RECENT ADVANCES IN POLYOXOMETALATE BASED DELIGNIFICATION

R.H.Atalla^{1,2}, I.A.Weinstock¹, R.S.Reiner², C.J.Houtman¹,S.Reichel², and C.G.Hill² USDA Forest Service, Forest Products Laboratory¹ Department of Chemical Engineering University of Wisconsin-Madison² Madison, Wisconsin, USA

C.L.Hill, M.Wemple, J.Cowan, E.M.G.Barbuzzi Emory University, Department of Chemistry Atlanta, Georgia, USA

ABSTRACT

A new delignification technology based on the use of polyoxometalates (POMs) as delignification agents is under development at the USDA Forest Service, Forest Products Labotatory (FPL), in Madison, Wisconsin. These reagents are chlorine free and can be used under conditions wherein they oxidize lignin and chromophores in wood pulp fibers while leaving the cellulose undamaged. Their promise is enhanced by the fact that they can be re-activated with oxygen under conditions that result in oxidation of the organic byproducts of the delignification process. Thus, they can be continuously recycled in a closed system that promises to provide the basis for a new class of closed mill technologies in which the consumable oxidant is oxygen, and the primary byproducts are carbon dioxide and water. The first POM systems investigated included $\mathbf{a} - (PV_2Mo_{10}O_{40})^{5-} = \mathbf{a} - [SiVW_{11}O_{40}]^{5-}$. The former is effective in both delignification and wet oxidation, but it is not stable at pH levels greater than 4 and can result in unacceptable hydrolytic degradation of cellulose. The latter, **a**-[SiVW₁₁O₄₀]⁵⁻, is more effective at delignification and is useable at pH levels up to 6 or 7, but it is more difficult to re-oxidize. A new group of POMs are now under development; they combine the most attractive features of each of the members of the first group. In addition, they are more easily synthesized and they have an inherent self buffering capacity. Three members of this new group of POMs are under investigation and each has been found to be effective in both delignification and the regeneration/wet-oxidation. The new generation of **POMs** includes $a - [SiV_2W_{10}O_{40}]^{6-}$ and

a- $[A1VW_{11}O_{40}]^{6-}$, as well as a mixed tungstatemolybdate system. The presentation will provide an overview of the development of these new delignification systems and their potential as the basis for new pulping and bleaching technologies. The POMs have now also been applied to linerboard pulps at kappa levels of 65. They reduced the kappa to below 10, while maintaining the viscosity above 20 mPa•s. Therefore, in addition to providing an alternative closed-mill technology for traditional delignification stages in bleaching, POM-based processes can also be considered as a basis for accepting the pulp in the bleach plant at higher kappa levels. This possibility allows for reduction of the load on the digesters and recovery boiler, thereby increasing the capacity of kraft mills at a significantly lower level of investment.

INTRODUCTION

The polyoxometalates (POMs) are a class of delignification agents that promise to provide the basis for a new closed-mill bleaching technology. The POMs used as delignification agents are transition-metal-substituted cluster ions similar in structure to many mineral ores. They are entirely chlorine free and can be used under conditions that make them very selective in their action on pulp fiber constituents. When used in their active states, they can oxidize lignin and related chrome-phores, while leaving the polysaccharides undamaged. Their attractiveness for delignification processes is enhanced by the fact that they can be reactivated with oxygen under conditions that will catalyze oxidation of organic byproducts of delignification. As a consequence, they can be continuously recycled in a closed system; this provides the basis for a new class of closed-mill technologies in which the consumable oxidant is oxygen, and the primary byproducts are carbon dioxide and water.

We previously reported on the fast group of POMs that were investigated in our laboratory (1-10). Here we report on additional POMs that combine the most attractive characteristics of the POMs in the first group. Because of these advances, we are now in a position to move toward development of pilot-scale facilities for the use of POMs in delignification of commercial pulps.

BACKGROUND

The delignifying action of POMs was discovered as part of a new program on alternative pulping and bleaching technologies specifically directed at finding more selective oxidative systems. Selectivity was chosen as the point of emphasis because it was known that wood-degrading fungi use highly selective peroxidase enzymes to degrade lignin. These enzymes leave the cellulose intact so that it can later be hydrolyzed to glucose by a system of hydrolases; the fungi can then directly assimilate it as a nutrient. An interim goal of our program was duplication of the action of the peroxidase enzymes, but in systems that are useable in an industrial context.

We first recognized that the selectivity of the peroxidases is based on the way in which they use transition-metal ions in controlled environments to catalyze the oxidation of lignin. There is, in fact, a considerable literature on organic peroxidase analogs that are effective in selective oxidation of lignin in pulps. These systems, however, remain only of academic interest because they require complex organic platforms for the transition-metal ions, and the organic substructures are not stable at temperatures necessary to achieve the high rates required for an industrial process.

