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Abstract

Efficient content-based image retrieval (CBIR) of biomedical images is a challenging prob-

lem. Feature representation algorithms used in indexing medical images on the pathology of

interest have to address conflicting goals of reducing feature dimensionality while retaining im-

portant and often subtle biomedical features. At the Lister Hill National Center for Biomedical

Communications, an intramural R&D division of the U.S. National Library of Medicine, we

are developing CBIR prototype for digitized images of a collection of 17,000 cervical and lum-

bar spine X-rays taken as a part of the second National Health and Nutrition Examination

Survey (NHANES II). The vertebra shape effectively describes various pathologies identified

by medical experts as being consistently and reliably found in the image collection. A suitable

shape algorithm must represent shapes in low dimension, be invariant to rotation, translation,

and scale transforms, and retain relevant pathology. Additionally, supported similarity algo-

rithms must be useful in retrieving images that are relevant to the queries posed by the intended

target community, viz. medical researchers, physicians, etc. This paper describes an evaluation

of two popular shape similarity methods from the literature on a set of 250 vertebra boundary

shapes. The polygon approximation method achieved a performance score of 55.94% and

bettered the Fourier descriptor algorithm which had a performance score of 46.96%.
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1. Introduction

Research into content-based image retrieval (CBIR) algorithms (Antani et al.,

2002) has attracted much interest in recent years. In particular, there has been grow-

ing interest in indexing images for biomedical content (Lehmann et al., 2003,; Long

et al., 2003; Tagare et al., 1997). Manual indexing of images for content-based re-
trieval is cumbersome, error prone, and prohibitively expensive. However, due to

the lack of effective automated methods, biomedical images are typically annotated

manually and retrieved using a text keyword-based search. A common drawback of

such systems is that the annotations are imprecise with reference to image locations,

and text is often insufficient in enabling efficient image retrieval. Even such retrieval

is impossible for collections of images that have not been annotated or indexed. Ad-

ditionally, the retrieval of interesting cases, especially for medical education or build-

ing atlases, is a cumbersome task. Content-based image retrieval methods developed
specifically for biomedical images could offer a solution to such problems. However,

for any class of biomedical images, it would be necessary to develop suitable feature

representation and similarity algorithms. An example is the collection of vertebra

boundary shapes segmented from the digitized images of film X-rays of the human

cervical and lumbar spines.

A relevant application of CBIR in the clinical domain has been carried out and

reported by Kuo et al. (2002). In this work, the image data consisted of breast son-

ograms. A total of 263 breast tumors were represented; these were classified into 129
malignant and 134 benign cases by medical experts. The images were indexed by

manually locating regions-of-interest (ROIs) and then using computer algorithms

to calculate image features within each ROI. Three alternative texture features were

used: contrast, covariance, and dissimilarity. After the indexing, the images were pre-

sented to the CBIR system and a ranking of similar images, using one of the texture

measures and a weighted Euclidean distance, was produced. The system interfaced to

a computer-aided diagnosis (CAD) function that used the top K similar images (have

had known, ‘‘truth’’ classifications), to classify the input tumor image as malignant
or benign. The reported sensitivity of this work was 94%, and specificity 90%. In ad-

dition, an experimental system for electronic patient records with CBIR capability is

being developed and put to use at a hospital in Brazil (Traina et al., 2003). CBIR is

also being applied to retrieval of brain MRI images (Traina et al., 2003). These sug-

gest the type of applications that CBIR might be put to in the clinical world. Such

systems can also enable medical researchers, and educators retrieve images relevant

to a particular pathology.

The Lister Hill National Center for Biomedical Communications, a research and
development division of the US National Library of Medicine (NLM), maintains a

digital archive of 17,000 cervical and lumbar spine images collected in the second

National Health and Nutrition Examination Survey (NHANES II) conducted by
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the National Center for Health Statistics (NCHS). Classification of the images for

the osteoarthritis research community has been a long-standing goal of researchers

at the NLM (Long and Thoma, 2001), and collaborators at NCHS and the National

Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). Also, the ca-

pability to retrieve images based on geometric characteristics of the vertebral struc-
tures is of interest to the vertebral morphometry community. Automated or

computer-assisted classification and retrieval methods are highly desirable to address

these goals since such methods offset the high cost of manual classification and ma-

nipulation by medical experts. Medical experts have identified visual features of the

images specifically related to osteoarthritis, but the images have never been manually

indexed for these features which include anterior osteophytes, disc space narrowing

for the cervical and lumbar spine, subluxation for the cervical spine, and spondylo-

listhesis for the lumbar spine. We are investigating automated or computer-assisted
methods that use image features for indexing and retrieval of these images in a man-

ner acceptable to the biomedical community.

