
24 CROSSTALK The Journal of Defense Software Engineering April 2004

What makes a requirement effective?
The question hangs in the air of the

requirements class I am teaching. This is how
I start the class, with this simple question.
Participants eventually, cautiously give
answers that cover the usual array of what
makes for a good requirement: unambigu-
ous, testable, clear statement of need, mea-
surable, functionally worded, etc. All cor-
rect, but rarely do I get the answer I am real-
ly looking for: An effective requirement
communicates clearly to all parties who
read/ hear it what a piece of software needs
to do to satisfy the user’s expectations.
When your goal for well-written require-
ments is to communicate clearly, then you
can use some techniques to enhance the
communicability of the requirements.

The entire requirements definition
process is, intrinsically, an ongoing commu-
nications process. The customer states the
problem that needs to be solved, then
explains the job that system users will per-
form when solving the problem. The devel-
oper translates these statements into func-
tional requirements then asks the customer,
“Did I understand you correctly?”

Through a series of successive approxi-
mations, the developer’s documentation of
the required system functionality closely
approximates the customer’s expectation of
operational system performance. Yet in
some instances, the communication process
breaks down. By applying some simple, very
specific techniques, the risk of misinterpre-
tation is effectively reduced along with the
resulting expensive rework later during the
project’s development life cycle. Here are
four techniques that Software Performance
Systems uses to foster communication dur-
ing the requirements definition process:
• Train the requirements analysis team on

project standards.
• Build a requirements reserved word list.
• Clearly define quality requirements with

the customer.
• Conduct requirements scrubs.

Used by all parties in the requirements
definition process, and regardless of the
form of requirements documentation, these
techniques enhance communication
throughout the project and assure quality
output.

Train the Requirements Team
on Project Standards
Project standards for requirements include
processes and procedures for requirements
management activities as well as formats
and templates for outputs. Using an event-
driven learning (EDL) approach, short
training experiences are interjected in the
process immediately prior to executing a
process step. The training experiences
focus on performing the next step in the
requirements elicitation, documentation,
and management process so that everyone
is on the same page when the process activity
takes place. It is particularly helpful if both
the customer and developer participate in
these training experiences. That way, the
customer has an opportunity to influence
the way the activity is carried out in his or
her organization.

The process for developing and con-
ducting these training sessions starts with
the selection of requirements’ formats.
Involving the customer in template selec-
tion communicates what to expect as a final
product of the requirements definition
effort. As usual with process definition,
looking at the output of the requirements
definition process provides an indication of
what the templates need to contain. For
example, if the output is going into a
requirements management tool then a deci-
sion needs to be made whether to let the
tool number the requirements or whether
to assign numbers to each requirement
regardless of the tool’s numbering strategy.

In general, the templates will come
either from the artifact templates of the
selected software development life cycle or
an industry standard such as IEEE 830-
1998. In either case, there is a likelihood the
template will be tailored to suit the project
needs such as defining additional attributes
(i.e., priority, source, status, planned release,
etc.) for the requirements. Once the tem-
plates are defined, then EDL is used to
communicate the formats and contents to
all participants. With all stakeholders on the
project working from a common set of
templates, everyone knows what to expect,
in terms of artifacts, and is familiar with the
contents of each section.

A variety of training experiences need
to be tailored to the expected artifacts from
the requirements management process. If a
requirements management plan is being
prepared, the training may consist of little
more than reviewing the template and dis-
cussing sections of the document with the
authors before it is written. If the interim
artifact is going to be a use-case or software
requirements specification (SRS), then
more extensive training experiences are
warranted.

The classes will have much similar con-
tent such as properly formatting the
requirements statement as a single action
without using any conjunctions, except in
the case of Boolean logic. Instruction is tai-
lored to conventions used for each of the
different artifacts. For example, to easily
interpret the flows in a use case the labeling
conventions are defined to uniquely identi-
fy each action in the use case. Thus the use-
case writer encloses alternate flow identi-
fiers in parentheses next to the primary
flow statement. Figure 1 shows some of
the conventions adopted for writing use
cases, and taught in the Defining
Requirements with Use Cases class.

Adopting such conventions — and
ensuring that everyone on the project
knows how they are used and what they
mean — allows the project to develop its
own notation while ensuring that everyone
can read and unambiguously understand
the artifacts. During training, the require-
ments analysts have an opportunity to
apply these conventions as they practice
writing use cases immediately before they
write the actual ones. SRS authors, on the
other hand, spend more of their training
time practicing writing and decomposing
properly prepared, testable shall statements.

