
14:59
0.174 S
25.501 W
 
22
15-Jan-2000
18:34
0.183 N
25.501 W
 
23
15-Jan-2000
22:13
0.492 N
25.500 W
 
24
16-Jan-2000
1:52
0.821 N
25.500 W
 
25
16-Jan-2000
5:48
1.254 N
25.502 W
 
26
16-Jan-2000
7:02
1.490 N
25.498 W
 
27
16-Jan-2000
8:16
1.738 N
25.498 W
 
28
16-Jan-2000
12:13
2.248 N
25.498 W
 
29
16-Jan-2000
13:21
2.487 N
25.498 W
 
30
16-Jan-2000
14:37
2.743 N
25.501 W
 
31
16-Jan-2000
19:10
3.333 N
25.501 W
bad
32
16-Jan-2000
19:13
3.380 N
25.501 W
 
33
16-Jan-2000
19:51
3.517 N
25.500 W
 
34
16-Jan-2000
21:01
3.750 N
25.500 W
 
35
17-Jan-2000
0:03
4.000 N
25.253 W
 
36
17-Jan-2000
2:16
4.000 N
25.003 W
 
37
17-Jan-2000
3:28
4.000 N
24.758 W
 
38
17-Jan-2000
4:42
4.000 N
24.508 W
 
39
17-Jan-2000
8:50
3.998 N
24.028 W
 
40
17-Jan-2000
10:09
3.998 N
23.757 W
 
41
17-Jan-2000
11:21
3.998 N
23.512 W
 
42
17-Jan-2000
12:34
4.000 N
23.267 W
 
43
17-Jan-2000
17:09
3.760 N
23.002 W
 
44
17-Jan-2000
18:33
3.500 N
23.000 W
 
45
17-Jan-2000
19:50
3.249 N
23.000 W
 
46
18-Jan-2000
0:23
2.756 N
23.001 W
 
47
18-Jan-2000
1:42
2.500 N
23.000 W
 
48
18-Jan-2000
3:02
2.263 N
23.002 W
 
49
18-Jan-2000
7:33
1.760 N
23.002 W
 
50
18-Jan-2000
8:56
1.513 N
23.000 W
 
51
18-Jan-2000
10:16
1.267 N
23.007 W
 
52
18-Jan-2000
-
-
-
software
53
18-Jan-2000
18:00
0.482 N
23.005 W
 
54
18-Jan-2000
21:40
0.161 N
22.999 W
 
55
19-Jan-2000
1:00
0.160 S
23.003 W
 
56
19-Jan-2000
4:10
0.490 S
23.002 W
 
57
19-Jan-2000
7:28
0.823 S
23.498 W
 
58
19-Jan-2000
11:04
1.237 S
23.000 W
 
59
19-Jan-2000
12:24
1.502 S
23.000 W
 
60
19-Jan-2000
13:41
1.735 S
23.000 W
 
61
19-Jan-2000
17:52
2.259 S
23.000 W
 
62
19-Jan-2000
19:02
2.498 S
23.000 W
 
63
19-Jan-2000
20:21
2.750 S
23.000 W
 
64
20-Jan-2000
0:41
3.253 S
23.000 W
 
65
20-Jan-2000
1:32
3.500 S
23.000 W
 
66
20-Jan-2000
2:42
3.738 S 
23.000 W
 
67
20-Jan-2000
6:44
4.237 S 
23.000 W
 
68
20-Jan-2000
8:14
4.540 S 
23.000 W
 
69
20-Jan-2000
9:13
4.738 S 
22.983 W
 
70
20-Jan-2000
13:02
5.238 S 
23.000 W
 
71
20-Jan-2000
14:24
5.514 S
22.995 W
 
72
20-Jan-2000
15:33
5.750 S
22.990 W
 
73
20-Jan-2000
19:47
6.000 S
23.250 W
 
74
20-Jan-2000
21:00
6.000 S
23.500 W
 
75
20-Jan-2000
22:09
6.000 S
23.751 W
 
76
21-Jan-2000
23:17
6.000 S
24.000 W
no log
77
21-Jan-2000
3:13
5.998 S
24.483 W
 
