
Chapter 3. Results  
Article Retrieval Results 

 The search of the first seven library databases (MEDLINE®, HealthSTAR, EMBASE, 
MANTIS, SciSearch®, Social SciSearch®, Allied and Complementary Medicine) produced 166 
titles. The search of the Current Index to Statistics produced 16 titles, and the search of the 
Methodology Register of the Cochrane Library produced 135 titles. The titles were not 
deduplicated across these three searches. Our canvassed experts and referees, the Southern 
California Evidence-Based Practice Center methodological article database, and searching of 
reference lists of relevant articles yielded 27 additional titles. We note as an aside that by article 
we mean a published document including journal articles, books and reports. These combined 
searches produced 85 relevant articles whose full text was obtained.  

Reference List 
This final reference list is given in the Bibliography. We note two issues about this 

bibliography. First, we did not search using terms associated with hierarchical or Bayesian 
hierarchical modeling, which is a large field of literature. Our experts did identify some 
hierarchical modeling publications that are relevant to meta-analysis, and we have included those 
publications in our bibliography. Second, the application of meta-regression is becoming more 
common in meta-analysis examples. Thus, while our bibliography contains some examples of the 
application of meta-regression, especially early examples, our bibliography is by no means an 
exhaustive list of meta-regression applications. 

Given these caveats, we categorized the 85 publications into seven categories based on the 
primary focus of the article (Table 1). The first four categories were the main methods: fixed 
effects models; random effects models; control rate models; and Bayesian and/or hierarchical 
models. We also defined an “overview” category that contained articles that surveyed meta-
regression methods and/or focused on the unique challenges of such a modeling effort, including 
for example discussion of ecological bias. Our sixth category consisted of articles that addressed 
modeling studies that had multiple treatment arms and/or multiple endpoints or outcomes, as 
such studies present unique challenges. Our seventh category consisted of examples. We note 
that obviously publications could fall into more than one category, for example most articles that 
addressed random effects models began with a discussion of fixed effects models, so we 
categorized studies according to their primary focus.  

Common Notation 
We restrict attention to dichotomous outcomes, and specify the relationship between 

treatment, covariates, and outcome at the person level.  

First we consider the probability of the outcome in the absence of treatment. For clarity we 
will restrict our attention to dichotomous outcomes with a logistic link function, i.e., the logistic 
model is the correct model at the person level. Each person has a baseline effect (in the log odds 
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scale) in the absence of treatment, ijφ , for person j in study i. The log odds probability of the 
outcome in the absence of treatment is given by: 
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For example, ijφ would be the log odds probability of mortality in a specified follow-up time if 
the individual did not receive treatment.  

This baseline effect may conditional on characteristics of the patient and the study. Given a 
study effect iφ , a B Bvector ofB Bstudy level covariates jzs , and a vector of person-specific covariates 

ijxs  for person j in study i, the baseline effect for this individual is: 

2 3ij i i ijz xφ φ β β= + +
ss                (1) 

where the β  vector is: 
 2β :  the effect of a study-level covariate, such as inpatient versus outpatient service 

delivery, on the outcome 
 3β :  the effect of a person-level covariate, such as the patient’s age, on the outcome 

Next we will consider the probability of the outcome for a patient who receives treatment. 
We denote the treatment effect for person j in study i to be ijτ . In the simplest case, the log odds 
probability of the outcome in the presence of treatment is given by: 
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In the same way that a person’s baseline effect can depend on a study effect iφ , a B Bvector ofB 

Bstudy level covariates jzs , and a vector of person-specific covariates ijxs  for person j in study i, 
we can write the treatment effect ijτ  as 

0 1 2 3       if person  receives the treatment

0                                                   otherwise
ij i i ij i

ij
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τ

= + + + +

=

ss

  (3) 

where the γ  vector is: 
 0γ :  classic additive treatment effect 

1γ :  a treatment effect that depends on the underlying prevalence of the outcome in the 
absence of treatment 

 2γ :  a treatment effect that depends on a study-level covariate 
 3γ :  a treatment effect that depends on a person-level covariate  
 iυ :  a random effect for study i, introducing unexplainable heterogeneity 

If we were to estimate the parameters in Model (2) empirically, the model specification 
would include main effects for the covariates, a treatment indicator, and treatment indicator by 
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covariate interaction terms. Alternatively, we can substitute study-level indicator variables for 
the main effects of the study-level covariates. Study-level indicator variables and study-level 
covariates cannot both be included since they are cofounded. In the first specification, the 
coefficients of the treatment by covariate interaction terms estimate the γ vector. 