Regardless of the class, the emphasis is
on writing requirements that clearly convey
to users, testers, and designers what is to
happen on the system. The total quality
management concept of preparing output
that is usable by internal and external cus-
tomers is especially valid when training
people to write better requirements. All
potential requirements’ customers are consid-
ered as the requirements are written and
reviewed.

Better Communication Through Better Requirements
Michael J. Hillelsohn

Software Performance Systems

Everyone involved with a software development effort needs to have the same understanding of the meaning of the require-
ments for the application under development. This article describes several techniques that can be used during analysis to assure
that all stakeholders reach a common level of understanding.

Better Communication Through Better Requirements

April 2004 www.stsc.hill.af.mil 25

Build a Requirements Reserved
Word List
Words and terminology are the primary
communication among people. Word-based
communication can be imprecise because
the same word heard/read by different peo-
ple can have different meanings, different
words can mean the same activity or thing,
and different groups of people have their
own jargon. Unified Modeling Language
attempts to address these issues with heavy
use of diagrams with well-defined compo-
nents; however, this approach does not help
with textually expressed requirements.

The inclusion of a glossary as an artifact
in the Rational Unified Process defines
domain-specific terminology, but does not
provide for unambiguous expression of
what the system shall do when it is built.
Some early programming languages either
specified or allowed the programmer to
define a set of reserved words for the pro-
gram. They allowed the programmer to
communicate unambiguously with the com-
puter to perform specific operations consis-
tently. This concept transfers effectively to
requirements engineering.

A reserved word list for requirements
contains both general and domain-specific
terms. General terms select a single word to
describe a specific operation. For example,
you can specify that the system needs to
append information to a database by saying
that it shall save, record, capture, or store a data
element. A team of requirements analysts
may use any or all of these words in their
requirements; when the tester, designer, or
customer reads the requirements, they may
or may not interpret each word differently
with different tests, designs, or acceptance
criteria for each requirement. It would be
clearer to define record as the only verb to be
used to update a database that maintains his-
torical information for the system. A clearly
bounded definition like this also makes the
other verbs available for things like tempo-
rary and local information storage by the
user.

There are no synonyms in the reserved
word list because they compromise precision
of expression. In case-management opera-
tions, for example, the terms case, file, and
work-item are often used interchangeably.
Sometimes in the user community, these
terms are used differently in different parts
of the organization. It is critical that a single
term is used to define the object that is being
manipulated by the system so that everyone
knows what the requirement is acting upon.
In this instance, discussions with the user
community will arrive on a consensus term
and its definition. Occasionally the discus-
sions with the user may result in nuanced

definitions where multiple terms are used
but each has a unique attribute. For example,
case may be used to refer to the offline ver-
sion while file refers to the online version of
the same information.

Most words in the reserved word list are
verbs with very specific meanings. Table 1
shows three specific terms for user/system
interactions (from the user/actor perspec-
tive) that clearly communicate the nature of
the interaction. The fourth allows for the
interaction to be more clearly defined during
design. Thus when the interaction is known
during requirements definition, it is docu-
mented within the requirement/use-case so
that it can be confirmed during requirements
review cycles. If the interaction is not prede-
termined, a method of documenting the
requirement is available that does not pre-
clude design options.

Adverbs such as automatically and may are
also useful additions to the list; they can be
shorthand for describing some common
constructs in applications systems. For
example, automatically can be used before a
system action when there is no intervening
or triggering action by the user; may can indi-
cate that the user action described in the
requirement is optional. Constructs such as
optional user actions and automatic system
actions are easily captured and communicat-
ed by designating specific reserved words to
represent the ideas. If reserved words are
not designated or defined, then the repre-
sentation of the constructs can become con-

voluted in requirements documentation.
Occasionally, an analyst may use a word

that is not on the reserved word list as a sys-
tem or user/actor action. This is usually
detected during the quality assurance (QA)
review of the requirements artifact. In that
instance, the reviewer should give the analyst
the option of either using a word from the
reserved word list, or if there is no term that
adequately and accurately describes what is
going on, then the analyst is asked to add the
term and its definition to the list. Over time,
the list will grow to meet the exact needs of
the application domain. In general, the
reserved word list does not grow too large
because systems can only do a limited num-
ber of things (e.g., print, display, record, cal-
culate, verify, etc.). The reserved word list is
included as an appendix with the document-
ed requirements in the SRS or with the sup-
plementary requirements.

