

Highlights from STAR

Kai Schweda Lawrence Berkeley National Laboratory for the STAR Collaboration

Physics Goals

Identify and study the properties of matter with partonic degrees of freedom:

- nuclear effects at intermediate and high $p_{\rm T}$ initial conditions parton energy loss due to interaction in dense matter

bulk properties collision dynamics collective motion with partonic degrees of freedom partonic equation of state

Outline

- 1) Introduction
- 2) Ultra peripheral collisions
- 3) Results from intermediate and high p_t (above 2GeV/c)
 - suppression of particle yields
 - jet-like correlations
- 4) Results of bulk properties
 - azimuthal anisotropy
 - particle distributions and yields
- 5) Open charm measurements in d + Au
- 6) Summary

The STAR Detector

QM '04, Oakland, Jan 11 - 17, 2004

$\underbrace{ \text{Ultra Peripheral Collisions in STAR} }_{\text{STAR}} \\ \underbrace{ \text{Ultra Peripheral Collisions in STAR} }_{\text{Interference in Au + Au } Au } \\ \underbrace{ \text{Ultra Peripheral Collisions in STAR} }_{\text{STAR}} \\ \underbrace{ \text{Ultra Peripheral Collisions in STAR} _{\text{STAR}} _{\text{STAR}} \\ \underbrace{ \text{Ultra Peripheral Collisions in STAR} _{\text{STAR}} \\ \underbrace{ \text{Ultra Peripheral Collisions in STAR} _{\text{$

d+Au at High-pt

J. Adams et al., Phys. Rev. Lett. 91, 072304 (2003).

Triggered Correlation Studies

STAR Triggered Correlation Studies

STAR Triggered Correlation Studies

STAR Triggered Correlation Studies

See talk by F. Wang, P1 Fri and A.H. Tang P3 Thu..

Triggered Correlation Studies

Two-Particle p_t Correlations

Au+Au @200GeV, 20 – 30% central, $|\eta| < 1$ Dipole and quadrupole terms removed. Observation, with centrality $p_t = 0.15 - 2.00 \text{ GeV/c}$

Suppression of away/sameside amplitude ratio

□ Elongation of same-side peak on η_{Δ} (possibly related to longitudinal expansion)

□ Narrowing of same-side peak on ϕ_{Δ}

More on correlations from STAR:

See talk by G. Westfall, P4 Fluctuation and Corr. Fri; See posters by J.G. Cramer, M. Kopytine, J. Porter.

QM '04, Oakland, Jan 11, Prindle, C. Pruneau, J. Putschke, R.L. Ray; Kai Schweda

STAR

□ p+pbar/h enhancement in Au + Au not fully explained by Cronin effect

□ Strong baryon/meson modification in Au + Au also in Λ/K_s^0 ratio

See talks by L. Ruan, P2 Thu, L. Barnby, P1 Thu, M. A.C. Lamont, P1 Thu.

STAR

Multi-Strange Baryons v₂

Quark Coalescence

See talks by A. Poskanzer and A. Tang, P3 Thu; see poster by M. Oldenburg Flow2.

See talks by A. Poskanzer and A. Tang, P3 Thu; see poster by M. Oldenburg Flow2.

Particle Yields and Ratios

QM '04, Oakland, Jan 11 – 17, 2004

Strangeness Production

□ d-Au shows same suppression for Λ as p-p □ Ξ and Ω do not show N_{part}-scaling in Au-Au

HBT versus Reaction Plane

- HBT versus reaction-plane
 - geometrical analog of v₂
 - $R(\Phi)$ reveals anisotropic source
 - probe of dynamical evolution

Strong radial flow*

•HBT R(m_T): flow-induced **x-p** correlations •extensive systematics

•non-identical particle correlations: shift in emission points

See talk by A. Kisiel, P3 Thu and posters by S. Bekele HBT9, J. Cramer Cor19, T. Gutierrez HBT6.

First D Measurement at RHIC

See talk by A. Tai, Plenary Wed 12:20.

Kai Schweda

1.9

1.95

2 mass (GeV/c²)

1.75

1.8

1.85

Kπ Inv. Mass (GeV/c

m(Kππ)-m(Kπ) (GeV/c²)

2.05

STAR

See talk by A. Tai, Plenary Wed 12:20.

Summary

 \Box High p_t \rightarrow consistent with jet quenching scenario

□ v_2 , $R_{AB} \rightarrow$ quark coalescence seems to work → partonic collectivity ?

❑ Bulk properties → hadronic re-scatterings → evidence of collectivity

- θ R_{AA} of particles carrying heavy flavor (c,b)
- θ Measure centrality dependence of spectra and v₂ of d, ρ⁰, φ, Ξ, Ω, ..., D⁰, D_s, Λ_c, J/ψ
- quantify partonic collectivity
- probe partonic eos

Talks:		
A. Tai	STAR measurements of open charm production in dAu collisions at 200 GeV	Plenary, Wed 12:20
L. Barnby	Production of f, K ⁰ _s and L and R _{dAu} from d+Au	P1 Hadron Spectra Thu
J. Castillo	Elliptic flow of multi-strange baryons X and W in Au+Au	P3 Collective Flow Thu
T.W. Henry	Jet Distributions in d+Au and p+p Collisions at STAR	P1 High Pt Jets Frii
A. Kisiel	Non-identical particle correlations at 130 and 200 GeV	P3 HBT Tue
M.A.C. Lamont	Identified particle ratios at large transverse momentum at 200 GeV	P1 High Pt Tue
C. Markert	Strange Baryon Resonance Production in p+p, d+Au and Au+Au	P2 Strangeness Spectra Fri
A. Poskanzer	Azimuthal Anisotropy: the higher harmonics	P3 Collective Flow Thu
L. Ruan	Open charm product'n and Cronin of leptons and id'ed hadrons in d+Au, p+p	P2 Heavy Quark Thu
A. Suaide	Inclusive electron distributions in dAu and pp collisions at RHIC	P2 Heavy Quark Thu
A.H. Tang	Directed and Elliptic Flow in Au+Au and azimuthal correlations in p+p and d+A	u P3 Collective Flow Thu
F. Wang	Measurement of Jet Fragmentation at RHIC	P1 High Pt Jets Fri
G. Westfall	Correlations and Fluctuations in STAR	P4 Fluctuation and Corr. Fri

Posters:

O. Barannikova, J.E. Gonzalez, S. Huang, J. Ma, C. Mironov, L. Molnar, H. Zhang	Spectra 3,11,25,26,31,35,38
M. Heinz and J. Adams, H. Long, M.G. Munhoz and J. Takahashi, S. Salur, F. Simon, R. Witt	Strange 1 – 4,13,16
S. Bekele, T.D. Gutierrez, S.R. Klein	HBT 6,9,10
S. Chattopadhyay, Y. Guo	High Pt 25,32
J.G. Cramer, M. Kopytine, J. Porter, D. Prindle, C. Pruneau, J. Putschke, R.L. Ray	Corr. 5 – 9,19,22,26
M. Oldenburg, P. Sorensen	Flow 2,13
M. Moura	Electro 1
D. Arkhipkin, X. Dong, M. Oldenburg, A. Rose	Instr.11,24, 25, 28