"HURRICANE!"

A Familiarization Booklet

HURRICANE ANDREW

Hurric ane Andrew slammed into heavily populated south Florida as the most destructive storm in United States history. With sustained winds of 145 mph and gusts over 175 mph , Andrew annihilated homes and businesses along a 30-mile swath through the Dade County towns of Homestead, Leisure City, Goulds, Princeton, Naranja, and Florida City. When it wasover, more than 60,000 homes were destroyed and 200,000 people were left homeless.

Andrew had a central pressure of 922 mb at landfall making it the third most intense huricane of the 20th century. Only the infamous "La bor Day" huric ane that struck the Keys in 1935 and Huricane Camille in 1969 along the Mississippi/Louisiana coasts were stronger. Damage was estimated at more than $\$ 20$ billion.

Fifteen people died in Florida as a direct result of Andrew's fury. Another 26 lives were lost as a result of indirect effects of the huric ane within the next 3 weeks. The relatively low loss of life, compared to the hundredsthat died in the 1935 storm and in Camille, stands as a testimony to the success and importance of huric ane
a wareness campaigns, preparedness planning, and actions by the joint efforts of Federal, state, county, and city emergency forces. The news media played a majorrole in the lifesaving actions before, during, and after Andrew hit.

Historic ally, such powerful huric a nes have caused great loss of life from the stom surge. As Andrew came ashore first in the northwest Bahamas, storm surge reached an astonishing 23 feet. In Florida, a 17-foot storm tide, which headed inland from Biscayne Bay, is a record for the southeast Florida peninsula. Storm tides of more than 7 feet in Louisiana also caused severe flooding.

Evacuation from threatened coastal areas is the only defense from the stom surge's potential fordeath and destruction. After the National Huric ane Center issued huric ane watchesand wamings, massive evacuations were ordered in Florida and Louisiana by emergency management officials. It is estimated that more than $2,000,000$ people evacuated to safety in Florida and Louisiana as Andrew approached.

PREFACE

This booklet is a compilation of material on huric anes gathered from several National Oceanic and Atmospheric Administration (NOAA)/National Weather Service public ations in response to a myriad of requests received
at the National Huric ane Center for huric ane information. Statistic sand definitions have been updated and obsolete references have been deleted from the original works.

[^0]
"HURRICANE!"

A Familiarization Booklet

Revised

April 1993

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Weather Service

NOAA PA 91001

"HURRICANE-The Greatest Storm on Earth"

There is nothing like it in the atmosphere. Even seen by sensors on satellites thousands of miles above the earth, the uniqueness of these powerful, tightly coiled stoms is clear. They are not the largest storm systems in our atmosphere, or the most violent; but they combine those qualities as no other phenomenon does-as if they were designed to be engines of death and destruction.

In our hemisphere, they are called huric anes, a term that echoes colonial Spanish and Caribbean Indian words forevil spints and big winds. The storms are products of the tropical ocean and atmosphere, powered by heat from the sea, steered by the easterly trades and temperate westerlies, and their own fierce energy. Around theircore, windsblow with lethal velocity, the ocean developsan inundating surge, and asthey move ashore, tomadoes may descend from the advancing bands of thunderclouds.

Huric anes are a major source of rain for those continental comers that fall beneath their tracks. Perhapsthere are other hidden benefits aswell. But the main consequence of the huricane istragedy.

In Asia, the price in life paid the huricane has had biblical proportions. Aslate as 1970, cyclone storm tides along the coast of what now is Bangladesh killed hundreds of thousands of persons. An estimated 138 thousand were killed in Bangladesh in 1991. Our hemisphere has not had such specta cular losses, but the toll has still been high. In August 1893, a storm
surge drowned between one and two thousand people in Charleston, South Carolina. In October of that same year, nearly two thousand more perished on the gulf coast of Louisiana. The Galveston storm of 1900 took more than 6,000 lives. More than 1,800 perished along the south shore of Florida's Lake Okeechobee in 1928 when huric ane driven waters broached an earthen levee. Cuba lost more than 2,000 to a storm in 1932. Four hundred died in Florida in an intense huricane in September 1935-the "Labor Day" humicane that shares with 1969's C a mille the distinction of being the most severe to ever strike the United States.

Floods from 1974's Huric ane Fifi caused one of the Westem Hemisphere's worst natural disasters in history, with an estimated 5,000 persons dead in Honduras, El Salvador, Guatemala, and Belize.

In the United States, the huricane death toll has been greatly diminished by timely wa mings of approaching stoms. But damage to fixed property continues to mount. In 1965, Huricane Betsy caused about $\$ 6.5$ billion $^{\mathbf{1}}$ in damages in Florida and Louisiana. Flooding from Huric ane Agnes in the populated Northeast United States in 1972 totaled $\$ 6.4$ billion. In 1989, Huric ane Hugo at $\$ 7$ billion became the most costly huric a ne when it struck South Carolina. Then Andrew smashed all recordswhen it hit the densely populated coast of south Florida with more than $\$ 20$ billion in property damage.

[^1]
The Season of Great Storms

It is the northem summer. The illusion of a moving sun caused by our planet's yearlong orbit bringsthat star's rays northward to the Equator, then toward the Tropic of Cancer. Behind this illusory solar track, the sea and airgrow warmer, and the polar winter beats its sea sonal retreat.

This northward shift of the sun brings the season of tropical cyclones to the Northem Hemisphere. Along our coasts and those of Asia, it is time to look seaward.

Over the westem Pacific, the tropical cyclone season is never quite over but varies greatly in intensity. Every year, conditions east of the Philippines send a score of violent storms howling toward Asia; but it is worse from J une through November.

Southwest of Mexico, eastem Pacific huricanes develop during the spring, summer, and autumn. Most of these will die at sea as they move over colder ocean waters. But there are destructive exceptions when stormscurve back toward Mexico.

Along our Atlantic and gulf coasts, the nominal huric ane sea son lasts from J une through November. Early in the season, the westem Caribbean and Gulf of Mexico are the principal areas of origin. In July and August, the main area of formation begins an eastward shift; by early September, a few storms are being bom as fareast as the Cape Verde Islandsoff Afric a's west coast. Again after midSeptember, most storms begin in the westem Caribbean and Gulf of Mexico.

In an average year, more than one hundred disturbances with huricane potential are observed in the Atlantic, Gulf of Mexico, and Caribbean; but on an average, only 10 of these reach tropic al storm stage, and only about six mature into huric anes. On average, two of these huric a nes strike the United States, where they kill from about 50 to 100 people somewhere between Texas and Maine and cause hundreds of millions of dollars in property damage. In a worse-than-a verage year, the same stormscause several hundred deaths and property damage totaling billions of dollars.

Forthe National Oceanic and Atmospheric Administration (NOAA), the huric ane season means a nother hazard from the atmosphere at a time when tomadoes and floods and severe storms are playing havoc elsewhere on the continent. Meteorologists with NOAA's National Weather Service monitor the massive flow of data that might conta in the early indic ations of a developing storm somewhere over the warm sea. Cloud images from satellites, meteorologic al data from hundreds of surface stations, balloon probes of the atmosphere, and information from hurric a ne-hunting a ircraft are the tools of the huric ane forecaster.

In NOAA's research laboratories, scientists wait for nature to fumish additional specimens of the great storms to probe and analyze in hopes of gathering a greater understanding of the mechanics of the stoms-thereby assisting the forec aster with his wa mings.

Portrait of a Hurricane

Given that the huric ane, as an engine, is inefficient and hard to start and susta in, once set in motion, once mature, it is an a wesome natural event indeed.

The young stom standsupon the sea as a whirlwind of awful violence. Its huric aneforce winds cover thousands of square miles, and tropic al storm force winds-winds of 34 to 63 knots 1-cover a reas ten times larger. Along the contours of its spiral rainbands are dense clouds from which tomential rainsfall. These spiral rainbands ascend in decks of cumulus and cumulonimbus clouds to the high upper atmosphere, where condensing water vapor is swept off as ice-crystal wisps of cimus c louds by high-altitude winds. Lightning glows in the rainbands, and this cloudy terra in is whipped by turbulence.