To provide the intended users with an effective tool that enables retrieval of ver-

tebra shapes significant to the pathology indicated in the query, we evaluated several

shape representation methods from the literature (Antani et al., 2003). The methods

included geometric shape properties, invariant moments, token description, polygon

approximation, and Fourier descriptors. We also considered the curvature scale

space (CSS) technique used for describing shapes in MPEG-7 architecture (Bober,
2001). The Gaussian smoothing step in the CSS process, however, removed the char-

acteristics of the pathology in the vertebrae which are critical to the effective retrieval

of these shapes. Hence, the method was considered undesirable and not considered

for evaluation. Unlike methods designed for trademark or other shape data retrieval

found in the literature, medical image retrieval methods need to find shapes that are

specific to the query. Additionally, the shape representation cannot approximate

the shape data since many pathologies are indicated by subtle variations in shape.

Desirable characteristics and challenges of CBIR of medical images are further
discussed in Section 2.1.

As an initial step, we have implemented a modular prototype system for content-

based image retrieval for a subset of the spine X-rays and health survey text data as-

sociated with these X-rays (Antani et al., 2002). The system supports retrieval based

on shape similarity to a sketch or example vertebral image, as well as conventional

text retrieval. The shapes are segmented using active contour segmentation with hu-

man assistance where necessary. An outstanding problem in the extraction of feature

vectors from the raw boundary data is development of an effective shape represen-
tation and similarity method that simultaneously provides for data reduction while

preserving the shape characteristics that are essential for the reliable indexing and

retrieval.

In this paper, we present an evaluation of two shape representation algorithms se-

lected from our earlier evaluation (Antani et al., 2003) and make note of the critical

issues that need to be addressed for further development of shape similarity methods

for medical images. Section 2 provides a brief background on the requirements of the

shape representation and similarity algorithms. In Section 3, we present a brief
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description of the methods. The data and evaluation strategy are described in Section

4. We present the results, analysis, and critical comments in Section 5 and conclude

with our future research plans in Section 6.
2. Background

In our study of the spine X-rays, examples shown in Fig. 1, we observe that only

shape features appear promising for indexing the images, since the images are gray

scale and offer very little in terms of texture for the anatomy of interest. The many

shape representation and similarity techniques found in the literature (Adoram and

Lew, 1999; Günsel and Tekalp, 1998; Hoffman and Wong, 2000; Kliot and Rivlin,

1998; Mehrotra and Gray, 1995; Mokhtarian and Mackworth, 1986; Quddus and
Gabbouj, 2002) adopt different approaches for representing shapes. These tech-

niques may be grouped under the following categories:

� Shape geometry based methods. These use shape properties (Ang et al., 1995)

such as area, perimeter, convexity, elongation, orientation, etc.

� Invariant moments. Several forms of invariant moments are seen in the literature

such as Hu invariant moments (Hu, 1962), generalized complex moments (Kim

and Kim, 1997), affine moments, and Zernike moments (Eakins et al., 2001; Ip
et al., 1997). Multi-stage modification using invariant moments has yielded very

good results (Jain and Vailaya, 1998).

� Polygon approximation methods. Methods that remove small variations and less

significant features and then represent the curve in tangent space (Arkin et al.,

1991; Latecki and Lakämper, 2001, 2002). Matching is done using the turn angle

function.
Fig. 1. Examples of (A) cervical and (B) lumbar spine X-ray images.
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� Deformable shape based methods. Methods that employ elastic deformation of

templates (Jain et al., 1996). Multi-scale shape representation has been used to

smooth and simplify the contours (Bengtsson and Eklundh, 1991; DelBimbo

and Pala, 1999; Mokhtarian and Mackworth, 1992).

