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ABSTRACT

The finite difference approximation is applied to estimate the moisture-dependent
diffusion coefficient by utilizing test data of isothermal moisture desorption in northern
red oak (Quercus rubra). The test data contain moisture distributions at discrete
locations across the thickness of specimens, which coincides with the radial direction of
northern red oak, and at specified times. Also, the rate of moisture variation at each
specified time and location must be known or correctly estimated. The functional form
of the diffusion coefficient as well as the boundary conditions at the surfaces are not
known a priori. The resulting system of finite difference equations defines an inverse
problem, whose solution may be sensitive to small changes of input data. Results
indicate that the diffusion coefficient increases with increasing moisture content below
the fiber saturation point, which defines the upper limit applied by the diffusion theory.

INTRODUCTION

This paper presents the inverse determination of the diffusion coefficient in the one-dimensional non-
steady-state diffusion equation based on desorption test data of moisture variations in northern red oak
(Quercus rubra) specimens (Simpson 1993). The test data contain moisture distributions at discrete
locations across the thickness of specimens, which coincides with the radial direction of northern red oak,
and at specified times. To reduce the effects of data scatter, the test data were simulated by mathematical
modeling. The simulated data represent the test data very closely and were analyzed using the finite
difference technique. Results indicate that the diffusion coefficient increases with increasing moisture
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content below the fiber saturation point. The diffusion coefficient increases dramatically when moisture
content is low and tends to level off as moisture content approaches the fiber saturation point (see
Figure 6).
In solving the diffusion equation for moisture variations in wood, some authors have assumed that the
diffusion coefficient depends strongly on moisture content (e.g., Hougen et al. 1940, Meroney 1969,
Simpson 1993, Skaar 1954, Van Arsdel 1947), while others have taken the diffusion coefficient as
constant (e.g., Avramidis and Siau 1987, Choong and Skaar 1972, Droin et al. 1988, Mounji et al. 1991,
Soderström and Salin 1993). Also, different boundary conditions have been assumed by different authors
(e.g., Crank 1975, Plumb et al. 1985, Salin 1996, Hukka 1999). No one has ever attempted to use the
inverse method to verify assumptions. In using the inverse method, the governing partial differential
equation is converted into a system of linear equations based on test data; the boundary conditions need
not be specified in the formulation. In the system of linear equations, the unknowns are the values of the
diffusion coefficient corresponding to different moisture content values, locations, and times, which can
be easily obtained. The advantage of this approach is that no prior information or assumption is required
on either the functional form of the diffusion coefficient or the exact mechanism of surface evaporation in
diffusion. Once the diffusion coefficient values have been determined, the corresponding boundary
condition can be evaluated.
The inverse method has been used successfully to determine the thermal conductivity in heat conduction
problems (Chen et al. 1996; Yeung and Lam 1996). Since the governing equations for heat conduction and
moisture diffusion are the same, it is only natural to use the same procedure to investigate the diffusion
coefficient in a moisture sorption or desorption process of wood. The only condition for such an
application is that moisture variations with time and space in wood be known over the entire domain of
interest; for northern red oak, these moisture values are available in the work of Simpson (1993).
The inverse solutions are known to be sensitive to changes in input data resulting from measurement and
modeling errors. Hence, they may not be unique. Mathematically, the inverse problems belong to the class
of ill-posed or ill-conditioned problems; that is, their solutions do not satisfy the general requirements of
existence, uniqueness, and stability under small changes to the input data (Özisik 1993). In the present
study, the time derivative of the diffusion equation must be approximated with special care as the time
intervals for data collection were relatively large, making it difficult for precise time derivative estimation.
However, in spite of the uncertainties, our results have demonstrated the special merits of the solution
procedure.

ONE-DIMENSIONAL ISOTHERMAL DIFFUSION EQUATIONS

In a one-dimensional formulation with moisture moving in the direction normal to a specimen of a slice
of wood of thickness 2a, the diffusion equation can be written as

(0 < X < a, t > 0)

where C is moisture content, t is time, D is diffusion coefficient, and X is space coordinate measured from
the center of the specimen.
Let the initial condition be

C = C0 (0< X <a, t = 0)

where C0 is a constant moisture content in the specimen, and let the boundary conditions be

∂C
∂X

=0 (X = a, t > 0)



D
∂ C
∂X

 = S(Ce - C) (X ≈ 0, t > 0) (4)

where S is surface emission coefficient and Ce is equilibrium moisture content corresponding to the vapor
pressure in the environment remote from the surface of the specimen.
The main purpose of this study is to determine the diffusion coefficient D(X,t) at any point within the
domain of 0<X<a and t>0 with the assumption that C(X,t) is known at discrete grid points, as described in
the next section. Note that Equation (4) is listed for reference only. It is not needed in solving for D(X,t) in
the present work.