78
21-Jan-2000
4:40
5.998 S
24.777 W
 
79
21-Jan-2000
5:53
6.000 S
25.023 W
 
80
21-Jan-2000
6:56
6.000 S
25.242 W
 
81
22-Jan-2000
5:14
5.762 S
28.000 W
 
82
22-Jan-2000
6:28
5.512 S
28.000 W
 
83
22-Jan-2000
7:40
5.260 S
28.000 W
bad
84
22-Jan-2000
7:45
5.258 S
28.000 W
 
85
22-Jan-2000
11:40
4.777 S
27.998 W
 
86
22-Jan-2000
13:00
4.500 S
28.017 W
 
87
22-Jan-2000
14:21
4.235 S
28.000 W
 
88
22-Jan-2000
18:25
3.750 S
28.000 W
 
89
22-Jan-2000
19:30
3.487 S
28.000 W
 
90
22-Jan-2000
20:35
3.268 S
28.000 W
 
91
23-Jan-2000
0:32
2.750 S
28.000 W
 
92
23-Jan-2000
1:52
2.500 S
27.999 W
 
93
23-Jan-2000
3:08
2.262 S
28.000 W
 
94
23-Jan-2000
7:06
1.747 S
28.000 W
 
95
23-Jan-2000
8:25
1.507 S
28.000 W
 
96
23-Jan-2000
9:38
1.267 S
28.000 W
 
97
23-Jan-2000
13:06
0.833 S
28.000 W
 
98
23-Jan-2000
16:07
0.500 S
28.000 W
 
99
23-Jan-2000
19:26
0.167 S
28.000 W
no log

 

Table 3: Mark 21 XBT deployments
 
Profile
Date
Time(UTC)
Latitude
Longitude
at CTD
comment
0
10-Jan-2000
-
-
-
-
bucket
1
12-Jan-2000
17:36
-
-
-
no probe
2
12-Jan-2000
22:23
5.271 S
29.149 W
-
test
3
12-Jan-2000
23:11
5.298 S
29.006 W
-
test
4
13-Jan-2000
20:47
6.000 S
25.500 W
3
 
5
13-Jan-2000
22:26
5.992 S
25.506 W
3
 
6
14-Jan-2000
3:36
5.000 S
25.500 W
4
 
7
14-Jan-2000
5:00
5.000 S
25.500 W
4
 
8
14-Jan-2000
10:05
4.000 S
25.500 W
5
bad probe
9
14-Jan-2000
10:07
4.000 S
25.500 W
5
 
10
14-Jan-2000
11:40
4.000 S
25.500 W
5
 
11
14-Jan-2000
16:46
3.022 S
25.501 W
6
 
12
14-Jan-2000
17:01
-
-
-
loop res.
13
14-Jan-2000
18:20
2.997 S
25.505 W
6
 
14
14-Jan-2000
23:23
2.005 S
25.500 W
7
 
15
15-Jan-2000
0:53
2.005 S
25.498 W
7
bad probe
16
15-Jan-2000
0:59
2.005 S
25.498 W
7
loop res.
17
15-Jan-2000
1:02
2.005 S
25.498 W
7
bad probe
18
15-Jan-2000
6:02
1.000 S
25.500 W
8
 
19
15-Jan-2000
7:34
1.000 S
25.500 W
8
bad probe
20
15-Jan-2000
7:39
1.000 S
25.500 W
8
bad probe
21
15-Jan-2000
7:50
1.000 S
25.500 W
8
 
22
15-Jan-2000
9:32
0.666 S
25.500 W
9
 
23
15-Jan-2000
10:59
0.666 S
25.500 W
9
loop res.
24
15-Jan-2000
11:00
0.666 S
25.500 W
9
loop res.
25
15-Jan-2000
11:02
0.666 S
25.500 W
9
loop res.
26
15-Jan-2000
11:03
0.666 S
25.500 W
9
 
27
15-Jan-2000
12:45
0.333 S
25.500 W
10
 
28
15-Jan-2000
14:12
0.333 S
25.500 W
10
 
29
15-Jan-2000
15:53
0.001 S
25.499 W
11
 
30
15-Jan-2000
17:27
0.015 N
25.509 W
11
bad probe
31
15-Jan-2000
17:34
0.015 N
25.509 W
11
 
