
VisualAge C++ Professional for AIX

Programming Tasks and Library Reference
Version 6.0

SC09-4963-00

���

Edition Notice (June, 2002)

This edition applies to Version 6.0 of IBM VisualAge C++ Professional for AIX (5675–F56) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright International Business Machines Corporation 1998, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page vii.

Contents

Notices vii
Programming Interface Information ix
Trademarks and Service Marks ix
Industry Standards x

About This Book. xi

Chapter 1. Program Stream I/O 1
Stream Processing 1
Standard Streams 1
Redirect Standard Streams 2
File Handles for Standard Streams 3
I/O Buffering 3
Considerations for Programming Stream I/O . . . 4

Chapter 2. Data Mapping and Storage . . 7
Format of Double-Byte Character Data. 7
Format of Eight-Byte Floating Point Data 7
Format of Four-Byte Integer Data 8
Format of Single-Byte Character Data 8
Data Mapping 8
Mapping of Fundamental Data Types 9
Mapping of Compound Data Types. 9
MacIntosh and Twobyte Alignment Rules 10
Alignment Rules for Nested Aggregates 12
Packed Alignment Rules 13
RISC System/6000 Alignment Rules 14
Storage of float and double Types 15
Storage of int, long, and short Types 16

Chapter 3. Signals and Exception
Handling 19
Choose Signal Handlers 19
Signal Handling 19
Signals 20
Program Signal Handling. 20
Signal Handling Considerations 21
Example of Using Volatile Variables 22

Chapter 4. Using Memory Heaps. . . . 25
Memory Management Functions 25
Managing Memory with Multiple Heaps 27
Types of Memory 29
Debugging Memory Heaps 29
Create and Use a Fixed Size Heap 31
Create and Use an Expandable Heap 33
Debug Programs with Heap Memory. 36
Change the Default Heap Used in a Program . . . 37
Example of Creating and Using a User Heap . . . 38
Example of Creating and Using a Shared-Memory
User Heap. 39

Chapter 5. Program Optimization . . . 45
Overview of Optimization 45

Optimization Techniques Used by VisualAge C++ 46
Enhanced Handling of Math and String Library
Functions 48
Find Faster I/O Techniques 48
Optimize Your Application 49
Reduce Function-Call Overhead 50
Coding Techniques That Can Improve Performance 51
Memory Management and Performance 53
Mixed-Mode Arithmetic 53
Expressions 53
Variables and Optimization 54
Optimize String Manipulation 55

Chapter 6. Floating Point Operations 57
Floating Point Hardware 57
Compile-Time Floating-Point Arithmetic 58
Rounding Mode Restrictions. 59

Chapter 7. USL Input/Output Stream
Classes 61
USL I/O Streaming 61
The USL I/O Stream Class Hierarchy. 62
USL I/O Stream Header Files 63
Open a File for Input and Read from the File . . . 66
Open a File for Output and Write to the File . . . 67
Manipulate Strings with the strstream Classes . . . 68
Stream Buffers 70
Format State Flags 71
Manipulators 71
Thread Safety and USL I/O Streaming 72
Create Manipulators 74

Define an APP Parameterized Manipulator . . . 74
Define a MANIP Parameterized Manipulator . . 75
Define Nonassociative Parameterized
Manipulators 76

Chapter 8. USL Complex Math Classes 77
Complex Mathematics Library Overview 77
Review of Complex Numbers 77
Header Files and Constants for the complex and
c_exception Classes 78
Mathematical Operators for complex 79
Friend Functions for complex 80
Input and Output Operators for complex 81
Error Functions 81
Construct complex Objects 82

Use complex Input and Output Operators . . . 82
Use Friend Functions with complex 84

Handle complex Mathematics Errors. 86
Example: Calculate Roots 88
Example: Use Equality and Inequality Operators . . 90

Chapter 9. Other Utilities 93
c++filt Name Demangling Utility 93

© Copyright IBM Corp. 1998, 2002 iii

CreateExportList Command 96
linkxlC Command 96
Constructing a Library 96

makeC++SharedLib Command 100
Initialize Shared Library 102
Specify Priority Levels for Library Objects . . . 103
Example of Object Initialization in a Group of
Files 104

loadAndInit Routine 105
Format 105
Description 105
Parameters 105
Return Values 106

terminateAndUnload Routine 106
Format 106
Description 106
Parameters 107
Return Values 107
Error Codes 107

_makepath — Create Path 107
_splitpath — Decompose Path Name 109

Appendix. Non-ISO USL Classes . . . 111
complex 111

complex - Hierarchy List 111
complex - Member Functions and Data by
Group 111
complex - Associated Globals 113
complex - Inherited Member Functions and Data 118

c_exception 118
c_exception - Hierarchy List 118
c_exception - Member Functions and Data by
Group 119
c_exception - Associated Globals 120
c_exception - Inherited Member Functions and
Data 122

filebuf 122
filebuf - Hierarchy List 122
filebuf - Member Functions and Data by Group 122
filebuf - Inherited Member Functions and Data 128

fstream 128
fstream - Hierarchy List 129
fstream - Member Functions and Data by Group 129
fstream - Inherited Member Functions and Data 132

fstreambase 133
fstreambase - Hierarchy List 133
fstreambase - Member Functions and Data by
Group 133
fstreambase - Inherited Member Functions and
Data 137

ifstream 138
ifstream - Hierarchy List. 138
ifstream - Member Functions and Data by
Group 138
ifstream - Inherited Member Functions and Data 142

ios 143
ios - Hierarchy List 143
ios - Member Functions and Data by Group . . 143
ios - Enumerations 151
ios - Inherited Member Functions and Data . . 152

iostream 153

iostream - Hierarchy List 153
iostream - Member Functions and Data by
Group 153
iostream - Inherited Member Functions and
Data 157

iostream_withassign 158
iostream_withassign - Hierarchy List 158
iostream_withassign - Member Functions and
Data by Group 158
iostream_withassign - Inherited Member
Functions and Data 163

istream 164
istream - Hierarchy List 164
istream - Member Functions and Data by Group 165
istream - Inherited Member Functions and Data 188

istream_withassign 188
istream_withassign - Hierarchy List 188
istream_withassign - Member Functions and
Data by Group 188
istream_withassign - Inherited Member
Functions and Data 193

istrstream 194
istrstream - Hierarchy List 194
istrstream - Member Functions and Data by
Group 194
istrstream - Inherited Member Functions and
Data 199

ofstream 200
ofstream - Hierarchy List 200
ofstream - Member Functions and Data by
Group 200
ofstream - Inherited Member Functions and
Data 204

ostream 205
ostream - Hierarchy List 205
ostream - Member Functions and Data by
Group 205
ostream - Inherited Member Functions and Data 218

ostream_withassign 218
ostream_withassign - Hierarchy List 218
ostream_withassign - Member Functions and
Data by Group 219
ostream_withassign - Inherited Member
Functions and Data 222

ostrstream 223
ostrstream - Hierarchy List 223
ostrstream - Member Functions and Data by
Group 223
ostrstream - Inherited Member Functions and
Data 228

stdiobuf 228
stdiobuf - Hierarchy List 228
stdiobuf - Member Functions and Data by
Group 228
stdiobuf - Inherited Member Functions and Data 231

stdiostream 231
stdiostream - Hierarchy List 231
stdiostream - Member Functions and Data by
Group 232
stdiostream - Inherited Member Functions and
Data 234

iv Programmer’s Guide

streambuf 234
streambuf - Hierarchy List 235
streambuf - Member Functions and Data by
Group 235
streambuf - Inherited Member Functions and
Data 247

strstream 248
strstream - Hierarchy List 248
strstream - Member Functions and Data by
Group 248
strstream - Inherited Member Functions and
Data 252

strstreambase 253
strstreambase - Hierarchy List 253
strstreambase - Member Functions and Data by
Group 253
strstreambase - Inherited Member Functions and
Data 255

strstreambuf 256
strstreambuf - Hierarchy List 256
strstreambuf - Member Functions and Data by
Group 256
strstreambuf - Inherited Member Functions and
Data 263

Appendix. MEMDBG Library
Functions 265

_debug_calloc — Allocate and Initialize Memory 265
_debug_free — Free Allocated Memory. 266
_debug_heapmin — Free Unused Memory in the
Default Heap 268
_debug_malloc — Allocate Memory 269
_debug_memcpy — Copy Bytes 271
_debug_memmove — Copy Bytes 273
_debug_memset — Set Bytes to Value 274
_debug_realloc — Reallocate Memory Block . . . 276
_debug_strcat — Concatenate Strings 278
_debug_strcpy — Copy Strings 279
_debug_strnset — Set Characters in String. . . . 281
_debug_strncat — Concatenate Strings 282
_debug_strncpy — Copy Strings 284
_debug_strset — Set Characters in String 285
_debug_ucalloc — Reserve and Initialize Memory
from User Heap 287
_debug_uheapmin — Free Unused Memory in
User Heap 289
_debug_umalloc — Reserve Memory Blocks from
User Heap 290

Contacting IBM 293
Comments on This Help. 293
Fee Support 293
Consulting Services 294

Contents v

vi Programmer’s Guide

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2002 vii

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2002. All rights reserved.

viii Programmer’s Guide

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
iSeries
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Notices ix

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 6.0 supports the following standards:
v The C language is consistent with the International Standard for Information

Systems-Programming Language C (ANSI/ISO-IEC 9899–1999(E)).
v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

x Programmer’s Guide

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2002 xi

xii Programmer’s Guide

Chapter 1. Program Stream I/O

Stream Processing
Input and output are mapped into logical data streams, either text or binary.
Streams present a consistent view of file contents, independent of the underlying
file system. VisualAge C++provides I/O buffering to increase the efficiency of
system level I/O.

Text Streams
Text streams contain printable characters and control characters.

There may not be an exact correspondence between the characters in a stream and
the output. The VisualAge C++compiler may add, alter, or ignore some new-line
characters during input or output so that they conform to the conventions for
representing text in the operating system environment. Printable characters are not
changed.

On output, each new-line character is translated into a carriage-return character,
followed by a line-feed character. On input, a line-feed character or a
carriage-return character followed by a line-feed character is converted to a
new-line character.

Binary Streams A binary stream is a sequence of characters or data. The data is
not altered on input or output.

The Ctrl-Z character is treated like any other character and does not indicate
end-of-file.

Standard Streams (page 1)

Redirect Standard Streams (page 2)

File Handles for Standard Streams (page 3)
I/O Buffering (page 3)

Standard Streams
VisualAge C++supports the C standard streams and C++ iostreams.

C Standard Streams
Any program that includes the header stdio.h can use the C standard streams for
I/O. The following streams are automatically set up by the run-time environment:
v stdin

The input device from which your application normally retrieves its data. For
example, the library function getchar uses stdin.

v stdout
The output device to which your application normally directs its output. For
example, the library function printf uses stdout.

© Copyright IBM Corp. 1998, 2002 1

v stderr
The output device to which your application directs its diagnostic messages.

C++ iostreams
VisualAge C++provides 2 versions of the C++ iostreams:

v Streams as implemented in previous versions of VisualAge C++. These streams
will be used by C++ source files which #include any of the following header
files:
<fstream.h>, <iomanip.h>, <stdiostr.h>, <stream.h>, and <strstream.h>.
The functions declared in these files are not reentrant.

v The input/output library component of the ISO Standard C++ Library. These
streams will be used by C++ source files which #include any of the following
header files:
<fstream>, <iomanip>, <ios>, <iosfwd>, <iostream>, <istream>, <ostream>,
<sstream>, <streambuf>, and <strstream>.

The input streams are istream and wistream objects. The output streams
have type ostream and wostream. The names of the wide character streams and
classes start with a “w”. The iostream standard stream objects are:
v cin and wcin

The standard narrow- and wide- character input streams.
v cout and wcout

The standard narrow- and wide- character output streams.
v cerr and wcerr

The standard error streams. Output to these streams is unit-buffered. Characters
sent to these streams are flushed after each insertion operation.

v
clog and wclog
Additional standard error streams. Output to these streams is fully buffered.

Stream Processing (page 1)

Redirect Standard Streams (page 2)

I/O Buffering (page 3)
File Handles for Standard Streams (page 3)

Redirect Standard Streams
By default, the standard streams read from the keyboard and write to the screen.
When you launch a program from the operating system GUI, or want input and
output operations on these streams to read from and write to files, you can redirect
the standard streams.

There are two ways to do this:
v From Within an Application

To redirect C standard streams to a file from within your application, use the

2 Programmer’s Guide

freopen library function. For example, to send your output to a file called
pia.out instead of sending it to stdout, code the following statement in your
program:
freopen(“pia.out”, “w”, stdout);

v From the Command Line
To redirect C or C++ standard streams to a file from the command line, use the
standard redirection symbols > and < with the file handles for standard streams.
For example, to run the program bill.exe, which has two required parameters
XYZ and 123, and redirect the output from stdout to a file called bill.out, use the
following command:
bill XYZ 123 > bill.out

You can also use the file handles to redirect one standard stream to another. For
example, to redirect stderr to stdout, use the command:
2 > &1

Stream Processing (page 1)
Standard Streams (page 1)

File Handles for Standard Streams (page 3)

File Handles for Standard Streams
The operating system associates a file handle with each of the streams as follows:

File Handle C Stream C++ Stream

0 stdin cin and wcin

1 stdout cout and wcout

2 stderr cerr, clog, wcerr, and wclog

The file handle and stream are not equivalent. There may be situations where a file
handle is associated with a different stream. For example, file handle 2 may be
associated with a stream other than stderr, cerr, or clog.

Stream Processing (page 1)
Standard Streams (page 1)

Considerations for Programming Stream I/O (page 4)
Redirect Standard Streams (page 2)

I/O Buffering
VisualAge C++ buffers stream I/O to increase the efficiency of system-level I/O.
The following buffering modes are used:

Unbuffered
Characters are transmitted as soon as possible. This mode is also called
unit buffered.

Chapter 1. Program Stream I/O 3

Line buffered
Characters are transmitted as a block when a new-line character is
encountered or when the buffer is filled.

Fully buffered
Characters are transmitted as a block when the buffer is filled.

The buffering mode specifies the manner in which the buffer is flushed, if a buffer
exists. Streams are fully buffered by default unless they are connected to a
character device such as the keyboard or an operating system pipe. Streams for
character devices are line buffered.

Standard iostreams cerr, and wcerr are unbuffered, but clog and wclog are
fully buffered.

Your programs should take advantage of buffering to increase the efficiency of
system-level I/O. To ensure your output appears in the expected order and is
complete, you may have to control the buffering explicitly. Programs that use C
stream I/O can control buffering in the following ways:
v Call the fflush function to clear the buffer. If the last operation on the stream is a

read operation, fflush discards the unread portion of the buffer. If the last
operation on the stream is a write operation, fflush writes out the contents of the
buffer.

v Call the fclose function to flush the buffer for a file and then close it.

If your program terminates normally, VisualAge C++ automatically closes all files
and flushes all buffers. When a program ends abnormally, all files are closed but
the buffers are not flushed.

You can change the buffering mode of a stream from within your code. You must
do this before performing any operation on the file.

To ensure data is transmitted to external storage as soon as possible, use the
setvbuf or setbuf function to set the buffering mode to unbuffered. Call these
functions after the file is open and before performing read or write operations on
the file. You can also use setvbuf and setbuf to control buffering in other ways;
setvbuf is the more flexible of the two functions.

The default buffer size is 4096 bytes. To specify a different initial size for the buffer
allocated for the stream, set the blksize parameter of the fopen function when you
open the stream.

Disk caching performed by the operating system can also affect the time when
characters are actually transferred to and from a physical disk.

Stream Processing (page 1)

Considerations for Programming Stream I/O
Using Standard Streams
Standard streams are supported by the C library and the C++ iostream library.

4 Programmer’s Guide

To use the C standard streams, include the header <stdio.h> or, in C++, the header
<cstdio>.

The standard streams are not available when you are using the subsystem libraries.

On input and output operations requiring a file pointer, you can use the standard
streams in the same manner as you would any other file pointer.

The standard streams are always in text mode at the start of your program. You
can change the mode to binary or back to text, without redirecting the stream, by
calling the freopen function with no file name specified.

Limitations
VisualAge C++does not support record level I/O.

You cannot call the ftell , fseek, fgetpos, fsetpos, and rewind functions to get or
change the file position within character devices or operating system pipes.

You cannot seek past the end of a text file. Seeking past the end of a binary file
that was opened in mode w, w+, wb+, w+b, or wb, creates a new end-of-file
position and writes nulls between the old end-of-file position and the new one.

Stream Processing (page 1)
Standard Streams (page 1)

Redirect Standard Streams (page 2)

I/O Buffering (page 3)
File Handles for Standard Streams (page 3)

Chapter 1. Program Stream I/O 5

6 Programmer’s Guide

Chapter 2. Data Mapping and Storage

Format of Double-Byte Character Data

Type wchar_t

Alignment 2-byte aligned

Storage Mapping Stored in 2 bytes

Data Mapping (page 8)

Mapping of Fundamental Data Types (page 9)
Format of Single-Byte Character Data (page 8)

Format of Eight-Byte Floating Point Data
VisualAge C++ conforms to IEEE format, in which a floating point number is
represented in terms of sign (S), exponent (E), and fraction (F):

(-1)S x 2E x 1.F

Type double

Alignment 8-byte aligned

Bit
Mapping

In the internal representation, there is 1 bit for the sign (S), 11 bits for
the exponent (E), and 52 bits for the fraction (F). The bits are mapped
with the fraction in bit 0 to bit 51, the exponent in bit 52 to bit 62,
and the sign in bit 63:

6 66655555555
3 21098765432
S EEEEEEEEEEE

5544444444443333333333222222222211111111110000000000
1098765432109876543210987654321098765432109876543210
FF

Read the lines vertically from top to bottom. For example, the third
column of numbers shows that bit 61 is part of the exponent.

Storage
Mapping

In the following mapping, high memory is to the right.

Data Mapping (page 8)

© Copyright IBM Corp. 1998, 2002 7

Mapping of Fundamental Data Types (page 9)
Mapping of Compound Data Types (page 9)

Format of Four-Byte Integer Data

Type long, int, and their signed and unsigned counterparts

Alignment 4-byte aligned

Storage Mapping Byte-reversed, for example, 0x4A5D3B2C (where 2C is the least
significant byte and 4A is the most significant byte) is represented
in storage as shown below. High memory is to the right.

Data Mapping (page 8)

Format of Single-Byte Character Data

Type signed char, unsigned char, bool

Alignment Byte-aligned

Storage Mapping Stored in 1 byte

Data Mapping (page 8)

Data Mapping
Each data format supported by VisualAge C++is mapped into storage with a
specific alignment.

Alignment refers to the positioning of variables on byte boundaries. Alignment
within a structure can be changed with #pragma align, #pragma pack, the __align()
specifier, the __attribute__((aligned)) specifier or with the -qalign compiler option.

For automatic variables, consider the following information:
v Automatic variables have the same mapping as other variables.
v When optimization is turned on, automatic variables are ordered to minimize

padding.
v Automatic variables are always mapped on the stack instead of a data segment.

Because memory on the stack is constantly reallocated on the stack, automatic
variables are notguaranteed to be retained after the return of the function that
used them.

8 Programmer’s Guide

Mapping of Fundamental Data Types (page 9)
Mapping of Compound Data Types (page 9)
Macintosh and Twobyte Alignment Rules (page 10)
Alignment Rules for Nested Aggregates (page 12)
Packed Alignment Rules (page 12)
RISC System-6000 Alignment Rules (page 14)

Mapping of Fundamental Data Types
The following table lists the data mapping formats used for C and C++
fundamental data types.

Type Mapping

bool
char
signed char
unsigned char

Single-Byte Character

wchar_t Double-Byte Character
(32 bits on AIX 5.1 or later in 64-bit mode)

short int
unsigned short int

Two-Byte Integer

int
unsigned int
long int
unsigned long int

Four-Byte Integer (32-bit mode)
(long is 8-byte in 64-bit mode)

long long Eight-Byte Integer

float Four-Byte Floating Point

double Eight-Byte Floating Point

long double Eight-Byte Floating Point if compiled with the -qlongdouble
option.
Sixteen-Byte Floating Point if compiled with -qnolongdouble.

Data Mapping (page 8)

Mapping of Compound Data Types (page 9)
-qlongdouble Compiler Option

Mapping of Compound Data Types
The list below includes compound data types for which you can access the
allocated storage in C and C++ programs.

The C++ compiler may generate extra fields for classes that contain base
classes or virtual functions. Objects of these types may not conform to the
mappings listed below for structures.
v Null-Terminated Character Strings
v Fixed-Length Arrays Containing Simple Data Types
v Aligned Structures
v Unaligned or Packed Structures

Chapter 2. Data Mapping and Storage 9

v Arrays of Structures

Data Mapping (page 8)

Mapping of Fundamental Data Types (page 9)

MacIntosh and Twobyte Alignment Rules
All unions and structures are halfword aligned regardless of their members. Within
the aggregate, members are aligned according to their type. The size of types for
the Macintosh system is the same as on the RISC System/6000 system. The table
below summarizes alignment information for each type.

Type, Size, and Alignment for the Macintosh System

Type Alignment Size

char byte aligned byte

short halfword aligned halfword

(long) int halfword aligned word in 32-bit mode
doubleword in 64-bit mode

long long int halfword aligned doubleword

pointer halfword aligned word

float halfword aligned word

double halfword aligned doubleword

long double halfword aligned doubleword

long double with the
-qlongdouble compiler

option.

halfword aligned quadrupleword

Example
The following example uses these symbols to show padding and boundaries:

p = padding
| = halfword boundary
: = byte boundary

For:
#pragma options align=mac68k
struct A {

char a;
}

sizeof(A) == 2

The layout of A is:
|a:p|

For:
#pragma options align=mac68k
struct B {

char a;

10 Programmer’s Guide

double b;
}

sizeof(B) == 10

The layout of B is:
|a:p|b:b|b:b|b:b|b:b|

Bit fields for Macintosh Format
The following rules apply when you are laying out bit fields in structures.
v An individual bit field can be at most 32 bits long.
v Bit fields are packed into a word and are aligned on a 2-byte boundary.
v Bit fields that would cross a word boundary are moved to the next halfword

boundary even if they are already starting on a halfword boundary. (The bit
field may still end up crossing a word boundary.)

v A bit field of width zero forces the next member (even if it is not a bit field) to
start at the next halfword boundary even if the zero-width bit field is currently
at a halfword boundary.

v A structure containing nothing but zero width bit fields is allowed and will have
a length, in bytes, of two times the number of zero width bit fields.

For unions, there is one special case:
v Unions whose largest element is a bit field of width 16 or less have a size of 2

bytes. If the width of the bit field is greater than 16, the size of the union is 4
bytes.

Example
The following example uses these symbols to show padding and boundaries:

p = padding
| = halfword boundary
: = byte boundary

For:
#pragma options align=mac68k
struct A {

char a;
int : 0;
int b : 4;
int c : 17;

}

sizeof(A) == 8

The layout of A is:
|a:p|b .. :p|c:c|c .. :p|

Type Compatibility between RISC System/6000 and Macintosh Systems
Different aggregate types with identical members are not compatible. Therefore
such aggregates cannot be assigned to each other.

-qalign Compiler Option
RISC System/6000 Alignment Rules (page 14)
Packed Alignment Rules (page 12)
Alignment Rules for Nested Aggregates (page 12)

Chapter 2. Data Mapping and Storage 11

Alignment Rules for Nested Aggregates
Aggregates with different alignments can be nested. Each aggregate is laid out
using the alignment rules applicable to it. The start position of the nested
aggregate is determined by the alignment rules of the aggregate in which it is
nested.

Example
The following example uses these symbols to show padding and boundaries:

p = padding
| = halfword boundary
: = byte boundary

For:
#pragma options align=mac68k
struct A {

char a;
#pragma options align=power

struct B {
int b;
char c;

} B1; // <-- B1 laid out using RISC System/6000 alignment rules
#pragma options align=reset // <-- has no effect on A or B, but

// on subsequent structs
char d;

};

sizeof(A) == 12

The layout of A is:
|a:p|b:b|b:b|c:p|p:p|d:p|

-qalign Compiler Option
RISC System/6000 Alignment Rules (page 14)
Macintosh and Twobyte Alignment Rules (page 10)
Packed Alignment Rules (page 12)

Packed Alignment Rules
All structures are byte-aligned regardless of their members. All members are also
byte-aligned. Bit fields are byte-aligned, but bit-field members are not.

Example
The following example uses these symbols to show padding and boundaries:

p = padding
| = halfword boundary
: = byte boundary

For:
#pragma options align=packed
struct {

char a;
double b;

} B;
#pragma options align=reset

sizeof(B) == 9

12 Programmer’s Guide

The layout of B is:
|a:b|b:b|b:b|b:

Packed Bit Fields
The following rules apply when laying out packed bit fields.
v An individual bit field can be at most 32 bits long.
v Bit fields are packed together into the current word. If a bit field extends beyond

the current word, it starts at the next byte boundary.
v A bit field of width zero causes the next class member to start at the next byte

boundary. If the zero-width bit field is already at a byte boundary, the next
structure member starts at this boundary.

v A nonbit field following a bit field is aligned on the next byte boundary.

Example

#pragma options align=packed
struct {
int a : 8;
int b : 10;
int c : 12;
int d : 4;
int e : 3;
int : 0;
int f : 1;
char g;
} A;
#pragma options align=reset

sizeof(A) == 7

The layout of A is:

Member Name Displacement
bytes (bits)

a 0

b 1

c 2 (2)

d 4

e 4 (4)

f 5

g 6

Mapping of Fundamental Data Types (page 9)
Mapping of Compound Data Types (page 9)
-qalign Compiler Option
RISC System/6000 Alignment Rules (page 14)
Alignment Rules for Nested Aggregates (page 12)

Chapter 2. Data Mapping and Storage 13

RISC System/6000 Alignment Rules
RISC System/6000 alignment is the default setting for the -qalign compiler option.
On the RISC System/6000 system, an aggregate is aligned according to its most
strictly aligned member. Within aggregates, members are aligned according to their
type. The table below summarizes size and alignment information for each type.

Type, Size, and Alignment for the RISC System/6000 System

Type Alignment of Member Size (bytes)

char byte aligned 1

short halfword aligned 2

(long) int word aligned in 32-bit mode
8-byte aligned in 64-bit mode

4 in 32-bit mode
8 in 64-bit mode

long long int doubleword aligned 8

pointer word aligned 4

float word aligned 4

double doubleword aligned if
-qalign=natural is set.

Otherwise, word aligned.

8

long double with the
-qlongdouble compiler

option.

long doubleword aligned if
-qalign=natural is set.

Otherwise, word aligned.

16

Notes:

1. The entire object is aligned on the same boundary as its most strictly aligned
member.

2. Each member is assigned the lowest available offset with the appropriate
alignment (internal padding).

3. The object’s size is increased, if necessary, to make it a multiple of the size of
its most strictly aligned member. (For example, if the object contains a word, it
is padded to a word boundary.)

On the RISC System/6000 system, if a double is the first member of a struct, the
struct is 8-byte (doubleword) aligned. If a long double is the first member of a
struct, the struct is 16-byte aligned.

Bit Fields for RISC System/6000 Format
The following rules apply when you are laying out bit fields in structs:
v structs containing bit fields are 4-byte (word) aligned.
v Bit fields can be at most 32 bits long. (In 64-bit mode, long bit-fields can be at

most 64 bits long).
v Bit fields are packed into the current word. If a bit field would cross a word

boundary, it starts at the next word boundary.
v A bit field of width zero causes the bit field that immediately follows it to be

aligned at the next word boundary. If the zero width bit field is at a word
boundary, the next bit field starts at this boundary.

v A struct containing nothing but zero-width bit fields is allowed. In C it will have
a length of 0 bytes. In C++ the struct will have a length of 8 bytes if the first
such bit field is of type long or long long. Otherwise, in C++, it will have a
length of 4 bytes.

14 Programmer’s Guide

In the C language, you can specify bit fields as char or short instead of int, but
VisualAge C++ maps them as if they were unsigned int. In extended mode, you
can use the sizeof operator on a bit field. (The sizeof operator on a bit field always
returns 4.)

-qalign Compiler Option
Macintosh and Twobyte Alignment Rules (page 10)
Packed Alignment Rules (page 12)
Alignment Rules for Nested Aggregates (page 12)

Storage of float and double Types

Specifier Description

float Allocates 4 bytes of data storage.

double Allocates 8 bytes of data storage.

long double Normally allocates 8 bytes of data storage in
32-bit compiler mode.

Notes:

1. The amount of storage allocated for a float, double, or long double floating-point
variable is implementation-dependent. On all compilers, the storage size of a float
variable is less than or equal to the storage size of a double variable.

2. In extended mode, the C compiler supports long float, but this is a non-portable
language extension.

To declare a data object having a floating-point type, use the float specifier.

The float specifier has the form:

The declarator for a simple floating-point declaration is an identifier. You can
initialize a simple floating-point variable with a float constant or with a variable or
expression that evaluates to an integer or floating-point number. The storage class
of a variable determines how you initialize the variable.

The following example defines the identifier pi as an object of type double:
double pi;

The following example defines the float variable real_number with the initial value
100.55:

static float real_number = 100.55f;

The following example defines the float variable float_var with the initial value
0.0143:

float float_var = 1.43e-2f;

The following example declares the long double variable maximum:
extern long double maximum;

The following example defines the array table with 20 elements of type double:

Chapter 2. Data Mapping and Storage 15

double table[20];

Data Mapping (page 8)

Storage of int, long, and short Types

Specifier Description

short, short int Allocates 2 bytes of data storage.

int Allocates 4 bytes of data storage.

long, long int Allocates 4 bytes of data storage in 32-bit
compiler mode, and 8 bytes in 64-bit
compiler mode.

long long, long long int Allocates 8 bytes of data storage. The
compiler supports long long, but this is not
a standard data type. Though needed for
some system programming, it may not be
portable to other systems.

Notes: The amount of storage allocated for an int, short, or long integer variable is
implementation-dependent.

To declare a data object having an integer data type, use an int type specifier.

The int specifier has the form:

The declarator for a simple integer definition or declaration is an identifier. You
can initialize a simple integer definition with an integer constant or with an
expression that evaluates to a value that can be assigned to an integer. The storage
class of a variable determines how you can initialize the variable.

The unsigned prefix indicates that the object is a nonnegative integer. Each
unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer than the
equivalent signed type.

The following example defines the short int variable flag:
short int flag;

The following example defines the int variable result:
int result;

The following example defines the unsigned long int variable ss_number as having
the initial value 438888834:

unsigned long ss_number = 438888834ul;

The following example defines the identifier sum as an object of type int. The initial
value of sum is the result of the expression a + b:

16 Programmer’s Guide

extern int a, b;
auto sum = a + b;

Data Mapping (page 8)

Chapter 2. Data Mapping and Storage 17

18 Programmer’s Guide

Chapter 3. Signals and Exception Handling

Choose Signal Handlers
You can use your signal handlers and operating system signal handlers alone and
in combination. Signal handlers can be complex to write and difficult to debug, but
creating your own has these advantages:
v You receive additional information about the error condition.
v You can intercept any operating system signal, including those the VisualAge

C++library passes back to the operating system because there is no C signal for
handling them.

When Special Handling is Required
Floating point exceptions and two classes of library functions, math functions and
critical functions, require special handling. Operating system signals that occur in
all other library functions are treated as though they occurred in regular user code.

If your program links with shared libraries that link to more than one library
environment, you must take steps to ensure that the right handler is called.

Signals and Exceptions (page 20)

Signal Handling
You can handle signals in either of the following ways:
v Accept the default handling provided by VisualAge C++, which usually results

in program termination with a message.
v Program signal handling in C and C++ programs.

When to Simply Debug
To eliminate signals that you suspect are due to program logic, use the debugger.
The debugger provides complete notification and stack tracing is available.

Here are some other common problems:
v Improper use of memory. Using a pointer to an object that has already been

freed can cause an exception.
v Using an invalid pointer.
v Passing an invalid parameter to a system function.
v Return codes from library or system calls that are not checked.

Signals (page 20)

Choose Signal Handlers (page 19)
Program Signal Handling (page 20)

© Copyright IBM Corp. 1998, 2002 19

Signal Handling Considerations (page 21)

Signals
Signals are software interrupts for which the program can install custom interrupt
handlers. Signal handlers provide both a way of dealing with exceptional error
conditions (such as a divide by zero error) and as a primitive means of
interprocess communication.

Signals are a facility built on operating exceptions compliant with the ANSI C
standard. You can use them in C and C++ to intercept operating system exceptions
in a portable way. Different signals differentiate between error conditions. The
following kinds of events raise signals:
v A machine interrupt, such as divide by zero. This is a very common source of

signals.
v Your program can send a signal to itself with the raise function.
v The shell can generate signals in response to user-defined keystrokes. For

example, Ctrl-C is commonly defined as the SIGINT signal. Use the stty -a
command to determine which signals are set for your shell.

v The operating system may send a signal. For example, SIGSEGV may be sent for
an invalid memory reference.

Operating system signals are synchronous or asynchronous depending on the
relationship between their cause and the execution of the program.
v Synchronous signals are caused by code in the thread that receives the signal.

Most operating system are synchronous.
v Asynchronous signals are caused by actions outside of your current thread, for

example, typing Ctrl-C.