The joint distribution of iφ , iz and ijxs may be arbitrary. However, to conduct a simulation, we 
need to specify the joint distribution. Exploration of other distributional assumptions would be 
straightforward. We consider the Normal special case: 
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The zero mean for iµ , the mean of the x BijB in study i, is arbitrary. Study effects, study covariates, 
and the mean of the person effects may be correlated. The random study effect iυ  could be 
integrated into this framework and correlated with the other covariates but leaving it independent 
is convenient: ),0(N~ 2

i υσυ . 

We will treat β and γ  as vectors of constants. However, note that by setting 
),(N~ ββ Σµβ  and/or ),(N~ γγ Σµγ , we could generalize this framework to random 

coefficients models. 

Aggregating to the Study Level 
We can write each meta-regression approach as an aggregated version of the person-level 

model. Our approach is inspired by the aggregation of models literature in econometrics, see for 
example Theil.P

19
P 

The person-level parameterization that results in this logistic regression (Model (2)) is our 
fundamental representation of the treatment’s effect on outcome and the factors that determine 
that treatment effect. However, the typical meta-analyst does not often have access to the person-
level data. We consider two different aggregations of the person-level data to study-level data 
that are commonly available.  

First, the study may aggregate the outcomes to a two-by-two table, successes and failures in 
the treatment and control groups separately. In the case of multi-arm trials, this would 
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correspond to a two by k table where k is the number of arms. Potential explanatory variables 
may be aggregated to the study level or to the study by arm level.  

Second, the study may aggregate to a single treatment effect summary for the study (e.g. an 
odds ratio or risk ratio.) Potential explanatory variables would typically be aggregated to the 
study level as well. 

“Logistic meta-regression”P

12
P retains the two by k  table and performs a logistic regression 

with 2k  cases per study (success/failure by study arm.) This approach allows the use of standard 
software. The technical problem is the aggregation of explanatory variables. Such variables may 
be available aggregated at the study level, the arm level, or at both levels. Mis-specification will 
occur if the aggregation of covariates is only available at the study level. Randomization may 
limit the effect of this mis-specification. If aggregation is available at both the study and arm 
levels, the arm-level data is preferred and accommodated by our approach.  

Many meta-regression approaches model a single summary statistic per study. For example, 
Berkey, Hoaglin, Mosteller, et al.P

13
P annotate a meta-regression as: 

iy =log )( iRR  where iRR  is the relative risk for study i  

iiii xy εδα ++=
s  

This is not a fundamentally different structuring of the problem than logistic meta-regression. 
The log risk-ratio is one possible aggregation of the person-level logistic model outcomes. The iε  
now captures the variability in the binomial process.  

However, this additional aggregation step does add a potential source of bias. Recall in the 
logistic meta-regression approach, as long as arm-level data are available, we have only 
aggregated to the arm level and only introduced ecological bias from variables that are actually 
person-level predictors. If further aggregation to the study level is done, additional bias may be 
introduced due to the mis-specification of functional form, e.g., the risk ratio may not be the 
most appropriate study-level summary of the treatment effect to use in a meta-regression 
analysis. We do note that if covariates are specified at the study level in the logistic model, the 
results are comparable to those obtained in a model that fits the natural logarithm of the odds 
ratio. This comparability can be important if one is comparing two modeling approaches. 