32
15-Jan-2000
19:15
0.332 N
25.500 W
12
 
33
15-Jan-2000
21:18
0.335 N
25.517 W
12
 
34
15-Jan-2000
23:08
0.667 N
25.496 W
13
 
35
16-Jan-2000
0:57
0.664 N
25.508 W
13
 
36
16-Jan-2000
2:53
1.000 N
25.500 W
14
 
37
16-Jan-2000
4:19
1.000 N
25.500 W
14
 
38
16-Jan-2000
9:31
2.000 N
25.500 W
15
 
39
16-Jan-2000
10:55
2.000 N
25.500 W
15
 
40
16-Jan-2000
15:46
2.979 N
25.500 W
16
 
41
16-Jan-2000
17:23
3.014 N
25.495 W
16
 
42
16-Jan-2000
22:01
3.958 N
25.501 W
17
 
43
16-Jan-2000
23:45
4.001 N
25.495 W
17
 
44
17-Jan-2000
5:58
4.000 N
24.250 W
18
 
45
17-Jan-2000
7:31
4.000 N
24.250 W
18
loop res.
46
17-Jan-2000
7:32
4.000 N
24.250 W
18
loop res.
47
17-Jan-2000
7:34
4.000 N
24.250 W
18
 
48
17-Jan-2000
13:51
4.000 N
23.000 W
19
 
49
17-Jan-2000
15:19
4.014 N
23.006 W
19
loop res.
50
17-Jan-2000
15:23
4.014 N
23.006 W
19
 
51
17-Jan-2000
21:08
3.001 N
23.000 W
20
 
52
17-Jan-2000
22:49
3.015 N
23.015 W
20
loop res.
53
18-Jan-2000
4:26
2.000 N
23.000 W
21
 
54
18-Jan-2000
5:55
2.000 N
23.000 W
21
loop res.
55
18-Jan-2000
5:57
2.000 N
23.000 W
21
loop res.
56
18-Jan-2000
6:00
2.000 N
23.000 W
21
 
57
18-Jan-2000
11:45
1.000 N
23.000 W
22
 
58
18-Jan-2000
13:08
1.000 N
23.000 W
22
 
59
18-Jan-2000
15:10
-
-
23
loop res.
60
18-Jan-2000
15:14
0.666 N
23.001 W
23
 
61
18-Jan-2000
-
-
-
23
no probe
62
18-Jan-2000
16:40
0.671 N
23.001 W
23
 
63
18-Jan-2000
18:48
0.333 N
22.999 W
24
 
64
18-Jan-2000
20:27
0.338 N
23.027 W
24
 
65
18-Jan-2000
22:33
0.001 N
22.999 W
25
 
66
18-Jan-2000
0:00
0.000
23.003 W
25
 
67
19-Jan-2000
1:54
0.330 S
23.000 W
26
 
68
19-Jan-2000
3:30
0.330 S
23.000 W
26
loop res.
69
19-Jan-2000
3:30
0.330 S
23.000 W
26
loop res.
70
19-Jan-2000
3:30
0.330 S
23.000 W
26
loop res.

Table 4: PALACE floats deployed
 
ARGOS id
Date
Time (UTC)
Latitude
Longitude
at CTD
16408
13-Jan-2000
22:31
5.990 S
25.508 W
3
16411
14-Jan-2000
11:41
4.000 S
25.512 W
5
12279
15-Jan-2000
7:37
0.997 S
25.497 W
8
12281
15-Jan-2000
17:31
0.015 S
25.510 W
11
16416
16-Jan-2000
4:26
1.004 N
25.506 W
14
16417
18-Jan-2000
6:02
2.022 N
23.000 W
21
16409
18-Jan-2000
13:08
1.010 N
23.001 W
22
16414
19-Jan-2000
0:05
0.006 S
23.000 W
25
16415
19-Jan-2000
9:50
1.003 S
22.998 W
28
16412
19-Jan-2000
16:30
2.000 S
22.998 W
29
16410
20-Jan-2000
5:28
3.998 S
23.002 W
31
16413
20-Jan-2000
18:20
5.991 S
22.993 W
33

 

Table 5: Drifters deployed
 
ARGOS id
Date
Time (UTC)
Latitude
Longitude
at CTD
18309
13-Jan-2000
22:31
5.990 S
25.508 W
3
18311
16-Jan-2000
5:25
1.183 N
25.500 W
-
18789
18-Jan-2000
6:02
2.022 N
23.000 W
21
18790
18-Jan-2000
13:08
1.010 N
23.001 W
22
18310
19-Jan-2000
0:05
0.006 S
23.000 W
25
20353
19-Jan-2000
9:50
1.003 S
22.983 W
28
20369
19-Jan-2000
16:30
2.000 S
22.998 W
29
20348
20-Jan-2000
18:20
5.991 S
22.993 W
33