C++ Exception Handling
C++ exceptions constructs, such as try, throw and catch, exist only within the C++
language. However, C++ exception handlers cannot intercept operating system
exceptions, such as access violations.

Signal Handling (page 19)

Choose Signal Handlers (page 19)
Program Signal Handling (page 20)

Program Signal Handling
Use the signal function to specify how to handle signals. For each signal, you can
specify one of the types of handlers listed below. The signal constants are defined
in <signal.h>.
1. SIG_DFL

Specifies the default action. This is the initial setting for all signals. For most
signals, the default action is to terminate the process with an error message.

2. SIG_IGN
Ignores the condition and tries to continue running the program. If you specify

20 Programmer’s Guide

SIG_IGN for a signal that cannot be ignored, such as division by zero, the
VisualAge C++library treats the signal as if SIG_DFL was specified.

3. Your own signal handler function
Registers the function you specify. This can be a function you have written.
When the signal is reported and your function is called, signal handling is reset
to SIG_DFL to prevent recursion should the same signal be reported from your
function.

To reset default handling for a signal, call the signal in a statement similar to the
following. Specify the signal name in the first argument of signal.

signal(name, SIG_DFL);

Signals (page 20)
Signal Handling (page 19)

Signal Handling Considerations
Considerations when Registering a Signal Handler:

v You can register any function as a signal handler. Make sure you are registering
a valid function.

v If your signal handler resides in a shared library, ensure that you change the
signal handler when you unload the library. You will see no warnings or error
messages if you unload the library without changing the handler, but your
program will probably terminate the next time the handler is called. If another
shared library has been loaded in the same address range, your program may
continue but with undefined results.

v The SIGILL signal is not guaranteed to occur when you call an invalid function
using a pointer. If the pointer points to a valid instruction stream, SIGILL is not
raised.

Considerations when Writing a Signal Handler:

v Your signal handler should not assume that SIGSEGV always implies an invalid
data pointer. Other events, such as an address pointer to outside of your code
segment, can raise this signal.

v The SIGILL signal is not guaranteed to occur when you call an invalid function
using a pointer. If the pointer points to a valid instruction stream, SIGILL is not
raised.

v When you call longjmp to leave a signal handler, be sure that the buffer you are
jumping to was created by the thread that you are in. Do not call setjmp from
one thread and longjmp from another. The VisualAge C++library terminates a
process where such a call is made.

v Declare variables referenced by both the signal handler and by other code to be
volatile, to ensure they are always updated when they are referenced.

v The ANSI C++ standard does not recommend mixing exception handling
and signal handling.

v If a file I/O routine from <stdio.h> is taking input from the console when an
asynchronous signal (SIGINT or SIGTERM) occurs, the behavior depends on
whether a signal handler is registered. If no handler is registered, the input
stream is terminated and the default signal action is taken. If a handler is
registered, entry to the handler is deferred until the library routine returns.

Chapter 3. Signals and Exception Handling 21

v Do not use a C++ throw to exit an asynchronous signal handler.

Signals (page 20)
Signal Handling (page 19)

Example of Volatile Variables (page 22)

Example of Using Volatile Variables
User variables that are referenced by multiple threads should have the attribute
volatileto ensure that all changes to the value of the variable are performed
immediately by the compiler.

Because of the way the VisualAge C++ optimizes code, the following example may
not work as intended if it is built with the optimization options.
#include <io.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>

void sig_handler(int);
static int stepnum;

int main()
{

stepnum = 0;
signal(SIGSEGV, sig_handler);
/* code omitted - does not use stepnum */
stepnum = 1;
/* code omitted - does not use stepnum */
stepnum = 2
return 0;

}

void sig_handler(int x)
{

char FileData[50];
sprintf(FileData, “Error at Step %d\n\r”, stepnum);
write (2, FileData, strlen(fileData));

}

An optimized program may not immediately store the value 1 when 1 is assigned
to the variable stepnum. It may never store the value 1 and only store the value 2.
If a signal occurs between the assignments to stepnum, the value passed to
sig_handler may not be correct.

Declaring a variable (stepnum) as volatile indicates to the compiler that references
to the variable have side effects, or that the variable may change in ways the
compiler cannot determine. Optimization will not eliminate any action involving
the volatile variable. Changes to the value of the variable are then stored
immediately, and uses of the variable will always cause it to be re-fetched from
memory.

Signals (page 20)
Signal Handling (page 19)

22 Programmer’s Guide

Program Signal Handling (page 20)

Variables and Optimization (page 54)

Chapter 3. Signals and Exception Handling 23

24 Programmer’s Guide

Chapter 4. Using Memory Heaps

Memory Management Functions
The memory management functions defined by ANSI are calloc, malloc, realloc,
and free. These regular functions allocate and free memory from the default
runtime heap. VisualAge C++ includes another function, _heapmin, to return
unused memory to the system. VisualAge C++ also provides enhanced versions of
memory management functions that can help you improve program performance
(link to the libhm.a library), work with user heaps, or debug your programs.

All the versions actually work the same way. They differ only in what heap they
allocate from, and in whether they save information to help you debug memory
problems. The memory allocated by all of these functions is suitably aligned for
storing any type of object.

The table below summarizes the different versions of memory management
functions, using mallocas an example of how the names of the functions change
for each version.

Regular Version Debug Version

Default Heap malloc _debug_malloc

User-Created Heap _umalloc _debug_umalloc

Heap-Specific Functions
Use heap-specific versions of memory allocation functions to allocate and free
memory from user-created heaps that you specify. If you want, you can also
explicitly specify the runtime heap. The names of user-created heaps are prefixed
by _u(for “user heaps”), for example, _umalloc, and they are defined in
<umalloc.h>.

When working with user-created heaps, you need to link to the libhu.a library.
Heap-specific functions provided in this library are:
v _ucalloc

v _umalloc

v _uheapmin

There are no heap-specific versions of realloc or free. These standard functions
always determine which heap memory is allocated from, and can be used with
both user-created and runtime memory heaps.

Debug Functions
Use these functions to allocate and free memory from the default runtime heap,
just as you would use the regular versions. They also provide information that you
can use to debug memory problems.

Use the -qheapdebug compiler option to automatically map all calls to the regular
memory management functions to their debug versions. You can also call the
debug versions explicitly. Note: do not use the -brtl option with -qheapdebug.

© Copyright IBM Corp. 1998, 2002 25

Note: If you parenthesize the calls to the regular memory management functions,
they are not mapped to their debug versions.

You should place a #pragma strings(readonly) directive at the top of each source
file that will call debug functions, or in a common header file that each includes.
This directive is not essential, but it ensures that the file name passed to the debug
functions can’t be overwritten, and that only one copy of the file name string is
included in the object module.

The names of the debug versions are prefixed by _debug_, for example,
_debug_malloc, and they are defined in <malloc.h>and <stdlib.h>.

The functions provided are:
v _debug_calloc

v _debug_free

v _debug_heapmin

v _debug_malloc

v _debug_realloc

The debug_malloc, debug_realloc, and debug_free functions set the memory areas
they affect to a specific, repeating fill pattern.

In addition to their usual behavior, these functions also store information (file
name and line number) about each call made to them. Each call also automatically
checks the heap by calling _heap_check (described below).

Three additional debug memory management functions do not have regular
counterparts:
v _dump_allocated

Prints information to stderr about each memory block currently allocated by the
debug functions.

v _dump_allocated_delta

Prints information to file handle 2 about each memory block allocated by the
debug functions since the last call to _dump_allocatedor _dump_allocated_delta.

v _heap_check

Checks all memory blocks allocated or freed by the debug functions to make
sure that no overwriting has occurred outside the bounds of allocated blocks or
in a free memory block.

The debug functions call _heap_checkautomatically; and you can also call this
function explicitly. The _dump_allocated and _dump_allocated_deltafunctions must
be explicitly called.

Heap-Specific Debug Functions
The heap-specific functions also have debug versions that work just like the
regular debug versions. Use these functions to allocate and free memory from the
user-created heap you specify, and also provide information that you can use to
debug memory problems in your own heaps.

26 Programmer’s Guide

Use the -qheapdebug compiler option to automatically map all calls to the regular
memory management functions to their debug versions. You can also call the
debug versions explicitly.

Note: If you parenthesize the calls to the regular memory management functions,
they are not mapped to their debug versions.

The names of the heap-specific debug versions are prefixed by _debug_u, for
example, _debug_umalloc, and they are defined in <umalloc.h>.

The functions provided are:
v _debug_ucalloc

v _debug_uheapmin

v _debug_umalloc

v _udump_allocated

v _udump_allocated_delta

v _uheap_check

The debug_umalloc function sets the memory areas they affect to a specific,
repeating fill pattern.

There are no heap-specific debug versions of _debug_realloc or _debug_free. These
functions always determine which heap memory is allocated from, and can be
used with both user-created and runtime memory heaps.

Managing Memory with Multiple Memory Heaps (page 27)
Types of Memory (page 29)
Debugging Memory Heaps (page 29)

Create and Use a Fixed Size Heap (page 31)
Create and Use an Expandable Heap (page 33)
Debug Programs with Heap Memory (page 35)
Change the Default Heap Used in a Program (page 37)

Example of Creating and Using a User Heap (page 38)
Example of Creating and Using a Shared-Memory User Heap (page 39)

Managing Memory with Multiple Heaps
VisualAge C++ lets you create and use your own pools of memory, called heaps.
You can use your own heaps in place of or in addition to the default VisualAge
C++ runtime heap to improve the performance of your program.

Using your own heaps is entirely optional, and your applications will work
perfectly well using the default memory management provided (and used by) the
VisualAge C++ run-time library. If you want to improve the performance and
memory management of your program, multiple heaps can help you. Otherwise,
you can ignore this section and any heap-specific library functions.

Why Use Multiple Heaps?
Using a single runtime heap is fine for most programs. However, using multiple

Chapter 4. Using Memory Heaps 27

heaps can be more efficient and can help you improve your program’s
performance and reduce wasted memory for a number of reasons:
v When you allocate from a single heap, you may end up with memory blocks on

different pages of memory. For example, you might have a linked list that
allocates memory each time you add a node to the list. If you allocate memory
for other data in between adding nodes, the memory blocks for the nodes could
end up on many different pages. To access the data in the list, the system may
have to swap many pages, which can significantly slow your program.
With multiple heaps, you can specify which heap you allocate from. For
example, you might create a heap specifically for the linked list. The list’s
memory blocks and the data they contain would remain close together on fewer
pages, reducing the amount of swapping required.

v In multithread applications, only one thread can access the heap at a time to
ensure memory is safely allocated and freed. For example, say thread 1 is
allocating memory, and thread 2 has a call to free. Thread 2 must wait until
thread 1 has finished its allocation before it can access the heap. Again, this can
slow down performance, especially if your program does a lot of memory
operations.
If you create a separate heap for each thread, you can allocate from them
concurrently, eliminating both the waiting period and the overhead required to
serialize access to the heap.

v With a single heap, you must explicitly free each block that you allocate. If you
have a linked list that allocates memory for each node, you have to traverse the
entire list and free each block individually, which can take some time.
If you create a separate heap for that linked list, you can destroy it with a single
call and free all the memory at once.

v When you have only one heap, all components share it (including the VisualAge
C++ runtime library, vendor libraries, and your own code). If one component
corrupts the heap, another component might fail. You may have trouble
discovering the cause of the problem and where the heap was damaged.
With multiple heaps, you can create a separate heap for each component, so if
one damages the heap (for example, by using a freed pointer), the others can
continue unaffected. You also know where to look to correct the problem.

You can create heaps of regular memory or shared memory, and you can have any
number of heaps of any type. The only limit is the space available on your
operating system (your machine’s memory and swapper size, minus the memory
required by other running applications).

VisualAge C++ provides heap-specific versions of the memory management
functions, for example, umallocand so on. Debug versions of all memory
management functions are provided, including the heap-specific ones. VisualAge
C++ also provides additional functions that you can use to create and manage
your own heaps of memory, such as udefault.

Memory Management Functions (page 25)
Types of Memory (page 29)
Debugging Memory Heaps (page 29)

Create and Using a Fixed Size Heap (page 31)
Create and Using an Expandable Heap (page 33)

28 Programmer’s Guide

Debug Programs with Heap Memory (page 35)
Change the Default Heap Used in a Program (page 37)

Example of Creating and Using a User Heap (page 38)
Example of Creating and Using a Shared-Memory User Heap (page 39)

Types of Memory
There are two types of memory:
1. Regular memory

Most programs use regular memory. This is the type provided by the default
runtime heap.

2. Shared memory
Heaps of shared memory can be shared between processes or applications. If
you want other processes to use the heaps you have created, you must pass
them the heap handle and give them access to the heap. Use _ucreateto create
the heap.

Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)
Debugging Memory Heaps (page 29)

Example of Creating and Using a User Heap (page 38)
Example of Creating and Using a Shared-Memory User Heap (page 39)

Debugging Memory Heaps
VisualAge C++ provides two sets of functions for debugging memory problems:
1. Debug versions of all memory management functions
2. Heap-checking functions similar to those provided by other compilers.

Debug Memory Management Functions
Debug versions of the heap-specific memory management functions are provided,
just as they are for the regular versions. Each debug version performs the same
function as its non-debug counterpart. In addition, the debug version calls
_uheap_checkto check the heap used in the call, and records the file and line
number where the memory was allocated or freed. You can then use
_dump_allocated or _dump_allocated_deltato display information about currently
allocated memory blocks. Information is printed to stderr.

You can use debug memory management functions for any type of heap, including
shared memory. To use the debug versions, specify the -qheapdebug compiler
option. VisualAge C++ then maps all calls to memory management functions
(regular or heap-specific) to the corresponding debug versions.

Note: If you parenthesize the name of a memory management function, the
function is not mapped to the debug version.

Chapter 4. Using Memory Heaps 29

Heap-Checking Functions
VisualAge C++also provides some functions for validating user heaps: _uheapchk,
_uheapset, and _uheap_walk. Each of these functions also has a non-heap-specific
version that validates the default heap.

Both _uheapchk and _uheapsetcheck the specified heap for minimal consistency;
_uheapchkchecks the entire heap, while _uheapset checks only the free memory.
_uheapsetalso sets the free memory in the heap to a value you specify.
_uheap_walktraverses the heap and provides information about each allocated or
freed object to a callback function that you provide. You can then use the
information however you like.

These heap-checking functions are defined in <umalloc.h> (the regular versions are
also in <malloc.h>). They are not controlled by a compiler option, so you can use
them in your program at any time.

Which Should I Use?
Both sets of debugging functions have their benefits and drawbacks. Which you
choose to use depends on your program, your problems, and your preference.

The debug memory management functions provide detailed information about all
allocation requests you make with them in your program. You don’t need to
change any code to use the debug versions; you need only specify the
-qheapdebug option.

On the other hand, the heap-checking functions perform more general checks on
the heap at specific points in your program. You have greater control over where
the checks the occur. The heap-checking functions also provide compatibility with
other compilers that offer these functions. You only have to rebuild the modules
that contain the heap-checking calls. However, you have to change your source
code to include these calls, which you will probably want to remove in your final
code. Also, the heap-checking functions only tell you if the heap is consistent or
not; they do not provide the details that the debug memory management functions
do.

What you may choose to do is add calls to heap-checking functions in places you
suspect possible memory problems. If the heap turns out to be corrupted, you may
want to rebuild with -qheapdebug.

Note: When the debug memory option -qheapdebug is specified, code is generated
to pre-initialize the local variables for all functions. This makes it much more likely
that uninitialized local variables will be found during the normal debug cycle
rather than much later (usually when the code is optimized).

Regardless of which debugging functions you choose, your program requires
additional memory to maintain internal information for these functions. If you are
using fixed-size heaps, you may have to increase the heap size in order to use the
debugging functions.

Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)
Types of Memory (page 29)

Create and Use a Fixed Size Heap (page 31)

30 Programmer’s Guide

Create and Use an Expandable Heap (page 33)
Debug Programs with Heap Memory (page 35)
Change the Default Heap Used in a Program (page 37)

heapdebug Compiler Option
_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
Example of Creating and Using a User Heap (page 38)
Example of Creating and Using a Shared-Memory User Heap (page 39)

Create and Use a Fixed Size Heap
Before creating a heap, you must first allocate a block of memory large enough to
hold the heap. The block must be large enough to satisfy all the memory requests
your program will make of it, and also be able to hold internal information
required to manage the heap. Once the block is fully allocated, further allocation
requests to the heap will fail.

The internal information requires _HEAP_MIN_SIZE bytes (_HEAP_MIN_SIZE is defined
in <umalloc.h>). You cannot create a heap smaller than this. Add the amount of
memory your program requires to this value to determine the size of the block you
need to get. Also, make sure the block is the correct type (regular or shared) for
the heap you are creating.

After you have allocated a block of memory, create the heap with _ucreate.

For example:
Heap_t fixedHeap; /* this is the “heap handle” */
/* get memory for internal info plus 5000 bytes for the heap */
static char block[_HEAP_MIN_SIZE + 5000];

fixedHeap = _ucreate(block, (_HEAP_MIN_SIZE+5000), /* block to use */
!_BLOCK_CLEAN, /* memory is not set to 0 */
_HEAP_REGULAR, /* regular memory */
NULL, NULL); /* we’ll explain this later */

The !_BLOCK_CLEAN parameter indicates that the memory in the block has not been
initialized to 0. If it were set to 0 (for example, by memset), you would specify
_BLOCK_CLEAN. The calloc and _ucallocfunctions use this information to improve
their efficiency; if the memory is already initialized to 0, they don’t need to
initialize it.

Chapter 4. Using Memory Heaps 31

The fourth parameter indicates what type of memory the heap contains: regular
(_HEAP_REGULAR) or shared (_HEAP_SHARED). The different memory types are
described in Types of Memory. (page 29)

For a fixed-size heap, the last two parameters are always NULL.

Use Your Heap
Once you have created your heap, you can open it for use by calling _uopen:

_uopen(fixedHeap);

This opens the heap for that particular process; if the heap is shared, each process
that uses the heap needs its own call to _uopen.

You can then allocate and free from your own heap just as you would from the
default heap. To allocate memory, use _ucalloc or _umalloc. These functions work
just like calloc and malloc, except you specify the heap to use as well as the size
of block that you want. For example, to allocate 1000 bytes from fixedHeap:

void *up;
up = _umalloc(fixedHeap, 1000);

To reallocate and free memory, use the regular realloc and freefunctions. Both of
these functions always check what heap the memory came from, so you don’t need
to specify the heap to use. For example, the realloc and freecalls in the following
code fragment look exactly the same for both the default heap and your heap:

void *p, *up;
p = malloc(1000); /* allocate 1000 bytes from default heap */
up = _umalloc(fixedHeap, 1000); /* allocate 1000 from fixedHeap */

realloc(p, 2000); /* reallocate from default heap */
realloc(up, 100); /* reallocate from fixedHeap */

free(p); /* free memory back to default heap */
free(up); /* free memory back to fixedHeap */

For any object, you can find out what heap it was allocated from by calling _mheap.
You can also get information about the heap itself by calling _ustats, which tells
you:
v How much memory the heap holds (excluding memory used for overhead)
v How much memory is currently allocated from the heap
v What type of memory is in the heap
v The size of the largest contiguous piece of memory available from the heap

When you call any heap function, make sure the heap you specify is valid. If the
heap is not valid, the behavior of the heap functions is undefined.

Add to a Fixed-Size Heap
Although you created the heap with a fixed size, you can add blocks of memory to
it with _uaddmem. This can be useful if you have a large amount of memory that is
allocated conditionally. Like the starting block, you must first allocate memory for
a block of memory. This block will be added to the current heap, so make sure the
block you add is the same type of memory as the heap you are adding it to.

For example, to add 64K to fixedHeap:

32 Programmer’s Guide

static char newblock[65536];

_uaddmem(fixedHeap, /* heap to add to */
newblock, 65536, /* block to add */
_BLOCK_CLEAN); /* sets memory to 0 */

Using _uaddmem is the only way to increase the size of a fixed heap.

Note: For every block of memory you add, a small number of bytes from it are
used to store internal information. To reduce the total amount of overhead, it is
better to add a few large blocks of memory than many small blocks.

Destroy Your Heap
When you have finished using the heap, close it with _uclose. Once you have
closed the heap in a process, that process can no longer allocate from or return
memory to that heap. If other processes share the heap, they can still use it until
you close it in each of them. Performing operations on a heap after you’ve closed it
causes undefined behavior.

To finally destroy the heap, call _udestroy. If blocks of memory are still allocated
somewhere, you can force the destruction. Destroying a heap removes it entirely
even if it was shared by other processes. Again, performing operations on a heap
after you’ve destroyed it causes undefined behavior.

After you destroy your fixed-size heap, it is up to you to return the memory for
the heap (the initial block of memory you supplied to _ucreateand any other
blocks added by _uaddmem) to the system.

Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)
Types of Memory (page 29)
Debugging Memory Heaps (page 29)

Create and Use an Expandable Heap (page 33)
Debug Programs with Heap Memory (page 35)
Change the Default Heap Used in a Program (page 37)

Example of Creating and Using a User Heap (page 38)
Example of Creating and Using a Shared-Memory User Heap (page 39)

Create and Use an Expandable Heap
When using a fixed-size heap, the initial block of memory must be large enough to
satisfy all allocation requests made to it. You can also, however, create a heap that
can expand and contract as your program needs demand.

With the VisualAge C++ runtime heap, when not enough storage is available for
your mallocrequest, the runtime gets additional storage from the system. Similarly,
when you minimize the heap with _heapminor when your program ends, the
runtime returns the memory to the operating system.

When you create an expandable heap, you provide your own functions to do this
work (we’ll call them getmore_fn and release_fn, although you can name them

Chapter 4. Using Memory Heaps 33

whatever you choose). You specify pointers to these functions as the last two
parameters to _ucreate (instead of the NULL pointers you used to create a fixed-size
heap). For example:

Heap_t growHeap;
static char block[_HEAP_MIN_SIZE]; /* get block */

growHeap = _ucreate(block, _HEAP_MIN_SIZE, /* starting block */
!_BLOCK_CLEAN, /* memory not set to 0 */
_HEAP_REGULAR, /* regular memory */
getmore_fn, /* function to expand heap */
release_fn); /* function to shrink heap */

Note: You can use the same getmore_fn and release_fn for more than one heap, as
long as the heaps use the same type of memory and your functions are not written
specifically for one heap.

Expand Your Heap
When you call _umalloc(or a similar function) for your heap, _umalloctries to
allocate the memory from the initial block you provided to _ucreate. If not enough
memory is there, it then calls your getmore_fn. Your getmore_fn then gets more
memory from the operating system and adds it to the heap. It is up to you how
you do this.

Your getmore_fn must have the following prototype:
void *(*getmore_fn)(Heap_t uh, size_t *size, int *clean);

The uh is the heap to be expanded.

The size is the size of the allocation request passed by _umalloc. You probably want
to return enough memory at a time to satisfy several allocations; otherwise every
subsequent allocation has to call getmore_fn, reducing your program’s execution
speed. Make sure that you update the size parameter. if you return more than the
size requested.

Your function must also set the clean parameter to either _BLOCK_CLEAN, to indicate
the memory has been set to 0, or !_BLOCK_CLEAN, to indicate that the memory has
not been initialized.

The following fragment shows an example of a getmore_fn:
static void *getmore_fn(Heap_t uh, size_t *length, int *clean)
{

char *newblock;

/* round the size up to a multiple of 64K */
*length = (*length / 65536) * 65536 + 65536;

clean = _BLOCK_CLEAN; / mark the block as “clean” */
return(newblock); /* return new memory block */

}

Be sure that your getmore_fn allocates the right type of memory (regular or
shared) for the heap. There are also special considerations for shared memory, as
described in Types of Memory (page 29).

You can also use _uaddmemto add blocks to your heap, as you did for the fixed
heap in Create and Use a Fixed-Size Heap (page 31). _uaddmemworks exactly the
same way for expandable heaps.

34 Programmer’s Guide

Shrink Your Heap
To coalesce the heap (return all blocks in the heap that are totally free to the
system), use _uheapmin. _uheapmin works like _heapmin, except that you specify the
heap to use.

When you call _uheapmin to coalesce the heap or _udestroyto destroy it, these
functions call your release_fn to return the memory to the system. Again, it is up
to you how you implement this function.

Your release_fn must have the following prototype:
void (*release_fn)(Heap_t uh, void *block, size_t size);

Where uh identifies the heap to be shrunk. The pointer block and its size are passed
to your function by _uheapmin or _udestroy. Your function must return the
memory pointed to by block to the system. For example:

static void release_fn(Heap_t uh, void *block, size_t size)
{

free(block);
return;

}

Notes:

1. _udestroycalls your release_fn to return all memory added to the uh heap by
your getmore_fn or by _uaddmem. However, you are responsible for returning
the initial block of memory that you supplied to _ucreate.

2. Because a fixed-size heap has no release_fn, _uheapminand _udestroy work
slightly differently. Calling _uheapminfor a fixed-size heap has no effect but
does not cause an error; _uheapminsimply returns 0. Calling _udestroyfor a
fixed-size heap marks the heap as destroyed, so no further operations can be
performed on it, but returns no memory. It is up to you to return the heap’s
memory to the system.

Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)
Types of Memory (page 29)
Debugging Memory Heaps (page 29)

Create and Use a Fixed Size Heap (page 31)
Debug Programs with Heap Memory (page 35)
Change the Default Heap Used in a Program (page 37)
Example of Creating and Using a User Heap (page 38)
Example of Creating and Using a Shared-Memory User Heap (page 39)

Debug Programs with Heap Memory
VisualAge C++ provides debug versions of both general memory management
functions and heap-specific memory management functions. To automatically call
the debug versions of these functions, specify the -qheapdebug compiler option
when compiling your program. Bear in mind that specifying this option can
significantly increase the memory requirements and running time of your program.

Memory Allocation Fill Pattern
Some debug functions set all the memory they allocate to a specified fill pattern.
This lets you easily locate areas in memory that your program uses.

Chapter 4. Using Memory Heaps 35

The debug_malloc, debug_realloc, and debug_umalloc functions sets allocated
memory to a default repeating 0xAA fill pattern. To enable this fill pattern, export
the HD_FILL environment variable.

The debug_free function sets all free memory to a repeating 0xFB fill pattern.

Skip Heap Checks
Each debug function calls _heap_check (or _uheap_check) to check the heap.
Although this is useful, it can also increase your program’s memory requirements
and decrease its execution speed.

To reduce the overhead of checking the heap on every debug memory
management function, you can control how often the functions check the heap
with the HD_SKIP environment variable. You will not need to do this for most of
your applications unless the application is extremely memory intensive.

Set HD_SKIP like any other environment variable. The syntax for HD_SKIP is:
set HD_SKIP=increment,[start]

where:

increment Specifies how often you want the debug
functions to check the heap.

start Optional. Use this parameter to start
skipping heap checks after start calls to
debug functions.

Note: The comma separating the parameters is optional.

When you use the start parameter to start skipping heap checks, you are trading
off heap checks that are done implicitly against program execution speed. You
should therefore start with a small increment (like 5) and slowly increase until the
application is usable.

For example, if you specify:
set HD_SKIP=10

then every tenth debug memory function call performs a heap check. If you
specify:

set HD_SKIP=5,100

then after 100 debug memory function calls, only every fifth call performs a heap
check. Other than the heap check, the debug functions behave exactly the same as
usual.

Use Stack Traces
Stack contents are traced for each allocated memory object. If the contents of an
object’s stack change, the traced contents are dumped.

The trace size is controlled by the HD_STACK environment variable. If this variable is
not set, the compiler assumes a stack size of 10. To disable stack tracing, set the
HD_STACK environment variable to 0.

Memory Management Functions (page 25)

36 Programmer’s Guide

Managing Memory with Multiple Memory Heaps (page 27)
Types of Memory (page 29)
Debugging Memory Heaps (page 29)

Create and Use a Fixed Size Heap (page 31)
Create and Use an Expandable Heap (page 33)
Change the Default Heap Used in a Program (page 37)
Example of Creating and Using a User Heap (page 38)
Example of Creating and Using a Shared-Memory User Heap (page 39)

heapdebug Compiler Option
_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)

Change the Default Heap Used in a Program
The regular memory management functions (malloc and so on) always use
whatever heap is currently the default for that thread. The initial default heap for
all VisualAge C++ applications is the runtime heap provided by VisualAge C++.
However, you can make your own heap the default by calling _udefault. Then all
calls to the regular memory management functions allocate from your heap instead
of the runtime heap.

The default heap changes only for the thread where you call _udefault. You can
use a different default heap for each thread of your program if you choose.

This is useful when you want a component (such as a vendor library) to use a
heap other than the VisualAge C++ runtime heap, but you can’t actually alter the
source code to use heap-specific calls. For example, if you set the default heap to a
shared heap then call a library function that calls malloc, the library allocates
storage in shared memory.

Because _udefault returns the current default heap, you can save the return value
and later use it to restore the default heap you replaced. You can also change the
default back to the VisualAge C++runtime heap by calling _udefault and
specifying _RUNTIME_HEAP (defined in <umalloc.h>). You can also use this macro
with any of the heap-specific functions to explicitly allocate from the runtime heap.

Chapter 4. Using Memory Heaps 37

Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)
Types of Memory (page 29)
Debugging Memory Heaps (page 29)

Create and Use a Fixed Size Heap (page 31)
Create and Use an Expandable Heap (page 33)
Debug Programs with Heap Memory (page 35)
Example of Creating and Using a User Heap (page 38)
Example of Creating and Using a Shared-Memory User Heap (page 39)

Example of Creating and Using a User Heap
The program below shows how you might create and use a heap.

Compile with -qheapdebug to map memory management functions to their debug
versions.
#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>

static void *get_fn(Heap_t usrheap, size_t *length, int *clean)
{

void *p;

/* Round up to the next chunk size */
*length = ((*length) / 65536) * 65536 + 65536;
*clean = _BLOCK_CLEAN;
p = calloc(*length,1);
return (p);

}

static void release_fn(Heap_t usrheap, void *p, size_t size)
{

free(p);
return;

}

int main(void)
{

void *initial_block;
long rc;
Heap_t myheap;
char *ptr;
int initial_sz;

/* Get initial area to start heap */
initial_sz = 65536;
initial_block = malloc(initial_sz);
if(initial_block == NULL) return (1);

/* create a user heap */
myheap = _ucreate(initial_block, initial_sz, _BLOCK_CLEAN,

_HEAP_REGULAR, get_fn, release_fn);
if (myheap == NULL) return(2);

/* allocate from user heap and cause it to grow */
ptr = _umalloc(myheap, 100000);
_ufree(ptr);

38 Programmer’s Guide

/* destroy user heap */
if (_udestroy(myheap, _FORCE)) return(3);

/* return initial block used to create heap */

free(initial_block);
return 0;

}

Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)
Types of Memory (page 29)
Debugging Memory Heaps (page 29)

Create and Use a Fixed Size Heap (page 31)
Create and Use an Expandable Heap (page 33)
Debug Programs with Heap Memory (page 35)
Change the Default Heap Used in a Program (page 37)
Example of Creating and Using a Shared-Memory User Heap (page 39)

Example of Creating and Using a Shared-Memory User Heap
The following program shows how you might implement a heap shared between a
parent and several child processes.

Example of a User Heap - Parent Process (page 39) shows the parent process,
which creates the shared heap. First the main program calls the init function to
allocate shared memory from the operating system (using CreateFileMapping) and
name the memory so that other processes can use it by name. The init function
then creates and opens the heap. The loop in the main program performs
operations on the heap, and also starts other processes. The program then calls the
term function to close and destroy the heap.

Example of a Shared User Heap - Child Process (page 42) shows the process
started by the loop in the parent process. This process uses OpenFileMapping to
access the shared memory by name, then extracts the heap handle for the heap
created by the parent process. The process then opens the heap, makes it the
default heap, and performs some operations on it in the loop. After the loop, the
process replaces the old default heap, closes the user heap, and ends.

Example of a User Heap - Parent Process
/* The following program shows how you might implement
a heap shared between a parent and several child processes.

Example of a Shared User Heap - Parent Process shows the parent
process, which creates the shared heap. First the main program
calls the init function to allocate shared memory from the
operating system (using CreateFileMapping) and name the memory
so that other processes can use it by name. The init function
then creates and opens the heap. The loop in the main program
performs operations on the heap, and also starts other processes.
The program then calls the term function to close and destroy the heap.