INVERSE DETERMINATION OF DIFFUSION COEFFICIENT

First, we present a finite difference
procedure for calculating the diffusion
coefficient at discrete grid points. Then,
we give the computational algorithm for
determining the diffusion coefficient
values corresponding to different times
and positions.

Finite Difference Formulation

Let half of specimen thickness (a) be
discretized with mesh width (∆X ) in
space (Figure lb) and At in the time
direction with grid points Xj = j · ∆X

(where j = 0,l,... ,n) and ti = i · ∆t (where
i = 0,1,2 ,... ). The present procedure will
assume that C(X,t) are known at grid
points (Xj, ti). Equation (1) can then be
discretized as follows:

Figure 1. Test specimen and discretization of space co-
ordinate. (a) Specimen with thickness in radial direction;
(b) discretization of space coordinate with mesh width

a. At the surface grid point with j = 0 and i > 0, applying the forward difference to the time derivative of
Equation (1) yields

(5)

and applying the forward difference to the space derivative yields

(6)



(14)

a. At the surface grid point with X = X0 and t = t -  ,

The elements of d are the unknown diffusion coefficient values at the grid points, and the elements of
A and b are expressed as follows:

(15)

(16)

b. A

(19)

(17)

an internal grid point with X = Xj (0 < j < n) and t = t- ,

(18)

(20)

c. At the center grid point with X = Xn and, t = t
-

(21)

(22)

(23)

This system consists of a tridiagonal system of linear algebraic equations. The solution vector d is the
diffusion coefficient vector. A FORTRAN subroutine based on the Thomas algorithm can be found in
Özisik (1993) for solving a tridiagonal system of equations.
The system of linear equations (Eq. 12) is different from the original partial differential equation (Eq. 1)
because of the finite difference approximation. Also, as described in Hensel (1991), a small change in
vector b may result in large changes in the solution vector d, depending on the degree of the “ill-
conditioning” property of matrix A. Therefore, the importance of accurate data generation cannot be
overemphasized in applying the inverse technique.

NUMERICAL RESULTS AND DISCUSSION

Desorption test data for northern red oak by Simpson (1993) can be conveniently used for numerical
analysis. The set of data selected for this study has the following specifications: (1) specimen thickness,



2a, 25 mm, (2) initial moisture content, C0, 35.9%, (3) equilibrium moisture content, Cc, 5.5%
(corresponding relative humidity, 33%), and (4) test temperature, 43.4°C. Specimens were taken from flat-
sawn boards as right parallelepipeds and coated on four sides with two coats of heavily pigmented
aluminum paint so that moisture could move only through the thickness, which coincides nominally with
the radial direction (Figure la). This configuration was chosen because the log was not large enough to
ignore growth ring curvature through the thickness of the specimen. Also, the standard deviation of the
test temperature was 0.3°C and that of the relative humidity, 0.7%. Moisture content is the quantity of
moisture in wood expressed as a percentage of ovendry weight.
The test data were fitted by a curve as shown in Figure 2, which presents the variation of moisture content
with space at t = 216.6 h. Some curve-fitted data used in the study are shown in Figure 3.
Variations of moisture content with time at different positions are presented in Figure 4. Note that these
curves were plotted with limited data in the time axis. In estimating the elements in vector b for a small
value of At, these curves need to be approximated mathematically on a sectional basis because data
extrapolation rather than interpolation may become necessary for large time intervals.

Figure 2. Moisture content as a function of space by Figure 3. Moisture content as a function of space at
curve fitting. various time points.

Figure 4. Moisture content as a function of time
at various positions (mm).

Figure 5. Variations of diffusion coefficient with space at
various time points.