In the lowerfew thousand feet, a ar flows in to ward the center of the cyclone and is whirled upward through ascending columns of a ir near the center. Above 40,000 feet, this cyc lone pattem is replaced by an antic yclonic (clockwise in the Northem Hemisphere) circulation-the high-level pump that is the exhaust system of the huric ane engine.

At lower levels, where the huric ane is most intense, winds on the rim of the storm follow a wide pattem, like the slower currents on the rim of a whirlpool; like those curents, these winds accelerate as they approach the central vortex. This inner band is the eyewall, where the stom's worst winds are felt, and where moist a ir entering at the surface is chimneyed upward releasing heat to drive the stom. In many
huric anes, these winds exceed 90 knots-nearly twice that in extreme cases.

Hurricane windsare produced, asall winds are, by differences in atmospheric pressure ordensity. The pressure gradient-the rate of pressure change with distance-produced in huricanes is the shapest in the atmosphere, excepting only the pressure change believed to exist across the narrow funnel of a tomado.

Atmospheric pressure is popularly expressed as the height of a column of mercury that can be supported by the weight of the overlying air at a given time. ${ }^{2}$

In North Americ a, ba rometric measurements at sea level seldom go below 29 inc hes of mercury (982 millibars). In the tropics, it is generally close to 30 inches (1,016 millibars) under normal conditions. Huricanes drop the bottom out of those nomal categories. The Labor Day huric a ne that struck the Florida Keys in 1935 had a central pressure of only 26.35 inches (892 millibars). And the change is swift; pressure may drop an inch (3 millibars) per mile. Huric ane Gilbert in 1988 went through a remarkable intensification period after its center crossed J amaica. The pressure fell from 960 millibars (28.35 inches) to 888 millibars (26.22 inches) in 24 hours. The latterwasobserved by a NOAA airc raft on September 13, 1988-the lowest sea level pressure ever recorded in the Westem Hemisphere.

[^2]At the center of the storm is a unique atmospheric entity and a persistent metaphorfororder in the midst of chaos-the eye of the huricane. It is encountered suddenly. From the heated tower of maximum winds and thunderclouds, one bursts into the eye, where winds diminish to something less than 15 knots. Penetrating the opposite wall, one is abruptly in the worst of winds again.

A mature huric ane orchestrates as much as a million cubic miles of atmosphere. Overthe deep ocean, wavesgenerated by humicane windscan reach heights of 50 feet ormore. Under the storm center, the ocean surface is drawn upward like water in a straw, forming a mound 1-3 feet or so higher than
the surrounding ocean surface. This mound may translate into coastal surges of 20 feet or more. Besides this surge, massive swells pulse out through the upperlevels of the sea-Pacific surfers often ride the oceanic memory of distant typhoons.

While a huricane lives, the transaction of energy within its circ ulation is immense. The condensation heat energy released by a huric ane in one daycan be the equivalent of energy released by fusion of four-hundred, 20-megaton hydrogen bombs. One day's released energy, converted to elec tricity, could supply the United States' electrical needs for about 6 months.

The Fatal Thrust Toward Land

From birth, the huricane lives in an environment that constantly tries to kill it-and ultimately succeeds. The hurric ane tends to survive while it is overwarm water. But its movement is controlled by the forces that drive the storm ashore orover colder water beyond the tropics where it will weaken and die. This thrust away from the tropics is the clockwise curve that takes typhoons ac ross the coastlines of J apan and into the Asian mainland and the Atlantic huric a nes into the eastem United States.

Even before a huric ane forms, the embryonic stom hasforward motion, generally driven by the easterly flow in which it is embedded. Aslong as this westerly drift is slow-less than about 20 knots-the young huric ane may intensify. More rapid forward motion generally inhibits intensific ation in the storm's early stages. Entering the temperate latitudes, some stoms may move along at more than 50 knots, but such fast-moving storms soon weaken.

At middle latitudes, the end usually comes swiftly: colderair penetrates the cyclonic vortex; the warm core cools and acts as a thermal brake on further intensification. Water below 80 degrees Fahrenheit does not contribute much energy to a huricane. Even
though some large huric anes may travel fordaysover cold north Atlantic water, all storms are doomed once they leave the warm tropic al waters that susta in them. The farther they venture into higher latitudes, the less fuel they receive from the sea. This lack of fuel finally kills the stoms.

Over land, huricanes break up rapidly. Cut off from theiroceanic source of energy and with the added effects of frictional drag, their circulation rapidly weakens and becomesmore disorganized. Torrential rains, however, may continue even after the windsare much diminished. In the southeastem United States, about a fourth of the a nnual rainfall comes from dissipating huric anes, and sometimes the Asian mainland and J apan welcome typhoons to get water from the sky.

Huric anes are often resurrected into extratropic al cyc lones at higher latitudes orcombine with existing temperate-zone disturbances. Many storms moving up our Atlantic coast are in the throes of this transformation when they strike New England, and large continental lows are often invigorated by the remnants of storms bom over the tropical sea.
"If a major stom strikesa coastal metropolitan center this year, the risk of fatalities is high beca use the endangered population will face congested evacuation routes, insuffic ient esc ape time, and has too little experience in huric ane survival. It is imperative that coastal residents and visitors alike take the threat seriously, acquaint themselves with huric ane safety rules, and evacuate immediately if advised to do so."

Dr. Robert C. Sheets
Director, National Huric ane Center

Destruction in a Hurricane

Huric a nes are the unstable, unreliable creatures of a moment in our planet's natural history. But their brief life a shore can leave scars that never quite heal. In the mid-1970's, the hand of 1969's C a mille could still be seen along the Mississippi gulf coast. Most of a huricane's destructive work is done by the general rise in the height of the sea called stom surge.

Huric ane winds are a force to be reckoned with by coastal communities deciding how strong their structures should be. As winds inc rease, pressure against objects is added at a disproportionate rate. Pressure force against a wall mounts with the square of wind speed so that a threefold increase in windspeed gives a ninefold increase in pressure. Thus, a 25 mph wind causes about 1.6 pounds of pressure persquare foot. A four by eight sheet of plywood will be pushed by a force of 50 pounds. In 75 mph winds, that force becomes 450 pounds, and in 125 mph , it becomes 1,250 pounds. Forsome structures, this force is enough to cause failure. Tall structures, like radio towers, can be destroyed by gusty huricane-force winds. Windsalso camy a barrage of debris that can be quite dangerous.

All the wind damage does not necessarily come from the huric ane. As the storm moves shoreward, interactions with other weather systems can produce tomadoes that work a round the fringes of the huric ane. Although huricane-spawned tomadoes are not the most violent form of these whirlwinds, they have added to the toll we pay the huric ane.

Floods from huric ane rainfall are quite destructive. A typical huric ane brings 6 to 12 inches of rainfall to the area it crosses, and some have brought much more. The resulting floods have caused great damage and loss of life, especially in mountainous area where heavy rains mean flash floods. The most widespread flooding in United States history was caused by the remnants of Huricane Agnes in 1972. Rains from the dying huric a ne brought disastrous floods to the entire Atlantic tier of states, causing 118 deaths and some $\$ 2.1$ billion in property damage.

Storm Surge

The huric a nes' worst killer comes from the sea, in the form of storm surge, which claims nine of ten victims in a huric ane.

As the stom crosses the continental shelf and movesclose to the coast, mean water level may increase 15 feet or more. The advancing storm surge combines with the nomal astronomical tide to create the huric ane storm tide. In addition, wind waves 5 to 10 feet high are superimposed on the stom tide. This buildup of water level can cause severe flooding in coastal areas, particularly when the stom surge coincides with nomal high tides. Because much of the United States' densely populated coastline along the Atlantic and gulf coastslies less than 10 feet above mean sea level, the danger from stom surge is great.

Water weighs some 1,700 pounds per cubic yard; extended pounding by frequent wavescan demolish any struc tures not specific ally designed to withstand such forces.

Currents set up along the coast by the gradient in storm surge heights and wind combine with wavesto severely erode beaches and coastal highways. Many buildings withstand huric ane winds until their foundations, undermined by erosion, are weakened and fail. Storm tides, waves, and currents in confined harbors severely damage ships, marinas, and pleasure boats. In estuarine and bayou areas, intrusions of salt water endanger the public health and create biza re effects, like salt-c razed snakes fleeing Louisiana's flooded bayous.