*/

#include <umalloc.h>
#include <stdio.h>
#include <stdlib.h>

Chapter 4. Using Memory Heaps 39

#include <string.h>

#define PAGING_FILE 0xFFFFFFFF
#define MEMORY_SIZE 65536
#define BASE_MEM (VOID*)0x01000000

static HANDLE hFile; /* Handle to memory file */
static void* hMap; /* Handle to allocated memory */

typedef struct mem_info {
void * pBase;
Heap_t pHeap;

} MEM_INFO_T;

/*--*/
/* inithp: */
/* Function to create and open the heap with a named shared memory object */
/*--*/
static Heap_t inithp(size_t heap_size)
{

MEM_INFO_T info; /* Info structure */

/* Allocate shared memory from the system by creating a shared memory */
/* pool basing it out of the system paging (swapper) file. */

hFile = CreateFileMapping((HANDLE) PAGING_FILE,
NULL,
PAGE_READWRITE,
0,
heap_size + sizeof(Heap_t),
“MYNAME_SHAREMEM”);

if (hFile == NULL) {
return NULL;

}

/* Map the file to this process’ address space, starting at an address */
/* that should also be available in child processe(s) */

hMap = MapViewOfFileEx(hFile, FILE_MAP_WRITE, 0, 0, 0, BASE_MEM);

info.pBase = hMap;
if (info.pBase == NULL) {

return NULL;
}

/* Create a fixed sized heap. Put the heap handle as well as the */
/* base heap address at the beginning of the shared memory. */

info.pHeap = _ucreate((char *)info.pBase + sizeof(info),
heap_size - sizeof(info),
!_BLOCK_CLEAN,
_HEAP_SHARED | _HEAP_REGULAR,
NULL, NULL);

if (info.pBase == NULL) {
return NULL;

}

memcpy(info.pBase, info, sizeof(info));

if (_uopen(info.pHeap)) { /* Open heap and check result */
return NULL;

}

return info.pHeap;

}

40 Programmer’s Guide

/*--*/
/* termhp: */
/* Function to close and destroy the heap */
/*--*/
static int termhp(Heap_t uheap)
{

if (_uclose(uheap)) /* close heap */
return 1;

if (_udestroy(uheap, _FORCE)) /* force destruction of heap */
return 1;

UnmapViewOfFile(hMap); /* return memory to system */
CloseHandle(hFile);

return 0;
}

/*--*/
/* main: */
/* Main function to test creating, writing to and destroying a shared */
/* heap. */
/*--*/
int main(void)
{

int i, rc; /* Index and return code */
Heap_t uheap; /* heap to create */
void *init_block; /* initial block to use */
char *p; /* for allocating from heap */

/* */
/* call init function to create and open the heap */
/*
uheap = inithp(MEMORY_SIZE);
if (uheap == NULL) /* check for success */

return 1; /* if failure, return non zero */

/* */
/* perform operations on uheap */
/* */
for (i = 1; i <= 5; i++)
{

p = _umalloc(uheap, 10); /* allocate from uheap */
if (p == NULL)

return 1;
memset(p, ’M’, _msize(p)); /* set all bytes in p to ’M’ */
p = realloc(p,50); /* reallocate from uheap */
if (p == NULL)

return 1;
memset(p, ’R’, _msize(p)); /* set all bytes in p to ’R’ */

}

/* */
/* Start a second process which accesses the heap */
/* */
if (system(“memshr2.exe”))

return 1;

/* */
/* Take a look at the memory that we just wrote to. Note that memshr.c */
/* and memshr2.c should have been compiled specifying the */
/* alloc(debug[, yes]) flag. */
/* */
#ifdef DEBUG

_udump_allocated(uheap, -1);
#endif

Chapter 4. Using Memory Heaps 41

/* */
/* call term function to close and destroy the heap */
/* */
rc = termhp(uheap);

#ifdef DEBUG
printf(“memshr ending... rc = %d\n”, rc);

#endif

return rc;
}

Example of a Shared User Heap - Child Process
/* Example of a Shared User Heap - Child Process shows

the process started by the loop in the parent process.
This process uses OpenFileMapping to access the shared memory
by name, then extracts the heap handle for the heap created
by the parent process. The process then opens the heap,
makes it the default heap, and performs some operations
on it in the loop. After the loop, the process replaces
the old default heap, closes the user heap, and ends.

*/

#include <umalloc.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static HANDLE hFile; /* Handle to memory file */
static void* hMap; /* Handle to allocated memory */

typedef struct mem_info {
void * pBase;
Heap_t pHeap;

} MEM_INFO_T;

/*--*/
/* inithp: Subprocess Version */
/* Function to create and open the heap with a named shared memory object */
/*--*/
static Heap_t inithp(void)
{

MEM_INFO_T info; /* Info structure */

/* Open the shared memory file by name. The file is based on the */
/* system paging (swapper) file. */

hFile = OpenFileMapping(FILE_MAP_WRITE, FALSE, “MYNAME_SHAREMEM”);

if (hFile == NULL) {
return NULL;

}

/* Figure out where to map this file by looking at the address in the */
/* shared memory where the memory was mapped in the parent process. */

hMap = MapViewOfFile(hFile, FILE_MAP_WRITE, 0, 0, sizeof(info));

if (hMap == NULL) {
return NULL;

}

/* Extract the heap and base memory address from shared memory */

42 Programmer’s Guide

memcpy(info, hMap, sizeof(info));
UnmapViewOfFile(hMap);

hMap = MapViewOfFileEx(hFile, FILE_MAP_WRITE, 0, 0, 0, info.pBase);

if (_uopen(info.pHeap)) { /* Open heap and check result */
return NULL;

}

return info.pHeap;
}

/*--*/
/* termhp: */
/* Function to close my view of the heap */
/*--*/
static int termhp(Heap_t uheap)
{

if (_uclose(uheap)) /* close heap */
return 1;

UnmapViewOfFile(hMap); /* return memory to system */
CloseHandle(hFile);

return 0;
}

/*--*/
/* main: */
/* Main function to test creating, writing to and destroying a shared */
/* heap. */
/*--*/
int main(void)
{

int rc, i; /* for return code, loop iteration */
Heap_t uheap, oldheap; /* heap to create, old default heap */
char *p; /* for allocating from the heap */

/* */
/* Get the heap storage from the shared memory */
/* */
uheap = inithp();
if (uheap == NULL)

return 1;

/* */
/* Register uheap as default runtime heap, save old default */
/* */
oldheap = _udefault(uheap);
if (oldheap == NULL) {

return termhp(uheap);
}

/* */
/* Perform operations on uheap */
/* */
for (i = 1; i <= 5; i++)
{

p = malloc(10); /* malloc uses default heap, which is now uheap*/
memset(p, ’M’, _msize(p));

}

/* */
/* Replace original default heap and check result */
/* */
if (uheap != _udefault(oldheap)) {

Chapter 4. Using Memory Heaps 43

return termhp(uheap);
}

/* */
/* Close my views of the heap */
/* */
rc = termhp(uheap);

#ifdef DEBUG
printf(“Returning from memshr2 rc = %d\n”, rc);

#endif
return rc;

}

Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)
Types of Memory (page 29)
Debugging Memory Heaps (page 29)

Create and Use a Fixed Size Heap (page 31)
Create and Use an Expandable Heap (page 33)
Debug Programs with Heap Memory (page 35)
Change the Default Heap Used in a Program (page 37)

44 Programmer’s Guide

Chapter 5. Program Optimization

Overview of Optimization
During optimization, the compiler changes unoptimized code sequences, derived
from the source code, into equivalent optimized code sequences. The resulting
code runs faster and usually takes less space. However, during optimization,
compilation takes more time and space. In general, optimizing results in faster and
smaller programs. In addition, when you optimize your code you may uncover
bugs that were not evident before.

The decision to optimize for speed or for size depends on the goals for your
application, and the nature of the application. When you choose options to
enhance speed, the compiler generates the fastest instruction sequences possible,
but these may not be the smallest possible. Similarly, when you choose options to
reduce size, the compiler generates the smallest instruction sequences possible for
the source code, but these may not be the fastest possible.

For larger programs which are not compute-intensive, optimizing for size might
result in a faster program than one optimized for speed. This is because global
effects such as improved paging and cache performance may outweigh the local
effects of slower instruction sequences.

If both size and speed are important, consider balancing the performance by
optimizing some modules for speed, and others for size. Determine which modules
contain hotspots, and are compute-intensive: these should be optimized for speed.
All other modules should be optimized for size. To find the right balance, you may
need to experiment with different combinations of techniques.

When to Optimize
Optimize your code throughout your development cycle. Develop, test, and
optimize incrementally rather than developing and testing and then optimizing the
entire application at the end.

Because using optimization options transforms the code, the direct correspondence
between source and object code is often lost. Therefore, debugging information is
not accurate for programs compiled using the optimization option. Optimized code
is also more sensitive to subtle coding errors. For these reasons, do not use the
optimization options while you are developing your programs.

Optimization Levels in C or C++
The default is not to optimize your program. To optimize your program, specify
the -qoptimization option.

.When you specify optimization, the compiler performs a complete control and
data-flow analysis for each function. The compiler also uses global register
allocation for the whole function, allowing many variables to be kept in registers
rather than in memory.

Optimization Techniques Used by VisualAge C++ (page 46)
Enhanced Handling of Math and String Library Functions (page 48)
Debugging Optimized Code

© Copyright IBM Corp. 1998, 2002 45

Find Faster I/O Techniques (page 48)
Optimize Your Application (page 49)
Reduce Function-Call Overhead (page 50)

Coding Techniques That Can Improve Performance (page 51)
Optimization Options
Built-in Functions for PowerPC

Optimization Techniques Used by VisualAge C++

Technique Description of Technique

Value Numbering Involves constant propagation, expression
elimination, and folding of several
instructions into a single instruction.

Branch Optimizations Rearranges the program code to minimize
branching logic and to combine physically
separate blocks of code.

Common Subexpression Elimination In common expressions, the same value is
recalculated in a subsequent expression. The
duplicate expression can be eliminated by
using the previous value. This step is done
even for intermediate expressions within
expressions. For example, if your program
contains the following statements:

a = c + d;
.
.
.

f = c + d + e;

the common expression c + d is saved from
its first evaluation and is used in the
subsequent statement to determine the value
of f.

Code Motion If variables used in a computation within a
loop are not altered within the loop, the
calculation can be performed outside of the
loop and the results used within the loop.

46 Programmer’s Guide

Invariant IF Code Floating (Unswitching) Removes invariant branching code from
loops to allow opportunities for other
optimizations.

For example, in the following code segment,
the condition test and the conditional
assignment:

if (a[i]>100.0) b[i]=a[i]-3.7;
x+=a[j]+b[i];

do not change during execution of the inner
loop.

for (i=0;i<1000;i++) {
for (j=0;j<1000;j++) {

if (a[i]>100.0) b[i]=a[i]-3.7;
x+=a[j]+b[i];

}
}

The compiler translates the code into a
machine-language loop that executes as:

for (i=0;i<1000;i++) {
if (a[i]>100.00) {

b[i]=a[i]-3.7;
for (j=0;j<1000;j++) {

x+=a[j]+b[i];
}

}
else {

for (j=0;j<1000;j++) {
x+=a[j]+b[i];

}
}

}

Reassociation Rearranges the sequence of calculations in
an array-subscript expression, producing
more candidates for common-expression
elimination.

Strength Reduction Replaces less efficient instructions with more
efficient ones. For example, in array
subscripting, an add instruction replaces a
multiply instruction.

Constant Propagation Constants used in an expression are
combined, and new ones are generated.
Some implicit conversions between integer
and floating-point types are done.

Store Motion Moves store instructions out of loops.

Dead Store Elimination Eliminates stores when the value stored is
never referred to again. For example, if two
stores to the same location have no
intervening load, the first store is
unnecessary and is removed.

Dead Code Elimination Eliminates code that cannot be reached or
code whose results are not subsequently
used.

Inlining Replaces function calls with actual program
code.

Chapter 5. Program Optimization 47

Instruction Scheduling Reorders instructions to minimize execution
time.

Global Register Allocation Allocates variables and expressions to
available hardware registers using a graph
coloring algorithm.

Enhanced Handling of Math and String Library Functions (page 48)

Enhanced Handling of Math and String Library Functions
VisualAge C++ enhances run-time performance for C and C++ applications by
substituting tuned machine code for calls to the most commonly used string
processing and numerical functions in the C and C++ Standard Libraries. When
optimization is enabled, functions declared in <string.h> and <math.h> are
substituted when either <math.h> or <string.h> is included in a source file.

You can prevent this substitution without disabling optimization by undefining the
__MATH__ and/or __STR__ preprocessor macros in your configuration file.
Run-time performance of your application may be affected.

Optimization Techniques Used by VisualAge C++ (page 46)

Optimize String Manipulation (page 55)

-U Compiler Option

Find Faster I/O Techniques
There are a number of ways to improve your program’s performance of input and
output:
v Use binary streams instead of text streams. In binary streams, data is not

changed on input or output.
v Use the low-level I/O functions, such as open and close. These functions are

faster and more specific to the application than the stream I/O functions like
fopen and fclose. You must provide your own buffering for the low-level
functions.

v If you do your own I/O buffering, make the buffer a multiple of 4K, which is
the size of a page. Because malloc uses extra storage as overhead, allocating
storage in a multiple of the page size actually results in more pages being
allocated than required.

v If you know you have to process an entire file, determine the size of the data to
be read in, allocate a single buffer to read it to, read the whole file into that
buffer at once using Read, and then process the data in the buffer. This reduces
disk I/O, provided the file is not so big that excessive swapping will occur.
Consider using the mmap function to access the file.

48 Programmer’s Guide

v Instead of scanf and fscanf, use fgets to read in a string, and then use one of
atoi, atol, atof, or _atold to convert it to the appropriate format.

v Use sprintf only for complex formatting. For simpler formatting, such as string
concatenation, use a more specific string function.

v When reading input, read in a whole line at once rather than one character at a
time.

Overview of Optimization (page 45)

Optimize Your Application
Because the size of your application affects both the load time and the run-time
characteristics, it is best to do size tuning before performance tuning. Changes you
should already have considered include:
v choosing efficient algorithms with small memory footprints
v avoiding duplicate copies of data

These are guidelines only. Remember that the results of optimization depend to a
great extent on the code being optimized.

Use Function Arguments

Optimization is effective when function arguments are used. It is usually better to
pass a value as an argument to a function than to let the function take the value
from a global variable.

The #pragma isolated_call preprocessor directive lists functions that have no side
effects and do not depend on side effects. Using the pragma to list functions that
do not have side effects, that is, that do not modify global storage, can improve the
run-time performance of optimized code.

Declare Nonmember Functions as Static

Declaring nonmember functions as static whenever possible will speed up calls to
the function.

Use Multiplication Rather Than Division

Wherever possible, use multiplication rather than division. For example:
x*(1.0/3.0);

produces faster code than:
x/3.0;

Assigning the reciprocal of the divisor to a temporary variable and then
multiplying by that variable is beneficial, especially if you divide many values by
the same number in your code. The compiler attempts to do this when -qnostrict is
specified.

Expand Loops

Chapter 5. Program Optimization 49

If your program contains a short, heavily referenced for loop, consider expanding
the code to a straight sequence of statements. For example:

array[0] = b[k+1]*c[m+1];
array[1] = b[k+2]*c[m+2];
array[2] = b[k+3]*c[m+3];
array[3] = b[k+4]*c[m+4];
array[4] = b[k+5]*c[m+5];

will run faster than:
for (i = 0; i < 5; i++)

array[i] = b[k+i]*c[m+i];

The compiler performs automatic unrolling of small inner loops when -qopt=2 is
specified. In this example, the compiler unrolls the loop fully.

Minimize the Size of Object Files

To minimize the size of object files, specify the -qcompact compiler option. Using
this option may increase execution time.

Overview of Optimization (page 45)
Debugging Optimized Code

Coding Techniques That Can Improve Performance (page 51)
-qoptimize Compiler Option

Reduce Function-Call Overhead
Whether you are writing a function or calling a library function, there are a few
things you should keep in mind:

v Use virtual functions only when necessary. They are usually compiled to
be indirect calls, which are slower than direct calls.

v Usually, you should not declare virtual functions inline. If all virtual
functions in a class are inline, the virtual function table and all the virtual
function bodies will be replicated in each compilation unit that uses the class.

v Unless absolutely necessary, do not use function pointers; call functions directly.

v Fully prototype all functions. A full prototype gives the compiler and
optimizer complete information about the types of the parameters. As a result,
promotions from unwidened types to widened types are not required, and
parameters may be passed in appropriate registers.

v Avoid using unprototyped variable argument functions.
v When designing a function, place the most used parameters in one of the

left-most positions in the function prototype. The left-most 8 words of
parameters will be passed in registers.

v Avoid passing structures or unions as function parameters or returning a
structure or a union. Passing such aggregates requires the compiler to copy and
store many values. This is worse in C++ programs in which class objects are
passed by value, a constructor and destructor are called when the function is
called. Instead, pass or return a pointer to the structure or union, or pass it by
reference.

v Pass atomic types (like int and short) by value rather than passing by reference,
wherever possible.

50 Programmer’s Guide

v If your function exits by returning the value of another function with the same
parameters that were passed to your function, put the parameters in the same
order in the function prototypes. The compiler can then branch directly to the
other function.

v Use the intrinsic and built-in functions, which include string manipulation,
floating-point, and trigonometric functions, instead of coding your own. Intrinsic
functions require less overhead and are faster than a function call, and often
allow the compiler to perform better optimization. Your functions are
automatically mapped to intrinsic functions if you include the VisualAge C++
header files.

This mapping is overridden if you #undef the macro name.
v Use recursion only where necessary. Because recursion involves building a stack

frame, an iterative solution is usually faster than a recursive one, except when
the function exits by calling itself.

Overview of Optimization (page 45)

Optimize Your Application (page 49)

Coding Techniques That Can Improve Performance
Because the size of your application affects both the load time and the run-time
characteristics, it is best to do size tuning before performance tuning. Changes you
should already have considered include:
v choosing efficient algorithms with small memory footprints
v avoiding duplicate copies of data
v structuring data to minimize padding between items

If you have not already checked your program for these types of improvements, it
is best to do so before trying any of the techniques below. These are guidelines
only. Remember that the results of optimization depend to a great extent on the
code being optimized.
v Minimize the use of external (extern) variables to improve aliasing information

and TOC loads.
v Use the const qualifier whenever possible.
v When declaring C++ functions, use the const specifier whenever possible.
v Use static functions whenever possible.
v Avoid taking the address of local variables. If you use a local variable as a

temporary variable and must take its address, avoid reusing the temporary
variable. Taking the address of a local variable inhibits optimizations that would
otherwise be done on calculations involving that variable.

v Avoid using long long int types, except where absolutely necessary. Extra
instructions must be generated to perform operations on such data types.

v Use unsigned types whenever possible. Faster code can be generated for division
or modulo operations involving unsigned types.

v Make sure your data is aligned on a multiple of its size. For example, align
double types on an 8-byte boundary.

Chapter 5. Program Optimization 51

v Use constants instead of variables where possible. The optimizer will be able to
do a better job reducing run-time calculations by doing them at compile-time
instead. For instance, if a loop body has a constant number of iterations, use
constants in the loop condition to improve optimization; (for (i=0; i<4;
i++)can be better optimized than for (i=0; i<x; i++)).

v Avoid goto statements that jump into the middle of loops. Such statements
inhibit certain optimizations.

v Where possible, the most frequently accessed member of a structure should be
placed first within the structure. Since no offset is needed to access the first
member, doing so can improve size and speed.

v Improve the predictability of your code by making the fall-through path more
probable. That is, code like if (error) {handle error} else {real code}should
be written as if (!error) {real code} else {error}.

v If one or two cases of a switch are typically executed much more frequently than
other cases, break out those cases by handling them separately before the switch
statement.

v Inline your functions selectively. Inlined functions require less overhead and are
generally faster than a function call. The best candidates for inlining are small
functions that are called frequently from a few places. Large functions and
functions that are called rarely may not be good candidates for inlining. Be sure
to inline all functions that just load or store a value.

v Use try blocks for exception handling only when necessary because they
can inhibit optimization.

v Avoid performing a deep copy if a shallow copy is all you require. For an
object that contains pointers to other objects, a shallow copy copies only the
pointers and not the objects to which they point. The result is two objects that
point to the same contained object. A deep copy, however, copies the pointers
and the objects they point to, as well as any pointers or objects contained within
that object, and so on.

v When you use the Collection classes from the IBM Open Class Library
to create classes, use a high level of abstraction. After you establish the type of
access to your class, you can create more specific implementations. This can
improve performance with minimal code change.

v Use constant arguments in inlined functions whenever possible. Functions with
constant arguments provide more opportunities for optimization.

v If you have a function that is called many times from a few functions, but
infrequently from others, create a copy of the function with a different name and
inline it only in the functions that call it often.

v Pass small const parameters by value; pass large parameters by reference.

Overview of Optimization (page 45)

Reduce Function-Call Overhead (page 50)
Find Faster I/O Techniques (page 48)

52 Programmer’s Guide

Memory Management and Performance
Because C++ objects are often allocated from the heap and have limited scope,
memory use in C++ programs affects performance more than in C programs.
Points below that apply specifically to C++ are identified by
v When you declare or define structures or C++ classes, take into account the

alignment of data types. Declare the largest members first to reduce wasted
space between members and to reduce the number of boundaries the compiler
must cross. The alignment is especially important if you pack your structure or
class.

v Tailor your own new and delete operators, using the system new to
allocate an array of objects for a class, and using that class’s new to allocate
individual objects from the array.

v Ensure that objects that are no longer needed are freed or otherwise
made available for reuse. One way to do this is to use an object manager. Each
time you create an instance of an object, pass the pointer to that object to the
object manager. The object manager maintains a list of these pointers. To access
an object, you can call an object manager member function to return the
information to you. The object manager can then manage memory usage and
object reuse.

v Avoid copying large, complex objects.

Coding Techniques That Can Improve Performance (page 51)
Memory Management Functions (page 25)

Mixed-Mode Arithmetic
Avoid forcing the compiler to convert numbers between integer and floating-point
internal representations. Conversions require several instructions, including some
double-precision floating-point arithmetic, and most importantly, a store and a
load, and on some CPUs, a large memory/cache delay between storing and
loading. For example:

float array[10];
float x = 1.0;
int i;
for (i = 0; i< 9; i++) { /* No conversions needed */

array[i] = array[i]*x;
x = x + 1.0;

}
for (i = 0; i< 9; i++) /* Multiple conversions needed */

array[i] = array[i]*i;

When you must use mixed-mode arithmetic, code the integer and floating-point
arithmetic in separate computations wherever possible.

Overview of Optimization (page 45)

Expressions
If components of an expression are duplicate expressions, code them either at the
left end of the expression or within parentheses. For example:

a = b*(x*y*z); /* Duplicates recognized */
c = x*y*z*d;
e = f + (x + y);

Chapter 5. Program Optimization 53

g = x + y + h;
a = b*x*y*z; /* No duplicates recognized */
c = x*y*z*d;
e = f + x + y;
g = x + y + h;

When components of an expression in a loop are constant, or loop-invariant, code
the expressions either at the left end of the expression, or within parentheses. If c,
d, and e are constant and v, w, and x are variable, the following examples show
the difference in evaluation:

v*w*x*(c*d*e); /* Constant expressions recognized */
c + d + e + v + w + x;
v*w*x*c*d*e; /* Optimization required for constant */
v + w + x + c + d + e; /* expressions to be recognized */

When -qoptimize=2 is used, integer constant or loop-invariant expressions will be
recognized regardless of order or parenthesizing.

Overview of Optimization (page 45)

Optimization Options

Variables and Optimization
Use local variables, preferably automatic variables, as much as possible. The
compiler can accurately analyze the use of local variables, but it has to make
several worst-case assumptions about global variables. These assumptions tend to
hinder optimization. For example, if you write a function that uses external
variables, and that function also calls external functions, the compiler assumes that
every call to an external function could change the value of every external variable.
If you know that none of the function calls affects the global variables that you are
using, and you have to read them frequently with function calls interspersed, copy
the global variables to local variables and then use these local variables. The
compiler can then perform optimization that it could not otherwise perform.

If you must use global variables, use static variables with file scope rather than
external variables wherever possible. In a file with several related functions and
static variables, the optimizer can gather and use more information about how the
variables are affected.

To access an external variable, the compiler has to make an extra memory access to
obtain the address of the variable. When the compiler removes extraneous address
loads, it has to use a register to keep the address. Using many external variables
simultaneously takes up many registers. Those that cannot fit into registers during
optimization are spilled into memory. Because all elements of an external structure
use the same base address, you should group external data into structures or
arrays wherever it makes sense to do so.

The #pragma isolated_call preprocessor directive can improve the run-time
performance of optimized code by allowing the compiler to make less pessimistic
assumptions about the storage of external and static variables. Isolated_call
functions with constant or loop-invariant parameters may be moved out of loops,
and multiple calls with the same parameters may be replaced with a single call.

54 Programmer’s Guide

Because the compiler treats register variables the same as it does automatic
variables, you do not gain anything by declaring register variables. Note that this
differs from other implementations, where using the register attribute can greatly
affect program performance.

Overview of Optimization (page 45)

Example of Using Volatile Variables (page 22)

Optimize String Manipulation
The handling of string operations can affect the performance of your program.
v When you store strings into allocated storage, align the start of the string on a

4-byte boundary. This allows the best performance of the string functions. The
compiler performs this alignment for all strings it allocates.

v Keep track of the length of your strings. If you know the length of your string,
you can use mem functions instead of str functions. For example, memcpy is
faster than strcpy because it does not have to search for the end of the string.

v When manipulating strings using mem functions, faster code will be generated if
the count parameter is a constant rather than a variable. This is especially true
for small count values.

v Avoid using strtok. Because this function is very general, you can probably write
a function more specific to your application and get better performance.

String literals are read-only by default. Placing them into read-only memory allows
for certain types of optimizations and also causes the compiler to put out only one
copy of strings that are used in more than one place. If you use the intrinsic string
functions, the compiler can better optimize them if it knows that any string literals
it is operating on will not be changed.

You can explicitly set strings to read-only by using #pragma strings (readonly) in
your source files or -qro to avoid changing your source files.

Overview of Optimization (page 45)

Enhanced Handling of Math and String Library Functions (page 48)

Chapter 5. Program Optimization 55

56 Programmer’s Guide

Chapter 6. Floating Point Operations

Floating Point Hardware
Single precision values have an approximate range of 10(-38) to 10(+38), with about
7 decimal digits of precision. Double precision values have an approximate range
of 10(-308) to 10(+308) and precision of about 16 decimal digits. Quadruple
precision values have the same range as double precision values, but the precision
is about 29 decimal points.

When results must be converted to single precision, rounding operations are used.
A rounding operation produces the correct single-precision value based on the
IEEE rounding mode in effect. Because explicit rounding operations are required,
single-precision computations are often slower than double precision computations.
On many other machines the reverse is true: single-precision operations are faster
than double-precision operations. Code ported from other systems can show
different performance on a RISC System/6000 Power or Power2 computer.

The floating-point hardware in the RISC/6000 Power and Power2 families
performs all computations in IEEE double precision, equivalent to double in C and
C++ programs. Single-precision (float) values are automatically converted to
double precision before they are used, and all results are calculated in double
precision. Double precision provides greater range and precision than single
precision does. Quadruple precision (long double) operations are slower than
double precision operations, and some are significantly slower.

The RISC System/6000 hardware also provides a special set of double-precision
operations that multiply two numbers and add a third number to the product.
These combined multiply-add (maf) operations are performed in the same time as
a multiply or an add operation alone. The maf functions provide an extension to
the IEEE standard because they perform the multiply and add with one (rather
than two) rounding errors. The maf functions are both faster and more accurate
than the equivalent separate operations. Use the gen(float,maf,no) option to
suppress the generation of these multiply-add instructions for greater compatibility
with the accuracy available on other systems.

Note: The PowerPC hardware platforms can perform most computations in IEEE
single precision. The instruction set used to generate code is determined by the
setting of the -qarch option.

Detecting Floating-Point Exceptions
A number of floating-point exceptions can be detected by the floating-point
hardware: invalid operation, division by zero, overflow, underflow, and inexact. By
default, all exceptions are ignored. However, if you use the -qflttrap option, any or
all of these exceptions can be detected. In addition, when you add suitable support
code to your program, program execution can continue after an exception occurs,
and you can then modify the results of operations causing exceptions.

Refer to “Floating-Point Processor Overview” and “Floating-Point Exceptions” in
the AIX Assembler Language Reference for more information about RISC
System/6000 and pSeries floating-point processing.

© Copyright IBM Corp. 1998, 2002 57

Compile-Time Floating Point Arithmetic (page 58)

Rounding Mode Restrictions (page 59)
-qfloat Compiler Option

Compile-Time Floating-Point Arithmetic
The compiler attempts to perform as much floating-point arithmetic as possible at
compile time. Floating-point operations with constant operands are folded,
replacing the operation with the result calculated at compile time. When
optimization is enabled, more folding might occur than when optimization is not
enabled.

All compile-time folding of floating-point computations can be suppressed using
the -qfloat=nofold option. Alternatively, the IEEE rounding mode used in
compile-time arithmetic can be controlled using the -qfloat options.

Compile-time floating-point arithmetic can have two effects on program results:
v In specific cases, the result of a computation at compile time might differ slightly

from the result that would have been calculated at run time. The reason is that
more rounding operations occur at compile time. For example, where a maf
operation might be used at run time, separate multiply and add operations
might be used at compile time, producing a slightly different result.

v Computations that produce exceptions can be folded to the IEEE result that
would have been produced by default in a run-time operation. This would
prevent an exception from occurring at run time. When using the flttrap option,
you should consider using the gen(float,fold,no) option.

In general, code that affects the rounding mode at run time should be compiled
with the -y option that matches the rounding mode intended at run time. For
example, when the following program:

main ()
{

union uu
{

float x;
int i;

} u;
volatile float one, three;

u.x=1.0/3.0;
printf(“1/3=%8x \n”, u.i);

one=1.0
three=3.0;
u.x=one/three;
printf (“1/3=%8x \n”, u.i);

}

is compiled using -yz, the expression 1.0/3.0 is folded by the compiler at compile
time into a double-precision result. This result is then converted to single-precision
and then stored in float u.x. The -qfloat=nofold option can be specified to suppress
all compile-time folding of floating-point computations. The -y option only affects
compile-time rounding of floating-point computations, but does not affect run time
rounding. The code fragment:

58 Programmer’s Guide

one = 1.0;
three = 3.0;
x = one/three;

is evaluated at run time in single-precision. Here, the default run-time rounding of
“round to nearest” is still in effect and takes precedence over the compile-time
specification of “round to zero”. The output of this program is:
1/3=3eaaaaaa
1/3=3eaaaaab

Rounding Mode Restrictions (page 59)

-qfloat Compiler Option

Rounding Mode Restrictions
The floating-point rounding mode can only be changed at the beginning and end
of a function. It cannot be changed across a function call, and if it is changed
within a function, it must be restored before returning to the calling routine.

Compile-Time Floating-Point Arithmetic (page 58)

Chapter 6. Floating Point Operations 59

60 Programmer’s Guide

Chapter 7. USL Input/Output Stream Classes

USL I/O Streaming
This section refers to the USL I/O Stream Library.

VisualAge C++ comes with ANSI-compliant stream classes. We recommend that
you use these stream classes instead to develop thread-safe applications. The
ANSI-compliant stream classes are part of the Standard C++ Library.

The USL I/O Stream Library provides the standard input and output capabilities
for C++. In C++, input and output are described in terms of streams. The
processing of these streams is done at two levels. The first level treats the data as
sequences of characters; the second level treats it as a series of values of a
particular type.

There are two primary base classes for the USL I/O Stream Library:
1. The streambuf class and the classes derived from it (strstreambuf, stdiobuf, and

filebuf) implement the stream buffers. Stream buffers act as temporary
repositories for characters that are coming from the ultimate producers of input
or are being sent to the ultimate consumers of output.

2. The ios class maintains formatting and error-state information for these streams.
The classes derived from ios implement the formatting of these streams. This
formatting involves converting sequences of characters from the stream buffer
into values of a particular type and converting values of a particular type into
their external display format.

The USL I/O Stream Library predefines streams for standard input, standard
output, and standard error. If you want to open your own streams for input or
output, you must create an object of an appropriate I/O Streams class. The
iostream constructor takes as an argument a pointer to a streambuf object. This
object is associated with the device, file, or array of bytes in memory that is going
to be the ultimate producer of input or the ultimate consumer of output.

Input and Output for User-Defined Classes
You can overload the input and output operators for the classes that you create
yourself. Once you have overloaded the input and output operators for a class,
you can perform input and output operations on objects of that class in the same
way that you would perform input and output on char, int, double, and the other
built-in types.

USL I/O Stream Class Hierarchy (page 62)
USL I/O Stream Header Files (page 63)
Stream Buffers (page 69)
Format State Flags (page 71)
Manipulators (page 71)
The I/O Stream Classes and stdio.h

© Copyright IBM Corp. 1998, 2002 61

The USL I/O Stream Class Hierarchy
The USL I/O Stream Library has two base classes, streambuf and ios:

The streambuf class implements stream buffers. streambuf is the base class for the
following classes:
v strstreambuf
v stdiobuf
v filebuf

The ios class maintains formatting and error state information for streams. Streams
are implemented as objects of the following classes that are derived from ios:
v stdiostream
v istream
v ostream

The classes that are derived from ios are themselves base classes.

The istream class is the input stream class. It implements stream buffer input, or
input operations. The following classes are derived from istream:
v istrstream
v ifstream
v istream_withassign
v iostream

The ostream class is the output stream class. It implements stream buffer output,
or output operations. The following classes are derived from ostream:
v ostrstream

62 Programmer’s Guide

v ofstream
v ostream_withassign
v iostream

The iostream class combines istream and ostream to implement input and output
to stream buffers. The following classes are derived from iostream:
v strstream
v iostream_withassign
v fstream

The USL I/O Stream Library also defines other classes, including fstreambase and
strstreambase. These classes are meant for the internal use of the USL I/O Stream
Library. Do not use them directly.

