

Science Highlights

from the National Synchrotron Light Source

BEAMLINE X4A

PUBLICATION

Y-h. Chen, M-h. Li, Y. Zhang, L-l. He, Y.Yamada, A. Fitzmaurice, Y. Shen, H. Zhang, L. Tong, and J. Yang. "Structural Basis of the $\alpha_1 - \beta$ Interaction of Voltage-Gated Ca²⁺ Channels". *Nature*, **429**, 675-680 (2004).

FUNDING

National Institutes of Health; The McKnight Foundation; The EJLB Foundation; The American Heart Association

FOR MORE INFORMATION

Prof. Jian Yang, Department of Biological Sciences, Columbia University Jy160@columbia.edu

There are four subfamilies of Ca²⁺ channel β subunits (β_1 - β_4). Each β subunit contains five regions, with the three middle regions forming a core that can perform most functions of full-length β . The crystal structure of the β_3 core in complex with a 49-amino acid segment of α_1 , which contains the 18-amino acid a interaction domain (AID) (at 2.6 Å-resolution), shows that the three regions comprising the β core are: an Src homology 3 (SH3)

domain, a guanylate kinase (GK) domain, and a "HOOK" region that connects them (Figure 1a). The SH3 and GK domains interact intramolecularly. The AID forms an α helix and binds to a hydrophobic (water-fearing) groove in the GK domain. The interactions between AID and $\boldsymbol{\beta}$ are extensive, involving hydrophobic interactions, hydrogen bonds, and an ion pair (Figure **1b**). These interactions form the basis for the high affinity binding between α_1 and β . Most

Structural Basis of the $\alpha_1 - \beta$ Subunit Interaction of Voltage-Gated Ca²⁺ Channels

Yu-hang Chen, Ming-hui Li, Yun Zhang, Lin-ling He, Yoichi Yamada, Aileen Fitzmaurice, Yang Shen, Hailong Zhang, Liang Tong, and Jian Yang

Department of Biological Sciences, Columbia University

High voltage-activated (HVA) Ca^{2+} channels in cell membranes control diverse biological processes, such as muscle contraction and hormone release. They are composed of α_1 , α_2 - δ , β , and sometimes γ , subunits. The proper expression and function of HVA Ca^{2+} channels are critically dependent on the β subunit, which binds directly to the α interaction domain (AID) in α_1 , presumably through the β interaction domain (BID). We have solved the crystal structure of the conserved core region of β_3 , alone and in complex with AID, and of β_4 alone. The structures show that the β core contains two common protein-interacting domains (a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain) and that AID does not bind to BID. These represent the first crystal structures of a Ca^{2+} channel subunit or domain and suggest that β may be a multi-functional protein.

of the amino acids involved in the interactions are conserved in both subunits. The structure also reveals that the β interaction domain (BID) spans all three regions of the SH3-HOOK-GK motif and is thus crucial for the intramolecular interaction between the SH3 and GK domains, as well as their structural integrity. But, it is not directly involved in binding AID (**Figure 1a**).

The overall structure of the unli-

ganded (unbound) β_3 core is very similar to that of the β_3 core bound to AID, indicating that AID binding does not change the β subunit structure. Also, as predicted by the high amino acid similarity, the structure of the β_4 core is nearly identical to that of the β_3 core.

The β subunit SH3 domain (β -SH3) is structurally similar to canonical SH3 domains, but, unlike the continuous configuration of the latter,

Yu-hang Chen

a separate, flexible HOOK region inserted between the first four β strands and the last one. Furthermore, although β-SH3 possesses several amino acids critical for binding PXXP motifs (molecules that typically bind to SH3 domains), it is unlikely to interact with PXXP-containing proteins because the binding site is shielded by part of the HOOK. Likewise, although the overall structure of the β subunit GK domain $(\beta$ -GK) is similar to

 β -SH3 is split, with

that of the yeast GK domain, it is catalytically inactive. Thus, the function of the β subunit SH and GK domains remains to be determined.

Interestingly, the SH3-HOOK-GK motif is also a common structural signature of a family of proteins called membrane-associated guanylate kinase homologs (MAGUKs). Many members of this family, including PSD95, are concentrated at the boundaries between neurons, or "synapses," as are HVA Ca²⁺ channels, and play a central role in clustering and organizing both pre- and post-synaptic ion channels and neurotransmitter receptors. Electrophysiological studies indicate that the PSD95 SH3-HOOK-GK and PSD95_GK do not interact with HVA Ca²⁺ channels (**Figure 2a**). A comparison of the structure of PSD95_GK and β _GK clearly reveals why: The AID-binding pocket is completely blocked in PDS95_GK (**Figure 2b**). Our study thus provides a structural basis for the specificity of Ca²⁺ channel β subunits and MAGUK proteins.

Figure 1. Crystal structure of the β_3 core in complex with its α_1 binding partner (AID). (a) The β_3 core can be divided into three regions: an SH3-domain (gold), a HOOK region (purple) and a GK domain (green). The AID and BID are colored in orange and blue, respectively. (b) Close-up of the interface between β_3 and AID. Most residues involved in the interactions are shown.

Figure 2. Structural and functional comparisons of β with PSD95. (**a**) Whole-oocyte current measured in oocytes injected with Cav2.1 (α_1) and α_2 - δ only (β -) or together with the indicated construct. β_3 _GK represents amino acids M177-G366 of β_3 ; PSD95_SHG represents the SH3-HOOK-GK motif (amino acids G473-L767) of PSD95; and PSD95_GK represents the GK domain (amino acids H575-S755) of PSD95. The current was normalized using the mean current obtained with wild-type β_3 . (**b**) Superposition of the GK domain of unliganded β_3 (green) and PSD95 (1KJW, pink). Only the region around the AID binding site is shown. Secondary structures are labeled only for β_3 .