� Fourier transform based methods. Representing the cumulative shape boundary
as a function of its normalized length (Zahn and Roskie, 1972). Shapes or contour

points have also been described in the frequency domain (Gonzalez and Woods,

2002; Sonka et al., 1999).

These shape representation methods exhibit and retain different shape character-

istics. In turn, this affects the reliability of query and retrieval in a CBIR system. De-

termining the suitability of an algorithm for a CBIR system application can only be

done after an evaluation of the shape methods on the particular shapes that populate
the database. Evaluations published in the literature (Eakins et al., 2001; Jain and

Vailaya, 1998) have been for shape retrieval methods applied to trademark image

databases or general objects (e.g., silhouette shapes of a hammer, hand, pliers, etc.)

2.1. Shape representation and similarity: challenges

Boundary data is extracted as (x,y) coordinates in the image space and needs to

be represented in a form suitable for archiving, indexing, and similarity matching. A
shape representation method converts a dense 2D representation of a boundary, i.e.,

the (x,y) coordinates of boundary points, into a form that has certain properties,

which include uniqueness, stability, geometric invariance, and compact representation.

In addition, the representation should retain properties of the shape that are mean-

ingful to the application. These requirements may be extended to include matching

of partial boundaries or specific local regions in the boundary.

In archiving biomedical images for content-based retrieval, one has to address con-

flicting goals of maintaining low feature dimensionality for efficient indexing and
matching, while requiring the feature representation methods to retain the subtleties

in the pathology. Shapes found in biomedical images express different characteristics

for different anatomy. Some follow a typical shape and structure, e.g., for bones, heart,

lungs, etc., while others can be arbitrary, e.g., lesions on tissue. Each shape type pre-

sents its own challenges in representation. One can consider significant lengths of the

boundary of structured shapes which must be retained in the representation, and also,

number and position of boundary points. In contrast, for arbitrary shapes, such as le-

sions, it is difficult to determine significant aspects of the boundary shape. Such shapes
can exhibitmany variations while still belonging to the same semantic notion, such as a

lesion. This makes it challenging to conceive a measure for similarity in content-based

retrieval. Content-based retrieval relies on differences between features to determine

the notion of dissimilarity. However, with medical images, variations can also occur

among semantically similar shapes, e.g., shapes of normal anatomywhich can vary sig-

nificantly over the population. This is a problem since very often differences between

normal and pathological conditions are subtle, at least in the early stages of disease.

Other challenges for shape representation methods are in representing anatomical
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structures that tend to be very similar to each other but can individually be considered

unique, e.g., vertebrae. This makes it challenging to select shape methods that retain

sufficient information and provide the necessary notions of similarity. Additionally,

it is necessary for the designers of such systems to determine how much information

is necessary and what is sufficient for purposes of indexing.
In light of these requirements, we have investigated several shape representation

and similarity methods in the literature and evaluated them for applicability to the

vertebral shapes (Antani et al., 2003). Based on performance, efficiency, and other

factors, Fourier descriptor based methods and polygon approximation based meth-

ods (Lee et al., 2003) show promise. These are described below. Results from our

evaluation experiments and analysis follow.
3. Selected methods

In this section we briefly describe the two selected methods, followed by a descrip-

tion of the test data set and the evaluation strategy.

3.1. Polygon approximation

Polygon approximation or curve evolution is a process that eliminates insignifi-
cant shape features and reduces the number of data points. The resultant represen-

tation is one that uniquely describes the shape. The approximated curve is then

converted to tangent space for similarity measurement.

� Curve evolution. Curve evolution is used to reduce the influence of noise and to

simplify the shapes by removing irrelevant and keeping relevant shape features.

This is achieved by iteratively comparing the relevance measure of all vertices

on the polygon. Higher relevance value means that the vertex has larger contribu-
tion to the shape of the curve. For each iteration, the vertex that has the lowest

relevance measure is removed and a new segment is established by connecting

the two adjacent vertices. The relevance measure is calculated as

Kðs1; s2Þ ¼
bðs1; s2Þlðs1Þlðs2Þ

lðs1Þ þ lðs2Þ
; ð1Þ

where b is the turn angle and l is the normalized length for shapes s1 and s2. The

relevance measure is in direct proportion to the turn angle and the length of the
curve segment.

