
There is increasing evidence that particulate
pollutants induce inflammatory responses in
the cardiorespiratory system (Nel et al. 1998;
Nightingale et al. 2000; Saldiva et al. 2002).
These proinflammatory effects have been
linked to the ability of particulate matter (PM),
such as diesel exhaust particles (DEPs), to gen-
erate reactive oxygen species (ROSs) and oxida-
tive stress in macrophages, bronchial epithelial
cells, and lung microsomes (Gurgueira et al.
2002; Hiura et al. 1999; Kumagai et al. 1997;
Nel et al. 2001). The pro-oxidative effects of
the intact particles can be mimicked by
organic chemical components extracted from
these particles (Hiura et al. 1999; Kumagai
et al. 1997; Li et al. 2002). The PM-induced
oxidative stress response is a hierarchical event,
which is characterized by the induction of
antioxidant and cytoprotective responses at
lower tiers of oxidative stress and by pro-
inflammatory and cytotoxic responses at
higher levels of oxidative stress (Li et al. 2002;
Xiao et al. 2003).

Mitochondrial damage is a key event in
PM-induced cytotoxicity (Hiura et al. 1999,
2000). The initial response to PM is a
decrease in mitochondrial membrane poten-
tial (∆Ψm) and increased O2

·– production,
followed by cytochrome c release and inner

mitochondrial membrane damage (Hiura
et al. 1999, 2000; Upadhyay et al. 2003). It is
also of interest that the smallest and poten-
tially most toxic ambient particles, ultrafine
particles (UFPs), lodge inside damaged mito-
chondria (Li et al. 2003). UFPs have a physi-
cal diameter < 0.1 µm, which allows them to
penetrate deep into the lung as well as into
systemic circulation (Nemmar et al. 2002).
Although it is still a matter of debate whether
UFPs target the mitochondrion directly or
enter the organelle secondary to oxidative
damage (Li et al. 2003), PM-induced mito-
chondrial perturbation has important biologic
effects, which include the initiation of apopto-
sis and decreased ATP production (Hiura
et al. 2000). Although the particles themselves
may play a role in mitochondrial damage, it
has been demonstrated that the organic chem-
icals adsorbed on the particle surface mimic
the effects of the intact particles (Hiura et al.
1999). These effects can also be reproduced
by functionalized aromatic and polar chemical
groups fractionated from DEPs by silica gel
chromatography (Alsberg et al. 1985; Li et al.
2000). These compounds are toxicologically
relevant because the aromatic fraction is
enriched in polycyclic aromatic hydrocarbons
(PAHs), whereas the polar fraction contains

several oxy-PAH compounds, including
quinones (Alsberg et al. 1985; Li et al. 2000).
Quinones are able to redox cycle and to pro-
duce ROSs, whereas PAHs can be converted
to quinones by cytochrome P450, epoxide
hydrolase, and dihydrodiol dehydrogenase
(Penning et al. 1999).

A key mitochondrial target for oxidizing
chemicals is the permeability transition pore
(PTP) (Jajte 1997; Susin et al. 1998; Zoratti
and Szabo 1995). This calcium (Ca2+)-, volt-
age-, and pH-sensitive pore is permeant to
molecules of < 1.5 kDa and opens in the
mitochondrial inner membrane when matrix
Ca2+ levels are increased, especially when
accompanied by oxidative stress (Bernardi
1999; Kushnareva and Sokolove 2000; Zoratti
and Szabo 1995). PTP opening causes massive
in vitro mitochondrial swelling, outer mem-
brane rupture, and release of proapoptotic fac-
tors such as cytochrome c (Susin et al. 1998).
In addition, mitochondria become depolar-
ized, causing inhibition of oxidative phospho-
rylation and stimulation of ATP hydrolysis.
PTP opening is inhibited by cyclosporin A
(CsA), which inhibits the peptidyl-prolyl
cis-trans isomerase activity of cyclophilin D
(Bernardi 1999). This has led to the proposal
that PTP transition is mediated by a Ca2+-
triggered conformational change of inner
membrane proteins (Woodfield et al. 1998).
However, although this model may explain
the action of some PTP modulators, PTP
open–close transitions are also regulated by
physiologic factors, drugs, and chemicals (Jajte
1997; Kushnareva and Sokolove 2000).
Walter et al. (2000) characterized endogenous
ubiquinones that stimulate or inhibit pore
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Particulate pollutants cause adverse health effects through the generation of oxidative stress. A key
question is whether these effects are mediated by the particles or their chemical compounds. In
this article we show that aliphatic, aromatic, and polar organic compounds, fractionated from
diesel exhaust particles (DEPs), exert differential toxic effects in RAW 264.7 cells. Cellular analy-
ses showed that the quinone-enriched polar fraction was more potent than the polycyclic aromatic
hydrocarbon (PAH)–enriched aromatic fraction in O2

·– generation, decrease of membrane poten-
tial (∆Ψm), loss of mitochondrial membrane mass, and induction of apoptosis. A major effect of
the polar fraction was to promote cyclosporin A (CsA)–sensitive permeability transition pore
(PTP) opening in isolated liver mitochondria. This opening effect is dependent on a direct effect
on the PTP at low doses as well as on an effect on ∆Ψm at high doses in calcium (Ca2+)-loaded
mitochondria. The direct PTP effect was mimicked by redox-cycling DEP quinones. Although the
aliphatic fraction failed to perturb mitochondrial function, the aromatic fraction increased the
Ca2+ retention capacity at low doses and induced mitochondrial swelling and a decrease in ∆Ψm
at high doses. This swelling effect was mostly CsA insensitive and could be reproduced by a mix-
ture of PAHs present in DEPs. These chemical effects on isolated mitochondria could be repro-
duced by intact DEPs as well as ambient ultrafine particles (UFPs). In contrast, commercial
polystyrene nanoparticles failed to exert mitochondrial effects. These results suggest that DEP and
UFP effects on the PTP and ∆Ψm are mediated by adsorbed chemicals rather than the particles
themselves. Key words: apoptosis, DEPs, diesel exhaust particles, PAHs, permeability transition
pore, polycyclic aromatic hydrocarbons, quinones, ultrafine particles. Environ Health Perspect
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function by means of a putative quinone
binding site in the PTP.

The goal of our study was to clarify how
redox-cycling DEP chemicals affect mitochon-
drial function, as well as to compare ambient
UFPs with commercial nanoparticle effects on
mitochondria. Aromatic, polar, and aliphatic
chemical fractions, prepared by silica gel chro-
matography, were used to study CsA-sensitive
mitochondrial swelling (PTP opening), ∆Ψm,
Ca2+ loading capacity, and mitochondrial res-
piration. We also compared isolated mito-
chondrial responses with perturbation of
mitochondrial function in intact RAW 264.7
cells. Our data show that mitochondrial per-
turbation and induction of apoptosis by polar
DEP chemicals involve CsA-sensitive PTP
opening that can be mimicked by representa-
tive redox-cycling quinones present in DEPs.
In contrast, the aromatic chemical fraction
induced mostly CsA-insensitive mitochondrial
swelling, which can be mimicked by a mixture
of PAHs. Ambient UFPs induced a combina-
tion of aromatic and polar effects, whereas
polystyrene nanoparticles were inactive.

