National Automotive Sampling System Crashworthiness Data System 1994-1996

Contents

Page
Executive Summary v

1. Introduction 1
Background 1
Objective 1
Vehicles Under Consideration 1
CDS Estimates 2
2. Perspective 3
3. Vehicle Crash Data 5
Car Size 5
Car Crash Modes and Areas of Damage 5
Car Crash Severity 8
Seating Position of Car Occupants 10
Functional Class and Size of Light Trucks 11
Light Truck Crash Modes and Areas of Damage 12
Light Truck Crash Severity 14
Seating Position of Light Truck Occupants 15
4. Occupant Injury Data 17
Crash-Involved Occupants by Injury Severity 17
Use of Belts 20
Effect of Belt Use on Injury Risk 22
Injury Severity and Outcome 23
Effect of Alcohol Use on Injury Risk 27
Body Regions Injured in Traffic Crashes 30
Belt Use and Body Regions Injured 35
Injury Contacts 38
Occupant Ejection and Entrapment 43
Appendixes
A. Glossary 49
B. NASS/CDS Sample Design 53
C. NASS/CDS Data Elements 55
D. CRASHPC and OLDMISSPC Summary 113
E. Harm Definition 115
F. Statistical Methods 117
Tables Page
5. Crash-Involved Towed Cars by Weight Class, 1994-1996 5
6. Distribution of Towed Car Crash Modes and Areas of Damage, 1994-1996 6
7. Distribution of Towed Cars by Crash Severity (delta-v) and Area of Damage: Average per Year, 1994-1996 8
8. Occupant Seating Positions in Towed Cars, 1994-1996 10
9. Distribution of Towed Light Trucks by Vehicle Class and Size, 1994-1996 11
10. Distribution of Towed Light Truck Crash Modes and Areas of Damage, 1994-1996 12
11. Distribution of Towed Light Trucks by Crash Severity (delta-v) and Area of Damage: Average per Year, 1994-1996 14
12. Occupant Seating Positions in Towed Light Trucks, 1994-1996 15
13. Distribution of Crash-Involved Car Occupants by Maximum Injury Severity: Average per Year, 1994-1996 18
14. Distribution of Crash-Involved Light Truck Occupants by Maximum Injury Severity: Average per Year, 1994-1996 18
15. Distribution of Crash-Involved Car Occupants by Belt Use and Maximum Injury Severity: Average per Year, 1994-1996 20
16. Distribution of Crash-Involved Light Truck Occupants by Belt Use and Maximum Injury Severity: Average per Year, 1994-1996 21
17. Distribution of Crash-Involved Car Occupants by Treatment and Maximum Injury Severity: Average per Year, 1994-1996 24
18. Distribution of Crash-Involved Light Truck Occupants by Treatment and Maximum Injury Severity: Average per Year, 1994-1996 25
19. Distribution of Crash-Involved Car Drivers by Age Group and Alcohol Use: Average per Year, 1994-1996 28
20. Distribution of Crash-Involved Light Truck Drivers by Age Group and Alcohol Use: Average per Year, 1994-1996 28
21. Distribution of Crash-Involved Car Drivers by Alcohol Use and Maximum Injury Severity: Average per Year, 1994-1996 29
22. Distribution of Crash-Involved Light Truck Drivers by Alcohol Use and Maximum Injury Severity: Average per Year, 1994-1996 29
23. Distribution of All Injuries to Crash-Involved Car Occupants by Body Region and Severity: Average per Year, 1994-1996 30
24. Distribution of All Injuries to Crash-Involved Light Truck Occupants by Body Region and Severity: Average per Year, 1994-1996 32
25. Distribution of All Injuries to Crash-Involved Car Occupants by Injury Contact and Severity: Average per Year, 1994-1996 38
26. Distribution of All Injuries to Crash-Involved Light Truck Occupants by Injury Contact and Severity: Average per Year, 1994-1996 40
27. Occupant Ejection and Entrapment in Crash-Involved Towed Cars by Degree of Ejection, Crash Mode, and Area of Damage: Average of Nationally Weighted Counts per Year, 1994-1996 43
28. Occupant Ejection and Entrapment in Crash-Involved Towed Light Trucks by Degree of Ejection, Crash Mode, and Area of Damage: Average of Nationally Weighted Counts per Year, 1994-1996 44

Contents

Page
25. Injury-Weighted Occupant Ejection and Entrapment Rates for Crash-Involved
Towed Cars by Degree of Ejection, Crash Mode, and Area of Damage:
Average of Nationally Weighted Counts per Year, 1994-1996 46
26. Injury-Weighted Occupant Ejection and Entrapment Rates for Crash-Involved Towed Light Trucks by Degree of Ejection, Crash Mode, and Area of Damage: Average of Nationally Weighted Counts per Year, 1994-199647

Figures

1. Crash-Involved Vehicles in the United States, Average per Year, 1994-1996 .. 3
2. Distribution of Towed Car Crash Modes and Areas of Damage, 1994-1996 ... 7
3. Distribution of Towed Car Crashes by Crash Severity and Area of Damage,
1994-1996 . 9
4. Distribution of Crash Modes and Areas of Damage: Comparison of Cars
vs. Light Trucks, 1994-1996 . 13
5. Distribution of Crash-Involved Occupant Injuries by Maximum Injury Severity:
Cars vs. Light Trucks, 1994-1996 . 19
6. Injury Rates for Crash-Involved Car Occupants by Maximum Injury Severity as a Function of Belt Use, 1994-199622
7. Annual Incidence of Injured Crash-Involved Car Occupants by Maximum Injury Severity and Treatment, 1994-1996 26
8. Distribution of Injuries to Crash-Involved Car Occupants by Affected Body Regionand Severity of Injury, 1994-199634
9. Distribution of Injuries by Body Region to Crash-Involved Car Occupants by Belt Usage: Weighted Average per Year, 1994-1996 36
10. Distribution of Injuries by Body Region to Crash-Involved Light Truck Occupants by Belt Usage: Weighted Average per Year, 1994-1996 37
11. Distribution of Injuries to Crash-Involved Car Occupants by Injury Contact and Severity of Injury, 1994-1996 42
12. Towed Car Occupant Ejection Rates by Crash Mode and Degree of Ejection, 1994-1996 45
13. Ejection-Induced Occupant Injury Rates for Crash-Involved Towed Cars by Degree of Ejection and Crash Mode, 1994-1996 48

Executive Summary

During the period 1994 through 1996, an estimated 11.4 million vehicles each year were involved in police-reported traffic crashes. Approximately 93 percent of these were automobiles, pickup trucks, vans, and sport/utility vehicles, collectively referred to as passenger vehicles. Pickup trucks, vans, and utility vehicles are collectively referred to as light trucks. Most of these vehicles were not seriously damaged: only 26 percent of them were towed from the crash scene due to damage sustained in the crash. Approximately 47,000 passenger vehicles were involved in fatal crashes each year.

This report focuses attention on occupants of those passenger vehicles that were towed from the crash scene. NHTSA's National Automotive Sampling System (NASS)/ Crashworthiness Data System (CDS) collects detailed information on towed passenger vehicle crashes, employing trained, professional crash investigation teams. The in-depth data collection, scientific protocols, and professionalism of those involved make the NASS/CDS database a valuable resource to many in the traffic safety community.

NASS data are used by government, industry, and the private sector to conduct research, identify injury patterns and mechanisms, provide a basis for regulatory decision making, and provide a means of evaluating the association between occupant injury and various crash-related characteristics.

Some highlights of the report include:
Passenger cars comprise the largest segment (about 76 percent) of the passenger vehicles found in the NASS/CDS, and hence, in police-reported towaway crashes. In the report, Passenger cars are treated separately from the remaining vehicles, which have been grouped together as light trucks.

Occupancy patterns for towed crash-involved cars and light trucks were very similar: about two-thirds (about 67 percent) of the time, the only occupant of a towed crash-involved car or light truck was the driver. A front-seat passenger was present in the car about 21 percent of the time, with passengers in the second and further seats about 13 percent of the time. For occupants of light trucks, frontseat passengers were present 20 percent of the time, with passengers in the second and further seats about 17 percent of the time.

One of the health-care consequences of motor vehicle crashes is the burden on emergency and health services. About 243,000 occupants of passenger vehicles were hospitalized each year as a result of police-reported traffic crashes. Another 1,321,000 occupants were transported to a medical facility and released, and 369,000 occupants were treated at the scene of the crash.

Contact with the steering assembly accounted for about 10 percent of the minor injuries (AIS 1-2) but about 15 percent of the serious-maximum (AIS 3+) injuries. A similar pattern was observed for contact with the interior side surface, comprising 7 percent of the minor injuries and 15 percent of serious and greater injuries.

Approximately 288,000 injuries to occupants resulted from contacting an air bag. Around 97 percent were minor injuries, and about 1 percent were serious injuries.

About 4 percent of the towed cars in crashes rolled over, compared with 16 percent of the towed light trucks.

Eight percent of car occupants in rollover crashes were ejected; the remaining crash types exhibited ejection rates in the range of 0.1 to 1.5 percent.

The belt use rate for all occupants of passenger vehicles was about 75 percent.
The alcohol involvement rate for drivers of both passenger cars and light trucks in traffic crashes is highest for the age group 25-34 years.

The alcohol involvement rate for all drivers of light trucks in traffic crashes is almost twice that for drivers of passenger cars.

Background

The National Automotive Sampling System (NASS)—formerly, the National Accident Sampling System-is the mechanism through which the National Highway Traffic Safety Administration (NHTSA) collects nationally representative data on motor vehicle traffic crashes to aid in the development, implementation, and evaluation of motor vehicle and highway safety countermeasures. The NASS was originally designed and implemented in 1979 to support highway and motor vehicle safety programs. The NASS program was reevaluated in the mid-1980s. The evaluation team concluded that the program should be redesigned to focus on enhanced indepth analyses of passenger vehicle crash protection performance. This reevaluation resulted in changes that were implemented by NHTSA's National Center for Statistics and Analysis (NCSA) in January 1988.

To enhance its applicability in addressing crashworthiness issues, the NASS was divided into two parts: (1) the General Estimates System (GES), which collects data on an annual sample of approximately 50,000 police-reported traffic crashes; and (2) the Crashworthiness Data System (CDS), which collects additional detailed information on an annual sample of approximately 5,000 police-reported traffic crashes involving passenger vehicles towed from the crash scene due to damage resulting from the crash. In this report, the term passenger vehicles is used to refer to all cars, pickup trucks, vans, and sport/utility vehicles with a gross vehicle weight rating (GVWR) of 10,000 pounds or less. The term light trucks is used to refer to pickup trucks, vans, and sport/utility vehicles.

Unlike the CDS, the GES does not investigate crashes. Its only source of information is the police crash report. It does provide the data needed for assessments of the state of and trends in motor vehicle and traffic safety. An annual report is published each year that describes the data availability from the NASS/GES and the Fatality Analysis Reporting System (FARS). The FARS is a census of all fatal crashes that occur in the United States and Puerto Rico.

Objective

The objective of this report is to illustrate the availability, resolution, and applicability of crash, vehicle, occupant, and casualty attributes for the characterization of vehicle crash protection performance on U.S. roads during the years 1994 through 1996, based on the NASS/CDS records for those years.

Vehicles Under Consideration

This report addresses towed passenger cars, pickup trucks, vans, and sport/utility vehicles under 10,000 pounds GVWR. Sport/utility vehicles include jeeps, truck-based station wagons, utility vehicles, and other van- or truck-based motor vehicles under 10,000 pounds GVWR that are not cars, pickups, or vans. Motorcycles, bicycles, horse-drawn carriages, etc., are not included.

CDS Estimates

Unless otherwise noted, all the CDS statistics presented in this report are estimates not exact counts- generated from a sample of crashes that occurred in the 3-year period from 1994 through 1996. Descriptions of the CDS sample design and the procedure used to obtain the data shown in the tables are contained in Appendix B. Since the CDS is a probability sample, the sampling error of every CDS statistic can be estimated. Approximate sampling errors for the weighted average counts over the 1994-1996 period are provided in Appendix F.

Perspective

A perspective on crash-involved vehicles is provided in Figure 1, which shows the annual incidence averaged over the years 1994-1996.

The number of vehicles of all body types involved in police-reported crashes each year in the United States is about 11,400,000; about 93.0 percent of these are passenger cars, pickups, vans, and sport/utility vehicles. In this report, pickups, vans, and sport/utility vehicles are collectively referred to as "light trucks." Each of these body types is subdivided into towed and non-towed vehicles.

Note: For those vehicles where tow status is unknown it is assumed that the vehicles were not towed. While all vehicles are addressed by NASS/GES, only towed passenger vehicles are addressed by NASS/CDS.
Source: NASS/CDS and NASS/GES, 1994-1996.

Perspective

The towed vehicles shown in Figure 1 are investigated in the NASS/CDS, because of interest in the crashworthiness of vehicles involved in the more severe crashes. These are the subject of the following analyses and illustrations, with emphasis on cars. During the period 1994-1996, the average number of registered passenger vehicles per year, as reported by R.L. Polk \& Co., was 185,765,664, of which 123,283,749 (66.4 percent) were passenger cars and $62,481,915$ (33.6 percent) were light trucks.

3. Vehicle Crash Data

Car Size

About $2,544,000$ cars are towed away from the scene of traffic crashes every year. Table 1 shows the distribution of these cars by weight class. Passenger cars made up about 76 percent of all NASS/CDS towed vehicles; the remaining 24 percent were light trucks (see Table 5).

TABLE 1CRASH-INUOLVED TOWED CARS BY WEIGHT CLASS, 1994-1996			
WEIGHT CLASS	TOTAL SAMPLE	annual averace	
		PERCENT	COUNT
SMALL ($<2,500$ LBS)	4,762	33.3\%	846,069
MID-SIZE [2,500-3,000 LBS]	4,536	35.0\%	890,969
LARGE ($>\mathbf{3 , 0 0 0}$ LBS)	4,631	30.3\%	772,190
UNKNOWN SIZE	256	1.4\%	35,066
TOTAL	14,185	100.0\%	2,544,293

EXAMPLES OF WEIGHT CLASS:

SMALL-FORD TEMPO, MERCURY TRACER, SATURN, NISSAN SENTRA, HONDA CIVIC
MID-SIZE-PLYMOUTH SUNDANCE, FORD PROBE, HONDA PRELUDE, TOYOTA CELICA
LARGE-FORD TAURUS, DODGE DYNASTY, BMW 3 SERIES, PONTIAC GRAND PRIX

Car Crash Modes and Areas of Damage

Table 2 and Figure 2 show the distribution of towed cars among the primary crash modes and areas of damage. Frontal damage in nonrollover car crashes is the most frequent crash type, accounting for about 58 percent of all towed car crashes. Side damage and all other nonrollover crash types account for 29 percent and 9 percent, respectively. Rollover car crashes account for the remaining 4 percent.

These crash frequencies do not reflect the distribution of harmful outcomes to the car occupants. Certain crash types are associated with higher proportions of injury. For example, although rollover occurs in about 4 percent of towed car crashes, it is responsible for about 13 percent of the harm-weighted injuries to car occupants in towed crashes. On the other hand, car crashes with rear damage account for about 9 percent of the cases but are responsible for about 5 percent of the harm-weighted injuries to occupants (see Table 25).

TABLE 2
DISTRIBUTION OF TOWED CAR CRASH MODES AND AREAS OF DAMAEE, 1994-1996

CRASH MODE AND AREA OF DAMAGE	TOTAL SAMPLE	ANNUAL AVERAGE	
		PERCENT	COUNT
ROLLOVER			
1-3 QUARTER TURNS	568	2.8\%	71,340
4+ OUARTER TURNS	443	1.4\%	36,254
END OVER END	38	0.1\%	1,827
total rollover	1,049	4.3\%	109,421
NOMROLLOVER			
SINELEVEHICLE			
FRONTAL DAMAGE	1,989	14.2\%	362,350
SIDE DAMAGE	565	4.1\%	104,425
REAR, TOP, OR UNDER DAMAGE	73	1.0\%	25,007
TOTAL SINGLEVEHICLE	2,627	19.3\%	491,782
MULTIPLEVEHICLE			
FRONTAL DAMAEE	6,196	43.4\%	1,104,169
SIDE DAMAGE	3,380	25.0\%	636,588
REAR DAMAGE	919	7.9\%	200,319
TOP OR UNDER DAMAGE	14	0.1\%	2,014
TOTAL MULTIPLEVEHICLE	10,509	76.4\%	1,943,090
total nowrollover	13,136	95.7\%	2,434,872
TOTAL TOWED CAR CRASHES	14,185	100.0\%	2,544,293

NOTE: DAMAGE AREA "UNKNOWN" HAS BEEN IMPUTED INTO THE KNOWN DAMAGE AREAS.

Figure 2
Distribution of Towed Car Crash Modes and Areas of Damage, 1994-1996

Note: The "Other" category for single-vehicle crashes includes rear, top, and under damage. For multiple-vehicle crashes, "Other" includes top and under damage.
Source: NASS/CDS, 1994-1996.

Note: The "Other" category for single-vehicle crashes includes rear, top, and under damage. For multiple-vehicle crashes,
"Other" includes top and under damage.
Source: NASS/CDS, 1994-1996.

Car Crash Severity

Crash severity (delta-v in miles per hour) for cars varies generally in the range from 1 to 50 mph . Table 3 shows the distribution of towed cars by severity and area of damage. No crash severity, in terms of delta-v, can be defined for rollover crashes. Figure 3 illustrates the primary aspects of this distribution.

Crash frequency rises sharply to a peak located between 11 and 20 mph , as shown in Figure 3. This frequency drops sharply following the peak; cumulative frequency beyond 40 mph is about 0.2 percent. The same general pattern holds for all areas of damage in nonrollover crashes: front, side, and rear.

Great caution is recommended in the use and interpretation of crash severity data, for two reasons: (a) the large number of unknowns; and (b) the sharp reduction in the number of available cases as crash severity increases. For "Unknown" area of damage in Table 3, crash severity was calculated using the missing vehicle reconstruction algorithm (see Appendix E, "CRASHPC and OLDMISSPC Summary"). Area of damage "other" includes top and undercarriage, which are outside the scope of the reconstruction algorithm.

AREA OF DAMAGE	TABLE 3 DISTRIBUTION OF TOWED CARS BY CRASH SEVERITY (DELTA-V) AND AREA OF DAMAGE: AVERAGE PER YEAR, 1994-1996						
	CRASH Frequency by crash severity*						
	$1-10$ MPH	$11-20 \mathrm{MPH}$	21-30 MPH	31-40 MPH	>40 MPH	UnKNOWN	TOTAL
FRONT	217,353	368,872	57,659	6,991	1,477	382,295	1,034,646
	33.3\%	56.5\%	8.8\%	1.1\%	0.2\%	36.9\%	40.7\%
SIDE	144,746	148,240	16,480	5,753	242	218,918	534,377
	45.9\%	47.0\%	5.2\%	1.8\%	0.1\%	41.0\%	21.0\%
REAR	31,131	61,872	11,587	1,303	367	44,579	150,840
	29.3\%	58.2\%	10.9\%	1.2\%	0.3\%	29.6\%	5.9\%
OTHER	0	0	0	0	0	68,925	68,925
	-	-	-	-	-	100.0\%	2.7\%
UNKNOWN	4,753	3,542	117	0	0	747,092	755,505
	56.5\%	42.1\%	1.4\%	0.0\%	0.0\%	98.9\%	29.7\%
TOTAL	397,983	582,526	85,843	14,047	2,086	1,461,809	2,544,293
	36.8\%	53.8\%	7.9\%	1.3\%	0.2\%	57.5\%	100.0\%

*FOR EACH AREA OF DAMAGE AND KNOWN CRASH SEVERITY, THE FIRST DATA ROW SHOWS THE NUMBER OF VEHICLES, AND THE second row shows the percentage of the total number of vehicles in that row for which crash severities were KNOWN. FOR THE "UNKNOWN" COLUMN, THE SECOND DATA ROW SHOWS THE PERCENTAGE OF THE TOTAL FOR EACH AREA OF DAMAGE. FOR THE "TOTAL" COLUMN, THE SECOND DATA ROW SHOWS THE PERCENTAGE OF THE GRAND TOTAL. NA = NOT AVAILABLE.

Figure 3
Distribution of Towed Car Crashes by Crash Severity and Area of Damage, 1994-1996

Note: Data taken from Table 3 (percentage of the total number of vehicles for which crash severities were known).

Due to the sharp rise of outcome severity as crash severity increases, the distribution of injuries to car occupants vs. crash severity differs markedly from the distribution of the crash frequency. Specifically, the injury distribution rises to a peak much faster, and drops much more slowly thereafter, than does the crash frequency distribution. For example, the injury proportions (not shown) in the five crash severity intervals used in Table 3 and Figure 3 are 10 percent, 37 percent, 28 percent, 16 percent, and 8 percent for frontal impacts, compared with the corresponding crash proportions of 33 percent, 57 percent, 9 percent, 1 percent, and about 0 percent. However, although it is true that the injury proportions exceed the corresponding crash proportions at high crash severities, it is also true that the majority of the injuries occur at severities under 40 mph . For example, in frontal impacts 92 percent of the injuries to occupants occur at severities under 40 mph ; the cumulative injury proportion under 40 mph is 97 percent for side impacts and 98 percent for rear impacts.

Seating Position of Car Occupants

Every year, approximately 3.8 million people are involved in crashes as occupants of towed cars. Table 4 shows the distribution of occupant seating positions for towed cars from 1994 through 1996.

The distribution pattern-about 67 percent drivers, 21 percent right front passengers, and 12 percent all other-is roughly the same as for all cars regardless of crash involvement.

TABLE 4
OCCUPANT SEATING POSITIONS IN TOWED CARS, 1994-1996

CAR OCCUPANTS	TOTAL SAMPLE	annual averace	
		PERCENT	COUNT
DRIVERS	14,146	66.7\%	2,532,969
RIGHT FRONT PASSENGERS	5,064	20.5\%	780,160
SECOND SEAT PASSENGERS	3,221	11.8\%	448,201
OTHER PASSENGERS	287	1.0\%	36,774
TOTAL	22,718	100.0\%	3,798,104

Functional Class and Size of Light Trucks

About 785,000 light trucks (pickups, vans, and sport/utility vehicles) under 10,000 pounds gross vehicle weight rating are towed away from the scene of traffic crashes every year. Table 5 shows the distribution of these vehicles by functional class and size. The annual average for these vehicles is 24 percent of all NASS/CDS towed vehicles. The remaining 76 percent are cars.

TABLE 5
dISTRIBUTION OF TOWED LIGHT TRUCKS BY VEHICLE CLASS AND SIZE, 1994-1996

VEHICLE CATEGORY AND SIZE	TOTAL SAMPLE	ANNUAL AVERAGE	
		PERCENT	COUNT
COMPACT PICKUP	1,345	29.4\%	231,107
Standard PICKUP	1,292	21.0\%	165,241
UNKNOWN SIZE PICKUP	44	0.8\%	6,163
MINIVAN	734	14.1\%	110,595
STANDARD VAN	429	9.5\%	74,723
UNKNOWN SIZE UAN	36	0.4\%	3,192
COMPACT UTILITY VEHICLE	1,038	20.3\%	159,594
STANDARD UTILITY VEHICLE	247	4.2\%	33,066
UNKNOWN SIZE UTILITY VEHICLE	12	0.2\%	1,709
TOTAL	5,177	100.0\%	785,390

Light Truck Crash Modes and Areas of Damage

Crash mode and area of damage distributions for towed light trucks involved in crashes are generally similar to those for towed cars, except for rollover crashes. The proportion of rollovers for light trucks is 3 to 4 times that for passenger cars. Table 6 shows the distribution of towed light trucks among the primary crash modes and areas of damage.

table 6distribution of towed licht truck crash modes and areas of damace, 1994-1996			
CRASH MODE AND AREA OF DAMAGE	TOTAL SAMPLE	ANNUAL AVERAGE	
		PERCENT	COUNT
ROLLOVER			
1-3 QUARTER TURNS	613	10.0\%	78,439
4+ QUARTER TURNS	444	5.4\%	42,570
END OVER END	16	0.1\%	450
total rollover	1,073	15.5\%	121,459
NONROLLOVER			
SINGLE-VEHICLE			
FRONTAL DAMAGE	679	17.3\%	135,613
SIDE DAMAGE	140	3.0\%	23,210
REAR, TOP, OR UNDER DAMAGE	14	0.2\%	1,918
TOTAL SINGLEVEHICLE	833	20.5\%	160,741
MULTIPLEVEHICLE			
FRONTAL DAMAGE	2,380	43.2\%	339,519
SIDE DAMAGE	692	15.7\%	123,457
REAR DAMAEE	196	5.1\%	40,174
TOP OR UNDER DAMAEE	3	0.0\%	40
TOTAL MULTIPLEVEHICLE	3,271	64.1\%	503,190
total nonrollover	4,104	84.5\%	663,931
TOTAL CRASHES	5,177	100.0\%	785,390

Figure 4 shows the distribution of crash modes and areas of damage for towed light trucks, compared with the distribution for towed cars for the years 1994 through 1996.

Most of the observations for car crash frequencies and injury as a function of crash mode and area of damage are also valid for these vehicles. Rollover is the major exception: rollover crashes for light trucks are both more frequent than car rollover crashes (16 percent and 4 percent, respectively) and result in a greater proportion of harmful outcomes to the vehicle occupants (37 percent and 13 percent, respectively). The proportion of harm-weighted injuries (37 percent) associated with rollover crashes is the average for three vehicle classes -pickups, vans, and sport/utility vehicles (see Table 26). For these three classes the proportion of harmful outcomes varies significantly: rollover accounts for approximately 37 percent of all harm associated with pickups, 29 percent for vans, and 45 percent for sport/utility vehicles

Figure 4
Distribution of Crash Modes and Areas of Damage: Comparison of Cars vs. Light Trucks, 1994-1996

NOTE: THE "OTHER" CATEGORY FOR SINGIEVEHICLE CRASHES INCLUDES REAR, TOP, AND UNDER DAMAGE. for muliflevevilcle crashes, "other" includes top and under damage.

Light Truck Crash Severity

Table 7 shows the distribution of towed light truck crashes by crash severity (delta-v in miles per hour) and area of damage. Most of the observations made for towed car crash frequencies and injuries to occupants as a function of crash severity are also valid for these vehicles; the same general patterns are observed. For example, for frontal impact, the injury proportions (not shown) in the five crash severity intervals used in Table 7 are 7 percent, 27 percent, 29 percent, 18 percent, and 20 percent for frontal impacts, and the corresponding crash proportions are 39 percent, 48 percent, 10 percent, 2 percent, and less than 1 percent.

A large majority of the injuries to occupants in towed light truck crashes occur at crash severities under 40 mph . For example, in frontal impacts 80 percent of the injuries occur at severities under 40 mph . The cumulative injury proportion under 40 mph is 100 percent for both side and rear impacts.

The comment made in connection with car crash severities is even more important for these vehicles: great caution is recommended in the use and interpretation of crash severity data, for two reasons: (a) the large number of unknowns; and (b) the sharp reduction of the number of available cases as crash severity increases. For "Unknown" area of damage in Table 7, crash severity was calculated using the missing vehicle reconstruction algorithm.

TABLE 7 DISTRIBUTION OF TOWED LIGHT TRUCKS BY CRASH SEVERITY (DELTA-V) AND AREA OF DAMAGE: AVERAGE PER YEAR, 1994-1996							
	CRASH FREQUENCY BY CRASH SEVERITY*						
AREA OF DAMACE	1.10 MPH	11-20 MPH	21-30 MPH	31-40 MPH	>40 MPH	UNKNOWN	TOTAL
FRONT	67,304	81,479	17,753	3,073	1,185	140,678	311,472
	39.4\%	47.7\%	10.4\%	1.8\%	0.7\%	45.2\%	39.7\%
SIDE	39,068	20,333	3,609	129	16	53,728	116,883
	61.9\%	32.2\%	5.7\%	0.2\%	0.0\%	46.0\%	14.9\%
REAR	5,021	10,331	364	37	0	10,691	26,444
	31.9\%	65.6\%	2.3\%	0.2\%	0.0\%	40.4\%	3.4\%
OTHER	0	0	0	0	0	39,652	39,652
UNKNOWN	150	406	11	0	0	290,372	290,940
	26.4\%	71.5\%	1.9\%	0.0\%	0.0\%	99.8\%	37.0\%
TOTAL	111,543	112,549	21,737	3,239	1,201	535,121	785,390
	44.6\%	45.0\%	8.7\%	1.3\%	0.5\%	68.1\%	100.0\%

Seating Position of Light Truck Occupants

Approximately $1,225,000$ people are involved in crashes as occupants of towed light trucks every year. Table 8 shows the distribution of occupant seating positions for these vehicles from 1994 through 1996.

The distribution pattern-about 63 percent drivers, 20 percent right front passengers, and 17 percent all other-is roughly the same as for all light trucks regardless of crash involvement. It is also similar to the corresponding distribution for towed car crashes (Table 4).

TABLE 8OCCUPAKT SEATING POSITIONS IN TOWED LICHT TRUCKS, 1994-1996			
VEHICLE OCCUPANTS	TOTAL SAMPLE	annual averace	
		PERCENT	COUNT
DRIVERS	5,156	63.4\%	776,920
RIGHT FRONT PASSENGERS	1,726	19.9\%	244,121
SECOND SEAT PASSENGERS	805	7.5\%	92,409
OTHER PASSENGERS	604	9.1\%	111,064
TOTAL	8,291	100.0\%	1,224,514

Crash-Involved Occupants by Injury Severity

Approximately $3,800,000$ occupants are involved in towed car crashes every year. About 49 percent of them are uninjured, and 51 percent are injured at various severity levels. Similarly, about 1,225,000 occupants are involved in towed light truck crashes per year, with about 55 percent uninjured and 45 percent injured.