Wave and curent action associated with the surge also causesextensive damage.

Hurricane Forecasters and Hunters

The day is past when a humic a ne could develop to maturity far out to sea and go undetected until it thrust toward land. Earthorbiting satellites operated by the National Oceanic and Atmospheric Administration (NOAA) keep the earth's atmosphere under virtua lly continuous surveilla nce, night and day. Long before a stom has evolved, scientists at NOAA's National Humic a ne Center in Miami, Florida, have begun to watch the disturbance. In the satellite data coming in from polarorbiting and geostationary spacecraft and in reports from ships a nd airc raft, they look for subtle clues that mark the development of humic anes-cumulus clouds covered by the c irrostratus deck of a highly orga nized convective system; showers that become steady rains; dropping atmospheric pressure; intensific ation of the tradewinds, or a westerly wind component there.

Then, if this hint of a disturbance blooms into a tropical storm, a time-honored convention is applied-it receives a name. Today, naming a storm is a signal which brings a considerably more elaborate waming system to readiness. Long-distance communic a tions lines a nd preparedness plansare flexed.

As an Atlantic humic a ne drifts closer to land, it comes under surveillance by weather reconna issa nce a ircraft of the U.S. Air Force Reserve, the famous "Hurric a ne Trackers," who bump through the turbulent interiors of the stoms to obtain precise fixes on the position of the eye and measure winds and pressure fields. Despite the advent of satellites, the a irc raft probesare the most detailed quantitative information humic a ne forecasters receive. The humicanesare also probed by the "flying la bora tories" from NOAA's Airc raft Operations Center in Miami. Finally, the a pproaching storm comes within range of a radarnetwork stretching from Texas to Maine and from Miami to the Lesser Antilles. Increasingly, that network is dominated by Doppler radar, capable of giving precise position data as well as mea surements of wind speeds a nd rainfall.

Through the lifetime of the humicane, advisories from the National Humica ne Center give the stom's position and what the forecasters in Miami expect the stom to do. As the humicane drifts to within a day or two of its predicted landfall, these advisories begin to camy watch and waming messages, telling people when and where the huricane is expected to strike and what its effects are likely to be. The first humic a ne wa ming in the United States was flashed in 1873, when the Signal Corps wa med aga inst a stom approaching the coast between Cape May, New Jersey, and New London, Connecticut. Not until the stom has decayed over land and its cloudy elements and great cargo of moisture have blended with otherbrands of weather does the humic a ne emergency end.

This system works well. The death toll in the United States from humic a nes has dropped stea dily as NOAA's humic a ne tracking and wa ming apparatus has matured. Although the accuracy of humic ane forecasts has improved over the years, a ny significant improvements must come from quantum leaps in scientific understanding.

The forecasters also know that science will never provide a full solution to the problems of humicane safety. The rapid development of America's coastal a reas has placed millions of people with little or no humic ane experience in the path of these lethal stoms. For this vulnerable coastal population, the a nswer must be community preparedness and public education in the hope that education and planning before the fact will sa ve lives and lessen the impact of the huric a ne and what its effects are likely to be.

These diagrams show how huricane watches and wamings and other advisories change as a hypothetic al stom stalks Forida's northem gulf coast

First, note the extent of the hurricane. Its dangerous core of high water and high winds is much larger than any of the communities in its path. When it comes ashore, its worst effects will be felt along some 50 miles of shoreline, with potentially dangerous heavy weather along a reach of coast several hundred miles long.

Then, note that NOAA hurric ane forecasters "ovenwam"-that is, the areas covered by their watches and wamings are larger than the approaching stom. This reflects the state of the art of huric ane forecasting and the enomous complexity of predicting what a large, destructive, and inherently erratic weather system is going to do.

The huric ane waming area appears in the second panel. It generally covers a much smaller area than the huric ane watch. Beyond the waming area, peripheral gale wamings and small craft cautionary statements are distributed around the predicted path of the huricane.

In the third panel, the huric ane has moved ashore, and the watch and waming cycle ends; however, advisories continue to go out until the ocean and atmosphere behind the huric ane have had a chance to settle down.

The United States Hurricane Problem

The permanent populations of the huric a ne-prone coastal counties of the United States continue to grow at a rapid rate. When weekend, seasonal, and holiday populations are considered, the number of people on bamier islands, such as at Ocean City, Ma ryland; Gulf Shores, Alabama; and Padre Island, Texas, increase by ten- to one-hundredfold or more. Also, these areas are subject to inundation from the rapidly rising waters, known as the stom surge, associated with huric anes that generally result in catastrophic damage and potentially large losses of life. Over the past several years, the waming system has provided adequate time for the great majority of the people on barier islands and along the immediate coast to move inland when huric a nes have threatened. However, it is becoming more difficult each yearto evacuate people from these areas due to roadway systems that have not kept pace with the rapid population growth. This condition results in the requirement for longer and longer lead times for safe evacuation. Unfortunately, these extended forecasts suffer from increasing uncertainty. Furthermore, rates of improvements in forecast skills have been far outpaced by rates of population growth in areas vulnerable to humicanes.

The combination of the growing populations on bamier isla nds and other vulnerable locations and the uncertainties in the forecasts poses major dilemmas for forecasters and local and state emergency mana gement offic ials a like, i.e., how do you prevent complacency caused by "false alarms" and yet provide adequate waming times?

Preparations for huric a nes are expensive. When a huricane is forecast to move inland on a path nearly normal to the coast, the area placed underwaming is about 300 miles in length. The average cost of preparation, whether the huric ane strikes or not, is more than $\$ 50$ million for
the gulf coast. This estimate covers the cost of boarding up homes, closing down businesses and manufacturing plants, evacuating oil nigs, etc. It does not include economic losses due to disuption of commerce activities, such as sales, tourists canceling reservations, etc. In some locations, the loss for the LaborDay weekend alone can be a substantial portion of the yearly income of coastal business. An example of such losses were experienced along the Florida Panhandle during Huric ane Elena in 1985. If the width of the wamed area has to be increased by 20 percent because of greater unc erta inties in the forecast, the additional cost for each event would be $\$ 10$ million. If uncertainties in the huric a ne strength require waming for the next higher category of huric ane (Saffir/ Simpson Scale, Hebert, et al., 1993), then major increases in the number of people evacuated and preparation costs would be required. Of course, if these uncerta inties meant that major metropolitan areas, such as Galveston/ Houston, New Orleans, Tampa, Miami, or a number of other major coastal cities, would or would not be included in the waming area, the differences in preparation costs would be substantially more than the $\$ 10$ million. Also, the number of people evacuated would be substantially more than the tens of thousands of people.

For instance, in the case of the Galveston/Houston area, an increase in stom strength from a category 2 humicane to a category 3 humicane on the Saffir/Simpson Scale would require the evacuation of an additional 200,000 people. Likewise, if major industrial areas, such as Beaumont/Port Arthur, Texas, or tourist areas, such as Atlantic City, New Jersey, were affected by these uncertainties, the fina ncial impact would be quite large.

Economic factors receive serious
consideration from the National Hurric ane Center and local and state offic ials not only for direct but also for indirect effects on people response. People will not continually take expensive actions that, afterwards, prove to have been unnecessary. If we consistently overwam by wide margins, people will not respond, and such actionscould result in a large loss of life. To mainta in credibility with the general public, the National Huric ane Center and the local and state officials c a nnot treat all huric anes as if they were C a milles, Hugos, or Andrews. ${ }^{1}$ Such an exaggerated approach may indeed provide maximum protection of life for a given event, but it endangers many more lives the next time when the threat may be even greater.

Finally, the huricane problem is compounded by the fact that 80 to 90 percent of the people who now live in the huric ane-prone areas have never experienced the core of a majorhuric ane (Saffir/ Simpson Scale-category 3 or stronger, J arrell, et al., 1992). Many of these people have been through weaker huricanes or been brushed by the fringe of a major
huricane. The result is a false impression of the damage potential of these stoms. This frequently breeds complacency and delayed actions that could result in the loss of many lives. An example of the potential danger are those people living on barier islands who might be reluctant to evacuate under "blue sky" conditions ${ }^{2}$ until they see the actual threat (waters rising and winds increasing) (Simpson and Riehl, 1981). The result could be people trapped in those areas as waters cut off escape routes. This situation nearly happened for about 200 people on westem Galveston Island during Hurric ane Alicia in 1983.