Materials and Methods

Reagents. Tetramethylrhodamine methyl ester
(TMRM), propidium iodide (PI), sucrose,
HEPES buffer salts, EGTA, ascorbic acid,
succinate, malate, glutamate, carbonyl
cyanide m-chlorophenylhydrazone (CCCP),
alamethacin (Ala), and tetraphenylphospho-
nium chloride were from Sigma (St. Louis,
MO). The annexin V–fluorescein isothio-
cyanate (FITC) kit was obtained from
Trevigen (Gaithersburg, MD). 3,3´-Dihexyl-
oxabarbocyanine iodide (DiOC6), 10
N-nonylacridine orange (NAO), Calcium
Green-5N, and hydroethidine (HE) were
obtained from Molecular Probes (Eugene,
OR). The PAH working standard (no. 8310)
was purchased from Cerilliant Corporation
(Round Rock, TX). All organic solvents used
were of Fisher optima grade (Fisher Scientific,
Hampton, NH), and the solid chemicals were
of analytical reagent grade.

Preparation of crude DEP extracts. DEPs
were obtained from M. Sagai (National
Institute of Environment Studies, Tsukuba,
Ibaraki, Japan). These particles were collected
from a 4JB1-type light-duty, 2.74-L, four-
cylinder Isuzu diesel engine (Isuzu Automobile
Co., Tokyo, Japan) under a load of 6 kilogram
meter onto a cyclone impactor (Kumagai et al.
1997). The particles were scraped from the
glass fiber filters and stored as a powder under
nitrogen gas. The particles consist of aggregates
in which individual particles are < 1 µm in
diameter. The chemical composition of these
particles, including PAH and quinone analysis,
has been previously described (Li et al. 2000).
DEP methanol extracts were prepared by sus-
pending 100 mg particles in 25 mL methanol,

followed by sonication and centrifuging the
suspension at 2,000 rpm for 10 min at 4°C
(Hiura et al. 1999). The supernatant was
transferred to a preweighed polypropylene
tube and dried under nitrogen gas. The tube
was reweighed to determine the methanol-
extractable phase. The dried extract was dis-
solved in DMSO, and aliquots stored at
–80°C in the dark.

DEP fractionation by silica gel chroma-
tography. DEPs (1.2 g) were sonicated in
200 mL methylene chloride, and the extract
was filtered with a 0.45-µm nylon filter in a
Millipore filtration system (Li et al. 2000). The
methylene chloride extract was concentrated by
rotoevaporation, and asphaltenes (insoluble,
aromatic chemicals with nitrogen, oxygen, and
sulfur heteroatoms) were precipitated by
adding 25 mL hexane and shaking. The con-
tents were left overnight in the freezer and then
centrifuged, and the supernatant was collected.
The precipitate was washed twice with hexane,
and the washings were combined with the first
hexane extract, concentrated, and dried over
anhydrous sodium sulfate. The extract thus
prepared was subjected to gravity-fed silica gel
column chromatography. Three columns
(1.5 × 50 cm) were packed with 26 g activated
silica gel between 1 cm anhydrous sodium sul-
fate and conditioned with hexane. The extract
was split into three equal aliquots and applied
to each column. Aliphatic, aromatic, and
polar fractions were successively eluted at
1.5 mL/min with 70 mL hexane, 150 mL
hexane:methylene chloride (3:2, vol/vol), and
90 mL methylene chloride:methanol (1:1,
vol/vol), respectively. The elution of the aro-
matic fraction was monitored by ultraviolet
light at 365 nm. The respective eluates were
combined and concentrated by rotoevapora-
tion and made up to 1 mL in a 4-mL gradu-
ated vial, the aliphatic fraction in hexane and
the others in methylene chloride. The vials
were tightly sealed with a silicone-lined cap
and stored at –80°C until use. The weight of
the fractions was determined in a microbalance
after evaporating off the hexane or methylene
chloride from a known sample volume.
Alkanes in the aliphatic fraction were charac-
terized by gas chromatography (Varian 3400
with an SPI injector; Varian Inc., Palo Alto,
CA) equipped with a flame ionization detector
and a DB-5 column (30 m, 0.25 mm inner
diameter, 0.25 µm film). The fractions were
dried with N2 gas and redissolved in DMSO
for in vitro biologic studies.

PAH and quinone analyses. PAH content
in each fraction was determined by an HPLC-
fluorescence method that detects a signature
group of 16 PAHs (Li et al. 2003). Quinone
content was analyzed as described by Cho et al.
(2004). Briefly, quinones in the samples were
derivatized and evaporated to approximately
50 µL under nitrogen; then, 100 mg zinc,

anhydrous tetrahydrofuran, and 200 µL acetic
anhydride were added to samples. After heat-
ing at 80°C for 15 min, samples were cooled to
room temperature and an additional 100 mg
zinc was added, followed by an additional
15 min of heating. The reaction was quenched
with 0.5 mL water and 2 mL pentane. After
centrifugation at 750 × g for 10 min, the pen-
tane layer was evaporated to dry and the
residue was reconstituted in 50–100 µL dry
acetonitrile. 1,2-Naphthoquinone (NQ),
1,4-NQ, phenanthraquinone (PQ), and
anthraquinone (AQ) were analyzed by the
electron-impact gas chromatography/mass
spectrometry technique using an HP MSD
mass spectrometer (Hewlitt Packard, Palo
Alto, CA) equipped with an automatic sam-
pler (Cho et al. 2004).

Cell culture and stimulation. RAW 264.7
cells were cultured in a 5% carbon dioxide in
Dulbecco modified Eagle medium (DMEM)
containing 10% fetal calf serum, 5,000 U/mL
penicillin, 500 µg/mL streptomycin, and
2 mM L-glutamine. For exposure to DEP
extracts and its fractions, aliquots of 3 × 106

cells were cultured in six-well plates in 3 mL
medium at 37°C for the indicated time
periods.

Cellular staining with fluorescent probes
and flow cytometry. Cells were stained with
fluorescent dyes diluted in DMEM, except for
annexin V and PI, which were prepared in a
commercial binding buffer (Trevigen). The
following dye combinations were added for
15–30 min at 37°C in the dark: a) 0.25 µg/mL
annexin V plus 47.5 µg/mL PI in 500 µL bind-
ing buffer (assessment of apoptosis); b) 20 nM
DiOC6 plus 2 µM HE (assessment of ∆Ψm
and mostly O2

·– production, respectively);
c) 100 nM NAO plus 2 µM HE (to assess
cardiolipin mass and O2

·– production, respec-
tively). Flow cytometry was performed using a
FACScan (Becton Dickinson, Mountain View,
CA) equipped with a single 488-nm argon
laser. DiOC6, NAO, and annexin V-FITC
were analyzed using excitation and emission set-
tings of 488 nm and 535 nm (Fl-1 channel);
PI, 488 nm and 575 nm (Fl-2 channel); and
HE, 518 nm and 605 nm (Fl-3 channel).
Forward and side scatter were used to gate out
cellular fragments.