USL I/O Streaming (page 61)

USL I/O Stream Header Files
To use a USL I/O Stream class, you must include the appropriate header files for
that class. The following lists USL I/O Stream header files and the classes that they
cover:

The header file iostream.h contains declarations for the basic classes:
v strstreambuf
v ios
v istream
v istream_withassign
v ostream
v ostream_withassign
v iostream
v iostream_withassign

The header file fstream.h contains declarations for the classes that deal with files:
v filebuf
v ifstream
v ofstream
v fstream

The header file stdiostream.h contains declarations for stdiobuf and stdiostream,
the classes that specialize streambuf and ios, respectively, to use the FILE
structures defined in the C header file stdio.h.

The 8.3 file naming convention compliant name of this file is stdiostr.h.

The header file strstream.h contains declarations for the classes that deal with
character strings.

The 8.3 file naming convention compliant name of this file is strstrea.h.
The first “str” in each of these names stands for “string”:
v istrstream
v ostrstream
v strstream

Chapter 7. USL Input/Output Stream Classes 63

v strstreambuf

The header file iomanip.h contains declarations for the parameterized
manipulators. Manipulators are values that you can insert into streams or extract
from streams to affect or query the behavior of the streams.

The header file stream.h is used for compatibility with earlier versions of the USL
I/O Stream Library. It includes iostream.h, fstream.h, stdiostream.h, and iomanip.h,
along with some definitions needed for compatibility with the AT&T C++
Language System Release 1.2. Only use this header file with existing code; do not
use it with new C++ code.

If you use the obsolete function form() declared in stream.h, there is a limit to the
size of the format specifier. If you call form() with a format specifier string longer
than this limit, a runtime message will be generated and the program will
terminate.

USL I/O Streaming (page 61)

Open a File for Input and Read from the File
Use the following steps to open a file for input and to read from the file.
1. Construct an fstream or ifstream object to be associated with the file. The file

can be opened during construction of the object, or later.
z/OS C/C++ provides overloads of the fstream and ifstream

constructors and their open() functions, which allow you to specify file
attributes such as lrecl and recfm.

2. Use the name of the fstream or ifstream object and the input operator or other
input functions of the istream class, to read the input.

3. Close the file by calling the close() member function or by implicitly or
explicitly destroying the fstream or ifstream object.

Construct an fstream or ifstream Object for Input
You can open a file for input in one of two ways:
v Construct an fstream or ifstream object for the file, and call open() on the object:

#include <fstream.h>
int main(int argc, char *argv[]) {

fstream infile1;
ifstream infile2;
infile1.open(“myfile.dat”,ios::in);
infile2.open(“myfile.dat”);
// ...

}

v Specify the file during construction, so that open() is called automatically:
#include <fstream.h>
int main(int argc, char *argv[]) {

fstream infile1(“myfile.dat”,ios::in);
ifstream infile2(“myfile.dat”);
// ...

}

The only difference between opening the file as an fstream or ifstream object is
that, if you open the file as an fstream object, you must specify the input mode
(ios::in). If you open it as an ifstream object, it is implicitly opened in input mode.
The advantage of using ifstream rather than fstream to open an input file is that, if

64 Programmer’s Guide

you attempt to apply the output operator to an ifstream object, this error will be
caught during compilation. If you attempt to apply the output operator to an
fstream object, the error is not caught during compilation, and may pass unnoticed
at runtime.

The advantage of using fstream rather than ifstream is that you can use the same
object for both input and output. For example:
// Using fstream to read from and write to a file

#include <fstream.h>
int main(int argc, char *argv[]) {

char q[40];
fstream myfile(“test.txt”,ios::in); // open the file for input
myfile >> q; // input from myfile into q
myfile.close(); // close the file
myfile.open(“test.txt”,ios::app); // reopen the file for output
myfile << q << endl; // output from q to myfile
myfile.close(); // close the file
return 0;

}

This example opens the same file first for input and later for output. It reads in a
character string during input, and writes that character string to the end of the
same file during output. Let’s assume that the contents of the file test.txt before the
program is run are:
barbers often shave

In this case, the file contains the following after the program is run:
barbers often shave
barbers

Note that you can use the same fstream object to access different files in sequence.
In the above example, myfile.open(“test.txt”,ios::app) could have read
myfile.open(“test.out”,ios::app) and the program would still have compiled and
run, although the end result would be that the first string of test.txt would be
appended to test.out instead of to test.txt itself.

Read Input from a File
The statement myfile >> a reads input into a from the myfile stream. Input from
an fstream or ifstream object resembles input from the standard input stream cin,
in all respects except that the input is a file rather than standard input, and you
use the fstream object name instead of cin. The two following programs produce
the same output when provided with a given set of input. In the case of stdin.C,
the input comes from the standard input device. In the case of filein.C, the input
comes from the file file.in:

Chapter 7. USL Input/Output Stream Classes 65

stdin.C filein.C

#include <iostream.h>

int main(int argc, char *argv[]) {
int ia,ib,ic;
char ca[40],cb[40],cc[40];
// cin is predefined
cin >> ia >> ib >> ic

>> ca;
cin.getline(cb,sizeof(cb),’\n’);
cin >> cc;
// no need to close cin
cout << ia << ca

<< ib << cb
<< ic << cc << endl;

return 0;
}

#include <fstream.h>

int main(int argc, char *argv[]) {
int ia,ib,ic;
char ca[40],cb[40],cc[40];
fstream myfile(“file.in”,ios::in);
myfile >> ia >> ib >> ic

>> ca;
myfile.getline(cb,sizeof(cb),’\n’);
myfile >> cc;
myfile.close();
cout << ia << ca

<< ib << cb
<< ic << cc << endl;

return 0;
}

In both examples, the program reads the following, in sequence:
1. Three integers
2. A whitespace-delimited string
3. A string that is delimited either by a new-line character or by a maximum

length of 39 characters.
4. A whitespace-delimited string.

When you define an input operator for a class type, this input operator is available
both to the predefined input stream cin and to any input streams you define, such
as myfile in the above example.

All techniques for reading input from the standard input stream can also be used
to read input from a file, providing your code is changed so that the cin object is
replaced with the name of the fstream object associated with the input file.

USL I/O Streaming (page 61)

Combine Input and Output of Different Types
Use Predefined Streams
Receive Input from Standard Input
Display Output from Standard Output or Standard Error
Flush Output Streams with endl and flush
Parse Multiple Inputs
Open a File for Output and Write to the File (page 67)
Associate a File with a Standard Input or Output Stream
Move through a File with filebuf Functions
Define an Input Operator for a Class Type
Define an Output Operator for a Class Type
Correct Input Stream Errors
Format Stream Output
Define Your Own Format State Flags
Manipulate Strings with the strstream Classes (page 68)
Create Manipulators (page 73)

66 Programmer’s Guide

Open a File for Output and Write to the File
To open a file for output, use the following steps:
1. Declare an fstream or ofstream object to associate with the file, and open it

either when the object is constructed, or later:
#include <fstream.h>
int main(int argc, char *argv[]) {

fstream file1(“file1.out”,ios::app);
ofstream file2(“file2.out”);
ofstream file3;
file3.open(“file3.out”);
return 0;

}

You must specify one or more open modes when you open the file, unless you
declare the object as an ofstream object. The advantage of accessing an output
file as an ofstream object rather than as an fstream object is that the compiler
can flag input operations to that object as errors.

z/OS C/C++ provides overloads of the fstream and ofstream
constructors and their open() functions, which allow you to specify file
attributes such as lrecl and recfm. Refer to the IBM Open Class Reference for
more information.

2. Use the output operator or ostream member functions to perform output to the
file.

3. Close the file using the close() member function of fstream.

When you define an output operator for a class type, this output operator is
available both to the predefined output streams and to any output streams you
define.

USL I/O Streaming (page 61)

Combine Input and Output of Different Types
Use Predefined Streams
Receive Input from Standard Input
Display Output from Standard Output or Standard Error
Flush Output Streams with endl and flush
Parse Multiple Inputs
Open a File for Input and Read from the File (page 64)
Associate a File with a Standard Input or Output Stream
Move through a File with filebuf Functions
Define an Input Operator for a Class Type
Define an Output Operator for a Class Type
Correct Input Stream Errors
Format Stream Output
Define Your Own Format State Flags
Manipulate Strings with the strstream Classes (page 68)
Create Manipulators (page 73)

Chapter 7. USL Input/Output Stream Classes 67

Manipulate Strings with the strstream Classes
You can use the strstream classes to perform formatted input and output to arrays
of characters in memory. If you create formatted strings using these classes, your
code will be less error-prone than if you use the sprintf() function to create
formatted arrays of characters.

You can use the strstream classes to retrieve formatted data from strings and to
write formatted data out to strings. This capability can be useful in situations such
as the following:
v Your application needs to send formatted data to an external function that will

display, store, or print the formatted data. In such cases, your application, rather
than the external function, formats the data.

v Your application generates a sequence of formatted outputs, and requires the
ability to change earlier outputs as later outputs are determined and placed in
the stream, before all outputs are sent to an output device.

v Your application needs to parse the environment string or another string already
in memory, as if that string were formatted input.

You can read input from an strstream, or write output to it, using the same I/O
operators as for other streams. You can also write a string to a stream, then read
that string as a series of formatted inputs. In the following example, the function
add() is called with a string argument containing representations of a series of
numeric values. The add() function writes this string to a two-way strstream object,
then reads double values from that stream, and sums them, until the stream is
empty. add() then writes the result to an ostrstream, and returns
OutputStream.str(), which is a pointer to the character string contained in the
output stream. This character string is then sent to cout by main().
// Using the strstream classes to parse an argument list

#include <strstream.h>
char* add(char*);

int main(int argc, char *argv[])
{

cout << add(“1 27 32.12 518”) << endl;
return 0;

}

char* add(char* addString)
{

double value=0,sum=0;
strstream TwoWayStream;
ostrstream OutputStream;
TwoWayStream << addString << endl;
for (;;)
{

TwoWayStream >> value;
if (TwoWayStream) sum+=value;
else break;

}
OutputStream << “The sum is: ” << sum << “.” << ends;
return OutputStream.str();

}

This program produces the following output:
The sum is: 578.12.

USL I/O Streaming (page 61)

68 Programmer’s Guide

Combine Input and Output of Different Types
Use Predefined Streams
Receive Input from Standard Input
Display Output from Standard Output or Standard Error
Flush Output Streams with endl and flush
Parse Multiple Inputs
Open and Read from Files (page 64)
Open and Write to Files (page 67)
Associate a File with a Standard Input or Output Stream
Move through a File with filebuf Functions
Define an Input Operator for a Class Type
Define an Output Operator for a Class Type
Correct Input Stream Errors
Format Stream Output
Define Your Own Format State Flags
Create Manipulators (page 73)

Stream Buffers
One of the most important concepts in the USL I/O Stream Library is the stream
buffer. The streambuf class implements some of the member functions that define
stream buffers, but other specialized member functions are left to the classes that
are derived from streambuf: strstreambuf, stdiobuf, and filebuf.

The AT&T and UNIX System Laboratories C++ Language System documentation
use the terms reserve area and buffer instead of stream buffer.

What Does a Stream Buffer Do?
A stream buffer acts as a buffer between the ultimate producer (the source of data)
or ultimate consumer (the target of data) and the member functions of the classes
derived from ios that format this raw data. The ultimate producer can be a file, a
device, or an array of bytes in memory. The ultimate consumer can also be a file, a
device, or an array of bytes in memory.

Why Use a Stream Buffer?
In most operating systems, a system call to read data from the ultimate producer
or write it to the ultimate consumer is an expensive operation. If your applications
can reduce the number of system calls they have to make, they will usually be
more efficient. By acting as a buffer between the ultimate producer or ultimate
consumer and the formatting functions, a stream buffer can reduce the number of
system calls that are made.

Consider, for example, an application that is reading data from the ultimate
producer. If there is no buffer, the application has to make a system call for each
character that is read. However, if the application uses a stream buffer, system calls
will only be made when the buffer is empty. Each system call will read enough
characters from the ultimate producer (if they are available) to fill the buffer again.

The main reason to use stream buffers on the z/OS is to ensure optimal
portability.

How is a stream buffer implemented?
A stream buffer is implemented as an array of bytes. For each stream buffer,
pointers are defined that point to elements in this array to define the get area (the

Chapter 7. USL Input/Output Stream Classes 69

space that is available to accept bytes from the ultimate producer), and the put area
(the space that is available to store bytes that are on their way to the ultimate
consumer.

A stream buffer does not necessarily have separate get and put areas:
v A stream buffer that is used for input, such as one that is attached to an istream

object, has a get area.
v A stream buffer that is used for output, such as the one that is attached to an

ostream object, has a put area.
v A stream buffer that is used for both input and output, such as the one that is

attached to an iostream object, has both a get area and a put area.
v In stream buffers implemented by the filebuf class that are specialized to use

files as an ultimate producer or ultimate consumer, the get and put areas
overlap.

The following member functions of the streambuf class return pointers to
boundaries of areas in a stream buffer:

Member function Description

base Returns a pointer to the beginning of the
stream buffer.

eback Returns a pointer to the beginning of the
space available for putback. Characters that
are putback are returned to the get area of
the stream buffer.

gptr Returns the get pointer (a pointer to the
beginning of the get area). The space
between gptr and egptr has been filled by
the ultimate producer.

egptr Returns a pointer to the end of the get area.

pbase Returns a pointer to the beginning of the
space available for the put area.

pptr Returns the put pointer (a pointer to the
beginning of the put area). The space
between pbase and pptr is filled with bytes
that are waiting to be sent to the ultimate
consumer. The space between pptr and
epptr is available to accept characters from
the application program that are on their
way to the ultimate consumer.

epptr Returns a pointer to the end of the put area.

ebuf Returns a pointer to the end of the stream
buffer.

In the actual implementation of stream buffers, the pointers returned by these
functions point at char values. In the abstract concept of stream buffers, on the
other hand, these pointers point to the boundary between char values. To establish
a correspondence between the abstract concept and the actual implementation, you
should think of the pointers as pointing to the boundary just before the character
that they actually point at.

The following diagram is the structure of a stream buffer:

70 Programmer’s Guide

USL I/O Streaming (page 61)

Format State Flags
The ios class defines an enumeration of format state flags that you can use to affect
the formatting of data in USL I/O streams. The following list shows the formatting
features and the format flags that control them:
v Whitespace and padding: ios::skipws, ios::left, ios::right, ios::internal
v Base conversion: ios::dec, ios::hex, ios::oct, ios::showbase
v Integral formatting: ios::showpos
v Floating-point formatting: ios::fixed, ios::scientific, ios::showpoint
v Uppercase and lowercase: ios::uppercase
v Buffer flushing: ios::stdio, ios::unitbuf

USL I/O Streaming (page 61)

Manipulators
Manipulators provide a convenient way of changing the characteristics of an input
or output stream, using the same syntax that is used to insert or extract values.
With manipulators, you can embed a function call in an expression that contains a
series of insertions or extractions. Manipulators usually provide shortcuts for
sequences of iostream library operations.

The iomanip.h header file contains a definition for a macro IOMANIPdeclare().
IOMANIPdeclare() takes a type name as an argument and creates a series of
classes you can use to define manipulators for a given kind of stream. Calling the
macro IOMANIPdeclare() with a type as an argument creates a series of classes
that let you define manipulators for your own classes. If you call
IOMANIPdeclare() with the same argument more than once in a file, you will get a
syntax error.

Simple Manipulators and Parameterized Manipulators
There are two kinds of manipulators: simple and parameterized.

Chapter 7. USL Input/Output Stream Classes 71

Simple manipulators do not take any arguments. The following classes have
built-in simple manipulators:
v ios
v istream
v ostream

Parameterized manipulators require one or more arguments. setfill (near the
bottom of the iomanip.h header file) is an example of a parameterized manipulator.
You can create your own parameterized manipulators and your own simple
manipulators.

ios Methods and Manipulators
For some of the format flags defined for the ios class, you can set or clear them
using an ios function and a flag name, or by using a manipulator. With
manipulators you can place the change to a stream’s state within a list of outputs
for that stream.

USL I/O Streaming (page 61)

Create Manipulators (page 73)

Thread Safety and USL I/O Streaming
The USL I/O Stream Library provides thread safety at the object level. This means
that it is safe to have multiple threads manipulate the same object. This library
provides streaming operators for the built in C++ types. With object level thread
safety, the output from one streaming operator will be streamed in entirety before
the next. However, in a multi-threaded environment, there is no guarantee that the
output from one streaming operator on the same thread will appear immediately
after the output from the preceding streaming operator. For example, given the
following scenario, either result may occur:

Scenario:

thread 1 cout << anInt1 << aString1;

thread 2 cout << anInt2 << aString2;

Result:

Desired anInt1 aString1 anInt2 aString2

Possible anInt1 aString1 aString2 anInt2

If order of output from separate threads is important, then explicit programmer
serialization is required.

On z/OS, to run in a multi-threaded environment, the z/OS UNIX kernel
must be available and active.

USL I/O Streaming (page 61)

72 Programmer’s Guide

Create Manipulators
Create Simple Manipulators for Your Own Types
The USL I/O Stream Library gives you the facilities to create simple manipulators
for your own types. Simple manipulators that manipulate istream objects are
accepted by the following input operators:

istream istream::operator>> (istream&, istream& (*f) (istream&));
istream istream::operator>> (istream&, ios&(*f) (ios&));

Simple manipulators that manipulate ostream objects are accepted by the following
output operators:

ostream ostream::operator<< (ostream&, ostream&(*f) (ostream&));
ostream ostream::operator<< (ostream&, ios&(*f) (ios&));

The definition of a simple manipulator depends on the type of object that it
modifies. The following table shows sample function definitions to modify istream,
ostream, and ios objects.

Class of object Sample function definition

istream istream &fi(istream&){ /*...*/ }

ostream ostream &fo(ostream&){ /*...*/ }

ios ios &fios(ios&){ /*...*/ }

For example, if you want to define a simple manipulator line that inserts a line of
dashes into an ostream object, the definition could look like this:

ostream &line(ostream& os)
{

return os << “\n--------------------------------”
<< “--------------------------------\n”;

}

Thus defined, the line manipulator could be used like this:
cout << line << “WARNING! POWER-OUT IS IMMINENT!” << line << flush;

This statement produces the following output:
--
WARNING! POWER-OUT IS IMMINENT!
--

Create Parameterized Manipulators for Your Own Types
The USL I/O Stream Library gives you the facilities to create parameterized
manipulators for your own types. Follow these steps to create a parameterized
manipulator that takes an argument of a particular type tp:
1. Call the macro IOMANIPdeclare(tp). Note that tp must be a single identifier.

For example, if you want tp to be a reference to a long double value, use
typedef to make a single identifier to replace the two identifiers that make up
the type label long double:

typedef long double& LONGDBLREF

2. Determine the class of your manipulator. If you want to define an APP
Parameterized manipulator, choose a class that has APP in its name (an APP
class, also known as an applicator). If you want to define a MANIP
Parameterized manipulator, choose a class that has MANIP in its name (a
MANIP class). Once you have determined which type of class to use, the
particular class that you choose depends on the type of object that the

Chapter 7. USL Input/Output Stream Classes 73

manipulator is going to manipulate. The following table shows the class of
objects to be modified, and the corresponding manipulator classes.

Class to be modified Manipulator class

istream IMANIP(tp) or IAPP(tp)

ostream OMANIP(tp) or OAPP(tp)

iostream IOMANIP(tp) or IOAPP(tp)

The ios part of istream objects or ostream
objects

SMANIP(tp) or SAPP(tp)

3. Define a function f that takes an object of the class tp as an argument. The
definition of this function depends on the class you chose in step 2, and is
shown in the following table:

Class chosen Sample definition

IMANIP(tp) or IAPP(tp) istream &f(istream&, tp){/ *... */ }

OMANIP(tp) or OAPP(tp) ostream &f(ostream&, tp){/* ... */ }

IOMANIP(tp) or IOAPP(tp) iostream &f(iostream&, tp){/* ... */ }

SMANIP(tp) or SAPP(tp) ios &f(ios&, tp){/* ... */ }

4. Define the manipulator.
Parameterized manipulators defined with IOMANIP or IOAPP are not
associative. This means that you cannot use such manipulators more than once
in a single output statement.

USL I/O Streaming (page 61)

Define an APP Parameterized Manipulator (page 74)
Define a MANIP Parameterized Manipulator (page 75)
Define Nonassociative Parameterized Manipulators (page 76)

Define an APP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the
user-defined class my_class as an argument. One of the classes that is produced,
OAPP(my_class), is used to define the manipulator pre_print.
// Creating and using parameterized manipulators

#include <iomanip.h>

// declare class

class my_class {
public:

char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {}

};

// print a character an indicated number of times
// followed by a string

74 Programmer’s Guide

ostream& produce_prefix(ostream& o, my_class mc) {
for (register i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;
return o;

}

IOMANIPdeclare(my_class);

// define a manipulator for the class my_class
OAPP(my_class) pre_print=produce_prefix;

int main(int argc, char *argv[]) {
my_class obj(“Hello”,’-’,10);
cout << pre_print(obj) << endl;
return 0;

}

This program produces the following output:
----------Hello

USL I/O Streaming (page 61)

Create Manipulators (page 73)
Define a MANIP Parameterized Manipulator (page 75)
Define Nonassociative Parameterized Manipulators (page 76)

Define a MANIP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the
user-defined class my_class as an argument. One of the classes that is produced,
OMANIP(my_class), is used to define the manipulator pre_print().
#include <iostream.h>
#include <iomanip.h>

class my_class {
public: char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {};

};

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register int i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;
return o;

}

IOMANIPdeclare(my_class);

// define a manipulator for the class my_class

OMANIP(my_class) pre_print(my_class mc) {
return OMANIP(my_class) (produce_prefix,mc);

}

int main(int argc, char *argv[]) {
my_class obj(“Hello”,’-’,10);
cout << pre_print(obj) << “\0” << endl;
return 0;

}

This example produces the following output:

Chapter 7. USL Input/Output Stream Classes 75

----------Hello

USL I/O Streaming (page 61)

Create Manipulators (page 73)
Define an APP Parameterized Manipulator (page 74)
Define Nonassociative Parameterized Manipulators (page 76)

Define Nonassociative Parameterized Manipulators
The following example demonstrates that parameterized manipulators defined
with IOMANIP or IOAPP are not associative. The parameterized manipulator
mysetw() is defined with IOMANIP. mysetw() can be applied once in any
statement, but if it is applied more than once, it causes a compile-time error. To
avoid such an error, put each application of mysetw into a separate statement.
// Nonassociative parameterized manipulators

#include <iomanip.h>

iostream& f(iostream & io, int i) {
io.width(i);
return io;

}

IOMANIP (int) mysetw(int i) {
return IOMANIP(int) (f,i);

}

iostream_withassign ioswa;

int main(int argc, char *argv[]) {
ioswa = cout;
int i1 = 8, i2 = 14;
//
// The following statement does not cause a compile-time
// error.
//
ioswa << mysetw(3) << i1 << endl;
//
// The following statement causes a compile-time error
// because the manipulator mysetw is applied twice.
//
ioswa << mysetw(3) << i1 << mysetw(5) << i2 << endl;
//
// The following statements are equivalent to the previous
// statement, but they do not cause a compile-time error.
//
ioswa << mysetw(3) << i1;
ioswa << mysetw(5) << i2 << endl;
return 0;

}

USL I/O Streaming (page 61)

Create Manipulators (page 73)
Define an APP Parameterized Manipulator (page 74)
Define a MANIP Parameterized Manipulator (page 75)

76 Programmer’s Guide

Chapter 8. USL Complex Math Classes

Complex Mathematics Library Overview
The Complex Mathematics Library provides you with the facilities to manipulate
complex numbers and to perform standard mathematical operations on them. This
library is comprised of two classes:
v complex is the class that lets you manipulate complex numbers
v c_exception is the class that you use to handle errors created by the functions

and operations in the complex class.

The Complex Mathematics Library provides you with the following functionality:
v Mathematical operators with the same precedence as the corresponding real

operators. With these operators, you can code expressions on complex numbers.
v Mathematical, trigonometric, magnitude, and conversion functions as friend

functions of complex objects.
v Predefined mathematical constants.
v Input and output operators for USL I/O Stream Library input and output:

Complex numbers are written to the output stream in the format (real,imag).
Complex numbers are read from the input stream in one of two formats:
(real,imag) or real.

v The c_exception class to handle errors. You can also define your own version of
the error handling function.

Review of Complex Numbers (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)
Mathematical Operators for complex (page 79)
Friend Functions for complex (page 80)
Input and Output Operators for complex (page 81)
Error Functions (page 81)

Construct complex Objects (page 82)
Handle complex Mathematics Errors (page 86)
Example: Calculate Roots (page 88)
Example: Use Equality and Inequality Operators (page 90)

Review of Complex Numbers
A complex number is made up of two parts: a real part and an imaginary part. A
complex number can be represented by an ordered pair (a, b), where a is the value
of the real part of the number and b is the value of the imaginary part. If (a, b) and
(c,d) are complex numbers, then the following statements are true:
v (a, b) + (c, d) = (a + c, b + d)
v (a, b) - (c, d) = (a - c, b - d)
v (a, b) * (c, d) = (ac - bd, ad + bc)
v (a, b) / (c, d) = ((ac + bd) / (c^2 + d^2), (bc - ad) / (c^2 + d^2))

© Copyright IBM Corp. 1998, 2002 77

v The conjugate of a complex number (a,b) is (a,-b)
v The absolute value or magnitude of a complex number (a,b) is the positive

square root of the value a^2 + b^2
v The polar representation of (a, b) is (r, theta), where r is the distance from the

origin to the point (a, b) in the complex plane, and theta is the angle from the
real axis to the vector (a, b) in the complex plane. The angle theta can be positive
or negative. The following figure illustrates the polar representation (r,theta) of
the complex number (a, b).

Complex Mathematics Library Overview (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)
Mathematical Operators for complex (page 79)
Friend Functions for complex (page 80)
Input and Output Operators for complex (page 81)
Error Functions (page 81)

Construct complex Objects (page 82)
Example: Calculate Roots (page 88)
Example: Use Equality and Inequality Operators (page 90)

Header Files and Constants for the complex and c_exception Classes
To use the complex or c_exception classes, you must include the following
statement in any file using these classes:
#include <complex.h>

Constants Defined in complex.h
The following table lists the mathematical constants that the Complex Mathematics
Library defines.

Constant Name Description

M_E The constant e

78 Programmer’s Guide

Constant Name Description

M_LOG2E The logarithm of e to the base 2

M_LOG10E The logarithm of e to the base 10

M_LN2 The natural logarithm of 2

M_LN10 The natural logarithm of 10

M_PI (pi)

M_PI_2 (pi) divided by two

M_PI_4 (pi) divided by four

M_1_PI 1/ (1/pi)

M_2_PI 2/ (2/pi)

M_2_SQRTPI 2 divided by the square root of (pi)

M_SQRT2 The square root of 2

M_SQRT1_2 The square root of 1/2

Complex Mathematics Library Overview (page 77)
Review of Complex Numbers (page 77)
Mathematical Operators for complex (page 79)
Friend Functions for complex (page 80)
Input and Output Operators for complex (page 81)
Error Functions (page 81)

Construct complex Objects (page 82)

Mathematical Operators for complex
The complex class defines a set of mathematical operators with the same
precedence as the corresponding real operators. With the following operators, you
can code expressions on complex numbers:
v operator + (addition)
v operator * (multiplication)
v operator - (negation)
v operator - (subtraction)
v operator / (division)
v operator += (assignment)
v operator -= (assignment)
v operator *= (assignment)
v operator /= (assignment)
v operator == (equality)
v operator != (inequality)

The complex mathematical assignment operators (+=, -=, *=, /=) do not produce a
value that can be used in an expression. The following code, for example, produces
a compile-time error:

Chapter 8. USL Complex Math Classes 79

complex x, y, z; // valid declaration
x = (y += z); // invalid assignment causes

// a compile-time error

The equality and inequality operators test for an exact equality between the real
parts of two numbers, and between their complex parts. Because both components
are double values, two numbers may be “equal” within a certain tolerance, but
unequal as far as these operators are concerned. If you want an equality or
inequality operator that can test for an absolute difference within a certain
tolerance between the two pairs of corresponding components, you should define
your own equality functions rather than use the equality and inequality operators
of the complex class.

Complex Mathematics Library Overview (page 77)
Review of Complex Numbers (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)
Friend Functions for complex (page 80)
Input and Output Operators for complex (page 81)
Error Functions (page 81)

Use Mathematical Operators for complex

Friend Functions for complex
The complex class defines a set of mathematical, trigonometric, magnitude, and
conversion functions as friend functions of complex objects. They are:

v exp (exponent)
v log (natural logarithm)
v pow (power)
v sqrt (square root)
v cos (cosine)
v cosh (hyperbolic cosine)
v sin (sine)
v sinh (hyperbolic sine)
v abs (absolute value or magnitude)
v norm (square of magnitude)
v arg (polar angle)
v conj (conjugate)
v polar (polar to complex)
v real (real part)
v imag (imaginary part)

Complex Mathematics Library Overview (page 77)
Review of Complex Numbers (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)
Mathematical Operators for complex (page 79)
Input and Output Operators for complex (page 81)
Error Functions (page 81)

80 Programmer’s Guide

Use Friend Functions with complex (page 84)

Input and Output Operators for complex
The complex class defines input and output operators for USL I/O Stream Library:

v operator >> (input)
v operator << (output)

Complex numbers are written to the output stream in the format (real,imag).
Complex numbers are read from the input stream in one of two formats:
(real,imag) or real.

Complex Mathematics Library Overview (page 77)
Review of Complex Numbers (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)
Mathematical Operators for complex (page 79)
Friend Functions for complex (page 80)
Error Functions (page 81)

Use complex Input and Output Operators (page 82)

Error Functions
There are three recommended methods to handle complex mathematics errors:
v use the c_exception class
v define a customized complex_error function
v handle errors outside of the complex mathematics library

Using the c_exception Class
The c_exception class lets you handle errors that are created by the functions and
operations in the complex class. When the Complex Mathematics Library detects
an error in a complex operation or function, it invokes complex_error(). This friend
function of c_exception has a c_exception object as its argument. When the
function is invoked, the c_exception object contains data members that define the
function name, arguments, and return value of the function that caused the error,
as well as the type of error that has occurred. If you do not define your own
complex_error function, complex_error sets the complex return value and the errno
error number.

Defining a Customized complex_error Function
You can either use the default version of complex_error() or define your own
version of the function. If you define your own complex_error() function, and this
function returns a nonzero value, no error message will be generated.

Handling Errors Outside of the Complex Mathematics Library
There are some cases where member functions of the Complex Mathematics
Library call functions in the math library. These calls can cause underflow and
overflow conditions that are handled by the matherr() function that is declared in
the math.h header file. For example, the overflow conditions that are caused by the
following calls are handled by matherr():
v exp(complex(DBL_MAX, DBL_MAX))

Chapter 8. USL Complex Math Classes 81

v pow(complex(DBL_MAX, DBL_MAX), INT_MAX)

v norm(complex(DBL_MAX, DBL_MAX))

DBL_MAX is the maximum valid double value, and is defined in float.h.
INT_MAX is the maximum int value, and is defined in limits.h.

If you do not want the default error-handling defined by matherr(), you should
define your own version of matherr().