This type of response primarily results from three majorfactors. First, major huric anes are infrequent events for any given location. Second, for the past three decades, major huric a nes striking the United Statescoast have been less frequent than for the previous decades (Figure 1).

[^3](a)

 ihurms the period 1041-1950.
(b)

Figure la.b
Figure f_{1} Mgor landining Linited suates humbanes (freater inan or equal to a vategoy s) dan met the periad 105 1-1960.

Figute 7. Major lantialing United States humisuct (grealer than of equal to a cateprory 3) dutime the perion 1961-1970.

 during the period 1971-1980.

Figure 1 e,f

The United States Hurricane Problem (Continued...)

Finally, it has been during this period of low humicane activity that the great majority of the present coastal residents moved to the coast. The results of these factors is illustrated in Figure 2. The right side of this figure shows that property damage has spiraled upward in tandem with coastal development. The large a mount of damage for the 1990's is prima rily the result of a $\$ 20-25$ billion loss caused by Humic a ne Andrew in 1992. The left side of Figure 2 shows the loss of life during this period.

This figure clearly demonstrates the improvement in the effectiveness of huric ane wa ming, forec ast, a nd response programssince the tum of the century. However, with the tremendous inc rease of populations in high-risk areas along our coastlines, the concem is that we may not fare as well in the future when huric a ne activity inevita bly retums to the frequencies experienced during the 1940s-60s.

DEATHS AND DAMAGE FROM HURRICANES

(BY DECADE $=1900 \mathrm{TO}$ 1992)

Fig. 2 - Loss of life and property in the continental United States due to huricanes from
1900 to 1992 (modification and update of Gentry 1974).

Anatomy of a Hurricane ${ }^{1}$

by Dr. Robert C. Sheets

Shortly after noon on September 12, 1988, Kingston, J amaica, lay under the eye of Huric ane Gilbert. The city had already endured the leading edge of the storm; but, sheltered by mountains to the north, it had not felt its full fury. Now as the relatively calm storm center moved off to the west and the wind direction shifted from the north to the south, G ilbert unleashed its full power.

Within minutes, violent winds were ripping the roofs off buildings, felling trees, and downing power and telephone lines. With communic ations knocked out, ham radio operators reported sustained wind speeds of 121 miles (195 kilometers) an hour and gusts to 147 miles (235 kilometers) an hour. At Manley Intemational Aiport, the wind tossed
a implanes about like so many plastic models. Debris flew everywhere. Surging tides flooded low-lying areas. Blowing spray and rain were so heavy that observers could not see more than a few feet beyond their windows.

As Gilbert pounded J amaica, offic ials of the National Huric ane Center in Coral Gables, Florida, pored overcomputer models and electronic displays to update their forecast of the stom's strength and direction. Calls went out to the areas directly in its path-the Cayman Istands, Cuba, Mexico. The Center's directorand huric ane specialists briefed the press on the stom's progress, fielding thousands of phone and direct television interviews.

After battering J amaica for 6 hours, the storm center moved off to the west. The toll: 45 dead, some 500,000 homeless, four-fifths of the island's houses damaged or destroyed, and roughly $\$ 2$ billion in damage. But Gilbert had only begun to flex its muscles. Before it was over, the huric ane would become the storm of the century with sustained winds of 185 miles (300 kilometers) an hour and gusts of over 200 miles (320 kilometers) an hour.

Bith of a Stom

As is the case with the majority (60 to 70 percent) of the huric anes that form in the North Atlantic from J une to Novembereach year (the offic ial huric ane season), Gilbert began as a cluster of clouds moving off the
northwest coast of Africa. The embryo of the stom-first observed by satellite on September3-wasassociated with a tropical wave: a wrinkle in the uniformly eastem flow of the trade winds. Over the next several days, the system moved westward across the Atlantic in the trade wind belt.

Then, on September 8, as it approached the Lesser Antilles, its showers and thunderstorms began to coalesce. Satellite pictures showed that the system had developed the counterclockwise, cyclonic circulation typic al of North Atlantic tropical storms. With wind speeds still under 39 miles (63 kilometers) an hour, it wasclassified as a tropical depression.

A humicane rotates a round an eye (facing page), its region of lowest pressure. To fill the low-pressure void, moist air rushes toward the eye, spiraling upward to create an eye wall (below). Once atop the eye, the air cools and descends back into the storm. Outside the eye, towers of warm moist air form updrafts that produce rainbands.

The process by which the system formed and subsequently strengthened depended on at least three conditions: warm surface waters, high humidity, and the ability to concentrate heat in the vertical. The latter factordepends on winds at all levels of the development system to be essentially from the same direction at the same speed. A stom like Gilbert begins to form when air is warmed by contact with the water (gaining sensible, or mea surable, heat) and is moistened by evaporation from it (gaining latent heat that will later be released through condensation). The need forthese conditions explains why huric anes form only in warm monthsover warm waters.

As the air warms, it nises, spiraling inward toward the center of the system. And the closerit gets to the center, the fasterit moves. The reason is partial conservation of angular
momentum-the same principle that causes a figure skater to spin slowly with a rms extended and to spin faster with a ms tucked in. The strong windscreated by the moving air produce turbulent seas, and huge amounts of spray become suspended in the air. The suspended spray, in tum, increases the rate of evaporation so that the stom beginsto feed on itself.

In a huric ane, the center is a relatively calm area, the eye. The most violent activity takes place in the area immediately around the eye, called the eyewall. There, as the spiraling air rises and cools, moisture condenses into tiny droplets, forming clouds and rainbands. The condensation releaseslatent heat, which causes the air to rise still farther, and that, in tum, results in more condensation. The result is a column of rapidly rising air that produces an intense low pressure area near the storm center.

At the top of the eyewall (about 50,000 feet, or 15,250 meters), most of the air is propelled outward in an antic yclonic flow. (Without this flow, the air's upward motion would be stifled, and pressure at the center of the storm would begin to rise.) However, some of the airmoves inward and sinks into the eye. This air is wa med rapidly by compression; and as it warms, its moisture-holding capacity increases and the air dries out. As a result, in intense huric anes, the eye becomes nearly cloud-free.

At the middle to upper levels of the storm, the temperature is much warmer in the eye than outside it. This temperature difference creates a large pressure differential across the eyewall, contributing to the violence of the storm. Huricane-force windscan produce waves 50 to 60 feet (15 to 18 meters) high in the open ocean. When the storm meets land, the combination of low pressure and high winds produces a dome of high water-the stom surge-that is pushed ashore and floods lowlying area.

Tracking Gilbert

By September 9, when the system that would become Gilbert came within range of reconnaissance aircraft, satellite pictures indic ated that the cloudswere rapidly becoming better organized. The aircraft (which are operated by the Air Force and the National Oceanic and Atmospheric Administration (NOAA) and fly directly into a storm's eye) soon found that wind speeds were over 39 miles (63 kilometers) an hour. The system therefore was designated tropic al storm G ilbert. (Each year, huric anes and tropical stoms are named in alphabetic al order from a list approved by the U.S. World Meteorologic al Organization [WMO].) It moved through the Lesser Antilles late that day.

G ilbert then strengthened rapidly. Late on September 10 with winds blowing at 74 to 95 miles (120 to 153 kilometers) an hour, it reached category 1 status on the Saffir/Simpson Scale, used to measure huricane strength. About 12 hours later, it attained category 2 status-with winds of 96 to 110 miles (154 to 177 kilometers) an hour-and took direct aim at the island of Jamaica.

At the National Huric ane Center in Coral Gables, several types of satellite images flowed into computers and electronic display systems and were filtered, enhanced, colorized, animated, and a nalyzed by the satellite meteorology staff. Cloud motions were used to estimate winds at various levels in the atmosphere a round the huric ane, while data from aircraft pinpointed the exact location of the storm and its strength and wind field distributions. Along with surface observations from land stations, ships and buoys, and weather
balloons throughout the region, this information was fed into computer models to determine the extent of the huricane, its changes with time, and expected storm surge heights and areas of inundation-information that would be used by local offic ials to determine what areas needed to be evacuated.