Preparation of mouse liver mitochondria
and experimental conditions. We removed
livers from Balb/c mice and isolated mito-
chondria by a standard differential centrifu-
gation procedure as previously described
(Xia et al. 2002). Briefly, liver tissue was
homogenized with four strokes of a Teflon
pestle in buffer A (250 mM sucrose, 1 mM
EGTA, and 5 mM HEPES, pH 7.4) on ice.
After centrifugation at 1,000 × g for 10 min
at 4°C, the supernatant was removed and
recentrifuged at 10,000 × g for 10 min. The
pellet was sequentially washed with buffer A
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and buffer B (buffer A without EGTA). The
pellet was resuspended in buffer B and used
within 5 hr after isolation. Mitochondrial
protein content was determined by the
Bradford method (Xia et al. 2002).

Most of the isolated mitochondrial experi-
ments were conducted in a fiberoptic spectro-
fluorimeter (Ocean Optics, Dunedin, FL),
which uses a closed, continuously stirred
cuvette at room temperature (Korge et al.
2002). Mitochondria were added to the cuvette
at 0.1 mg/mL in a standard buffer containing
250 mM sucrose and 5 mM HEPES, pH 7.4.
Substrates, Ca2+, PI, inhibitors, and fluorescent
indicators were added at the indicated concen-
trations as shown for each experiment.

Mitochondrial swelling assay. Mitochondria
(0.1 mg/mL) were incubated in swelling buffer
containing 250 mM sucrose, 5 mM HEPES
(pH 7.4), 2 µM rotenone, 1 mM PI, and
4.2 mM succinate at room temperature.
Mitochondria were then exposed to different
chemicals.

Changes in mitochondrial volume were
estimated by measuring 90° light scatter with
excitation and emission wavelengths set at
520 nm (Walter et al. 2000). Changes in
matrix volume were reported as a percentage
of maximum (100%) swelling induced by
10 µg Ala at the end of each run.

Measurement of ∆Ψm. TMRM was
included at 400 nM, and ∆Ψm was estimated
at a wavelength of 570 nm (Korge et al. 2002).
Decrease in ∆Ψm was expressed as percentage
decrease in TMRM fluorescence compared
with the effect of 1 µM CCCP (100%) in fully
energized mitochondria. Light scattering was
recorded simultaneously with TMRM fluores-
cence. In some experiments, ∆Ψm was esti-
mated using an ion-selective electrode to
measure tetraphenylphosphonium ion (TPP+)
distribution with a Flex-Ref electrode and Duo
18 recording system (World Precision
Instruments, Sarasota, FL). TPP+ was added to
a final concentration of 3 µM, and the mito-
chondria were energized by adding succinate at
4.2 mM.

Calcium Green-5N assay to assess mito-
chondrial Ca2+ retention capacity. Changes
in extramitochondrial Ca2+ concentration
were followed by measuring Calcium
Green-5N (1 µM, salt form) fluorescence at
excitation and emission wavelengths of
475 and 530 nm, respectively. Individual
Ca2+ additions were calibrated by adding

known quantities of Ca2+ to the buffer in the
presence of mitochondria and CCCP to
block Ca2+ uptake. Addition of chemical
materials did not exhibit autofluorescence in
our spectrofluorimetry assays.

Assessment of mitochondrial respiration.
Mitochondrial respiration was carried out in
the fiberoptic spectrofluorimeter in the pres-
ence of different substrates: succinate, 4.2 mM
(complex II); malate/pyruvate/glutamate,
5 mM each (complex I); tetramethyl-p-
phenylenediamine (TMPD) and ascorbate,
0.2 mM and 2.5 mM, respectively (complex
IV) (Korge et al. 2002). The addition of 2 µM
CCCP was used as an inducer of maximal res-
piration. The partial pressure of O2 in the
buffer was continuously recorded by a fiber-
optic oxygen sensor (Foxy Al-300; Ocean
Optics, Dunedin, FL).

Collection of UFPs and assessment of their
chemical composition. UFPs were collected
using the Versatile Aerosol Concentration
Enrichment System (VACES) in Downey,
California, as previously described by Li et al.
(2003). Highly concentrated liquid particle
suspensions were obtained by connecting the
concentrated output flow from the VACES to
a liquid impinger (BioSampler; SKC West
Inc., Fullerton, CA). Particles were injected
into the BioSampler in a swirling flow pattern
so that they could be collected in a small vol-
ume of water by a combination of inertial and
centrifugal forces.

For chemical analysis, we collected two ref-
erence filter samples in parallel with the
VACES. The first sample was collected on a
Teflon filter (47 mm, polytetrafluoroethylene,
2 µm pore; Gelman Science, Ann Arbor, MI).
Mass concentrations were determined by
weighing the Teflon filter before and after each
field test in a Mettler 5 Microbalance (Mettler-
Toledo Inc., Highstown, NJ). Laboratory and
field blanks were used for quality assurance.
The Teflon filters were then analyzed by X-ray
fluorescence for measurement of trace-element
and metal concentrations. The second collec-
tion was done on two 47-mm quartz filters
(Pallflex Corp., Putnam, CT). These filters
were used for measurement of inorganic ions
as well as for determining PAH, elemental car-
bon (EC), and organic carbon (OC) concen-
trations. A slice of approximately 0.2 cm2

from each filter was placed in a platinum boat
containing manganese dioxide. The sample
was acidified with an aliquot of HCl and

heated to 115°C to form CO2 as an index of
particle-associated carbon. The boat was then
inserted into a dual-zone furnace, where
MnO2 oxidized OC at 550°C and EC at
850°C. A flame ionization detector converted
the CO2 combustion product to CH4 for
detection. The remaining filter was divided in
two equal parts: one half was analyzed by
means of ion chromatography to determine
the concentrations of particulate sulfate and
nitrate; the other half was analyzed by a
HPLC-fluorescence method for detection of a
group of signature PAHs as previously
described (Li et al. 2003).

Statistics. The experiments were repro-
duced four times, except where otherwise
stated. Results were analyzed by Student’s
t-test, and changes were considered significant
at p < 0.05.

Results

Differential toxicity and mitochondrial effects
exerted by aliphatic, aromatic, and polar DEP
fractions. Previous data from our laboratory
showed that crude organic DEP extracts mimic
the effects of intact particles in ROS produc-
tion and cytotoxicity (Hiura et al. 1999).
Mitochondria play a key role in DEP-induced
toxicity, as shown by an early decrease in
∆Ψm, loss of inner membrane mass, caspase 9
activation, and onset of apoptosis (Hiura et al.
2000). To clarify which organic chemicals
play a role in this cytotoxicity, the crude
extract was fractionated by silica gel chro-
matography, as previously described (Li et al.
2000). Elution with increasingly polar solvents
resulted in the recovery of aliphatic, aromatic,
and polar fractions in the amounts shown in
Table 1. Although the aromatic fraction was
enriched for PAHs (Table 2), the polar frac-
tion was devoid of this chemical group but
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Table 1. Recovery of each fraction from 1.2 g DEPs.

Fraction Elution solvent Solvent Amount (mg) Recovery (%)a

Aliphatic Hexane Hexane 281.4 23.5
Aromatic Hexane:MC (3:2)b MC 125.6 10.5
Polar MC:methanol (1:1)b MC 119.8 10.0
Total 526.8 44.0

MC, methylene chloride.
aFrom 1.2 g DEPs, 347.6 mg asphaltene was recovered; this represents 29% recovery. bVol:vol.