Given that each injured occupant usually has more than one injury, the severity of the occupant's most harmful injury is used to characterize the seriousness of the injuries resulting from the crash. The Abbreviated Injury Scale (AIS) is used to compare injury severities, as follows:

AIS	Severity of Injury

0 Not injured
1 Minor
2 Moderate
3 Serious
4 Severe
5 Critical
6 Maximum
7 Injured, Severity
Unknown
The AIS scale reflects primarily the threat to life: approximately 99 percent for AIS=6; about 51 percent for $A I S=5$; about 24 percent for $A I S=4$; declining rapidly to almost 0 percent for $\mathrm{AlS}=1$. However, the scale is also used to reflect the gravity of consequences for survivors.

The distribution of injury severities for injured crash-involved occupants is shown in Table 9 for cars and in Table 10 for light trucks. The two distributions are compared in Figure 5, where it is evident that there are no major differences at any given level of injury severity.

Occupants coded as "unknown if injured" have been excluded from the detail in Tables 9 through 14, but have been included in the "Total" rows to reflect the total number of occupants involved in towed passenger vehicle crashes.

table 10 dISTRIBUTION OF CRASH-INVOLVED LICHT TRUCK OCCUPANTS BY MAXIMUM INJURY SEVERITY: AVERAGE PER YEAR, 1994-1996		
MAXIMUM AIS RATIME	COUNT	Percent
NOT INJURED (0)	675,165	55.1\%
MINOR [1]	403,107	32.9\%
MODERATE (2)	51,367	4.2\%
SERIOUS (3)	17,490	1.4\%
SEVERE (4)	6,225	0.5\%
CRITICAL (5)	3,156	0.3\%
MAXIMUM (6)	1,601	0.1\%
TOTAL, KNOWN SEVERITY	1,158,111	94.6\%
INJURED, SEVERITY UNKNOWN (7)	57,770	4.7\%
TOTAL	1,224,514	100.0\%

Figure 5
Distribution of Crash-Involved Occupant Injuries
by Maximum Injury Severity: Cars vs. Light Trucks, 1995-1996

Use of Belts

The annual distribution of injuries to crash-involved car occupants by maximum injury severity and belt use is shown in Table 11. A similar joint distribution is shown in Table 12 for crash-involved light truck occupants.

TABLE 11
DISTRIBUTION OF CRASH-INUOLVED CAR OCCUPANTS BY BELT USE AND MAXIMUM INJURY SEVERITY: AVERAGE PER YEAR, 1994-1996

$\begin{aligned} & \text { BELT } \\ & \text { USE } \end{aligned}$	FREQUENCY Of INJURY BY MAXIMUM AIS RATING*								
	NOT IMJURED (0)	MINOR (I)	moderate (2)	SERIOUS (3)	SEVERE (4)	CRITICAL (5)	MAXIMUM (6)	INJURED, SEVERITY UNKNOWN (7)	TOTAL
NONE	267,314	372,119	64,938	29,997	7,695	5,514	1,650	27,856	789,094
	17.6\%	27.1\%	45.4\%	50.6\%	58.4\%	62.9\%	65.0\%	25.1\%	24.3\%
AUTOMATIC BELT	327,889	244,606	27,057	12,451	2,769	1,169	385	20,416	636,988
	21.5\%	17.8\%	18.9\%	21.0\%	21.0\%	13.3\%	15.2\%	18.4\%	19.6\%
MANUAL BELT	862,436	747,911	50,379	16,788	2,584	2,029	472	62,266	1,748,457
	56.7\%	54.5\%	35.2\%	28.3\%	19.6\%	23.2\%	18.6\%	56.2\%	53.8\%
BELT WITH	64,747	8,933	752	18	138	51	31	315	74,985
CHILD SEAT	4.3\%	0.7\%	0.5\%	0.0\%	1.0\%	0.6\%	1.2\%	0.3\%	2.3\%
TOTAL,	1,255,072	1,001,450	78,188	29,257	5,491	3,249	888	82,997	2,460,430
RESTRAINED	82.4\%	72.9\%	54.6\%	49.4\%	41.6\%	37.1\%	35.0\%	74.9\%	75.7\%
TOTAL KNOWN	1,522,386	1,373,569	143,126	59,254	13,186	8,763	2,538	110,853	3,249,524
	81.7\%	95.1\%	94.2\%	91.9\%	94.6\%	91.8\%	75.4\%	53.5\%	85.6\%
UNKNOWN	341,262	70,244	8,793	5,225	758	778	826	96,487	548,580
	18.3\%	4.9\%	5.8\%	8.1\%	5.4\%	8.2\%	24.6\%	46.5\%	14.4\%
TOTAL	1,863,648	1,443,813	151,919	64,479	13,944	9,541	3,364	207,340	3,798,104
	49.1\%	38.0\%	4.0\%	1.7\%	0.4\%	0.3\%	0.1\%	5.5\%	100.0\%

*FOR EACH KNOWN BELT USE CATEGORY, the first data row shows the number Of induries and the second row shows the percentage of the "TOTAL KNOWN" IN THAT COLUMN. FOR THE "TOTAL KNOWN" AND "UNKNOWN" BELT USE CATEGORIES, THE FIRST ROW SHOWS THE NUMBER OF INJURIES AND THE SECOND ROW SHOWS THE PERCENTAGE OF THE COLUMN TOTAL. FOR THE COLUMN TOTALS, THE FIRST ROW SHOWS THE NUMBER OF INJURIES AND the second row shows the percentage of the total number of induries. the row totals include the number of "unknown if indured".

Overall, belt use is approximately 76 percent for passenger car occupants and 71 percent for occupants of light trucks. These belt use rates are in agreement with the belt use rates obtained by individual state surveys reported to NHTSA each year. Not all states report belt usage rates each year. Therefore, to calculate the national safety belt use rate from the individual state use rates, each state's most recent rate is weighted by the state's proportion of the total U.S. population. Average state belt use rates were reported as 66 percent in 1993, 67 percent in 1994, and 68 percent in 1995.

$\begin{aligned} & \text { BELT } \\ & \text { USE } \end{aligned}$	TABLE 12 DISTRIBUTION OF CRASH-INVOLVED LIGHT TRUCK OCCUPANTS BY BELT USE AND MAXIMUM INJURY SEVERITY: AVERAGE PER YEAR, 1994-1996								
	frequency of injury by maximum ais rating*								
	$\begin{array}{\|c} \hline \text { MOT IMJURED } \\ (\mathbf{0}) \end{array}$	$\begin{gathered} \text { MINOR } \\ \text { (1) } \end{gathered}$	$\begin{gathered} \text { Moderate } \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { SERIOUS } \\ \text { (3) } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { SEvere } \\ \text { (4) } \end{gathered}$	$\begin{gathered} \text { CRItical } \\ \text { (5) } \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { (6) } \end{gathered}$	$\begin{gathered} \text { IMJURED, } \\ \text { SEVERITY } \\ \text { UNKNOWN (7) } \end{gathered}$	TOTAL
NONE	107,905	138,722	24,137	11,080	4,819	2,393	659	11,814	307,417
	19.7\%	35.9\%	49.7\%	66.6\%	82.1\%	80.3\%	62.2\%	33.5\%	29.2\%
aUtomatic beli	2,318	1,577	406	17	0	0	0	0	4,318
	0.4\%	0.4\%	0.8\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.4\%
manual belt	426,032	244,583	23,916	5,499	1,050	586	400	23,333	725,857
	77.6\%	63.3\%	49.3\%	33.0\%	17.9\%	19.7\%	37.8\%	66.2\%	69.0\%
BELT WITH child seat	12,432	1,565	69	45	0	0	0	112	14,222
	2.3\%	0.4\%	0.1\%	0.3\%	0.0\%	0.0\%	0.0\%	0.3\%	1.4\%
total, RESTRAINED	440,782	247,725	24,391	5,561	1,050	586	400	23,445	744,397
	80.3\%	64.1\%	50.3\%	33.4\%	17.9\%	19.7\%	37.8\%	66.5\%	70.8\%
total known	548,687	386,447	48,528	16,641	5,869	2,979	1,059	35,259	1,051,814
	81.3\%	95.9\%	94.5\%	95.2\%	94.3\%	94.4\%	66.1\%	61.0\%	85.9\%
UNKNOWN	126,480	16,661	2,840	848	355	176	543	22,512	172,700
	18.7\%	4.1\%	5.5\%	4.8\%	5.7\%	5.6\%	33.9\%	39.0\%	14.1\%
total	675,167	403,108	51,368	17,489	6,224	3.155	1,602	57,771	1,224,514
	55.1\%	32.9\%	4.2\%	1.4\%	0.5\%	0.3\%	0.1\%	4.7\%	100.0\%

*FOR each known belt use category, the first data row shows the number of injuries and the second row shows the percentage of the "total known" in that column. for the "total known" and "unknown" belt use categories, the first row shows the number of injuries and the second row shows the percentage of the column total. for the column totals, the first row shows the number of injuries and the second row shows the percentage of the total number of induries. the row totals include the number of "unknown if injured."

Effect of Belt Use on Injury Risk

It is evident from Tables 11 and 12 that safety belt use reduces the risk of injury, especially serious injury. This is illustrated in Figure 6 for crash-involved car occupants. In this figure, AIS ratings 3, 4, 5, and 6 have been grouped together as "Serious-Maximum" in order to deal with the small sample sizes at these high severities. As seen in Figure 6, the risk of injury (expressed in injured people per 100 crash-involved car occupants) for occupants using belts is lower than that for unbelted occupants. Moreover, this advantage appears to increase as the injury severity increases.

A word of caution is necessary when interpreting the much lower risk associated with belted versus unbelted occupants at high injury severities. It is likely that belted occupants, who usually have a higher awareness of safety than the unbelted, are also the occupants who usually avoid crashes of high severities. Thus, the advantage of belted occupants may be in part due to the fact that such occupants are exposed to lower crash severities, in addition to the crash protection provided by the belts.

Figure 6
Injury Rates for Crash-Involved Car Occupants by Maximum Injury Severity as a Function of Belt-Use, 1994-1996

Injury Severity and Outcome

As discussed above (see Table 9), not all crash deaths are associated with untreatable injuries (AIS=6). Rather, the probability of death increases sharply with injury severity, and many fatalities occur as a result of one or more injuries that are generally considered survivable. Crash injury outcomes-fatality, hospitalization, needed emergency medical care, first aid treatment, and no treatment needed-are generally a function of the severity of an occupant's most severe injury, plus other factors, such as the number, severity, and type of additional injuries; the person's age and overall health; extrication time; etc.

The primary determinant of an outcome is the maximum injury severity. Table 13 shows the distribution of injuries to crash-involved car occupants according to the AIS values of maximum injury severity and the pertinent outcomes of maximum injury severities. This table also includes the number of days an occupant was hospitalized for injuries sustained in the crash as a result of the crash. An occupant may be hospitalized for observation or due to a pre-existing medical condition, as directed by the attending physician, without having received any injuries in the crash.

Fatal injuries with AIS=1 are the result of incomplete medical information by which to code the data. A similar distribution is shown in Table 14 for crash-involved light truck occupants.

TABLE 13
DISTRIBUTION OF CRASH-INUOLVED CAR OCCUPANTS BY TREATMENT AND MAXIMUM INJURY SEVERITY: AVERAGE PER YEAR, 1994-1996

TREATMENT	FREQUENCY OF INJURY bY MaXimum ais rating*								
	$\begin{aligned} & \text { NOT INJURED } \\ & \text { (0) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MINOR } \\ & \text { (I) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MODERATE } \\ & \text { (2) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { SERIOUS } \\ \text { (3) } \\ \hline \end{gathered}$	SEvere (4)	critical (5)	$\begin{aligned} & \text { MAXIMUM } \\ & \text { (6) } \\ & \hline \end{aligned}$	INJURED, SEVERITY UNKNOWN (7)	TOTAL
NONE	1,755,391	341,630	4,690	0	0	0	0	38,918	2,147,728
	81.7\%	15.9\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	1.8\%	56 5\%
TREATED	21,832	223,483	10,138	538	0	0	0	33,266	289,777
AT SCENE	7.5\%	77.1\%	3.5\%	0.2\%	0.0\%	0.0\%	0.0\%	11.5\%	7 6\%
TRANSPORTED	76,662	815,911	75,124	12,833	81	16	0	49,492	1,030,895
AND RELEASED	7.4\%	79.1\%	7.3\%	1.2\%	0.0\%	0.0\%	0.0\%	4.8\%	27 1\%
HOSPITALIZED	3,330	40,439	34,389	15,663	2,568	533	0	3,053	99,975
1-2 DAYS	3.3\%	40.4\%	34.4\%	15.7\%	2.6\%	0.5\%	0.0\%	3.1\%	2 6\%
	326	8,599	21,098	17,990	4,269	1,145	0	774	54,202
3-7 DAYS	0.6\%	15.9\%	38.9\%	33.2\%	7.9\%	2.1\%	0.0\%	1.4\%	14%
	43	268	3,217	10,294	1,759	1,433	0	29	17,044
8-14 DAYS	0.3\%	1.6\%	18.9\%	60.4\%	10.3\%	8.4\%	0.0\%	0.2\%	0 4\%
	0	327	1,684	3,726	1,237	999	0	33	8,007
15-30 DAYS	0.0\%	4.1\%	21.0\%	46.5\%	15.4\%	12.5\%	0.0\%	0.4\%	0 2\%
	0	38	160	1,048	724	504	27	0	2,499
>30 DAYS	0.0\%	1.5\%	6.4\%	41.9\%	29.0\%	20.2\%	1.1\%	0.0\%	0.1\%
FATAL	0	1,077	1,272	2,362	3,306	4,909	3,338	2,912	19,177
	0.0\%	5.6\%	6.6\%	12.3\%	17.2\%	25.6\%	17.4\%	15.2\%	0.5\%
UNKNOWN	6,064	12,040	147	24	0	0	0	78,863	128,800
	4.7\%	9.3\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	61.2\%	3.4\%
TOTAL	1,863,648	1,443,812	151,919	64,479	13,943	9,540	3,364	207,341	3,798,104
	49.1\%	38.0\%	4.0\%	1.7\%	0.4\%	0.3\%	0.1\%	5.5\%	100.0\%

*FOR EACH TREATMENT CATEGORY, tHE FIRST DATA ROW SHOWS THE NUMBER OF INJURIES AND THE SECOND ROW SHOWS THE PERCENTAGE OF THE ROW total. the row totals include the number of "Unknown if injured."

TABLE 14
DISTRIBUTION OF CRASH-INVOLVED LIGHT TRUCK OCCUPANTS BY TREATMENT AND MAXIMUM INJURY SEVERITY: AVERAGE PER YEAR, 1994-1996

TREATMEMT	frequency of indury by maximum ais rating*								
	$\begin{array}{\|c\|} \hline \text { NOT IMJURED } \\ \mathbf{(0)} \end{array}$	$\begin{gathered} \text { MINOR } \\ \text { (1) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MODERATE } \\ & \text { (2) } \end{aligned}$	$\begin{gathered} \text { SERIOUS } \\ \text { (3) } \end{gathered}$	$\begin{gathered} \text { SEveri } \\ \text { (4) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CRITICAL } \\ \text { (5) } \end{gathered}$	$\begin{gathered} \text { MaximuM } \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} \text { IMJURED, } \\ \text { SEVERITY } \\ \text { UUKNOWN (7) } \\ \hline \end{gathered}$	TOTAL
NONE	646,139	87,387	60	0	0	0	0	17,652	752,000
	85.9\%	11.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	2.3\%	61 4\%
treated	15,165	57,849	1,509	41	0	0	0	4,883	79,522
at Scene	19.1\%	72.7\%	1.9\%	0.1\%	0.0\%	0.0\%	0.0\%	6.1\%	6 5\%
TRANSPORTED	11,329	240,825	26,066	1,477	0	0	0	9,957	289,653
and released	3.9\%	83.1\%	9.0\%	0.5\%	0.0\%	0.0\%	0.0\%	3.4\%	23 7\%
HOSPITALIZED	392	12,142	14,412	3,769	1,423	157	0	1,658	34,001
1-2 DaYs	1.2\%	35.7\%	42.4\%	11.1\%	4.2\%	0.5\%	0.0\%	4.9\%	28%
	42	3,154	5,267	6,080	1,422	141	0	32	16,138
3-7 DaYs	0.3\%	19.5\%	32.6\%	37.7\%	8.8\%	0.9\%	0.0\%	0.2\%	13%
	6	110	1,829	2,793	989	285	0	4	6,016
8-14 DAYS	0.1\%	1.8\%	30.4\%	46.4\%	16.4\%	4.7\%	0.0\%	0.1\%	0 5\%
	0	25	1,748	1,970	288	301	0	24	4,355
15-30 days	0.0\%	0.6\%	40.1\%	45.2\%	6.6\%	6.9\%	0.0\%	0.6\%	0 4\%
	0	0	120	359	275	152	3	0	908
>30 DAYS	0.0\%	0.0\%	13.2\%	39.5\%	30.3\%	16.7\%	0.3\%	0.0\%	0.1\%
fatal	0	529	325	983	1,828	2,120	1,598	1,836	9,220
	0.0\%	5.7\%	3.5\%	10.7\%	19.8\%	23.0\%	17.3\%	19.9\%	0.8\%
UNKNOWN	2,093	1,086	30	18	0	0	0	21,726	32,700
	6.4\%	3.3\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	66.4\%	2.7\%
total	675,165	403,107	51,367	17,490	6,225	3,156	1,601	57,70	1,224,514
	55.1\%	32.9\%	4.2\%	1.4\%	0.5\%	0.3\%	0.1\%	4.7\%	100.0\%

The annual incidence of crash-involved car occupants as a function of maximum injury severity and injury outcome is shown in Figure 7. This figure illustrates how injury outcome progresses from "No Treatment" to "Fatality," as the maximum injury severity increases from "None" to "Untreatable" (Fatal). Similar comments apply for light truck occupants, as shown in Table 14.

Figure 7
Annual Incidence of Injured Crash-Involved Car Occupants, by Maximum Injury Severity and Treatment, 1994-1996

Effect of Alcohol Use on Injury Risk

The presence of alcohol in a motor vehicle driver increases (a) the likelihood of being involved in a crash, (b) the severity of the crash, and possibly the severity of the outcome in terms of survivability. In this report, alcohol reporting is based on the police officer's assessment at the time of the crash.

Table 15 shows that, for drivers of passenger cars, those whose age is between 25 and 34 have the highest alcohol use rate, followed by the 35 through 44 age range and then the 21 - through 24 -year-old drivers. Table 16 shows that, for drivers of light trucks, those whose age is between 25 and 34 have the highest alcohol use rate, followed by drivers 15 through 20 years old and then by those 35 through 44 years old. Drivers of light trucks have almost twice the alcohol use rate of passenger car drivers. These percentages are based on the "Total Known."

Table 17 shows that, for drivers of passenger cars, as the severity of the injury increases so does the presence of alcohol. Drivers in towed passenger cars with alcohol present had MAIS 3-6 injury rates alsmost 3 times those for drivers with no alcohol present. Approximately 24 percent of the MAIS 6 injuries are the result of alcohol involvement, followed by 23 percent of the MAIS 5 injuries and 18 percent of the MAIS 4 injuries. Table 18 describes the same pattern for drivers of towed light trucks. Drivers in towed light trucks with alcohol present had MAIS 3-6 injury rates at least twice those for drivers with no alcohol present.

TABLE 15
DISTRIBUTION OF CRASH-INVOLVED CAR DRIVERS BY AGE GROUP AND ALCOHOL USE: AVERAGE PER YEAR, 1994-1996

POLICE-REPORTED ALCOHOL USE	AGE GROUP (YEARS)							
	15-20	21-24	25-34	35-44	45-64	65	UNKNOWN	TOTAL
NO ALCOHOL PRESENT	447,146	280,812	480,055	363,468	354,019	205,835	11,205	2,142,538
	20.9\%	13.1\%	22.4\%	17.0\%	16.5\%	9.6\%	0.5\%	84.6\%
ALCOHOL PRESENT	27,404	27,984	64,193	36,986	19,355	4,851	4,130	184,903
	14.8\%	15.1\%	34.7\%	20.0\%	10.5\%	2.6\%	2.2\%	7.3\%
NOT REPORTED	42,743	15,643	26,115	20,563	21,752	16,171	15,355	158,342
	27.0\%	9.9\%	16.5\%	13.0\%	13.7\%	10.2\%	9.7\%	6.3\%
NOT CODED	5,997	12,095	7,870	3,878	3,617	799	12,929	47,186
	12.7\%	25.6\%	16.7\%	8.2\%	7.7\%	1.7\%	27.4\%	1.9\%
TOTAL	523,290	336,533	578,233	424,894	398,743	227,657	43,619	2,532,969
	20.7\%	13.3\%	22.8\%	16.8\%	15.7\%	9.0\%	1.7\%	100.0\%

for each policereported alcohol category, the first data row shows the number of drivers and the second row shows the PERCENTAGE OF THE ROW TOTAL.
NOT REPORTED: VARIABLE IS NOT AVAILABLE ON THE POLICE CRASH REPORT.
NOT CODED: POLICE OFFICE DID NOT PROVIDE THE INFORMATION.

TABLE 16 DISTRIBUTION OF GRASH-INUOLVED LIGHT TRUCK DRIVERS bY AGE GROUP AND ALCOHOL USE: AVERAGE PER YEAR, 1994-1996								
policereppried alcohol	age croup (Years)							
	15-20	21.24	25-34	35-44	$45-64$	65	Unknown	TOTAL
NO ALCOHOL PRESENT	121,117	60,306	161,778	140,285	127,989	26,800	1,582	639,857
	18.9\%	9.4\%	25.3\%	21.9\%	20.0\%	4.2\%	0.2\%	82.1\%
ALCOHOL PRESENT	17,463	13,892	21,421	15,834	15,329	760	1,768	86,466
	20.2\%	16.1\%	24.8\%	18.3\%	17.7\%	0.9\%	2.0\%	11.1\%
NOT REPORTED	5,183	2,079	14,553	4,950	5,309	718	1,652	34,442
	15.0\%	6.0\%	42.3\%	14.4\%	15.4\%	2.1\%	4.8\%	4.4\%
not coded	3,016	1,748	1,848	2,314	1,669	1,783	6,308	18,685
	16.1\%	9.4\%	9.9\%	12.4\%	8.9\%	9.5\%	33.8\%	2.4\%
total	146,778	78,024	199,599	163,382	150,295	30,062	11,310	79,450
	18.8\%	10.0\%	25.6\%	21.0\%	19.3\%	3.9\%	1.5\%	100.0\%

FOR EACH POLICE-REPORTED ALCOHOL CATEGORY, THE FIRST DATA ROW SHOWS THE NUMBER OF DRIVERS AND THE SECOND ROW SHOWS THE PERCENTAGE OF THE ROW TOTAL.
NOT REPORTED: VARIABLE IS NOT AVAILABLE ON THE POLICE CRASH REPORT.
NOT CODED: POLICE OFFICE DID NOT PROVIDE THE INFORMATION.

TABLE 17
DISTRIBUTION OF CRASH-INVOLVED CAR DRIVERS BY ALCOHOL USE AND MAXIMUM INJURY SEVERITY: AVERAGE PER YEAR, 1994-1996

POLICE-REPORTEDALCOHOL USE	Frequency of indury by maximum ais rating*								
	NOT INJURED (0)	$\begin{gathered} \text { MINOR } \\ \text { (I] } \\ \hline \end{gathered}$	MODERATE (2)	$\begin{gathered} \text { SERIOUS } \\ \text { (3) } \end{gathered}$	SEVERE (4)	$\begin{aligned} & \text { CRITICAL } \\ & \text { (5) } \\ & \hline \end{aligned}$	maximum (6)	INJURED, SEVERITY UNKNOWN (7)	TOTAL
NO ALCOHOL	1,017,247	862,458	90,720	35,973	5,252	3,603	805	121,243	2,142,538
PRESENT	47.5\%	40.3\%	4.2\%	1.7\%	0.2\%	0.2\%	0.0\%	5.7\%	84.6\%
LCOHOL PRESENT	69,748	78,238	13,002	5,983	1,765	1,556	487	11,807	184,903
	37.7\%	42.3\%	7.0\%	3.2\%	1.0\%	0.8\%	0.3\%	6.4\%	7.3\%
NOT REPORTED	64,537	65,731	6,397	1,917	692	561	528	6,326	158,342
	40.8\%	41.5\%	4.0\%	1.2\%	0.4\%	0.4\%	0.3\%	4.0\%	6.3\%
NOT CODED	22,310	10,273	1,637	2,082	1,903	1,082	180	1,550	47,186
	47.3\%	21.8\%	3.5\%	4.4\%	4.0\%	2.3\%	0.4\%	3.3\%	1.9\%
TOTAL	1,173,842	1,016,701	111,756	45,954	9,612	6,802	2,000	140,925	2,532,969
	46.3\%	40.1\%	4.4\%	1.8\%	0.4\%	0.3\%	0.1\%	5.6\%	100.0\%

for each police-reported alcohol use category, the first data row shows the number of drivers involved and the second row shows the PERCENTAGE OF THE ROW TOTAL. THE ROW TOTALS INCLUDE THE NUMBER OF "UNKNOWN IF INJURED."
not reported: variable is not avallable on the police crash report.
not coded: police office did not provide the information.

TABLE 18
DISTRIBUTION OF GRASH-INVOLVED LICHT TRUCK DRIVERS BY ALCOHOL USE AND MAXIMUM INJURY SEVERITY: AVERAGE PER YEAR, 1994-1996

POLICEREPORTEDALCOHOL USE	Frequency of indury by maximum ais rating*								
	NOT IMJURED (0)	$\begin{gathered} \text { MINOR } \\ \text { (I] } \\ \hline \end{gathered}$	MODERATE (2)	SERIOUS (3)	SEVERE (4)	CRITICAL (5)	MaxIMUM (6)	INJURED, SEverity UNKNOWN (7)	TOTAL
NO ALCOHOL	330,223	239,746	21,865	8,342	2,355	1,225	372	35,281	639,857
PRESENT	51.6\%	37.5\%	3.4\%	1.3\%	0.4\%	0.2\%	0.1\%	5.5\%	82.1\%
ALCOHOL PRESENT	32,964	40,353	5,033	1,771	1,165	471	147	2,782	86,466
	38.1\%	46.7\%	5.8\%	2.0\%	1.3\%	0.5\%	0.2\%	3.2\%	11.1\%
NOT REPORTED	19,772	5,328	6,136	336	112	115	111	2,416	34,442
	57.4\%	15.5\%	17.8\%	1.0\%	0.3\%	0.3\%	0.3\%	7.0\%	4.4\%
NOT CODED	4,489	3,079	1,860	1,045	781	233	819	992	18,685
	24.0\%	16.5\%	10.0\%	5.6\%	4.2\%	1.2\%	4.4\%	5.3\%	2.4\%
TOTAL	387,447	288,506	34,894	11,495	4,413	2,044	1,450	41,470	779,450
	49.7\%	37.0\%	4.5\%	1.5\%	0.6\%	0.3\%	0.2\%	5.3\%	100.0\%

for each police-reported alcohol use category, the first data row shows the number of drivers involved and the second row shows the PERCENTAGE OF THE ROW TOTAL. THE ROW TOTALS INCLUDE THE NUMBER OF "UNKNOWN IF INJURED."
not reported: variable is not avallable on the police crash report.
NOT CODED: POLICE OFFICE DID NOT PROVIDE THE INFORMATION.

Body Regions Injured in Traffic Crashes

There are about 2,544,000 cars towed away from traffic crashes every year. The incidence of crash-involved occupants in these cars is about $3,800,000$ per year. Of these, about 1,934,000 car occupants per year are injured, incurring about 4,844,000 injuries of various severities, in various body regions, and by various injury contacts. Table 19 shows the distribution of all injuries incurred by injured occupants of crashinvolved cars (as opposed to each occupant's most severe injury, reported in Tables $9-18$) as a function of injury severity and injured body region. Table 20 shows the same distribution for injured occupants of light trucks.

The numbers for "injured, severity unknown" (AIS=7) are lower in these tables than in tables using maximum AIS (MAIS), because of the level of information available for coding the injuries. An AIS of 7 is assigned to an injury when there is not sufficient information about the injury available. An MAIS of 7 is assigned to an occupant when it is known that the occupant was injured, but no information about the injury is available. Therefore, an occupant with an MAIS of 7 may not have any associated injuries coded.

TABLE 19 DISTRIBUTION OF ALL INJURIES TO CRASH-INVOLVED CAR OCCUPANTS BY BODY REGION AND SEVERITY: AVERAGE PER YEAR, 1994-1996								
BODY REGION	freauency of injury by als ratime*							
	1	2	3	4	5	6	7	total
HEAD (BRAIN)	39,344	62,493	22,228	11,435	8,751	747	0	144,998
	27.1\%	43.1\%	15.3\%	7.9\%	6.0\%	0.5\%	0.0\%	
	0.9\%	19.6\%	16.6\%	36.9\%	57.2\%	20.2\%	0.0\%	
head (SKULI)	0	3,534	5,511	2,171	0	443	0	11,658
	0.0\%	30.3\%	47.3\%	18.6\%	0.0\%	3.8\%	0.0\%	
	0.0\%	1.1\%	4.1\%	7.0\%	0.0\%	12.0\%	0.0\%	
HEAD (Other)	0	442	21	47	38	0	8,117	8,666
	0.0\%	5.1\%	0.2\%	0.5\%	0.4\%	0.0\%	93.7\%	
	0.0\%	0.1\%	0.0\%	0.2\%	0.2\%	0.0\%	31.4\%	
Face	74,232	17,465	4,810	107	0	0	42	96,654
	76.8\%	18.1\%	5.0\%	0.1\%	0.0\%	0.0\%	0.0\%	
	1.7\%	5.5\%	3.6\%	0.3\%	0.0\%	0.0\%	0.2\%	
neck	371,631	236	35	22	0	10	2,240	374,174
	99.3\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.6\%	
	8.6\%	0.1\%	0.0\%	0.1\%	0.0\%	0.3\%	8.7\%	
CHEST	28,607	24,818	34,755	10,673	4,087	1,876	8,812	113,628
	25.2\%	21.8\%	30.6\%	9.4\%	3.6\%	1.7\%	7.8\%	
	0.7\%	7.8\%	26.0\%	34.4\%	26.7\%	50.7\%	34.1\%	
Shoulder and back	196,256	49,404	4,222	90	0	0	1,423	251,395
	78.1\%	19.7\%	1.7\%	0.0\%	0.0\%	0.0\%	0.6\%	
	4.5\%	15.5\%	3.2\%	0.3\%	0.0\%	0.0\%	5.5\%	

*FOR EACH BODY REGION, the FIRST DATA ROW SHOWS THE NUMBER OF INJURIES, THE SECOND ROW SHOWS THE PERCENTAGE OF THE ROW TOTAL, AND the third row shows the percentage of the column total.