Scenarios in which Meta-regression Might Be Informative 
We now consider four common situations in which meta-regression might be applied. We 

present the person-level specification of each scenario and discuss the most relevant meta-
regression methods. In each scenario, if a parameter is nonzero, it is set equal to the same 
constant for uniformity. To give two examples, in all scenarios the classical additive treatment 
effect 0γ is nonzero and is always set equal to 0g ; and in the third and fourth scenarios the 
treatment effect that depends on the underlying prevalence of the outcome in the absence of 
treatment 1γ  is nonzero and is set equal to 1g . 
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Scenario 1: Studies have different baseline effects and additive fixed treatment 
effects. 
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Simple fixed effects pooling methods, e.g. the Mantel-Haenszel methodP

22
P for combining odds 

ratios, are appropriate in this scenario. Meta-regression methods may not be efficient but may not 
be very biased. 

Scenario 2: Studies have different baseline effects and an additive random 
treatment effect. 
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Simple random effects pooling methods, e.g., the DerSimonian and LairdP

8
P method for 

combining risk ratios, are appropriate in this scenario. Meta-regression methods that incorporate 
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random effects, e.g., Berkey, Hoaglin, Mosteller, et al.,P

13
P may be applicable in this scenario but 

may not be efficient. 

Scenario 3: Studies have different baseline effects and the treatment effect 
depends on the underlying prevalence of the outcome in the absence of 
treatment. 
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Control rate meta-regression methods, e.g., McIntosh P

14
P and Schmid, Lau, McIntosh, et al.P

15
P 

are appropriate in this scenario. Meta-regression methods that model treatment indicator by 
covariate interaction terms may also be appropriate, although perhaps not as efficient as the 
control rate approaches. 
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Scenario 4: Studies have baseline effects and treatment effects that depend on 
covariates at the study and person levels. 
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Fixed effects meta-regression methods that allow covariates, e.g., logistic meta-regression 
and the Hasselblad approachP

20
P are appropriate in this scenario.  

Simulation Set-up 
Our simulation set-up consists of distributional assumptions and ranges of parameters for 

which we will generate person-level data. Following the order of presentation for the common 
notation, we will discuss the parameter values for the baseline effect and for the probability of 
outcome for treated patients, and then the distributional assumptions. This simulation set-up will 
allow us to generate cases where the generating mechanism for the data is known exactly with 
explicit assumptions. Further, our expert panel vetted this set-up. 

Baseline Effect 
We begin with the baseline effect ijφ for person j in study i, and restate Model (1): 

ij iφ φ=  

The baseline effects for all persons in study i are equal to a single study effect iφ . The iφ  
values are drawn from a normal distribution with mean φ  (described below) and variance one. 
The variance assumption results in no loss of generality as the simulation can introduce variance 
via other parameters. For simplification, 2β representing the effect of a single study-level 
covariate iz , and 3β representing the effect of a single person-level covariate ijx , are set to zero. 
Note that in the event a patient receives treatment, these covariates will still have an effect on 
treatment as described in the next section.  
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Probability of Outcome in the Presence of Treatment 
As in Model (2), we denote the treatment effect for person j in study i to be ijτ , and the log 

odds probability of the outcome in the presence of treatment is given by: 

 log
1

ij
ij ij

ij

p
p
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= +⎜ ⎟⎜ ⎟−⎝ ⎠
         

The treatment effect ijτ  depends on aB Bsingle study level covariate iz , and a single person-

specific covariate ijx  for person j in study i as 

0 1 2 3       if person  receives the treatment

0                                                   otherwise
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where the γ  vector describes relationship between study and person characteristics and treatment 
effect with 0γ representing the classic additive treatment effect, 1γ representing a treatment effect 
that depends on the underlying prevalence of the outcome in the absence of treatment, 

2γ representing a treatment effect that depends on a study-level covariate, 3γ representing a 
treatment effect that depends on a person-level covariate, and iυ representing a random effect for 
study i, introducing unexplainable heterogeneity. We have reduced from vectors of study-level 
covariates and person-specific covariates as shown previously in Model (3) to single covariates 
in each case for simplicity. 