Table 2. PAH content in each DEP fraction (ng/1.2 g
DEPs).

Crude
PAH extract Aliphatic Aromatic Polar

NAP 10,149 25.5 4,420 0
ACE 7,470 0 513 0
FLU 17,483 0 7,461 0
PHE 179,714 17.2 133,069 0
ANT 2,759 0 1,133 145
FLT 77,278 0 54,122 1,266
PYR 60,425 0 28,024 59.6
BAA 10,349 0 7,392 0
CRY 18,026 0 9,237 0
BBF 5,510 0 2,053 0
BKF 2,275 0.33 391 0
BAP 1,777 0.51 30.2 0
DBA 1,841 0.69 106 0
BGP 2,104 1.32 130 0
IND 2,045 0 119 0

Abbreviations: ACE, acenaphthalene; ANT, anthracene; BAA,
benzo(a)anthracene; BAP, benzo(a)pyrene; BBF, benzo(b)fluo-
ranthene; BGP, benzo(g,h,i)perylene; BKF, benzo(k)fluo-
ranthene; CRY, chrysene; DBA, dibenz(a,h)anthracene; FLT,
fluoranthene; FLU, fluorene; IND, indeno(1,2,3-c,d)pyrene;
NAP, naphthalene; PHE, phenanthrene; PYR, pyrene.



contained an abundance of quinones
(Table 3). No quinones were present in the
aromatic fraction (Table 3).

RAW 264.7 cells were treated with these
chemicals and assessed for evidence of apopto-
sis (Figure 1). Figure 1A and 1B show repre-
sentative flow cytometry panels of an
experiment that was performed in triplicate.
The results demonstrate the induction of
annexin V+/PI– (lower right) and annexin
V+/PI+ (upper right) cells by the crude extract.
These represent early and late apoptotic
events, respectively, and can be combined
with live (annexin V–/PI–, lower left) and dead
(annexin V–/PI+, upper left) cells to provide a
graphic display of cellular viability/toxicity
(Figure 1C). This presentation format
demonstrates that the polar fraction is consid-
erably more toxic than the aromatic fraction,
whereas the aliphatic fraction has no effect on
cell viability (Figure 1C).

To explore mitochondrial perturbation, we
assessed ∆Ψm and ROS production by dual-
color DiOC6/HE fluorescence (Hiura et al.
1999). DiOC6 reflects ∆Ψm, whereas HE
measures mostly O2

·– production. This analy-
sis shows that although the aliphatic fraction
was inactive, the aromatic and polar fractions
induced the appearance of DiOC6

low/HEhigh

subpopulations (Figure 2A). These effects
were dose dependent (not shown), with the
polar being more active than the aromatic
fraction at comparable dose levels (Figure 2).
To test whether O2

·– production is related to
inner membrane damage, we also performed
dual-color NAO/HE fluorescence (Figure
2B). NAO binds to the inner membrane
phospholipid, cardiolipin. Although NAO
fluorescence is ∆Ψm sensitive, a decrease in
fluorescence reflects inner membrane damage.
Both polar and aromatic compounds led to a
decrease in inner membrane mass, whereas
the aliphatic fraction was inactive (Figure 2).
Cells with damaged mitochondria also
showed increased HE fluorescence, which is
in accordance with increased O2

·– production
by cells with reduced ∆Ψm (Figure 2A).
Overall, the polar fraction was more active
than the aromatic fraction in its ability to
induce these mitochondrial effects (Figure 2).
Taken together, these results demonstrate that
the aliphatic, aromatic, and polar fractions
exert differential toxic effects on mitochondria
and cellular viability.

Differential effects of the polar fraction on
membrane depolarization and PTP opening.
To further explore the action of functionalized
DEP chemical groups on mitochondrial func-
tion, we performed a series of studies in iso-
lated liver mitochondria. First, ∆Ψm was
recorded with a TPP+ electrode after the addi-
tion of phosphate and succinate to the mito-
chondrial preparation (Kushnareva and
Sokolove 2000). The addition of CCCP, a
protonophore uncoupler, led to a quick dissi-
pation of the ∆Ψm (Figure 3A). Although the
carrier (DMSO) and the aliphatic fraction were
inactive (Figure 3A,B), the crude extract as well
as the polar fraction induced a dose-dependent
decline in ∆Ψm (Figure 3C,D). The polar
material was more potent and induced a faster
rate of depolarization (Figure 3D).

If mitochondria are well polarized, addition
of a large Ca2+ load leads to matrix Ca2+ uptake
and PTP opening (Korge et al. 2002). PTP
opening leads to mitochondrial swelling, which
can be followed by using 90° light scatter in a

spectrophotometer (Figure 4A, a). In mito-
chondria that had not been subjected to a Ca2+

load, addition of a small and nondepolarizing
polar dose (1–2.5 µg/mL; Figure 3) caused
spontaneous induction of mitochondrial
swelling (Figure 4B, c and d). Compared with
the lack of response to the DMSO carrier,
these results were statistically significant (p <
0.01). In contrast, higher doses of the polar
fraction (≥ 5 µg/mL) caused a statistically sig-
nificant (p < 0.01) inhibition of Ca2+-induced
mitochondrial swelling (Figure 4A). The same
effect (p < 0.01) was seen with the crude DEP
extract (not shown). This inhibition of swelling
can be attributed to the ∆Ψm-reducing effects
of these higher concentrations. This is similar
to the ∆Ψm dissipation by CCCP, which pre-
vents the rise in matrix Ca2+ required for PTP
opening. If, on the other hand, matrix Ca2+ is
already elevated, ∆Ψm depolarization pro-
motes PTP opening because the PTP open
probability is voltage dependent and increases
with depolarization. To test this theory, 
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Table 3. Quinone content in DEP fractions (ng/mg
fraction).

Crude
Quinone extract Aliphatic Aromatic Polar

1,2 NQ 22.34 ND ND 25.09
1,4 NQ 19.94 ND ND 75.88
9,10 PQ 18.73 ND ND 66.25
9,10 AQ 69.34 ND ND 405.02

ND, none detected.

Figure 1. Flow cytometry showing that DEP fractions induce apoptosis in RAW 264.7 cells. (A) Control. (B)
DEP. Cells were treated with 25 µg/mL of the crude DEP extract for 12 hr, stained with annexin V-FITC and
PI, and analyzed by flow cytometry. (C) Flow data expressed as a stack diagram, in which the crude
extract data are compared with the effects of aliphatic, aromatic, and polar fraction, each used at
25 µg/mL; the data are representative of three experiments in which the induction of apoptosis by the
crude DEP material, as well as the aromatic and polar fractions, was statistically significant (p < 0.05).
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isolated mitochondria were preexposed to a
small Ca2+ load (10 µM) that is insufficient to
induce PTP opening, and then exposed to a
higher polar concentration range. This led to a
dose-dependent induction of mitochondrial
swelling at all doses tested (Figure 4C). DMSO
and the aliphatic fraction had no effect on
mitochondrial swelling (not shown).

