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ABSTRACT 

The finite difference approximation is applied to estimate the 
moisture-dependent diffusion coefficient by utilizing test data 
of isothermal moisture desorption in northern red oak 
(Quercus rubra). The test data contain moisture distributions 
at discrete locations across the thickness of specimens, which 
coincides with the radial direction of northern red oak, and at 
specified times. Also, the rate of moisture variation at each 
specified time and location must be known or correctly esti
mated. The functional form of the diffusion coefficient as well 
as the boundary conditions at the surfaces are not known 
a priori. The resulting system of finite difference equations 
defines an inverse problem, whose solution may be sensitive 
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to small changes of input data. Results indicate that the diffu
sion coefficient increases with increasing moisture content 
below the fiber saturation point, which defines the upper 
limit applied by the diffusion theory. 
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INTRODUCTION 

This paper presents the inverse determination of the diffusion coef
ficient in the one-dimensional non-steady-state diffusion equation based on 
desorption test data of moisture variations in northern red oak (Quercus 
rubra) specimens (Simpson 1993). The test data moisture distribu
tions at discrete locations across the thickness of specimens, which coincides 
with the radial direction of northern red oak, and at specified times. To 
reduce the effects of data scatter, the test data were simulated by math
ematical modeling. The simulated data represent the test data very close 
and were analyzed using the finite differences technique. Results indicate that 
the diffusion coefficient increases with increasing moisture content below the 
fiber saturation point. The diffusion coefficient increases dramatically when 
moisture content is low and tends to level off as moisture content 
approaches the fiber saturation point (see Figure 6). 

In solving the diffusion equation for moisture variations in wood, some 
authors have assumed that the diffusion coefficient depends strongly on 
moisture content (e.g., Hougen et al. 1940, Meroney 1969, Simpson 1993, 
Skaar 1954, Van Arsdel 1947), while others have taken the diffusion coeffi
cient as constant (e.g., Avramidis and Siau 1987, Choong and Skaar 1972,
Droin et al. 1988, Mounji et al. 1991, Soderström and Salin 1993). Also, 
different boundary conditions have been assumed by different authors (e.g., 
Crank 1975, Plumb et al. 1985, Salin 1996, Hukka 1999). No one has ever 
attempted to use the inverse method to verify assumptions. In using the 
inverse method, the governing partial differential equation is converted into 
a system of linear equations based on test data; the boundary conditions need 
not be specified in the formulation. In the system of linear equations, the 
unknowns are the values Of the diffusion coefficient corresponding to different 
moisture content values, locations, and times, which can be easily obtained. 
The advantage of this approach, is that no prior information or assumption 
required on either the functional form of the diffusion coefficient or the exact 
mechanism of surface evaporation in diffusion. Once the diffusion coefficient 
values have been determined, the corresponding boundary condition can be 
evaluated. 
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The inverse method has been used successfully to the 
thermal conductivity in heat conduction problems (Chen et al.. 1996; 
Yeung and Lam 1996). Since the governing equations for heat conduction 
and moisture diffusion are the same, it is only natural to use the same pro
cedure to investigate the diffusion coefficient in a moisture sorption or des
option process of wood. The only condition for such an application is that 
moisture variations with time and space in wood be known over the entire 
domain of interest; for northern red oak, these moisture values are available 
in the work of Simpson (1993). 

The inverse solutions are known to be sensitive to changes in input data 
resulting from measurement and modeling errors. Hence, they may not be 
unique. Mathematically, the inverse problems belong to the class of 
ill-posed or ill-conditioned problems; that is, their solutions do not satisfy 
the general requirements of existence, uniqueness, and stability under small
changes to the input data (Özisik 1993). In the present study, the time deri
vative of the diffusion equation must be approximated with special care as the 
time intervals for data collection were relatively large, making it difficult for 
precise time derivative estimation. However, in spite of the uncertainties, our 
results have demonstrated the special merits of the solution procedure. 

ONE-DIMENSIONAL ISOTHERMAL 
DIFFUSION EQUATIONS 

In a one-dimemional formulation with moisture moving in the direc
tion normal to a specimen of a slice of wood of thickness 2a, the diffusion 
equation can he written as 

(1) 

where C is moisture content, t is time, D is diffusion coefficient, and X is 
space coordinate measured from the center of the specimen. 

Let the initial condition be 

(2) 
where C0 is a constant moisture content in the specimen, and let the bound
ary conditions be 

(3) 

(4) 
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where S is surface emission coefficient and Ce is equilibrium moisture con-
tent corresponding to the vapor pressure in the environment remote from 
the surface of the specimen. 

The purpose of this study is to determine the diffusion coefficient 
D(X,t) at any point within the domain of 0 < X < a and t > 0 with the 
assumption that C(X, t) is known at discrete points, as described in 
the next section. Note that Equation (4) is listed for reference only. It is 
not needed in solving for D(X, t) in the present work. 