	TABLE 19 (CONTINUED) DISTRIBUTION OF ALL INJURIES TO CRASH-INVOLVED CAR OCCUPANTS BY BODY RECION AND SEVERITY: AVERAGE PER YEAR, 1994-1996							
BODY REEION	freouency of injury by als ratimg*							
	1	2	3	4	5	6	7	total
ABDOMEN	809	20,263	4,557	5,052	1,326	4	4,421	36,432
	2.2\%	55.6\%	12.5\%	13.9\%	3.6\%	0.0\%	12.1\%	
	0.0\%	6.4\%	3.4\%	16.3\%	8.7\%	0.1\%	17.1\%	
SPINE	0	0	467	1,372	732	192	0	2,763
	0.0\%	0.0\%	16.9\%	49.7\%	26.5\%	6.9\%	0.0\%	
	0.0\%	0.0\%	0.3\%	4.4\%	4.8\%	5.2\%	0.0\%	
UPPER ExTREMITIES	61,518	35,663	23,057	0	0	0	651	120,889
	50.9\%	29.5\%	19.1\%	0.0\%	0.0\%	0.0\%	0.5\%	
	1.4\%	11.2\%	17.3\%	0.0\%	0.0\%	0.0\%	2.5\%	
Pelvis	0	16,954	8,377	23	36	0	0	25,390
	0.0\%	66.8\%	33.0\%	0.1\%	0.1\%	0.0\%	0.0\%	
	0.0\%	5.3\%	6.3\%	0.1\%	0.2\%	0.0\%	0.0\%	
LOWER EXTREMITIES	42,337	83,608	25,231	6	0	0	132	151,313
	28.0\%	55.3\%	16.7\%	0.0\%	0.0\%	0.0\%	0.1\%	
	1.0\%	26.2\%	18.9\%	0.0\%	0.0\%	0.0\%	0.5\%	
SKIN	3,500,721	3,793	241	0	7	430	0	3,505,192
	99.9\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	
	81.1\%	1.2\%	0.2\%	0.0\%	0.0\%	11.6\%	0.0\%	
ALL OTHER	11	16	129	33	315	0	0	503
	2.2\%	3.2\%	25.6\%	6.6\%	62.6\%	0.0\%	0.0\%	
	0.0\%	0.0\%	0.1\%	0.1\%	2.1\%	0.0\%	0.0\%	
total	4,315,465	318,690	133,639	31,030	15,293	3,702	25,837	4,843,655

*FOR EACH BODY REGION, THE FIRST DATA ROW SHOWS THE NUMBER OF INJURIES, THE SECOND ROW SHOWS THE PERCENTAGE OF THE ROW TOTAL, AND the third row shows the percentage of the column total.

TABLE 20
DISTRIBUTION OF ALL IMJURIES TO CRASH-INVOLVED LIEHT TRUCK OCCUPANTS BY BODY REGION AND SEVERITY: AVERAGE PER YEAR, 1994-1996

BODY RECION	freouency of injury by als ratime							
	1	2	3	4	5	6	7	total
HEAD (BRAIN)	16,450	26,768	8,485	5,145	3,068	235	0	60,150
	27.3\%	44.5\%	14.1\%	8.6\%	5.1\%	0.4\%	0.0\%	
	1.2\%	21.8\%	19.1\%	40.1\%	62.7\%	12.6\%	0.0\%	
HEAD (SKULI)	0	2,157	3,052	1,401	0	512	0	7,122
	0.0\%	30.3\%	42.9\%	19.7\%	0.0\%	7.2\%	0.0\%	
	0.0\%	1.8\%	6.9\%	10.9\%	0.0\%	27.4\%	0.0\%	
HEAD (OTHER)	0	12	0	85	0	0	6,811	6,908
	0.0\%	0.2\%	0.0\%	1.2\%	0.0\%	0.0\%	98.6\%	
	0.0\%	0.0\%	0.0\%	0.7\%	0.0\%	0.0\%	58.0\%	
FACE	22,810	10,325	1,843	0	0	0	17	34,995
	65.2\%	29.5\%	5.3\%	0.0\%	0.0\%	0.0\%	0.0\%	
	1.7\%	8.4\%	4.1\%	0.0\%	0.0\%	0.0\%	0.1\%	
NeCK	89,616	116	13	0	0	6	0	89,750
	99.9\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	
	6.5\%	0.1\%	0.0\%	0.0\%	0.0\%	0.3\%	0.0\%	
CHEST	5,938	7,354	8,689	4,352	1,041	542	1,608	29,523
	20.1\%	24.9\%	29.4\%	14.7\%	3.5\%	1.8\%	5.4\%	
	0.4\%	6.0\%	19.6\%	33.9\%	21.3\%	29.0\%	13.7\%	
SHOULDER AND BACK	46,265	20,447	2,748	0	0	0	0	69,460
	66.6\%	29.4\%	4.0\%	0.0\%	0.0\%	0.0\%	0.0\%	
	3.4\%	16.6\%	6.2\%	0.0\%	0.0\%	0.0\%	0.0\%	

*FOR EACH BODY REGION, the first data row shows the number of induries, the second row shows the percentage of the row total, and the third row shows the percentage of the column total.

TABLE 20 (CONTINUED)

DISTRIBUTION OF ALL INJURIES TO CRASH-INVOLVED LIEHT TRUCK OCCUPANTS bY BODY REGION AND SEVERITY: AVERAGE PER YEAR, 1994-1996

BODY REGIOK	freouency of injury by als ratime*							
	1	2	3	4	5	6	7	Total
ABDOMEN	623	6,640	985	1,453	423	0	3,207	13,330
	4.7\%	49.8\%	7.4\%	10.9\%	3.2\%	0.0\%	24.1\%	
	0.0\%	5.4\%	2.2\%	11.3\%	8.6\%	0.0\%	27.3\%	
SPINE	0	0	150	406	200	34	0	789
	0.0\%	0.0\%	19.0\%	51.5\%	25.3\%	4.3\%	0.0\%	
	0.0\%	0.0\%	0.3\%	3.2\%	4.1\%	1.8\%	0.0\%	
UPPER EXTREMITIES	18,569	14,595	5,209	0	0	0	19	38,391
	48.4\%	38.0\%	13.6\%	0.0\%	0.0\%	0.0\%	0.0\%	
	1.4\%	11.9\%	11.7\%	0.0\%	0.0\%	0.0\%	0.2\%	
PELVIS	0	5,258	4,798	4	89	0	0	10,150
	0.0\%	51.8\%	47.3\%	0.0\%	0.9\%	0.0\%	0.0\%	
	0.0\%	4.3\%	10.8\%	0.0\%	1.8\%	0.0\%	0.0\%	
LOWER ExTREMITIES	10,598	26,232	8,193	0	0	0	75	45,097
	23.5\%	58.2\%	18.2\%	0.0\%	0.0\%	0.0\%	0.2\%	
	0.8\%	21.3\%	18.4\%	0.0\%	0.0\%	0.0\%	0.6\%	
SKIN	1,164,148	3,025	215	0	72	542	0	1,168,002
	99.7\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	
	84.7\%	2.5\%	0.5\%	0.0\%	1.5\%	29.0\%	0.0\%	
ALL OTHER	0	17	33	0	1	0	0	51
	0.0\%	33.3\%	64.7\%	0.0\%	2.0\%	0.0\%	0.0\%	
	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	
Total	1,375,016	122,945	44,411	12,845	4,894	1,870	11,737	1,573,718

*for each body region, the first data row shows the number of induries, the second row shows the percentage of the row total, and the third row shows the percentage of the column total.

It is apparent from Tables 19 and 20 that the body regions most frequently affected by injuries of all severities are markedly different from those most frequently affected by injuries of high severities (serious-maximum (AIS=3-6)). This is illustrated in Figure 8, where two distributions are shown: one for all severities and one for serious-maximum severities, each adding up to 100 percent.

It is evident in this figure that body regions such as face, neck, shoulder and back, and skin are injured with a high frequency in general, but occur at very low frequencies for serious to maximum severities. Conversely, other body regions, such as the head (brain/skull), chest, spine, abdomen, and upper and lower extremities are injured frequently at high severities, but occur less significantly when all severities are considered.

Figure 8
Distribution of Injuries to Crash-Involved Car Occupants by Affected Body Region and Severity of Inury, 1994-1996

Belt Use and Body Regions Injured

Figure 9 shows the distribution of crash-involved car occupants by injured body region and belt usage. An occupant may receive more than one injury to a given body region; however, this figure represents one injury per body region per occupant. An occupant may also receive injuries across more than one body region. Therefore, the number for each body region will add up to more than the number of injured occupants. For example, an occupant may have a contusion to the left side of the brain and a laceration to the right side of the brain. The figure counts only one of the injuries to the brain. If the occupant in the example sustained a contusion to the left side of the brain and a skull fracture, then both injuries would be included in the figure, and one injury would be counted in the brain body region while the other injury would be counted in the skull body region. To determine the percent of belted occupants who sustained a brain injury, divide the number of occupants with a brain injury by the total number of occupants using a restraint system. The same methodology applies to the unbelted occupants. The percentages will not add to 100 percent, because the total number of occupants includes those who were not injured. Figure 10 shows a similar distribution of crashinvolved occupants of light trucks by belt usage.

Figure 9
Distribution of Injuries by Body Region to Crash-Involved Car Occupants by Belt Usage: Average per Year, 1994-1996

Belted
Brain: 48,896 (2.0\%)
Other Head: 2,802 (0.1\%)
Face: 29,064 (1.2\%)
Chest: 57,691 (2.3\%)

Upper

Extremities: 60,022 (2.4\%) Abdomen: 10,067 (0.4\%)

Abdomen: 10,945 (1.4\%) Skin: 927,202 (37.7\%)

Skull: 6,679 (0.1\%)

Neck: 288,263 (11.7\%)

Shoulder

and Back: 158,553 (6.4\%)
Spine: 509 (0.0\%)
Pelvis: 5,368 (2.2\%)

Lower

Extremities: 63,210 (2.6\%)

Total
Belted
Occupants:
2,460,430

Unbelted
Brain: 59,240 (7.5\%)
Other Head: 4.281 (0.5\%)
Face: 37,269 (4.7\%)
Chest: 26,997 (3.4\%)
Upper
Extremities: 36, 144 (4.6\%)

Skin: 437,628 (55.4\%)

Skull: 4,548 (0.6\%)

Figure 10
Distribution of Injuries by Body Region to Crash-Involved Light Truck Occupants by Belt Usage: Average per Year, 1994-1996

Belted
Brain: 17,868 (2.4\%)
Other Head: 728 (0.1\%)
Other Head: 6,015 (2.0\%)
Face: 5,689 (0.8\%)
Chest: 8,941 (1.2\%)
Upper
Extremities: 19,615 (2.6\%)
Abdomen: 2,040 (0.3\%)
Abdomen: 6,432 (2.1\%)
Skin: 248, 173 (33.3\%)

Skull: 700 (0.1\%)

Neck: 64,413 (8.7\%)
Shoulder
and Back: 27,922 (3.8\%) and Back: 25,248 (8.2\%)
Spine: 195 (0.0\%)
Pelvis: 1,952 (0.3\%)

Lower

Extremities: 10,734 (1.4\%)
Total
Belted
Occupants:
744,397

Occupant Injury Data

Injury Contacts

In addition to data on injured body regions, crash protection practitioners need data concerning the various sources of injury (injury contacts). A summary of injury contacts for injuries to crash-involved occupants is presented in Table 21 for cars and in Table 22 for light trucks. Table 21 shows the distribution of all crash-involved car occupant injuries as a function of injury severity and injury contact. Table 22 shows the same distribution for light truck occupants.

TABLE 21 DISTRIBUTION OF ALL INJURIES TO CRASH-INUOLVED CAR OCCUPANTS BY INJURY CONTACT AND SEVERITY: AVERAGE PER YEAR, 1994-1996								
	freauency of injury by als ratime*							
injury contact	1	2	3	4	5	6	7	total
STEERING ASSEMBLY	$\begin{array}{r} \hline \hline 437,476 \\ 85.2 \% \\ 10.1 \% \end{array}$	$\begin{gathered} \hline \hline 43,401 \\ 8.5 \% \\ 13.6 \% \end{gathered}$	$\begin{gathered} \hline \hline \hline 21,568 \\ 4.2 \% \\ 16.1 \% \end{gathered}$	$\begin{gathered} \hline 4,360 \\ 0.8 \% \\ 14.1 \% \end{gathered}$	$\begin{gathered} \hline \hline 1,919 \\ 0.4 \% \\ 12.5 \% \end{gathered}$	$\begin{gathered} \hline 653 \\ 0.1 \% \\ 17.6 \% \end{gathered}$	$\begin{aligned} & \hline 3,958 \\ & 0.8 \% \\ & 15.3 \% \end{aligned}$	513,335
Instrument panel	$\begin{array}{r} 643,057 \\ 90.1 \% \\ 14.9 \% \end{array}$	$\begin{gathered} 49,049 \\ 6.9 \% \\ 15.4 \% \end{gathered}$	$\begin{gathered} 18.888 \\ 2.6 \% \\ 14.1 \% \end{gathered}$	$\begin{aligned} & 1,124 \\ & 0.2 \% \\ & 3.6 \% \end{aligned}$	$\begin{array}{r} 655 \\ 0.1 \% \\ 4.3 \% \end{array}$	$\begin{array}{r} 415 \\ 0.1 \% \\ 11.2 \% \end{array}$	$\begin{array}{r} 744 \\ 0.1 \% \\ 2.9 \% \end{array}$	713,931
WINDSHIELD	$\begin{array}{r} 382,120 \\ 92.0 \% \\ 8.9 \% \end{array}$	$\begin{array}{r} 20,083 \\ 4.8 \% \\ 6.3 \% \end{array}$	$\begin{aligned} & 7,749 \\ & 1.9 \% \\ & 5.8 \% \end{aligned}$	$\begin{aligned} & 2.187 \\ & 0.5 \% \\ & 7.0 \% \end{aligned}$	$\begin{aligned} & 1,065 \\ & 0.3 \% \\ & 7.0 \% \end{aligned}$	$\begin{gathered} 69 \\ 0.0 \% \\ 1.9 \% \end{gathered}$	$\begin{aligned} & 2.051 \\ & 0.5 \% \\ & 7.9 \% \end{aligned}$	415,326
Interior side surface	$\begin{array}{r} 324,229 \\ 83.1 \% \\ 7.5 \% \end{array}$	$\begin{gathered} 35,832 \\ 9.2 \% \\ 11.2 \% \end{gathered}$	$\begin{array}{r} 21,260 \\ 5.4 \% \\ 15.9 \% \end{array}$	$\begin{gathered} 5,237 \\ 1.3 \% \\ 16.9 \% \end{gathered}$	$\begin{gathered} 2,231 \\ 0.6 \% \\ 14.6 \% \end{gathered}$	$\begin{array}{r} 316 \\ 0.1 \% \\ 8.5 \% \end{array}$	$\begin{gathered} 989 \\ 0.3 \% \\ 3.8 \% \end{gathered}$	390,094
PILLARS	$\begin{array}{r} 86,342 \\ 79.8 \% \\ 2.0 \% \end{array}$	$\begin{gathered} 12.091 \\ 11.2 \% \\ 3.8 \% \end{gathered}$	$\begin{aligned} & 5,495 \\ & 5.1 \% \\ & 4.1 \% \end{aligned}$	$\begin{aligned} & 2,297 \\ & 2.1 \% \\ & 7.4 \% \end{aligned}$	$\begin{aligned} & 1,500 \\ & 1.4 \% \\ & 9.8 \% \end{aligned}$	$\begin{array}{r} 156 \\ 0.1 \% \\ 4.2 \% \end{array}$	$\begin{array}{r} 364 \\ 0.3 \% \\ 1.4 \% \end{array}$	108,244
Restraint (bett) system	$\begin{gathered} 500,003 \\ 94.6 \% \\ 11.6 \% \end{gathered}$	$\begin{gathered} 15,462 \\ 2.9 \% \\ 4.9 \% \end{gathered}$	$\begin{aligned} & 8,237 \\ & 1.6 \% \\ & 6.2 \% \end{aligned}$	$\begin{aligned} & 1,655 \\ & 0.3 \% \\ & 5.3 \% \end{aligned}$	$\begin{array}{r} 344 \\ 0.1 \% \\ \text { 2.2\% } \end{array}$	$\begin{array}{r} 14 \\ 0.0 \% \\ 0.4 \% \end{array}$	$\begin{gathered} 3,011 \\ 0.0 \% \\ 11.7 \% \end{gathered}$	528,727
ChILD Seat	$\begin{gathered} 6,287 \\ 89.1 \% \\ 0.1 \% \end{gathered}$	$\begin{array}{r} 656 \\ \mathbf{9 . 3 \%} \\ 0.2 \% \end{array}$	$\begin{array}{r} 44 \\ 0.6 \% \\ 0.0 \% \end{array}$	$\begin{array}{r} 9 \\ 0.1 \% \\ 0.0 \% \end{array}$	$\begin{array}{r} 35 \\ 0.5 \% \\ 0.2 \% \end{array}$	$\begin{array}{r} 14 \\ 0.2 \% \\ 0.4 \% \end{array}$	$\begin{array}{r} 14 \\ 0.2 \% \\ 0.1 \% \end{array}$	7,059
AIR BAG	$\begin{array}{r} 256,490 \\ 98.3 \% \\ 5.9 \% \end{array}$	$\begin{aligned} & 2.305 \\ & 0.9 \% \\ & 0.7 \% \end{aligned}$	$\begin{aligned} & 1,122 \\ & 0.4 \% \\ & 0.8 \% \end{aligned}$	$\begin{array}{r} 319 \\ 0.1 \% \\ 1.0 \% \end{array}$	$\begin{array}{r} 393 \\ 0.2 \% \\ 2.6 \% \end{array}$	$\begin{array}{r} 38 \\ 0.0 \% \\ 1.0 \% \end{array}$	$\begin{gathered} 146 \\ 0.1 \% \\ 0.6 \% \end{gathered}$	260,813
Head restraints	$\begin{gathered} 40,841 \\ 87.6 \% \\ 0.9 \% \end{gathered}$	$\begin{gathered} \text { 4,988 } \\ \text { 10.7\% } \\ 1.6 \% \end{gathered}$	$\begin{array}{r} 485 \\ 1.0 \% \\ 0.4 \% \end{array}$	$\begin{array}{r} 185 \\ 0.4 \% \\ 0.6 \% \end{array}$	$\begin{array}{r} 35 \\ 0.1 \% \\ 0.2 \% \end{array}$	$\begin{array}{r} 0 \\ 0.0 \% \\ 0.0 \% \end{array}$	$\begin{array}{r} 89 \\ 0.2 \% \\ 0.3 \% \end{array}$	46,623
Seat back	$\begin{array}{r} 175,756 \\ 89.5 \% \\ 4.1 \% \end{array}$	$\begin{gathered} 12,920 \\ 6.6 \% \\ 4.1 \% \end{gathered}$	$\begin{aligned} & 6,903 \\ & 3.5 \% \\ & 5.2 \% \end{aligned}$	$\begin{array}{r} 568 \\ 0.3 \% \\ 1.8 \% \end{array}$	$\begin{aligned} & 111 \\ & 0.1 \% \\ & 0.7 \% \end{aligned}$	$\begin{array}{r} 17 \\ 0.0 \% \\ 0.5 \% \end{array}$	$\begin{array}{r} 88 \\ 0.0 \% \\ 0.3 \% \end{array}$	196,364
ROOF	$\begin{gathered} 86,276 \\ 76.3 \% \\ 2.0 \% \\ \hline \end{gathered}$	$\begin{array}{r} 14,250 \\ 12.6 \% \\ 4.5 \% \\ \hline \end{array}$	$\begin{aligned} & 6.426 \\ & 5.7 \% \\ & 4.8 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2.997 \\ & 2.7 \% \\ & 9.7 \% \end{aligned}$	$\begin{array}{r} 1,905 \\ 1.7 \% \\ 12.5 \% \\ \hline \end{array}$	$\begin{array}{r} 202 \\ 0.2 \% \\ 5.5 \% \end{array}$	$\begin{aligned} & 1,026 \\ & 0.9 \% \\ & 4.0 \% \\ & \hline \end{aligned}$	113,082

*FOR Each indury contact, the first data row shows the number of injuries, the second row shows the percentage of the row total, and the thind row shows the percentage of the column total.

*FOR EACH INJURY CONTAGT, the first data row shows the number of induries, the second row shows the percentage of the row total, and the thind row shows the percentage of the column total.

TABLE 22
dIStribution of all induries to crash-involved lieht truck occupants BY IIJURY CONTACT AND SEVERITY: AVERAGE PER YEAR, 1994-1996

INJURY CONTACT	FREQUENCY OF INJURY BY AIS RATINE*							
	1	2	3	4	5	6	7	TOTAL
STEERING ASSEMBLY	140,269	14,345	5,124	2,124	612	172	4,263	166,908
	84.0\%	8.6\%	3.1\%	1.3\%	0.4\%	0.1\%	2.6\%	
	10.2\%	11.7\%	11.5\%	16.5\%	12.5\%	9.2\%	36.3\%	
INSTRUMENT PANEL	213,041	21,541	7,723	350	177	28	124	242,983
	87.7\%	8.9\%	3.2\%	0.1\%	0.1\%	0.0\%	0.1\%	
	15.5\%	17.5\%	17.4\%	2.7\%	3.6\%	1.5\%	1.1\%	
WINDSHIELD	115,717	5,810	905	410	235	219	3,975	127,271
	90.9\%	4.6\%	0.7\%	0.3\%	0.2\%	0.2\%	3.1\%	
	8.4\%	4.7\%	2.0\%	3.2\%	4.8\%	11.7\%	33.9\%	
INTERIOR SIDE SURFACE	99,319	9,230	6,784	1,180	307	113	120	117,055
	84.8\%	7.9\%	5.8\%	1.0\%	0.3\%	0.1\%	0.1\%	
	7.2\%	7.5\%	15.3\%	9.2\%	6.3\%	6.0\%	1.0\%	
PILLARS	39,192	8,398	1,797	953	323	0	200	50,863
	77.1\%	16.5\%	3.5\%	1.9\%	0.6\%	0.0\%	0.4\%	
	2.9\%	6.8\%	4.0\%	7.4\%	6.6\%	0.0\%	1.7\%	
RESTRAINT (BELT) SYSTEM	133,932	2,498	1,225	252	0	0	326	138,233
	96.9\%	1.8\%	0.9\%	0.2\%	0.0\%	0.0\%	0.2\%	
	9.7\%	2.0\%	2.8\%	2.0\%	0.0\%	0.0\%	2.8\%	
CHILD SEAT	3,383	290	82	0	0	0	5	3,760
	90.0\%	7.7\%	2.2\%	0.0\%	0.0\%	0.0\%	0.1\%	
	0.2\%	0.2\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	
AIR BAG	25,636	1,542	161	0	0	3	2	27,345
	93.8\%	5.6\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%	
	1.9\%	1.3\%	0.4\%	0.0\%	0.0\%	0.2\%	0.0\%	
HEAD RESTRAINTS	13,059	1,395	4	0	0	0	21	14,479
	90.2\%	9.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	
	0.9\%	1.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	
SEAt back	40,555	4,840	451	204	71	0	16	46,137
	87.9\%	10.5\%	1.0\%	0.4\%	0.2\%	0.0\%	0.0\%	
	2.9\%	3.9\%	1.0\%	1.6\%	1.5\%	0.0\%	0.1\%	
ROOF	53,157	9,292	3,134	986	647	173	374	67,763
	78.4\%	13.7\%	4.6\%	1.5\%	1.0\%	0.3\%	0.6\%	
	3.9\%	7.6\%	7.1\%	7.7\%	13.2\%	9.3\%	3.2\%	

*FOR EACH INJURY CONTACT, THE FIRST DATA ROW SHOWS THE NUMBER OF INJURIES, THE SECOND ROW SHOWS THE PERCENTAGE OF THE ROW TOTAL, and the third row shows the percentage of the column total.

TABLE 22 (CONTINUED)
DISTRIBUTION OF ALL INJURIES TO CRASH-INUOLVED LIGHT TRUCK OCCUPANTS BY INJURY CONTACT AND SEVERITY: AVERAGE PER YEAR, 1994-1996

INJURY CONTACT	FREOUENCY OF InJury by als ratinc*							
	1	2	3	4	5	6	7	TOTAL
FLOOR	17,642	9,014	613	0	0	0	0	27,268
	64.7\%	33.1\%	2.2\%	0.0\%	0.0\%	0.0\%	0.0\%	
	1.3\%	7.3\%	1.4\%	0.0\%	0.0\%	0.0\%	0.0\%	
NON-CONTACT INJURIES	163,317	755	315	18	182	26	14	164,627
	99.2\%	0.5\%	0.2\%	0.0\%	0.1\%	0.0\%	0.0\%	
	11.9\%	0.6\%	0.7\%	0.1\%	3.7\%	1.4\%	0.1\%	
FIRE IN VEHICLE	29	0	67	0	70	542	0	708
	4.1\%	0.0\%	9.5\%	0.0\%	9.9\%	76.6\%	0.0\%	
	0.0\%	0.0\%	0.2\%	0.0\%	1.4\%	29.0\%	0.0\%	
GROUND	44,973	12,231	5,416	2,051	963	59	616	66,309
	67.8\%	18.4\%	8.2\%	3.1\%	1.5\%	0.1\%	0.9\%	
	3.3\%	9.9\%	12.2\%	16.0\%	19.7\%	3.2\%	5.2\%	
EXTERIOR COCCUPANT'S	5,446	4,046	2,057	907	238	64	55	12,814
VEHICLE)	42.5\%	31.6\%	16.1\%	7.1\%	1.9\%	0.5\%	0.4\%	
	0.4\%	3.3\%	4.6\%	7.1\%	4.9\%	3.4\%	0.5\%	
EXTERIOR COTHER VEHICLE	2,206	1,430	1,531	662	256	157	138	6,380
OR EXTERIOR OBJECT	34.6\%	22.4\%	24.0\%	10.4\%	4.0\%	2.5\%	2.2\%	
	0.2\%	1.2\%	3.4\%	5.2\%	5.2\%	8.4\%	1.2\%	
SIDE AND REAR GLAZING	27,617	1,538	744	22	12	0	23	29,956
	92.2\%	5.1\%	2.5\%	0.1\%	0.0\%	0.0\%	0.1\%	
	2.0\%	1.3\%	1.7\%	0.2\%	0.2\%	0.0\%	0.2\%	
ALL OTHERS	86,759	3,781	815	216	74	0	54	91,699
	94.6\%	4.1\%	0.9\%	0.2\%	0.1\%	0.0\%	0.1\%	
	6.3\%	3.1\%	1.8\%	1.7\%	1.5\%	0.0\%	0.5\%	
UNKNOWN	149,766	10,969	5,466	2,509	726	313	1,410	171,160
	87.5\%	6.4\%	3.2\%	1.5\%	0.4\%	0.2\%	0.8\%	
	10.9\%	8.9\%	12.3\%	19.5\%	14.8\%	16.7\%	12.0\%	
total	1,375,016	122,945	44,411	12,845	4,894	1,870	11,737	1,573,718

*FOR EACH INJURY CONTACT, THE FIRST DATA ROW SHOWS THE NUMBER OF INJURIES, THE SECOND ROW SHOWS THE PERCENTAGE OF THE ROW TOTAL, and the thind row shows the percentage of the column total.

It is evident from Tables 21 and 22 that the most frequent injury contacts for injuries of all severities (AIS 1-7) are not necessarily the same as those that are most frequently involved in serious to maximum injuries (AIS 3-6). This is illustrated in Figure 11, where two distributions are shown: one for all severities and one for serious to maximum severities, each adding up to 100 percent.

As can be seen in this figure, the instrument panel, windshield, and restraint system as injury contacts have high frequencies in general but relatively low frequencies for serious to maximum injuries. The converse is observed for the steering assembly, interior side, roof, pillars, and ground.

Figure 11
Distribution of Injuries to Crash-Involved Car Occupants by Injury Contact and Severity of Injury, 1994-1996

Note: All Others category includes items shown in Table 22 (child seat and exterior of occupant's vehicle, other vehicle, or exterior object). Unknowns are excluded from Figure 11.

Occupant Ejection and Entrapment

Table 23 shows the rates of occupant ejections from and entrapment in crashinvolved towed cars. Two degrees of ejection are distinguished: complete and partial. The results in Table 23 are shown by primary crash modes and areas of damage. Similar data for light trucks are shown in Table 24. Ejection rates by degree of ejection are also shown in Figure 12. Ejection occurs most frequently in rollover crashes, followed by side impacts.