The search turned to inorganic systems that can mimic the action of the peroxidases but have the stability to be applied at elevated temperatures. The major breakthrough occurred when we recognized that polyoxometalate cluster ions can provide a necessary ligand environment to mimic the function of the organic platform in many fungal enzyme systems. So by placing an active metal ion in the POM structure, we simulate the action of enzymes with the level of selectivity that we were seeking

The POMs are a class of oligomeric, metal-ion oxide clusters. The ones we have used in our program typically include 12 structural transitionmetal atoms, such as tungsten or molybdenum, clustered around a main-group atom, such as phosphorous, silicon, or aluminum. To make them active for delignification, we replace one or two of the structural metal atoms of the cluster ion with a first-row transition-metal atom, such as vanadium or manganese.

In order to achieve the high degree of selectivity, the POMs have to be applied to the pulp under anaerobic conditions. If oxygen is present, the reoxidation of the POMs can result in generation of free-radical species, which can attack and degrade cellulose. In fact, this characteristic of the POMs has become the basis for mineralizing the lignin fragments dissolved in the liquor during delignification. When the spent delignification liquor is exposed to oxygen at elevated temperatures, the POM is reoxidized to its active form, and free-radical species are generated. Under these conditions much of the organic material is oxidized to carbon dioxide and water, and the POMs are stable since the structural metal ions in the clusters are in their highest oxidation states. After reoxidation the POM solution can be used to delignifiy pulp again.

PROCESS CONCEPT

For use of the POMs in a delignification process that can be scaled up for commercial use, it is necessary to consider how the different chemical transformations can be organized in relation to each other. At the heart of the process, there are two complementary operations. In the first one, an aqueous solution of POM in its oxidized form is applied to the pulp under anaerobic conditions. It oxidizes and solublilizes the lignin in the pulp and is itself reduced. When its oxidizing capacity has declined to a point determined by overall process parameters, the spent liquor, with all the soluble organics released during the delignification operation, is separated from the pulp. In the second operation, the spent solution of POM and organics is oxidized with oxygen at an elevated temperature. Under these conditions, the reduced POM is reoxidized, and simultaneously, it catalyzes the oxidative degradation of the soluble organics to carbon dioxide and water.

The process envisioned is shown in Figure 1. The key unit operations are the bleaching stage (A) and the wet oxidation stage (D).

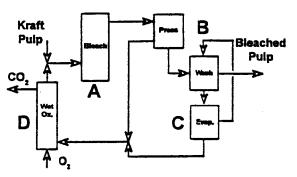


Figure 1. Block diagram of the POM process.

A commercial installation will also require separating the pulp from the spent liquors, washing the pulp, and concentrating the wash waters to recover the POM removed during washing. It is also anticipated that a stage for removal of nonprocess elements will be incorporated into the overall scheme. Since a number of preliminary studies have demonstrated that washing and adequate recovery can be accomplished with established technologies, the focus of our program has been on improvement of the delignification and wet oxidation stages. We are also seeking a deeper understanding of the physical and chemical processes that dominate each of the two stages.

The overall chemical processes occurring in unit operations A and D are represented in Figure 2. The delignification operation (A) is represented as the reaction of the POM in its oxidized forms with the lignin to produce the soluble oxidized lignin and the POM in its reduced form. The solubilized oxidized lignin, together with the reduced POM, is then fed into the reoxidation stage, where the POM is reoxidized and the solubilized lignin is mineralized.

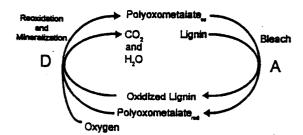


Figure 2. Net reactions of the POM process.

EARLY STUDIES

Delignification

In our first reports on POM-based delignification, we described successful delignification in a lowconsistency, multistage sequence at 125° C, using $Na_5PV_2Mo_{10}O_{40}$ as the POM. The results, with respect to kappa number and viscosity, were comparable with results obtained with chlorine/chlorine dioxide based systems. The yield levels in these very early studies were in the range of 88 to 90%, however, due to losses attributed to hydrolysis of cellulose upon its exposure to elevated temperatures for extended periods. The utility of this POM was compromised by the fact that it is not stable at pH levels above 4.

In the next cycle of delignification trials, which were carried out with Na₅SiVW₁₁O₄₀, we were able to reduce the duration of the individual stages and to operate successfully at temperatures below 100°C. We also demonstrated effective operation at medium consistency (11%). Two representative examples were described. In the first, carried out at 125°C, the kappa number was reduced from 24.5 to 12.6 with a 30-minute POM stage, followed by caustic extraction. The corresponding loss in viscosity was from 28.7 to 22.2 mPa•s. In the second example, carried out at 90°C, two successive POM stages, followed by caustic extraction. reduced the kappa number from 24.5 to 11.9, with a corresponding decline in viscosity from 28.7 to 27.3 mPa•s. These two examples pointed to the possibility of further optimization of POM-based delignification.