Define Quality Requirements
With the Customer
The statement “I know quality when I see it”
is not a viable means of defining the quality
of software applications. Quality require-
ments must be defined in the beginning of a
project so that they are considerations in the
design of the architecture and application
features. Software quality factors were
defined by the Department of Defense to be
used in the acquisition process.

Software Performance Systems uses
quality factors as a means for customers and

AUS-BF.2.1.4 System displays Main Menu Screen. Unused menu

 choices are grayed out. Current menu choices are

 shown in Table AUS-APA (AUS-AF3).

Comment indicating

location of data

Alternate Flow

Identifier

Use Case

Mnemonic

Basic Flow

Step Number
Requirement Decomposition

Figure 1: Defining Standard Notations for Use Cases

Reserved
Word

Definition

Enter A situation where there is a non-specified form for the user to provide

information to the system. Enter is used where the specific entry method
(typing, indicating) is either to be defined during design or when there is
more than one way to provide the information. In the latter case, the

comment field should contain the acceptable alternate forms by which the
user can provide the information.

Indicate The user makes a binary choice by setting an online Yes/No, On/Off, or
other type of flag (e.g., by marking or inserting a symbol such as comma
[,] in a check box), or otherwise select a setting from an online indicator. A

single mouse click or screen touch is a typical method of interaction.

Input Keyboard entry of information by a user (e.g., typing) requiring an end-of-

input signal (i.e., [Enter]).

Select Choose from a set of options displayed on a list.

Table 1: Using Reserved Words

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering April 2004

end users to express how a system satisfies
their highest priority, non-functional needs
when it is in production. The basis for defin-
ing what quality really means to the customer
is to have the customer select the quality fac-
tors that are most critical to the effort, and
then define requirements that set clear,
meaningful, attainable, and measurable qual-
ity attributes for the application. When these
requirements are met, the customer will have
a quality product as defined in their own
terms for this specific application.

The 11 quality factors shown in Table 2
are derived from the work sponsored by
Rome Air Development Center (performed
by Boeing Aerospace) in the mid-80s. The
user is asked to prioritize the factors since
the application cannot consider all of them
as the most important. Prioritization
involves discussing each of the factors
among the group, then each group member
selects their three most important factors.

Customers may balk at having to select
just a few factors, but the process of prioriti-
zation makes them focus on what is critical
for the system’s success in their environment.
For example, although correctness is always
important, it may not be as critical for a case-
management system as it is for a financial sys-
tem. Likewise usability is a higher priority
when there will be a large user base than
when there are only a few trained users.

After the votes are tallied and presented
to the group, another discussion ensues to
arrive at a consensus of the three most
important quality factors. These discussions
may be the first time that members of the

customer/user community really try to artic-
ulate how quality is defined for their applica-
tion. While the development team certainly
does not ignore factors that are not the high-
est priority, their importance is secondary;
they are not decomposed and measured the
same way as the high priority quality factors.
By going through the selection and prioriti-
zation process, the user community commu-
nicates among themselves and to the devel-
oper those factors that are most critical and
a little less important in the final product.

Quality requirements now need to be
defined so everyone agrees on observable
criteria for determining if the high-priority
quality factors have been achieved. This step
requires the user to translate the abstract def-
inition of the quality factor into operational-
ly meaningful terms. When defining reliabili-
ty, the facilitator (F)/user (U) interaction typ-
ically goes something like this:
F: You decided that you need a reliable sys-

tem. How reliable does it have to be?
U: Oh, very reliable.
F: Can it go down for an hour once a year?
U: Sure, no problem.
F: How about if it goes down once a

month? Does that endanger you accom-
plishing your mission?

U: I suppose once a month may be accept-
able, but it depends when.

F: What activity is so important that it
absolutely cannot go down during the
activity?

U: When agents are uploading case files.
F: Okay, so with the exception of the time

when the agents are uploading case files,

would it be acceptable if it goes down
once a week?

U: That would be the absolute most that
we could tolerate, but only if it was
down for a very short period of time.
And so on.
Now requirements define when the sys-

tem cannot have a failure and that the mean
time between failures is at least 40 opera-
tional hours. Continued discussion defines
the acceptable time limits on repair/down
time under various circumstances and other
aspects of system reliability. Shown below
are samples of requirements that a specific
user group arrived at when defining reliabili-
ty for their system.
• QFR.1: Each iteration of the system

shall be verified before it is put into
production.