� Tangent space. The smoothed curve is represented by the turn function, which is

the turn angle as a function of the normalized length. Representing shape in tan-

gent space meets the invariance requirements for shape-based retrieval. It is trans-

lation invariant because the turn angles and length do not contain information

about the shape location. Use of normalized length provides for scale invariance.

In case of rotation, the turn function is shifted vertically, and it is translated hor-

izontally when there is a shift in starting point.
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� Similarity measurement. The distance (dissimilarity) between two turn functions

HA and HB for shapes A and B can be measured as

d2ðA;BÞ ¼ HA �HBk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

HA �HBj j2ds
� �s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

h�R;t�½0;1�

Z 1

0

HAðsþ tÞ �HBðsÞ þ hj j2ds
� �s

: ð2Þ

To measure the distance, the two turn functions must be aligned first. In most

cases, the turn functions are not identical because of difference in shape. The align-

ment can only be achieved through minimizing the distance while shifting one turn

function. In otherwords, the distance between two turn functions is obtained by per-

forming a two-dimensional search to find theminimumdistance. Another approach

is to reduce the search to one dimension by calculating the best value of h (Arkin et

al., 1991). Thebest value of h is a function of length shift t in theX axis thatminimizes

hðt; hÞ ¼
Z 1

0

HAðsþ tÞ �HBðsÞ þ hj j2ds;

where h0ðtÞ ¼
Z 1

0

ðHAðsþ tÞ �HBðsÞ þ hÞds

¼ a� 2pt;

where a ¼
Z 1

0

HBðsÞds�HAðsÞds:

ð3Þ

� Enhancements. While Eq. (1) works well for describing shapes at different levels of

detail, it starts losing the significant pathology of the shapes as the number of data

points decreases. Fig. 2 shows the results of curve evolution on a vertebra outline

using the method described above. The original shape contour has 172 data points
as shown in Fig. 2A. It was reduced to 30 and 20 points as shown in Figs. 2B and

C, respectively. The remaining vertices do not contribute to representing the ori-

ginal shape correctly.

An enhanced relevance measure equation was developed to remove short and

straight line segments so that the critical points can be detected and preserved
Fig. 2. (A) Original contour with 172 data points, reduced to (B) 30 points and (C) 20 points using original

method.



Fig. 3. (A) Original contour with 172 data points, reduced to (B) 30 points and (C) 20 points using

enhanced method.
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(Lee et al., 2003). It removes the vertices that have short length and/or that have turn

angles close to 180� (straight line). This is expressed as

Kðs1; s2Þ ¼
ðbðs1; s2Þ � 180Þj jlðs1Þlðs2Þ

lðs1Þ þ lðs2Þ
; ð4Þ

where b is the turn angle and l is the normalized length for shapes s1 and s2. The rel-

evance measure is in direct proportion to the turn angle and the length of the curve

segment. Corresponding results from applying this method are shown in Fig. 3.

3.2. Fourier descriptors

The position of a point on a closed contour is a periodic function. Thus, the Fou-
rier series may be used to approximate the contour. The resolution of the approxi-

mating contour is determined by the number of terms in the Fourier series. Since

simple operations such as scaling and translation are related to simple operations

of the boundary�s Fourier descriptors, they are attractive for use with boundary

matching (Zahn and Roskie, 1972). Rotation however requires the bend angle func-

tion to be computed.

� Bendangle. Thebendangle versus normalized length functionwas calculated so that
the shape representation meets the invariance requirements. The bend angle is cal-

culated such that a clockwise turn gives a negative anglewhereas a counter clockwise

turn gives a positive angle. This method represents a closed polygon curve C (m ver-

tices) asH(t), i.e., the bend angle as a function of length t. The parameter t is the nor-

malized accumulated length. Because it does not contain orientation information,

this representation meets the rotation invariance requirement. Normalized length

makes it independent of the polygon size. Starting point shift invariance require-

ment is satisfied by the shift invariance property of the power spectrum.

The Fourier expansion of H(t) is expressed as

HðtÞ ¼ l0 þ
X1
n¼1

ðan cos nt þ bn sin ntÞ: ð5Þ
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In Eq. (5), an and bn are coefficients for each frequency component. The power

spectrum of the bend angle function is invariant to the shift in length (t in this case).