Complex Mathematics Library Overview (page 77)
Review of Complex Numbers (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)
Mathematical Operators for complex (page 79)
Friend Functions for complex (page 80)
Input and Output Operators for complex (page 81)

Handle complex Mathematics Errors (page 86)

Construct complex Objects
You can use the complex constructor to construct initialized or uninitialized
complex objects or arrays of complex objects. The following example shows
different ways of creating and initializing complex objects:

complex comp1; // Initialized to (0, 0)
complex comp2(3.14); // Initialized to (3.14, 0)
complex comp3(3.14,2.72); // Initialized to (3.14, 2.72)
complex comparr1[3]={

1.0, // Initialized to (1.0, 0)
complex(2.0,-2.0), // (2.0, -2.0)
3.0 // (3.0, 0)
};

complex comparr2[3]={
complex(1.0,1.0), // Initialized to (1.0, 1.0)
2.0, // (2.0, 0)
complex(3.0,-3.0) // (3.0, -3.0)
};

complex comparr3[3]={
1.0, // Initialized to (1.0, 0)
complex(M_PI_4,M_SQRT2), // (0.785..., 1.414...)
M_SQRT1_2 // (0.707..., 0)
};

Complex Mathematics Library Overview (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)

Use complex Input and Output Operators (page 82)
Use Mathematical Operators for complex
Use Friend Functions with complex (page 84)

Use complex Input and Output Operators
The following example demonstrates the use of complex input and output
operators:

82 Programmer’s Guide

// An example of complex input and output

#include <complex.h> // required for use of Complex Mathematics Library
#include <iostream.h> // required for use of I/O Stream input and output

int main(int argc, char *argv[]) {
complex a [3]={1.0,2.0,complex(3.0,-3.0)};
complex b [3];
complex c [3];
complex d;

// read input for all of arrays b and c
// (you must specify each element individually)

cout << “Enter three complex values separated by spaces:” << endl;
cin >> b[0] >> b[1] >> b[2];
cout << “Enter three more complex values:” << endl;
cin >> c[2] >> c[0] >> c[1];

// read input for scalar d
cout << “Enter one more complex value:” << endl;
cin >> d;

// Note that you cannot use the above notation for arrays.
// For example, cin >> a; is incorrect because a is a complex array.
// Display each array of three complex numbers, then the complex scalar

cout << “Here are some elements of arrays a,b,and c:\n”
<< a[2] << endl
<< b[0] << b[1] << b[2] << endl
<< c[1] << endl
<< “Here is scalar d: ”
<< d << endl

// cout << a produces an address, not a list of array elements:
<< “Here is the address of array a:” << endl
<< a
<< endl; //endl flushes the output stream

return 0;
}

This example produces the output shown below in regular type, given the input
shown in bold. Notice that you can insert white space within a complex number,
between the brackets, numbers, and comma. However, you cannot insert white
space within the real or imaginary part of the number. The address displayed may
be different, or in a different format, than the address shown, depending on the
operating system, hardware, and other factors:
Enter three complex values separated by spaces:
38 (12.2,3.14159) (1712,-33)
Enter three more complex values:
(17.1234 , 1234.17) (27, 12) (-33 ,0)
Enter one more complex value:
17
Here are some elements of arrays a,b,and c:
(3, -3)
(38, 0)(12.2, 3.14159)(1712, -33)
(-33, 0)
Here is scalar d:(17, 0)
Here is the address of array a:
0x2ff21cc0

Complex Mathematics Library Overview (page 77)

Chapter 8. USL Complex Math Classes 83

Header Files and Constants for the complex and c_exception Classes (page 78)
Input and Output Operators for complex (page 81)
USL I/O Streaming (page 61)

Construct complex Objects (page 82)
Use Mathematical Operators for complex
Use Friend Functions with complex (page 84)
Combine Input and Output of Different Types
Receive Input from Standard Input
Display Output from Standard Output or Standard Error

Use Friend Functions with complex
The complex class defines a set of mathematical, trigonometric, magnitude and
conversion functions as friend functions of complex objects. Because these
functions are friend functions rather than member functions, you cannot use the
dot or arrow operators. For example:

complex a, b, *c;

a - exp(b); //correct - exp() is a friend function of complex
a = b.exp(); //error - exp() is not a member function of complex
a = c -> exp(); //error - exp() is not a member function of complex

Use Friend Functions for complex
The complex class defines four mathematical functions as friend functions of
complex objects.
v exp - Exponent
v log - Logarithm
v pow - Power
v sqrt - Square Root

The following example shows uses of these mathematical functions:
// Using the complex mathematical functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])
{

complex a, b;
int i;
double f;
//
// prompt the user for an argument for calls to
// exp(), log(), and sqrt()
//
cout << “Enter a complex value\n”;
cin >> a;
cout << “The value of exp() for ” << a << “ is: ” << exp(a)

<< “\nThe natural logarithm of ” << a << “ is: ” << log(a)
<< “\nThe square root of ” << a << “ is: ” << sqrt(a) << “\n\n”;

//
// prompt the user for arguments for calls to pow()
//
cout << “Enter 2 complex values (a and b), an integer (i),”

<< “ and a floating point value (f)\n”;
cin >> a >> b >> i >> f;
cout << “a is ” << a << “, b is ” << b << “, i is ” << i

<< “, f is ” << f << ’\n’
<< “The value of f**a is: ” << pow(f, a) << ’\n’

84 Programmer’s Guide

<< “The value of a**i is: ” << pow(a, i) << ’\n’
<< “The value of a**f is: ” << pow(a, f) << ’\n’
<< “The value of a**b is: ” << pow(a, b) << endl;

return 0;
}

This example produces the output shown below in regular type, given the input
shown in bold:

Enter a complex value
(3.7,4.2)
The value of exp() for (3.7, 4.2) is: (-19.8297, -35.2529)
The natural logarithm of (3.7, 4.2) is: (1.72229, 0.848605)
The square root of (3.7, 4.2) is: (2.15608, 0.973992)

Enter 2 complex values (a and b), an integer (i), and a floating point value (f)
(2.6,9.39) (3.16,1.16) -7 33.16237
a is (2.6, 9.39), b is (3.16, 1.16), i is -7, f is 33.1624
The value of f**a is: (972.681, 8935.53)
The value of a**i is: (-1.13873e-07, -3.77441e-08)
The value of a**f is: (4.05451e+32, -4.60496e+32)
The value of a**b is: (262.846, 132.782)

Use Trigonometric Functions for complex
The complex class defines four trigonometric functions as friend functions of
complex objects.
v cos - Cosine
v cosh - Hyperbolic cosine
v sin - Sine
v sinh - Hyperbolic sine

The following example shows how you can use some of the complex trigonometric
functions:

// Complex Mathematics Library trigonometric functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])

{
complex a = (M_PI, M_PI_2); // a = (pi,pi/2)
// display the values of cos(), cosh(), sin(), and sinh()
// for (pi,pi/2)
cout << “The value of cos() for (pi,pi/2) is: ” << cos(a) << ’\n’

<< “The value of cosh() for (pi,pi/2) is: ” << cosh(a) << ’\n’
<< “The value of sin() for (pi,pi/2) is: ” << sin(a) << ’\n’
<< “The value of sinh() for (pi,pi/2) is: ” << sinh(a) << endl;

return 0;
}

This program produces the following output:
The value of cos() for (pi,pi/2) is: (6.12323e-17, 0)
The value of cosh() for (pi,pi/2) is: (2.50918, 0)
The value of sin() for (pi,pi/2) is: (1, -0)
The value of sinh() for (pi,pi/2) is: (2.3013, 0)

Use Magnitude Functions for complex
The magnitude functions for complex are:
v abs - Absolute value
v norm - Square magnitude

Chapter 8. USL Complex Math Classes 85

Use Conversion Functions for complex
The conversion functions in the Complex Mathematics Library allow you to
convert between the polar and standard complex representations of a value and to
extract the real and imaginary parts of a complex value.

The complex class provides the following conversion functions as friend functions
of complex objects:
v arg - angle in radians
v conj - conjugation
v polar - polar to complex
v real -extract to real part
v imag - extract imaginary part

The following program shows how to use complex conversion functions:
// Using the complex conversion functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])
{

complex a;

//for a value supplied by the user, display the real part,
//the imaginary part, and the polar representation.

cout << “Enter a complex value” << endl;

cin >> a;

cout << “The real part of this value is ” << real(a) << endl;
cout << “The imaginary part of this value is ” << imag(a) << endl;
cout << “The polar representation of this value is ”

<< “(” <<abs(a) << “,” << arg(a) << “)” <<endl;
return 0;

}

This example produces the output shown below, given the input shown in bold:
Enter a complex value
(175,162)
The real part of this value is 175
The imaginary part of this value is 162
The polar representation of this value is (238.472,0.746842)

Complex Mathematics Library Overview (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)
Friend Functions for complex (page 80)

Construct complex Objects (page 82)
Use complex Input and Output Operators (page 82)
Use Mathematical Operators for complex

Handle complex Mathematics Errors
You can use one of the following methods to handle complex mathematics errors:
v use the c_exception class
v define a customized complex_error function
v compile a program that uses a customized complex_error function

86 Programmer’s Guide

Use c_exception to Handle complex Mathematics Errors
The c_exception class is not related to the C++ exception handling mechanism that
uses the try, catch, and throw statements.

The c_exception class lets you handle errors that are created by the functions and
operations in the complex class. When the Complex Mathematics Library detects
an error in a complex operation or function, it invokes complex_error(). This friend
function of c_exception has a c_exception object as its argument. When the
function is invoked, the c_exception object contains data members that define the
function name, arguments, and return value of the function that caused the error,
as well as the type of error that has occurred. The data members are as follows:

complex arg1; // First argument of the
// error-causing function

complex arg2; // Second argument of the
// error-causing function

char* name; // Name of the error-causing function
complex retval; // Value returned by default

// definition of complex_error
int type; // The type of error that has occurred.

If you do not define your own complex_error function, complex_error sets the
complex return value and the errno error number.

Define a Customized complex_error Function
You can either use the default version of complex_error() or define your own
version of the function.

When defining your own version of the complex_error() function,
you must link your application to the static version of the complex library.

In the following example, complex_error() is redefined:
// Redefinition of the complex_error function

#include <iostream.h>
#include <complex.h>
#include <float.h>

int complex_error(c_exception &c)
{

cout << “================” << endl;
cout << “ Exception ” << endl;
cout << “type = ” << c.type << endl;
cout << “name = ” << c.name << endl;
cout << “arg1 = ” << c.arg1 << endl;
cout << “arg2 = ” << c.arg2 << endl;
cout << “retval = ” << c.retval << endl;
cout << “================” << endl;
return 0;

}

int main(int argc, char *argv[])
{

complex c1(DBL_MAX,0);
complex result;
result = exp(c1);
cout << “exp” << c1 << “= ” << result << endl;
return 0;

}

This example produces the following output:
================

Exception
type = 3

Chapter 8. USL Complex Math Classes 87

name = exp
arg1 = (1.79769e+308, 0)
arg2 = (0, 0)
retval = (infinity, -infinity)
================
exp(1.79769e+308, 0)= (infinity, -infinity)

If the redefinition of complex_error() in the above code is commented out, the
default definition of complex_error() is used, and the program produces the
following output:

exp(7.23701e+75, 0) = (7.23701e+75, -7.23701e+75)

Compile a Program that Uses a Customized complex_error Function
If you define your own version of complex_error, you must ensure that the name
of the header file that contains your version of the complex_error is included in
your source file when you compile you program.

Complex Mathematics Library Overview (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)
Error Functions (page 81)

Example: Calculate Roots
The following example shows how you can use the complex Mathematics Library
to calculate the roots of a complex number. For every positive integer n, each
complex number z has exactly n distinct nth roots. Suppose that in the complex
plane the angle between the real axis and point z is theta, and the distance between
the origin and the point z is r. Then z has the polar form (r, theta), and the n roots
of z have the values:
sigma
sigma x omega
sigma x omega^2
sigma x omega^3
.
.
.
sigma x omega^(n - 1)

where omega is a complex number with the value:
omega = (cos(2pi / n), sin(2pi / n))

and sigma is a complex number with the value:
sigma = r^(1/n) (cos(theta / n), sin(theta / n))

The following code includes two functions, get_omega() and get_sigma(), to
calculate the values of omega and sigma. The user is prompted for the complex
value z and the value of n. After the values of omega and sigma have been
calculated, the n roots of z are calculated and printed.

// Calculating the roots of a complex number

#include <iostream.h>
#include <complex.h>
#include <math.h>

// Function to calculate the value of omega for a given value of n

complex get_omega(double n)

88 Programmer’s Guide

{
complex omega = complex(cos((2.0*M_PI)/n), sin((2.0*M_PI)/n));
return omega;

}

// function to calculate the value of sigma for a given value of
// n and a given complex value

complex get_sigma(complex comp_val, double n)
{

double rn, r, theta;
complex sigma;
r = abs(comp_val);
theta = arg(comp_val);
rn = pow(r,(1.0/n));
sigma = rn * complex(cos(theta/n),sin(theta/n));
return sigma;

}

int main(int argc, char *argv[])
{

double n;
complex input, omega, sigma;
//
// prompt the user for a complex number
//
cout << “Please enter a complex number: ”;
cin >> input;
//
// prompt the user for the value of n
//
cout << “What root would you like of this number? ”;
cin >> n;
//
// calculate the value of omega
//
omega = get_omega(n);
cout << “Here is omega ” << omega << endl;
//
// calculate the value of sigma
//
sigma = get_sigma(input,n);
cout << “Here is sigma ” << sigma << ’\n’

<< “Here are the ” << n << “ roots of ” << input << endl;
for (int i = 0; i < n ; i++)

{
cout << sigma*(pow(omega,i)) << endl;

}
return 0

}

This example produces the output shown below in regular type, given the input
shown in bold:

Please enter a complex number: (-7, 24)
What root would you like of this number? 2
Here is omega (-1, 1.22465e-16)
Here is sigma (3, 4)
Here are the 2 roots of (-7, 24)
(3, 4)
(-3, -4)

Complex Mathematics Library Overview (page 77)
Review of Complex Numbers (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)

Chapter 8. USL Complex Math Classes 89

Example: Use Equality and Inequality Operators (page 90)

Example: Use Equality and Inequality Operators
The functions is_equal and is_not_equal in the following example provide a
reliable comparison between two complex values:

// Testing complex values for equality within a certain tolerance

#include <complex.h>
#include <iostream.h> // for output
#include <iomanip.h> // for use of setw() manipulator

int is_equal(const complex &a, const complex &b,
const double tol=0.0001)

{
return (abs(real(a) - real(b)) < tol &&

abs(imag(a) - imag(b)) < tol);
}

int is_not_equal(const complex &a, const complex &b,
const double tol=0.0001)

{
return !is_equal(a, b, tol);

}

int main(int argc, char *argv[])
{

complex c[4] = { complex(1.0, 2.0),
complex(1.0, 2.0),
complex(3.0, 4.0),
complex(1.0000163,1.999903581)};

cout << “Comparison of array elements c[0] to c[3]\n”
<< “== means identical,\n!= means unequal,\n”
<< “ ~ means equal within tolerance of 0.0001.\n\n”
<< setw(10) << “Element”
<< setw(6) << 0
<< setw(6) << 1
<< setw(6) << 2
<< setw(6) << 3
<< endl;

for (int i=0;i<4;i++) {
cout << setw(10) << i;
for (int j=0;j<4;j++) {

if (c[i]==c[j]) cout << setw(6) << “==”;
else if (is_equal(c[i],c[j])) cout << setw(6) << “~”;

else if (is_not_equal(c[i],c[j])) cout << setw(6) << “!=”;
else cout << setw(6) << “???”;

}
cout << endl;
}

return 0
}

This example produces the following output:
Comparison of array elements c[0] to c[3]
== means identical,
!= means unequal,
~ means equal within tolerance of 0.0001.

Element 0 1 2 3
0 == == != ~
1 == == != ~
2 != != == !=
3 ~ ~ != ==

90 Programmer’s Guide

Complex Mathematics Library Overview (page 77)
Review of Complex Numbers (page 77)
Header Files and Constants for the complex and c_exception Classes (page 78)

Example: Calculate Roots (page 88)

Chapter 8. USL Complex Math Classes 91

92 Programmer’s Guide

Chapter 9. Other Utilities

c++filt Name Demangling Utility

Note: This section applies to C++ programs only. C
language programs do not use name
mangling.

When VisualAge C++compiles a C++ program, it encodes all function names and
certain other identifiers to include type and scoping information. This encoding
process is called mangling. The linker uses these mangled names to ensure
type-safe linkage. These mangled names appear in the object files and final
executable file.

Tools that use these files, the AIX dump utility for example, have only the mangled
names and not the original source-code names, and present the mangled name in
their output. This output is undesirable because the names are difficult to read.

Two utilities convert the mangled names to their original source code names:

c++filt A filter that demangles (decodes) mangled names.
demangle.hA class library that you can use to develop tools to manipulate mangled names.

Demangling Compiled C++ Names with c++filt
The c++filt utility converts mangled names to demangled names. You can enter
any mangled name and obtain the demangled name. The filter copies characters
from the given file names or standard input to standard output, replacing all
mangled names with their corresponding demangled names.

To use the c++filt utility, type /usr/vacpp/bin/c++filt followed by any options, on
the shell command line.

Syntax of the c++filt Utility
+----------------+
V |

>>- c++filt -+------+--+------+--+------------+--+------+--+------+---+------------+-+->
+- -m -+ +- -s -+ +- -w width -+ +- -C -+ +- -S -+ +- filename -+

You can select one or more of the following options:

-m Produces a symbol map on standard output.
This map contains a list of the mangled
names and their corresponding demangled
names. This output follows the filtered
output.

© Copyright IBM Corp. 1998, 2002 93

-s Produces a side-by-side demangling, with
each mangled name encountered in the input
stream replaced by a combination of the
demangled name followed by the original
mangled name.

-w width Prints demangled names in fields width
characters wide. If the name is shorter than
width, it is padded on the right with blanks;
if longer, it is truncated to width.

-C Demangles stand-alone class names such as
Q2_1X1Y.

-S Demangles special compiler generated
symbol names such as __vft1X.

filename Is the name of the file containing the
mangled names you want to demangle. You
can specify more than one filename.

The following example shows the symbols contained in an object file functions.o,
producing a side-by-side listing of the mangled and demangled names with a field
width of 40 characters:
dump -tv functions.o | c++filt -s -w 40

Demangling Compiled C++ Names with the demangle Class Library
The demangle class library contains a small class hierarchy that client programs
can use to demangle names and examine the resulting parts of the name. It also
provides a C-language interface for use in C programs. Although it is a C++
library, it uses no external C++ features so you can link it directly to C programs.
Demangle is included as part of libC.a, and is automatically linked, when required,
if libC.a is linked.

You can write programs that use demangle.h to take a mangled name and return
the demangled name, and the separate parts of the name. For example, given the
mangled name of a member function, you can:
v Get the text of the entire demangled name
v Get the text of the function name
v Get the text of the qualifier list and each of its parts
v Get the text of the parameter list and each of its parts
v Ask questions about whether the function is const or volatile

Using demangle.h in C++ Programs
To demangle a name (represented as a character array), create a dynamic instance
of Name class, providing the character string to the class’s constructor. For
example, if the compiler mangled X::f(int) to the mangled name f__1XFi, in order
to demangle the name, enter:

char *rest;

Name *name = Demangle(“f__1XFi”, rest) ;

94 Programmer’s Guide

The demangler classifies names into four categories: functions, member functions,
variables, and member variables. Once your program constructs an instance of
class Name, your program can ask what kind of Name the instance is, using the
Kind method of Name. Based on the kind of name returned, the program can ask
for the text of the different parts of the name, or the text of the entire name.

For the mangled name f__1XFi example, you can find out the following:
name->Kind() == MemberFunction

((MemberFunctionName *)name)->Scope()->Text() is “X”

((MemberFunctionName *)name)->RootName() is “f”

((MemberFunctionName *)name)->Text() is “X::f(int)”

If the supplied character string is not a name that requires demangling, because
the original name was not mangled, the Demangle function returns NULL.

For further details about the demangle.h library and the C++ interface, look at the
comments in the library’s header file, /usr/vacpp/include/demangle.h.

CreateExportList Command
Syntax

CreateExportList [-r] exp-listname [-f filelistname | obj_files] [-X 32|64]

where:
exp-listname is the file name that contains the list of global symbols found in the
object files specified by either obj_files or -f filelistname.

obj_files is actual names of object files.

filelistname is the file that contains a list of object filenames.

Description
This command creates a file containing a list of all the global symbols found in a
given set of object files. Template prefixes are prunned, and __rsrcignored if -r is
specified. The -f option specifies a file containing the list of object files. The first
argument is the export list file name (which is overwritten) and the remaining
arguments are the object files.

CreateExportList creates an empty list if any of the following are true:
v no object files are given
v the -f option is missing
v the file specified by -f is empty.

Chapter 9. Other Utilities 95

Suboptions

-r Do not add resource file symbol (__rsrc) to
the exports list (but still export it).

-X 32|64 Generate names from 32-bit or 64-bit object
files in input list. -X32 is the default.

Constructing a Library (page 96)

Initialize Shared Library (page 102)

mkshrobj Batch Compiler

linkxlC Command
linkxlC is a small shell script that links C++ .o and .a files. It can be redistributed
and used by someone who does not have VisualAge C++ installed. It runs the
munch utility, and then invokes ld.

The script supports linker options. It ignores most other options.

For a full description of the ld command, refer to the AIX Version 4 Commands
Reference.

Compiler Options

Constructing a Library
Libraries with Non-Shared Files
Non-shared files are files that are linked into the C++ executable program.

Construct a library using these steps:
v Compile each file using the -qpriority=N compiler option and if applicable in

your application, #pragma priority(N) directives within the file. Normally,
simply specifying the priority level for the file with the -qpriority=N option is
sufficient. Use numbers for N to specify the priority levels at which you want
objects initialized.

v Use the AIX ar command to link the files and produce an archive library file.

xlC -c -o bar.o example.C ar rv libfoo.a bar.o

Libraries with Shared Files
Shared files are files that are used by more than one program.

You should compile with the -qmkshrobj compiler option or use the
makeC++SharedLib program found in /usr/vacpp/bin and the AIX ar command.

xlC -c example.C xlC -qmkshrobj -o foo.o ar rv libfoo.a foo.o bar.o

96 Programmer’s Guide

Intialize Shared Library (page 102)
Specify Priority Levels for Library Objects (page 103)
Example of Object Initialization in a Group of Files (page 104)

makeC++SharedLib Command (page 97)
-qmkshrobj Compiler Option

makeC++SharedLib Command
makeC++SharedLib is a shell script that links C++ .o and .a files. It can be
redistributed and used by someone who does not have VisualAge C++ installed.

We recommend that you use the -qmkshrobj batch compiler option instead of the
makeC++SharedLib command. The advantage to using this option is that the
compiler will automatically include and compile the template instantiations in the
tempinc directory.

This page describes the makeC++SharedLib command and provides an example
of how to use it to make two shared libraries. It describes how to combine these
two files in a library using the ar command so that object initialization takes place
in the specified order.

Command Line Options

invocation Is the path name for the makeC++SharedLib
command that constructs the shared library
file.

-oshared_file.o Is the name of the file that will hold the
shared file information. The default is shr.o.

-bOptions Uses the -b binder options of the ld
command.

-Llib_dir Uses the -L option of the ld command to add
the directory lib_dir to the list of directories
to be searched for unresolved symbols. The
ld command is described in the AIX Version
4 Commands Reference.

-llibrary Adds library to the list of libraries to be
searched for unresolved symbols.

-p priority Specifies the priority level for the file. priority
may be any number from -214782623 (highest
priority-initialized first) to 214783647 (lowest
priority-initialized last). Numbers from
-214783648 to -214782624 are reserved for
system use.

-I import_list Uses the -bI option of the ld command to
resolve the list of symbols in the file
import_list that can be resolved by the binder.

-E export_list Uses the -bE option of the ld command to
export the external symbols in the export_list
file. If you do not specify -E export_list, a list
of all global symbols is generated.

Chapter 9. Other Utilities 97

-e file Saves in file the list computed by -E
export_list.

-n name Sets the entry name for the shared executable
to name. This is equivalent to using the
command ld -e name

-X mode Specifies the type of object file
makeC++SharedLib should create. The mode
must be either 32, which processes only
32-bit object files, or 64, which processes only
64-bit object files. The default is to process
32-bit object files (ignore 64-bit objects). The
mode can also be set with the
OBJECT_MODE environment variable. For
example, OBJECT_MODE=64 causes
makeC++SharedLib to process any 64-bit
objects and ignore 32-bit objects. The -X flag
overrides the OBJECT_MODE variable.

Input Files

file.o Is an object file to be put into the shared library.
file.a Is an archive file to be put into the shared library.

Example

The following example shows how to construct two shared libraries using the
makeC++SharedLib command, and then use the AIX ar command to combine
these libraries along with a file that contains the main function so that objects are
initialized in the specified order.

The drawing below shows how the objects in this example are arranged in various
files.

98 Programmer’s Guide

The first part of this example shows how to use makeC++SharedLib along with
the -qpriority=N option and the #pragma priority(N) directive to specify the
initialization order for objects in these files.

The example shows how to make two shared libraries: animals.o containing object
files compiled from house.C, farm.C, and zoo.C, and fish.o containing object files
compiled from fresh.C and salt.C.

The example shows how to specify priorities and use the ar command so that all
the objects in fish.o are initialized before the objects in myprogram.o, and all the
objects in animals.o are initialized after the objects in myprogram.o. Within
animals.o, the objects in zoo.C are initialized before the objects in house.C and
farm.C.

To specify this initialization order, follow these steps:
1. Develop an initialization order for the objects in house.C, farm.C, and zoo.C:

a. To ensure that the object lion L in zoo.C is initialized before any other
objects in either of the other two files, compile zoo.C using a -qpriority=N
option with N less than zero so both objects have a priority number less
than any other objects in farm.C and house.C:
xlC zoo.C -c -qpriority=-50

b. Compile the house.C and farm.C files without specifying the -qpriority=N
option (so N=0) so objects within the files retain the priority numbers
specified by their #pragma priority(N) directives:
xlC house.C farm.C -c

c. Combine these three files in a shared library. Use makeC++SharedLib to
construct a library animals.o with a priority of 40:
makeC++SharedLib -o animals.o -p 40 house.o farm.o zoo.o

2. Develop an initialization order for the objects in fresh.C, and salt.C:
a. Compile the fresh.C and salt.C files:

xlC fresh.C salt.C -c

Chapter 9. Other Utilities 99

b. To assure that all objects in fresh.C and salt.C are initialized before any
other objects, use makeC++SharedLib to construct a library fish.o with a
priority of -100.
makeC++SharedLib -o fish.o -p -100 fresh.o salt.o

Because the shared library fish.o has a lower priority number (-100) than
animals.o (40), when the files are placed in an archive file with the ar
command, their objects are initialized first.

3. Compile myprogram.C that contains the function main to produce an object file
myprogram.o. By not specifying a priority, this file is compiled with a default
priority of zero, and the objects in main have a priority of zero.
xlC myprogram.C -c

4. To create a library that contains the two shared libraries, and the program
myprogram.o that contains the function main, so that the objects are initialized
in the order you have specified, you use the ar command. To produce an
archive file, prio_lib.a, enter the command:
ar rv prio_lib.a animals.o fish.o myprogram.o

where:

rv Are two ar options. r replaces a named file if
it already appears in the library, and v writes
to standard output a file-by-file description
of the making of the new library.

prio_lib.a Is the name you specified for the archive file
that will contain the shared library files and
their priority levels.

animals.o
fish.o

Are the two shared files you created with
makeC++SharedLib.

myprogram.o Is the name of the file that contains the
function main.

The order of initialization of the objects is shown in the following table.

Order of Initialization of Objects in priolib.a

File Class Object Priority
Value

Comment

“fish.o” -100 All objects in “fish.o”
are initialized first
because they are in a
library prepared with
makeC++SharedLib
-p -100 (lowest
priority number, -p
-100, specified for
any files in this
compilation)

“shark S” -100(-200) Initialized first in
“fish.o” because
within file, #pragma
priority(-200)

“trout A” -100(-80) #pragma priority(-80)

“tuna T” -100(10) #pragma priority(10)

“bass B” -100(500) #pragma priority(500)

100 Programmer’s Guide

Order of Initialization of Objects in priolib.a

“myprog.o” 0 File generated with
no priority
specifications; default
is 0

“CAGE” 0(0) Object generated in
main with no
priority
specifications; default
is 0

“animals.o” 40 File generated with
makeC++SharedLib
with -p 40

“lion L” 40(-50) Initialized first in file
“animals.o” compiled
with -qpriority=-50

“horse H” 40(0) Follows with priority
of 0 (since
-qpriority=N not
specified at
compilation and no
#pragma priority(N)
directive)

“dog D” 40(20) Next priority number
(specified by
#pragma priority(20))

“zebra N” 40(50) Next priority number
from #pragma
priority(50)

“cat C” 40(100) Next priority number
from #pragma
priority(100)

“cow W” 40(500) Next priority number
from #pragma
priority(500)
(Initialized last)

5. To produce an executable file, animal_time, so that the objects are initialized in
the order you have specified, enter:
xlC prio_lib.a -oanimal_time

You can place both nonshared and shared files with different priority levels in
the same archive library using the AIX ar command.

Constructing a Library (page 96)

Initialize Shared Library (page 102)

mkshrobj Compiler Option

Chapter 9. Other Utilities 101

Initialize Shared Library
In some C++ programs, it is important to specify the order in which objects are
initialized.

Before the main function of a C++ program is executed, the language definition
ensures that all objects with constructors from all the files included in the C++
program have been properly constructed. The language definition, however, does
not specify the order of initialization for these objects across files. In some cases,
you may want to specify the initialization order of some objects in your program.

Often, your program will be made up of several files and files contained in
libraries. The libraries that you use with your C++ source program may contain
object (.o) files that have components shared with other programs (shared files), as
well as files that are only used by your program (non-shared files).

To specify an initialization order, you can:
v Specify an initialization priority number for objects within a file using the

#pragma priority directive.
v Generate shared objects using the -qmkshrobj compiler option, then construct an

archive (.a) library containing several shared and non-shared objects.

The run-time environment initializes the objects in these libraries in the order of
their priority number. Priority numbers can range from -2147483648 to 2147483647.
However, numbers from -2147483648 to -2147482624 are reserved for system use.
The highest priority you can specify is -2147482623, and it is initialized first. The
lowest priority, 2147483647, is initialized last.

Objects in files with identical priorities are initialized in random order.

When your program exits, the destructors for global and static objects are invoked
in the reverse order of their construction.

If you do not specify priority levels, the default priority is 0 (zero). If there are
multiple shared objects with different priority levels, the priority levels determine
the order in which they will be initialized. Within a single shared object or the
main function, #pragma priority controls the initialization order. The executable
program has a priority of 0.

The loadAndInit (page 105) routine will initialize shared libraries. Likewise,
terminateAndUnload (page 106) will terminate them. Include the file load.h to use
these routines, which are found in the libC.a library.

Constructing a Library (page 96)

Specify Priority Levels for Library Objects (page 103)
Example of Object Initialization in a Group of Files (page 104)

makeC++SharedLib Command (page 97)
mkshrobj Compiler Option

102 Programmer’s Guide

Specify Priority Levels for Library Objects
These examples are intended to show how you can specify priority levels for
objects within a file, at the file level, and at the library level. However, in most
applications it is not necessary to specify more than one or two priority levels.

Specifying Priority Levels within a File
To specify the order of initialization of objects within a file, use the #pragma
priority directive. You can use any number of directives within the file, but the
priority numbers must be in increasing order. That is, you cannot specify an object
with a smaller priority number after you have specified one with a larger priority
number.

The following example shows how to specify the priority for several objects within
a source file.

...
#pragma priority(5) //Following objects constructed with priority 5
...

static struct base A ;

class house B ;
...
#pragma priority(10) //Following objects constructed with priority 10
...

class barn C ;
...
#pragma priority(2) // Error - priority number must be larger
// than preceding number (10)
...
#pragma priority(20) //Following objects constructed with priority 20
...

class garage D ;
...

Specifying the Priority Level of a File
To specify the priority level of a file, use the -qpriority compiler option. Use this
option if you want all the objects in the file to have the same priority level, and
you do not want to write #pragma priority(N) directives in the file.

For example, using the batch compiler option -qpriority=20, is equivalent to using
#pragma priority(20).

If there are no #pragma priority directives within the file, all objects within the file
have the priority specified with -qpriority= .

If there are #pragma priority directives within the file, all objects found within the
file up to the first #pragma priority directive are given the same priority number
as specified for the file. The objects after a #pragma priority directive are given
that priority number of N until the next #pragma priority directive is encountered.

Within the file, the first #pragma priority must have a higher priority number than
the number used in the -qpriority option and subsequent #pragma priority
directives must have increasing numbers.

Initialize Shared Library (page 102)
Example of Object Initialization in a Group of Files (page 104)

Chapter 9. Other Utilities 103

Example of Object Initialization in a Group of Files
You can specify different priority numbers for objects within files, and the compiler
will initialize them in the following order:
1. #pragma priority
2. By line and column within a file

The following example describes describes the initialization order for objects in
two files, farm.C and zoo.C. Both files use #pragma priority directives. The
following table shows part of the files with #pragma priority directives and
hypothetical objects:

farm.C zoo.C

#pragma priority(20)
...
class dog A ;
class dog B ;
...
#pragma priority(100)
...
class cat C ;
class cow D ;
...
#pragma priority(200)
class mouse E ;
...

...
class lion K ;
#pragma priority(30)
class bear M ;
...
#pragma priority(50)
...
class zebra N ;
class snake S ;
...
#pragma priority(250)
class frog F ;
...

Compile farm.C and zoo.C with -qpriority=10.

Initialization takes place in the following order:

Object Priority Value Comment

“lion K” 10 Takes priority number of file
“zoo.o” (10) (Initialized first)

“dog A” 20 Takes #PRAGMA
PRIORITY(20) priority.

“dog B” 20 Follows “dog A”

“bear M” 30 Next priority number,
specified by #PRAGMA
PRIORITY(30)

“zebra N” 50 Next priority number from
#PRAGMA PRIORITY(50)

“snake S” 50 Follows with same priority

“cat C” 100 Next priority number

“cow D” 100 Follows with same priority

“mouse E” 200 Next priority number

“frog F” 250 Next priority number
(Initialized last).

Initialize Shared Library (page 102)

104 Programmer’s Guide

-qpriority Compiler Option
-qmkshrobj Compiler Option

loadAndInit Routine

Format
int (*loadAndInit(char *FilePath, unsigned int Flags, char *LibraryPath))();

Description
The loadAndInit() routine calls the AIX load subroutine to load the specified
module (shared library) into the calling process’s address space. If the shared
library is loaded successfully, any C++ initialization is performed. The
loadAndInit() routine ensures that a shared library is only initialized once.
Subsequent loads of the same shared library will not perform any initialization of
the shared library.

If loading a shared library results in other shared libraries being loaded, the
initialization for those shared libraries will also be performed (if it has not been
previously). If loading a shared library results in the initialization of multiple
shared libraries, the order of initialization is determined by the priority assigned to
the shared libraries when they were built. Shared libraries with the same priority
are initialized in random order.