It was with the $Na_5SiVW_{11}O_{40}$ system, as well, that the possibility of achieving very good paper

properties was first demonstrated The measured paper properties are shown in Table 1, where they are compared with properties of the same pulp after a $C/D_{30}E$ treatment.

Table 1. Paper properties of POM delignified pulps.

	C/D ₃₀ E	POM	Control
Viscosity (mPa sec)	23.1	19.5	23.2
Burst Index (kN/g)	8.65	8.18	7.11
Tear Index (mN m²/g)	9.03	9.30	9.45
Tensile Index (N m/g)	109.0	103.7	96.5
Zero-Span (N m/g)	160.8	148.4	150.3
Density (kg/m³)	796.1	792.3	769.9

• 5000 rev. PFI mill (360 ml CSF)

Initial Kappa of 24

• C/D_E and POM bleached to a Kappa of 4.6

In addition, data on a control sample that was subjected to the same sequence of treatments as the POM-treated pulp, but without POM, is included It is clear that the POM-treated pulp has properties that are comparable to those of the $C/D_{30}E$ pulp.

Wet Oxidation

We have reported that wet oxidation can be carried out effectively and POM-containing liquors can be recycled for delignification. These wet oxidation studies, using Na₅PV₂Mo₁₀O₄₀, demonstrated the feasibility of achieving a low level of chemical oxygen demand (COD), together with complete reoxidation of the POM. They also demonstrated that the resulting liquors, with the residual COD. can be used for delignification and are as effective as the fresh POM solutions. Although $Na_5PV_2Mo_{10}O_{40}$ is not a feasible delignification agent from a commercial perspective, it remains an important POM in studies directed at characterizing the delignification liquors and the chemical transformations that occur during wet oxidation. It is anticipated that the results of these studies will be helpful in facilitating further optimization of the wet oxidation process.

System Integration

Although the first generation of POMs did not provide the basis for a commercial process, it did allow us to explore the behavior of POMs in the context of delignification and wet oxidation. The key to successful commercialization was the identification of POMs that are effective in both delignification and wet oxidation stages. Two approaches were actively pursued in search of an integrated process. The first was the development of alternative POMs. The second was expansion of the range of operating conditions for delignification and wet oxidation so that a wider range of POMs, including those in the first group, might be used effectively. The current report grew from the first approach.

CURRENT INVESTIGATIONS

We report here the development of a new group of POMs that have a number of advantages over the first generation. In addition to being well suited to both delignidcation and wet oxidation, the new POMs are stable at pH levels above neutral so hydrolysis of the cellulose is significantly reduced Another important advance associated with the introduction of this new group of POMs has been the development of a new synthetic procedure that results in an equilibrium composition, which is inherently stable and, therefore, can be recycled repeatedly in a closed system. The new synthetic procedure is much more simple than traditional synthetic approaches. The availability of this new procedure should facilitate the design of POM production processes on an industrial scale, and it should make research in the field of POM delignification more accessible to other laboratories.

A number of new POMs, all of which appear to be stable above pH 7 and are reoxidized by oxygen, have been explored so far. These include $Na_6SiV_2W_{10}O_{40}$, $Na_6A1VW_{11}O_{40}$, and a group that is described by the formula $Na_5SiVW_{11-x}Mo_xO_{40}$. The one that has been studied most extensively is $Na_6SiV_2W_{10}O_{40}$, which has been routinely used to reduce kappa number from about 32 to below 10 under several different conditions, including multiple stages at 10% consistency. The yield levels, in most instances, are above 95%.

In addition to its extensive use in tests with pulps at kappa levels in the low 30s. this POM has been used to test the feasibility of applying POM technology to higher kappa pulps. This possibility is of interest in mills that have well-established delignification and bleaching stages but could benefit from increasing the kappa level at which the pulp is removed from the digester. The results of some trials, with a southern pine linerboard pulp at a kappa of 65, are shown in Table 2. It is clear that even if the POM stage was used to completely delignify the pulp, the viscosities are still acceptable. Table 2. Delignification of southern pine linerboardwith POMs.