Because of this property, Fourier descriptors on a bend angle function meet all in-

variance requirements for shape-based retrieval. The similarity between shapes is

the normalized difference between the Fourier descriptors of the shapes. The lower
the difference, greater is the similarity.
4. Evaluation strategy

4.1. Data

The boundary data that forms the test set consists of vertebra outlines segmented

from the digitized NHANES II spine X-ray images. The contrast of the digitized

NHANES II spine X-rays is fairly poor, making automated segmentation a challeng-

ing task. We are exploring active contour models (Kass et al., 1988) and active shape

modelling (Cootes and Taylor, 2001) techniques for automated segmentation. For
purposes of the evaluation we have adopted a computer-assisted manual segmenta-

tion approach by fitting splines to manually-identified coarse boundary. Fig. 4 shows

a few sample manually segmented shapes from the data set.

The data set consists of 250 segmented vertebrae which include 25 each for cervical

C3–C7 and lumbar L1–L5 vertebrae. These data were used to create ground truth nec-

essary for the experimentation. The ground truth is based on the coarse radiologist-

marked 9-point data defining the vertebrae outline (Krainak et al., 2002), shown in

Fig. 5A. The 9-point model was chosen because of it is a model used in the vertebra
morphometry community, and because they were marked by an expert. The points in-

dicate the following:
Fig. 4. Examples of segmented (A) cervical and (B) lumbar vertebra shapes in sagittal view.



Fig. 5. (A) Radiologist marked 9-points, (B) Example query image with 36 points superimposed. Nine

points marked with �o� (C) Procrustes matching of the most similar different image with 36 points

superimposed.
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� Points 1 and 4 mark the upper and lower posterior corners of the vertebra, respec-

tively.

� Points 3 and 6 mark the upper and lower anterior corners of the vertebra, respec-

tively.
� Points 2 and 5 are the median along the upper and lower vertebra edge in the sag-

ittal view.

� Point 7 is the median along the anterior vertical edge of the vertebra in the sagittal

view.

� Points 8 and 9 mark the upper and lower anterior osteophytes. If osteophyte(s)

are not present on the vertebra, then these points coincide with points 3 and 6,

respectively.

The 9-point shapes are made dense to 36 points using linear interpolation. Three

points are interpolated between every pair of original 9 points. Additionally, the

points are re-ordered so as to better represent the actual shape. The new ordering

of boundary points is points 1, 2, 3, (8), 7, (9), 6, 5, and 4. Points 8 and 9 are paren-

thesized since a vertebra without any osteophytes, would not exhibit points 8 and/or

9. In cases where the osteophyte(s) are absent, the density of points between the

adjacent pair is increased to keep the number of points constant. Such an approach

is considered valid, since an osteophytes are bony ‘‘growths’’ which could be consid-
ered to grow out between points 3 and 7 or 7 and 6. An example of this case is seen in

Figs. 5B and C, where 7 points are interpolated between points 3 and 7 due to a lack

of the anterior superior osteophyte.

4.2. Ground truth

The ground truth data set is an ordered list of similar shapes from the data set for

every shape in the data set. The ground truth data is generated using the Procrustes
similarity metric. The Procrustes metric finds the best fitting match between two

shapes and is represented by Eq. (6), where (x,y) and (x0,y0) are n boundary point

coordinates of shapes X and X0.
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P ¼
Xn

i¼1

S � cos h � sin h T x

sin h S � cos h T y

0 0 1

2
64

3
75

xi
yi
1

2
64

3
75

X

�
x0i
y0i
1

2
64

3
75

X 0

�������
�������
2

: ð6Þ

The matching process translates shape X by (Tx,Ty) such that the center of gravity of

the two shapes coincide. Next, the shape X is scaled by S and rotated by h for the

minimum sum of squared distances between the boundary points of the two shapes.