Use the terminateAndUnload() (page 106) subroutine to unload the shared library
instead of the unload routine.

Do not reference symbols in the C++ initialization that need to be resolved by a
call to the loadbind routine since the loadbind routine normally is not called until
after the loadAndInit routine returns. In the rare cases where the loadbindroutine
must be called before the C++ initialization is performed one can use the following
general steps to load and initialize the shared library. Load the shared library with
the load routine call the loadbind routine to resolve the symbols. load and
initialize the shared library with the loadAndInit routine. unload the shared
library with the unload routine. This step is required to perating system unloads
the shared library when the terminateAndUnload routine is called.

In previous versions of the compiler, the loadAndInit routine had to be called at
least once before on a different shared library before these four steps would work.
If the loadquery routine can be used to determine which module to bind the
symbols too, an alternative approach is to add a C++ initialization that will call the
loadqueryand loadbind routines. The priority of this C++ initialization has to be
high enough so that it is performed before the real C++ initialization is performed.

Parameters
FilePath Points to the name of the shared library being loaded. The name may be a
base name (doesn’t contain any ’/’ characters) or a relative or full path name
(contains a ’/’). No search is performed for relative or full path names.

Flags Modifies the behaviour of load. If no special behaviour is required, set the
value to 0 (or 1). The possible flags are:

Chapter 9. Other Utilities 105

v L_LIBPATH_EXEC - specifies that the library path used at process exec time be
prepended to any library path specified in the loadAndInit call. You shoul use
this flag.

v L_NOAUTODEFER - specifies that any deferred imports must be explicitly
resolved by the use of the loadbind subroutine.

v L_LOADMEMBER - specifies that the FilePath is the name of a member in an
archive. The format is libfoo.a(member).

v LibraryPath Points to the default library search path.

Return Values
Upon successful completion, the loadAndInit subroutine returns the pointer to
function for the entry point (or data section) of the shared library.

If the loadAndInit subroutine fails, a null pointer is returned, the module is not
loaded or initialized, and the errno global variable is set to indicate the error. The
possible errors are the same as the load subroutine.

terminateAndUnload (page 106) subroutine
-qmkshrobj Compiler Option
The AIX operating system subroutines load, dlopen, loadbind, loadquery, and
unload.

terminateAndUnload Routine

Format
#include <load.h>
int terminateAndUnload(int (*FunctionPointer)());

Description
The terminateAndUnload subroutine performs any C++ termination that is
required and unloads the module (shared library). The value returned by the
loadAndInit subroutine is passed to the terminateAndUnload subroutine as
FunctionPointer. If this is the last time the shared library is being unloaded, any
C++ termination is performed for this shared libary and any other shared libraries
that are being unloaded for the last time as well. The order of termination is the
reverse order of initialization performed by the loadAndInitsubroutine. If any
uncaught exceptions occur during the C++ termination the termination is stopped
and the shared library is unloaded.

If the loadAndInit subroutine is called more times for a shared library than
terminateAndUnload, the shared library will never have the C++ termination
peformed. If you rely on the C++ termination being performed at the time the
terminateAndUnload subroutine is called, ensure the number of calls to the
terminateAndUnload subroutine match the number of calls to the loadAndInit
subroutine. If any shared libraries loaded with the loadAndInit subroutine are still
in use when the program exits, the C++ termination is performed.

If the terminateAndUnload subroutine is used to unload shared libraries not
loaded with the loadAndInit subroutine, no termination will be performed.

106 Programmer’s Guide

The terminateAndUnload subroutine takes the same parameters and returns the
same values and error codes as the unload subroutine. See the unload subroutine
in your AIX documentation for more information.

Parameters
FunctionPointer Specifies the name of the function returned by the loadAndInit
subroutine.

Return Values
Successful completion of the terminateAndUnload subroutine returns a value of 0,
even if the C++ termination was not performed and the shared library was not
unloaded because the shared library was still in use.

Error Codes
If the terminateAndUnload subroutine fails, it returns a value of -1and sets errno
to indicate the error.

loadAndInit (page 105) Routine
-qmkshrobj Compiler Option
The AIX operating system subroutines load, dlopen, loadbind, loadquery, and
unload.

_makepath — Create Path
Format

#include <extension.h>
void _makepath(char *path, char *drive, char *dir,

char *fname, char *ext);

Language Level: Extension
_makepath creates a single path name, composed of a directory path, file name,
and file name extension.

The path argument should point to an empty buffer large enough to hold the
complete path name. The constant FILENAME_MAX, defined in <stdio.h>,
specifies the maximum size allowed for path. The other arguments point to the
following buffers containing the path name elements:

dir The path of directories, not including the
drive designator or the actual file name. The
trailing slash is optional, and can be used in
a single dir argument. If a trailing slash is
not specified, it is inserted automatically. If
dir is a null character or an empty string, no
slash is inserted in the composite path string.

fname The base file name without a suffix.

ext The actual file name suffix, with or without
a leading period. _makepath inserts the
period automatically if it does not appear in
ext. If ext is a null character or an empty
string, no period is inserted in the composite
path string.

Chapter 9. Other Utilities 107

The size limits on the above four fields are those specified by the constants
_MAX_DRIVE, _MAX_DIR, _MAX_FNAME, and _MAX_EXT, which are defined in
<extension.h>. The composite path should be no larger than the FILENAME_MAX
constant defined in <stdio.h>; otherwise, the operating system does not handle it
correctly.

Note: No checking is done to see if the syntax of the file name is correct.

Return Value
There is no return value.

Example
This example builds a file name path from the specified components.
#include <stdio.h>
#include <extension.h>

int main(void)
{

char path_buffer[_MAX_PATH];
char dir[_MAX_DIR];
char fname[_MAX_FNAME];
char ext[_MAX_EXT];

_makepath(path_buffer, “qc//bob//eclibref//e”, “makepath”, “c”);
printf(“Path created with _makepath: %s/n/n”, path_buffer);
_splitpath(path_buffer, drive, dir, fname, ext);
printf(“Path extracted with _splitpath:/n”);
printf(“directory: %s/n”, dir);
printf(“file name: %s/n”, fname);
printf(“extension: %s/n”, ext);
return 0;

/**
The output should be:

Path created with _makepath: qc/bob/eclibref/e/makepath.c

Path extracted with _splitpath:
directory: qc/bob/eclibref/e/
filename: makepath
extension: .c

**/
}

_fullpath — Get Full Path Name of Partial Path
_splitpath — Decompose Path Name (page 108)

_splitpath — Decompose Path Name
Format

#include <extension.h>
void _splitpath(char *path, char *drive, char *dir,

char *fname, char *ext);

Language Level: Extension
_splitpath decomposes an existing path name path into its four components. The
path should point to a buffer containing the complete path name.

The maximum size necessary for each buffer is specified by the _MAX_DRIVE,
_MAX_DIR, _MAX_FNAME, and _MAX_EXT constants defined in <extension.h>.
The other arguments point to the following buffers used to store the path name
elements:

108 Programmer’s Guide

Buffer Description

dir Contains the path of subdirectories, if any,
including the trailing slash. Slashes (/) may
be present in path.

fname Contains the base file name without any
extensions.

ext Contains the file name extension, if any,
including the leading period (.).

You can specify NULL for any of the buffer pointers to indicate that you do not
want the string for that component returned.

The return parameters contain empty strings for any path name components not
found in path.

Return Value
There is no return value.

Example
This example builds a file name path from the specified components, and then
extracts the individual components.
#include <stdio.h>
#include <extension.h>

int main(void)
{

char path_buffer[_MAX_PATH];
char dir[_MAX_DIR];
char fname[_MAX_FNAME];
char ext[_MAX_EXT];

_makepath(path_buffer, “qc\\bob\\eclibref\\e”, “makepath”, “c”);
printf(“Path created with _makepath: %s\n\n”, path_buffer);
_splitpath(path_buffer,dir, fname, ext);
printf(“Path extracted with _splitpath:\n”);
printf(“directory: %s\n”, dir);
printf(“file name: %s\n”, fname);
printf(“extension: %s\n”, ext);
return 0;

/**
The output should be:

Path created with _makepath: qc\bob\eclibref\e\makepath.c

Path extracted with _splitpath:
directory: qc\bob\eclibref\e\
file name: makepath
extension: .c

**/
}

_fullpath — Get Full Path Name of Partial Path
_makepath — Create Path (page 107)

Chapter 9. Other Utilities 109

110 Programmer’s Guide

Appendix. Non-ISO USL Classes

complex
This class provides you with facilities to manipulate complex numbers.

A complex number is made up of two parts: a real part and an imaginary part. A
complex number can be represented by an ordered pair (a, b), where a is the value
of the real part of the number and b is the value of the imaginary part.

Class header file: complex.h

complex - Hierarchy List
complex

complex - Member Functions and Data by Group

Constructors & Destructor
These constructors can be used to create complex objects.

There is no explicit complex destructor.

Arrays of Complex Numbers

You can use the complex constructor to initialize arrays of complex numbers. If the
list of initial values is made up of complex values, each array element is initialized
to the corresponding value in the list of initial vlaues. If the list of initial values is
not made up of complex values, the real parts of the array elements are initialized
to these initial values and the imaginary parts of the array elements are initialized
to 0.

In the following example, the elements of array b are initialized to the values in the
initial value list, but only the real parts of elements of array a are initialized to the
values in the initial value list.
#include < complex.h >

int main()
{
complex a[3] = {1.0, 2.0, 3.0};
complex b[3] = {complex(1.0, 1.0), complex(2.0, 2.0), complex(3.0, 3.0)};

cout << "Here is the first element of a: " << a[0] << endl;
cout << "Here is the first element of b: " << b[0] << endl;
}

This example produces the following output:
Here is the first element of a: (1, 0)
Here is the first element of b: (1, 1)
complex

Constructs a complex number.

Overload 1
public:complex(double r, double i = 0.0)

© Copyright IBM Corp. 1998, 2002 111

Constructs a complex number.

The first argument, r, is assigned to the real part of the complex
number. If you specify a second argument, it is assigned to the
imaginary part of the complex number. If the second parameter is
not specified, the imaginary part is initialized to 0.

Overload 2
public:complex()

Constructs a complex number . The real and imaginary parts of the
complex number are initialized to (0, 0).

Assignment Operators
The assignment operators do not produce a value that can be used in an
expression. The following code, for example, produces a compile-time error:
complex x, y, z; // valid declaration

x = (y += z); // invalid assignment causes a compile-time error

y += z; // correct method involves splitting expression
x = y; // into separate statements.
operator *=

Assigns the value of x * y to x.

Overload 1
public:void operator *=(const complex&)

Overload 2
public:inline void operator *=(complex)

operator +=

Assigns the value of x + y to x.

Overload 1
public:inline void operator +=(complex)

Overload 2
public:inline void operator +=(const complex&)

operator -=

Assigns the value of x - y to x.

Overload 1
public:inline void operator -=(complex)

Overload 2
public:inline void operator -=(const complex&)

operator /=

Assigns the value of x / y to x.

Overload 1
public:inline void operator /=(complex)

Overload 2
public:void operator /=(const complex&)

112 Programmer’s Guide

complex - Associated Globals
abs

double abs(complex)

Returns the absolute value or magnitude of its argument. The absolute
value of a complex value (a, b) is the positive square root of a2 + b2.

abs
double abs(const complex&)

Returns the absolute value or magnitude of its argument. The absolute
value of a complex value (a, b) is the positive square root of a2 + b2.

arg
double arg(complex)

Returns the angle (in radians) of the polar representation of its argument.
If the argument is equal to the complex number (a, b), the angle returned
is the angle in radians on the complex plane between the real axis and the
vector (a, b). The return value has a range of -pi to pi.

arg
double arg(const complex&)

Returns the angle (in radians) of the polar representation of its argument.
If the argument is equal to the complex number (a, b), the angle returned
is the angle in radians on the complex plane between the real axis and the
vector (a, b). The return value has a range of -pi to pi.

conj
complex conj(complex)

Returns the complex value equal to (a, -b) if the input argument is equal to
(a, b).

conj
inline complex conj(const complex&)

Returns the complex value equal to (a, -b) if the input argument is equal to
(a, b).

cos
complex cos(complex)

Returns the cosine of the complex argument.
cos

complex cos(const complex&)

Returns the cosine of the complex argument.
cosh

complex cosh(complex)

Returns the hyperbolic cosine of the complex argument.
cosh

complex cosh(const complex&)

Returns the hyperbolic cosine of the complex argument.
exp

complex exp(complex)

Appendix. Non-ISO USL Classes 113

Returns the complex value equal to e to the power of x where x is the
argument.

exp
complex exp(const complex&)

Returns the complex value equal to e to the power of x where x is the
argument.

imag
double imag(const complex&)

Extracts the imaginary part of the complex number provided as the
argument.

imag
inline double imag(const complex&)

Extracts the imaginary part of the complex number provided as the
argument.

log
complex log(complex)

Returns the natural logarithm of the argument x.
log

complex log(complex)

Returns the natural logarithm of the argument x.
norm

double norm(complex)

Returns the square of the magnitude of its argument. If the argument x is
equal to the complex number (a, b), norm() returns the value a2 + b2.

norm() is faster than abs(), but it is more likely to cause overflow errors.
norm

double norm(const complex&)

Returns the square of the magnitude of its argument. If the argument x is
equal to the complex number (a, b), norm() returns the value a2 + b2.

norm() is faster than abs(), but it is more likely to cause overflow errors.
operator !=

int operator !=(complex, complex)

The inequality operator ″!=″ returns a nonzero value if x does not equal y.
This operator tests for inequality by testing that the two real components
are not equal and that the two imaginary components are not equal.

Because both components are double values, the inequality operator
returns false only when both the real and imaginary components of the
two values are identical. If you want an inequality operator that can test
for an absolute difference within a certain tolerance between the two pairs
of corresponding components, you can use a function such as the
is_not_equal function.

operator !=
inline int operator !=(const complex&, const complex&)

114 Programmer’s Guide

The inequality operator ″!=″ returns a nonzero value if x does not equal y.
This operator tests for inequality by testing that the two real components
are not equal and that the two imaginary components are not equal.

Because both components are double values, the inequality operator
returns false only when both the real and imaginary components of the
two values are identical. If you want an inequality operator that can test
for an absolute difference within a certain tolerance between the two pairs
of corresponding components, you can use a function such as the
is_not_equal function.

operator *
complex operator *(complex, complex)

The multiplication operator returns the product of x and y.

This operator has the same precedence as the corresponding real operator.
operator *

complex operator *(const complex&, double)

The multiplication operator returns the product of x and y.

This operator has the same precedence as the corresponding real operator.
operator *

complex operator *(const complex&, const complex&)

The multiplication operator returns the product of x and y.

This operator has the same precedence as the corresponding real operator.
operator +

complex operator +(complex, complex)

The addition operator returns the sum of x and y.

This operator has the same precedence as the corresponding real operator.
operator +

inline complex operator +(const complex&, const complex&)

The addition operator returns the sum of x and y.

This operator has the same precedence as the corresponding real operator.
operator -

inline complex operator -(const complex&, const complex&)

The subtraction operator returns the difference between x and y.

This operator has the same precedence as the corresponding real operator.
operator -

complex operator -(complex, complex)

The subtraction operator returns the difference between x and y.

This operator has the same precedence as the corresponding real operator.
operator -

inline complex operator -(const complex&)

Appendix. Non-ISO USL Classes 115

The negation operator returns (-a, -b) when its argument is (a, b).

This operator has the same precedence as the corresponding real operator.
operator -

complex operator -(complex)

The negation operator returns (-a, -b) when its argument is (a, b).

This operator has the same precedence as the corresponding real operator.
operator /

complex operator /(const complex&, double)

The division operator returns the quotient of x divided by y.

This operator has the same precedence as the corresponding real operator.
operator /

complex operator /(const complex&, const complex&)

The division operator returns the quotient of x divided by y.

This operator has the same precedence as the corresponding real operator.
operator /

complex operator /(complex, complex)

The division operator returns the quotient of x divided by y.

This operator has the same precedence as the corresponding real operator.
operator ==

int operator ==(complex, complex)

The equality operator ″==″ returns a nonzero value if x equals y. This
operator tests for equality by testing that the two real components are
equal and that the two imaginary components are equal.

Because both components are double values, the equality operator tests for
an exact match between the two sets of values. If you want an equality
operator that can test for an absolute difference within a certain tolerance
between the two pairs of corresponding components, you can use a
function such as the isequal function.

operator ==
inline int operator ==(const complex&, const complex&)

The equality operator ″==″ returns a nonzero value if x equals y. This
operator tests for equality by testing that the two real components are
equal and that the two imaginary components are equal.

Because both components are double values, the equality operator tests for
an exact match between the two sets of values. If you want an equality
operator that can test for an absolute difference within a certain tolerance
between the two pairs of corresponding components, you can use a
function such as the isequal function.

polar
complex polar(double, double = 0)

116 Programmer’s Guide

Returns the standard complex representation of the complex number that
has a polar representation (a, b).

pow
complex pow(complex, double)

Returns the complex value xy, where x is the first argument and y is the
second argument.

pow
complex pow(double, complex)

Returns the complex value xy, where x is the first argument and y is the
second argument.

pow
complex pow(complex, complex)

Returns the complex value xy, where x is the first argument and y is the
second argument.

pow
complex pow(complex, int)

Returns the complex value xy, where x is the first argument and y is the
second argument.

pow
complex pow(const complex&, int)

Returns the complex value xy, where x is the first argument and y is the
second argument.

pow
complex pow(const complex&, double)

Returns the complex value xy, where x is the first argument and y is the
second argument.

pow
complex pow(const complex&, const complex&)

Returns the complex value xy, where x is the first argument and y is the
second argument.

pow
complex pow(double, const complex&)

Returns the complex value xy, where x is the first argument and y is the
second argument.

real
double real(const complex&)

Extracts the real part of the complex number provided as the argument.
real

inline double real(const complex&)

Extracts the real part of the complex number provided as the argument.
sin

complex sin(const complex&)

Returns the sine of the complex argument.

Appendix. Non-ISO USL Classes 117

sin
complex sin(complex)

Returns the sine of the complex argument.
sinh

complex sinh(const complex&)

Returns the hyperbolic sine of the complex argument.
sinh

complex sinh(complex)

Returns the hyperbolic sine of the complex argument.
sqrt

complex sqrt(complex)

Returns the square root of its argument. If c and d are real values, then
every complex number (a, b), where:
a = c2 - d2

b = 2cd

has two square roots:
(c, d)
(-c, -d)

sqrt() returns the square root that has a positive real part, that is, the
square root that is contained in the first or fourth quadrants of the complex
plane.

complex - Inherited Member Functions and Data
Inherited Public Functions

None
Inherited Public Data

None
Inherited Protected Functions

None
Inherited Protected Data

None

c_exception
Use the c_exception class to handle errors that are created by functions and
operations in the complex class.

Note: The c_exception class is not related to the C++ exception handling
mechanism that uses the try, catch, and throw statements.

Class header file: complex.h

c_exception - Hierarchy List
c_exception

118 Programmer’s Guide

c_exception - Member Functions and Data by Group

Constructors & Destructor
You can construct objects of this class.

There is no explicit c_exception destructor.
c_exception

public:c_exception(char* n,
const complex& a1,
const complex& a2 = complex_zero)

Construct a c_exception object.

n The name of the function where the error occurred.

a1 The first complex argument with which the function that caused
the error was called.

a2 The second complex argument with which the function that caused
the error was called.

c_exception - Associated Globals
complex_error

int complex_error(c_exception&)

complex_error() is invoked by member functions of the Complex
Mathematics Library when errors are detected. The argument refers to the
c_exception object that contains information about the error. You can define
your own procedures for handling errors by defining a function called
complex_error() with return type int and a single parameter of type
c_exception&.

Note: You can only override complex_error() if you are using the static
version of the I/O Stream Library.

If you define your own complex_error() function and this function returns
a nonzero value, no error message will be generated and the external
variable, errno, will not be set. If this function returns zero, errno is given
the value of one of the following constants:
v ERANGE - if the result is too large or too small
v EDOM - if there is a domain error within a mathematical function

These constants are defined in errno.h

If you define your own version of complex_error(), when you must ensure
that the name of the header file that contains your version of
complex_error() is included in your source file when you compile your
program.

Default Error-Handling Procedures

If you do not define your own complex_error(), the default error-handling
procedures will be invoked when an error occurs. The results for a given
input complex value (a, b) depend on the kind of error and the sign of the
cosine and sine of b. The following table shows the return value of the
default error-handling procedure and the value given to errno for each
function with input equal to the complex value (a, b).

Appendix. Non-ISO USL Classes 119

The following symbols appear in this table:
1. NA - not applicable. The result of the error depends on the sign of the

cosine and sine of b (the imaginary part of the argument) unless ″NA″
appears in the Cosine b or Sine b columns.

2. HUGE - the maximum double value. This value is defined in math.h.

Function Error Cosine b Sine b Return Value errno Value

cosh a too large non-negative non-negative (+HUGE,
+HUGE)

ERANGE

cosh a too large non-negative non-negative (+HUGE,
-HUGE)

ERANGE

cosh a too small non-negative non-negative (+HUGE,
-HUGE)

ERANGE

cosh a too small non-negative non-negative (+HUGE,
+HUGE)

ERANGE

cosh a too small negative non-negative (-HUGE,
-HUGE)

ERANGE

cosh a too small negative non-negative (-HUGE,
+HUGE)

ERANGE

cosh b too large negative non-negative (-HUGE,
+HUGE)

ERANGE

cosh b too large negative non-negative (-HUGE,
-HUGE)

ERANGE

cosh b too small NA NA (0, 0) ERANGE

exp a too large positive positive (+HUGE,
+HUGE)

ERANGE

exp a too large positive positive (+HUGE,
-HUGE)

ERANGE

exp a too large non-positive positive (-HUGE,
+HUGE)

ERANGE

exp a too large non-positive positive (-HUGE,
-HUGE)

ERANGE

exp a too small NA NA (0, 0) ERANGE

exp b too large NA NA (0, 0) ERANGE

exp b too small NA NA 0, 0) ERANGE

log a too large positive positive (+HUGE, 0) EDOM (See
note)

sinh a too large non-negative non-negative (+HUGE,
+HUGE)

ERANGE

sinh a too large non-negative negative (+HUGE,
-HUGE)

ERANGE

sinh a too large negative non-negative (-HUGE,
+HUGE)

ERANGE

sinh a too large negative negative (-HUGE,
-HUGE)

ERANGE

sinh a too small non-negative non-negative (-HUGE,
+HUGE)

ERANGE

sinh a too small non-negative negative (-HUGE,
-HUGE)

ERANGE

120 Programmer’s Guide

Function Error Cosine b Sine b Return Value errno Value

sinh a too small negative non-negative (+HUGE,
+HUGE)

ERANGE

sinh a too small negative negative (+HUGE,
-HUGE)

ERANGE

sinh b too large NA NA (0, 0) ERANGE

sinh b too small NA NA (0, 0) ERANGE

Note: errno is set to EDOM when the error for log() is detected.

Errors Not Handled

There are some cases where member functions of the Complex
Mathematics Library call functions in the math library. These calls can
cause underflow and overflow conditions that are handled by the
matherr() function that is declared in the math.h header file. For example,
the overflow conditions that are caused by the following calls are handled
by matherr():

exp(complex(DBL_MAX, DBL_MAX))
pow(complex(DBL_MAX, DBL_MAX), INT_MAX)
norm(complex(DBL_MAX, DBL_MAX))

DBL_MAX is the maximum valid double value. INT_MAX is the
maximum int value. Both these constants are defined in float.h.

If you do not want the default error-handling defined by matherr(), you
should define your own version of matherr().

cosh
complex cosh(complex)

Returns the hyperbolic cosine of the complex argument.
cosh

complex cosh(const complex&)

Returns the hyperbolic cosine of the complex argument.
exp

complex exp(complex)

Returns the complex value equal to e to the power of x where x is the
argument.

exp
complex exp(const complex&)

Returns the complex value equal to e to the power of x where x is the
argument.

log
complex log(complex)

Returns the natural logarithm of the argument x.
sinh

complex sinh(complex)

Returns the hyperbolic sine of the complex argument.

Appendix. Non-ISO USL Classes 121

sinh
complex sinh(const complex&)

Returns the hyperbolic sine of the complex argument.

c_exception - Inherited Member Functions and Data
Inherited Public Functions

None
Inherited Public Data

None
Inherited Protected Functions

None
Inherited Protected Data

None

filebuf
The filebuf class specializes streambuf for using files as the ultimate producer of
the ultimate consumer.

In a filebuf object, characters are cleared out of the put area by doing write
operations to the file, and characters are put into the get area by doing read
operations from that file. The filebuf class supports seek operations on files that
allow seek operations. A filebuf object that is attached to a file descriptor is said to
be open.

The stream buffer is allocated automatically if one is not specified explicitly with a
constructor or a call to setbuf(). You can also create an unbuffered filebuf object by
calling the constructor or setbuf() with the appropriate arguments. If the filebuf
object is unbuffered, a system call is made for each character that is read or
written.

The get and put pointers for a filebuf object behave as a single pointer. This single
pointer is referred to as the get/put pointer. The file that is attached to the filebuf
object also has a single pointer that indicates the current position where
information is being read or written. This pointer is called the file get/put pointer.

Class header file: fstream.h

filebuf - Hierarchy List
streambuf
filebuf

filebuf - Member Functions and Data by Group

Constructors & Destructor
You can construct and destruct objects of the filebuf class.
~filebuf

public:~filebuf()

The filebuf destructor calls filebuf.close().
filebuf

122 Programmer’s Guide

Overload 1
public:filebuf(int fd, char* p, long l)

Constructs a filebuf object that is attached to the file descriptor fd.
The object is initialized to use the stream buffer starting at the
position pointed to by p with length equal to l.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 2
public:filebuf(int fd)

Constructs a filebuf object that is attached to the file descriptor fd.

Overload 3
public:filebuf(int fd, char* p, int l)

Constructs a filebuf object that is attached to the file descriptor fd.
The object is initialized to use the stream buffer starting at the
position pointed to by p with length equal to l.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 4
public:filebuf()

Constructs an initially closed filebuf object.

Attach Functions
attach

Attaches the filebuf object to the file descriptor or the file pointer.

Overload 1
public:filebuf* attach(int fd)

Attaches the filebuf object to the file descriptor fd. If the filebuf
object is already open or if fd is not open, attach() returns NULL.
Otherwise, attach() returns a pointer to the filebuf object.

is_open
public:int is_open()

Returns a nonzero value if the filebuf object is attached to a file descriptor.
Otherwise, is_open() returns zero.

open
public:filebuf*

open(const char* name,
int om,
int prot = openprot)

Opens the file with the name name and attaches the filebuf object to it. If
name does not already exist and the open mode om does not equal
ios::nocreate, open() tries to create it with protection mode equal to prot.
The default value of prot is filebuf::openprot. An error occurs if the filebuf

Appendix. Non-ISO USL Classes 123

object is already open. If an error occurs, open() returns 0. Otherwise,
open() returns a pointer to the filebuf object.

The default protection mode for the filebuf class is S_IREAD|S_IWRITE. If
you create a file with both S_IREAD and S_IWRITE set, the file is created
with both read and write permission. If you create a file with only
S_IREAD set, the file is created with read-only permission, and cannot be
deleted later with the stdio.h library function remove(). S_IREAD and
S_IWRITE are defined in sys\stat.h.

Data members
openprot

public:static const int openprot

The default protection mode used when opening files.
in_start

protected:char* in_start

Data member.
lahead

protected:char lahead [2]

A variable used to store look-ahead characters during underflow
processing.

last_seek
protected:streampos last_seek

Stream position last seeked to.
mode

protected:int mode

Open mode of the filebuf object.
opened

protected:char opened

A flag used to track whether the file is open. If the file is open, the value
of this variable is 1. Otherwise it is 0.

xfd
protected:int xfd

The file descriptor of the file attached to the filebuf object.

Detach Functions
close

public:filebuf* close()

close() does the following:
1. Flushes any output that is waiting in the filebuf object to be sent to the

file
2. Disconnects the filebuf object from the file
3. Closes the file that was attached to the filebuf object.

124 Programmer’s Guide

If an error occurs, close() returns 0. Otherwise, close() returns a pointer to
the filebuf object. Even if an error occurs, close() performs the second and
third steps listed above.

detach
public:int detach()

Disconnects the filebuf object from the file without closing the file. If the
filebuf object is not open, detach() returns -1. Otherwise, detach() flushes
any output that is waiting in the filebuf object to be sent to the file,
disconnects the filebuf object from the file, and returns the file descriptor.

File Pointer Functions
overflow

public:virtual int overflow(int = EOF)

Emptys an output buffer. Returns EOF when an error occurs. Returns 0
otherwise.

seekoff
public:virtual streampos seekoff(streamoff, ios::seek_dir, int)

Moves the file get/put pointer to the position specified by the ios::seek_dir
argument with the offset specified by the streamoff argument. ios::seek_dir
can have the following values:
v ios::beg - the beginning of the file
v ios::cur - the current position of the file get/put pointer
v ios::end - the end of the file

seekoff() changes the position of the file get/put pointer to the position
specified by the value ios::seek_dir + streamoff. The offset can be either
positive or negative. seekoff() ignores the third argument.

If the filebuf object is attached to a file that does not support seeking, or if
the value of ios::seek_dir + streamoff specifies a position before the
beginning of the file, seekoff() returns EOF and the position of the file
get/put pointer is undefined. Otherwise, seekoff() returns the new position
of the file get/put pointer.

sync
public:virtual int sync()

Attempts to synchronize the get/put pointer and the file get/put pointer.
sync() may cause bytes that are waiting in the stream buffer to be written
to the file, or it may reposition the file get/put pointer if characters that
have been read from the file are waiting in the stream buffer. If it is not
possible to synchronize the get/put pointer and the file get/put pointer,
sync() returns EOF. If they can be synchronized, sync() returns zero.

underflow
public:virtual int underflow()

Fills an input buffer. Returns EOF when an error occurs or the end of the
input is reached. Returns the next character otherwise.

Query Functions
fd

public:int fd()

Appendix. Non-ISO USL Classes 125

Returns the file descriptor that is attached to the filebuf object. If the
filebuf object is closed, fd() returns EOF.

last_op
protected:int last_op()

Indicates whether the last operation was a read(get) or a write(put)
operation.

Stream Buffer Functions
setbuf

Overload 1
public:virtual streambuf* setbuf(char* p, long len)

Sets up a stream buffer with length in bytes equal to len, beginning
at the position pointed to by p. setbuf() does the following:
v If p is 0 or len is nonpositive, setbuf() makes the filebuf object

unbuffered.
v If the filebuf object is open and a stream buffer has been

allocated, no changes are made to this stream buffer, and setbuf()
returns NULL.

v If neither of these cases is true, setbuf() returns a pointer to the
filebuf object.

AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value

Overload 2
public:virtual streambuf* setbuf(char* p, int len)

Sets up a stream buffer with length in bytes equal to len, beginning
at the position pointed to by p. setbuf() does the following:
v If p is 0 or len is nonpositive, setbuf() makes the filebuf object

unbuffered.
v If the filebuf object is open and a stream buffer has been

allocated, no changes are made to this stream buffer, and setbuf()
returns NULL.

v If neither of these cases is true, setbuf() returns a pointer to the
filebuf object.

AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value

filebuf - Inherited Member Functions and Data
Inherited Public Functions

streambuf

Definition Page
Number

virtual ~streambuf() 235

void dbp() 238

int in_avail() 236

126 Programmer’s Guide

streambuf

Definition Page
Number

long in_avail() 236

int optim_in_avail() 236

int optim_sbumpc() 236

int out_waiting() 242

long out_waiting() 242

virtual int overflow(int c = EOF) 242

virtual int pbackfail(int c) 243

int pptr_non_null() 239

int sbumpc() 237

virtual streampos
seekoff(streamoff,

ios::seek_dir,
int = ios::in|ios::out)

239

virtual streampos
seekpos(streampos,

int = ios::in|ios::out)

239

streambuf* setbuf(unsigned char* p, int len) 244

streambuf* setbuf(char* p, int len, int count) 244

streambuf* setbuf(unsigned char* p, long len) 244

int sgetc() 237

long sgetn(char* s, long n) 237

int sgetn(char* s, int n) 237

int snextc() 237

int sputbackc(char c) 243

int sputc(int c) 243

long sputn(const char* s, long n) 243

int sputn(const char* s, int n) 243

void stossc() 240

streambuf(char* p, int l) 235

streambuf() 235

streambuf(char* p, int l, int c) 235

streambuf(char* p, long l) 235

virtual int xsgetn(char* s, int n) 238

virtual long xsgetn(char* s, long n) 238

virtual int xsputn(const char* s, int n) 244

Appendix. Non-ISO USL Classes 127

streambuf

Definition Page
Number

virtual long xsputn(const char* s, long n) 244

Inherited Public Data

None
Inherited Protected Functions

streambuf

Definition Page
Number

int allocate() 246

char* base() 240

long blen() const 246

int blen() const 246

virtual int doallocate() 247

char* eback() 240

char* ebuf() 240

char* egptr() 240

char* epptr() 240

void gbump(long n) 240

void gbump(int n) 240

char* gptr() 241

char* pbase() 241

void pbump(int n) 241

void pbump(long n) 241

char* pptr() 241

void setb(char* b, char* eb, int a = 0) 242

void setg(char* eb, char* g, char* eg) 242

void setp(char* p, char* ep) 242

int unbuffered() const 247

void unbuffered(int unb) 247

Inherited Protected Data

None

fstream
This class specializes the iostream class for use with files.