POM	Final Kappa	Final Viscosity (mPa S)	Yield on Pulp (%)	Yield on Wood (%)
SiV,W,	3.6	17	87	48
SiV ₂ W ₁₀ SiV ₂ W ₁₀	9.6	28	85	47

• initial kappa 65

• estimated yield 55% on OD wood

southern pine

CONCLUSION

It is now clear that POM-based technology has the potential to outperform currently available technologies with respect to facilitating closed-mill systems and reducing environmental impact. It has also been shown that the technology is more energy efficient and quite competitive economically. The member companies participating in the consortium supporting this work are now considering the establishment of a pilot facility to demonstrate the commercial feasibility of POM-based delignification technologies.

ACKNOWLEDGMENTS

We wish to acknowledge support of this work by the USDA Forest Service, the U.S. Department of Energy, Office of Industrial Technologies, and the member companies of the Polyoxometalate Bleaching Consortium.

REFERENCES

1. Weinstock, I.A., Atalla, R.H., Reiner, R.S., Hill, C.L., Houtman, C.J.: Polyoxometalate bleaching: A highly selective, closed-mill technology. 1995 TAPPI International Environmental Conf., May 7– 10, 1995, Atlanta, GA, Book 2, pp. 1197–1199.

2. Weinstock, I.A., Atalla, R.H., Reiner, R.S., Hill, C.L.: Highly selective TCF bleaching of kraft pulp by water soluble polyoxometalate complexes. Eighth International Symposium of Wood and Pulping Chemistry, June 6–9, 1995, Helsinki, Finland, Volume I, pp. 369–376.

3. Weinstock, I.A., Atalla, R.H., Reiner, R.S., Moen, M.E., Hammel, K.E., Hill, C.L., Houtman, C.J.: Polyoxometalate bleaching of kraft pulp: A highly selective closed mill technology. 1995 TAPPI Pulping Conf., October 1-5, 1995, Chicago, IL, Volume I, pp. 153-156.

4. Atalla, R.H., Weinstock, I.A., Hill, C.L., Reiner, R.S., Houtman, C.J.: Polyoxometalate bleaching of

kraft pulps: A highly selective closed mill technology. 1996 International Non-Chlorine Bleaching Conf., March 24–28, 1996, Orlando, FL, 9 p.

5. Weinstock, I.A., Atalla, R.H., Reiner, R.S., Moen, M.A., Hammel, K.E., Houtman, C.J., Hill, C.L.: A new environmentally benign technology and approach to bleaching kraft pulp. Polyoxometalates for selective delignification and waste mineralization. New J. Chem. 20 (1996): 269-275.

6. Atalla, R.H., Weinstock, I.A., Reiner, R.S., Houtman, C.J., Hill, C.G., Hill, C.L.: Polyoxometalate bleaching: A new effluent-free technology. Fourth European Workshop on Lignocellulosics and Pulp, September 8-11, 1996, Stresa, Italy, pp. 189-193.

7. Weinstock, I.A., Atalla, R.H., Reiner, R.S., Moen, M.A., Hammel, K.E., Houtman, C.J., Hill, C.L., Harrup, M.K.: A new environmentally benign technology for transforming wood pulp into papers: Engineering polyoxometalates as catalysts for multiple processes. J. Mol. Cat. A: Chem. 116 (1997): 59-84.

8. Sonnen, D.M., Reiner, R.S., Atalla, R.H., Weinstock, I.A.: Degradation of pulp-mill effluent by oxygen and $Na_5[PV_2Mo_{10}O_{40}]$, a multipurpose delignification and wet air oxidation catalyst. Ind. Eng. Chem. Res. 36 (1997): 4134-4142.

9. Weinstock, I.A., Atalla, R.H., Reiner, R.S., Houtman, C.J., Hill, C.L.: Selective transition-metal catalysis of oxygen delignification using watersoluble salts of polyoxometalate (POM) anions. Part I. Chemical principles and process concepts. Holzforschung 52 (1998), in press.

10. Weinstock, I.A., Hammel K.E., Moen, M.A., Landucci, L.L., Ralph, S., Sullivan, C.E., Reiner, R.S.: Selective transition-metal catalysis of oxygen delignification using water-soluble salts of polyoxometalate (POM) anions. Part II. Reactions of a-[SiVW₁₁O₄₀]⁵ with phenolic lignin-model compounds. Holzforschung 52 (1998), in press.

	Chemistry and Pulping	FPL-4709
Problem 1	New technologies to delignify wood for the production of pulp in ways th of our air and waterways.	at will eliminate contamination
	FY 1999 Research Attainments	
Publications Research Unit	Atalla, R. H.; Weinstock, I. A.; Reiner, R. S.; Houtman, C. J.; Reichel. S.; Hill, C advances in polyoxometalate based delignification. In: 10th International sympos chemistry, Main symposium: 1999 JUNE 07-10; Yokohama, Japan. Atlanta. G 408–412.	sium on wood and pulping