INVERSE DETERMINATION OF 
DIFFUSION COEFFICIENT 

First, we present a finite difference procedure for calculating the diffu
sion coefficient at discrete grid points. Then, we give the computational 
algorithm for determining the diffusion coefficient values corresponding to 
different times and positions. 

Finite Difference Formulation 

Let half of specimen thickness (a) be discretized with mesh width (D X ) 
in space (Figure 1b) and Dt in the time direction with grid points 
Xj = j • DX (where j = 0,1,...,n) and ti = i • Dt (where = 0,1,2,...). The 
present procedure will assume that C(X,t) are known at grid points (Xj, ti). 
Equation (1) can then be discretized as follows: 
a. At the surface grid point with j = 0 and i > 0, applying the forward 
difference to the time derivative of Equation (1) yields 

and applying the forward difference to the space derivative yields 

(5) 

(6) 
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Equating Equations (5) and (6) gives 

(7) 

We avoided using Equation (4) by applying forward difference to the 
space derivative in Equation (6). 
b. At an internal grid point 0 < j < n and i > 0, 

(8) 

and 

(9) 
Equating Equations (8) and (9) yields 

(10) 

and j = n in Equation (10) to obtain 
c. At the center grid point with j = n and i > 0, due to symmetry we can set 

(11) 

Computational Algorithm 
- -Suppose C(X, t) and C(X, t , + Dt) are known at evenly spaced grid

points where t is specified time and Dt is time increment, and we are inter
ested in finding the diffusion coefficient values at the grid points. From 
Equations (7), (10) and (11), we can derive the following system of linear 
equations: 

Ad=b (12) 
where A is an (n + 1) × (n + 1) matrix and d and b are (n + 1) vectors. The
solution is 

d=A- 1 b (13) 
where A-1 is inverse of A. Equation (12) defines a relatively simple 
inverse problem (Hensel 1991). A, d, and b are subscripted from 0 to n as 
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shown below: 

The elements of d are the unknown diffusion coefficient values at the grid 
points, and the element of A and b are expressed as follows: 

-
a. At the surface grid point with X = X0 and t = t , 

-b. At an internal grid point with X = Xj (0 < j < n) and t = t , 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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-c. At the center grid point with X = Xn and t = t 

(22) 

(23) 

This system consists of a tridiagonal system of linear algebraic equations. 
The solution vector d is the diffusion coefficient vector. A FORTRAN sub-
routine based on the Thomas algorithm can found in Özisik (1993) for 
solving a tridiagonal system of equations. 

The system of linear equations (Eq. 12) is different from the original 
partial differential equation (Eq. 1) because of the finite difference approx
imation. Also, as described in Hensel (1991), a small change in vector b may 
result in large changes in the solution vector d, depending on the degree of 
the "ill-conditioning" property of matrix. A. Therefore, the importance o 
accurate data generation cannot be overemphasized in applying the inverse 
technique. 

NUMERICAL RESULTS AND DISCUSSION 

Desorption test data for northern red oak by Simpson [1] can be 
conveniently used for numerical analysis. The set of data selected for this 
study has the following specifications: (1) specimen thickness, 2a, 25 mm, (2) 
initial moisture content, C0, 35.9%, (3) equilibrium moisture content Ce , 
5.5% (corresponding relative humidity, 33%), and (4) test temperature,
43.4°C. Specimens were taken from flat-saw boards as right parallelepipeds 
and coated on four sides with two coats of heavily pigmented aluminum 
paint so that moisture could move only through the thickness, which coin
cides nominally with the radical direction (Figure 1a). This configuration 
chosen because the log was not large enough to ignore growth ring curva
ture through the thickness of the specimen. Also, the standard deviation of 
the test temperature was 0.3°C and that of the relative humidity, 0.7%. 
Moisture content is the quantity of moisture in wood expressed as a percen
tage of ovendry weight. 

The test data were fitted by a curve as shown in Figure 2, which 
presents the variation of moisture content with space at t = 216.6 h. Some 
curve-fitted data used in the study shown Figure 3. 

Variations of moisture content with time at different positions are 
presented in Figure 4. Note that these curves were plotted with limited 
data in the time axis. In estimating the elements in vector b for a small 
value of Dt, these curves need to be approximated mathematically on a 
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Figure 1. Test specimen and discretization of space co-ordinate. (a) Specimen with
thickness in radial direction; (b) discretization of space coordinate with mesh width. 

Figure 2. Moisture content as a function of space by curve fitting. 

sectional basis because data extrapolation rather than interpolation may 
become necessary for large time intervals. 

Figure 5 presents data of variations of diffusion coefficient as a func
tion of space at different times. In the calculations, we set DX = 1 mm and 
Dt = 0.1 to 0.3 h. The difference resulting from a different selection of At 
was found to be negligible. For t > 122h, the data tended to move in a. 
zigzag pattern in the central portion of the figure. This was also observed 
by Yeung and Lam (1996) in on of their examples, without an explanation 
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Figure 3. Moisture content as a function of space at various time points. 