Class header file: fstream.h

128 Programmer’s Guide

fstream - Hierarchy List
ios
fstreambase
fstream

fstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the fstream class can be constructed and destructed.
~fstream

public:~fstream()

Destructs an fstream object.
fstream

Constructs an object of this class.

Overload 1
public:fstream(int fd, char* p, int l)

Constructs an fstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
fstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 2
public:fstream(int fd)

Constructs an fstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
fstream object.

Overload 3
public:fstream(int fd, char* p, long l)

Constructs an fstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
fstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 4
public:fstream(const char* name,

int mode,
int prot = filebuf::openprot)

Appendix. Non-ISO USL Classes 129

Constructs an fstream object and opens the file name with open
mode equal to mode and protection mode equal to prot.

The default value for the argument prot is filebuf::openprot. If the
file cannot be opened, the error state of the constructed fstream
object is set.

Overload 5
public:fstream()

Constructs an unopened fstream object.

Filebuf Functions
Use these functions to work with the underlying filebuf object.
rdbuf

public:filebuf* rdbuf()

Returns a pointer to the filebuf object that is attached to the fstream object.

fstream - Inherited Member Functions and Data
Inherited Public Functions

fstreambase

Definition Page
Number

~fstreambase() 133

void attach(int fd) 134

void attach(FILE* fp) 134

void close() 134

int detach() 134

fstreambase(const char* name,
int mode,
int prot = filebuf::openprot)

133

fstreambase(int fd, char* p, long l) 133

fstreambase() 133

fstreambase(int fd) 133

fstreambase(const char* name,
const char* attr,
int mode,
int prot = filebuf::openprot)

133

fstreambase(int fd, char* p, int l) 133

void setbuf(char* p, int l) 135

void setbuf(char* p, long l) 135

130 Programmer’s Guide

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill(char) 145

char fill() const 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie() 150

ostream* tie(ostream* s) 150

long unsetf(long) 147

int width() const 148

int width(int w) 148

static int xalloc() 151

static long xalloc() 151

Appendix. Non-ISO USL Classes 131

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

fstreambase

Definition Page
Number

void verify(int) 135

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

132 Programmer’s Guide

fstreambase
The fstreambase class is an internal class that provides common functions for the
classes that are derived from it; fstream, ifstream and ofstream. The fstreambase
class inherits from the ios class. Do not use the fstreambase class directly.

Class header file: fstream.h

fstreambase - Hierarchy List
ios
fstreambase

ifstream
fstream
ofstream

fstreambase - Member Functions and Data by Group

Constructors & Destructor
Objects of the fstreambase class can be constructed and destructed by objects that
derive from it. These constructors and destructors should not be used directly.
~fstreambase

public:~fstreambase()

Destructs an fstreambase object.
fstreambase

Constructs an object of this class.

Overload 1
public:fstreambase(int fd, char* p, int l)

This constructor does the following:
v constructs an fstreambase object
v initializes the filebuf object to the file descriptor passed in
v initializes the streambuf object and sets the get and put pointers

based on the pointer p and the length l

v initializes the ios object.

If the file is already open, it clears the ios state. Otherwise, it sets
the ios::failbit in the format state of the object.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 2
public:fstreambase(int fd)

This constructor does the following:
v constructs an fstreambase object
v initializes the filebuf object to the file descriptor passed in
v initializes the ios object.

Appendix. Non-ISO USL Classes 133

If the file is already open, it clears the ios state. Otherwise, it sets
the ios::failbit in the format state of the object.

Overload 3
public:fstreambase(int fd, char* p, long l)

This constructor does the following:
v constructs an fstreambase object
v initializes the filebuf object to the file descriptor passed in
v initializes the streambuf object and sets the get and put pointers

based on the pointer p and the length l

v initializes the ios object.

If the file is already open, it clears the ios state. Otherwise, it sets
the ios::failbit in the format state of the object.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 4
public:fstreambase(const char* name,

int mode,
int prot = filebuf::openprot)

Constructs an fstreambase object, initializes the ios object, and
opens the specified file with the specified mode and protection.

Overload 5
public:fstreambase()

Default constructor. Constructs an fstreambase object and initializes
the ios object.

Filebuf Functions
Use these functions to work with the underlying filebuf object.
attach

Attaches the fstream, ifstream or ofstream object to the file descriptor or
file pointer.

Overload 1
public:void attach(int fd)

Attaches the fstream, ifstream or ofstream object to the file
descriptor fd. If the object is already attached to a file descriptor, an
error occurs and ios::failbit is set in the format state of the object.

close
public:void close()

Closes the filebuf object, breaking the connection between the fstream,
ifstream or ofstream object and the file descriptor. close() calls
filebuf->close(). If this call fails, the error state of the fstream, ifstream or
ofstream object is not cleared.

detach
public:int detach()

134 Programmer’s Guide

Detaches the filebuf object, breaking the connection between the fstream,
ifstream or ofstream object and the file descriptor. detach() calls
filebuf->detach().

rdbuf
public:filebuf* rdbuf()

Returns a pointer to the filebuf object that is attached to the fstream,
ifstream or ofstream object.

Miscellaneous Functions
verify

protected:void verify(int)

Clears the format state of the object or sets the ios::failbit in the format
state of the object depending on the value of the argument. If the argument
value is 1, the format state is cleared, otherwise the ios::failbit is set.

Open Functions
open

Opens the specified file.

Overload 1
public:void

open(const char* name,
int mode,
int prot = filebuf::openprot)

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file of if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

Stream Buffer Functions
Use these functions to work with the underlying streambuf object.
setbuf

Overload 1
public:void setbuf(char* p, long l)

Sets up a stream buffer with length in bytes equal to l beginning at
the position pointed to by p. If p is equal to 0 or l is nonpositive,
the fstream, ifstream or ofstream object (fb) will be unbuffered. If fb
is open, or the call to fb->setbuf() fails, setbuf() sets ios::failbit in
the object’s state.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Appendix. Non-ISO USL Classes 135

Overload 2
public:void setbuf(char* p, int l)

Sets up a stream buffer with length in bytes equal to l beginning at
the position pointed to by p. If p is equal to 0 or l is nonpositive,
the fstream, ifstream or ofstream object (fb) will be unbuffered. If fb
is open, or the call to fb->setbuf() fails, setbuf() sets ios::failbit in
the object’s state.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

fstreambase - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill(char) 145

char fill() const 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

136 Programmer’s Guide

ios

Definition Page
Number

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static int xalloc() 151

static long xalloc() 151

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

Appendix. Non-ISO USL Classes 137

ios

Definition Page
Number

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

ifstream
This class specializes the istream class for use with files.

Class header file: fstream.h

ifstream - Hierarchy List
ios
fstreambase
ifstream

ifstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the ifstream class can be constructed and destructed.
~ifstream

public:~ifstream()

Destructs an ifstream object.
ifstream

Constructs an object of this class.

Overload 1
public:ifstream(int fd, char* p, int l)

Constructs an ifstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ifstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 2

138 Programmer’s Guide

public:ifstream(int fd)

Constructs an ifstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ifstream object.

Overload 3
public:ifstream(int fd, char* p, long l)

Constructs an ifstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ifstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 4
public:ifstream(const char* name,

int mode = ios::in,
int prot = filebuf::openprot)

Constructs an ifstream object and opens the file name with open
mode equal to mode and protection mode equal to prot. The default
value for mode is ios::in and for prot is filebuf::openprot. If the file
cannot be opened, the error state of the constructed ifstream object
is set.

Overload 5
public:ifstream()

Constructs an unopened ifstream object.

Filebuf Functions
rdbuf

public:filebuf* rdbuf()

Returns a pointer to the filebuf object that is attached to the ifstream object.

Open Functions
Opens the file.
open

Opens the specified file.

Overload 1
public:void

open(const char* name,
int mode = ios::in,
int prot = filebuf::openprot)

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

Appendix. Non-ISO USL Classes 139

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file of if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

ifstream - Inherited Member Functions and Data
Inherited Public Functions

fstreambase

Definition Page
Number

~fstreambase() 133

void attach(FILE* fp) 134

void attach(int fd) 134

void close() 134

int detach() 134

fstreambase(const char* name,
int mode,
int prot = filebuf::openprot)

133

fstreambase() 133

fstreambase(const char* name,
const char* attr,
int mode,
int prot = filebuf::openprot)

133

fstreambase(int fd, char* p, int l) 133

fstreambase(int fd, char* p, long l) 133

fstreambase(int fd) 133

void
open(const char* name,

int mode,
int prot = filebuf::openprot)

135

void
open(const char* name,

const char* attr,
int mode,
int prot = filebuf::openprot)

135

void setbuf(char* p, int l) 135

void setbuf(char* p, long l) 135

ios

Definition Page
Number

virtual ~ios() 143

140 Programmer’s Guide

ios

Definition Page
Number

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill(char) 145

char fill() const 145

long flags() const 146

long flags(long f) 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie() 150

ostream* tie(ostream* s) 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static int xalloc() 151

static long xalloc() 151

Appendix. Non-ISO USL Classes 141

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

fstreambase

Definition Page
Number

void verify(int) 135

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

142 Programmer’s Guide

ios
The ios class is the base class for the classes that format data that is extracted from
or inserted into the stream buffer. The derived classes support the movement of
formatted and unformatted data to and from the stream buffer.

The ios class maintains the format and error state information for the classes that
are derived from it. The format state is a collection of flags and variables that can
be set to control the details of formatting operations for input and output. The
error state is a collection of flags that records whether any errors have taken place
in the processing of the ios object. It also recoreds whether the end of an input
stream has been reached.

Class header file: iostream.h

ios - Hierarchy List
ios

ostream
fstreambase
stdiostream
strstreambase
istream

ios - Member Functions and Data by Group

Constructors & Destructor
Objects of the ios class can be constructed and destructed.
~ios

public:virtual ~ios()

Destructs an ios object.
ios

Creates an ios object.

Overload 1
public:ios(streambuf*)

The streambuf object is associated with the constructed ios object.
If this argument is equal to 0, the result is undefined.

Overload 2
protected:ios()

This version of the ios constructor takes no arguments and is
declared as protected. The ios class is used as a virtual base class
for iostream, and therefore the ios class must have a constructor
that takes no arguments. If you use this constructor in a derived
class, you must use the init() function to associated the constructed
ios object with the streambuf object.

Data members
adjustfield

public:static const long adjustfield

Appendix. Non-ISO USL Classes 143

Data member for the ios class.
basefield

public:static const long basefield

Data member for the ios class.
floatfield

public:static const long floatfield

Data member for the ios class.
assign_private

protected:int assign_private

Data member for the ios class.
bp

protected:streambuf* bp

Data member for the ios class. Pointer to the streambuf object.
delbuf

protected:int delbuf

Data member for the ios class.
isfx_special

protected:int isfx_special

Data member for the ios class.
ispecial

protected:int ispecial

Data member for the ios class.
osfx_special

protected:int osfx_special

Data member for the ios class.
ospecial

protected:int ospecial

Data member for the ios class.
state

protected:int state

Data member for the ios class.
x_flags

protected:long x_flags

Data member for the ios class.
x_tie

protected:ostream* x_tie

Data member for the ios class.

Error State Functions
bad

public:int bad() const

144 Programmer’s Guide

Returns a nonzero value is ios::badbit is set in the error state of the ios
object. Otherwise, it returns 0.

ios::badbit is usually set when some operation on the streambuf object that
is associated with the ios object has failed. It will probably not be possible
to continue input and output operations on the ios object.

clear
public:void clear(int i = 0)

Changes the error state of the ios object to the specified value. If the
argument equals 0 (its default), all of the bits in the error state are cleared.
If you want to set one of the bits without clearing or setting the other bits
in the error state, you can perform a bitwise OR between the bit you want
to set and the current error state. For example, the following statement sets
ios::badbit in the ios object and leaves all the other error state bits
unchanged:
iosobj.clear(ios::badbit | iosobj.rdstate());

eof
public:int eof() const

Returns a nonzero value if ios::eofbit is set in the error state of the ios
object. Otherwise, it returns 0.

ios::eofbit is usually set when an EOF has been encountered during an
extraction operation.

fail
public:int fail() const

Returns a nonzero value if either ios::badbit or ios::failbit is set in the error
state. Otherwise, it returns 0.

good
public:int good() const

Returns a nonzero value if no bits are set in the error state of the ios object.
Otherwise, it returns 0.

rdstate
public:int rdstate() const

Returns the current value of the error state of the ios object.
setstate

protected:void setstate(int b)

Format State Functions
fill

Overload 1
public:char fill() const

Returns the value of ios::x_fill of the ios object.

ios::x_fill is the character used as padding if the field is wider than
the representation of a value. The default value for ios::x_fill is a
space. The ios::left, ios::right and ios::internal flags determine the
position of the fill character.

Appendix. Non-ISO USL Classes 145

You can also use the parameterized manipulator setfill to set the
value of ios::x_fill.

Overload 2
public:char fill(char)

Sets the value of ios::x_fill of the ios object to the specified
character.

ios::x_fill is the character used as padding if the field is wider than
the representation of a value. The default value for ios::x_fill is a
space. The ios::left, ios::right and ios::internal flags determine the
position of the fill character.

You can also use the parameterized manipulator setfill to set the
value of ios::x_fill.

flags

Overload 1
public:long flags() const

Returns the value of the flags that make up the current format
state.

Overload 2
public:long flags(long f)

Sets the flags in the format state to the settings specified in the
argument and returns the value of the previous settings of the
format flags.

precision

Overload 1
public:int precision() const

Returns the value of ios::x_precision.

ios::x_precision controls the number of significant digits when
floating-point values are inserted.

The format state in effect when precision() is called affects the
behavior of precision(). If neither ios::scientific nor ios::fixed is set,
ios::x_precision specifies the number of significant digits in the
floating-point value that is being inserted. If, in addition,
ios::showpoint is not set, all trailing zeros are removed and a
decimal point only appears if it is followed by digits.

If either ios::scientific or ios::fixed is set, ios::x_precision specifies
the number of digits following the decimal point.

Overload 2
public:int precision(int)

Sets the value of ios::x_precision to the specified value and returns
the previous value. The value must be greater than 0. If the value
is negative, the value of ios::x_precision is set to the default value,
6.

146 Programmer’s Guide

You can also use the parameterized manipulator setprecision to set
ios::x_precision.

The format state in effect when precision() is called affects the
behavior of precision(). If neither ios::scientific nor ios::fixed is set,
ios::x_precision specifies the number of significant digits in the
floating-point value that is being inserted. If, in addition,
ios::showpoint is not set, all trailing zeros are removed and a
decimal point only appears if it is followed by digits.

If either ios::scientific or ios::fixed is set, ios::x_precision specifies
the number of digits following the decimal point.

setf

Overload 1
public:long setf(long setbits, long field)

This function clears the format flags specified in field, sets the
format flags specified in setbits, and returns the previous value of
the format state.

For example, to change the conversion base in the format state to
ios::hex, you could use a statement like this:
s.setf(ios::hex, ios::basefield);

In this statement, ios::basefield specifies the conversion base as the
format flag that is going to be changed and ios::hex specifies the
new value for the conversion base. If setbits equals 0, all of the
format flags specified in field are cleared.

You can also use the parameterized manipulator resetiosflags to
clear format flags.

Note: If you set conflicting flags the results are unpredictable.

Overload 2
public:long setf(long)

This function is accumulative. It sets the format flags that are
specified in the argument, without affecting format flags that are
not marked in the argument, and returns the previous value of the
format state.

You can also use the parameterized manipulator setiosflags to set
the format flags to a specific setting.

skip
public:int skip(int i)

Sets the format flag ios::skipws if the value of the argument i does not
equal 0. If i does equal 0, ios::skipws is cleared.

skip() returns a value of 1 if ios::skipws was set prior to the call to skip(),
and returns 0 otherwise.

unsetf
public:long unsetf(long)

Appendix. Non-ISO USL Classes 147

Turns off the format flags specified in the argument and returns the
previous format state.

width

Overload 1
public:int width() const

Returns the value of the current setting of the format state field
width variable, ios::x_width.

If the value of ios::x_width is smaller than the space needed for the
representation of the value, the full value is still inserted.

Overload 2
public:int width(int w)

Sets ios::x_width to the value w and returns the previous value.

The default field width is 0. When the value of ios::x_width is 0,
the operations that insert values only insert the characters needed
to represent a value.

If the value of ios::x_width is greater than 0, the characters needed
to represent the value are inserted. Then fill characters are inserted,
if necessary, so that the representation of the value takes up the
entire field. ios::x_width only specifies a minimum width, not a
maximum width. If the number of characters needed to represent a
value is greater than the field width, none of the characters is
truncated. After every insertion of a value of a numeric or string
type (including char*, unsigned char *, signed char*, and wchar_t*,
but excluding char, unsigned char, signed char, and wchar_t), the
value of ios::x_width is reset to 0. After every extraction of a value
of type char*, unsigned char*, signed char*, or wchar_t*, the value
of ios::x_width is reset to 0.

You can also use the parameterized manipulator setw to set the
field width.

Format State Variables
The format state is a collection of format flags and format variables that control the
details of formatting for input and output operations.
x_fill

protected:char x_fill

Represents the character that is used to pad values that do not require the
width of an entire field for their representation. Its default value is a space
character.

x_precision
protected:short x_precision

Represents the number of significant digits in the representation of
floating-point values. Its default value is 6.

x_width
protected:short x_width

Represents the minimum width of a field. Its default value is 0.

148 Programmer’s Guide

Initialization Functions
init

protected:void init(streambuf*)

Miscellaneous Functions
bitalloc

public:static long bitalloc()

A static function that returns a long value with a previously unallocated bit
set. You can use this long value as an additional flag, and pass it as an
argument to the format state member functions. When all the bits are
exhausted, bitalloc() returns 0.

iword
public:long& iword(int)

Returns a reference to the indexed user-defined flag, where the index used
in the argument to this function is returned by xalloc().

iword() allocates space for the user-defined flag. If the allocation fails,
iword() sets ios::failbit. You should check ios::failbit after calling iword().

operator !
public:int operator !() const

The ! operator returns a nonzero value if ios::failbit or ios::badbit is set in
the error state of the ios object.

For example, you could write:
if (!cin)
cout << "either ios::failbit or ios::badbit is set" << endl;
else
cout << "neither ios::failbit nor ios::badbit is set" << endl;

operator const void *
public:operator const void *() const

operator void *
public:operator void *()

pword
public:void *& pword(int)

Returns a reference to a pointer to the indexed user-defined flag where the
index used in the argument to this function is returned by xalloc().

pword() allocates space for the user-defined flag. If the allocation fails,
pword() sets ios::failbit. You should check ios::failbit after calling pword().

pword() is the same as iword(), except that the two functions return
different types.

rdbuf
public:streambuf* rdbuf()

Returns a pointer to the streambuf object that is associated with the ios
object. This is the streambuf object that was passed as an argument to the
ios constructor.

sync_with_stdio
public:static void sync_with_stdio()

Appendix. Non-ISO USL Classes 149

sync_with_stdio() is a static function that solves the problems that occur
when you call functions declared in stdio.h and I/O Stream Library
functions in the same program. The first time that you call
sync_with_stdio(), it attaches stdiobuf objects to the predefined streams cin,
cout and cerr. After that, input and output using these predefined streams
can be mixed with input and output using the corresponding FILE objects
(stdin, stdout, and stderr). This input and output are correctly
synchronized.

If you switch between the I/O Stream Library formatted extraction
functions and stdio.h functions, you may find that a byte is ″lost″. The
reason is that the formatted extraction functions for integers and
floating-point values keep extracting characters until a nondigit character is
encountered. This nondigit character acts as a delimiter for the value that
preceded it. Because it is not part of the value, putback() is called to return
it to the stream buffer. If a C stdio library function, such as getchar(),
performs the next input operation, it will begin input at the character after
this nondigit character. Thus, this nondigit character is not part of the
value extracted by the formatted extraction function, and it is not the
character extracted by the C stdio library function. It is ″lost″. Therefore,
you should avoid switching between the I/O Stream Library formatted
extraction functions and C stdio library functions whenever possible.

sync_with_stdio() makes cout and clog unit buffered. After you call
sync_with_stdio(), the performance of your program could diminish. The
performance of your program depends on the length of strings, with
performance diminishing most when the strings are shortest.

tie

Overload 1
public:ostream* tie()

Returns the value of ios::x_tie.

ios::x_tie is the tie variable that points to the ostream object that is
tied to the ios object.

You can use ios::x_tie to automatically flush the stream buffer
attached to an ios object. If ios::x_tie for an ios object is not equal
to 0 and the ios object needs more characters or has characters to
be consumed, the ostream object pointed to by ios::x_tie is flushed.

By default, the tie variables of the predefined streams cin, cerr and
clog all point to the predefined stream cout.

Overload 2
public:ostream* tie(ostream* s)

Sets the tie variable, ios::x_tie, equal to the specified ostream and
returns the previous value.

You can use ios::x_tie to automatically flush the stream buffer
attached to an ios object. If ios::x_tie for an ios object is not equal
to 0 and the ios object needs more characters or has characters to
be consumed, the ostream object pointed to by ios::x_tie is flushed.

150 Programmer’s Guide

By default, the tie variables of the predefined streams cin, cerr and
clog all point to the predefined stream cout.

xalloc

A static function that returns an unused index into an array of words
available for use as format state variables by classes derived from ios.

xalloc() simply returns a new index; it does not do any allocation. iword()
and pword() do the allocation, and if the allocation fails, they set
ios::failbit. You should check ios::failbit after calling iword() or pword().

Overload 1
public:static int xalloc()
AIX Considerations

The value returned is an int for 32-bit applications. This
function is not available for 64-bit applications.

Overload 2
public:static long xalloc()
AIX Considerations

The value returned is a long for 64-bit applications. This
function is not available for 32-bit applications.

(* stdioflush) ()
protected:static void (* stdioflush) ()

ios - Enumerations

Variation 1
enum { skipping=01000,

tied=02000 }
Variation 2

enum { skipws=01,
left=02,
right=04,
internal=010,
dec=020,
oct=040,
hex=0100,
showbase=0200,
showpoint=0400,
uppercase=01000,
showpos=02000,
scientific=04000,
fixed=010000,
unitbuf=020000,
stdio=040000 }

io_state

The error state state is an enumeration that records the errors that take
place in the processing of ios objects.

Note: hardfail is a flag used internally by the I/O Stream Library. Do not
use it.

open_mode

The elements of the open_mode enumeration have the following meanings:
v ios::app - open() performs a seek to the end of the file. Data that is

written is appended to the end of the file. This value implies that the file
is open for output.

Appendix. Non-ISO USL Classes 151

v ios::ate - open() performs a seek to the end of the file. Setting ios::ate
does not open the file for input or output. If you set ios::ate, you should
explicitly set ios::in, ios::out, or both.

v ios::bin - See ios::binary below.
v ios::binary - The file is opened in binary mode. In the default (text)

mode, carriage returns are discarded on input, as in an end-of-file (0x1a)
character if it is the last character in the file. This means that a carriage
return without an accompanying line feed causes the characters on
either side of the carriage return to become adjacent. On output, a line
feed is expanded to a carriage return and line feed. If you specify
ios::binary, carriage returns and terminating end-of-file characters are not
removed on input, and a line feed is not expanded to a carriage return
and line feed on output. ios::binary and ios::bin provide identical
functionality.

v ios::in - The file is opened for input. If the file that is being opened for
input does not exist, the open operation will fail. ios::noreplace is
ignoredif ios::in is set.

v ios::out - The file is opened for output.
v ios::trunc - If the file already exists, its contents will be discarded. If you

specify ios::out and neither ios::ate nor ios::app, you are implicitly
specifying ios::trunc. If you set ios::trunc, you should explicitly set
ios::in, ios::out, or both.

v ios::nocreate - If the file does not exist, the call to open() fails.
v ios::noreplace - If the file already exists and ios::out is et, the call to

open() fails. If ios::out is not set, ios::noreplace is ignored.
Variation 1

enum open_mode { in=1,
out=2,
ate=4,
app=010,
trunc=020,
nocreate=040,
noreplace=0100,
bin=0200,
binary=bin }

seek_dir

The elements of the seek_dir enumeration have the following meanings:
v beg - the beginning of the ultimate producer or consumer
v cur - the current position in the ultimate producer or consumer
v end - the end of the ultimate producer or consumer

ios - Inherited Member Functions and Data
Inherited Public Functions

None
Inherited Public Data

None
Inherited Protected Functions

None
Inherited Protected Data

None

152 Programmer’s Guide

iostream
This class combines the input capabilities of the istream class with the output
capabilities of the ostream class. It is the base class for three other classes that also
provide input and output capabilities:
v iostream_withassign - to assign another stream (such as an fstream for a file) to

an iostream object.
v strstream - a stream of characters stored in memory.
v fstream - a stream that supports input and output.

Class header file: iostream.h

iostream - Hierarchy List
ios
istream
iostream

iostream_withassign

iostream - Member Functions and Data by Group

Constructors & Destructor
Objects of the iostream class can be constructed and destructed.
~iostream

public:virtual ~iostream()

Destructs an iostream object.
iostream

Overload 1
public:iostream(streambuf*)

This constructor takes a single streambuf argument and creates an
iostream object that is attached to the streambuf object. The
constructor also initializes the format variables to their defaults.

Overload 2
protected:iostream()

Protected contructor.

iostream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

Appendix. Non-ISO USL Classes 153

ios

Definition Page
Number

int fail() const 145

char fill() const 145

char fill(char) 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long) 147

long setf(long setbits, long field) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static long xalloc() 151

static int xalloc() 151

istream

Definition Page
Number

virtual ~istream() 165

long gcount() 165

int gcount() 165

154 Programmer’s Guide

istream

Definition Page
Number

istream& get(char& c) 166

int get() 166

istream& get(signed char* b, long lim, char delim = ’\n’) 166

istream& get(signed char* b, int lim, char delim = ’\n’) 166

istream& get(char*, long lim, char delim = ’\n’) 166

istream& get(signed char& c) 166

istream& get(unsigned char& c) 166

istream& get(unsigned char* b, long lim, char delim = ’\n’) 166

istream& get(char*, int lim, char delim = ’\n’) 166

istream& get(streambuf& sb, char delim = ’\n’) 166

istream& get(unsigned char* b, int lim, char delim = ’\n’) 166

istream& get(wchar_t&) 166

istream& get_complicated(char& c) 169

istream& get_complicated(unsigned char& c) 169

istream& get_complicated(signed char& c) 169

istream&
getline(unsigned char* b,

long lim,
char delim = ’\n’)

169

istream&
getline(unsigned char* b,

int lim,
char delim = ’\n’)

169

istream&
getline(signed char* b,

int lim,
char delim = ’\n’)

169

istream& getline(char* b, long lim, char delim = ’\n’) 169

istream& getline(char* b, int lim, char delim = ’\n’) 169

istream&
getline(signed char* b,

long lim,
char delim = ’\n’)

169

istream& ignore(int n = 1, int delim = EOF) 172

int ipfx(int noskipws = 0) 185

int ipfx(long noskipws = 0) 185

void isfx() 186

istream(int fd, int sk = 1, ostream* t = 0) 165

Appendix. Non-ISO USL Classes 155

istream

Definition Page
Number

istream(streambuf*, int sk, ostream* t = 0) 165

istream(int size, char*, int sk = 1) 165

istream(streambuf*) 165

istream& operator >>(istream & (* f) (istream &)) 174

istream& operator >>(char*) 174

istream& operator >>(unsigned int&) 174

istream& operator >>(long double&) 174

istream& operator >>(long long&) 174

istream& operator >>(signed char& c) 174

istream& operator >>(ios & (* f) (ios &)) 174

istream& operator >>(double&) 174

istream& operator >>(streambuf*) 174

istream& operator >>(char& c) 174

istream& operator >>(signed char*) 174

istream& operator >>(unsigned long&) 174

istream& operator >>(short&) 174

istream& operator >>(unsigned char*) 174

istream& operator >>(float&) 174

istream& operator >>(wchar_t&) 174

istream& operator >>(int&) 174

istream& operator >>(long&) 174

istream& operator >>(unsigned short&) 174

istream& operator >>(unsigned long long&) 174

istream& operator >>(unsigned char& c) 174

istream& operator >>(wchar_t*) 174

int peek() 172

istream& putback(char c) 184

istream& read(signed char* s, long n) 172

istream& read(char* s, int n) 172

istream& read(unsigned char* s, int n) 172

istream& read(signed char* s, int n) 172

istream& read(unsigned char* s, long n) 172

istream& read(char* s, long n) 172

156 Programmer’s Guide

istream

Definition Page
Number

istream& rs_complicated(unsigned char& c) 174

istream& rs_complicated(signed char& c) 174

istream& rs_complicated(char& c) 174

istream& seekg(streamoff o, ios::seek_dir d) 184

istream& seekg(streampos p) 184

int sync() 185

streampos tellg() 185

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

istream

Definition Page
Number

int do_ipfx(long noskipws) 186

int do_ipfx(int noskipws) 186

void eatwhite() 174

istream() 165

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

Appendix. Non-ISO USL Classes 157

ios

Definition Page
Number

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

iostream_withassign
This class is derived from istream_withassign and ostream_withassign. Use this
class to assign another stream to an iostream object.

Class header file: iostream.h

iostream_withassign - Hierarchy List
ios
istream
iostream
iostream_withassign

iostream_withassign - Member Functions and Data by Group

Constructors & Destructor
~iostream_withassign

public:virtual ~iostream_withassign()

Destructs an iostream_withassign object.
iostream_withassign

public:iostream_withassign()

Creates an iostream_withassign object. It does not do any initialization of
this object.

operator =
public:iostream_withassign& operator =(iostream_withassign& rhs)

158 Programmer’s Guide

Copy constructor.

Assignment Operators
operator =

Overload 1
public:iostream_withassign& operator =(streambuf*)

This assignment operator takes a pointer to a streambuf object and
associates this streambuf object with the iostream_withassign object
that is on the left side of the assignment operator.

Overload 2
public:iostream_withassign& operator =(ios&)

This assignment operator takes a reference to an ios object and
associates the stream buffer attached to this ios object with the
iostream_withassign object that is on the left side of the assignment
operator.

iostream_withassign - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

char fill(char) 145

long flags() const 146

long flags(long f) 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

Appendix. Non-ISO USL Classes 159

ios

Definition Page
Number

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long) 147

long setf(long setbits, long field) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width() const 148

int width(int w) 148

static long xalloc() 151

static int xalloc() 151

iostream

Definition Page
Number

virtual ~iostream() 153

iostream(streambuf*) 153

istream

Definition Page
Number

virtual ~istream() 165

int gcount() 165

long gcount() 165

istream& get(unsigned char& c) 166

istream& get(char& c) 166

istream& get(char*, long lim, char delim = ’\n’) 166

istream& get(streambuf& sb, char delim = ’\n’) 166

istream& get(unsigned char* b, int lim, char delim = ’\n’) 166

int get() 166

istream& get(unsigned char* b, long lim, char delim = ’\n’) 166

istream& get(signed char* b, int lim, char delim = ’\n’) 166

160 Programmer’s Guide

istream

Definition Page
Number

istream& get(signed char* b, long lim, char delim = ’\n’) 166

istream& get(char*, int lim, char delim = ’\n’) 166

istream& get(wchar_t&) 166

istream& get(signed char& c) 166

istream& get_complicated(unsigned char& c) 169

istream& get_complicated(char& c) 169

istream& get_complicated(signed char& c) 169

istream&
getline(unsigned char* b,

long lim,
char delim = ’\n’)

169

istream&
getline(signed char* b,

int lim,
char delim = ’\n’)

169

istream&
getline(unsigned char* b,

int lim,
char delim = ’\n’)

169

istream& getline(char* b, int lim, char delim = ’\n’) 169

istream& getline(char* b, long lim, char delim = ’\n’) 169

istream&
getline(signed char* b,

long lim,
char delim = ’\n’)

169

istream& ignore(int n = 1, int delim = EOF) 172

int ipfx(int noskipws = 0) 185

int ipfx(long noskipws = 0) 185

void isfx() 186

istream(int size, char*, int sk = 1) 165

istream(int fd, int sk = 1, ostream* t = 0) 165

istream(streambuf*, int sk, ostream* t = 0) 165

istream(streambuf*) 165

istream& operator >>(unsigned char& c) 174

istream& operator >>(istream & (* f) (istream &)) 174

istream& operator >>(char*) 174

istream& operator >>(unsigned int&) 174

istream& operator >>(long long&) 174

Appendix. Non-ISO USL Classes 161

istream

Definition Page
Number

istream& operator >>(long double&) 174

istream& operator >>(signed char& c) 174

istream& operator >>(int&) 174

istream& operator >>(ios & (* f) (ios &)) 174

istream& operator >>(streambuf*) 174

istream& operator >>(double&) 174

istream& operator >>(wchar_t&) 174

istream& operator >>(char& c) 174

istream& operator >>(signed char*) 174

istream& operator >>(unsigned long&) 174

istream& operator >>(short&) 174

istream& operator >>(unsigned char*) 174

istream& operator >>(float&) 174

istream& operator >>(wchar_t*) 174

istream& operator >>(long&) 174

istream& operator >>(unsigned long long&) 174

istream& operator >>(unsigned short&) 174

int peek() 172

istream& putback(char c) 184

istream& read(signed char* s, long n) 172

istream& read(char* s, int n) 172

istream& read(unsigned char* s, int n) 172

istream& read(signed char* s, int n) 172

istream& read(unsigned char* s, long n) 172

istream& read(char* s, long n) 172

istream& rs_complicated(unsigned char& c) 174

istream& rs_complicated(signed char& c) 174

istream& rs_complicated(char& c) 174

istream& seekg(streamoff o, ios::seek_dir d) 184

istream& seekg(streampos p) 184

int sync() 185

streampos tellg() 185

162 Programmer’s Guide

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

istream

Definition Page
Number

int do_ipfx(long noskipws) 186

int do_ipfx(int noskipws) 186

void eatwhite() 174

istream() 165

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

iostream

Definition Page
Number

iostream() 153

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

Appendix. Non-ISO USL Classes 163

ios

Definition Page
Number

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

istream
You can use the istream class to perform formatted input, or extraction, from a
stream buffer using the input operator >>. Consider the following statement,
where ins is a reference to an istream object and x is a variable of a built-in type:
ins >> x;

The input operator >> calls ipfx(0). If ipfx() returns a nonzero value, the input
operator extracts characters from the streambuf object that is associated with ins. It
converts these characters to the type of x and stores the result x. The input
operator sets ios::failbit if the characters extracted from the stream buffer cannot be
converted to the type of x. If the attempt to extract characters fails because EOF is
encountered, the input operator sets ios::eofbit and ios::failbit. If the attempt to
extract characters fails for another reason, the input operator sets ios::badbit. Even
if an error occurs, the input operator always returns ins.