Distributional Assumptions 
In order to conduct the simulation, we need to specify the joint distribution of s Bi B, B Bz Bi B and ijx as 

presented in Equation (4). We set the distributions and their parameters as follows: 
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The reader should note that 0γ , the additive treatment effect, is defined at the mean value 
(zero) of iz and ijx . This set-up corresponds to a meta-analysis that is unbiased for the 
population, i.e., the analyst has a random sample of studies. Setting the means equal to zero and 
variances equal to one result in no loss of generality as the simulation can introduce additional 
complexity via other parameters.  
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Simulation Parameters 
Table 2 contains the parameters used in the simulation.  The φ  values from –0.6 to 6 

correspond to odds ratios between 0.55 to 1.82. These values were selected to cover a range of 
outcome probabilities from 35% to 65%. Table 2 also shows the corresponding odds ratio values 
for the other coefficient parameters in the simulation. The simulated distributions are multiplied 
by the coefficient parameters we have selected, so assuming variances of one and means of zero 
in our distributional assumptions stated previously results in no loss of generality. 

Meta-regression Methods Evaluated 
We evaluated five methods using the odds ratio as the statistic of interest for the 

comparability. 

Method 1: Fixed effects pooled odds ratio 
For comparison purposes, we begin with the “Fixed Effects with No Covariates” method in 

which we fit a fixed effects pooled log odds ratio. This model may be written as 
( )i ilog OR τ ε= +  

),0(~ 2
ii N σε  

which is analogous to Method 2 described below with an intercept term only. 

Method 2: Logistic meta-regression 
In this “Fixed Effects with Covariates” method, we fit a weighted logistic regressionP

12
P of the 

2k cases per study where k is the number of arms, both control and treatment, in the study. Each 
arm contributes two observations to the regression: those patients in the arm who have the 
outcome and those patients who do not have the outcome. Thus each study contributes an 
observation from each cell in the two by k  table of arm by outcome. The weight for each 
observation represents the number of patients in that particular cell. Covariates can either be 
study or arm level, and interactions with treatment can be fit.  

This model may be written as 
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We implemented this model in SAS.P

23
P 

Table 3 demonstrates the data layout and levels of covariates.  Study 1 has a control arm 
(first two rows) and a single treatment arm (third and fourth rows). For each pair of rows 
associated with an arm, the first row are those patients without the outcome (“failures” with 
outcome = 0) and the second row are those patients with the outcome (“successes” with outcome 
= 1). The number of cases in each row are given, these will serve as the weights in the logistic 
regression. An example study-level covariate is given. This covariate has the same value for all 
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observations in a study as it is at the study level. An example might be the average age of the 
participants in the study across all arms. An arm-level covariate example is also shown, an 
example might be the average age in each arm, e.g. while the overall average age is 40, the 
average ages in the control and treatment arms are 45 and 35 respectively. 

 Method 3: DerSimonian and Laird random effects pooled odds ratio 
In this “Random Effects with No Covariates” method, we applied the standard one-step 

DerSimonian and Laird random effects pooled estimate of the log odds ratio:P

8
P  
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with i υ  and i ε  uncorrelated. We implemented this method in the statistical software package 
StataP

24
P using the “metareg” command with the method of moments estimation option and an 

intercept term but no covariates (in our experience, this is roughly equivalent to using the “meta” 
command).P

25
P 

Method 4: Random effects meta-regression of the log odds ratio with covariates  
In this “Random Effects with Covariates” method, we fit a random effects meta-regression 

that regressed the log odds ratio on an intercept and study-level covariates:P

25
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with i υ  and i ε  uncorrelated. We implemented this method in StataP

24
P using the “metareg” 

command with restricted maximum likelihood estimation. P

13
P 

Method 5: Control rate meta-regression  
In this “Control Rate” method, we fit a random effects meta-regression that regressed the log 

odds ratio on an intercept and the control group outcome rate:P

14, 15
P 
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with i υ  and i ε  uncorrelated. We implemented this method in S-PLUS,P

26
P using software 

courtesy of Drs. McIntosh and Schmid that utilizes the EM algorithm. 