TABLE 23
OCCUPANT EJECTION AND ENTRAPMENT IN CRASH-INVOLVED TOWED CARS BY DEGREE OF EJECTION, CRASH MODE, AND AREA OF DAMAGE: AVERAGE OF NATIONALLY WEIGHTED COUNTS PER YEAR, 1994-1996

CRASH MODE AND AREA OF DAMAGE	COMPLETE EJECTION	PARTIAL EJECTION	ENTRAPMENT	TOTAL
ROLLOVER	$\begin{aligned} & 8,519 \\ & 5.0 \% \end{aligned}$	$\begin{aligned} & \mathbf{4 , 4 3 7} \\ & 2.6 \% \end{aligned}$	$\begin{array}{r} 895 \\ 0.5 \% \end{array}$	$\begin{array}{r} 169,975 \\ 4.5 \% \end{array}$
NONROLLOVER SINGLEVEHICLE				
FRONT	$\begin{array}{r} 966 \\ 0.2 \% \end{array}$	$\begin{array}{r} 897 \\ 0.2 \% \end{array}$	$\begin{aligned} & 3,360 \\ & 0.6 \% \end{aligned}$	$\begin{array}{r} 540,818 \\ 14.2 \% \end{array}$
SIDE	$\begin{aligned} & 2,094 \\ & 1.2 \% \end{aligned}$	$\begin{aligned} & 2,514 \\ & 1.5 \% \end{aligned}$	$\begin{aligned} & 1,552 \\ & 0.9 \% \end{aligned}$	$\begin{array}{r} 173,215 \\ 4.6 \% \end{array}$
REAR, TOP, OR UNDER	$\begin{array}{r} 21 \\ 0.1 \% \end{array}$	$\begin{array}{r} 53 \\ 0.2 \% \end{array}$	$\begin{array}{r} 5 \\ 0.0 \% \end{array}$	$\begin{array}{r} 28,693 \\ 0.8 \% \end{array}$
MULTIPLEVEHICLE FRONT	$\begin{array}{r} 542 \\ 0.0 \% \end{array}$	$\begin{aligned} & 1,537 \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & \mathbf{4 , 3 7 7} \\ & 0.3 \% \end{aligned}$	$\begin{array}{r} 1,599,086 \\ 42.1 \% \end{array}$
SIDE	$\begin{aligned} & 1,897 \\ & 0.2 \% \end{aligned}$	$\begin{aligned} & 2,392 \\ & 0.2 \% \end{aligned}$	$\begin{aligned} & 2,294 \\ & 0.2 \% \end{aligned}$	$\begin{array}{r} 967,262 \\ 25.5 \% \end{array}$
REAR	$\begin{array}{r} 343 \\ 0.1 \% \end{array}$	$\begin{array}{r} 353 \\ 0.1 \% \end{array}$	$\begin{array}{r} 30 \\ 0.0 \% \end{array}$	$\begin{array}{r} 315,810 \\ 8.3 \% \end{array}$
TOP OR UNDER	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{aligned} & 3245 \\ & 0.1 \% \end{aligned}$
TOTAL	$\begin{array}{r} 14,380 \\ 0.4 \% \end{array}$	$\begin{array}{r} 12,182 \\ 0.3 \% \end{array}$	$\begin{array}{r} 12,514 \\ 0.3 \% \end{array}$	$\begin{array}{r} 3,798,104 \\ 100.0 \% \end{array}$

*FOR Each crash mode, the first data row shows the number of occupants ejected or entrapped and the second row SHOWS THE PERCENTAEE OF THE ROW TOTAL.
note: damace area "unknown" has been imputed into the known damage areas.

TABLE 24 OCCUPANT EJECTION AND ENTRAPMENT IN CRASH-INVOLVED TOWED LIEHT TRUCKS by degree of ejection, crash mode, and area of damace: averace of nationally weichted counts per year, 1994-1996				
CRASH MODE AND AREA OF DAMAGE	COMPLIEE EJECTION	PARTIAL EJECTION	EMTRAPMENT	TOTAL
ROLLOVER	$\begin{array}{r} 14,915 \\ 7.9 \% \end{array}$	$\begin{aligned} & \mathbf{5 . 8 3 9} \\ & \mathbf{3 . 1 \%} \end{aligned}$	$\begin{aligned} & 2.009 \\ & 1.1 \% \end{aligned}$	$\begin{array}{r} 189,068 \\ 15.4 \% \end{array}$
nonrollover				
FRONT	$\begin{array}{r} 648 \\ 0.3 \% \end{array}$	$\begin{array}{r} 853 \\ 0.4 \% \end{array}$	$\begin{array}{r} 851 \\ 0.4 \% \end{array}$	$\begin{array}{r} 210,853 \\ 17.2 \% \end{array}$
SIDE	$\begin{array}{r} 303 \\ 0.9 \% \end{array}$	$\begin{array}{r} 426 \\ 1.3 \% \end{array}$	$\begin{array}{r} 284 \\ 0.9 \% \end{array}$	$\begin{array}{r} 33,274 \\ 2.7 \% \end{array}$
REAR, TOP, OR UNDER	$\begin{array}{r} 3 \\ 0.0 \% \end{array}$	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{array}{r} 13 \\ 0.1 \% \end{array}$	$\begin{aligned} & \mathbf{9 , 7 7 4} \\ & 0.8 \% \end{aligned}$
$\underset{\text { FRONT }}{\text { MUITIPLEVEHICLIE }}$	$\begin{aligned} & \mathbf{1 , 2 3 9} \\ & 0.2 \% \end{aligned}$	$\begin{array}{r} 403 \\ 0.1 \% \end{array}$	$\begin{aligned} & 1,492 \\ & 0.3 \% \end{aligned}$	$\begin{array}{r} 548.477 \\ 44.8 \% \end{array}$
SIDE	$\begin{aligned} & 3.483 \\ & 1.9 \% \end{aligned}$	$\begin{array}{r} 231 \\ 0.1 \% \end{array}$	$\begin{array}{r} 378 \\ 0.2 \% \end{array}$	$\begin{gathered} 182,021 \\ 14.9 \% \end{gathered}$
REAR	$\begin{array}{r} 261 \\ 0.5 \% \end{array}$	$\begin{array}{r} 576 \\ 1.1 \% \end{array}$	$\begin{array}{r} 262 \\ 0.5 \% \end{array}$	$\begin{gathered} 51,007 \\ 4.2 \% \end{gathered}$
TOP OR UNDER	0	0	$\begin{array}{r} 11 \\ 26.8 \% \end{array}$	$\begin{array}{r} 41 \\ 0.0 \% \end{array}$
total	$\begin{array}{r} 20,851 \\ 1.7 \% \end{array}$	$\begin{aligned} & 8,328 \\ & 0.7 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 . 3 0 1} \\ & 0.4 \% \end{aligned}$	$\begin{gathered} 1,224,514 \\ 100.0 \% \end{gathered}$

*FOR EACH CRASH MODE, the first data row shows the number of occupants ejected or entrapped and the second row SHOWS THE PERCENTAGE OF THE ROW TOTAL.
note: damage area "unknown" has been imputed into the known damage areas.

Figure 12
Towed Car Occupant Ejection Rates by Crash Mode and Degree of Ejection, 1994-1996

The ejection rates shown in Tables 23 and 24 are generally small, except in rollovers. However, due to the very harmful outcomes of occupant ejections, the rate of injuries associated with occupant ejections is significantly higher, as shown in Tables 25 and 26, which show injury-weighted (using Harm-see Appendix E) ejection and entrapment data for crash-involved towed vehicles, and Figure 13, which shows ejection-induced injury rates for towed vehicles. Crashes that involve ejection are generally more severe crashes; therefore, injuries to ejected occupants may be due to higher crash forces as well as the ejection itself.

TABLE 25 INJURY-WEIGHTED OCCUPANT EJECTION AND ENTRAPMENT RATES for crashinvolved towed cars by degree of ejection, crash mode, and area of damace: averace of nationally weighted counts per year, 1994-1996				
CRASH MODE AND AREA OF DAMAEE	COMPLIEE EJECTION	PARTIAL EJECTION	ENTRAPMENT	TOTAL
ROLLOVER	$\begin{array}{r} 1,530,211 \\ 28.1 \% \end{array}$	$\begin{array}{r} 692,621 \\ 12.7 \% \end{array}$	$\begin{array}{r} 240,247 \\ 4.4 \% \end{array}$	$\begin{array}{r} 5,447,957 \\ 13.3 \% \end{array}$
monrollover SINGLEVEHICLE				
FRONT	$\begin{array}{r} 231,088 \\ 3.6 \% \end{array}$	$\begin{array}{r} 205,417 \\ 3.2 \% \end{array}$	$\begin{array}{r} 528,442 \\ 8.3 \% \end{array}$	$\begin{array}{r} 6,385,927 \\ 15.6 \% \end{array}$
SIDE	$\begin{array}{r} 310,520 \\ 11.6 \% \end{array}$	$\begin{array}{r} 277,245 \\ 10.3 \% \end{array}$	$\begin{array}{r} 388,920 \\ 14.5 \% \end{array}$	$\begin{array}{r} 2,681,532 \\ 6.6 \% \end{array}$
REAR, TOP, OR UNDER	$\begin{array}{r} 96 \\ 0.0 \% \end{array}$	$\begin{array}{r} 20,599 \\ 7.7 \% \end{array}$	$\begin{array}{r} 102 \\ 0.0 \% \end{array}$	$\begin{array}{r} 268,703 \\ 0.7 \% \end{array}$
MULIIPLEVEHICLE FRONT	$\begin{array}{r} 195,819 \\ 1.4 \% \end{array}$	$\begin{array}{r} 262,602 \\ 1.9 \% \end{array}$	$\begin{array}{r} 1,217,441 \\ 8.7 \% \end{array}$	$\begin{array}{r} 13,985,807 \\ 34.2 \% \end{array}$
SIDE	$\begin{array}{r} 392,455 \\ 3.8 \% \end{array}$	$\begin{array}{r} 601,447 \\ 5.8 \% \end{array}$	$\begin{gathered} 652,889 \\ 6.3 \% \end{gathered}$	$\begin{array}{r} 10,342,682 \\ 25.3 \% \end{array}$
REAR	$\begin{array}{r} 21,819 \\ 1.2 \% \end{array}$	$\begin{array}{r} 23,131 \\ 1.3 \% \end{array}$	$\begin{array}{r} 10,682 \\ 0.6 \% \end{array}$	$\begin{array}{r} 1,787,654 \\ 4.4 \% \end{array}$
TOP OR UNDER	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{aligned} & 15798 \\ & 0.0 \% \end{aligned}$
total	$\begin{array}{r} 2,682,008 \\ 6.6 \% \end{array}$	$\begin{array}{r} 2,083,062 \\ 5.1 \% \\ \hline \end{array}$	$\begin{array}{r} 3,038,723 \\ 7.4 \% \end{array}$	$\begin{array}{r} 40,916,061 \\ 100.0 \% \end{array}$

*FOR EACH CRASH MODE, THE FIRST DATA ROW SHOWS THE NUMBER OF OCCUPANTS EJECTED OR ENTRAPPED AND THE SECOND ROW SHOWS THE PERCENTAGE OF THE ROW TOTAL.

TABLE 26
INJURY-WEIGHTED OCCUPANT EJECTION AND ENTRAPMENT RATES FOR CRASH-INVOLVED TOWED LICHT TRUCKS
BY DEGREE OF EJECTION, CRASH MODE, AND AREA OF DAMAGE:
AVERAGE OF NATIONALLY WEIGHTED COUNTS PER YEAR, 1994-1996

CRASH MODE AND area of damace	COMPLETE EJECTION	PARTIAL EJECTION	ENTRAPMENT	TOTAL
ROLLOVER	$\begin{array}{r} 2,555,014 \\ 47.2 \% \end{array}$	$\begin{array}{r} 532,049 \\ 9.8 \% \end{array}$	$\begin{array}{r} 272,969 \\ 5.0 \% \end{array}$	$\begin{array}{r} 5,413,543 \\ 37.0 \% \end{array}$
MONROLLOVER SINGLEVEHICLE				
FRONT	$\begin{array}{r} 332,549 \\ 14.9 \% \end{array}$	$\begin{array}{r} 99,429 \\ 4.5 \% \end{array}$	$\begin{array}{r} 302,974 \\ 13.6 \% \end{array}$	$\begin{array}{r} 2,224,462 \\ 15.2 \% \end{array}$
SIDE	$\begin{aligned} & 68,142 \\ & 10.1 \% \end{aligned}$	$\begin{array}{r} 146,592 \\ 21.8 \% \end{array}$	$\begin{array}{r} 139,640 \\ 20.7 \% \end{array}$	$\begin{gathered} 673.111 \\ 4.6 \% \end{gathered}$
REAR, TOP, OR UNDER	$\begin{array}{r} 87 \\ 0.6 \% \end{array}$	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{aligned} & 10,975 \\ & 73.2 \% \end{aligned}$	$\begin{gathered} 14,986 \\ 0.1 \% \end{gathered}$
MULTIPLEVEHICLE FRONT	$\begin{gathered} 56,032 \\ 1.5 \% \end{gathered}$	$\begin{array}{r} 159,534 \\ 4.3 \% \end{array}$	$\begin{array}{r} 316,014 \\ 8.5 \% \end{array}$	$\begin{array}{r} 3,730,416 \\ 25.5 \% \end{array}$
SIDE	$\begin{array}{r} 529,300 \\ 24.2 \% \end{array}$	$\begin{gathered} 84,621 \\ 3.9 \% \end{gathered}$	$\begin{array}{r} 67,037 \\ 3.1 \% \end{array}$	$\begin{array}{r} 2,184,444 \\ 14.9 \% \end{array}$
REAR	$\begin{aligned} & \mathbf{1 , 3 0 7} \\ & 0.3 \% \end{aligned}$	$\begin{aligned} & 2.473 \\ & 0.6 \% \end{aligned}$	$\begin{array}{r} \mathbf{9 0 1} \\ 0.2 \% \end{array}$	$\begin{array}{r} 383,908 \\ 2.6 \% \end{array}$
TOP OR UNDER	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	$\begin{array}{r} 8305 \\ 66.5 \% \end{array}$	$\begin{gathered} 12493 \\ 0.1 \% \end{gathered}$
TOTAL	$\begin{aligned} & 3,542,432 \\ & 24.2 \% \end{aligned}$	$\begin{array}{r} 1,024,699 \\ 7.0 \% \\ \hline \end{array}$	$\begin{array}{r} 1,1188.815 \\ \quad 7.6 \% \\ \hline \end{array}$	$\begin{array}{r} 14,637,363 \\ 100.0 \% \end{array}$

*FOR EaCh CRASH mOde, the first data row shows the number of occupants ejected or entrapped and the second row SHOWS THE PERCENTAGE OF THE ROW TOTAL.

Figure 13
Ejection-Induced Occupant Injury Rates for Crash-Involved Towed Cars by Degree off Ejection and Crash Mode, 1994-1996

Appendix A. Glossary

AIS (Abbreviated Injury Scale)

An integer scale developed by the Association for the Advancement of Automotive Medicine to rate the severity of individual injuries. The AIS includes: $1=$ minor, $2=$ moderate, $3=$ serious, $4=$ severe, $5=$ critical, and $6=$ maximum (virtually untreatable). The scale does not explicitly denote a fatal injury. An AIS rating of 7 (injured, severity unknown) is used when sufficient information about an injury is not available.

Body Type

Refers to the individual classifications of motor vehicles by their design structure based on definitions developed by the Society of Automotive Engineers.

Crash

An event that produces injury and/or damage, involves a motor vehicle in transport, and occurs on a trafficway or while the vehicle is still in motion after running off the trafficway. In this report, crash and motor vehicle crash are synonymous. To qualify for the CDS, all crashes must be reported by the police to the state and involve a towed CDS applicable vehicle.

Crash Severity (delta-v is used as a measure of crash severity)
CRASHPC and OLDMISSPC are computer models that provide a measure of crash severity in terms of delta-v (see Appendix D). In vehicle-to-vehicle crashes, the models assume that the two vehicles approach each other at an impact velocity, reach a common velocity, and then separate. Delta-v is equal to the impact velocity minus the separation velocity. Other factors being equal, the greater the delta-v during a collision, the greater the potential for occupant injury.

Crashworthiness Data System Applicable Motor Vehicle

Refers to those motor vehicles classified as automobiles, automobile derivatives, sport utility vehicles, van-based light trucks, and light conventional trucks where the qualifying trucks must have a gross vehicle weight rating (GVWR) of less than or equal to 10,000 pounds.

Ejection

Refers to persons being completely or partially thrown from the vehicle as a result of an impact or rollover. Partial ejection refers to a situation where part of the occupant's body remains in the vehicle. This does not apply to occupants who are not initially in the seating compartment of the vehicle (e.g., persons riding in pickup beds, boots of convertibles, or open tailgates), since any ejection for them is coded as complete ejection.

Entrapment

Refers to persons being partially or completely in the vehicle and mechanically restrained by a damaged vehicle component. Jammed doors and immobilizing injuries, by themselves, do not constitute entrapment. Occupants pinned by cargo shift are not considered to be entrapped. Occupants who are completely or partially ejected and subsequently become pinned by their own vehicle and any surface other than their own vehicle are not considered entrapped. An occupant whose seat belt buckle release mechanism is jammed as a result of a crash is not considered entrapped.

Fatally Injured Occupant

A death within 30 days of a CDS applicable motor vehicle crash is a result of injuries sustained in the crash.

Fatal Motor Vehicle Traffic Crash

A crash in which at least one occupant of a CDS applicable motor vehicle dies within 30 days of the crash as a result of injuries sustained in the crash.

Fixed Object

An object attached to the terrain (trees, abutments) or stationary objects intentionally placed for a particular purpose (e.g., poles, barriers).

Gross Vehicle Weight Rating (GVWR)
The maximum capacity of a vehicle, including the weight of the base vehicle, all added equipment, driver and passengers, and all cargo loaded into or onto the vehicle. Actual weight may be less than or greater than GVWR.

Injured Occupant

Occupant of a CDS applicable motor vehicle sustaining any type of injury as a result of a crash, including injuries from non-impact forces.

Light Trucks
Includes utility vehicles, pickups, vans, and truck-based station wagons, with a GVWR less than 10,000 pounds.

Maximum AIS

Represents the highest AIS level sustained by an injured occupant of a CDS applicable motor vehicle.

Motor Vehicle in Transport

A CDS applicable motor vehicle on a roadway or in motion within a trafficway.

Non-Fixed Objects

Objects that are movable or moving that include motor vehicles, pedestrians, pedalcyclists, animals, trains, trailers, ojects that fall from vehicles, small boulders, trash cans, or grocery carts.

Occupant

Any person who is in a CDS applicable motor vehicle in transport.

Passenger Car

Any motor vehicle that is an automobile, auto-based pickup, large limousine, or three-wheel automobile or automobile derivative.

Passenger Vehicles

Includes passenger cars, pickup trucks, vans, and sport/utility vehicles with a GVWR less than 10,000 pounds. Equivalent to CDS applicable vehicles.

Police-Reported Crash

A crash investigated or reported by a police officer, documented with a completed form which is signed by the investigating officer, and reported to the state. Driver reports submitted only to motor vehicle officials are excluded.

Primary Sampling Unit (PSU)

A city, county, or group of contiguous counties with an aggregate population of at least 50,000 which defines a geographic area for crash investigation. PSU selection is the first stage in the probability sampling of crashes for the CDS.

Belt Usage

Manually operated belt systems include shoulder belts, lap belts, lap and should belt combinations, or child safety seats. Automatic belt systems include passive belts.

Roadway

That part of a trafficway used for motor vehicle travel or, where travel by various classes of motor vehicles is segregated, that part of a trafficway used by a particular class. The roadway excludes shoulders, designated parking lanes, and median areas.

Serious-Maximum Injury

Injury severity of AIS 3-6, including, for example, compound fractures and internal organ injuries. Unless otherwise noted, summary statistics in this report include all fatally injured persons as seriously injured, but exclude survivors with unknown injury severity level (see AIS).

Towaway Crash

A crash which is noted on the police report as involving at least one CDS applicable vehicle that was towed from the crash scene as a result of damage from the crash. For those crashes involving injury or fatality, the injured or killed person must be an occupant of the towed CDS applicable vehicle to qualify for the CDS.

Towed Vehicle

A CDS applicable motor vehicle that was involved in a crash and removed by means other than its own power from the crash scene due to damage resulting from the crash.

Trafficway

Any right-of-way open to the public as a matter of right or custom for moving persons or property from one place to another, including the entire width between property lines or other boundaries.

Vehicle Type

Refers to a series of CDS applicable motor vehicle body types that have been grouped together because of design similarities. The principal vehicle types used in this report are passenger cars, pickup trucks, vans, and sport/utility vehicles.

Appendix B. NASS/CDS Sample Design

The crashes investigated in NASS/CDS are a probability sample of all police-reported crashes in the United States. Each such crash that occurs within a CDS team's area has a chance of being included in the sample. This design makes it possible to compute not only national estimates but also probable errors associated with those estimates. Many other features of the design have a significant impact on CDS data analysis, the most important of which are highlighted in this appendix.

The selection of sample crashes for CDS is accomplished in stages. The first stage is the selection of geographic areas called primary sample units (PSUs). Each PSU is composed of a large city, a county, or a group of contiguous counties. The United States was divided into 1,195 PSUs. The PSUs were then grouped into 12 categories described by geographic region and degree of urbanization. Two PSUs were selected from each category with probability proportional to its 1983 population. These 24 PSUs are the first stage in the selection of CDS sample crashes.

If every crash in each of the 24 PSUs were investigated, a national estimate could be obtained by weighting each crash in the PSU by the inverse of the probability of selection of the PSU. For example, if a sample PSU had 1 chance in 40 of being selected, then each crash from the PSU would be weighted by a factor of 40 . This is called the first-stage expansion factor.

It is not practical to investigate every crash in each sample PSU, so additional stages of sampling are performed. The police agencies in a PSU are categorized by the number and type of police crash reports they process. Sample police agencies are then selected randomly from each category. The fraction of the agencies selected increases as the number and severity of crashes reported by the agency increases. This is called the second-stage expansion factor.

The final stage of sampling is the selection of crashes from all crashes reported in the sample police agencies. A simple random selection of all reported towaway crashes would result in a large percentage of sample crashes with property damage and few injuries, since these constitute such a large fraction of all crashes. This type of sample would not be effective in providing the detailed and accurate information needed for the mitigation of crash consequences. Rather, a substantial sample of serious injury crashes is needed for NASS/CDS.

The procedure used to obtain the desired sample by type and severity of crashes is an unequal probability selection. This required listing police crash reports in categories defined by most severe police-reported injury to an occupant of a towed CDS applicable motor vehicle, disposition of the injured, and model year of the towed CDS applicable motor vehicle. A weighting factor was assigned to crashes in each category to increase or decrease the probability of selection. A random selection was made from the total crashes listed in all categories. In addition to the probabilities of selection varying by type of crash, other factors affected the selection probabilities at this stage, such as the number of crashes listed, the date and time of the crash, and the police agencies from which the
crash was listed. The result was that each sampled crash from a PSU has a unique selection probability.

The inverse of this probability is called the third-stage expansion factor. If each sample crash in a PSU is multiplied by its second-and third-stage expansion factors, an unbiased estimate of the total number of crashes in the PSU is obtained. To produce the national estimates, the PSU level estimates are inflated by the first-stage expansion factor. Thus, the national expansion factor is the product of the first-, second-, and third-stage expansion factors.

The national estimates equal the inverse of the product of the probability of the PSUs being selected, the probability of the police agencies being selected, and the probability of the crash being selected for that day. Since the number of crashes in the sample is predetermined, the national estimate for each crash within a stratum is different. To account for this bias, a ratio weight was developed. The ratio weight is the national estimate multiplied by a ratio factor. For each stratum, this ratio factor is equal to the total number of crashes listed in all of the police jurisdictions (sampled and non-sampled) divided by the number of crashes selected. There are instances where very few or no crashes are listed. To account for this, the similar PSUs were grouped together, based on the stratum from which they were originally selected.

Appendix C. NASS/CDS Data Elements

The data are collected on six forms: the Accident Form, the General Vehicle Form, the Exterior Vehicle Form, the Interior Vehicle Form, the Occupant Assessment Form, and the Occupant Injury Form. There are 310 different data elements in the NASS/CDS that characterize the crash, vehicles, and the people involved. This appendix includes the forms used for each crash in the CDS.

SPECIAL STUDIES - INDICATORS

1. Primary Sampling Unit Number
2. Case Number - Stratum
—_ _

IDENTIFICATION

3. Number of General Vehicle Forms Submitted
4. Date of Accident
(Month, Day, Year) \qquad
5. Time of Accident

Code reported military time of accident.
NOTE: Midnight $=2400$
Unknown = 9999
Check (\mathcal{N} each special study (SS15-SS18 below) that has been completed; code 1 for the checked special studies and 0 for the special studies not checked.
6. \qquad SS15 Administrative Use
7. \qquad SS16 Pedestrian Crash Data Study (Data for this special study available in a separate file.)
8. \qquad SS17 Impact Fires
9. \qquad SS18 Unsafe Driver Actions
10. \qquad SS19

NUMBER OF EVENTS

11. Number of Recorded Events in This Accident

Code the number of events which occurred in this accident.

ACCIDENT EVENTS

For each event that occurred in the accident, code the lowest numbered vehicle in the left columns and the other involved vehicle or object in the right columnns.


```
(00) Not a motor vehicle
(01) Subcompact/mini (wheelbase \(<254 \mathrm{~cm}\) )
(02) Compact (wheelbase \(\geq 254\) but \(<265 \mathrm{~cm}\) )
(03) Intermediate (wheelbase \(\geq 265\) but \(<278 \mathrm{~cm}\) )
(04) Full size (wheelbase \(\geq 278\) but \(<291 \mathrm{~cm}\) )
(05) Largest (wheelbase \(\geq 291 \mathrm{~cm}\) )
(09) Unknown passenger car size
(14) Compact utility vehicle
(15) Large utility vehicle ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
(16) Utility station wagon ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
(19) Unknown utility type
(20) Minivan ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
(21) Large van ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
(24) Van Based school bus ( \(54,500 \mathrm{kgs}\) GVWR)
(28) Other van type ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
(29) Unknown van type ( \(\leq 4,500\) kgs GVWR)
(30) Compact pickup truck ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
(00) Not a motor vehicle
(01) Subcompact/mini (wheelbase < 254 cm )
(02) Compact (wheelbase \(\geq 254\) but \(<265 \mathrm{~cm}\) )
103) Intermediate (wheelbase \(\geq 265\) bet \(<278 \mathrm{~cm}\) )
(04) Full size (wheelbase \(\geq 278\) but \(<291 \mathrm{~cm}\) )
(05) Largest (wheelbase \(\geq 291 \mathrm{~cm}\) )
109) Unknown passenger car size
(14) Compact utility vehicle
15) Large utility vehicle ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
16) Utility station wagon ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
Unknown utility type
(24) Van Based school bus ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
(28) Other van type ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
29) Unknown van type ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
(30) Compact pickup truck ( \(\leq 4,500 \mathrm{kgs}\) GVWR)
```

(31) Large pickup truck ($\leq 4,500 \mathrm{kgs}$ GVWR)
(38) Other pickup truck ($\leq 4,500$ kgs GVWR)
(39) Unknown pickup truck type ($\leq 4,500 \mathrm{kgs}$ GVWR
(45) Other light truck ($\leq 4,500$ kgs GVWR)
(48) Unknown light truck type ($\leq 4,500$ kgs GVWR)
(49) Unknown light vehicle type
(50) School bus (excludes van based)(>4,500 kgs GVWR)
(58) Other bus (> 4,500 kgs GVWR)
(59) Unknown bus type
(60) Truck (> 4,500 kgs GVWR)
(67) Tractor without trailer
(68) Tractor-trailer(s)
(78) Unknown medium/heavy truck type
(79) Unknown light/medium/heavy truck type
(80) Motored cycle
(90) Other vehicle
(99) Unknown

CODES FOR GENERAL AREA OF DAMAGE (GAD)

CDS APPLICABLE (O) Not a motor vehicle (R) Right side (T) Top AND OTHER (N) Noncollision (L) Left side (U) Undercarriage VEHICLES	(F) Front Back		(9) Unknown

CODES FOR VEHICLE NUMBER OR OBJECT CONTACTED

(01-30) - Vehicle Number

Noncollision
(31) Overturn - rollover (excludes end-over-end)
(32) Rollover - end-over-end
(33) Fire or explosion
(34) Jackknife
(35) Other intraunit damage (specify):
(36) Noncollision injury
(38) Other noncollision (specify):
(39) Noncollision - details unknown

Collision With Fixed Object
(41) Tree ($\leq 10 \mathrm{~cm}$ in diameter)
(42) Tree (> 10 cm in diameter)
(43) Shrubbery or bush
(44) Embankment
(45) Breakaway pole or post (any diameter)

Nonbreakaway Pole or Post
(50) Pole or post ($\leq 10 \mathrm{~cm}$ in diameter)
(51) Pole or post ($>10 \mathrm{~cm}$ but $\leq 30 \mathrm{~cm}$ in diameter)
(52) Pole or post ($>30 \mathrm{~cm}$ in diameter)
(53) Pole or post (diameter unknown)
(54) Concrete traffic barrier
(55) impact attenuator
(56) Other traffic barrier (includes guardrail) (specify):
(57) Fence
(58) Wall
(59) Building
(60) Ditch or culvert
(61) Ground
(62) Fire hydrant
(63) Curb
(64) Bridge
(68) Other fixed object (specify!:
(69) Unknown fixed object

Collision with Nonfixed Object
(70) Passenger car, light truck, van, or other vehicle not in-transport
(71) Medium/heavy truck or bus not in-transpc :
(72) Pedestrian
(73) Cyclist or cycle
(74) Other nonmotorist or conveyance
(75) Vehicle occupant
(76) Animal
(77) Train
(78) Trailer, disconnected in transport
(79) Object fell from vehicle in-transport
(88) Other nonfixed object (specify):
(89) Unknown nonfixed object
(98) Other event (specify):
(99) Unknown event or object