The � sign indicates the Euclidean distance measure between two 2D points. Results

from a matching is shown in Figs. 5B and C. This method finds the closest distance

between two shapes. When applied to the 36 point model, it can be considered as the

closest semantic distance between the shapes. This metric was chosen over a manu-

ally marked ground truth shape because when determining similarity, human readers
tend to focus on local shape features such as elongated osteophytes, flattening of the

vertebra, etc. Marking the ground truth in this manner would require normalization

of the measure of shape similarity as perceived by different users. Using the Procrus-

tes distance overcomes this hurdle while allowing a fair evaluation of the methods.

4.3. Performance metrics

The ground truth data has 36-point shape descriptions. For the purposes of the
evaluation, dense segmented vertebra boundary shapes are reduced from approxi-

mately 150-point descriptions to 36 points using the enhanced polygon approxima-

tion method. These reduced density shapes are then used for similarity matching in

the tangent space using polygon approximation similarity matching and using bend

angle with Fourier descriptors.

Each shape method determines the similarity distance between every pair of

shapes in the data set. The performance of these methods can only be compared if

the similarity scores are normalized. However, this is challenging since each method
uses a different distance measure. To circumvent this problem and still achieve the

desired goal of comparing the methods, we use the similarity rank assigned by the

method to each shape. The similarity rank of each shape when compared to a query

shape from the data set using a test method is compared with the similarity rank of

that shape using the Procrustes distance metric. The mismatch (displacement) in the

rank, if any, is used to quantify performance. The greater the displacement, poorer

the performance.

To illustrate the comparison, consider the example shown in Table 1. Here, the
columns indicate the shapes ranked in decreasing order of similarity. The column

on the left is the output of a shape method and that in the middle is the ground truth.

The numbers, v3, v5, etc., represent the shapes. The performance of the shape meth-

od is computed by determining the mismatch between the two lists, which is de-

scribed in the rightmost column of the table.

The performance P is given by Eq. (7).

P ¼ T d � Dm

T d

� 100%: ð7Þ



Table 1

Example of comparing similarity rankings

Shape method Ground truth Mismatch displacement

v3 v3 None

v5 v99 v5 has moved �up� 2 ranks

v99 v21 v99 has moved �down� 1 rank

v18 v5 v18 has moved �up� 1 rank

v21 v18 v21 has moved �down� 2 ranks
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Here, Dm is the total mismatch distance for a particular method over all shape que-

ries. It is computed as the mismatch displacement, dm, for each shape query summed

over all N shapes in the database, i.e., Dm ¼
PNdm. The maximum possible displace-

ment, Td, is computed as follows:

T d ¼ 2�
XN2�1j j

k¼0

N � ð2k þ 1Þ: ð8Þ

This follows from the observation that in a set of N shapes the maximum possible

displacement for the first shape is (N � 1). The next shape has a maximum dis-

placement of (N � 3). This is because the first shape displaces a shape with its
maximum displacement and has a fixed position. This reduces the list size

to M = (N � 2). The second shape can now have a maximum displacement of

(M � 1), which is (N � 3). The third shape has a maximum displacement of

N � 5, and so on. Since there are 250 shapes in the data set, the maximum dis-

placement Td is computed to be 31,250.

In this evaluation, we have not used standard precision and recall performance

metrics because it is being conducted on a finite number of shapes. As such, a false

negative at one similarity rank position will result in a false positive at the same rank
and similar pair of false readings where these expected shapes appear. This results in

nearly equal precision and recall measures. Instead, computing the displacement and

its direction is a better way of evaluating performance. Creating a window with, for

example, the top 25 similar shapes (Antani et al., 2003), could be used as an ap-

proach to apply precision and recall metrics. There is, however, no clear methodol-

ogy to use in calculating window size that can provide confidence that a complete

picture of algorithm performance can be obtained. Using the charts presented in

Figs. 6 and 8, one can compute the performance at varying window widths. In ad-
dition, by studying the displacement direction, the shape, and the similarity algo-

rithm one could gain greater insight into their relationship.
5. Results and analysis

This section describes the results for the evaluation experiments described above.

The performance of the methods is presented using three experiments. In the first



Fig. 6. PA method: mismatch distance in the upward and downward direction averaged over 250 queries.