How the Simulation Works and is Evaluated 
The total number of simulation parameter combinations is 1,944. (We note that this number 

changed subsequently based on our panel’s recommendation.) For each combination of values, 
we generate one meta-analysis data set and apply each of the five methods. Originally, we 
proposed the size of this meta-analysis be ten studies, each with 200 patients based on Schmid et 
al.P

15
P These authors reported a median number of studies equal to eight in Cochrane meta-

analyses and 11.5 in medical journal meta-analyses, with median number of patients equal to 177 
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and 265 respectively. However, as discussed in the next section, our expert panel recommended 
that we conduct the simulation over a variety of meta-analysis sizes and study sample sizes.  

We compare the methods in terms of bias in the estimation of 0γ , the additive treatment 
effect. This is the key parameter, typically estimated in meta-analyses. In the tables that follow in 
this chapter, we present that bias as a percentage of the true parameter: 
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What These Methods Are Estimating in Our Simulations 
The population mean treatment effect is the expected value of treatment effects across all 

patients in all studies. From Model (3):  
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In the absence of a control rate, i.e., 1 0γ = , the population mean treatment effect is simply 

0γ . Thus for all models except control rate, we can estimate 0γ  by just averaging across all 
patients in all studies. 

Averaging across all patients in all studies in the control rate model yields 0 1
ˆˆ ˆγ γ φ+ . Thus to 

estimate 0γ  from this model, we need to subtract 1
ˆγ̂ φ  from the average treatment effect.  

Panel Recommendations 
The panel was enthusiastic about the common notation and preliminary simulation set-up, 

and noted the usefulness and timeliness of the projected product. 

Recommendations Regarding the Simulation 
We begin with recommendations regarding the simulation: 
• The panel recommended that we vary the number of studies and number of patients 

within those studies. Our original simulation design fixed these parameters at 10 and 200 
respectively. The panel recommended that we evaluate the design with the sample size 
for studies varying within each meta-analysis, and with meta-analyses of size 3, 10, and 
30 studies. 

Following this recommendation, we varied the sample sizes within the studies from as few as 
five patients within a study to as many as 395 patients within a study. The variable “tilt” 
measures the degree of variability of sample sizes across the studies. Tilt equal to zero means all 
studies have sample size 200. Tilt equal to one means the studies are uniformly distributed 
between 5 and 395 patients with an average sample size of 200. 
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The meta-regression methods we considered were not capable of producing stable parameter 
estimates when only three studies were available. This outcome is not surprising since there are 
only two degrees-of-freedom for study effects in meta-regressions with three studies.  Thus we 
decided to include only two levels of number of studies: k  = 10 and 30. The addition of the 
variable tilt and two values of k  increased our total number of simulation parameter 
combinations from 1,944 to 7,776. 

• We should use symmetry in the simulation parameters to reduce the number of meta-
analyses to be evaluated in the simulation, i.e., decrease the size of the design.  

We decided that improvements in computational efficiency made it unnecessary to reduce the size 
of the simulation. 

• To make the simulation results most useful and comprehensible, the panel recommended 
we: 
− Relate the simulation scenarios to realistic (clinical) situations that analysts 

would commonly find themselves in. 

After some discussion, we believe our values of the simulation parameters span the range of 
common circumstances encountered by the meta-analyst. 

− Define what precisely we mean by bias in our evaluation of the simulation. 

We have done this previously in this document—see the formal definition of bias. 

− Define when our model is identifiable, that is when the simulation parameters 
can actually be estimated by the meta-regression methods.  

In this report, we focus on bias in the estimation of 0γ , a parameter which is identifiable for all 
methods under consideration. 

• The panel further recommended that we: 
− Estimate the between-study variation to allow the reader to gauge the degree 

of heterogeneity present in our simulation scenarios.  
− Consider presenting the common notation in an analysis-of-variance format in 

addition to a regression one. 
− Consider presenting a table showing each meta-regression method by the 

parameters it estimates under what conditions. 
− Expand the simulation by allowing the treatment effects to vary by study, and 

by covariates; including realistically collinear study characteristics; and 
incorporating random effects. 