Figure 5 presents data of variations of diffusion coefficient as a function of space at different times. In the
calculations, we set ∆X = 1 mm and ∆t = 0.1 to 0.3 h. The difference resulting from a different selection
of At was found to be negligible. For t > 122 h, the data tended to move in a zigzag pattern in the central
portion of the figure. This was also observed by Yeung and Lam (1996) in one of their examples, without
an explanation. Since their examples were problems with known analytical solutions, the observed pattern
could not be due to experimental uncertainty. As pointed out previously in this paper, Equation (12) is ill-
conditioned and the solution vector d depends on the ill-conditioning property of matrix A; therefore, we
suspect the zigzag pattern in Figure 5 could reflect this property of matrix A (Hensel 1991). Close to the
center of a specimen where the moisture gradient tends to approach zero, the diffusion coefficient drops to
a small value in all cases.
Variation in diffusion coefficient with
moisture content at different times is
displayed in Figure 6. If we ignore the
data that fall on an imaginary curve
dropping downward for each specified
time and the data depicting the peaks of
the zigzag portions, the remaining data
can be represented by the solid curve. The
data dropping downward represent data
close to the center of a specimen, where
D, being coupled with ∂C/∂ X in Equation
(1), can take any finite value without
affecting the final results. For the zigzag
portions, a peak and an adjacent valley are
separated by 1 mm in space in Figure 5; Figure 6. Variations of diffusion coefficient with moisture

we have selected the valleys, which stay content at various time points.

closer to the other data points, to obtain
the solid curve in Figure 6.
The solid curve therefore defines the approximate relationship between the diffusion coefficient and the
moisture content for all cases. Note that the solid curve can be obtained from the data at one small
specified time only, if the data were very accurate. Also note that at large times, the data tend to be
sporadic and are unreliable. Therefore, in applying the inverse method, it is more important to have a
small amount of reliable data collected at small times than a large amount of unreliable data collected at
large times. In the ideal situation, the numerical approach should yield the results in Figure 7, where the
solid line is the solution curve and the broken lines are to be replaced by their vertical projections on the
solid line.
Figure 6 also contains a point for each specified time based on Equation (4). These points correspond to a
surface emission coefficient of S = 0.6 mm/h. While Equation (4) may be controversial physically (Salin
1996, Hukka 1999), it does match the numerical results of the study reported here very closely.
Figure 8 compares the solution curve with the curve by Simpson (1993). Except for small values of
moisture content, the two curves follow each other very closely. Note that in the calculations by Simpson
(1993), the surface moisture content was assumed to be equal to the equilibrium moisture content Cc at all
times; that is, S was assumed to be infinity in Equation (4).
In the present study, we used the inverse method following Chen et al. (1996) and Yeung and Lam (1996),
who demonstrated the accuracy of their numerical procedures in determining the thermal conductivity in
heat conduction problems, to solve our moisture diffusion problem. The test data of moisture desorption in
wood by Simpson (1993), which are more comprehensive than any available to us in the literature, have
been used in the analysis. The time derivative in the diffusion equation can only be approximated and may



Figure 7. Ideal variations of diffusion coefficient with Figure 8. Comparison of diffusion coefficient variation
moisture content at various time points (t1 < t2. . . <tn). with moisture content.

contain some uncertainties. We tried to use the Laplace transform with respect to time t in Equation (12)
to solve the problem (Chen et al. 1996), but it proved to be too time-consuming. Since our existing test
data were not tailored for the numerical technique in both material selection and data collection, we
decided to follow the relatively simple approach with the purpose of elucidating the merits of the inverse
method. To that end, we have achieved reasonable success. The technique demonstrated should provide a
powerful tool in our efforts to study the problem of moisture diffusion in wood.

CONCLUSIONS

A finite difference procedure was applied for the inverse determination of the diffusion coefficient for
moisture diffusion in wood.
The procedure has the following advantages:

1. The functional form of the diffusion coefficient is not known a priori
2. The boundary condition need not be specified.
3. Only a small amount of accurate data collected within a short period of time is needed.

The disadvantages are:
1. Log selection and specimen preparation require relatively high accuracy; e.g., interference of ring

curvature must not be excessive, and direction of moisture movement must be well defined.
2. Data collection technique must be sophisticated so that time derivative of moisture content at a

specified time and space can be correctly estimated.
Results indicate that for northern red oak, the diffusion coefficient is a function of moisture content only.
It increases dramatically at low moisture content and tends to level off as the fiber saturation point is
approached. Also, the boundary condition defined in Equation (4) seems to match the results very well.

NOTATION

a
A

half specimen thickness m m t time h
matrix X space mm

b vector
C moisture content %
d vector Subscripts
D diffusion coefficient mm2/h e equilibrium
S surface emission coefficient mm/h 0 initial, surface
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