As the stom center passed south of the Dominic an republic, an electronic display of satellite pictures showed a massive, rotating cloud system that covered most of the eastem half of the Caribbean, with the huric ane'seye clearly visible. Based on the computer models, the National Hurric ane Centerforec ast that the center of G ilbert would pass directly over J a maica shortly after noon on September 12. J ohn Blake, director of the Jamaic an Meteorological Services, disc ussed the situation over a restricted telephone line with the director of the National Huric ane Center. By the early aftemoon of September 11, the "huric ane watch" issued early in the day for Jamaica (waming of the possibility of a huricane) was upgraded to a "huricane waming" (indic ating the probability of a huric ane within the next 12 to 24 hours).

With reports indic ating that G ilbert was rapidly gaining strength, J a maica prepared forthe onslaught of a majorhuric ane with winds in excess of 100 miles (160 kilometers) an hour. Residents in low-lying areas that might be covered by the storm surge, those in potential flash flood areas, and those in substandard housing were moved to places of refuge asfast as resources permitted.

The National Hurricane Center, meanwhile, in its capacity as the Regional Tropical Meteorological Center of the WMO, provided guidance and advice for countries throughout the region. Several phone calls were made to the meteorological servic es of Cuba and Mexico and to govemment officials in the Cayman Islands to discuss the stom's probable impact and the wording forwamings. Similar discussions were held with offic ials in south Florida and with other branches of the National Weather Service. Complete forec ast and waming packages were produced every 6 hours, with intermediate advisories at 3-hour intervals.

A Record Storm

G ilbert struckJ amaica as a category 3 huric ane-a stom with winds of 111 to 130 miles (178 to 209 kilometers) an hour-and continued to strengthened. It reached category 4 status-winds of 131 to 155 miles (210 to 249 kilometers) an hour-before its center passed about 20 miles (32 kilometers) south of Grand Cayman Islands at 9 a.m. on September 13. The maximum sustained surface winds near the storm center approached 140 miles (225 kilometers) an hour at this time.

Then, less than 2 hours after passing Grand Cayman, Gilbert became a rare category 5 humicane with winds in excess of 155 miles (250 kilometers) an hour. And by 6 p.m. on September 13, the stom atta ined the lowest sea-level pressure ever measured in the Westem Hemisphere: 26.22 inches (888 millibars) of mercury. (Pressure is considered the most accurate measure of stom strength, with lower pressure indicating a stronger stom.) It is likely that the huric ane reached a minimum pressure as low as 26.15 inches (885 to 886 millibars) of mercury between measurements taken by reconna issance aircraft.

By comparison, the lowest pressure measured in deadly Humic ane Camille of 1969 was 26.73 inches (905 millibars). The previous record was 26.34 inches (892 millibars) recorded in the violent but small 1935 Florida Keys huric a ne. Among factors cited ascontributing to Gilbert's strength were the facts that the stom strengthened over very warm waters and that its eye was much smaller than average, which had the effect of concentrating the humicane's energy.

Humicane strength, in general, is unrelated to overall size. However, very strong humicanes usually have relatively small eyes-less that 10 miles (16 kilometers) in diameter. But, in addition to its strength, Gilbert was huge. As the storm approached Mexico, satellite pictures showed that its circulation covered the entire westem half of the Caribbean, Central America, and the southeastem Gulf of Mexico.

The center of Huric ane Gilbert moved across the east coast of the Yucatan Peninsula near

Cozumel on the moming of September 14. It was the first landfall of a category 5 huric ane in the Westem Hemisphere in nearly 20 years. (The last occurrence was in 1969 with Huricane Camille.) Cancun and other resort areas were hit hard. At Cancun Beach, the 20-foot (6meter) stom surge picked up a Cuban freighter several miles offshore and tossed it a shore like a toy boat.

As the center moved inland over the large landmass of the peninsula, the source of energy forthe core-warm water-wascut off. The inner eyewall then weakened, nearly dissipating by the time the center had crossed the Yucatan. However, the tentacles of Gilbert reached well out over the Gulf of Mexico and the Caribbean, maintaining the huric ane's outer strength.

In fact, the stronger winds began spreading out over an even larger area than before until they covered large portions of the gulf ahead of the center. These strong winds stirred up the waters, bringing cool water from below to the surface. The effect of these cooler waters was to additionally reduce the energy that the storm would normally absorb. This helped limit the strength of the showers and thunderstoms at the stom's core.

In the nearly 2 days it took for the stom to move from Yucatan across the southwestem gulf to northem Mexico, the central pressure remained nearly constant. The inner eyewall never reformed and started to reappear only near landfall on the Mexic an coast. However, with the stom's strength spreading farther from the center, huric ane-force winds a nd high tides were felt along the lowerTexas coast, well away from the core.

Grand Cayman did record a maximum sustained wind of 137 miles (220 kilometers) an hour with a gust of 155 miles (250 kilometers) an hour, but these extreme conditions were not experienced for a prolonged time. The final factors that prevented more damage were that buildings were generally well constructed and that most structures were on the west end of the island. The cyclonic circulation primarily produced onshore winds on the north and east coasts, with much shorter periods of onshore
wind on the west and south coasts.
Timely and accurate wamings were also credited with keeping loss of life to a minimum. Frequent updates on the stom's progress were provided by the National Huric ane Center for the broadcast networks, local television and radio stations, and print media throughout the region. A Spanish-speaking meteorologist provided briefings for Hispanic stations. Several broadcasters produced extended public service programs and documentaries. And, more than 100,000 callers dialed the huric ane hotline number.

Finally, in spite of the damage Gilbert generated, the stom had a beneficial aspect. Asits remnants moved toward the northeast across the United States, it brought some muchneeded rain to the drought-stricken Midwest.

A Record Year

The 1988 Atlantic huricane season produced 11 named storms, 5 of which reached huric ane strength. The number of named stoms was slightly above the long-term average of nine to ten, and the number of huric anes was slightly below the average of six. However, 1988 will be remembered asa season of record-breaking huric anes.

In addition to G ilbert, Huric ane J oan broke intensity records. Joan was a category 4 huric a ne on the Saffir/Simpson Sc ale when it struck Nic aragua on October 22. There had never been a record of a huric ane of this intensity at so low a latitude in the westem Caribbean. Joan's minimum pressure at landfall near Bluefields, Nic aragua, was 27.46 inches (930 millibars), and the storm had sustained winds of nearly 135 miles (217 kilometers) an hour. J oan eamed anotherdistinction when it crossed Central Americ an from Atlantic to Pacific and was renamed Tropical Storm Miriam-a rare though not unprecedented event.

Joan and Gilbert combined to produce more than $\$ 5$ billion in damage and more than 500 deaths through the C aribbean, Central America, and Mexico. When a later huric ane, Helene, reached full strength, 1988 bec ame the first year since 1961 to experience three huric a nes with strengths of category 4 or more.

While Texas felt the fringe of giant Huricane G ilbert, the United States on the whole was not severely affected by the 1988 huricanes. Tropical Storms Beryl, Chris, and Keith, and Huricane Florence made landfall on the continental United States. Beryl and Florence struck in eastem Louisiana and Mississippi, while Chris moved inland nearthe Georgia-South Carolina border. Keith, a large late-season storm just below huric ane strength, affected most of the west coast of Florida and, later, central Florida and the east coast, north of Palm Beach. Total direct damage from these storms was estimated to be near $\$ 60$ million-an amount well below the annual average of more than $\$ 1$ billion over the past decade.

Gilbert's high winds blew aircraft around like toys at the Kingston, Jamaica, airport. By the time the storm reached the Texas coast, its strength had largely dissipated although it provided much needed rain.

Hurricane Warning Service

The history of the Weather Service over the past century would be bland indeed without a detailed account of the growth of the Nation's huric a ne wa ming service. Today, the huricane waming and forecast service stands as the finest of its kind in the world, distinguished by its character, credibility, and the confidence that our Nation has in it. But that wasn't always the case.

The Weather Bureau wascreated asa civilian agenc y in 1890 ma inly because of a general dissatisfaction with weather forecasting under the military. The huric ane of 1875 that destroyed India nola, Texas, without much waming was a contributing factor.