To confirm that mitochondrial swelling
induced by the crude extract and polar fraction
was due to PTP opening, we examined the
effects of the PTP inhibitor CsA (Figure 5).
Similar to its effect on Ca2+-induced swelling,
CsA added before the addition of the polar
fraction (Figure 5A, a) abrogated polar-
induced mitochondrial swelling in a statisti-
cally significant fashion (p < 0.01) (Figure 5B).
Ca2+-dependent mitochondrial swelling by the
polar fraction was confirmed by prior addition
of EGTA, which led to a significant reduction
in the rate and magnitude of mitochondrial
swelling in the presence of 1 µg/mL of the
polar material (Figure 5C, b vs. c).

The polar fraction contains a number of
chemicals, among which the quinones partici-
pate in the generation of oxidative stress and
covalent protein modification (Penning et al.
1999). We tested a number of DEP quinones
(Table 3) for their effects on mitochondrial
swelling, including PQ, 1,2-naphthaquinone,
and AQ. PQ induced statistically significant
(p < 0.01) mitochondrial swelling with slower
kinetics than did the Ca2+ load stimulus
(Figure 5D). This effect was totally sup-
pressed by CsA, indicating that quinones
stimulate PTP activity in a Ca2+-dependent
fashion (Figure 5D). Similar results were
obtained with 1,2-naphthaquinone, whereas a
nonredox-cycling quinone, AQ, was inactive

(not shown). These results suggest that redox-
cycling quinones play a role in the cytotoxic
effects of DEPs on the mitochondrion.

All considered, the data presented indicate
that polar chemicals induce mitochondrial
swelling due to PTP opening. This involves
direct action on the PTP at low doses, as well

as rapid-onset ∆Ψm depolarization at higher
doses, provided that the matrix Ca2+ concen-
tration is already elevated. In the absence of
Ca2+ loading, higher polar doses inhibit mito-
chondrial swelling, most likely due to inter-
ference in Ca2+ accumulation as a result of
∆Ψm depolarization.
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Figure 2. Changes in ∆Ψm, mitochondria mass, and ROS production induced by DEP chemicals in RAW 264.7 cells dual-color stained with either (A) HE (detects
mostly O2·–) plus DiOC6 (∆Ψm) or (B) NAO (mitochondria mass) plus HE. RAW 264.7 cells were treated with 100 µg/mL DEP extract or its fractions for 5.5 hr before
staining. Data are representative of two experiments.
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Interference in the function of respiratory
complexes by the polar fraction. Mitochondrial
uncoupling increases mitochondrial respira-
tion, which can be assessed by measuring oxy-
gen consumption with an oxygen-sensing
electrode (Figure 6). Although the polar frac-
tion increased mitochondrial respiration as a
consequence of its depolarizing effect (not
shown), the induction of maximal respiration
by CCCP in the presence of succinate showed
that subsequent addition of the polar fraction
caused a slowing of respiration (Figure 6A).
The crude DEP extract had the same effect,
whereas the aromatic or aliphatic fractions did
not affect maximal mitochondrial respiration
(Figure 6A). These findings indicate that the
polar fraction and crude DEPs interfere in the
function of complex II in the inner membrane.
Similar results were obtained when using
malate/glutamate/pyruvate, which are sub-
strates for complex I (not shown). However,
there was no effect when ascorbate and TMPD
were used, implying that complex IV was not
affected by the polar chemicals (Figure 6B).
We propose that exogenous quinones present
in the polar fraction might compete with the
ubiquinones, which play a critical role in elec-
tron transfer in the inner membrane com-
plexes. Transfer of those electrons to molecular
dioxygen could explain O2

·– production.
Unique effects on ∆Ψm, mitochondrial

swelling, and Ca2+ retention capacity exerted
by the aromatic fraction and PAHs. Treatment
with the aromatic fraction induced a dose-
dependent ∆Ψm decrease in isolated liver mito-
chondria at doses > 10 µg/mL (not shown).
Unlike that observed with the polar fraction
(Figure 3D), this depolarization was incomplete
compared with CCCP (not shown). In addi-
tion, the aromatic fraction induced spontaneous
mitochondrial swelling in a dose-dependent
fashion (Figure 7A, b–f). In non-Ca2+-loaded
mitochondria, this effect started at aromatic
doses ≥ 10 µg/mL (Figure 7A), whereas lower

doses (e.g., 5 µg/mL) actually inhibited Ca2+-
induced swelling (Figure 7B). This is the oppo-
site from the effect observed with the polar
fraction, which interfered in mitochondrial
swelling at high doses but induced spontaneous

swelling at low doses (Figure 4B,C). Taken
together, these data suggest that differences in
the chemical composition of the aromatic and
polar fractions lead to differential effects on
mitochondrial function.
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Figure 4. Effects of DEP and the polar fraction on mitochondrial swelling. (A) 50 µM Ca2+ added after DMSO and different doses of polar fraction (5, 10, 20, 30,
50 µg/mL); the control was DMSO alone. The data are representative of four experiments in which the inhibitory effect of polar concentrations ≥ 5 µg/mL on Ca2+-
induced swelling was statistically significant (p < 0.01). (B) 50 µM Ca2+ introduced to induce swelling as a positive control; polar material (0.5, 1, 2.5, 5 µg/mL) was
added in the absence of a Ca2+ stimulus, and the control was DMSO alone. See “Materials and Methods” for details. (C) When previously loaded with a small
amount of 10 µM Ca2+, the subsequent addition of the polar material (1, 5, 10 µg/mL) induced near-maximal mitochondrial swelling at all doses tested.
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PAHs are the main components of the
aromatic fraction and are capable of inducing
apoptosis (Li et al. 2000). To test if PAHs
exert an effect on isolated mitochondria, we
used a commercial source composed of 16
DEP PAHs to conduct the swelling assay.

This demonstrated that the PAH mix can
induce slow-onset swelling in non-Ca2+-
loaded mitochondria, which mimics the
effects of the aromatic fraction (Figure 8).
This swelling effect was incomplete and was
partially but statistically significantly

(p < 0.05) inhibited by CsA (Figure 8B). CsA
exerted the same effect on the induction of
swelling by the aromatic fraction (Figure 8A).

Use of mitochondrial calcium retention
capacity to study differences between the polar
and aromatic fractions on PTP opening.
Calcium Green-5N is a fluorescent dye that
can be used to assess the Ca2+ retention capac-
ity of isolated mitochondria. The addition of
small amounts of Ca2+ leads to a rapid matrix
uptake into isolated energized mitochondria
(Figure 9A). With repeated Ca2+ pulses,
matrix Ca2+ eventually triggers PTP opening,
which leads to depolarization and release of
Ca2+ from the matrix (Figure 9A). This leads
to a precipitous and sustained increase in fluo-
rescence intensity (Figure 9A). This response
is statistically significantly (p < 0.01) inhibited
by CsA, which increased the number of Ca2+

pulses from 4 to 14 (Figure 9B). The aliphatic
fraction had no effect on the number of Ca2+

pulses (Figure 9C), whereas 1 µg/mL of the
polar material reduced the number of Ca2+

pulses required to trigger PTP transition
(Figure 9D). This finding is compatible with
the ability of the polar fraction to induce
spontaneous mitochondrial swelling in a Ca2+-
dependent fashion (Figure 4C). Higher polar
concentrations induced immediate release of
ambient accumulated Ca2+, which reflects its
depolarizing effect (Figure 9C). Similar results
were obtained with the crude DEP extract: a
reduction in the required number of Ca2+

pulses at low doses and precipitous Ca2+

release at high doses (not shown).
Because we have shown that DEP

quinones mimic the effect of the polar fraction
in spontaneous mitochondrial swelling, we
also tested these quinones in the Calcium
Green-5N assay. PQ reduced the required
number of Ca2+ applications to achieve PTP
from 3, to 2, to 0 at PQ concentrations of
0.25, 1, and 5 µg/mL, respectively (Figure
9F–H). CsA could significantly (p < 0.01)
increase the number of Ca2+ pulses required
for precipitous Ca2+ release in the presence of
PQ, suggesting PTP involvement. Similar
results were obtained with 1,2-NQ but not
with AQ (not shown).