1. Primary Sampling Unit Number
2. Case Number - Stratum
3. Vehicle Number

VEHICLE IDENTIFICATION

4. Vehicle Model Year

Code the last two digits of the model year
(99) Unknown
5. Vehicle Make (specify):

Applicable codes are found in your NASS Data Collection, Coding and Editing Manual.
(99) Unknown
6. Vehicle Model (specify):

Applicable codes are found in your NASS Data Collection, Coding and Editing Manual.
(999) Unknown
7. Body Type

Note: Applicable codes may be found on the back of this page.
3. Vehicle Identification Number
 Left justify; Slash zeros and letter $Z(0$ andz)
No VIN-Code all zeros Unknown-Code all nines
9. Vehicle Special Use (This Trip)
(0) No special use
(1) Taxi
(2) Vehicle used as school bus
(3) Vehicle used as other bus
(4) Military
(5) Police
(6) Ambulance
(7) Fire truck or car
(8) Other (specify):
(9) Unknown

OFFICIAL RECORDS

10. Police Reported Vehicle Disposition
(0) Not towed due to vehicle damage
(1) Towed due to vehicle damage
(9) Unknown
11. Police Reported Travel Speed

Code to the riearest kmph (NOTE: $00 \overline{00}$ means less than 0.5 kmph)
(160) 159.5 kmph and above
(999) Unknown
$\ldots \quad$ mph $\times 1.6093=$ \qquad kmph
12. Speed Limit
(000) No statutory limit

Code posted or statutory speed limit
in kmph
(999) Unknown
\qquad $\operatorname{mph} \times 1.6093=$ \qquad kmph
13. Police Reported Alcohol Presence For Driver
(0) No alcohol present
(1) Yes alcohol present
(7) Not reported
(8) No driver present
(9) Unknown
14. Alcohol Test Result For Driver

Code actual value (decimal implied
before first digit-0.xx)
(95) Test refused
(96) None given
(97) AC test performed, results unknown
(98) No driver present
(99) Unknown

Source: \qquad
15. Police Reported Other Drug Presence For Driver
(0) No other drug(s) present
(1) Yes other drug(s) present
(7) Not reported
(8) No driver present
(9) Unknown
16. Other Drug Specimen Test Result For Driver
(0) No specimen test given
(1) Drug(s) not found in specimen
(2) Drug(s) found in specimen, (specify):
(3) $\overline{\text { Specimen test given, results unknown or not }}$ obtained
(8) No driver present
(9) Unknown if specimen test given
17. Driver's Zip Code
(00001)Driver not a resident of U.S. or territories Code actual 5-digit zip code
(99998)No driver present
(99999)Unknown
18. Driver's Race/Ethnic Origin
(1) White (non-Hispanic)
(2) Black (non-Hispanic)
(3) White (Hispanic)
(4) Black (Hispanic)
(5) American Indian, Eskimo or Aleut
(6) Asian or Pacific Islander
(7) Other (specify):
(8) No driver present
(9) Unknown

CDS APPLICABLE VEHICLES

Automobiles

(01) Convertible (excludes sun-roof, t-bar)
(02) 2-door sedan, hardtop, coupe
(03) 3-door/2-door hatchback
(04) 4-door sedan, hardtop
(05) 5-door/4-door hatchback
(06) Station wagon (excluding van and truck based)
(07) Hatchback, number of doors unknown
(08) Other automobile type (specify):
(09) Unknown automobile type

Automobile Derivatives

(10) Auto based pickup (includes El Camino, Caballero, Ranchero, Brat, and Rabbit pickup)
(11) Auto based panel (cargo station wagon, auto based ambulance/hearse)
(12) Large limousine - more than four side doors or stretched chassis
(13) Three-wheel automobile or automobile derivative

Utility Vehicles ($\leq 4,500$ kgs GVWR)
(14) Compact utility (Jeep CJ-2-CJ-7, Scrambler, Golden Eagle, Renegade, Laredo, Wrangler, Cherokee [84 and after], Dispatcher, Raider, Bronco II, Bronco [76 and beforel, Explorer, S-10 Blazer, Geo Tracker, Bravada, S-15 Jimmy, Thing, Pathfinder, Trooper, Trooper II, Rodeo, Amigo, Navajo, 4-Runner, Montero, Passport, Samurai, Sidekick, Rocky)
(15) Large utility (includes Jeep Cherokee [83 and before], Ramcharger, Trailduster, Bronco-fulisize [78 and after], fullsize Blazer, fullsize Jimmy, Hummer, Landcruiser, Rover, Scout, Yukon)
(16) Utility station wagon (Chevy Suburban, GMC Suburban, Travelall, Grand Wagoneer, includes suburban limousine)
(19) Utility, unknown body type

Van Based Light Trucks ($\leq 4,500$ kgs GVWR)
(20) Minivan (Town and Country, Caravan, Grand Caravan, Voyager, Grand Voyager, Mini-Ram, Vista, Aerostar, Windstar, Villager, Lumina APV, Trans Sport, Silhouette, Astro, Safari, Toyota Van, Toyota Minivan, Previa, Nissan Minivan, Quest, Mitsubishi Minivan, Expo Wagon, Vanagon/Camper.)
(21) Large van (B150-B350, Sportsman, Royal, Maxiwagon, Ram, Tradesman, Voyager [83 and before], E150-E350, Econoline, Clubwagon, Chateau, G10-G30, Chevy Van, Beauville, Sport Van, G15-G35, Rally Van, Vandura.)
(22) Step van or walk-in van ($\leq 4,500 \mathrm{kgs}$ GVWR)
(23) Van be \quad ad motorhome ($\leq 4,500 \mathrm{kgs}$ GVWR)
(24) Van based school bus ($\leq 4,500 \mathrm{kgs}$ GVWR)
(25) Van based other bus ($\leq 4,500 \mathrm{kgs}$ GVWR)
(28) Other van type (Hi-Cube Van, Kary) (specify):
(29) Unknown van type

Light Conventional Trucks (Pickup style cab, $\leq 4,500 \mathrm{kgs}$ GVWR)
(30) Compact pickup (D50, Colt P/U, Ram 50, Dakota, Arrow Pickup [foreign], Ranger, Courier, S-10, T-10, LUV, S-15, T-15, Sonoma, Datsun/Nissan Pickup, P'up, Mazda Pickup, T נyota Pickup, Mitsubishi Pickup)
(31) Large Pickup (Jeep Pickup, Comanche, Ram Pickup, D100-D350, W100-W350, F100-F350, C10-C35, K10K35, R10-R35, V10-V35, Silverado, Sierra, R100R500, T100)
(32) Pickup with slide-in camper
(33) Convertible pickup
(39) Unknown pickup style light conventional truck type

Other Light Trucks ($\leq 4,500 \mathrm{kgs}$ GVWR)
(40) Cab chassis based (includes rescue vehicles, light stake, dump, and tow truck)
(41) Truck based panel
(42) Light truck based motorhome (chassis mounted)
(45) Other light conventional truck type
(48) Unknown light truck type
(49) Unknown light vehicle type (automobile, utility, van, or light truck)

OTHER VEHICLES

Buses (Excludes Van Based)
(50) School bus (designed to carry students, not cross country or transit)
(58) Other bus type (e.g., transit, intercity, bus based motorhome) (specify):
(59) Unknown bus type

Medium/Heavy Trucks (> 4,500 kgs GVWR)
(60) Step van ($>4,500 \mathrm{kgs}$ GVWR)
(61) Single unit straight truck ($4,500 \mathrm{kgs}<\operatorname{GVWR} \leq$ $8,850 \mathrm{kgs}$)
(62) Single unit straight truck ($8,850 \mathrm{kgs}<\operatorname{GVWR} \leq$ $12,000 \mathrm{kgs}$)
(63) Single unit straight truck (> $12,000 \mathrm{kgs}$ GVWR)
(64) Single unit straight truck, GVWR unknown
(65) Medium/heavy truck based motorhome
(67) Truck-tractor with no cargo trailer
(68) Truck-tractor pulling one trailer
(69) Truck-tractor pulling two or more trailers
(70) Truck-tractor (unknown if pulling trailer)
(78) Unknown medium/heavy truck type
(79) Unknown truck type (light/medium/heavy)

Motored Cycles (Does Not Include All-Terrain Vehicles/Cycles)
(80) Motorcycle
(81) Moped (motorized bicycle)
(82) Three-wheel motorcycle or moped
(88) Other motored cycle (minibike, motorscooter) (specify):
(89) Unknown motored cycle type

Other Vehicles

(90) ATV (All-Terrain Vehicle) and ATC (All-Terrain Cycle)
(91) Snowmobile
(92) Farm equipment other than trucks
(93) Construction equipment other than trucks
(97) Other vehicle type
(99) Unknown body type

PRECRASH ENVIRONMENTAL DATA
19. Relation To Interchange Or Junction
(0) Non-interchange area and non-junction
(1) Interchange area related

Non-Interchange junctions
(2) Intersection related
(3) Driveway, alley access related
(4) Other junction (specify)
(5) Unknown type of junction
(9) Unknown
20. Trafficway Flow
(0) Not physically divided (two way traffic)
(1) Divided trafficway-median strip without positive barrier
(2) Divided trafficway-median strip with positive barrier
(3) One way traffic
(9) Unknown
21. Number Of Travel Lanes
(1) One
(2) Two
(3) Three
(4) Four
(5) Five
(6) Six
(7) Seven or more
(9) Unknown
22. Roadway Alignment
(1) Straight
(2) Curve right
(3) Curve left
(9) Unknown
23. Roadway Profile
(1) Level
(2) Uphill grade ($>2 \%$)
(3) Hill crest
(4) Downhill grade (>2\%)
(5) Sag
(9) Unknown
24. Roadway Surface Type
(1) Concrete
(2) Bituminous (asphalt)
(3) Brick or block
(4) Slag, gravel, or stone
(5) Dirt
(8) Other (specify): \qquad
(9) Unknown
25. Roadway Surface Condition
(1) Dry
(2) Wet
(3) Snow or slush
(4) Ice
(5) Sand, dirt, or oil
(8) Other (specify):
(9) Unknown
26. Light Conditions
(1) Daylight
(2) Dark
(3) Dark, but lighted
(4) Dawn
(5) Dusk
(9) Unknown
27. Atmospheric Conditions
(0) No adverse atmospheric-related driving conditions
(1) Rain
(2) Sleet/hail
(3) Snow
(4) Fog
(5) Rain and fog
(6) Sleet and fog
(7) Other (e.g., smog, smoke, blowing sand or dust, etc.) (specify):
(9) Unknown
28. Traffic Control Device
(0) No traffic control(s)
(1) Traffic control signal (not RR crossing)

Regulatory
(2) Stop sign
(3) Yield sign
(4) School zone sign
(5) Other regulatory sign (specify):
(6) Warning sign (not RR crossing)
(7) Unknown sign
(8) Miscellaneous/other controls including RR controls (specify):
(9) Unknown
29. Traffic Control Device Functioning
(O) No traffic control device
(1) Traffic control device not functioning (specify):
(2) Traffic control device functioning properly
(9) Unknown

PRECRASH DRIVER RELATED DATA

30. Driver's Distraction/Inattention To Driving (Prior To Recognition Of Critical Event)
(00) No driver present
(01) Attentive or not distracted
(02) Looked but did not see

Distractions

(03) By other occupant(s), (specify):
(04) By moving object in vehicle (specify):
(105) While talking or listening to cellular phone (specify location and type of phone):
(06) While dialing cellular phone (specify location and type of phone):
(07) While adjusting climate controls
(08) While adjusting radio, cassette, CD (specify):
(09) While using other device/object in vehicle (specify):
(10) Sleepy or fell asleep
(11) Distracted by outside person, object, or event (specify):
(12) Eating or drinking
(13) Smoking related
(97) Distracted/inattentive, details unknown
(98) Other, distraction (specify):
(99) Unknown
31. Pre-Event Movement (Prior to

Recognition of Critical Event)
(00) No driver present
(01) Going straight
(02) Decelerating in traffic lane
(03) Accelerating in traffic lane
(04) Starting in traffic lane
(05) Stopped in traffic lane
(06) Passing or overtaking another vehicle
(07) Disabled or parked in travel lane
(08) Leaving a parking position
(09) Entering a parking position
(10) Turning right
(11) Turning left
(12) Making a U-turn
(13) Backing up (other than for parking position)
(14) Negotiating a curve
(15) Changing lanes
(16) Merging
(17) Successful avoidance maneuver to a previous critical event
(97) Other (specify):
(99) Unknown
32. Critical Precrash Event

This Vehicle Loss of Control Due To:
(01) Blow out or flat tire
(02) Stalled engine
(03) Disabling vehicle failure (e.g., wheel fell off) (specify):
(04) Non-disabling vehicle problem (e.g., hood flew up) (specify):
(05) Poor road conditions (puddle, pot hole, ice, etc.) (specify):
(06) Traveling too fast for conditions
(08) Other cause of control loss (specify):

This Vehicle Traveling
(10) Over the lane line on left side of travel lane
(11) Over the lane line on right side of travel lane
(12) Off the edge of the road on the left side
(13) Off the edge of the road on the right side
(14) End departure
(15) Turning left at intersection
(16) Turning right at intersection
(17) Crossing over (passing through) intersection
(18) This vehicle decelerating
(19) Unknown travel direction

Other Motor Vehicle In Lane
(50) Other vehicle stopped
(51) Traveling in same direction with lower steady speed
(52) Traveling in same direction while decelerating
(53) Traveling in same direction with higher speed
(54) Traveling in opposite direction
(55) In crossover
(56) Backing
(59) Unknown travel direction of other motor vehicle in lane

Other Motor Vehicle Encroaching Into Lane

(60) From adjacent lane (same direction)-over left lane line
(61) From adjacent lane (same direction) - over right lane line
(62) From opposite direction-over left lane line
(63) From opposite direction - over right lane line
(64) From parking lane
(65) From crossing street, turning into same direction
(66) From crossing street, across path
(67) From crossing street, turning into opposite direction
(68) From crossing street, intended path not known
(70) From driveway, turning into same direction
(71) From driveway, across path
(72) From driveway, turning into opposite direction
(73) From driveway, intended path not known
(74) From entrance to limited access highway
(78) Encroachment by other vehicle-details unknown

Pedestrian, Pedalcyclist, or Other Nonmotorist
(80) Pedestrian in roadway
(81) Pedestrian approaching roadway
(82) Pedestrian-unknown location
(83) Pedalcyclist or other nonmotorist in roadway (specify):
(84) Pedalcyclist or other nonmotorist approaching roadway, (specify):
(85) Pedalcyclist or other nonmotorist-unknown location (specify):

Object or Animal

(87) Animal in roadway
(88) Animal approaching roadway
(89) Animal-unknown location
(90) Object in roadway
(91) Object approaching roadway
(92) Object-unknown location
(98) Other critical precrash event (specify):
(99) Unknown
33. Attempted Avoidance Maneuver
(00) No driver present
101) No avoidance maneuver
(02) Braking (no lockup)
(03) Braking (lockup)
(04) Braking (lockup unknown)
(05) Releasing brakes
(06) Steering left
(07) Steering right
(08) Braking and steering left
(09) Braking and steering right
(10) Accelerating
(11) Accelerating and steering left
(12) Accelerating and steering right
(98) Other action (specify):
(99) Unknown
34. Pre-Impact Stability
(0) No driver present
(1) Tracking
(2) Skidding longitudinally-rotation less than 30 degrees
(3) Skidding laterally-clockwise rotation
(4) Skidding laterally-counterclockwise rotation
(7) Other vehicle loss-of-control (specify):
(9) Precrash stability unknown
35. Pre-Impact Location
(0) No driver present
(1) Stayed in original travel lane
(2) Stayed on roadway but left original travel lane
(3) Stayed on roadway, not known if left original travel lane
(4) Departed roadway
(5) Remained off roadway
(6) Returned to roadway
(7) Entered roadway
(9) Unknown
36. Accident Type
(Note: Applicable codes on back of this page)
(00) No impact

Code the number of the diagram that best describes the accident circumstance
(98) Other accident type (specify):
(99) Unknown

Cate- gory	Configuration	ACCIDENT TYPES (Includes Intent)					
	A. Right Roadside Departure		CONTROL/ TRACTION LOSS AVOID COLISION WITH VEM., PED., ANIM.		04 SPECIFICS OTHER		05 spECIFICS UNKNOWN
	B. Lefi Roadside Departure				09 specifics OTHER		10 SPECIFICS UNKNOWN
	C. Forward Impact				15 sPECIFICS OTHER		16 specifics UNKNOWN
	D Rear-End				(EACH•32) SPECIFICS OTHER		(EACH • 33) SPECIFICS UNKNOWN
	E. Forward Impact						
	F. Sideswipe/ Angle					(EACH - 49) SPECIFICS UNKNOWN	
	G. Head-On	$\left.\xrightarrow{50} \sim \begin{array}{l}\text { (EACH - 52) } \\ \text { SATERAL MOVE } \\ \text { OTHER }\end{array}\right) \quad$ (EACH - 53)					
	H. Forward Impact						
	I. Sideswipe/ Angle	64 (EACH • 66) SPECIFICS OTHER(EACH • 67) SPECIFICS UNKNOWN					
	J. Turn Across Path	INITIAL OPPOSITE DIAECTION8 70 71 $73-$ 72 initial same directions			(EACH - 74) (EACH - 75) SPECIFICS SPECIFICS OTHER UNKNOWN		
	K . Turn Into Path					$\begin{array}{ll} \text { (EACH - 84) (EACH • B5) } \\ \text { SPECIFICS } & \text { SPECIFICS } \\ \text { OTHER } & \text { UNKNOWN } \\ \hline \end{array}$	
	L. Straight Paths.	$\left.\underset{80}{ }\right\|_{8 s}$		(EACH - SO) specifics OTHER	(EACH-91) SPECIFICS UNKNOWN		
	M. Backing Etc.						

OCCUPANT RELATED

37. Driver Presence in Vehicle
(O) Driver not present
(1) Driver present
(9) Unknown
38. Number of Occupants This Vehicle
(00-96) Code actual number of occupants for this vehicle
(97) 97 or more
(99) Unknown
39. Number of Occupant Forms Submitted

AIR BAG RELATED

40. Is this an AOPS Vehicle?
(O) No (includes unknown)
(1) Yes - researcher determined
(2) VIN determined air bag system
(3) VIN determined automatic (passive) belts
(4) VIN determined air bag and automatic (passive) belts
41. Air Bag(s) Deployment, First Seat Frontal
(0) Not equipped or not available
(1) No air bags deployed

Single Air Bag Vehicle
(2) Driver air bag deployed
(3) Driver air bag, unknown if deployed

Multiple Air Bag Vehicle
(4) Driver side only deployed
(5) Passenger side only deployed
(6) Driver and passenger side deployed
(7) Driver and passenger side unknown if deployed
(8) Air bag(s) deployed, details unknown
(9) Unknown
42. Air Bag(s) Deployment, Other Than First Seat Frontal
(0) Not equipped with an "other" air bag
(1) Deployed during accident (as a result of impact)
(2) Deployed inadvertently just prior to accident
(3) Deployed, details unknown
(4) Deployed as a result of a noncollision event during accident sequence (e.g., fire, explosion, electrical)
(5) Unknown if deployed
(7) Nondeployed
(9) Unknown

Specify type of "other" air bag present: \qquad

VEHICLE WEIGHT ITEMS

43. Vehicle Curb Weight , 0

Code weight to \qquad _ 10 kilograms. (045) Less than 450 kilograms (610) 6,100 kilograms or more (999) Unknown
___-_ _-_ lbs $\times .4536=$ \qquad kgs

Source:
44. Vehicle Cargo Weight

> Code weight to nearest 10 kilograms.
(000) Less than 5 kilograms
(450) 4,500 kilograms or more
(999)
Unknown

Source:

ROLLOVER DATA

45. Rollover
(00) No rollover (no overturning)

Rollover (primarily about the longitudinal axis)
(01-16) Code the number of quarter turns
(17) Rollover, 17 or more quarter turns
(98) (specify):
(98) Rollover--end-over-end (i.e., primarily about the lateral axis)
(99) Rollover (overturn), details unknown
46. Rollover Initiation Type
(00) No rollover
(01) Trip-over
(02) Flip-over
(03) Turn-over
(04) Climb-over
(05) Fall-over
(06) Bounce-over
(07) Collision with another vehicle
(08) Other rollover initiation type specify):
(98) Rollover-end-over-end
(99) Unknown rollover initiation type
47. Location of Rollover Initiation
(0) No rollover
(1) On roadway
(2) On shoulder-paved
(3) On shoulder-unpaved
(4) On roadside or divided trafficway median
(8) Rollover--end-over-end
(9) Unknown
48. Rollover Initiation Object Contacted
(Note: Applicable codes on back of page)
49. Location on Vehicle Where Initial Principal Tripping Force Is Applied
(O) No rollover
(1) Wheels/tires
(2) Side plane
(3) End plane
(4) Undercarriage
(5) Other location on vehicle (specify):
(6) Non-contact rollover forces (specify):
(8) Rollover-end-over-end
(9) Unknown
50. Direction of Initial Roll
(O) No rollover
(1) Roll right - primarily about the longitudinal axis
(2) Roll left - primarily about the iongitudinal axis
(8) Rollover--end-over-end
(9) Unknown roll direction

CODES FOR ROLLOVER INITIATION OBJECT CONTACTED

(00) No rollover
(01-30) - Vehicle Number
Noncollision
(31) Turn-over - fall-over
(32) No rollover impact initiation (end-over-end)
(34) Jackknife

Collision With Fixed Object
(41) Tree ($s 10 \mathrm{~cm}$ in diameter)
(42) Tree ($>10 \mathrm{~cm}$ in diameter)
(43) Shrubbery or bush
(44) Embankment
(45) Breakaway pole or post (any diameter)

Nonbreakaway Pole or Post
(50) Pole or post ($\leq 10 \mathrm{~cm}$ in diameter)
(51) Pole or post ($>10 \mathrm{~cm}$ but $\leq 30 \mathrm{~cm}$ in diameter)
(52) Pole or post (> $>30 \mathrm{~cm}$ in diameter)
(53) Pole or post (diameter unknown)
(54) Concrete traffic barrier
(55) Impact attenuator
(56) Other traffic barrier (includes guardrail) (specify):
(57) Fence
(58) Wall
(59) Building
(60) Ditch or culvert
(61) Ground
(62) Fire hydrant
(63) Curb
(64) Bridge
(68) Other fixed object (specify):
(69) Unknown fixed object

Collision with Nonfixed Object
(70) Passenger car, light truck, van, or other vehicle not in-transport
(71) Medium/heavy truck or bus not in-transport
(76) Animal
(77) Train
(78) Trailer, disconnected in transport
(79) Object fell from vehicle in-transport
(88) Other nonfixed object (specify):
(89) Unknown nonfixed object
(98) Other event (specify):
(99) Unknown event or object

OVERRIDE/UNDERRIDE (THIS VEHICLE)
ACCIDENT,RRCONSTRUCTION PROGRAMS HIGHEST DELTA V
51. Front Override/Underride (this Vehicle)
52. Rear Override/Underride (this Vehicle)
(O) No override/underride, or not an end-to-end impact between two CDS applicable vehicles, and no medium/heavy truck or bus underride

Override (see specific CDC)
[Between 2 CDS applicable vehicles (Bodytype, GVO7=1-49)]
(1) 1st CDC
(2) 2nd CDC
(3) Other not automated CDC (specify):

Underride (see specific CDC)
[Between 2 CDS applicable vehicles (Bodytype, GVO7=1-49)]
(4) 1st CDC
(5) 2nd CDC
(6) Other not automated CDC (specify):
(7) Medium/heavy truck or bus override (of any configuration)
(9) Unknown

HEADING ANGLE AT IMPACT FOR HIGHEST DELTA V

Values: (000)-(359) Code actual value
(997) Noncollision
(998) Impact with object
(999) Unknown
53. Heading Angle For This Vehicle
54. Heading Angle For Other Vehicle

RECONSTRUCTION DATA

55.Towed Trailing Unit
(0) No towed unit
(1) Yes-towed trailing unit
(9) Unknown
56. Documentation of Trajectory Data for This Vehicle
(O) No
(1) Yes
57. Post Collision Condition of Tree or Pole (For Highest Delta V)
(O) Not collision (for highest delta V) with tree or pole
(1) Not damaged
(2) Cracked/sheared
(3) Tilted <45 degrees
(4) Tilted ≥ 45 degrees
(5) Uprooted tree
(6) Separated pole from base
(7) Pole replaced
(8) Other (specify):
(9) Unknown
58. Basis for Total (Resultant) Delta V (highest)
(00) No vehicle inspection

Delta V Calculated
(01) Reconstruction program -damage only routine
(02) Reconstruction program -damage and trajectory routine
(03) Missing vehicle algorithm

Delta V Not Calculated

(04) At least one vehicle (which may be this vehicle) is beyond the scope of an acceptable reconstruction program, regardless of collision conditions.

All vehicles within scope (CDC applicable) of reconstuction program but one of the collision conditions is beyond the scope of the reconstruction program or other acceptable reconstruction technique, regardless of adequacy of damage data.
(05) Rollover
(06) Other non-horizontal forces
(07) Sideswipe type damage
(08) Severe override
(09) Yielding object
(10) Overlapping damage
(11) All vehicle and collision conditions are within scope of one of the acceptable reconstruction programs, but there is insufficient data available, (specify):
(98) Other, (specify):

COMPUTER GENERATED:CRASH SEVERITY

Highest
59. Total Delta V

\qquad Nearest kmph (highest)
\qquad Nearest kmph (secondary)
(NOTE: 000 means less than 0.5 kmph)
(160) 159.5 kmph and above
(999)Unknown

Highest
60. Longitudinal Component of Delta V

Nearest kmph (highest)
\qquad Nearest kmph (secondary)
(NOTE: \qquad 000 means greater than
-0.5 kmph and less than +0.5 kmph)
$(\pm 160) \pm 159.5 \mathrm{kmph}$ and above
(_1999) Unknown
Highest

61. Lateral Component of Delta V \begin{tabular}{l}

+

-

\hline
\end{tabular}

(NOTE: _000 means greater than -0.5 kmph and less than +0.5 kmph)
$(\pm 160) \pm 159.5 \mathrm{kmph}$ and above
(_999) Unknown
62. Energy Absorption \qquad
\qquad 00
\qquad Nearest 100 joules (highest)
\qquad Nearest 100 joules (secondary)
(NOTE: 0000 means less than 50 joules)
(9997) 999,650 joules or more (9999) Unknown

OTHER SPEED ESTIMATE

Highest
65. Barrier Equivalent Speed
\qquad Nearest kmph (highest)

63. Impact Speed

\qquad Nearest kmph (highest)
\qquad Nearest kmph (secondary)
(NOTE: 000 means less than 0.5 kmph)
(160) 159.5 kmph and above
(998) Trajectory algorithm not run
(999) Unknown

DELTA V CONFIDENCE LEVEL

64. Confidence In Reconstruction Program Results (For Highest Delta V)
(0) No reconstruction
(1) Collision fits model - results appear reasonable
(2) Collision fits model - results appear high
(3) Collision fits model - results appear low
(4) Borderline reconstruction - results appear reasonable
\qquad Nearest kmph (secondary)
(NOTE: 000 means less than 0.5 kmph)
(160) $\quad 159.5 \mathrm{kmph}$ and above (999) Unknown
65. Estimated Highest Delta V (Researcher Determined)
(O) Reconstruction Delta V coded

Estimated Delta V
(1) Less than 10 kmph
(2) $\geq 10 \mathrm{kmph}$ but $<25 \mathrm{kmph}$
(3) $\geq 25 \mathrm{kmph}$ but $<40 \mathrm{kmph}$
(4) $\geq 40 \mathrm{kmph}$ but $<55 \mathrm{kmph}$
(5) $\geq 55 \mathrm{kmph}$

Other estimates of damage severity
(6) Minor
(7) Moderate
(8) Severe
(9) Unknown
67. Type of Vehicle Inspection
(0) No inspection
(1) Vehicle fully repaired-no damage evident
(2) Partial inspection (specify):
(3) Complete inspection
—_-_
3. Vehicle Number

1. Primary Sampling Unit Number
2. Case Number - Stratum

VEHICLE IDENTIFICATION

VIN \qquad $-$ \qquad — \qquad - \qquad - \qquad Model Year Vehicle Model (specify): \qquad
LOCATOR
Locate the end of the damage with respect to the vehicle's damaged center point or bumper corner for end impacts or an undamaged axle for side impacts.

Specific Impact No.	Location of Direct Damage	Location of Field L	Location of Max Crush

CRUSH PROFILE IN CENTIMETERS

NOTES: Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, etc.) and label adjustments (e.g., free space).

Measure C1 to C6 from driver to passenger side in front or rear impacts and rear to front in side impacts.

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C -measurement and maximum crush.

Use as many lines/columns as necessary to describe each damage profile.

Specific Impact Number	Plane of Impact C-Measurements	Wirect Damage (CDC)	Max Crush	Field L	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	$\pm \mathrm{D}$

Wheelbase
Overall Length
Maximum Width
Curb Weight
Average Track
Front Overhang
Rear Overhang
Undeformed End Width
Engine Size: cyl. $/ \mathrm{displ}$.

VEHICLE DAMAGE SKETCH

TIRE-WHEEL DAMAGE
a. Rotation physically b. Tire restricted

RF	RF
LF	LF
RR	RR
LR	LR

(1) Yes (2) No (8) NA (9) Unk.