It was not until the Spa nish Americ an War of 1898 that an effort was made to establish a comprehensive huric ane waming service. President McKinley stated that he was more a fraid of a huric ane than he was of the Spanish Navy. He extended the waming service to include wa mings for shipping interests as well as the military. Before that, huric ane wa mings were only issued for the United Statescoastal areas. Huric ane waming stations were established throughout the West Indies. A forecast center was established in Kingston, Jamaica, and later moved to Havana, Cuba, in 1899. The waming service was extended to Mexico and Central America. This recognition of the intemational responsibility for the United States humic ane waming service continues today under the auspices of the World Meteorological Organization of the United Nations.

In 1900, the infamous Galveston hurric ane killed 6,000 people-the greatest natural disa ster in United States' history. There was no formal huric ane waming, and this calamity prompted the transfer of the waming service to Washington, DC, where it rema ined until 1935.

In the 1920's, there were several huric anes
that hit with little or no waming that led to dissatisfaction with the huric ane service out of Washington. The coastal communities felt that Washington was insensitive to the huric ane problem. In 1926, a very strong huric ane (category 4 by today's standard) brought great devastation to southeast Florida, including Miami a nd Ft. Lauderdale, causing more than 200 deaths. The wamings for that stom were issued at night when most residents were asleep and unaware of the rapidly approaching huricane. In 1928, another severe huric ane hit south Florida and killed an estimated 1,800 people who drowned when Lake Okeechobee overflowed. In 1933, the largest number of tropic al storms-21-developed. Nine of them were huricanes and two that affected the east coast of the United States, including Washington, were badly forecast and wamed. In 1934, a forecast and wa ming for an approaching hurric a ne in the very sensitive Galveston area was badly flubbed by Washington.

Those incidents led Congress and the President to revamp and decentralize the huric a ne waming service. Improvements included 24-hour operations with teletypewriter hook-up a long the gulf and Atlantic coasts; weather observations at 6 hourly intervals; huric ane adviso ries at least four times a day; and a more adequate upper air observing network. New huric ane forecast centers were established at J acksonville, Florida; New Orleans, Louisia na; San J uan, Puerto Rico; and Boston, Ma ssa chusetts (established in 1940).

In 1943, the primary huric ane forecast office at Jacksonville wasmoved to Miami where the Weather Bureau established a joint huric ane waming service with the Army Air Corps a nd the Na vy under the direction of Grady Norton. It was also in 1943 that Col. Joseph Duckworth made the first intentional plane reconnaissance into the eye of a huricane. The following
year, regular aircraft rec onnaissance was begun by the military giving huric a ne forecasters the location and intensity of the storms for the first time.

Grady Norton continued as head of the Mia mi Center until his death in 1954 during Huric ane Hazel that ravaged the east coast of the United States. Norton established a strong and popular reputation as an extra ordinary forecaster with the tremendous ability to communicate with residents a long the huric ane vulnerable coastlines. Gordon Dunn, who served as Norton's a ssistant in J a cksonville, was selected as Norton's suc cessor, and the Mia mi Office wasoffic ia lly designa ted as the National Huric ane Center in 1955.

In the 1950's, a number of huric anes in addition to Hazel struck the east coast, causing much damage and flooding. Congress responded with increased appropriationsto strengthen the waming service and intensify research into huric anes. The Weather Bureau organized the National Huric ane Research Project under the direction of Dr. Robert H. Simpson. The Air Force and the Navy provided the first aircraft to be used by the project to investigate the structure, characteristics, and movement of tropical storms.

In 1960, radars capable of "seeing" out to a distance of 200 to 250 miles from their coastal sites were established at strategic locations along the Atlantic and gulf coasts from Ma ine to Brownsville, Texas. On April 1, 1960, the first weather satellite was placed in orbit giving huric ane forec asters the ability to detect storms before they hit land.

Gordon Dunn retired in 1967 and was succeeded by Dr. Simpson, who placed a renewed emphasis on research and development activities at the Center through satellite applications and the development of statistic al and dynamic models as forecast aids. Dr. Simpson retired after the 1973 huric ane season and was succeeded by his Deputy, Dr. Neil Frank,
who served until 1987. Dr. Frank'stenure was marked by great emphasis on the need for huric ane preparedness along the huricane-prone communities in the United States as well as in the Caribbean. He and his staff created an increased national a wareness of the hurric ane threat through the cooperation of local and state emergency offic ials and the enlistment of the news media and other Federalagencies in the campaign to substitute education and awareness for the lack of first-hand experience among the ever-increasing coastal populations.

Dr. Robert Sheets is the current Director of the National Huric ane Center and at a time where the future holds even greater promise to improve the huric ane waming capability of the National Weather Service. New technology and advances in the science under the Weather Service's modemization program now underway will lead to improvement and more effective waming and forecasting of huric anes.

The next GOES series of satellites is expected to provide more accurate and higher resolution sounding data than presently available from geosynchronous satellites, and similar improvements can be expected from the polarorbit satellite systems.

Major improvements in longer range humicane forecasts ($36-72$ hours) will come through better quality and qua ntity of observations and improved dynamical models. Global, hemispheric, and regional models show considerable promise.

Present operational reconna issance aircraft provide invaluable data in the core of the huric ane. Doppler radarare now an integral part of the National Oceanic and Atmospheric Administration's research a irc raft operations providing entire data fields within several miles of the a irc raft's path.

NEXRAD (Next Generation Radar) will add new dimensions to huricane waming capabilities. They will provide much needed information on tropic al cyclone wind fields and their changes as they move inland. Local offices will be able to provide more accurate short-term wamings as rainbands, high winds, and possible tomadoes move toward specific inland locations. Heavy rains and flooding frequently occur over widespread inland areas.

Improved observing systems and a ntic ipated improvements in analysis, forecasting, and waming programs require effic ient accessing, processing, and a nalysis of large quantities of data from numerous sources. These data also provide the opportunity for improved numerical forecasts. The Class VII computer at the National Meteorologic al Center will permit operational implementation of next generation huric ane prediction models.

Products must be provided to users which optimize the desired response. AWIPS (Advanced Weather Interactive Processing System) will be the primary tool for accomplishing this task. Critic al huric a ne information needed by local, state, and other Federal a gencies, as well as the private sector, will be displayed graphic ally and transmitted to the user faster and more complete than ever before, making more effective waming and evacuation response.

The future of the Nation's splendid huric ane waming and forecast service is indeed brighter than ever before!

Sources for above:
'The National Huric ane Center-Past, Present, and Future" by Dr. Robert C. Sheets, Weather and Forec asting, J une 1990.
"A Brief History of the United States Huric ane Waming Service" by G.E. Dunn, 1971.

Hurricane Reconnaissance

Aerial weather rec onna issance is vitally important to the forecasters of the National Huricane Center. Reconnaissance aircraft penetrate to the core of the storm and provide detailed measurements of its wind field as well as accurate location of its center, information that is usually not a vailable from any other source. This information helps the meteorologist determine what is going on inside a storm as it actually happens. Aircraft data coupled with data from satellites, buoys, and land and ship reports, makes up an important part of the information available to the humic ane spec ialists for their forecast of speed, intensity, and direction of movement of the storm.

The National Huric a ne Center is supported by specially modified a ircraft of the U.S. Air Force Reserve (USAFR) and the National Oceanic and Atmospheric Administration's (NOAA) Airc raft Operations Center (AOC). The USAFR crews are known as the "Storm Trackers" and are part of the 815th Tactical Airlift Squadron which is based at Keesler Air Force Base near Biloxi, Mississippi. They fly the Lockheed WC-130 "Hercules," a fourengine turboprop aircraft which camies a crew of six people and can stay a loft for up to 14 hours. NOAA flies Lockheed WP-3 "Orions," a nother four-eng ine turboprop that caries a crew consisting of from seven to seventeen persons and can stay aloft for up to 12 hours. The NOAA/AOC aircraft and crews are based at Miami Intemational Aiport. Both units can be deployed as needed in the Atlantic, Caribbean, Gulf of Mexico, and the Central Pacific Ocean.