Examination of the aromatic fraction in
the Calcium Green-5N assay showed that
doses < 10 µg/mL increased the Ca2+ retention
capacity (Figure 10A,B). This is in keeping
with the ability of the aromatic fraction to
inhibit Ca2+-induced PTP opening in this
dose range (Figure 7B). At higher doses, the
aromatic fraction induced a short Ca2+ burst,
probably related to ∆Ψm depolarization,
which is followed by a progressive decline in
the ability of the matrix to accumulate Ca2+

(Figure 10C). This depolarization was incom-
plete and not CsA sensitive (not shown). In
order to determine whether this effect is
related to the PAHs present in the aromatic
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Figure 6. Effects of organic DEP chemicals on mitochondrial respiration. (A) Succinate as a complex II
substrate. (B) Ascorbic acid/TMPD as complex IV substrates. See “Materials and Methods” for details.
Maximal mitochondrial respiration was initiated by 2 µM CCCP before the addition of DEP or its fractions
at 50 µg/mL. Data are representative of three experiments.
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fraction, the DEP PAH mixture was separately
tested. PAHs mimicked the effect of the aro-
matic fraction in the low and high dose range
(Figure 10D,E). Taken together, these results
confirm that the polar and aromatic DEP
compounds exert fundamentally different
actions on mitochondria.

Effects of ambient UFPs on mitochondrial
responses. A key question is whether the effects
of the DEP chemicals can be reproduced with
intact DEP and “real-life” ambient particles
(Li et al. 2003). Intact DEPs induce apoptosis
(Hiura et al. 1999), and ambient UFPs induce
structural damage and lodge inside mitochon-
dria in RAW 264.7 cells and epithelial cells (Li
et al. 2003). When UFPs, collected by a parti-
cle concentrator in the Los Angeles Basin
(Kim et al. 2001), were tested in the mito-
chondrial swelling assay, we observed sponta-
neous PTP opening at doses of 4.8 and
7.7 µg/mL in non-Ca2+-loaded mitochondria
(Figure 11, b and c). Swelling was partially
reversed by CsA (Figure 11, d). At a dose of
1.9 µg/mL, UFPs did not induce spontaneous
PTP opening but interfered with Ca2+-
induced swelling (not shown). This is similar
to the effect of sonicated DEP, which inter-
fered in Ca2+-induced mitochondrial swelling
in a dose-dependent fashion but failed to
induce spontaneous swelling (Table 4). This
could relate to differences in the particle size
(the DEP powder used here contains particle
aggregates) as well as differences in the
bioavailability of surface chemical compounds
on these particles. The chemical composition
of UFPs is shown in Table 5. In contrast to
the particulate pollutants, artificial polystyrene
microspheres (size < 100 nm) did not exert an
effect on mitochondrial swelling, and the
mitochondria remained fully responsive to Ala
(Figure 11, a).

In the Calcium Green-5N assay, ambient
UFPs induced instantaneous Ca2+ release
but reduced Ca2+ retention capacity in a
dose-dependent manner (Figure 12A vs.
Figure 12C–F). CsA prevented this effect
(Figure 12G). Sonicated DEPs had a similar
effect that was also CsA sensitive (Table 4). In
contrast, polystyrene microspheres (80 nm)
had no effect on Ca2+ retention capacity
(Figure 12B). This suggests that the effect of
the ambient UFP is dependent on their con-
tent of redox-cycling chemicals. Taken
together with the data shown in Figure 11,
the UFP effects appear to be a summation of
the effects of polar and aromatic chemical
compounds.

Discussion

In this study we looked at the effects of distinct
DEP chemical fractions on mitochondrial
function. A major effect of the polar fraction
was to promote mitochondrial swelling, both
directly at the level of PTP opening and

indirectly by promoting ∆Ψm depolarization.
Mitochondrial swelling by the polar fraction
and the redox-cycling quinones involved the
induction of Ca2+-dependent PTP opening,
as determined by the inhibitory effect of CsA
and EGTA. Polar interference in inner mem-
brane function likely targets membrane com-
plexes I–III, as determined using different
substrates in the mitochondrial respiratory
chain. The polar fraction also contains chemi-
cal substances that induce mitochondrial
swelling, even at low doses that have no effect
on ∆Ψm. This effect could be mimicked by
DEP quinones, which are enriched in the
polar fraction. Although the aliphatic fraction
failed to affect mitochondrial function, the
aromatic fraction induced a decrease in ∆Ψm
that is likely secondary to PTP perturbation.
This effect is mostly Ca2+ independent and
can be mimicked by PAHs. At low doses, the
aromatic fraction increased the Ca2+ retention
capacity, suggesting interference in PTP func-
tion. However, at higher doses, the aromatic
fraction induced partial ∆Ψm depolarization,
which could promote swelling if matrix Ca2+

was already elevated. The polar and aromatic

effects on isolated mitochondria could be
mimicked, in part, by ambient UFPs and
intact DEPs, which contain an abundance of
both functionalized chemical species. In con-
trast, commercial polystyrene nanoparticles,
which lack these chemicals, were inactive.
The above effects on isolated mitochondria
were accompanied by effects on apoptosis and
∆Ψm in intact RAW 264.7 cells.

There is a paucity of data about the mecha-
nisms by which ambient PM induces adverse
health effects. There is also a considerable
debate as to whether the particles themselves or
their chemical components are responsible for
injurious effects in the respiratory tract and car-
diovascular system (Brown et al. 2000;
Oberdörster 1996). Our view is that both the
particles and the chemicals are important.
First, the particles are effective carriers of
chemical compounds, many of which are semi-
volatile organic substances that will not other-
wise gain access to the deeper regions of the
lung. Second, the particle surface may act as an
important catalyst for chemical reactions
involved in ROS generation (Brown et al.
2000). Third, particles localize inside target
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Figure 9. Effect of the polar fraction and quinones on the Ca2+ retention capacity of isolated mitochondria
incubated with 1 µM Calcium Green-5N. After the addition of mitochondria, the following chemicals were
added: (A) DMSO (carrier), (B) CsA, (C) aliphatic (Ali), (D) 1 µg/mL polar fraction, (E) 10 µg/mL polar fraction,
(F) 0.25 µM PQ, (G) 1 µM PQ, and (H) 5 µM PQ. Each arrow represents one 5 µM Ca2+ pulse. Data are repre-
sentative of four experiments.
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cells, and it is possible that their subcellular
localization may be determined by chemical
composition. This could explain why ambient
UFPs lodge inside mitochondria in epithelial
cells and macrophages and why these particles
are more potent than larger-sized particles in
perturbing mitochondrial function (Figure 12).
One possibility is that the negative charge of
the mitochondrial matrix or the positive
charge in the intermembrane space attracts
chemical dipoles that are present in the polar
material. Another possibility is that the large
surface area of UFPs may promote the
bioavailability of the absorbed chemicals.
UFPs are known to have increased solubility,
compared with larger sized particles of the
same composition because of the increased

surface-to-volume ratio for smaller particle
sizes (Navrotsky 2001). This could explain
why UFPs induce spontaneous swelling,
whereas the major effect of DEPs is inhibition
of Ca2+-induced swelling (Table 4). PAHs and
quinones are representative chemical groups
that may be released in different amounts
from DEPs and UFPs. The type of PAH (e.g.,
4-, 5-, or 6-ring PAHs) could also play a role
in determining bioavailability.