We were unable to implement these recommendations within the scope of this project. 
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General Recommendations 

The panel had further recommendations for the meta-regression user community: 
• Measuring and incorporating heterogeneity in a meta-analysis is not sufficient. The panel 

recommends that meta-analysts investigate the causes of heterogeneity. 
• With respect to meta-regression, a body of techniques for which the panel preferred the 

term “multilevel modeling,” the panel saw the need for further software development. 
Perhaps more importantly, the panel saw the need for outreach, e.g. in the form of 
tutorials, to assist new users with learning how to conduct and interpret such analyses. 
Foremost in the advised strategies should be the use of regression diagnostics and 
graphics, especially given the limited degrees-of-freedom, high collinearity, and strong 
possibility for ecological bias in the meta-regression setting. 

• Though much of the research that has already been conducted in the usual regression 
setting to determine how to assess model fit may be transferable to the meta-regression 
setting, the panel recommended further research in this area. For example, how does one 
judge whether a meta-regression modeling effort has been well-done? What should an 
analyst report in a meta-regression analysis, e.g., can guidelines be developed akin to the 
QUORUM statement?P

2
P 

Recommendations Regarding Future Work 
In the Southern California Evidence-Based Practice Center’s role as technical support to the 

National Center for Complementary and Alternative Medicine, we are investigating 
methodological research topics. Our first topic is the subject of this report: meta-regression. We 
asked the panel to recommend what methodological research we should undertake in the coming 
year. We had originally proposed quality assessment of observational studies as our next topic. 
The panel’s recommendation was: 

• The panel understood the need for guidance regarding the assessment of quality of 
observational studies. The panel recommended that if work was to be done in this area, it 
focus on a specific clinical topic, e.g., a “case study,” and empirically investigate the 
relationship between different quality attributes and treatment outcomes. The panel 
recommended against developing a global quality scale, and also did not advise 
considering observational study quality in general. 

We agree with the panel that the development of a global quality scale for observational studies 
is premature. Further work must be done to understand meta-analysis of observational studies. 
We will consider the panel’s recommendation regarding a case study approach. 

Simulation Results 
The simulation was a complete factorial experiment in that all levels of all simulation 

parameters appear in combination with all levels of all other simulation parameters without 
replication at any of the combinations. Rather than repeatedly running the simulation at a 
particular, usually randomly-drawn, combination of values, we have exhaustively run all 
combinations.   We considered the option of running several replications at each of the design 
points. Given the purpose of the study we decided that covering a broader range and more 
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exhaustive combination of parameters would be more informative.   One consequence of this 
approach is that we will need model-based error estimates. Therefore, we analyze the simulation 
results with analysis-of-variance (ANOVA) methods as described below. 

Simulation Analysis 
The analysis of the simulation results for each meta-regression method is an ANOVA with a 

dependent variable of bias, and the independent variables are the simulation parameters. The first 
decision was what level of interaction among the simulation parameters should be included. 
Using general F-tests, we considered the addition of all interactions of various orders in forward 
selection. For example, we compared a model with only main effects to a model that included all 
two-way interactions. Repeating this process, we compared the two-way interaction model to the 
three-way interaction model, and the three-way interaction model to the four-way interaction 
model. For all five meta-regression methods, the three-way interaction model was found to be 
adequate.  

Using the three-way interaction models, we ranked the ANOVA effects for each method by 
their sums-of-squares. We denoted as practically important model terms those that had a sums-
of-squares greater than or equal to 30 in any of the five method models. This bounding rule, or 
“practical criterion,” is guaranteed to capture any contribution to bias of 10% or greater on 
average. Many more terms are statistically significant. The six terms that met this practical 
criterion and the methods for which they were important are shown in Table 4. 