Meteorological information obtained from aerial reconna issance include winds, pressure, temperature, dew point temperature, and location of the stom center. A parachute-bome weather sensor
dropped from the plane measures the storm characteristic s below the aircraft. Data from the storm environment is a vailable as often as once every minute. This information provides a detailed look at the structure of the storm and a clear indic ation of its intensity.

Aerial weather reconnaissance in one of nature's most destructive forces is not without risk. In September 1955, a Navy P2V and its crew of nine plus two Canadian newsmen were lost in the Caribbean Sea while flying in Huricane J anet. Three Air Force aircraft have been lost flying in typhoons in the Pacific.

Flying into a huric ane is a unique experience. Weathercrew members who have flown combat missions say that their feelings before both missions were similar. There is a blend of excitement and apprehension. Adding to the tension is the knowledge that no two huric anes are alike. Some are gentle while others are like raging bulls. Preparations for flying into a huricane must be thorough. All crew members are highly trained specialists. Loose objects are tied down orstowed away, and crew members wearseat belts and safety hamesses. Once the aircraft's radarpicks up the storm, the crew determines the easiest way to get inside. In a well developed storm, this can be a difficult challenge. Winds at flight level often exceed 100 miles an hour, and the wall cloud surrounding the centercan be several miles thick. Rain often comes in torrents, and updrafts and downdrafts are usually strong a nd frequent. Inside the eye, however, the conditions are much different; many times the ocean is visible and there is blue sky and sunshine above. The flight level winds are nearly calm. Often the wall cloud presents a stadium
effect.
Both the WC-130 "Hercules" and the WP-3 "Orion" operate most efficiently at altitudes of 24,000 to 30,000 feet. Since most storms occur some distance from the aircraft's home station, the crew usually flies to the storm as high asthey can because this helps to conserve fuel. About 200 miles from the storm, the aircraft descends to its storm operating level. If the storm is in its infancy, such asa depression ortropical storm with winds less than 50 mph , then the crew operates asclose to the surface of the sea ascan be done safely-usually about 1,500 feet. If the storm is more fully developed, either a huric ane or a strong tropic al storm, then the a ircraft flies its pattem, including penetrations to the center at 10,000 feet altitude. A
typical mission will last from 10-12 hours during which time the crew will penetrate to the center of the stom anywhere from 3 to 6 times. When its mission is completed, the a irc raft will climb back to altitude for the trip home.

The job of tying the reconnaissance effort together rests with a small group of former Air Force people assigned to the Huric ane Center. This unit, under the Chief, Aerial Reconna issance Coordination, All Huric anes (known by the a cronym CARCAH), is responsible for coordinating requirements and arranging for supporting flights. Data relayed back to the Center by satellite downlink is checked for accuracy by CARCAH and then transmitted to the world-wide meteorological community through both military and civilian communications circuits.

Saffir/Simpson Hurricane Scale

All huric anes are dangerous, but some are more so than others. The way storm surge, wind, and other factors combine determines the huric ane's destructive power. To make comparisons easier-and to make the predicted hazards of approaching huric anes clearer to emergency forces-National Oceanic and
Atmospheric Administration's huric ane forecasters use a disaster-potential scale which assigns storms to
five categories. Category 1 is a minimum huricane; category 5 is the worst case. The criteria for each category are shown below.

This can be used to give an estimate of the potential property damage and flooding expected along the coast with a huricane.

Category Definition-Effects

ONE Winds $\mathbf{7 4 - 9 5} \mathbf{m p h}$: No real damage to building structures. Damage primarily to unanchored mobile homes, shrubbery, and trees. Also, some coastal road flooding and minor pierdamage.

RVE
Winds $\mathbf{9 6 - 1 1 0} \mathbf{~ m p h}$: Some roofing material, door, and window damage to buildings. Considerable damage to vegetation, mobile homes, and piers. Coastal and low-lying escape routes flood 2-4 hours before a mival of center. Small craft in unprotected anchorages break moorings.

Winds 111-130 mph: Some structural damage to small residences and utility build ings with a minor a mount of curta inwall failures. Mobile homes are destroyed. Flooding near the coast destroys sma ller structures with la rger struc tures damaged by floating debris. Terrain continuously lower than 5 feet ASL may be flooded inland 8 milesormore.

Winds 131-155 mph: More extensive curtainwall failures with some complete roof structure failure on small residences. Major erosion of beach areas. Major damage to lower floors of structures near the shore. Terra in continuously lower than 10 feet ASL may be flooded requiring massive evacuation of residential areas inland asfaras 6 miles.

Winds greater than $\mathbf{1 5 5} \mathbf{~ m p h}$: Complete roof fa ilure on many residences and industrial buildings. Some complete building failures with small utility buildings blown over oraway. Majordamage to lower floors of all structures located less than 15 feet ASL and within 500 yards of the shoreline. Massive evacuation of residential areason low ground within 5 to 10 miles of the shoreline may be required.

Click on the title for the tables listed below:

The Deadliest Mainland United States Huric anes (1900-1996)
The Costliest mainland United States Humic anes (1900-1996)
The Most Intense Mainland United States Huric anes (1900-1996)

Terms To Know

By intemational a greement, $\mathbb{\text { ROPICALCYCLONE }}$ is the general term for all cyc lone circ ulations originating over tropic al waters, classified by form and intensity as follows:

TROPICAL WAVE: A trough of low pressure in the trade-wind easterlies.

TROPICALDISTURBANCE: A moving area of thunderstorms in the Tropics that maintains its identity for 24 hours or more. A common phenomenon in the tropics.

TROPICALDEPRESSION: A tropic al cyclone in which the maximum sustained surface wind is 38 mph (33 knots) or less.

TROPICALSTORM: A tropic al cyclone in which the maximum sustained surface wind ranges from 39-73 mph (34-63 knots) inclusive.

HURRICANE: A tropic al cyclone in which maximum sustained surface wind is 74 mph (64 knots) orgreater.

SMAL CRAFTCAUIONARY STATEMENIS:

When a tropic al cyclone threatens a coastal a rea, small craft operators are advised to remain in port or not to venture into the open sea.

TROPICALSTORM WATCH: Is issued fora coastal area when there is the threat of tropic al storm conditions within 36 hours.

TROPICAL STORM WARNING: A waming for tropical storm conditions, including sustained winds within the range of 39 to 73 mph (34 to 63 knots) which are expected in a specified coastalarea within 24 hours or less.

HURRCANE WATCH: An announcement that huric ane conditions pose a possible threat to a specified coastal area within 36 hours.

HURRICANE WARNING: A waming that susta ined winds of 74 mph (64 knots) or higherare expected in a specified coastal area within 24 hours orless.

STORM SURGE: An abnomal nise of the sea along a shore asthe result, primarily, of the winds of a stom.

RASH RLOOD WATCH: Means that flash flood conditions are possible within the designated watch area-be alert.

RASH RLOOD WARNING: Meansa flash flood has been reported or is imminent-take immediate action.

Hurricane Safety Advice

Be Prepared BEFORE the Huric ane Season:
\checkmark Know the stom surge history and elevation of your area.
\checkmark Leam safe routes inland.
\checkmark Leam location of offic ial shelters.
\checkmark Review needsand working condition of emergency equipment, such as fla shlights, batterypowered radios, etc.
\checkmark Ensure that enough non-perishable food and water supplies are on hand to last for at least 2 weeks.
\checkmark Obtain and store materials, such asplywood and plastic, necessary to propenly secure your home.
\checkmark Check home for loose and clogged rain gutters and downspouts.
\checkmark Keep trees and shrubbery trimmed. Cut weak branches and trees that could fall or bump against the house. When trimming, try to create a channel through the foliage to the center of the tree to allow for airflow.
\checkmark Determine where to move your boat in an emergency.
\checkmark Review your insurance policy to ensure it provides adequate coverage.
\checkmark Individuals with special needs should contact their local office of emergency management.
\checkmark For information and assistance with a ny of the a bove, contact your local National Weather Service office, emergency management office, or American Red Cross chapter.

When a "Huricane WATCH" is issued:

\checkmark Frequently monitor radio, TV, NOAA Weather Radio, or hurric a ne hotline telephone numbers for offic ial bulletins of the storm's progress.
\checkmark Fuel and service fa mily vehicles.
\checkmark Inspect and secure mobile home tie downs.
\checkmark Prepare to coverall window and dooropenings with shutters or other shielding materials.
Check food and water supplies.