Bins are similarity rank intervals of 10.
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experiment, the performance is evaluated by comparing the similarity rank of a

shape retrieved using a test method against the ground truth. Each shape of the data

set is used as a query and 249 similar shapes, other than the query shape, are ranked.
The upward and downward mismatch distance is then computed for every query

shape. The mismatch distance is averaged over similarity rank interval of 10. The re-

sults for the polygon approximation (PA) and Fourier descriptor (FD) shape simi-

larity method are presented in Figs. 6 and 8. The charts show the amount of

upward and downward displacement as a proportion of the overall mismatch dis-

placement. For shapes ranked higher in the ground truth, most of the displacements

are inevitably downward movement. For shapes ranked lower, more upward move-

ment and less downward movement can be seen. By comparing the two sets of data,
the FD method can be seen to have larger average displacement then the PA method.

Figs. 7 and 9 show the accumulated displacement for the PA and FD methods, re-

spectively. The total averaged accumulated displacement in one direction over 250

queries is 8287.6 for the FD method and is 6883.4 for the PA method. This indicates

that the FD method incurs larger displacement and hence is less accurate than the

PA method. It is important to note that since the queries are exhaustive over a closed

set, the total upward displacement is the same as the total downward displacement.

A second experiment was to determine the retrieval precision of the methods.
For this, the shapes were compared with the ground truth over an interval regard-

less of the displacement within the interval. The FD method retrieved 59.2% of the

100 top ranked shapes and 80.34% of the top 200 top ranked shapes accurately.

Again, the PA method shows higher retrieval precision returning 62.2 and 86.3%

accurate matches, respectively. Obviously, 100% of the shapes are accurately found



Fig. 8. FD method: mismatch distance in the upward and downward direction averaged over 250 queries.

Bins are similarity rank intervals of 10.

Fig. 7. PA method: mismatch distance accumulated over 250 queries.
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over the entire data set. This experiment models the trade-off between sensitivity

and specificity in an ROC curve. The intent is to present the researcher with a

sense of the performance of the method over a range of intervals. Fig. 10 shows

a comparison of the precision rates for the two methods. The PA method has
an overall higher retrieval precision rate. This experiment is useful in separating



Fig. 9. FD method: mismatch distance accumulated over 250 queries.

Fig. 10. Comparison of retrieval precision of PA and FD methods.
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the performance of the methods with very similar mismatch displacement values. It

also allows the researcher to determine the expected retrieval performance for a

given interval.

Finally, in the third experiment, a performance score, as described in Eq. (7) is com-

puted for eachmethod.As shown inTable 2, the performance scores of themethods are



Table 2

Retrieval performance of the PA and FD algorithms

Method Displacement Performance

Total Expected SD Expected SD

PA 13767 55.06 4.36 55.94% 8.95

FD 16575 66.30 10.66 46.96% 9.59
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fairly low. However, it should be noted that this score is dependent on the mismatch

displacement. These scoresmay be acceptable in applications where the similarity rank

is not as important, e.g., a researcher browsing the database for images pertinent to

some pathology. In such cases, the set of acceptable results can be kept fairly large al-

lowing for the expected displacement. In other applications the rank of retrieved imag-

es is fairly important, e.g., a physician looking up the database. The accumulated

mismatch chart can then be used to determine an appropriate window size. However,

these results do not appear meaningful for such applications. Further research is need-
ed for developing a method that meets this and other requirements discussed earlier.
6. Conclusions

This paper presents a performance evaluation of two shape representation and

similarity methods. The polygon approximation method was enhanced by improving

the point selection criteria to better represent the vertebra shapes. The results indi-
cate that the polygon approximation method performs a better than the Fourier de-

scriptor method. However, the execution time of the PA method is significantly

longer than the FD method. Both methods satisfy most requirements in matching

medical images. However, they use global shape matching and do not permit queries

on the partial shape. A related, and unevaluated, problem is determining their sen-

sitivity to shape characteristics. The methods tend to do well in separating shapes

with gross differences. However, they do not perform well with a set of closely related

shapes, such as the vertebra collection. Research in these directions is under way and
is the focus of our future work.

Our evaluation of these representative shape methods should help researchers

seeking to develop or adopt shape representation and similarity methods. We have

presented the literature in the field of shape matching, developed ground truth data

and performance evaluation criteria that give similarity and rank relevance. We also

expect this case study to be very valuable since shape based retrieval techniques for

biomedical images have been largely unexplored.
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