TYPE OF TRANSMISSION Manual

Automatic
END SHIFT $\geq 10 \mathrm{CM}$ \square Yes \square No

ORIGINAL SPECIFICATIONS

Wheelbase	cm	(For locked front wheels or displaced rear axles only)
Overall Length	cm	$\mathrm{RF} \pm$
Maximum Width	cm	$\begin{aligned} & \text { LF } \pm=\square \\ & \text { RR } \pm=\square \end{aligned}$
Curb Weight	kg	LR \pm - - ${ }^{\text {- }}$
Average Track	cm	Within ± 5 degrees
Front Overhang	cm	DRIVE WHEELS
Rear Overhang	cm	$\square \mathrm{FWD}$-RWD \square 4WD
Undeformed End Width	cm	Approximate
Engine Size: cyl./displ.	L	Cargo Weight ___kg

WHEEL STEER ANGLES (For locked front wheels or displaced rear axles only)

FWD
RWD
4WD g

MEASUREMENTS IN CENTIMETERS

NOTES: Sketch new perimeter and cross hatch direct damage and single hatch induced damage on all views. Annotate observations which might be useful in reconstructing the accident (e.g., grass in tire bead, direction of striations, scuff on sidewalls, etc.). If pulling trailer, sketch type of trailer and damage received on the back of this page.

Annotate any damage caused by extrication such as component removal by torching, prying, or hydraulic shears.

CDC WORKSHEET

CODES FOR OBJECT CONTACTED

(01-30) - Vehicle Number
Noncollision
(31) Overturn - rollover (excludes end-over-end)
(32) Rollover-end-over-end
(33) Fire or explosion
(34) Jackknife
(35) Other intraunit damage (specify):
(36) Noncollision injury
(38) Other noncollision (specify):
(39) Noncollision - details unknown

Collision With Fixed Object
(41) Tree ($s 10 \mathrm{~cm}$ in diameter)
(42) Tree ($>10 \mathrm{~cm}$ in diameter)
(43) Shrubbery or bush
(44) Embankment
(45) Breakaway pole or post (any diameter)

Nonbreakaway Pole or Post
(50) Pole or post ($\leq 10 \mathrm{~cm}$ in diameter)
(51) Pole or post ($>10 \mathrm{~cm}$ but $\leq 30 \mathrm{~cm}$ in diameter)
(52) Pole or post ($>30 \mathrm{~cm}$ in diameter)
(53) Pole or post (diameter unknown)
(54) Concrete traffic barrier
(55) Impact attenuator
(56) Other traffic barrier (includes guardrail) (specify):
(57) Fence
(58) Wall
(59) Building
(60) Ditch or culvert
(61) Ground
(62) Fire hydrant
(63) Curb
(64) Bridge
(68) Other fixed object (specify):
(69) Unknown fixed object

Collision with Nonfixed Object
(70) Passenger car, light truck, van, or other vehicle not in-transport
(71) Medium/heavy truck or bus not in-transport
(72) Pedestrian
(73) Cyclist or cycle
(74) Other nonmotorist or conveyance
(75) Vehicle occupant
(76) Animal
(77) Train
(78) Trailer, disconnected in transport
(79) Object fell from vehicle in-transport
(88) Other nonfixed object (specify):
(89) Unknown nonfixed object
(98) Other event (specify):
(99) Unknown event or object

COLLISION DEFORMATION CLASSIFICATION

HIGHEST DELTA "V"

Accident Event Sequence Number	Object Contacted	(1) (2) Direction of Force	(3) Deformation Location	(4) Longitudinal or Lateral Location	(5) Vertical or Lateral Location	(6) Type of Damage Distribution	(7) Deformation Extent
4.	5.	6.		8.		10.	11.

Second Highest Delta "V"

12. \qquad 13. \qquad 14 \qquad
13. \qquad
14. \qquad 17. \qquad 18. \qquad 19.

CRUSH PROFILE IN CENTIMETERS

The crush profile for the damage described in the $\mathrm{CDC}(\mathrm{s})$ above should be documented in the appropriate space below. (ALL MEASUREMENTS ARE IN CENTIMETERS.)

HIGHEST DELTA "V"
20.
21.
L \qquad
\qquad

C_{5} \qquad
22.
\pm D
Second Highest Delta "V"
23.
24.
L

\square C_{4} \qquad C_{6}
25.
\pm D
26. Undeformed End Width
(Coded when highest severity
ـ impact is an end plane impact.)

Code to the nearest centimeter
(250) 250 centimeters or more
(998) No highest severity end plane impact
(999) Unknown
27. Direct Damage Width
(For highest severity impact)
Code to the nearest centimeter
(250) 250 centimeters or more
(999) Unknown
28. Original Wheelbase

Code to the nearest centimeter
(650) 650 centimeters or more
(999) Unknown
__ _ _ • _ inches $\times 2.54=$ \qquad centimeters
29. Original Average Track Width

Code to the nearest centimeter
(185) 185 centimeters or more
(999) Unknown
\qquad inches $\times 2.54=$ \qquad centimeters

AUTOMATIC RESTRAINTS

JOTES: Encode the data for each applicable front seat position. The attribute for the variables may be found below. Restraint systems should be assessed during the vehicle inspection then coded on the Occupant Assessment Form.

AIR BAGS

AUTOMATIC BELTS

		Left	Right
F	Availability/Function		
	Use		
	Type		
	Proper Use		
T	Failure Modes		

Automatic (Passive) Belt System

Availability/Function
(0) Not equipped/not available
(1) 2 point automatic belts
(2) 3 point automatic belts
(3) Automatic belts - type unknown

Non-functional
(4) Automatic belts destroyed or rendered inoperative
(9) Unknown

Automatic (Passive) Belt System Use
(0) Not equipped/not available/destroyed or rendered inoperative
(1) Automatic belt in use
(2) Automatic belt not in use (manually disconnected, motorized track inoperative)
(3) Automatic belt use unknown
(9) Unknown

Automatic (Passive) Belt System Type
(0) Not equipped/not available
(1) Non-motorized system
(2) Motorized system
(9) Unknown

Proper Use of Automatic (Passive) Belt

 System(0) Not equipped/not available/not used
(1) Automatic belt used properly
(2) Automatic belt used properly with child safety seat

Automatic Belt Used Improperly
(3) Automatic shoulder belt worn under arm
(4) Automatic shoulder belt worn behind back
(5) Automatic belt worn around more than one person
(6) Lap portion of automatic belt worn on abdomen
(7) Automatic lap and shoulder belt or automatic shoulder belt used improperly with child safety seat (specify):
(8) Other improper use of automatic belt system (specify):
(9) Unknown

Automatic (Passive) Belt Failure Modes

 During Accident(0) Not equipped/not available/not in use
(1) No automatic belt failure(s)
(2) Torn webbing (stretched webbing not included)
(3) Broken buckle or latchplate
(4) Upper anchorage separated
(5) Other anchorage separated (specify):
(6) Broken retractor
(7) Combination of above (specify):
(8) Other automatic belt failure (specify):
(9) Unknown
30. Are CDCs Documented
but Not Coded on The
Automated File?
(0) No
(1) Yes
31. Researcher's Assessment of Vehicle Disposition
(0) Not towed due to vehicle damage
(1) Towed due to vehicle damage
(9) Unknown
32. Is This A Multi-Stage Manufactured Vehicle And/Or A Certified Altered Vehicle?
(O) No post manufacturer modifications
(1) Yes - post manufacturer modifications (specify):
(Include photograph of CERTIFICATION PLACARD in case report)
(9) Unknown if vehicle is modified

FIRE OCCURRENCE

33. Fire Occurrence
(0) No fire

Yes, fire occurred
(1) Minor
(2) Major
(9) Unknown
34. Origin of Fire
(0) No fire
(1) Vehicle exterior (front, side, back, top)
(2) Exhaust system
(3) Fuel tank (and other fuel retention system parts)
(4) Engine compartment
(5) Cargo/trunk compartment
(6) Instrument panel
(7) Passenger compartment area
(8) Other location (specify):
(9) Unknown

FUEL SYSTEM

35. Location of Fuel Tank-1 Filler Cap
36. Location of Fuel Tank-2 Filler Cap
(0) No fuel tank
(1) On back plane
(2) Aft of center of the rear wheels (rear axle) on left side plane
(3) Aft of center of the rear wheels (rear axle) on right side plane
(4) Forward of center of the rear wheels (rear axie) on left side plane
(5) Forward of center of the rear wheels (rear axle) on right side plane
(6) Over the center of the rear wheels (rear axle) on left side plane
(7) Over the center of the rear wheels (rear axle) on right side plane
(8) Other (specify):
(9) Unknown
37. Type of Fuel Tank-1
38. Type of Fuel Tank-2
(0) No fuel tank (electrical vehicle)
(1) Metallic
(2) Non-metallic
(9) Unknown
39. Location of Fuel Tank-1
40. Location of Fuel Tank-2
(O) No fuel tank
(1) Aft of center of the rear wheels (rear axie) centered
(2) Aft of center of the rear wheels (rear axle) left side
(3) Aft of center of the rear wheels (rear axle) right side
(4) Forward of center of the rear wheels (rear axle) centered
(5) Forward of center of the rear wheels (rear axle) left side
(6) Forward of center of the rear wheels (rear axle) right side
(7) Over center of the rear wheels (rear axie)
(8) Other (specify):
(9) Unknown
41. Damage to Fuel Tank-1
42. Damage to Fuel Tank-2
(0) No fuel tank
(1) No damage to fuel tank
(2) Deformed, no seam failure
(3) Deformed, with a seam failure
(4) Punctured
(5) Lacerated (ripped)
(6) Abraded (scraped)
(7) Filler neck separation from the fuel tank
(8) Other damage (specify): \qquad
(9) Unknown
43. Leakage Location of Fuel System-1
44. Leakage Location of Fuel System-2
(0) No fuel tank
(1) No fuel leakage

Primary Area Of Leakage
(2) Tank
(3) Filler neck
(4) Cap
(5) Lines/pump/filter
(6) Vent/emission recovery
(8) Other (specify):
(9) Unknown
45. Fuel Type-1
46. Fuel Type-2

Single Fuel Type
(00) No fuel tank
(01) Gasoline
(02) Diesel
(03) CNG (Compressed Natural Gas)
(04) LPG (Liquid Petroleum Gas) also known as Propane
(05) LNG (Liquid Natural Gas)
(06) Methanol (M100 or M85)
(07) Ethanol (E100 or E85)
(08) Other (Hydrogen or others) (specify):

Electric Powered or Electric/Solar
Powered Vehicles
(10) Lead Acid Battery
(11) Nickel-Iron Battery
(12) Nickel-Cadmium Battery
(13) Sodium Metal Chloride Battery
(14) Sodium Sulfur Battery
(18) Other (Specify):
(98) Other Hybrid (specify):
(99) Unknown fuel type
47. Is This Vehicle Equipped With More Than Two Fuel Tanks?
(0) No (one or two tanks only)

Yes - More Than Two Tanks
(1) Yes -- no damage to any tank or filler cap and no fuel system leakage
(2) Yes -- no damage to any tank or filler cap but there is fuel system leakage (specify leakage location):
(3) Yes -- damage to an additional tank or filler cap and there is fuel system leakage (specify the following):
Type of tank \qquad
Tank location
Filler cap location \qquad
Tank damage
Location of leakage Type of fuel
(9) Unknown if more than two tanks

COMMENTS

\qquad
(GV10=0)

1. Primary Sampling Unit Number

2. Case Number - Stratum
3. Vehicle Number

INTEGRITY

4. Passenger Compartment Integrity (00) No integrity loss

Yes, Integrity Was Lost Through
(01) Windshield
(02) Door (side)
(03) Door/hatch (back door)
(04) Roof
(05) Roof glass
(06) Side window
(07) Rear window (backlight)
(08) Roof and roof glass
(09) Windshield and door (side)
(10) Windshield and roof
(11) Side and rear window (side window and backlight)
(12) Windshield and side window
(13) Door and side window
(98) Other combination of above (specify):
(99) Unknown

Door, Tailgate or Hatch Opening
5. LF \qquad 6. RF \qquad 7. LR \qquad 8. RR \qquad 9. TG/H \qquad
(0) No door/gate/hatch
(1) Door/gate/hatch remained closed and operational
(2) Door/gate/hatch came open during collision
(3) Door/gate/hatch jammed shut
(8) Other (specify):
(9) Unknown

Damage/Failure Associated with Door, Tailgate or Hatch Opening in Collision. If IV05-IV09 $=2$, Then code \varnothing
10. LF \qquad 11. RF \qquad 12. LR \qquad 13. RR 14. TG/H \qquad
(0) No door/gate/hatch or door not opened

Door, Tailgate or Hatch Came Open During Collision
(1) Door operational (no damage)
(2) Latch/striker failure due to damage
(3) Hinge failure due to damage
(4) Door structure failure due to damage
(5) Door support (i.e., pillar, sill, roof side rail, etc.) failure due to damage
(6) Latch/striker and hinge failure due to damage
(8) Other failure (specify):
(9) Unknown

GLAZING

Type of Window/Windshield Glazing

15. WS \qquad 16. LF \qquad 17. RF \qquad 18. LR \qquad 19. RR
16. BL \qquad 21. Roof \qquad 22. Other \qquad
(0) No glazing
(1) AS-1 - Laminated
(2) AS-2 - Tempered
(3) AS-3 - Tempered-tinted (original)
(4) AS-2 - Tempered-with after market tint
(5) AS-3 - Tempered-tinted (with additional after market tint)
(6) AS-14-Glass/Plastic
(7) Glazing removed prior to accident
(8) Other (specify):
(9) Unknown

Window Precrash Glazing Status
23. WS \qquad 24. LF \qquad 25. RF \qquad 26. LR \qquad 27. RR
28. BL \qquad 29. Roof \qquad 30. Other \qquad
(0) No glazing
(1) Fixed
(2) Closed
(3) Partially opened
(4) Fully opened
(7) Glazing removed prior to accident
(9) Unknown

Glazing Damage from Impact Forces

31. WS \qquad 32. LF \qquad 33. RF \qquad 34. LR \qquad 35. RR \qquad
32. BL \qquad 37. Roof \qquad 38. Other \qquad
(0) No glazing
(1) No glazing damage from impact forces
(2) Glazing in place and cracked from impact forces
(3) Glazing in place and holed from impact forces
(4) Glazing out-of-place (cracked or not) and not holed from impact forces
(5) Glazing out-of-place and holed from impact forces
(6) Glazing disintegrated from impact forces
(7) Glazing removed prior to accident
(9) Unknown if damaged

Glazing Damage from Occupant Contact

39. WS \qquad 40. LF \qquad 41. RF \qquad 42. LR 43. RR \qquad
40. BL \qquad 45. Roof \qquad 46. Other \qquad
(0) No glazing
(1) No occupant contact to glazing
(2) Glazing contacted by occupant but no glazing damage
(3) Glazing in place and cracked by occupant contact
(4) Glazing in place and holed by occupant contact
(5) Glazing out-of-place (cracked or not) by occupant contact and not holed by occupant contact
(6) Glazing out-of-place by occupant contact and holed by occupant contact
(7) Glazing removed prior to accident
(8) Glazing disintegrated by occupant contact
(9) Unknown if contacted by occupant

Document no more than the 15 most severe intrusions

OCCUPANT AREA INTRUSION

Note: If no intrusions, leave variables IV47-IV86 blank.

	Location of Intrusion	Intruding Component	Magnitude of Intrusion	Dominant Crush Direction
1st	47.	48.	49.	50.
2nd			53.	54.
3 rd		56.	57.	58.
4th	59.	60.	61.	62.
5th		64.	65.	66.
6th	67.	68.	69.	70.
7th	71.		73.	74.
8th	75.	76.	77.	78.
9th	79.	80.	81.	82.
10th	83.	84.	85.	86.
LOCATION OF INTRUSION				
Front Seat (11) Left (12) Middle (13) Right		Fourth Seat (41) Left (42) Middle (43) Right		
Second Seat (21) Left (22) Middle (23) Right		$\begin{aligned} & \text { (97) } \\ & \text { (98) } \end{aligned}$	Catastrophic Other enclosed area (specify)	
Third Seat (31) Left (32) Middle (33) Right		(99)	Unknown	

INTRUDING COMPONENT

Interior Components

(01) Steering assembly
(02) Instrument panel left
(03) Instrument panel center
(04) Instrument panel right
(05) Toe pan
(06) A (A1/A2)-pillar
(07) B-pillar
(08) C-pillar
(09) D-pillar
(10) Side panel - forward of the A1/A2-pillar
(11) Door panel (side)
(12) Side panel - rear of the B-pillar
(13) Roof (or convertible top)
(14) Roof side rail
(15) Windshield
(16) Windshield header
(17) Window frame
(18) Floor pan (includes sill)
(19) Backlight header
(20) Front seat back
(21) Second seat back
(22) Third seat back
(23) Fourth seat back
(24) Fifth seat back
(25) Seat cushion
(26) Back door/panel (e.g., tailgate)
(27) Other interior component (specify):

Exterior Components

(30) Hood
(31) Outside surface of this vehicle (specify):
(32) Other exterior object in the environment (specify):
(33) Unknown exterior object
(97) Catastrophic
(98) Intrusion of unlisted component(s) (specify):
(99) Unknown

MAGNITUDE OF INTRUSION

(1) ≥ 3 centimeters but <8 centimeters
(2) ≥ 8 centimeters but <15 centimeters
(3) ≥ 15 centimeters but <30 centimeters
(4) ≥ 30 centimeters but <46 centimeters
(5) ≥ 46 centimeters but <61 centimeters
(6) ≥ 61 centimeters
(7) Catastrophic
(9) Unknown

DOMINANT CRUSH DIRECTION

(1) Vertical
(2) Longitudinal
(3) Lateral
(7) Catastrophic
(9) Unknown
(All Measurements Are in Centimeters)

COMPARISON VALUE	$=$	$=$
	-	$=$
	-	$=$
		$=$

STEERING COLUMN
INSTRUMENT PANEL
87. Steering Column Type
(1) Fixed column
(2) Tilt column
(3) Telescoping column
(4) Tilt and telescoping column
(8) Other column type (specify):
(9) Unknown
88. Tilt Steering Column Adjustment
(0) No tilt steering column
(1) Full up
(2) Between full up and center
(3) Center
(4) Between center and full down
(5) Full down
(9) Unknown
89. Telescoping Steering Column Adjustment
(O) No telescoping steering column
(1) Full back
(2) Between full back and midpoint
(3) Midpoint
(4) Between midpoint and full forward
(5) Full forward
(9) Unknown
90. Steering Rim/Spoke Deformation Code actual measured
deformation to the nearest centimeter
(00) No steering rim deformation
(01-14) Actual measured value in centimeters
(15) 15 centimeters or more
(98) Observed deformation cannot be measured
(99) Unknown
91. Location of Steering Rim/Spoke

Deformation
(00) No steering rim deformation

Quarter Sections
(01) Section A
(02) Section B
(03) Section C
(04) Section D

Half Sections
Upper Lower
(05) Upper half of rim/spoke
(06) Lower half of rim/spoke
(07) Left half of rim/spoke
(08) Right half of rim/spoke
(09) Complete steering wheel collapse
(10) Undetermined location
(99) Unknown
92. Odometer Reading \qquad ,000
\qquad kilometers
Code to the nearest 1,000 kilometers
(000) No odometer
(001) Less than 1,500 kilometers
(500) 499,500 kilometers or more
(999) Unknown
\qquad milas $\times 1.6093=$ \qquad
\qquad kilometers

Source:
93. Instrument Panel Damage from Occupant Contact?
(0) No
(1) Yes
(9) Unknown
94. Type of Knee Bolster Covering
(0) No knee bolster
(1) Padded
(2) Rigid plastic
(8) Other (specify):
(9) Unknown
95. Knee Bolsters Deformed from

Occupant Contact?
(0) No knee bolster
(1) No deformation
(2) Yes-deformation
(9) Unknown
96. Did Glove Compartment Door Open During Collision(s)?
(0) No glove compartment door
(1) No - door did not open
(2) Yes - door opened
(9) Unknown
97. Adaptive (Assistive) Driving Equipment
(0) No adaptive driving equipment
(1) Adaptive driving equipment installed (Check all that apply.)
[] Hand controls for braking/acceleration
[] Steering control devices (attached to OEM steering wheel
[] Steering knob attached to steering wheel
[] Low effort power steering (unit or device)
[] Replacement steering wheel (i.e., reduced diameter)
[] Joy-stick steering controls
[] Wheelchair tie-downs
[I Modification to seat belts (specify):
[] Additional or relocated switches (specify):
[] Raised roof
[] Wall-mounted head rest (used behind wheelchair)
[] Other adaptive device (specify):
(9) Unknown

Note area of ejection/entrapment

 compartment, damage to instrument panel structure.
Cross hatch contact points, draw spider webs or use other annotation as may be appropriate.
Annotate the contacted area with a letter (begin with A) and list on the Points of Occupant Contact page.

POINTS OF OCCUPANT CONTACT

MANUAL RESTRAINTS

NOTES: Encode the applicable data for each seat position in the vehicle. The attribute for the variable may be found below Restraint systems should be assessed during the vehicle inspection then coded on the Occupant Assessment Form If a Child safety seat is present, encode the data on the back of this page.
If the vehicle has automatic restraints available, encode the appropriate data on the back of the previous page.

$\begin{aligned} & F \\ & I \\ & R \\ & S \\ & T \end{aligned}$	Availability
	Evidence of usage
	Used in this crash?
	Proper Use
	Failure Modes
	Anchorage Adjustment
$\begin{aligned} & S \\ & \mathrm{E} \\ & \mathrm{C} \\ & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{D} \end{aligned}$	Availability
	Evidence of usage
	Used in this crash?
	Proper Use
	Failure Modes
	Anchorage Adjustment
$\begin{aligned} & \mathrm{O} \\ & \mathbf{T} \\ & \mathrm{H} \\ & \mathrm{E} \\ & \mathrm{R} \end{aligned}$	Availability
	Evidence of usage
	Used in this crash?
	Proper Use
	Failure Modes
	Anchorage Adjustment

Manual (Active) Belt System Availability
(0) None available
(1) Belt removed/destroyed
(2) Shoulder belt
(3) Lap belt
(4) Lap and shoulder belt
(5) Belt available - type unknown

Integral Belt Partially Destroyed
(6) Shoulder belt (lap belt destroyed/removed)
(7) Lap belt (shoulder belt destroyed/removed)
(8) Other belt (specify):
19) Unknown

Manual (Active) Belt System Use
(00) None used, not available, or belt removed/destroyed
(01) Inoperable (specify):
(02) Shoulder belt
(03) Lap belt
(04) Lap and shoulder belt
(05) Belt used - type unknown
(08) Other belt used (specify):
(12) Shoulder belt used with child safety seat
(13) Lap belt used with child safety seat
(14) Lap and shoulder belt used with child safety seat
(15) Belt used with child safety seat type unknown
(18) Other belt used with child safety seat (specify):
(99) Unknown if belt used

Proper Use of Manual (Active) Belts
(0) None used or not available
(1) Belt used properly
(2) Belt used properly with child safety seat

Belt Used Improperly
(3) Shoulder belt worn under arm
(4) Shoulder belt worn behind back or seat
(5) Belt worn around more than one person
(6) Lap belt worn on abdomen
(7) Lap belt or lap and shoulder belt used improperly with child safety seat (specify):
(8) Other improper use of manual belt system (specify):
(9) Unknown

Manual (Active) Belt Failure Modes During Accident
(0) No manual belt used or not available
(1) No manual belt failure(s)
(2) Torn webbing (stretched webbing not included)
(3) Broken buckle or latchplate
(4) Upper anchorage separated
(5) Other anchorage separated
(specify): \qquad
(6) Broken retractor
(7) Combination of above (specify):
(8) Other manual belt failure (specify):
(9) Unknown

Shoulder Belt Upper Anchorage Adjustment
(0) No shoulder belt
(1) No upper anchorage adjustment for shoulder belt

Adjustable shoulder Belt Upper Anchorage
(2) in tull up position
(3) In mid position
(4) In full down position
(5) Position unknown
(9) Unknown if position has adjustable upper anchorage adjustment

FIRST SEAT FRONTAL AIR BAGS

NOTES: Encode the applicable data for the driver and first seat passenger in the vehicle. The attribute for the variable may be found below. Restraint systems should be assessed during the vehicle inspection then coded on the Occupant Assessment Form.

	Driver	Passenger
Type of air bag?		
Flaps open at tear points?		
Flaps damaged?		
Air bag damaged?		
Source of air bag damage		
Air bag tethered?		
Air bag have vent ports?		
Other occupant contact air bag?		
Occupant wearing eyewear?		

Type of Air Bag

(0) Not equipped/not available
(1) Original manufacturer installed system
(2) Retrofitted air bag
(3) Replacement air bag
(8) Unknown type of air bag
(9) Unknown

Did Air Bag Module Cover Flap(s) Open At Designated Tear Points?
(0) Not equipped/not available
(1) No
(2) Yes
(3) Deployed, unknown if flap(s) opened at designated tear points
(7) Not deployed
(8) Unknown if deployed
(9) Unknown

Were Air Bag Module Cover Flap(s)

Damaged?
(0) Not equipped/not available
(1) No
(2) Yes (specify):
(3) Deployed, unknown if air bag madule cover flap(s) damaged
(7) Not deployed
(8) Unknown if deployed
(9) Unknown

Was There Damage To The Air Bag?
(00) Not equipped/not available
101) Not damaged

Yes - Air Bag Damage
(02) Ruptured
(03) Cut
(04) Torn
105) Holed
106) Burned
(07) Abraded
(88) Other damage (specify):
(95) Damaged, details unknown
(96) Deployed, unknown if damaged
(97) Not deployed
(98) Unknown if deployed
(99) Unknown

Source of Air Bag Damage

(00) Not equipped/not available
(01) Not damaged
(02) Object worn by occupant, (specify):
(03) Object carried by occupant, (specify):
(04) $\overline{\text { Adaptive/assistive controls, (specify): }}$
(05) Fire in vehicle
(06) Thermal burns
(07) Rescue or emergency efforts
(88) Other damage source (specify):
(95) Damaged, unknown source
(96) Deployed, unknown if damaged
(97) Not deployed
(98) Unknown if deployed
(99) Unknown

Was The Air Bag Tethered?
(0) Not equipped/not available
(1) No
(2) Yes (specify number of tether straps):
(3) Deployed, unknown if tethered
(7) Not deployed
(8) Unknown if deployed
(9) Unknown

Did The Air Bag Have Vent Ports?
(0) Not equipped/not available
(1) No
(2) Yes (specify number of vent ports):
(3) Deployed, unknown if vent ports present
(7) Not deployed
(8) Unknown if deployed
(9) Unknown

Was the Air Bag in this Occupant's Position Contacted by Another Occupant?
(0) Not equipped/not available
(1) No
(2) Yes (specify):
(3) Deployed, unknown if other occupant contact to air bag
(7) Not deployed
(8) Unknown if deployed
ir Unknown
Was This Occupant Wearing Eye-wear?
(0) Not equipped/not available
(1) No
(2) Eyeglasses/sunglasses
(3) Contact lenses
(4) Deployed, unknown if eyewear worn
(7) Not depioyed
(8) Unknown if deployed
(9) Unknown

1. SKETCH DAMAGE AND CONTACT EVIDENCE ON DRIVER AIR BAG (Front)

cm.
2. SKETCH DAMAGE AND CONTACT EVIDENCE ON DRIVER AIR BAG (Back)

3. DRIVER AIR BAG MODULE COVER FLAP SIZE (DOUBLE)
a. Upper Flap
b. Lower Flap
width (W_{u}) \qquad width (W_{L}) \qquad
height $\left(H_{u}\right)$ \qquad height $\left(H_{L}\right)$ \qquad

4. SKETCH OF OTHER TYPE OF AIR BAG MODULE FLAP AND SIZE
5. SKETCH OF OTHER TYPE OF AIR BAG VENT PORTS
6. SKETCH LOCATION OF CIRCULAR AIR BAG VENT PORTS

1.SKETCH DAMAGE AND CONTACT EVIDENCE ON PASSENGER AIR BAG (Front)

7. SKETCH DAMAGE AND CONTACT EVIDENCE ON PASSENGER AIR BAG (Back)

8. PASSENGER AIR BAG MODULE COVER FLAP SIZE (SINGLE)
a. Flap
width (W) \qquad
height (H) \qquad

9. SKETCH OF OTHER TYPE OF AIR BAG MODULE FLAP AND SIZE
10. PASSENGER AIR BAG MODULE COVER FLAP SIZE (DOUBLE)
a. Upper Flap
b. Lower Flap $\begin{array}{ll}\text { width }\left(W_{u}\right) & \text { width }\left(W_{L}\right) \\ \text { height }\left(H_{u}\right) & \text { height }\left(H_{L}\right)\end{array}$ height $\left(\mathrm{H}_{u}\right)$
11. SKETCH OF OTHER TYPE OF AIR BAG VENT PORTS
12. SKETCH LOCATION OF RECTANGULAR AIR BAG VENT PORTS

10	11	12	1	2
9				3
8	7	6	5	4

"OTHER" AIR BAG DAMAGE AND CONTACT SKETCHES

1. SKETCH DAMAGE AND CONTACT EVIDENCE ON "OTHER" AIR BAG (Front)
2. SKETCH DAMAGE AND CONTACT EVIDENCE ON "OTHER" AIR BAG (Back)
3. SKETCH AIR BAG MODULE FLAP AND SIZE OR OPENING FOR AIRBAG

HEAD RESTRAINTS/SEAT EVALUATION

NOTES: Encode the applicable data for each seat position in the vehicle. The attribute for these variables may be found at the bottom of the page. Head restraint type/damage and seat type/performance should be assessed during the vehicle inspection then coded on the Occupant Assessment Form.