How does mitochondrial perturbation lead
to adverse PM health effects? An obvious
mechanism is ROS production in mito-
chondria (Hiura et al. 1999). Although oxida-
tive stress is increasingly recognized as a key
component in tissue damage by DEPs, there is
still a great deal of uncertainty about the origin

of ROS. It is possible that one-electron trans-
fers to molecular dioxygen in the mitochondr-
ial inner membrane could contribute to O2

·–

generation. This effect is compatible with the
effects of the polar fraction on inner membrane
complexes I–III (Figure 6) and increased HE
fluorescence in RAW 264.7 cells (Figure 2).
We propose that quinones play a role in redi-
recting electron transfer to molecular O2 in the
inner membrane. This effect could be
enhanced by PTP transition, which disrupts
the ∆Ψm and increases O2

·– generation
(Zoratti and Szabo 1995). This does not imply
that O2

·– generation by mitochondria is the
only PM-induced source of ROS production.
In fact, it is well known that in phagocytic cells
mitochondria are a minor source for ROS pro-
duction compared with NADPH oxidase and
lysosomes (Bassoe et al. 2003).

PM contains a number of polar chemical
substances, including quinones, ketones, alde-
hydes, sulfur compounds, and dibutyl phtha-
late (Shuetzle et al. 1981). Although much
needs to be learned about the biologic effects
of these substances, there is a substantive bio-
logic literature describing tissue injury by
quinones (Penning et al. 1999). The endoge-
nous ubiquinones play a key role in one-
electron transfers in the mitochondrial inner
membrane as well as PTP transition (Fontaine
et al. 1998; Walter et al. 2000). Walter et al.
(2000) described three classes of ubiquinones
that affect the PTP: group I ubiquinones
(Ub0, decyl-Ub, Ub10, 2,3,5-trimethyl-6-
geranyl-1,4-benzoquinone, and 2,3-dimethyl-
6-decyl-1,4-benzoquinone) act as PTP
inhibitory quinones that enhance the Ca2+

load required for PTP opening; group II
quinones [2,3-dimethoxy-5-methyl-6-
(10-hydroxydecyl)-1,4-benzoquinone and
2,5-dihydroxy-6-undecyl-1,4-benzoquinone]
act as PTP-activating quinones that dramati-
cally decrease the Ca2+ load required for PTP
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Figure 10. Effect of the aromatic fraction and PAHs on the Ca2+ retention capacity of isolated mitochondria
incubated with 1 µM Calcium Green-5N. After the addition of mitochondria, the following chemicals were
added: (A) DMSO, (B) aromatic (Aro) 10 µg/mL, (C) Aro 50 µg/mL, (D) PAH mix 3.9 µg/mL, and (E) PAH mix
7.8 µg/mL. Each arrow represents one 5 µM Ca2+ pulse. Data are representative of three experiments.
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Table 4. Comparison of DEP and UFP effects on isolated mitochondria.

Assay DEP particle Ambient UFPs

∆Ψm Dose-dependent delayed or rapid Rapid depolarization
depolarization

CsA insensitive CsA insensitive
Mitochondrial Ca2+ retention Decreased retention capacity Decreased retention capacity

capacity CsA sensitive CsA sensitive
Mitochondrial swelling Dose-dependent inhibition of Inhibition of Ca2+-induced

Ca2+-induced swelling swelling at low doses (1 µg/mL)
No spontaneous swelling effects Spontaneous swelling at

at any dose doses > 1.9 µg/mL
Partially CsA sensitive

All assays were performed as described in “Materials and Methods”; DEPs were sonicated and tested in the dose range
1–50 µg/mL.



opening; group III or PTP-inactive quinones
[2,3,5-trimethyl-6-(3-hydroxyisoamyl)-1,4-
benzoquinone and Ub5] are neutral in their
effect but have the ability to counteract the
effects of group I and II quinones (Walter et al.
2000). Although the mechanism of PTP per-
turbation is unclear, it has been proposed that
competition between these groups is mediated
through the occupancy of a common quinone
binding site in the PTP (Walter et al. 2000).
According to this hypothesis, ligation by stim-
ulating (group II) quinones facilitates PTP
opening at a relatively small Ca2+ load, whereas
a larger Ca2+ load would be required to access
the Ca2+ binding site when liganded with inac-
tive (group III) quinones, and an even larger
Ca2+ load when liganded with inhibitory
(group I) quinones (Walter et al. 2000). If a
mixture of quinones is present, they could
compete in a concentration- and affinity-
dependent manner for binding to the PTP site.

Although the applicability of this model to
exogenous quinones is uncertain, it is interest-
ing that redox-cycling NQs have been shown
to induce Ca2+-dependent, CsA-sensitive PTP
transition (Henry and Wallace 1995; Palmeira
and Wallace 1997). On the other hand,
non–redox-cycling quinones with sulfhydryl-
arylating potential (e.g., benzoquinone)
induce direct, Ca2+-independent depolariza-
tion and mitochondrial swelling that is insen-
sitive to CsA inhibition (Henry and Wallace
1995; Palmeira and Wallace 1997). These
findings are compatible with our data that
redox-cycling DEP quinones (e.g., PQ and
1,2-NQ) induce a Ca2+-dependent, CsA-
sensitive PTP transition, whereas a non–
redox-cycling DEP quinone (AQ) had no
effect (Figure 5D). This suggests that the
redox-cycling quinones present in DEPs are
responsible for PTP transition. In the absence
of Ca2+ loading, this effect disappears at higher
polar concentrations that prevent Ca2+ accu-
mulation (Figure 4C, Figure 9D,E). The
mechanism by which exogenous quinones per-
turb PTP activity is unknown. One possibility
is binding to the putative ubiquinone binding
site mentioned above. Another is the oxidative
modification of thiol-dependent PTP compo-
nents by redox-cycling quinones (Henry and
Wallace 1995; Palmeira and Wallace 1997).
Whatever the exact explanation, our data indi-
cate that DEP quinones affect mitochondrial
function independent of other biologic effects
these compounds may have.

It is interesting that the aromatic fraction
differs from the polar fraction in its effect on
mitochondrial function. The key difference
appears to be the ability of the aromatic com-
pounds to interfere in Ca2+-induced PTP open-
ing at low doses (Figure 10B) while inducing
mostly CsA-insensitive swelling at higher doses
(Figure 7A). These effects are mimicked by the
PAHs, suggesting that they play a key role in
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Table 5. Chemical composition of UFPs (percentage of PM mass).