• QFR.1.1 Each iteration of the system
shall have no critical system failures
after it is placed in production.

• QFR.1.2 Each system iteration shall
have one or less major defects arise dur-
ing the next six months in production.
All of these requirements are observable

and measurable. Some can be verified during
testing, but most must wait until the system
is in production to verify that they have been
satisfied. They clearly communicate to all
parties what the user means by saying the
quality system is reliable. The developer uses
these requirements during design to specify a
system that is most likely to meet these qual-
ity requirements (e.g., degree of component
architecture, redundancy, etc.). If these and
other quality requirements are not communi-
cated to the development team early in the
development life cycle, then the probability
that the delivered system meets the users’
quality expectations is reduced.

The biggest benefit of defining quality
requirements in such specific terms during
analysis is to communicate these require-
ments within the user community. It is com-
mon that the developer’s client and the end-
user of the system are different parts of the
sponsoring organization. It is critical for sys-
tem success that the entire sponsoring orga-
nization agrees on what constitutes a quality
delivered system. Reducing ambiguity in
defining quality among all system stakehold-
ers leads to better assurance of achieving
customer satisfaction when the system goes
into production.

Conduct Requirements Scrubs
Inspections and walkthroughs are proven
techniques for early defect detection and are
considered to have a significant positive
impact on the cost of quality of software prod-
ucts. We should do formal inspections on
requirements artifacts, but often the poten-
tial participants are put off by the formality

Quality Factor Definition Components

Efficiency Relative extent to which computer resources

are utilized.

Communication,

Processing, Storage

Integrity Extent to which security protocols are

implemented to guard against unauthorized
use and access to software and data.

Access Control, Virus

Prevention

Reliability Extent to which the software can perform

without any failures.

Accuracy, Anomaly

Management, Simplicity

Usability Relative effort required by the user

community to use the application.

Operability, Training, User

Support

Correctness Extent to which the software conforms to its
standards and specifications.

Completeness,
Traceability, Accuracy,

Consistency

Maintainability Ease of effort associated with finding and
fixing a software failure.

Consistency, Visibility,
Modularity, Simplicity,

Documentation

Verifiability Relative effort required to test the software

operation and performance.

Visibility, Traceability,

Documentation, Simplicity

Expandability Relative effort to increase the application's
capabilities and functionality.

Functional Scope,
Virtuality, Modularity,

Documentation

Interoperability Ability of the software to function on a variety
of platforms and operating systems.

Commonality, Common
Functions, Independence,

System Compatibility

Portability Relative effort required to transport the

system to another environment.

Independence, Modularity,

Documentation

Reusability Relative ease of using software components,
unchanged in other applications.

Application Independence,
Clarity, Document

Accessibility, Modularity

Table 2: Selecting Quality Requirements During Analysis

Better Communication Through Better Requirements

April 2004 www.stsc.hill.af.mil 27

of the process. So Software Performance
Systems introduced the term scrubbing the
requirements, which is less formal but
achieves the same end as formal inspections.

During a thorough requirements reading
in a group setting, many defects are detected
and corrected. In addition, Software
Performance Systems often has a naviga-
tional prototype available to the participants
to help them visualize how the words trans-
late into an actual application.

Where formal inspections rely on a small
focused cadre of reviewers (generally set at
three to five people), it is imperative that
multiple perspectives are represented at
requirements scrubs. People present at the
scrub should include the following:
• Producer. The person(s) who actually

wrote the requirements. During the
scrub, the producer will read each
requirement aloud.

• Customer. The requirements are a
description of what the customer will
receive when the application is delivered,
so the customer needs to be present to
hear and provide input to the detailed
application description. The customer is
also the referee when requirements
changes are suggested (generally by the
user) that may be out of scope.

• End-User. The specifics of what can be
done with the application are represent-
ed by the functionality described in the
requirements, so the scrub gives users
the opportunity to correct misconcep-
tions about how they do their job. Just a
few knowledgeable user representatives
who can make decisions for the func-
tional area being reviewed will be pro-
ductive. Too many users at a scrub leads
to long discussions without resolution.

• Tester. The tester will determine
whether there is enough information
present in the requirements to develop
test cases to verify that the requirement is
adequately satisfied when the application
is delivered. It is important that the tester
ask for clarification in the presence of
the customer and user so that a common
understanding about the acceptance cri-
teria for each requirement is established.