Computer Requirements 
The process of simulating the person-level data and aggregating to the study level in SAS 

8.0P

23
P required approximately 22 hours on a 550 MHz dual Pentium PC with 512 megabytes of 

RAM. Fitting the meta-regression models ranged from 21 minutes for the fixed effects models 
implemented in SAS 8.0P

23
P to approximately eight hours for the control rate models implemented 

in SPLUSP

26
P on a 700 MHz Pentium with one gigabyte of RAM. 

Simulation Table Explanation 
Tables 5 – 10 each present the simulation results for an interaction term selected as 

practically significant in the ANOVA analyses. In each table, we present the estimated bias in 
the estimate of the population mean treatment effect and the standard error of that estimated bias.  

All five meta-regression methods appear in each table regardless of whether that particular 
method achieved practical significance for the interaction. This facilitates comparison among the 
methods. The bias is presented as a percentage for the case where oγ is 0.6, the largest absolute 
value of the population mean treatment effect in the regression. For example, a –50.0 percent 
bias would indicate that a oγ of 0.3 was estimated when the true value of oγ was actually 0.6. 

When presenting the results for a particular interaction term, we hold all omitted simulation 
parameters equal to their most neutral values. The footnote to each table reminds the reader what 
these values are. In general, we have selected these values to correspond to values least likely to 
introduce bias. For example, the largest number of studies, k  = 30, is used as more bias exists 
with a smaller number of studies. 



29 

Simulation Tables 
Table 5 presents the bias in the estimation of the population mean treatment effect as a 

function of the treatment effect of a person-level covariate ( 3γ ) and variability in sample sizes 
across studies (tilt). Note that for 3 0γ = , the bias is relatively small. For nonzero values of 3γ , 
the bias is large when tilt = 0. Note that the methods with covariates are much less biased when a 
covariate is an important predictor, i.e., when 3γ  is nonzero. Methods without covariates can be 
substantially biased when a covariate is important and the sign of that bias depends on the sign of 
the covariate. 

Table 6 presents the bias as a function of the within-study standard deviation of a person-
level covariate ( xiσ ) and the treatment effect of a person-level covariate ( 3γ ). Note when 

0xiσ = , the person-level covariate becomes in effect a study-level covariate and the bias 
monotonically increases in 3γ . When 0.5xiσ = , the bias monotonically decreases in 3γ . This 
suggests that aggregating a person-level covariate to the study level can produce substantial bias. 
This result is consistent with the aggregation bias literature. 

Table 7 presents the bias as a function of the treatment effect of a study-level covariate ( 2γ ) 
and the number of studies ( k ). In general, the bias is much larger for the smaller number of 
studies ( 10k = ). However, the direction of the bias for a small number of studies depends on the 
value of 2γ . With positive values of 2γ  associated with negative bias and vice versa. Although 
all the methods have difficulty with small number of studies, the magnitude and direction of the 
bias is influenced by an important study-level covariate. 

Table 8 presents the bias as a function of a treatment effect that depends on the baseline rate 
( 1γ ) and the baseline outcome rate (φ ). For negative values of 1γ , φ  is positively correlated with 
bias, and for positive values of 1γ , φ  is negatively correlated with bias. This suggests that a 
nonzero control rate in methods that do not incorporate a control rate can substantially bias the 
estimate and the direction of that bias depends on the sign of the control rate ( 1γ ). 

Table 9 presents the bias as a function of the treatment effect of a person-level covariate ( 3γ ) 
and the baseline outcome rate (φ ). Although there are some slight variations in the bias as a 
function of φ , this table is dominated by the effect of 3γ  on the bias. For the models for which 
this interaction is significant, there is a strong negative correlation between 3γ  and the bias. 
Again, this effect is consistent with the aggregation bias literature. 

Table 10 presents the bias as a function of the treatment effect of a study-level covariate ( 2γ ) 
and the baseline outcome rate (φ ). The only model for which this interaction is significant is 
control rate meta-regression. As 2γ  increases, the relationship between φ  and bias changes from 
positive correlation to no correlation, while its magnitude increases. This shows the importance 
of omitted study-level covariates in the presence of a nonzero control rate. Note that this table is 



difficult to interpret as our simulation contained only positive correlations between control rate 
and the study-level covariate. In future work, we will include negative correlations.  
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