Major elements (%) Inorganic ions (%) EC OC PAH

Na (0.84) Nitrate (4.9) PHE (1.75)
Al (8.80) Sulfate (17.6) FLT (2.72)
Si (14.19) PYR (2.94)
Cl (0.10) BAA (1.90)
K (0.67) CRY (2.53)
Ca (2.05) BBF (2.39)
Ti (0.47) BKF (1.04)
V (0.08) BAP (2.45)
Cr (0.07) BGP (10.38)
Mn (0.09) IND (3.04)
Fe (3.20)
Ni (0.05)
Cu (0.19)
Zn (0.10)
Br (0.01)
Sr (0.01)
Zr (0.01)
Ba (0.10)
Pb (0.02)
Total 31% 23% 2% 41% 31.1%

Abbreviations: BAA, benzo(a)anthracene; BAP, benzo(a)pyrene; BBF, benzo(b)fluoranthene; BGP, benzo(ghi)perylene;
BKF, benzo(k)fluoranthene; CRY, chrysene; FLT, fluoranthene; IND, indeno(1,2,3-cd)pyrene; PHE, phenanthrene; PYR,
pyrene. All species are expressed as a percentage of the total PM mass except PAHs, which are expressed in
nanograms per milligram of PM mass. The data show an excellent balance between the total mass and the sum of the
measured chemical species, which account for 97% of the total UFP mass. OC is the most predominant species, con-
tributing 41% of the mass. Trace elements and metals, such as Al, Si, Ca, and Fe, are also significant. BGP is the most
abundant PAH in the UFP mode.

Figure 12. Effect of UFPs on Ca2+ retention capacity of isolated mitochondria incubated with 1 µM Calcium
Green-5N. After the addition of mitochondria, the following chemicals were added: (A) carrier buffer,
(B) 10 µg/mL polystyrene microspheres, (C) 1 µg/mL UFP, (D) 1.9 µg/mL UFP, (E) 4.8 µg/mL UFP,
(F) 7.7 µg/mL UFP, (G) CsA followed by the addition of 4.8 µg/mL UFP. Each arrow represents one 5 µM Ca2+

pulse. Data are representative of three experiments.
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the toxic effect of the aromatic compounds
(Figure 10D,E). Although we lack a definitive
molecular explanation for the PAH effects,
their action at lower doses resembles PTP inhi-
bition by CsA (Figure 10D). Whether this rep-
resents occupation of an inhibitory binding
site similar to group II ubiquinones or inter-
ference in cyclophylin D binding to the pore
is unknown. Lemasters and colleagues have
postulated that the PTP has two open conduc-
tance modes: one activated by Ca2+ and inhib-
ited by CsA and the other independent of
Ca2+ and CsA insensitive (He and Lemasters
2002; Lemasters et al. 2002). Induction of the
Ca2+-independent open state has been sug-
gested to be mediated by oxidative chemicals,
such as phenylarsine oxide (PAO) and HgCl2,
which lead to misfolding of integral mem-
brane proteins at high doses (He and
Lemasters 2002). It is possible that high doses
of aromatic chemicals could act in similar
fashion (Lemasters et al. 2002). According to
the protein misfolding hypothesis, cyclo-
philin D protects against this effect by acting
as a chaperone for the damaged proteins
(Lemasters et al. 2002). That could lead to
decreased cyclophilin D binding to the PTP,
which may explain why the aromatic fraction
interferes in Ca2+-induced PTP opening
(Figure 7B). At a high aromatic dose, the
number of misfolded protein clusters could
overwhelm the ability of the chaperones to
prevent nonspecific channel formation, lead-
ing to CsA-insensitive mitochondrial swelling
(Figure 7A).

We have frequently referred to the role of
Ca2+ in PM-induced mitochondrial effects,
including the fact that certain quinones affect
mitochondrial function and PTP opening in a
Ca2+-dependent fashion (Henry and Wallace
1995). PAH diol epoxides have been shown to
increase cytosolic Ca2+ in airway epithelial cells
(Jyonouchi et al. 2001), which theoretically
could affect mitochondrial function, as
demonstrated by the ability of some PAH
species to induce apoptosis (Solhaug et al.
2004). In addition to the contribution of
chemicals, the particles themselves play a role
in intracellular Ca2+ release, as demonstrated
by treating alveolar macrophages with carbon
black particles (Brown et al. 2004).

In addition to using a Ca2+-dependent
pathway, redox-cycling DEP chemicals may
perturb the PTP in a thiol-dependent manner.
In this regard, Constantini et al. (1996) pro-
posed that oxidation of vicinol thiol groups in
the PTP by ROS or electrophilic chemicals
may lead to induction of permeability transi-
tion. Bernardi and colleagues have provided
data that suggest that two distinct thiol groups
are implicated in modulating PTP activity
(Chernyak and Bernardi 1996; Constantini
et al. 1996). One thiol group is sensitive to
glutathione (GSH) oxidation, whereas the

other responds to the redox state of the matrix
NAD(P). The adenine nucleotide transporter
(ANT) protein, a proposed structural PTP
component, has three cysteine residues that
show differential reactivity toward various
thiol and oxidizing reagents in a conforma-
tion-dependent fashion (Majima et al. 1993,
1994, 1995). These cysteines could represent
the thiol groups that regulate cyclophilin D
binding as well as the effects of membrane
potential on the PTP. This could explain the
synergy between intracellular Ca2+ flux and
oxidative stress in PTP opening. Interestingly,
ANT uses its vicinal thiols to bind to a PAO
column (Halestrap et al. 1997). Treatment of
isolated mitochondria with a crude DEP
extract prevents ANT binding to PAO, sug-
gesting that this protein is oxidatively modi-
fied at vicinal thiol groups (Xia et al.,
unpublished data). The thiol hypothesis also
explains the prevention of mitochondrial dam-
age by N-acetylcysteine, which, in addition to
its effect as a radical scavenger, serves as a pre-
cursor for GSH synthesis as well as electro-
philic binding to prooxidative DEP chemicals
(Xiao et al. 2003). Under physiologic condi-
tions, GSH may play an important role in
protecting the vicinal thiols associated with
the PTP, hence the association of a drop in
GSH levels with DEP-induced apoptosis.

A final point of interest is the potent
effect of ambient UFPs on mitochondrial
function, compared with no effect from com-
mercial UFPs (Figure 11). This finding is of
great importance to the burgeoning field of
nanotechnology, which has attracted atten-
tion because of the possible interference of
nanoparticles in biologic processes (Brumfiel
2003). Although it is possible that very small
particles may exert toxic effects and induce
intracellular Ca2+ flux based on their small
size and high surface area, independent of
their chemical makeup (Brown et al. 2001,
2004), our data indicate that the injurious
effect of ambient UFP is dependent on chem-
ical composition. In addition to the presence
of organic chemicals, transition metals may
contribute to particle toxicity. By using a
mitochondrial end point, we have shown that
it is possible to develop a mechanistic approach
to particle toxicity. Similar approaches could
be used to study the effects of commercial
nanoparticles, which, in addition to their
chemical composition, may exert mitochon-
drial effects based on size, surface area, and
surface charge.
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