- Have clean, air-tight containers on hand to store at least 2 weeks of drinking water (14 gallons per person).
- Stock up on canned provisions.
- Get a camping stove with fuel.
- Keep a small c ooler with frozen gel packs
handy for packing refrigerated items. Check prescription medicines-obta in at least 10 days to 2 weeks supply.
\checkmark Stock up on extra batteries for radios, fla shlights, a nd lantems.
\checkmark Prepare to store and secure outdoorlawn fumiture and other loose, lightweight objects, such as garbage cans, garden tools, potted plants, etc.
\checkmark Check and replenish first-aid supplies.
\checkmark Have on hand an extra supply of cash.

When a "Humicane WARNING" is issued:

C losely monitor radio, TV, NOAA Weather Radio, or hurric a ne hotline telephone numbers for official bulletins.
\checkmark Follow instructions issued by local officials. Leave immediately if ordered to do so.
\checkmark Complete preparation activities, such as putting up storm shutters, storing loose objects, etc.
\checkmark Evacuate areas that might be affected by stom surge flooding.
\checkmark If evacuating, leave early (if possible, in daylight).
\checkmark Leave mobile homes in any case.
\checkmark Notify neighbors and a family member outside of the wamed area of your evacuation plans.

If Evacuating:

Plan to evacuate if you...

- live in a mobile home. Do not stay in a mobile home under any circumstances. They are unsafe in high wind and/or humic ane conditions, no matter how well fastened to the ground.
- live on the coastline or on an offshore isla nd, or live neara river orin a flood plain.
- live in a high-rise. Humic ane windsare stronger at higher elevations. Glass doors and windows may be blown out of their casings and weaken the structure.
\checkmark Stay with friends or relatives or at a low-rise inland hotel or motel outside of flood zones. Leave early to avoid heavy traffic, roads blocked by early flood waters, and bridges impassible due to high winds.
Put food and water out for pet if you cannot take
it with you. Public shelters do not allow pets nor do most motels/hotels.
\checkmark Huric a ne shelters will be available for people who have no other place to go. Shelters may be crowded and uncomfortable, with no privacy and no electricity. Do not leave your home for a shelter until govemment offic ials announce on radio and/or television that a partic ular shelter is open.

What to bring to a shelter: first-a id kit; medic ine; baby food and diapers; cards, games, books; toiletries; battery-powered radio; fla shlight (per person); extra batteries; blankets or sleeping bags; identification, valuable papers (insurance), and cash.

If Staying in a Home:

Reminder! Only stay in a home if you have not been ordered to leave. If you ARE told to leave, do so immediately.

Store water:

- Fill sterilized jugs and bottles with water for a 2-week supply of drinking water.
- Fill bathtub and large conta iners with water for sa nitary purposes.
Tum refrigeratorto maximum cold and open only when necessary.
\checkmark Tum off utilities if told to do so by authorities.
\checkmark Tum off propane tanks.
Unplug small appliances.

Stay inside a well constructed building. In structures, such as a home, examine the building and plan in advance what you will do if winds become strong. Strong winds can produce deadly missiles and structural failure. If winds become strong:

- Stay away from windows and doors even if they are covered. Take refuge in small interior room, closet, or hallway. Take a batterypowered radio, a NOAA Weather Radio, and a flashlight with you to your place of refuge.
- Close all interior doors. Secure and brace extemal doors, partic ularly double inward opening doors and garage doors.
- If you are in a two-story house, go to an interior first-floor room or basement, such as a bathroom, closet, or under the stairs.
- If you are in a multiple-story building and away from the water, go to the first or sec ond floors and take refuge in the halls or other interior rooms away from windows. Interior stainwells

Be alert for tomadoes which often are spawned by huricanes.

If the "EYE" of the huric ane should pass over your area, be aware that the improved weather conditions are temporary and that the storm conditions will retum with winds coming from the opposite direction sometimes in a period of just a few minutes.

AFIER the storm passes:

Stay in your protected area until a nnouncements are made on the radio ortelevision that the dangerous winds have passed.
\checkmark If you have evacuated, do not retum home until officials announce your area is ready. Remember, proof of residency may be required in orderto re-enterevacuation areas.
If your home or building has structural da mage, do not enter until it is checked by offic ials. Avoid using candles and other open flames indoors. Beware of outdoor hazards:

- Avoid downed power lines and any waterin which they may be lying.
- Be alert for poisonous snakes, often driven from their dens by high water.
- Beware of weakened bridges and washed out roads.
- Watch for weakened limbs on trees and/or damaged overhanging structures.
Do not use the telephone unless absolutely necessary. The system usually is ja mmed with calls during and after a huric ane.
, Guard against spoiled food. Use dry or canned food. Do not drink orprepare food with tap water until you are certain it is not conta minated.
When cutting up fallen trees, use caution, especially if you use a chain saw. Serious injuries can occur when these powerful machines snap back or when the chain breaks.

The Naming of Hurricanes

For several hundred years, many huric anes in the West Indies were named after the particular saint's day on which the huric ane occurred. Ivan R. Tannehill describes in his book "HURRICANES," the major tropical storms of recorded history and mentions many huric anes named after saints. For example, there was "Huricane Santa Ana" which struck Puerto Rico with exceptional violence on July 26, 1825, and "San Felipe" (the first) and "San Felipe" (the second) which hit Puerto Rico on September 13 in both 1876 and 1928.

Ta nnehill also tells of Clement Wragge, an Australian meteorologist, who began giving women's namesto tropical storms before the end of the 19th Century.

An early example of the use of a woman's name for a stom was in the novel "STORM" by George R. Stewart, published by Random House in 1941 and since filmed by Walt Disney. During World Warll, this practice became widespread in weathermap discussions among forec asters, especially Air Force and Navy meteorologists who plotted the movement of storms over the wide expanses of the Pacific Ocean.

In 1953, the United States abandoned as confusing a 3 -yearold plan to name storms by phonetic alphabet (Able, Baker, Charlie) when a new, intemational phonetic alphabet was introduced. That year, this Nation's weather services began using female namesforstorms.

The practice of naming huric anes solely after women came to an end in 1978 when men's and women's names were included in eastem North Pac ific storm lists. In 1979, male and female names were included in lists for the Atlantic, Caribbean, and Gulf of Mexico.

Experience shows that the use of short, distinctive names in written, as well as in spoken communic ations, is quic ker and less subject to error than the oldermore cumbersome latitude-longitude identification methods. These advantages are especially important in exchanging detailed stom information between hundreds of widely sc attered stations, a ipports, c oastal bases, and ships at sea.

The use of easily remembered names greatly reducesconfusion when two ormore tropical cyclones oc cur at the same time. For example, one huric ane can be moving slowly westward in the Gulf of Mexico, while at exactly the same time a nother huric ane can be moving rapidly northward along the Atlantic coast. In the past, confusion and false rumors have arisen when storm advisories broadcast from one radio station were mistaken for wa mings conceming an entirely different stom located hundreds of milesaway.

[^0]: Cover: Huric ane Andrew. The NOAA spacecraft GOES routinely provides imagery every 30 minutes, day and night, using visible and infrared sensors. At an altitude of about 22,300 miles, the satellite orbits above the same point on the Equator. This satellite provides full disk ima ges and a variety of images of sections of the full disk which are

[^1]: ${ }^{1}$ All dollar figures have been adjusted to 1990 dollars based on U.S. Department of Commerce composite construction cost indexes.

[^2]: ${ }^{1} \mathrm{~A}$ knot is one nautic al mile per hour; a nautic al mile is about 1.15 statute miles.
 ${ }^{2}$ Weathermapsshow atmospheric pressure in millibars, units equal to a thousandth of a bar. The bar is a unit of pressure equal to 29.53 inches of mercury in the English system; and to one million dynesper square centimeters in the metric system.

[^3]: ${ }^{1}$ Huricane Camille (1969), Hugo (1989), and Andrew (1992) were the most intense huric anes to make landfall in the United States during the past three decades.
 ${ }^{2}$ Such an evacuation is presently required because of large populations with limited egress means.