		Left	Center	Right
$\begin{aligned} & F \\ & 1 \\ & R \\ & R \\ & S \end{aligned}$	Head Restraint Type/Damage			
	Seat Type			
	Seat Performance			
	Seat Orientation			
	Seat Track Position			
	Seat Back Incline Pre/Post Impact			
D	Head Restraint Type/Damage			
	Seat Type			
	Seat Performance			
	Seat Orientation			
	Seat Track Position			
	Seat Back Incline Pre/Post Impact			
$\begin{aligned} & \mathrm{T} \\ & \mathrm{H} \\ & \mathbf{1} \\ & \mathrm{R} \\ & \mathrm{D} \end{aligned}$	Head Restraint Type/Damage			
	Seat Type			
	Seat Performance			
	Seat Orientation			
	Seat Track Position			
	Seat Back Incline Pre/Post Impact			
$\begin{aligned} & O \\ & \mathrm{~T} \\ & \mathrm{H} \\ & \mathrm{E} \\ & \mathrm{R} \end{aligned}$	Head Restraint Type/Damage			
	Seat Type			
	Seat Performance			
	Seat Orientation			
	Seat Track Position			
	Seat Back Incline Pre/Post Impact			

HEAD RESTRAINTSISEAT EVALUATION

A-Head Restraint Type/Damage by Occupant at This Occupant Position
(0) No head restraints
(1) Integral - no damage
(2) Integral - damaged during accident
(3) Adjustable - no damage
(4) Adjustable - damaged during accident
(5) Add-on - no damage
(6) Add-on - damaged during accident
(8) Other Specify):
(9) Unknown

B-Seat Type (this Occupant
Position)
(00) Occupant not seated or no seat
(01) Bucket
(02) Bucket with folding back
(03) Bench
(04) Bench with separate back cushions
(05) Bench with folding back(s)
(06) Split bench with separate back cushions
(07) Split bench with folding back(s)
(08) Pedestal (i.e., column supported)
(09) Other seat type (specify):
(10) Box mounted seat (i.e., van type)
(99) Unknown

C-Seat Performance (this Occupant Position)
(0) Occupant not seated or no seat
(1) No seat performance failure(s)
(2) Seat adjusters failed
(3) Seat back folding locks or "seat back" failed (specify):
(4) Seat tracks/anchors failed
(5) Deformed by impact of occupant
(6) Deformed by passenger compartment intrusion (specify):
(7) Combination of above (specify):
(8) Other (specify):
(9) Unknown

D-Seat Orientation (this Occupant

 Position)(0) Occupant not seated or no seat
(1) Forward facing seat
(2) Rear facing seat
(3) Side facing seat (inward)
(4) Side facing seat (outward)
(8) Other (specify):
(9) Unknown

E-Seat Track Adjusted Position Prior To Impact
(0) Occupant not seated or no seat
(1) Non-adjustable seat track

Adjustable Seat Track
(2) Seat at forward most track position
(3) Seat between forward most and middle track positions
(4) Seat at middle track position
(5) Seat between middle and rear most track positions
(6) Seat at rear most track position
(9) Unknown

F-Seat Back Incline Prior and Post Impact
(00) Occupant not seated or no seat
(01) Not adjustable

Upright prior to impact
(11) Moved to completely rearward position
(12) Moved to rearward midrange position
(13) Moved to slightly rearward position
(14) Retained pre-impact position
(15) Moved to slightly forward position
(16) Moved to forward midrange position
(17) Moved to completely forward position

Slightly reclined prior to impact
(21) Moved to completely rearward position
(22) Moved to rearward midrange position
(23) Retained pre-impact postion
(24) Moved to upright position
(25) Moved to slightly forward position
(26) Moved to forward midrange position
(27) Moved to completely forward position

Completely reclined prior to impact
(31) Retained pre-impact position
(32) Moved to rearward midrange position
(33) Moved to slightly rearward position
(34) Moved to upright position
(35) Moved to slightly forward position
(36) Moved to forward midrange position
(37) Moved to completely forward position
(99) Unknown

CHILD SAFETY SEAT FIELD ASSESSMENT

When a child safety seat is present enter the occupant's number in the first row and complete the column below the occupant's number using the codes listed below. Complete a column for each child safety seat present.

1. Type of Child Safety Seat
(O) No child safety seat
(1) Infant seat
(2) Toddler seat
(3) Convertible seat
(4) Booster seat
(7) Other type child safety seat (specify):
(8) Unknown child safety seat type
(9) Unknown if child safety seat used
2. Child Safety Seat Orientation
(00) No child safety seat

Designed for Rear Facing for
This Age/Weight
(01) Rear facing
(02) Forward facing
(08) Other orientation (specify):
(09) Unknown orientation

Designed for Forward Facing for This Age/Weight
(11) Rear facing
(12) Forward facing
(18) Other orientation (specify):
(19) Unknown orientation

Unknown Design or Orientation For This Age/Weight, or Unknown Age/Weight
(21) Rear facing
(22) Forward facing
(28) Other orientation (specify):
(29) Unknown orientation
(99) Unknown if child safety seat used
3. Child Safety Seat Harness Usage
4. Child Safety Seat Shield Usage
5. Child Safety Seat Tether Usage Note: Options Below Are Used for Variables 3-5. (00) No child safety seat

Not Designed with Harness/Shield/Tether
(01) After market harness/shield/tether added, not used
(02) After market harness/shield/tether used
(03) Child safety seat used, but no after market harness/shield/tether added
(09) Unknown if harness/shield/tether added or used

Designed With Harness/Shield/Tether
(11) Harness/shield/tether not used
(12) Harness/shield/tether used
(19) Unknown if harness/shield/tether used

Unknown If Designed With Harness/Shield/Tether
(21) Harness/shield/tether not used
(22) Harness/shield/tether used
(29) Unknown if harness/shield/tether used
(99) Unknown if child safety seat used
6. Child Safety Seat Make/Model (Specify make/model and occupant number)

EJECTION/ENTRAPMENT DATA

Complete the following if the researcher has any indication that an occupant was either ejected from or entrapped in the vehicle. Code the appropriate data on the Occupant Assessment Form.

EJECTION No [] Yes []
Describe indications of ejection and body parts involved in partial ejection(s):
\qquad
\qquad
\qquad
\qquad

Occupant Number						
Ejection						
Note on Vehicle Interior Sketch) Ejection Area						
Ejection Medium						
Medium Status						

Ejection

(1) Complete ejection
(2) Partial ejection
(3) Ejection, Unknown degree
(9) Unknown

Ejection Area

(1) Windshield
(2) Left front
(3) Right front
(4) Left rear
(5) Right rear
(6) Rear
(7) Roof
(8) Other area (e.g., back of pickup, etc.) (specify):
(9) Unknown

Ejection Medium
(1) Door/hatch/tailgate
(2) Nonfixed roof structure
(3) Fixed glazing
(4) Nonfixed glazing (specify):
(5) Integral structure
(8) Other medium (specify):
(9) Unknown

Medium Status (Immediately Prior to Impact)
(1) Open
(2) Closed
(3) Integral structure
(9) Unknown

ENTRAPMENT No [] Yes []
Describe entrapment mechanism: \qquad
\qquad
\qquad
\qquad

Component(s):

1. Primary Sampling Unit Number
2. Case Number - Stratum
3. Vehicle Number
4. Occupant Number

OCCUPANT'S CHARACTERISTICS

5. Occupant's Age

Code actual age at time of accident.
(00) Less than one year old (specify by month):
(97) 97 years and older
(99) Unknown
6. Occupant's Sex
(1) Male
(2) Female-not reported pregnant
(3) Female-pregnant-1st trimester(1st-3rd month)
(4) Female-pregnant-2nd trimester(4th-6th month)
(5) Female-pregnant-3rd trimester(7th-9th month)
(6) Female-pregnant-term unknown
(9) Unknown
7. Occupant's Height

Code actual height to the nearest centimeter.
(999) Unknown
\qquad inches $\times 2.54=$ \qquad centimeters
8. Occupant's Weight

Code actual weight to the nearest kilogram.
(999) Unknown
\qquad pounds $\times .4536=$ \qquad kilograms
9. Occupant's Role
(1) Driver
(2) Passenger
(9) Unknown

OCCUPANT'S SEATING

10. Occupant's Seat Position

Front Seat
(11) Left side
(12) Middle
(13) Right side
(14) Other (specify):
(15) On or in the lap of another occupant

Second Seat

(21) Left side
(22) Middle
(23) Right side
(24) Other (specify):
(25) On or in the lap of another occupant

Third Seat
(31) Left side
(32) Middle
(33) Right side
(34) Other (specify):
(35) On or in the lap of another occupant

Fourth Seat
(41) Left side
(42) Middle
(43) Right side
(44) Other (specify):
(45) On or in the lap of another occupant
(97) In or on unenclosed area
(98) Other seat (specify):
(99) Unknown
11. Occupant's Posture
(0) Normal posture

Abnormal posture
(1) Kneeling or standing on seat
(2) Lying on or across seat
(3) Kneeling, standing or sitting in front of seat
(4) Sitting sideways or turned to talk with another occupant or to look out a rear window
(5) Sitting on a console
(6) Lying back in a reclined seat position
(7) Bracing with feet or hands on a surface in front of seat
(8) Other abnormal posture (specify):
(9) Unknown
12. Ejection
(0) No ejection
(1) Complete ejection
(2) Partial ejection
(3) Ejection, unknown degree
(9) Unknown
13. Ejection Area
(0) No ejection
(1) Windshield
(2) Left front
(3) Right front
(4) Left rear
(5) Right rear
(6) Rear
(7) Roof
(8) Other area (e.g., back of pickup, etc.) (specify):
(9) Unknown
14. Ejection Medium
(0) No ejection
(1) Door/hatch/tailgate
(2) Nonfixed roof structure
(3) Fixed glazing
(4) Nonfixed glazing (specify):
(5) Integral structure
(8) Other medium (specify):
(9) Unknown
15. Medium Status (Immediately Prior To Impact) \qquad
(0) No ejection
(1) Open
(2) Closed
(3) Integral structure
(9) Unknown
16. Entrapment
(O) Not entrapped/exit not inhibited
(1) Entrapped/pinned - mechanically restrained
(2) Could not exit vehicle due to jammed doors, fire, etc.
(specify): \qquad
(9) Unknown
17. Occupant Mobility
(0) Occupant fatal before removed from vehicle
(1) Removed from vehicle while unconscious or not oriented to time or place
(2) Removed from vehicle due to perceived serious injuries
(3) Exited vehicle with some assistance
(4) Exited vehicle under own power
(5) Occupant fully ejected
(8) Removed from vehicle for other reasons (specify):
(9) Unknown

BELT SYSTEM FUNCTION

18. Manual (Active) Belt System Availability
(0) None available
(1) Belt removed/destroyed
(2) Shoulder belt
(3) Lap belt
(4) Lap and shoulder belt
(5) Belt available-type unknown

Integral Belt Partially Destroyed

(6) Shoulder belt (lap belt destroyed/removed)
(7) Lap belt (shoulder belt destroyed/removed)
(8) Other belt (specify):
(9) Unknown
19. Manual (Active) Belt System Use
(00) None used, not available, or belt removed/destroyed
(01) Inoperative (specify):
(02) Shoulder belt
(03) Lap belt
(04) Lap and shoulder belt
(05) Belt used-type unknown
(08) Other belt used (specify):
(12) Shoulder belt used with child safety seat
(13) Lap belt used with child safety seat
(14) Lap and shoulder belt used with child safety seat
(15) Belt used with child safety seat-type unknown
(18) Other belt used with child safety seat (specify):
(99) Unknown if belt used
20. Proper Use of Manual (Active) Belts
(0) None used or not available
(1) Belt used properly
(2) Belt used properly with child safety seat

Belt Used Improperly
(3) Shoulder belt worn under arm
(4) Shoulder belt worn behind back or seat
(5) Belt worn around more than one person
(6) Lap belt worn on abdomen
(7) Lap belt or lap and shoulder belt used improperly with child safety seat (specify):
(8) Other improper use of manual belt system (specify):
(9) Unknown
21. Manual (Active) Belt Failure Modes

During Accident
(0) No manual belt used or not available
(1) No manual belt failure(s)
(2) Torn webbing (stretched webbing not included)
(3) Broken buckle or latchplate
(4) Upper anchorage separated
(5) Other anchorage separated (specify):
(6) Broken retractor
(7) Combination of above (specify):
(8) Other manual belt failure (specify):
(9) Unknown
22. Manual Shoulder Belt Upper Anchorage

Adjustment
(0) No manual shoulder belt
(1) No upper anchorage adjustment for manual shoulder belt
Adjustable shoulder Belt Upper Anchorage
(2) In full up position
(3) In mid position
(4) In full down position
(5) Position unknown
(9) Unknown if position has adjustable upper anchorage adjustment
23. Automatic (Passive) Belt System Availability/ Function
(O) Not equipped/not available
(1) 2 point automatic belts
(2) 3 point automatic belts
(3) Automatic belts - type unknown

Non-functional
(4) Automatic belts destroyed or rendered inoperative
(9) Unknown
24. Automatic (Passive) Belt System Use
(O) Not equipped/not available/destroyed or rendered inoperative
(1) Automatic belt in use
(2) Automatic belt not in use (manually disconnected, motorized track inoperative) (specify):
(3) Automatic belt use unknown
(9) Unknown
25. Automatic (Passive) Belt System Type
(0) Not equipped/not available
(1) Non-motorized system
(2) Motorized system
(9) Unknown
26. Proper Use of Automatic (Passive)

Belt System
(0) Not equipped/not available/not used
(1) Automatic belt used properly
(2) Automatic belt used properly with child safety seat
Automatic Belt Used Improperly
(3) Automatic shoulder belt worn under arm
(4) Automatic shoulder belt worn behind back
(5) Automatic belt worn around more than one person
(6) Lap portion of automatic belt worn on abdomen
(7) Automatic lap and shoulder belt or automatic shoulder belt used improperly with child safety seat (specify):
(8) Other improper use of automatic belt system (specify):
(9) Unknown
27. Automatic (Passive) Belt Failure Modes During Accident
(0) Not equipped/not available/not in use
(1) No automatic belt failure(s)
(2) Torn webbing (stretched webbing not included)
(3) Broken buckle or latchplate
(4) Upper anchorage separated
(5) Other anchorage separated (specify):
(6) Broken retractor
(7) Combination of above (specify):
(8) Other automatic belt failure (specify):
(9) Unknown

POLICE REPORTED RESTRAINT USE

28. Police Reported Belt Use \qquad
(0) None used
(1) Police did not indicate belt use
(2) Shoulder belt
(3) Lap belt
(4) Lap and shoulder belt
(5) Belt used, type not specified
(6) Child safety seat
(7) Automatic belt
(8) Other type belt, (specify):
(9) Police indicated "unknown"
29. Police Reported Air Bag Availability/Function \qquad
(0) No air bag available
(1) Police did not indicate air bag availability/function
(2) Deployed
(3) Not deployed
(4) Unknown if deployed
(9) Police indicated "unknown"

Check the Primary Source Used In Determining Belt Use.
[] Vehicle inspection
[] Official injury data
[] Driver/occupant interview
[] Other (specify):
[] Unknown if belt used
\qquad
\qquad
\qquad
\qquad
30. Frontal Air Bag System

Availability/Function
(This Occupant
Position)
(0) Not equipped/not available
(1) Air bag

Non-functional
(2) Air bag disconnected (specify):
(3) Air bag not reinstalled
(9) Unknown
31. Frontal Air Bag System Deployment
(This Occupant Position)
(0) Not equipped/not available
(1) Deployed during accident (as a result of impact)
(2) Deployed inadvertently just prior to accident
(3) Deployed, details unknown
(4) Deployed as a result of a noncollision event during accident sequence (e.g., fire, explosion, electrical)
(5) Unknown if deployed
(7) Nondeployed
(9) Unknown
32. Other Than First Seat Frontal Air Bag Availability/Function
(This Occupant Position)
(0) Not equipped/not available
(1) Air bag

Non-functional

(2) Air bag disconnected (specify):
(3) Air bag not reinstalled
(9) Unknown

Specify type of "other" air bag present:
33. Air Bag(s) Deployment, Other Than First Seat Frontal (This Occupant Position)
(0) Not equipped with an "other" air bag
(1) Deployed during accident (as a result of impact)
(2) Deployed inadvertently just prior to accident
(3) Deployed, details unknown
(4) Deployed as a result of a noncollision event during accident sequence (e.g., fire, explosion, electrical)
(5) Unknown if deployed
(7) Nondeployed
(9) Unknown
34. Are There Indications of Air Bag System Failure?
(This Occupant Position)
(0) Not equipped/not available
(1) No
(2) Yes (specify):
(9) Unknown

FIRST SEAT FRONTAL AIR BAG SYSTEM EVALUATION

35. Had Vehicle Been in Previous Accident(s)?
(0) Not equipped/not available
(1) No previous accidents

Yes
(2) Previous accident(s) without deployment(s)
(3) One previous accident with deployment
(4) More than one previous accident with at least one deployment
(8) Previous accidents, unknown deployment status
(9) Unknown
36. Type of Air Bag
(0) Not equipped/not available
(1) Original manufacturer installed system
(2) Retrofitted air bag
(3) Replacement air bag
(8) Unknown type of air bag
(9) Unknown
37. Had Any Prior Maintenance/Service Been Performed On This Air Bag System?
(O) Not equipped/not available
(1) No prior maintenance
(2) Yes, prior maintenance (specify):
(9) Unknown
38. Air Bag Deployment Accident Event Sequence Number
(00) Not equipped/not available
\qquad Code the accident event sequence number that initiated the air bag deployment
(96) Deployed, unknown event
(97) Not deployed
(98) Unknown if deployed
(99) Unknown
39. CDC For Air Bag Deployment Impact
(0) Not equipped/not available
(1) Highest delta V
(2) Second highest delta V
(3) Other non-coded delta V (specify):
(6) Deployed, unknown event
(7) Not deployed
(8) Unknown if deployed
(9) Unknown
40. Longitudinal Component of

Delta V For Air Bag
Deployment Impact
(_000) Not equipped/not available Code the value of the delta V for the impact that initiated the air bag deployment
(_996) Deployment, unknown longitudinal Delta V
(_997) Not deployed
(_998) Unknown if deployed
(_999) Unknown
41. Did Air Bag Module Cover Flap(s) Open At

Designated Tear Points?
(0) Not equipped/not available
(1) No
(2) Yes
(3) Deployed, unknown if flap(s) opened at designated tear points
(7) Not deployed
(8) Unknown if deployed
(9) Unknown
42. Were Air Bag Module Cover Flap(s) Damaged?
(0) Not equipped/not available
(1) No
(2) Yes (specify):
(3) Deployed, unknown if air bag module cover flap(s) damaged
(7) Not deployed
(8) Unknown if deployed
(9) Unknown
43. Was There Damage To The Air Bag?
(00) Not equipped/not available
(01) Not damaged

Yes - Air Bag Damage
(02) Ruptured
(03) Cut
(04) Torn
(05) Holed
(06) Burned
(07) Abraded
(88) Other damage (specify):
(95) Damaged, details unknown
(96) Deployed, unknown if damaged
(97) Not deployed
(98) Unknown if deployed
(99) Unknown

FIRST SEAT FRONTAL AIR BAG SYSTEM

HEAD RESTRAINT AND SEAT EVALUATION

44. Source of Air Bag Damage
(00) Not equipped/not available
(01) Not damaged
(02) Object worn by occupant, (specify):
(03) Object carried by occupant, (specify):
(04) Adaptive/assistive controls, (specify):
(05) Fire in vehicle
(06) Thermal burns
(07) Rescue or emergency efforts
(88) Other damage source (specify):
(95) Damaged, unknown source
(96) Deployed, unknown if damaged
(97) Not deployed
(98) Unknown if deployed
(99) Unknown
45. Was The Air Bag Tethered?
(0) Not equipped/not available
(1) No
(2) Yes (specify number of tether straps):
(3) Deployed, unknown if tethered
(7) Not deployed
(8) Unknown if deployed
(9) Unknown
46. Did The Air Bag Have Vent Ports?
(0) Not equipped/not available
(1) No
(2) Yes (specify number of vent ports):
(3) Deployed, unknown if vent ports present
(7) Not deployed
(8) Unknown if deployed
(9) Unknown
47. Was the Air Bag in this Occupant's Position Contacted by Another Occupant?
(0) Not equipped/not available
(1) No
(2) Yes (specify):
(3) Deployed, unknown if other occupant contact to air bag
(7) Not deployed
(8) Unknown if deployed
(9) Unknown
48. Was This Occupant Wearing Eye-wear?
(0) Not air bag equipped/air bag not available
(1) No
(2) Eyeglasses/sunglasses
(3) Contact lenses
(4) Deployed, unknown if eyewear worn
(7) Not deployed
(8) Unknown if deployed
(9) Unknown
49. Head Restraint Type/Damage by Occupant
at This Occupant Position
(0) No head restraints
(1) Integral-no damage
(2) Integral-damaged during accident
(3) Adjustable-no damage
(4) Adjustable-damaged during accident
(5) Add-on-no damage
(6) Add-on-damaged during accident
(8) Other (specify):
(9) Unknown
50. Seat Type (this Occupant Position)
(00) Occupant not seated or no seat
(01) Bucket
(02) Bucket with folding back
(03) Bench
(04) Bench with separate back cushions
(05) Bench with folding back(s)
(06) Split bench with separate back cushions
(07) Split bench with folding back(s)
(08) Pedestal (i.e., column supported)
(09) Box mounted seat (i.e., van type)
(10) Other seat type (specify):
(99) Unknown
51. Seat Orientation (this Occupant Position)
(0) Occupant not seated or no seat
(1) Forward facing seat
(2) Rear facing seat
(3) Side facing seat (inward)
(4) Side facing seat (outward)
(8) Other (specify):
(9) Unknown
52. Seat Track Adjusted Position Prior To Impact \qquad
(0) Occupant not seated or no seat
(1) Non-adjustable seat track

Adjustable Seat Track

(2) Seat at forward most track position
(3) Seat between forward most and middle track positions
(4) Seat at middle track position
(5) Seat between middle and rear most track positions
(6) Seat at rear most track position
(9) Unknown

HEAD RESTRAINT AND SEAT EVALUATION continued

53. Seat Back Incline Prior and Post Impact
(00) Occupant not seated or no seat
(01) Not adjustable

Upright prior to impact

(11) Moved to completely rearward position
(12) Moved to rearward midrange position
(13) Moved to slightly rearward position
(14) Retained pre-impact position
(15) Moved to slightly forward position
(16) Moved to forward midrange position
(17) Moved to completely forward position

Slightly reclined prior to impact

(21) Moved to completely rearward position
(22) Moved to rearward midrange position
(23) Retained pre-impact position
(24) Moved to upright position
(25) Moved to slightly forward position
(26) Moved to forward midrange position
(27) Moved to completely forward position

Completely reclined prior to impact
(31) Retained pre-impact position
(32) Moved to rearward midrange position
(33) Moved to slightly rearward position
(34) Moved to upright position
(35) Moved to slightly forward position
(36) Moved to forward midrange position
(37) Moved to completely forward position
(99) Unknown
54. Seat Performance (this Occupant Position)
(0) Occupant not seated or no seat
(1) No seat performance failure(s)
(2) Seat adjusters failed
(3) Seat back folding locks or "seat back" failed (specify):
(4) Seat track/anchors failed
(5) Deformed by impact of occupant
(6) Deformed by passenger compartment intrusion, (specify):
(7) Combination of above (specify):
(8) Other (specify):
(9) Unknown

CHILD SAFETY SEAT

55. Child Safety Seat Make/Model
(000) No child safety seat

Applicable codes are found in your NASS CDS
Data Collection, Coding and Editing
(950) Built-in child safety seat
(997) Other make/model (specify):
(998) Unknown make/model
(999) Unknown if child safety seat used
56. Type of Child Safety Seat
(0) No child safety seat
(1) Infant seat
(2) Toddler seat
(3) Convertible seat
(4) Booster seat - with shield
(5) Booster seat - without shield
(7) Other type child safety seat (specify):
(8) Unknown child safety seat type
(9) Unknown if child safety seat used
57. Child Safety Seat Orientation
(00) No child safety seat

Designed for Rear Facing for This Age/Weight
(01) Rear facing
(02) Forward facing
(08) Other orientation (specify):
(09) Unknown orientation

Designed For Forward Facing for This Age/Weight
(11) Rear facing
(12) Forward facing
(18) Other orientation (specify):
(19) Unknown orientation

Unknown Design or Orientation For This Age/Weight, or Unknown Age/Weight
(21) Rear facing
(22) Forward facing
(28) Other orientation (specify):
(29) Unknown orientation
(99) Unknown if child safety seat used
58. Child Safety Seat Harness Usage
59. Child Safety Seat Shield Usage
60. Child Safety Seat Tether Usage

Note: Options below applicable to Variables OA58-OA60.
(00) No child safety seat

Not Designed With Harness/Shield/Tether
(01) After market harness/shield/tether added, not used
(02) After market harness/shield/tether used
(03) Child safety seat used, but no after market harness/shield/tether added
(09) Unknown if harness/shield/tether added or used

Designed With Harness/Shield/Tether
(11) Harness/shield/tether not used
(12) Harness/shield/tether used
(19) Unknown if harness/shield/tether used

Unknown If Designed With Harness/Shield/Tether
(21) Harness/shield/tether not used
(22) Harness/shield/tether used
(29) Unknown if harness/shield/tether used
(99) Unknown if child safety seat used

INJURY CONSEQUENCES

61. Injury Severity (Police Rating)
(0) O - No injury
(1) C - Possible injury
(2) B - Nonincapacitating injury
(3) A - Incapacitating injury
(4) K - Killed
(5) U - Injury, severity unknown
(6) Died prior to accident
(9) Unknown
62. Treatment - Mortality
(O) No treatment
(1) Fatal
(2) Fatal - ruled disease (specify):

Nonfatal

(3) Hospitalization
(4) Transported and released
(5) Treatment at scene - nontransported
(6) Treatment later
(7) Treatment - other (specify):
(8) Transported to a medical facility-unknown if treated
(9) Unknown
63. Type Of Medical Facility (for Initial Treatment) \qquad
(0) Not treated at a medical facility
(1) Trauma center
(2) Hospital
(3) Medical clinic
(4) Physician's office
(5) Treatment later at medical facility
(8) Other (specify):
(9) Unknown
64. Hospital Stay
(00) Not Hospitalized Code the number of days (up through 60) that the occupant stayed in hospital.
(61) 61 days or more
(99) Unknown
65. Working Days Lost

Code the number of days
(up through 60) that the occupant lost from work due to the accident
(00) No working days lost
(61) 61 days or more
(62) Fatally injured
(97) Not working prior to accident
(99) Unknown

TO BE CODED BY THE ZONE CENTER

INJURY CONSEQUENCES

66. Time to Death

Code number of hours from time of accident to time of death up through 24 hours. If time of death is greater than 24 hours, code number of days. (Note: 1 day = 31,2 days $=32, \ldots$ n days $=30+n$ up through 30 days $=60$)
(00) Not fatal
(96) Fatal - ruled disease
(99) Unknown
67. 1st Medically Reported Cause of Death
68. 2nd Medically Reported Cause of Death \qquad
69. 3rd Medically Reported Cause of Death Code the Occupant Injury from line number(s) for the medically reported injury(s) which reportedly contributed to this occupant's death
(00) Not fatal or no additional causes
(96) Mode of death given but specific injuries are not linked to cause of death. (specify):
(97) Other result fincludes fatal ruled disease) (specify):
(99) Unknown
70. Number of Recorded Injuries for This Occupant

Code the actual number of injuries recorded for this occupant.
(00) No recorded injuries
(97) Injured, details unknown
(99) Unknown if injured

TRAUMA DATA

71. Glasgow Coma Scale (GCS) Score
(at Medical Facility)
(00) Not injured
(01) Injured - not treated at medical facility
(02) No GCS Score at medical facility
(03-15) Code the actual value of the initial GCS Score recorded at medical facility.
(97) Injured, details unknown
(99) Unknown if injured
72. Was the Occupant Given Blood?
(1) No - blood not given
(2) Yes - blood given (specify units):
(9) Unknown if blood given
73. Arterial Blood Gases (ABG) - HCO_{3}
(00) Not injured
(01) Injured, ABGs not measured or reported
(02-50) Code the actual value of the HCO_{3}
(96) ABGs reported, HCO_{3} unknown
(97) Injured, details unknown
(99) Unknown if injured

BELT USE DETERMINATION

74. Primary Source of Belt Use Determination
(0) Not equipped/not available/destroyed or rendered inoperative
(1) Vehicle inspection
(2) Official injury data
(3) Driver/occupant interview
(8) Other (specify):
(9) Unknown if belt used

3. Vehicle Number
 4. Occupant Number

Record below the actual injuries sustained by this occupant that were identified from the official and unofficial data sources. Remember not to double count an injury just because it was identified from two different sources. If greater than ten injuries have been documented, encode the balance on the Occupant Injury Supplement.