Figure 1. Moisture content as a function of time at various positions (mm). 

Since their examples were problems with known analytical solutions, the 
observed pattern could not be due to experimental uncertainty. As pointed 
out previously in this paper, Equation (12) is ill-conditioned and the solu
tion vector d depends on the ill-conditioning property of matrix A; there-
fore, we suspect the zigzag pattern in Figure 5 could reflect this property of 
matrix A (Hensel 1991). Close to the center of a specimen where the mois
ture gradient tends to approach zero, the diffusion coefficient drops to a 
small value in all area. 

Variation in diffusion coefficient with moisture content at different 
times is displayed in Figure 6. If we ignore the data that fall on an imaginary 
curve dropping downward for each specified time and the data depicting the 
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Figure 5. Variations of diffusion coefficient with space at various time points. 

Figure 6. Variations of diffusion coefficient with moisture content at various time
points. 

peaks of the zigzag portions, the remaining data can be represented by the 
solid curve. The data dropping downward present data close to the center

of a specimen, where D, being coupled with ¶C /¶ X in Equation (1), can take
any finite value without affecting the final results. For the zigzag portions, a 

peak and adjacent valley are separated by 1 mm in space in Figure 5; we 
have selected the valleys, which stay closer to the other data points, to
obtain the solid curve in Figure 6.

The solid curve therefore defines the approximate relationship between 
the diffusion coefficient and the moisture content for all cases. Note that the 
solid curve can be obtained from the data at one small specified time only, if
the data were very accurate. Also note the that at large times, the data tend to be 
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sporadic and are unreliable. Therefore, in applying the inverse method, it is 
more important to have a small amount of reliable data collected at small
times than a large amount of unreliable data collected at large times. In the 
ideal situation, the numerical approach should yield the results in Figure 7, 
where the solid line is the solution curve and the broken lines are to be 
replaced by their vertical projections on the solid line. 

Figure 6, also contains a point for each specified time based on 
Equation (4). These points correspond to a surface emission coefficient of 
S = 0.6 mm/h. While Equation (4) may be controversial physically (Salin 
1996, Hukka 1999), it does match the numerical results of the study reported 
here very closely. 

Figure 8 compares the solution we with the curve by Simpson 
(1993). Except for small values of moisture content, the two curves follow 

Figure 7. Ideal variations of diffusion coefficient with moisture content at various 
time points (t1 < t2 ... < tn ). 

Figure 8. Comparison of diffusion coefficient variation with moisture content. 
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each other very closely. Note that in the calculations by Simpson (1993), 
the surface moisture content was assumed to be equal to the equilibrium 
moisture content Ce at all times; that is, S was assumed to be infinity in 
Equation (4). 

In the present, we used the inverse method following Chen et al., 
(1996) and Yeung and Lam (1996), who demonstrated the accuracy of their 
numerical in determining the thermal conductivity in heat con
duction problems, to solve our moisture diffusion problems. The test data of 
moisture desorption in wood by Simpson (1993), which are more compre
hensive than any available to us in the literature, have been used in the 
analysis. The time derivative in the diffusion equation can only be approxi
mated and may contain some uncertainties. We tried to use the Laplace
transform with respect to time t in Equation (12) to solve the problem 
(Chen et al., 1996), but it proved to be too time-consuming. Since our 
existing test data were not tailored for the numerical technique in both 
material selection and data collection, we decided to follow the relatively 
simple approach with the purpose of elucidating the merits of the inverse 
method. To that end, we have achieved seasonable success. The technique 
demonstrated should provide a powerful tool in our efforts to study the 
problem of moisture diffusion in wood. 

CONCLUSIONS 

A finite difference procedure was applied for the inverse determination 
of the diffusion coefficient for moisture diffusion in wood. 
The procedure has the following advantages: 

1. The functional form of the diffusion coefficient is not known 
a priori 

2. The boundary condition need not be specified. 
3.	 Only a small amount of accurate data collected within a short 

period of time is needed 

The disadvantages are: 

1. Log selection and specimen preparation require relatively high 
accuracy; e.g., interference of ring curvature must not be excessive, 
and direction of moisture movement most be well defined. 

2.	 Data collection technique must be sophisticated so that time deri
vative of moisture content at a specified time and space can be 
correctly estimated. 
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Results indicate that for northern red oak, the diffusion coefficient is a 
function of moisture content only. It increases dramatically at low moisture 
content and tends to level off as the fiber saturation point is approached. 
Also, the boundary condition defined in Equation (4) seems to match the 
results very well. 

a 
A 
b 
C 
d 
D 
S 
t 
X 

Subscripts 

e 
0 

NOTATION 

Half specimen thickness

Matrix

Vector

Moisture content

Vector

Diffusion coefficient

Surface emission coefficient

Time

Space


Equilibrium

Initial, surface
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