• Quality Assurance. The scrub is an
early opportunity for QA to correct
defects related to noncompliance with
standards for writing well-crafted require-
ments. QA can also facilitate the scrub.

• Technical Lead. As the user discusses
how the requirements are satisfied on the
job and the analyst describes the require-
ments, it is helpful to include technical
representation at the scrub to get a feel
for how the requirements translate into
the real world of the user, and to deter-
mine the feasibility of implementing the

requirements as stated.
• Project Manager. Since the user and/or

customer may raise concerns about func-
tionality that may either be in or out of
scope for the effort, the project manager
may want to attend the scrub.
Alternatively, any questions regarding
scope may be deferred until consultation
with the project manager is possible. In
most cases this is preferable rather than
discussing scope issues during the scrub.
The scrub is conducted very similarly to

a formal inspection. The requirements are
distributed to the participants in advance,
and they are encouraged to review them and
be prepared with comments. In reality, task-
ing customers and users – key participants in
the scrub – to do the review prior to the
scrub is problematic. Preparation will make
the scrub more efficient, but unlike an
inspection it is not cancelled if the partici-
pants do not prepare adequately.

At the scrub, each requirement or step in
a use case is read aloud and comments are
provided immediately after the reading. For a
use case, alternative flows are read at the
point where they would diverge from the
main flow. The comments are recorded
either by the producer and QA or a scribe. At
this point, the facilitator’s task is to keep the
discussion focused and brief. It is important
to maintain a good tempo at the scrub and
not allow it to get bogged down in long dis-
cussions on a single requirement.

When the navigational prototype is used
at the scrub, the facilitator should steer the
discussion and comments away from design
issues (how the screen looks) and maintain
the focus on requirements and functionality.
In general, each session should last for no
more than two hours; otherwise, it is hard to
stay focused. If more time is needed, break
the scrub into multiple sessions. The ideal
outcome of each discussion is a reworded
requirement that everyone agrees is accurate,
verifiable, and feasible. If that end-state can-
not be reached quickly during the scrub,
defer the discussion for offline resolution.

The dynamics of the scrub foster com-
munication among all the stakeholders in the
system. As participants attend multiple
scrubs, they get a good appreciation for the
overall functionality of the planned applica-
tion and how the pieces fit together. Like an
inspection, scrubs serve an important role in
fostering a common understanding and
knowledge base about the application early
in the product’s life cycle. This way misun-
derstandings can be clarified and issues relat-
ed to functionality shared among stakehold-
ers, and resolved.

Scrubs also are excellent training vehicles
for improving the requirements analyst’s
knowledge and skills relative to writing well-

constructed requirements. At one recent
scrub, right after the analyst read the require-
ment aloud, before anyone could comment,
she covered her face with her hands and said,
“That was a terrible requirement, I’ll fix it.”
Everyone laughed and the scrub continued.
The most recent SRS submitted by this
author-analyst, to QA, had only .02 defects
per page compared with the .80 defects per
page before Software Performance Systems
implemented these techniques in 1999.

Conclusion
Generally, the systems built by Software
Performance Systems are used by people
when they perform their jobs or by the pub-
lic when they provide input to an agency. If
the delivered system is not correct, then the
agency is crippled in achieving its mission.
That is why Software Performance Systems
has focused on the importance of using
requirements to assure that communications
between the developer and the customer are
an accurate reflection of functionality that is
required when a system goes into produc-
tion. Using multiple techniques to enhance
the communications process during the
inception of a software development effort
ensures that the delivered application meets
the user’s quality expectations and is fit for
use by the intended audience.◆

About the Author

Michael J. Hillelsohn
is a director of Product
Assurance at Software
Performance Systems
in Arlington, Va. He is a
certified quality profes-

sional with more than 30 years of
experience doing development, man-
agement, and performance improve-
ment in software and systems develop-
ment environments. His multi-discipli-
nary approach combines quality sys-
tems and training expertise to improve
the performance of organizations and
individuals. Hillelsohn’s process-orient-
ed performance-engineering methods
facilitate adoption of external frame-
works (Capability Maturity Model®,
ISO, Baldrige) to improve the quality of
organizational products and services.

3141 Fairview Park DR
STE 850
Falls Church,VA 22042
Phone: (703) 839-4055
E-mail: mhillelsohn@goSPS.com

hillelsohn@erols.com