				A.I.S. 90							Occupant
	Source of Injury Data	Body Region	Type of Anatomic Structure	Specific Anatomic Structure	Level of Injury	A.I.S. Severity	Aspect	Injury Source	Source Confidence Level	Direct/ Indirect Injury	Area Intrusion Number
1st	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.
2nd	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.
3 rd	27.	28.	29.	30.	31.	32.	33.	34.	35.	36.	37.
4th	38.	39.	40.	41.	42.	43.	44.	45.	46.	47.	48.
5th	49.	50.	51.	52.	53.	54.	55.	56.	57.	58.	59.
6th	60.	61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
7th	71.	72.	73.	74.	75.	76.	77.	78.	79.	80.	81.
8th	82.	83.	84.	85.	86.	87.	88.	89.	90.	91.	92.
9th	93.	94.	95.	96.	97.	98.	99.	100.	101.	102.	103.
10th	104._1	105.	106.	107. _-	108.	109.	110. _ 1	111.	112.	113.	114. _-

				A.I.S. - 9					Injury		Occupant
	Source of Injury Data	Body Region	Type of Anatomic Structure	Specific Anatomic Structure	Level of Injury	A.I.S. Severity	Aspect	Injury Source	Source Confidence Level	Direct/ Indirect Injury	Area Intrusion Number
11th	-	-	-	- -	- -	-	-	- - -	-	-	
12th	-	\longrightarrow	-	--	-	-	-	-	-	-	- -
13th	-	-	-	- -	-	-	-	-	-	-	- -
14th	-	-	-	\cdots	- -	-	-		-	-	
15th	-	-	-	- -		-	-		-	-	
16th	-	-	-	-	-	-	-		-	-	
17th	-	-	-	- -	-	-	-	-	-	-	- -
18th	-	-	-	-	-	-	-		-	-	
19th	-	-	-	- -		-	-		-	-	
20th	-	-	-			-	-		-	-	
21st	-	-	-	- -	-	-	-	-	-	-	
22nd	-	-	-	- -	- -	-	-		-	-	
23rd	-	-	-	- -	- -	-	-		-	-	
24th	-	-	-	- -	- -	-	-	- -	-	-	
25th	-	-	-	- -	- -	\cdots	-	- -	-	-	

Body Region

(1) Head
(2) Face
(3) Neck
(4) Thorax
(5) Abdomen
(6) Spine
(7) Upper Extremity
(8) Lower Extremity
(9) Unspecified

Type of Anatomic Structure
(1) Whole Area
(2) Vessels
(3) Nerves
(4) Organs (includes Muscles/ligaments)
(5) Skeletal (includes joints)
(6) Head - LOC
(9) Skin

Specific Anatomic Structure

Vessels, Nerves, Organs.
Bones, Joints are assigned consecutive two digit numbers beginning with 02.

The exceptions to this rule apply to:

Whole Area
(02) Skin - Abrasion
(04) Skin - Contusion
(06) Skin - Laceration
(08) Skin - Avulsion
(10) Amputation
(20) Burn
(30) Crush
(40) Degloving
(50) Injury - NFS
(90) Trauma, other than mechanical

Head - LOC
(02) Length of LOC
(04) Level
(06) of
(08) Consciousness
(10) Concussion

Spine
(02) Cervical
(04) Thoracic
(06) Lumbar

Level of Injury

Specific injuries are assigned consecutive two-digit numbers beginning with 02.

To the extent possible, within the organizational framework of the AIS, 00 is assigned to an injury NFS as to severity or where only one injury is given in the dictionary for that anatomic structure. 99 is assigned to any injury NFS as to lesion or severity.

Abbreviated Injury Scale
(1) Minor Injury
(2) Moderate Injury
(3) Serious Injury
(4) Severe Injury
(5) Critical Injury
(6) Maximum (untreatable)
(7) Injured, unknown severity

Aspect

(1) Right
(2) Left
(3) Bilateral
(4) Central
(5) Anterior
(6) Posterior
(7) Superior
(8) Inferior
(9) Unknown
(0) Whole region

SOURCE OF INJURY DATA
INJURY SOURCE
CONFIDENCE LEVEL

OFFICIAL RECORDS
(1) Autopsy records with or without hospital/medical records
(2) Hospital/medical records other than emergency room (e.g., discharge summary)
(3) Emergency room records only (including associated X-rays or other lab reports)
(4) Private physician, walk-in or emergency clinic

UNOFFICIAL RECORDS
(5) Lay coroner report
(6) E.M.S. personnel
(7) Interviewee
(8) Other source (specify):
(9) Police
(1) Certain
(2) Probable
(3) Possible
(9) Unknown

DIRECT/INDIRECT INJURY
(1) Direct contact injury
(2) Indirect contact injury
(3) Noncontact injury
(7) Injured, unknown source

FRONT
(001) Windshield
(002) Mirror
(003) Sunvisor
(004) Steering wheil rim
(005) Steering wheel hub/spoke
(006) Steering wheel (combination of codes 004 and 005)
(007) Steering column, transmission selector lever, other attachment
(008) Cellular telephone or CB radio
(009) Add on equipment (e.g., tape deck, air conditioner)
(010) Left instrument panel and below
(011) Center instrument panel and below
(012) Right instrument panel and below
1013) Glove compartment door
1014) Knee bolster
(015) Windshield including one or more of the following: front header, A (A1/A2)-pillar, instrument panel, mirror, or steering assembly (driver side only)
(016) Windshield including one or more of the following: front header, A (A1/A2)-pillar, instrument panel, or mirror (passenger side only)
(017) Windshield reinforced by exterior object (specify)
(019) Other front object (specify):

LEFT SIDE

(051) Left side interior surface, excluding hardware or armrests
(052) Left side hardware or armest
(053) Left A (A1/A2)-pillar
(054) Left B-pillar
(055) Other left pillar (specify):
(056) Left side window glass
(057) Left side window frame
(058) Left side window sill
1059) Left side window glass including one or more of the following: frame, window sill, $\mathrm{A}(\mathrm{A} 1 / \mathrm{A} 2)$-pillar, B -pillar, or roof side rail.
(060) Other left side object (specify):

RIGHT SIDE

(101) Right side interior surface, excluding hardware or armrests
(102) Right side hardware or armrest
(103) Right A (A1/A2)-pillar
(104) Right B-pillar
(105) Other right pillar (specify):
(106) Right side window glass
(107) Right side window frame
(108) Right side window sill
(109) Right side window glass including one or more of the following: frame, window sill, A (A1/A2)-pillar, B-pillar, or roof side rail.
(110) Other right side object (specify):

INTERIOR

(151) Seat, back support
(152) Belt restraint webbing/buckle
(153) Belt restraint B-pillar or door frame attachment point
(154) Other restraint system component (specify):
(155) Head restraint system
(160) Other occupants (specify):
(161) Interior loose objects
(162) Child safety seat (specify):
(163) Other interior object (specify):

AIR BAG
(170) Air bag-driver side
(171) Air bag-driver side and eyewear
(172) Air bag-driver side and jewelry
(173) Air bag-driver side and object held
(174) Air bag-driver side and object in mouth
(175) Air bag compartment cover-driver side
(176) Air bag compartment cover-driver side and eyewear
(177) Air bag compartment cover-driver side and jewelry
(178) Air bag compartment cover-driver side and object held
(179) Air bag compartment cover-driver side and object in mouth
(180) Air bag-passenger side
(181) Air bag-passenger side and eyewear
(182) Air bag-passenger side and jewelry
(183) Air bag-passenger side and object held
(184) Air bag-passenger side and object in mouth
(185) Air bag compartment cover-passenger side
(186) Air bag compartment cover-passenger side and eyewear
(187) Air bag compartment cover-passenger side and jewelry
(188) Air bag compartment cover-passenger side and object held
(189) Air bag compartment cover-passenger side and object in mouth
(190) Other air bag (specify)
(195) Other air bag compartment cover (specify)

ROOF
(201) Front header
(202) Rear header
(203) Roof left side rail
(204) Roof right side rail
(205) Roof or convertible top

FLOOR
(251) Floor (including toe pan)
(252) Floor or console mounted transmission lever, including console
(253) Parking brake handle
(254) Foot controls including parking brake

REAR

(301) Backlight (rear window)
(302) Backlight storage rack, door, etc.
(303) Other rear object (specify):

ADAPTIVE (ASSISTIVE) DRIVING

EQUIPMENT

(401) Hand controls for braking/acceleration
(402) Steering control devices (attached to OEM steering wheel)
(403) Steering knob attached to steering wheel
(405) Replacement steering wheel (i.e., reduced diameter)
(406) Joy stick steering controls.
(407) Wheelchair tie-downs
(408) Modification to seat belts, (specify):
(409) Additional or relocated switches, (specify):
1411) Wall mounted head rest (used behind wheel chair)
1412) Other adaptive device (specify):

EXTERIOR of OCCUPANT'S VEHICLE
 (451) Hood
 (452) Outside hardware (e.g., outside mirror, antenna)
 (453) Other exterior surface or tires (specify):

(454) Unknown exterior objects

EXTERIOR OF OTHER MOTOR

 VEHICLE(501) Front bumper
(502) Hood edge
(503) Other front of vehicle (specify):
(504) Hood
(505) Hood ornament
(506) Windshield, roof rail, A-pillar
(507) Side surface
(508) Side mirrors
(509) Other side protrusions (specify):
(510) Rear surface
(511) Undercarriage
(512) Tires and wheels
(513) Other exterior of other motor vehicle (specify): \qquad
(514) Unknown exterior of other motor vehicle

OTHER VEHICLE OR OBJECT IN

 THE ENVIRONMENT(551) Ground
(598) Other vehicle or object (specify):
(599) Unknown vehicle or object

NONCONTACT INJURY

(601) Fire in vehicle
(602) Flying glass
(603) Other noncontact injury source
(specify):
(604) Air bag exhaust gases
(697) Injured, unknown source
(410) Raised roof
Indicate the Location, Specific Anatomic Structure, Detail (size, depth, fracture type, head injury clinical signs and neurological deficits), and Source
of all injuries indicated by official sources (or from PAR or other unofficial sources if medical records and interviewee data are unavailable.)
 Source of all injuries indicated by official sources (or from PAR or other unofficial sources if medical records and interviewee data are unavailable.)

Indicate the Location, Specific Anatomic Structure, Detail (size, depth, fracture type, head injury clinical signs and neurological deficits), and Source of all injuries indicated by official sources (or from PAR or other unofficial sources if medical records and interviewee data are unavailable.)

Appendix D. CRASHPC and OLDMISSPC Summary

CRASHPC is an acronym for Calspan Reconstruction of Accident Speeds on the Highway. As its name implies, the CRASHPC program is a general-purpose personal computer program that can be used to estimate vehicle speeds in real-world crashes, based on physical evidence obtained by a crash investigator. The objective of the CRASHPC program is to provide a standardized and objective means of interpreting the physical evidence from the scene of an automobile collision.

Two separate and independent methods can be used to estimate the change in vehicle speeds experienced by the vehicles. The first method makes use of trajectory data and is based on work-energy relationships and the principle of conservation of linear momentum. The other method makes use of detailed measurements of the structural deformation of each vehicle to arrive at an estimate of the energy required to produce the observed vehicle damage. These two methods can be used to check each other, since they should yield similar results if the user possesses sufficient information to use both methods fully.

The CRASHPC program is a simplified mathematical analysis of automobile crash events. As is the case with any such analytical procedure, certain assumptions have been made to reduce the complexity and the operating cost of the program. In some particular cases, CRASHPC is not, nor was it intended to be, a high-fidelity collision simulation program. In most crashes, only a minimum of data are available, and even these data are only available second hand.

Beyond its use by Federal Government sponsored researchers, CRASHPC has become a popular tool among reconstructionists involved in litigation, and much of the criticism of the CRASHPC program regards its accuracy in such applications. CRASHPC was intended as a statistical tool to identify and isolate problems in motor vehicle safety, not as a simulation program, and it should be used accordingly. Often, accuracy problems are the result of applying the CRASHPC program in situations which violate, to some degree, its fundamental assumptions:

> It is a two-dimensional program.
> It simplifies the characteristics of vehicles.
> It assumes that at some instant during the impact both vehicles have a common velocity.
> It assumes that the vehicles spin out to rest with constant rolling resistances, no active steering, and over a single friction surface (a secondary friction surface may be specified in the trajectory simulation).

The above assumptions mean that the program cannot be used for: rollovers; sideswipes; severe override/underride crashes; nonhorizontal collision forces; or collisions with large trucks or trains in motion, yielding objects, or pedestrians, bicyclists, or motorcyclists.

The missing vehicle algorithm (OLDMISSPC) methodology is based on CRASHPC.

Appendix E. Harm Definition

"Harm" is a concept developed by Malliaris (1) for quantifying, or normalizing, the relative consequences of the total estimated number of crash deaths and injured people. Harm is commonly used for prioritization in crashworthiness program planning.

Harm attributes to each surviving injured person and each death a quantity based on the costs (excluding property damage and travel delay costs) associated with each death or injured person. The cost quantities are obtained from National average cost estimates for injured people. National Harm estimates are developed by multiplying the frequency estimates of the incidence of injured people at each severity level by the unit cost estimates of the average losses for that severity of injury. These figures are then summed to arrive at annual National Harm estimates.

Injury costs are estimated in accordance with the Abbreviated Injury Scale (AIS) of six grades of increasing threat-to-life ranging from AIS 1 (Minor) to AIS 6 (Maximum). Table El provides the latest "Economic Harm" figures associated with the maximum AIS for a given crash victim using the latest NHTSA estimates of economic costs and injury incidence. Table E2 provides Comprehensive Harm figures that include quantities representing values for pain and suffering costs that are excluded in the "economic" cost schedule.

Table E1. 1994 Economic Harm from Crash Injuries

Survivor's Maximum AIS	Unit Costs (2) (1994 Dollars)	Incidence (3)	Economic Harm (4) (Billion Dollars)
Minor	1	$\$ 3,777$	$4,626,495$
Moderate	2	$\$ 31,164$	398,553
Serious	3	$\$ 98,011$	166,845
Severe	4	$\$ 21,494$	17,123
Critical	5	$\$ 697,533$	6,914
Fatalities	6	$\$ 822,328$	40,676

Table E2. 1994 Comprehensive* Harm from Crash Injuries

Survivor's Maximum AIS	Unit Costs (5) (1994 Dollars)	Incidence (3)	Comprehensive* Harm (Billion Dollars)
Minor	1	$\$ 10,840$	$4,626,495$
Moderate	2	$\$ 133,700$	398,553
Serious	3	$\$ 472,290$	166,845
Severe	4	$\$ 1,193,860$	17,123
Critical	5	$\$ 2,509,310$	6,914
Fatalities	6	$\$ 2,854,500$	40,676

*Comprehensive cost estimates include economic cost components plus values for reduced quality of life.

References

(1) Malliaris, A., ,Hitchcock, R, Hedlund, J, A Search for Priorities in Crash Protection, SAE, 820242, 1982.
(2) NHTSA, The Economic Cost of Motor Vehicle Crashes, 1994, DOT HS 808 425, July 1996, Table 2, p. 8.
(3) NHTSA, THE ECONOMIC COST OF MOTOR VEHICLE CRASHES, 1994, DOT HS 808 425, JULY 1996, TABLE 3, P. 9.
(4) NHTSA, THE EGONOMIC COST OF MOTOR VEHICLE CRASHES, 1994, DOT HS 808 425, JULY 1996, TABLE 1, P. 7.
(5) NHTSA, THE ECONOMIC COST OF MOTOR VEHICLE CRASHES, 1994, DOT HS 808 425, JULY 1996, TABLE A-1, P. 59.

Appendix F. Statistical Methods

Two aspects of the NASS/CDS statistics presented in this report are discussed in this appendix. These aspects are:
assigning crash type and general area of damage, and
THE SAMPLING ERRORS FOR THE WEIGHTED AVERAGE COUNTS OVER THE 1994-1996 PERIOD.
The method for producing estimates from the 1994-1996 CDS data is to use national ratio-adjusted weights. These sampling weights are appended to the CDS data on the electronic data file. By summing the sampling weights for cases that have a certain characteristic, an estimate of the national total for that characteristic can be produced.

assigning crash type and ceneral area of damage

two different procedures were used to assign general area of damage (gadi) where it was coded as unknown IN THE NASS/CDS VEHICLE EXTERIOR (VE) FORM. THE FIRST METHOD USES INFORMATION FROM ELSEWHERE IN THE NASS/CDS DATA FILES, AND THE SECOND IMPUTES UNKNOWNS BASED UPON A UNIVARIATE DISTRIBUTION.

1. ASSIGNMENT BASED UPON OTHER INFORMATION IN THE NASS/CDS DATA FILES

THE SAS PROGRAM SHOWN BELOW WAS USED TO ASSIGN GADI FROM THE EVENT FILE TO VEHICLES WHERE GADI IS MISSING OF THE VE FLLE. THE VEHICLES (TOWED CARS AND LICHT TRUCKS) CAN BE CLASSIFIED INTO THREE GROUPS WITH A DIFFERENT APPROACH FOR EACH:

FOR THE FIRST GROUP, DAMAGE AREA WAS FOUND BY MATCHING ACCSEOI ON THE VE FORM WITH ACCSEO ON THE Event file.
for the second group, that had no ve form, damage area was found by linking cusing vehno on the gv file and vehnum / objcont on the event file to the only damage for that vehicle that was listed on the Event file.
for the third group, that had no ve form and could not be linked through vehnum / objcont, damage area was found by identifying the collision partner in the delita v event, and using ageseol from the partner to link to the event flle cthis partner was the only other light vehicle in the crash that had delta v estimated by the missing vehicle algorithm for a collision with the vehicle in ouestiono.
the numbers of vehicles in the 3 year sample that were assigned gadi using this method are summarized as FOLLOWS:

TABLE FI
Cars and light trucks with gadi assigned from event form, unwelehted sample count

YEAR	METHOD 1	METHOD 2	METHOD 3	TOTAL
1994	$\mathbf{7 9}$	$\mathbf{1 2 0}$	$\mathbf{2 4}$	$\mathbf{2 2 3}$
$\mathbf{1 9 9 5}$	$\mathbf{2 1 9}$	$\mathbf{3 3 6}$	$\mathbf{6 9}$	624
$\mathbf{1 9 9 6}$	$\mathbf{2 2 3}$	$\mathbf{3 8 5}$	$\mathbf{6 7}$	$\mathbf{6 7 5}$
TOTAL	$\mathbf{5 2 1}$	$\mathbf{8 4 1}$	$\mathbf{1 6 0}$	$\mathbf{1 5 2 2}$

SAS PROGRAM ASSIONING GAD FROM EVENT FILE:

```
*** run this program for each of the years needed, then
combine final data sets (unkn94, unkn95, unkn96), sort
by year psu caseno vehno, and merge with VE file to
include newly assigned gad info ** ;
libname nass94 'd:\nass\nass94';
options ls=78 pagesize=500;
proc format;
value anydv
    O='DV unknown'
    1='DV known';
value veform
    0='No VE form'
    1='VE form';
value matchveh
    0='No match'
    1='Match';
data gvve1;
* Select towed light passenger vehicles,
    create a 0-1 variable (ANYDV) for delta V availability,
    create a 0-1 variable (VEFORM) for VE form availability;
merge nass94.gv nass94.ve(in=a);
by psu caseno vehno;
if 1<=bodytype<=49;
keep psu caseno vehno
        dvtotal accseq1 gad1 objcont1
        dvbasis anydv veform;
if dvtotal>=0 then anydv=1;
else anydv=0;
veform=a;
data gad_n1 gad_y1;
* Subset to vehicles with delta V estimated
    by the missing vehicle algorithm;
* Creat files for vehicles with GAD1 unknown (GAD_N1)
    and with GAD1 known and from a vehicle impact (GAD_Y1);
* This latter file will be used as a source of ACCSEQ1
    when there is no VE form for the other vehicle;
set gvve1;
if anydv=1 and dvbasis=3;
if gad1=' ' or gad1='9' then output gad_n1;
```


Statistical Methods

```
else if 1<=objcont1<=30 then output gad_y1;
data ve_y1 (keep=psu caseno vehno dvtotal accseq)
    ve_n1 (keep=psu caseno vehno dvtotal);
* From vehicles with delta V but not GAD1,
    create subfiles for those with (VE_Y1) versus
    without (VE_N1) a VE form;
* Rename ACCSEQ1 for merging with the Event file;
set gad_n1;
if veform=1 then do;
    accseq=accseq1;
    output ve_y1;
end;
else output ve_n1;
data vehveh1;
* Create a file with a record for each vehicle-damage
    combination listed on the Event file for collisions
    between two light passenger vehicles, and
    rename the variables so they can be merged and used
    with the combined GV-VE data selected above;
set nass94.event;
keep psu caseno vehno accseq gadev vehcont;
if 1<=vehnum<=30 and 1<=class1<=49
    then list1='LV';
if (1<=objcont<=30 and 1<=class2<=49) or objcont=70
    then list2='LV';
if list1='LV' and list2='LV';
vehno=vehnum;
gadev=gadev1;
vehcont=objcont;
output;
if list2='LV' then do;
    vehno=objcont;
    gadev=gadev2;
    vehcont=vehnum;
    output;
end;
proc sort data=vehveh1;
by psu caseno vehno accseq;
data ve_y2;
* For vehicles with an estimated delta V, with a VE form,
    with ACCSEQ1 coded, but with GAD1 unknown, merge with
    the Vehicle-Event file using the renamed ACCSEQ variable;
merge ve_y1(in=a) vehveh1;
by psu caseno vehno accseq;
```

```
if a=1;
data ve_n2;
* For vehicles with an estimated delta V, but without a VE form,
    merge with the Vehicle-Event file using the renamed VEHNO
variable;
* This produces more than one record per vehicle
    for those vehicles with more than one vehicle-vehicle
collision;
merge ve_n1(in=a) vehveh1;
by psu caseno vehno;
if a=1;
data ve_n_sl(keep=psu caseno vehno
                    dvtotal accseq gadev vehcont)
            ve_n_m1(keep=psu caseno vehno
                    dvtotal);
    * For vehicles with an estimated delta V, but without a VE form,
        separate into those with only one versus more than one
        vehicle-vehicle collision;
set ve_n2;
by psu caseno vehno;
if first.vehno*last.vehno=1 then output ve_n_s1;
else output ve_n_m1;
data ve_n_m2;
* Remove redundant entries for the identification
    file of vehicles without a VE form,
    and with more than one vehicle-vehicle collision;
set ve_n_m1;
by psu caseno vehno;
if first.vehno;
matchno=vehno;
data gad_y2;
* Vehicles with delta V estimated by the missing vehicle
algorithm
    and with a VE form are a source of ACCSEQ1 for the other
vehicle
    when that other vehicle has no VE form;
set gad_y1;
keep psu caseno partner matchno accseq;
partner=vehno;
matchno=objcont1;
accseq=accseq1;
proc sort data=gad_y2;
```


Statistical Methods

```
by psu caseno matchno;
data ve_n_m3;
* For vehicles with delta V estimated by the missing vehicle
algorithm,
    without a VE form, and with more than one vehicle-vehicle
collision,
    add ACCSEQ1 from the impacting vehicle involved;
merge ve_n_m2(in=a) gad_y2(in=b);
by psu caseno matchno;
if a=1;
matchveh=b;
drop matchno;
data ve_n_m4 leftovr1;
* For vehicles with an estimated delta V, but without a VE form,
    and with more than one vehicle-vehicle collision,
    and with ACCSEQ1 added from the impacting vehicle,
    separate leftover vehicles with more than one collision
    identified in this manner;
set ve_n_m3;
by psu caseno vehno;
if matchveh=1 and first.vehno*last.vehno=1
    then output ve_n_m4;
else output leftovr1;
data ve_n_m5;
merge ve_n_m4(in=a) vehveh1;
by psu caseno vehno accseq;
if a=1;
data unkn94; set ve_y2 ve_n_s1 ve_n_m5; year=94;
proc freq data=unkn94; tables gadev /missing;
run;
```


2. ASSIGNMENT OF CRASH TYPE AND GADI BASED UPON IMPUTATION

THE UNKNOWNS REMAINING AFTER PERFORMING THE ABOVE PROCEDURE WERE IMPUTED BASED UPON A UNIUARIATE dISTRIBUTION OF CRASH TYPE. THE TABLE BELOW ILLUSTRATES THE STEPS TAKEN.

TABLE F-2
IMPUTATION OF UNKNOWN GADI AND CRASH TYPE, TOWED LIGHT TRUCKS, TOTAL SAMPLE FOR 1994-1996

ROW	CRASH TYPE	STEP 1	STEP 2	PERCENT
1	ROLLOVER 1-3	578	613	11.8\%
2	ROLLOVER 4+	418	444	8.6\%
3	ROLLOVER E/E	15	16	0.3\%
4	ROLLOVER ?	62		
5	ROLLOVER TOTAL	1073	1073	20.7\%
6	SINELE FRONT	450	679	13.1\%
7	SINELE SIDE	93	140	2.7\%
8	SINGLE REAR	9	14	0.3\%
9	SINELE T/U	0	0	0.0\%
10	SINELE GAD?	281		
11	SINGLE TOTAL	833	833	16.1\%
12	MULTI FRONT	1709	2380	46.0\%
13	MULTI SIDE	497	692	13.4\%
14	MULTI REAR	141	196	3.8\%
15	MULII T/U	2	3	0.1\%
16	MULTI GAD?	922		
17	MULTI TOTAL	3271	3271	63.2\%
18	TOTAL	5177	5177	100\%

The column "step 1" shows the univariate distribution, including unknowns, from the CDS data set after running the SAS program described above. The column "step 2 " has the 3 types of unknowns (rollover, type unknown, single vehicle crash with unknown GAD, and multi-vehicle crash with unknown GAD) redistributed into the major crash types according to the proportion of known crash types for that group. For example, the 62 light trucks shown in "step 1", row 4, are redistributed among rows 1 through 3 in "step 2."

Standard Errors of the CDS Estimates
THE NATIONAL ESTIMATES PRODUCED FROM THE CDS DATA MAY DIFFER FROM THE TRUE VALUES, BECAUSE THEY ARE BASED ON A PROBABILITY SAMPLE OF TOWED CARS AND NOT A CENSUS OF ALL CRASHES. THE SIZE OF THESE DIFFERENGES MAY VARY DEPENDING ON WHICH SAMPLE WAS SELECTED. THE STANDARD ERROR OF AN ESTIMATE IS A MEASURE OF THE PRECISION OR RELIABILITY WITH WHICH AN ESTIMATE FROM THIS PARTICULAR CDS SAMPLE APPROXIMATES THE RESULT OF A census.

IT IS IMPRACTICAL TO COMPUTE AND PROVIDE A STANDARD ERROR FOR EACH ESTIMATE IN THIS REPORT. INSTEAD, generalized standard errors for estimates of totals are presented in the following two tables for vehicle CHARACTERISTICS (TABLE F3) AND FOR OCCUPANT CHARACTERISTICS (TABLE F4). THE GENERALIZED STANDARD ERROR tables were produced separately for the vehicle and occupant tables, using three steps.

1. THE STANDARD ERRORS FOR SELECTED ESTIMATES IN THE REPORT WERE CALCULATED USING A TAYLOR SERIES APPROXIMATION.
2. AN EQUATION THAT BEST FIT THE STANDARD ERRORS WAS FOUND USING REGRESSION TECHNIQUES.
3. APPROXIMATE STANDARD ERRORS WERE GENERATED FROM THIS EQUATION, AND THE GENERALIZED STANDARD ERROR TABLES WERE PRODUCED.

SHOWN IN EACH TABLE ARE THE VALUES FOR THE ESTIMATES AND AN ESTIMATE OF ONE STANDARD ERROR FOR THAT VALUE DERIVED FROM THE 1994-1996 CDS DATA. BY ADDING AND SUBTRACTING ONE STANDARD ERROR TO THE ASSOCIATED ESTIMATE, APPROXIMATE 68\% CONFIDENGE INTERVALS FOR AN ESTIMATE CAN BE CREATED. THE ESTIMATED ANNUAL AVERAGE NUMBER OF SMALL, GRASH-INVOLVED, TOWED CARS IS GIVEN IN TABLE 1 OF THE REPORT AS 846,069 CARS. TO CALCULATE ONE STANDARD ERROR FOR THIS ESTIMATE, USE TABLE F3 IN THIS APPENDIX. SINCE 846,069 DOES NOT APPEAR IN TABLE F3, USE LINEAR INTERPOLATION FROM THE STANDARD ERROR VALUES FOR THE ESTIMATES 800,000 AND 900,000. ONE APPROXIMATE STANDARD ERROR WOULD BE $83,400+4,508=87,908$. THE CONFIDENCE INTERVAL FOR THIS ESTIMATE WOULD BE 846,069 +OR- 87,908 OR 758,161 TO 933,977.

THE FORMULA USED TO COMPUTE THE STANDARD ERRORS IS PRESENTED BELOW EACH TABLE. MORE INFORMATION ON STANDARD ERROR ESTIMATES CAN BE OBTAINED FROM THE NATIONAL CENTER FOR STATISTICS AND ANALYSIS.

TABLE F3
crash-involved vehicle characteristics estimate and standard errors

Estimate	Standard Error	Estimate	Standard Error
500	500	100,000	13,600
1,000	700	200,000	24,100
5,000	1,700	300,000	34,200
10,000	2,600	400,000	44,100
20,000	4,100	500,000	53,900
30,000	5,500	600,000	63,800
40,000	6,800	700,000	73,600
50,000	8,000	800,000	83,400
60,000	9,100	900,000	93,200
70,000	10,300	$1,000,000$	103,100
80,000	11,400	$1,100,000$	113,000
90,000	12,500	$1,200,000$	122,900

$\mathrm{SE}=e^{a+b(\ln (x))^{2}}$
Where

$$
\begin{aligned}
& a=4.922079 \\
& b=0.034691 \\
& x=\text { estimate } \\
& \text { SE= Standard Error }
\end{aligned}
$$

TABLE F4
crash-Involved occupant characteristics estimate and standard errors

Estimate	Standard Error	Estimate	Standard Error
500	300	100,000	19,000
1,000	400	200,000	40,100
5,000	1,200	300,000	63,300
10,000	2,200	400,000	88,300
20,000	4,000	500,000	115,000
30,000	5,800	600,000	143,000
40,000	7,600	700,000	172,500
50,000	9,400	800,000	203,200
60,000	11,300	900,000	235,200
70,000	13,200	$1,000,000$	268,200
80,000	15,100	$1,100,000$	302,400
90,000	17,000	$1,200,000$	337,600

$\mathrm{SE}=e^{a+b(\ln (x))^{2}}$
Where
$a=3.837986$
$b=0.04538$
x= estimate
SE= Standard Error