The details of conversion depend on the format state of the istream object and the
type of the variable x. The input operator may set the width variable ios::x_width
to 0, but it does not change anything else in the format state.

The input operator is defined for the following types:
v Arrays of character values (including signed char and unsigned char)
v Other integral values: short, int, long, float, double, long double, and long long

values.

In addition, the input operator is defined for streambuf objects.

You can also define input operators for your own types.

Class header file: iostream.h

istream - Hierarchy List
ios
istream

iostream
istream_withassign

164 Programmer’s Guide

istream - Member Functions and Data by Group

Constructors & Destructor
Objects of the istream class can be constructed and destructed.
~istream

public:virtual ~istream()

Destructs an istream object.
istream

Overload 1
public:istream(streambuf*, int sk, ostream* t = 0)

Obsolete. Do not use.

Overload 2
public:istream(streambuf*)

This constructor takes a single argument, a pointer to a streambuf,
and creates an istream object that is attached to the streambuf
object. The constructor also initializes the format variables to their
defaults.

Note: The other istream constructor declarations in iostream.h are
obsolete; do not use them.

Overload 3
public:istream(int size, char*, int sk = 1)

Obsolete. Do not use.

Overload 4
public:istream(int fd, int sk = 1, ostream* t = 0)

Obsolete. Do not use.

Overload 5
protected:istream()

Obsolete. Do not use.

Extract Functions
You can use the extract functions to extract characters from a stream buffer as a
sequence of bytes. All of these functions call ipfx(1). They only proceed with their
processing if ipfx(1) returns a nonzero value.
gcount

Returns the number of characters extracted from the stream buffer by the
last call to an unformatted input function. The input operator >> may call
unformatted input functions, and thus formatted input may affect the
value returned by gcount().

Overload 1
public:int gcount()
AIX Considerations

This function returns an int value for 32-bit applications. It
is not available for 64-bit applications.

Appendix. Non-ISO USL Classes 165

Overload 2
public:long gcount()
AIX Considerations

This function returns a long value for 64-bit applications. It
is not available for 32-bit applications.

get

Overload 1
public:int get()

Extracts a single character from the stream buffer attached to the
istream object and returns it. Returns EOF if EOF is extracted.
ios::failbit is never set.

Overload 2
public:istream& get(char*, int lim, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 3
public:istream& get(unsigned char& c)

Extracts a single character from the stream buffer attached to the
istream object and stores this character in c.

Overload 4
public:istream& get(signed char* b, int lim, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

166 Programmer’s Guide

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 5
public:istream& get(streambuf& sb, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the streambuf, sb. The default value of
the delim argument is ’\n’. Extraction stops when any of the
following conditions is true:
v an EOF character is encountered
v an attempt to store a character in sb fails
v ios::failbit is set in the error state of the istream object
v delim is encountered. delim is left in the stream buffer attached to

the istream object.

Overload 6
public:istream& get(unsigned char* b, long lim, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 7
public:istream& get(char& c)

Extracts a single character from the stream buffer attached to the
istream object and stores this character in c.

Overload 8
public:istream& get(signed char& c)

Extracts a single character from the stream buffer attached to the
istream object and stores this character in c.

Overload 9
public:istream& get(wchar_t&)

Appendix. Non-ISO USL Classes 167

Extracts a single wchar_t character from the stream buffer attached
to the istream object and stores this character in c.

Overload 10
public:istream& get(unsigned char* b, int lim, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 11
public:istream& get(signed char* b, long lim, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 12
public:istream& get(char*, long lim, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:

168 Programmer’s Guide

v delim or EOF is encountered before lim - 1 characters have been
stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

get_complicated

Overload 1
public:istream& get_complicated(signed char& c)

Internal function. Do not use.

Overload 2
public:istream& get_complicated(unsigned char& c)

Internal function. Do not use.

Overload 3
public:istream& get_complicated(char& c)

Internal function. Do not use.
getline

Overload 1
public:istream&

getline(unsigned char* b,
int lim,
char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream buffer,
but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

Appendix. Non-ISO USL Classes 169

This function is available for 32-bit applications. The
second argument is an int value.

Overload 2
public:istream&

getline(unsigned char* b,
long lim,
char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream buffer,
but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 3
public:istream& getline(char* b, int lim, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream buffer,
but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

170 Programmer’s Guide

This function is available for 32-bit applications. The
second argument is an int value.

Overload 4
public:istream& getline(char* b, long lim, char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream buffer,
but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 5
public:istream&

getline(signed char* b,
int lim,
char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream buffer,
but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

Appendix. Non-ISO USL Classes 171

This function is available for 32-bit applications. The
second argument is an int value.

Overload 6
public:istream&

getline(signed char* b,
long lim,
char delim = ’\n’)

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream buffer,
but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

ignore
public:istream& ignore(int n = 1, int delim = EOF)

Extracts up to n characters from the stream buffer attached to the istream
object and discards them. ignore() will extract fewer than n characters if it
encounters delim or EOF.

peek
public:int peek()

peek() calls ipfx(1). If ipfx() returns 0, or if no more input is available from
the ultimate producer, peek() returns EOF. Otherwise, it returns the next
character in the stream buffer without extracting the character.

read

Overload 1
public:istream& read(char* s, long n)

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

172 Programmer’s Guide

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:istream& read(signed char* s, int n)

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 3
public:istream& read(unsigned char* s, long n)

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 4
public:istream& read(unsigned char* s, int n)

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 5
public:istream& read(signed char* s, long n)

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 6

Appendix. Non-ISO USL Classes 173

public:istream& read(char* s, int n)

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

rs_complicated

Overload 1
public:istream& rs_complicated(signed char& c)

Internal function. Do not use.

Overload 2
public:istream& rs_complicated(char& c)

Internal function. Do not use.

Overload 3
public:istream& rs_complicated(unsigned char& c)

Internal function. Do not use.
eatwhite

protected:void eatwhite()

Internal function. Do not use.

Input Operators
Input operators supported by istream objects.
operator >>

Overload 1
public:istream& operator >>(float&)

The input operator converts characters from the stream buffer
attached to the input stream according to the C++ lexical
conventions.

The following conversions occur for certain string values:
v If the value consists of the character strings ″inf″ or ″infinity″ in

any combination of uppercase and lowercase letters, the string is
converted to the approprate type’s representation of infinity.

v If the value consists of the character string ″nan″ in any
combination of uppercase and lowercase letters, the string is
converted to the appropriate type’s representation of a NaN.

Note that if you use thse string values as input in a program
compiled with z/OS C/C++, the input operator will not recognize
them as floating point numbers and will set ios::badbit in the
stream’s error state.

174 Programmer’s Guide

The resulting value is stored in the reference location provided.
The input operator sets ios::failbit if no digits are available in the
stream buffer or if the digits that are available do not begin a
floating-point number.

Overload 2
public:istream& operator >>(char*)

The input operator stores characters from the stream buffer
attached to the input stream in the array pointed to by the
argument. The input operator stores characters until a white-space
character is found. This white-space character is left in the stream
buffer, and the extraction stops. If ios::x_width does not equal 0, a
maximum of ios::x_width - 1 characters are extracted. The input
operator calls width(0) to reset the ios::x_width to 0.

The input operator always stores a terminating null character in
the array, even if an error occurs.

Overload 3
public:istream& operator >>(int&)

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
fromm ″A″ to ″F″, upper or lower case) is encountered. If
ios::hex is set and a signed value is encountered, the value is
converted into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.

Appendix. Non-ISO USL Classes 175

v If neither of these cases is true, the characters are converted to a
decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 4
public:istream& operator >>(long double&)

The input operator converts characters from the stream buffer
attached to the input stream according to the C++ lexical
conventions.

The following conversions occur for certain string values:
v If the value consists of the character strings ″inf″ or ″infinity″ in

any combination of uppercase and lowercase letters, the string is
converted to the approprate type’s representation of infinity.

v If the value consists of the character string ″nan″ in any
combination of uppercase and lowercase letters, the string is
converted to the appropriate type’s representation of a NaN.

Note that if you use thse string values as input in a program
compiled with z/OS C/C++, the input operator will not recognize
them as floating point numbers and will set ios::badbit in the
stream’s error state.

The resulting value is stored in the reference location provided.
The input operator sets ios::failbit if no digits are available in the
stream buffer or if the digits that are available do not begin a
floating-point number.

Overload 5
public:istream& operator >>(ios & (* f) (ios &))

The following built-in manipulators are accepted by this input
operator:

ios& dec(ios&)
ios& hex(ios&)
ios& oct(ios &)

These manipulators have a specific effect on an istream object
beyond extracting their own values. For example, If ins is a
reference to an istream object, then this statement sets ios::dec:

ins >> dec;

Overload 6
public:istream& operator >>(long long&)

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

176 Programmer’s Guide

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
fromm ″A″ to ″F″, upper or lower case) is encountered. If
ios::hex is set and a signed value is encountered, the value is
converted into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Note: The support for long long is controlled by _LONG_LONG,
__EXTENDED__, or the -q(no)longlong option.

Overload 7
public:istream& operator >>(long&)

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character

Appendix. Non-ISO USL Classes 177

that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
fromm ″A″ to ″F″, upper or lower case) is encountered. If
ios::hex is set and a signed value is encountered, the value is
converted into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 8
public:istream& operator >>(short&)

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter

178 Programmer’s Guide

fromm ″A″ to ″F″, upper or lower case) is encountered. If
ios::hex is set and a signed value is encountered, the value is
converted into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 9
public:istream& operator >>(signed char& c)

The input operator extracts a character from the stream buffer
attached to the input stream and stores it in c.

Overload 10
public:istream& operator >>(signed char*)

The input operator stores characters from the stream buffer
attached to the input stream in the array pointed to by the
argument. The input operator stores characters until a white-space
character is found. This white-space character is left in the stream
buffer, and the extraction stops. If ios::x_width does not equal 0, a
maximum of ios::x_width - 1 characters are extracted. The input
operator calls width(0) to reset the ios::x_width to 0.

The input operator always stores a terminating null character in
the array, even if an error occurs.

Overload 11
public:istream& operator >>(unsigned char*)

The input operator stores characters from the stream buffer
attached to the input stream in the array pointed to by the
argument. The input operator stores characters until a white-space
character is found. This white-space character is left in the stream
buffer, and the extraction stops. If ios::x_width does not equal 0, a
maximum of ios::x_width - 1 characters are extracted. The input
operator calls width(0) to reset the ios::x_width to 0.

The input operator always stores a terminating null character in
the array, even if an error occurs.

Overload 12
public:istream& operator >>(streambuf*)

For pointers to streambuf objects, the input operator calls ipfx(0). If
ipfx(0) returns a nonzero value, the input operator extracts

Appendix. Non-ISO USL Classes 179

characters from the stream buffer attached to the istream object and
inserts them in the streambuf. Extraction stops when an EOF
character is encountered.

The input operator always returns a reference to the istream object.

Overload 13
public:istream& operator >>(unsigned int&)

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
fromm ″A″ to ″F″, upper or lower case) is encountered. If
ios::hex is set and a signed value is encountered, the value is
converted into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 14
public:istream& operator >>(unsigned long long&)

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are

180 Programmer’s Guide

then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
fromm ″A″ to ″F″, upper or lower case) is encountered. If
ios::hex is set and a signed value is encountered, the value is
converted into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Note: The support for long long is controlled by _LONG_LONG,
__EXTENDED__, or the -q(no)longlong option.

Overload 15
public:istream& operator >>(unsigned long&)

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:

Appendix. Non-ISO USL Classes 181

v ios::oct - the characters are converted to an octal value.
Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
fromm ″A″ to ″F″, upper or lower case) is encountered. If
ios::hex is set and a signed value is encountered, the value is
converted into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 16
public:istream& operator >>(unsigned short&)

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter

182 Programmer’s Guide

fromm ″A″ to ″F″, upper or lower case) is encountered. If
ios::hex is set and a signed value is encountered, the value is
converted into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 17
public:istream& operator >>(wchar_t&)

The input operator extracts a wchar_t character from the stream
buffer attached to the input stream and stores it in the reference
location provided. If ios::skipws is set, the input operator skips
leading wchar_t spaces as well as leading char white spaces.

Overload 18
public:istream& operator >>(wchar_t*)

The input operator stores characters from the stream buffer
attached to the input stream in the array pointed to by the
argument. The input operator stores characters until a white-space
character or a wchar_t blank is found. If the terminating character
is a white-space character, it is left in the stream buffer. If it is a
wchar_t blank, it is discarded to avoid returning two bytes to the
input stream.

For wchar_t* arrays, if ios::x_width does not equal 0, a maximum
of ios::x_width - 1 characters (at 2 bytes each) are extracted. A
2-character space is reserved for the wchar_t terminating null
character.

The input operator resets ios::x_width to 0.

The input operator always stores a terminating null character in
the array, even if an error occurs. For arrays of wchar_t*, this
terminating null character is a wchar_t terminating null character.

Overload 19
public:istream& operator >>(unsigned char& c)

The input operator extracts a character from the stream buffer
attached to the input stream and stores it in c.

Overload 20
public:istream& operator >>(istream & (* f) (istream &))

Appendix. Non-ISO USL Classes 183

The following built-in manipulators are accepted by this input
operator:

istream& ws(istream&)

These manipulators have a specific effect on an istream object
beyond extracting their own values. For example, If ins is a
reference to an istream object, then this statement extracts
white-space characters from the stream buffer attached to ins:

ins >> ws;

Overload 21
public:istream& operator >>(double&)

The input operator converts characters from the stream buffer
attached to the input stream according to the C++ lexical
conventions.

The following conversions occur for certain string values:
v If the value consists of the character strings ″inf″ or ″infinity″ in

any combination of uppercase and lowercase letters, the string is
converted to the approprate type’s representation of infinity.

v If the value consists of the character string ″nan″ in any
combination of uppercase and lowercase letters, the string is
converted to the appropriate type’s representation of a NaN.

Note that if you use thse string values as input in a program
compiled with z/OS C/C++, the input operator will not recognize
them as floating point numbers and will set ios::badbit in the
stream’s error state.

The resulting value is stored in the reference location provided.
The input operator sets ios::failbit if no digits are available in the
stream buffer or if the digits that are available do not begin a
floating-point number.

Overload 22
public:istream& operator >>(char& c)

The input operator extracts a character from the stream buffer
attached to the input stream and stores it in c.

Positioning Functions
Functions that work with the get pointer of the ultimate producer.
putback

public:istream& putback(char c)

putback() attempts to put an extracted character back into the stream
buffer. c must equal the character before the get pointer of the stream
buffer. Unless some other activity is modifying the stream buffer, this is the
last character extracted from the stream buffer. If c is not equal to the
character before the get pointer, the result of putback() is undefined, and
the error state of the input stream may be set. putback() does not call
ipfx(), but if the error state of the input stream is nonzero, putback()
returns without putting back the character or setting the error state.

seekg

184 Programmer’s Guide

Overload 1
public:istream& seekg(streampos p)

Sets the get pointer to the position p.

If you attempt to set the get pointer to a position that is not valid,
seekg() sets ios::badbit.

Overload 2
public:istream& seekg(streamoff o, ios::seek_dir d)

Sets the get pointer to the position specified by d with the offset o.
The argument d can have the following values:
v ios::beg - the beginning of the stream
v ios::cur - the current position of the get pointer
v ios::end - the end of the stream

If you attempt to set the get pointer to a position that is not valid,
seekg() sets ios::badbit.

sync
public:int sync()

Establishes consistency between the ultimate producer and the stream
buffer attached to the input stream. sync() calls rdbuf()->sync(), which is a
virtual function, so the details of its operation depend on the way the
function is defined in a given derived class. If an error occurs, sync()
returns EOF.

tellg
public:streampos tellg()

Returns the current position of the get pointer of the ultimate producer.

Prefix and Suffix Functions
Functions that are called either before or after extracting characters from the
ultimate producer.
ipfx

Checks the stream buffer attached to an istream object to determine if it is
capable of satisfying requests for characters. It returns a nonzero value if
the stream buffer is ready, and 0 if it is not.

The formatted input operator calls ipfx(0), while the unformatted input
functions call ipfx(1).

If the error state of the istream object is nonzero, ipfx() returns 0.
Otherwise, the stream buffer attached to the istream object is flushed if
either of the following conditions is true:
v noskipws has a value of 0. The number of characters available in the

stream buffer is fewer than the value of noskipws.

If ios::skipws is set in the format state of the istream object and noskipws
has a value of 0, leading white-space characters are extracted from the
stream buffer and discarded. If ios::hardfail is set or EOF is encountered,
ipfx() returns 0. Otherwise, it returns a nonzero value.

Overload 1
public:int ipfx(int noskipws = 0)

Appendix. Non-ISO USL Classes 185

AIX Considerations

This function accepts an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:int ipfx(long noskipws = 0)
AIX Considerations

This function accepts a long value for 64-bit applications. It
is not available for 32-bit applications.

isfx
public:void isfx()

Internal function. Do not use.
do_ipfx

Overload 1
protected:int do_ipfx(long noskipws)

Internal function. Do not use.
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

Overload 2
protected:int do_ipfx(int noskipws)

Internal function. Do not use.
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

istream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

char fill(char) 145

long flags() const 146

long flags(long f) 146

int good() const 145

186 Programmer’s Guide

ios

Definition Page
Number

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static long xalloc() 151

static int xalloc() 151

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

ios

Definition Page
Number

void init(streambuf*) 149

Appendix. Non-ISO USL Classes 187

ios

Definition Page
Number

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

istream_withassign
Use this class to assign another stream to an istream object.

Class header file: iostream.h

istream_withassign - Hierarchy List
ios
istream
istream_withassign

istream_withassign - Member Functions and Data by Group

Constructors & Destructor
Objects of the istream_withassign class can be constructed and destructed. They
can also be copied.
~istream_withassign

public:virtual ~istream_withassign()

188 Programmer’s Guide

Destructs an ostream_withassign object.
istream_withassign

public:istream_withassign()

Creates an istream_withassign object. It does not do any initialization of
this object.

operator =
public:istream_withassign& operator =(istream_withassign& rhs)

The copy constructor.

Assignment Operator
Assignment operators for istream_withassign.
operator =

Overload 1
public:istream_withassign& operator =(streambuf*)

This assignment operator takes a pointer to a streambuf object as
its argument. It associates this streambuf object with the
istream_withassign object that is on the left side of the assignment
operator.

Overload 2
public:istream_withassign& operator =(istream&)

This assignment operator takes an istream objects as its argument.
It associates the stream buffer attached to the input stream with the
istream_withassign object that is on the left side of the assignment
operator.

istream_withassign - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

char fill(char) 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

Appendix. Non-ISO USL Classes 189

ios

Definition Page
Number

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long) 147

long setf(long setbits, long field) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static long xalloc() 151

static int xalloc() 151

istream

Definition Page
Number

virtual ~istream() 165

long gcount() 165

int gcount() 165

istream& get(unsigned char& c) 166

istream& get(char*, int lim, char delim = ’\n’) 166

istream& get(signed char* b, long lim, char delim = ’\n’) 166

istream& get(char& c) 166

istream& get(streambuf& sb, char delim = ’\n’) 166

istream& get(wchar_t&) 166

istream& get(signed char* b, int lim, char delim = ’\n’) 166

190 Programmer’s Guide

istream

Definition Page
Number

istream& get(signed char& c) 166

int get() 166

istream& get(char*, long lim, char delim = ’\n’) 166

istream& get(unsigned char* b, long lim, char delim = ’\n’) 166

istream& get(unsigned char* b, int lim, char delim = ’\n’) 166

istream& get_complicated(unsigned char& c) 169

istream& get_complicated(char& c) 169

istream& get_complicated(signed char& c) 169

istream& getline(char* b, int lim, char delim = ’\n’) 169

istream&
getline(unsigned char* b,

long lim,
char delim = ’\n’)

169

istream&
getline(unsigned char* b,

int lim,
char delim = ’\n’)

169

istream& getline(char* b, long lim, char delim = ’\n’) 169

istream&
getline(signed char* b,

int lim,
char delim = ’\n’)

169

istream&
getline(signed char* b,

long lim,
char delim = ’\n’)

169

istream& ignore(int n = 1, int delim = EOF) 172

int ipfx(int noskipws = 0) 185

int ipfx(long noskipws = 0) 185

void isfx() 186

istream(int size, char*, int sk = 1) 165

istream(int fd, int sk = 1, ostream* t = 0) 165

istream(streambuf*, int sk, ostream* t = 0) 165

istream(streambuf*) 165

istream& operator >>(unsigned char& c) 174

istream& operator >>(wchar_t*) 174

istream& operator >>(unsigned short&) 174

istream& operator >>(istream & (* f) (istream &)) 174

Appendix. Non-ISO USL Classes 191

istream

Definition Page
Number

istream& operator >>(unsigned long long&) 174

istream& operator >>(char*) 174

istream& operator >>(unsigned int&) 174

istream& operator >>(long double&) 174

istream& operator >>(int&) 174

istream& operator >>(long long&) 174

istream& operator >>(ios & (* f) (ios &)) 174

istream& operator >>(double&) 174

istream& operator >>(signed char& c) 174

istream& operator >>(streambuf*) 174

istream& operator >>(char& c) 174

istream& operator >>(signed char*) 174

istream& operator >>(unsigned char*) 174

istream& operator >>(unsigned long&) 174

istream& operator >>(wchar_t&) 174

istream& operator >>(float&) 174

istream& operator >>(short&) 174

istream& operator >>(long&) 174

int peek() 172

istream& putback(char c) 184

istream& read(signed char* s, long n) 172

istream& read(char* s, int n) 172

istream& read(unsigned char* s, int n) 172

istream& read(signed char* s, int n) 172

istream& read(unsigned char* s, long n) 172

istream& read(char* s, long n) 172

istream& rs_complicated(unsigned char& c) 174

istream& rs_complicated(char& c) 174

istream& rs_complicated(signed char& c) 174

istream& seekg(streamoff o, ios::seek_dir d) 184

istream& seekg(streampos p) 184

int sync() 185

streampos tellg() 185

192 Programmer’s Guide

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

istream

Definition Page
Number

int do_ipfx(int noskipws) 186

int do_ipfx(long noskipws) 186

void eatwhite() 174

istream() 165

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

Appendix. Non-ISO USL Classes 193

ios

Definition Page
Number

short x_precision 148

ostream* x_tie 144

short x_width 148

istrstream
istrstream is the class that specializes istream to use a strstreambuf for extraction
from arrays of characters in memory. You can create an istrstream object by
associating the object with a previously allocated array of characters. You can then
read input from it and apply other operations to it just as you would to another
type of stream.

Class header file: strstream.h

istrstream - Hierarchy List
ios
strstreambase
istrstream

istrstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the istrstream class can be constructed and destructed.
~istrstream

public:~istrstream()

The istrstream destructor frees space that was allocated by the istrstream
constructor.

istrstream

Overload 1
public:istrstream(const char* str)

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 2
public:istrstream(const signed char* str)

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 3
public:istrstream(char* str, long size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and

194 Programmer’s Guide

has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 4
public:istrstream(signed char* str, long size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 5
public:istrstream(const signed char* str, int size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 6
public:istrstream(const signed char* str, long size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 7
public:istrstream(const unsigned char* str)

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 8
public:istrstream(const unsigned char* str, long size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

Appendix. Non-ISO USL Classes 195

This function is available for 64-bit applications. The
second argument is a long value.

Overload 9
public:istrstream(const unsigned char* str, int size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 10
public:istrstream(const char* str, int size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 11
public:istrstream(signed char* str)

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 12
public:istrstream(unsigned char* str)

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 13
public:istrstream(unsigned char* str, int size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 14
public:istrstream(unsigned char* str, long size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and

196 Programmer’s Guide

has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 15
public:istrstream(signed char* str, int size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 16
public:istrstream(const char* str, long size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 17
public:istrstream(char* str, int size)

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 18
public:istrstream(char* str)

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

istrstream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

Appendix. Non-ISO USL Classes 197

ios

Definition Page
Number

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

char fill(char) 145

long flags() const 146

long flags(long f) 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static int xalloc() 151

static long xalloc() 151

198 Programmer’s Guide

strstreambase

Definition Page
Number

strstreambuf* rdbuf() 253

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

strstreambase

Definition Page
Number

~strstreambase() 253

strstreambase(char*, long, char*) 253

strstreambase(char*, int, char*) 253

strstreambase() 253

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

Appendix. Non-ISO USL Classes 199

ios

Definition Page
Number

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

ofstream
This class specializes the ostream class for use with files.

Class header file: fstream.h

ofstream - Hierarchy List
ios
fstreambase
ofstream

ofstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the ofstream class can be constructed and destructed.
~ofstream

public:~ofstream()

Destructs an ofstream object.
ofstream

Constructs an object of this class.

Overload 1
public:ofstream(int fd, char* p, int l)

Constructs an ofstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ofstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 2
public:ofstream(int fd)

200 Programmer’s Guide

Constructs an ofstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ofstream object.

Overload 3
public:ofstream(int fd, char* p, long l)

Constructs an ofstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ofstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 5
public:ofstream(const char* name,

int mode = ios::out,
int prot = filebuf::openprot)

Constructs an ofstream object and opens the file name with open
mode equal to mode and protection mode equal to prot. The default
value for mode is ios::out and for prot is filebuf::openprot. If the file
cannot be opened, the error state of the constructed ofstream object
is set.

Overload 6
public:ofstream()

Constructs an unopened ofstream object.

Filebuf Functions
rdbuf

public:filebuf* rdbuf()

Returns a pointer to the filebuf object that is attached to the ofstream
object.

Open Functions
Opens the file.
open

Opens the specified file.

Overload 1
public:void

open(const char* name,
int mode = ios::out,
int prot = filebuf::openprot)

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

Appendix. Non-ISO USL Classes 201

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file of if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

ofstream - Inherited Member Functions and Data
Inherited Public Functions

fstreambase

Definition Page
Number

~fstreambase() 133

void attach(FILE* fp) 134

void attach(int fd) 134

void close() 134

int detach() 134

fstreambase(int fd, char* p, long l) 133

fstreambase(const char* name,
const char* attr,
int mode,
int prot = filebuf::openprot)

133

fstreambase() 133

fstreambase(int fd, char* p, int l) 133

fstreambase(const char* name,
int mode,
int prot = filebuf::openprot)

133

fstreambase(int fd) 133

void
open(const char* name,

int mode,
int prot = filebuf::openprot)

135

void
open(const char* name,

const char* attr,
int mode,
int prot = filebuf::openprot)

135

void setbuf(char* p, int l) 135

void setbuf(char* p, long l) 135

ios

Definition Page
Number

virtual ~ios() 143

202 Programmer’s Guide

ios

Definition Page
Number

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

char fill(char) 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie() 150

ostream* tie(ostream* s) 150

long unsetf(long) 147

int width() const 148

int width(int w) 148

static int xalloc() 151

static long xalloc() 151

Appendix. Non-ISO USL Classes 203

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

fstreambase

Definition Page
Number

void verify(int) 135

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

204 Programmer’s Guide

ostream
The ostream class lets you use the output operator << to perform formatted
output, or insertion, to a stream buffer. Consider the following statement, where
outs is a reference to an ostream object and x is a variable of a built-in type:
outs << x;

The output operator << calls opfx() before beginning insertion. If opfx() returns a
nonzero value, the output operator converts x into a series of characters and inserts
these characters into the stream buffer attached to outs. If an error occurs, the
output operator sets ios::failbit.

The details of the conversion of x depend on the format state of the ostream object
and the type of x. For numeric and string values, including the char* types and
wchar_t*, but excluding the char types and wchar_t, the output operator resets the
width variable ios::x_width of the format state of an ostream object to 0, but it does
not affect anything else in the format state.

The output operator is defined for the following types:
v Arrays of characters and char values, including arrays of wchar_t and wchar_t

values
v Other integral values: short, int, long, float, double, long double, and long long

values
v Pointers to void.

You can also define output operators for your own types.

Class header file: iostream.h

ostream - Hierarchy List
ios
ostream

ostream_withassign

ostream - Member Functions and Data by Group

Constructors & Destructor
Objects of the ostream class can be constructed and destructed.
~ostream

public:virtual ~ostream()

Destructs an ostream object.
ostream

Overload 1
public:ostream(streambuf*)

This constructor takes a single argument which is a pointer to a
streambuf object. This constructor creates an ostream object that is
attached to the streambuf object pointed to by the argument. The
format variables are initialized to their defaults.

Overload 2
public:ostream(int fd)

Appendix. Non-ISO USL Classes 205

This constructor is obsolete; do not use it.

Overload 3
public:ostream(int size, char*)

This constructor is obsolete; do not use it.

Overload 4
protected:ostream()

This constructor is obsolete; do not use it.

Insertion Functions
You can use the insertion functions to insert characters into a stream buffer as a
sequence of bytes.
complicated_put

public:ostream& complicated_put(char c)
flush

public:ostream& flush()

The ultimate consumer of characters that are stored in a stream buffer may
not necessarily consume them immediately. flush() causes any characters
that are stored in the stream buffer attached to the output stream to be
consumed. It calls rdbuf()->sync() to accomplish this action.

ls_complicated

Overload 1
public:ostream& ls_complicated(char)

Internal function. Do not use.

Overload 2
public:ostream& ls_complicated(signed char)

Internal function. Do not use.

Overload 3
public:ostream& ls_complicated(unsigned char)

Internal function. Do not use.
put

public:ostream& put(char c)

Inserts c into the stream buffer attached to the output stream. put() sets the
error state of the output stream if the insertion fails.

write

Overload 1
public:ostream& write(const signed char* s, int n)

Inserts n characters that begin at the position pointed to by s. This
array of characters does not need to end with a null character.

Overload 2
public:ostream& write(const char* s, int n)

Inserts n characters that begin at the position pointed to by s. This
array of characters does not need to end with a null character.

206 Programmer’s Guide

Overload 3
public:ostream& write(const unsigned char* s, int n)

Inserts n characters that begin at the position pointed to by s. This
array of characters does not need to end with a null character.

Output operators
The output operator calls the output prefix function opfx() before inserting
characters into a stream buffer, and calls the output suffix function osfx() after
inserting characters.
operator <<

Overload 1
public:ostream& operator <<(const unsigned char*)

The output operator inserts all the characters in the string into the
stream buffer with the exception of the null character that
terminates the string.

If ios::x_width is greater than zero and the representation of the
value to be inserted is less than ios::x_width, the output operator
inserts enough fill characters to ensure that the representation
occupies an entire field in the stream buffer.

Overload 2
public:ostream& operator <<(const char*)

The output operator inserts all the characters in the string into the
stream buffer with the exception of the null character that
terminates the string.

If ios::x_width is greater than zero and the representation of the
value to be inserted is less that ios::x_width, the output operator
inserts enough fill characters to ensure that the representation
occupies an entire field in the stream buffer.

Overload 3
public:ostream& operator <<(const void*)

The output operator converts pointers to void to integral values
and then converts them to hexadecimal values as if ios::showbase
were set. This version of the output operator is used to print out
the values of pointers.

Overload 4
public:ostream& operator <<(ios & (* f) (ios &))

The following built-in manipulators are accepted by this output
operator:

ios& dec(ios&)
ios& hex(ios&)
ios& oct(ios&)

These manipulators have a specific effect on an ostream object
beyond inserting their own values. For example, If outs is a
reference to an ostream object, then this statement sets ios::dec:

outs << dec;

Appendix. Non-ISO USL Classes 207

Overload 5
public:ostream& operator <<(unsigned char c)

The output operator inserts the character into the stream buffer
without performing any conversion on it.

Overload 6
public:ostream& operator <<(unsigned long)

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Overload 7
public:ostream& operator <<(long long)

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

208 Programmer’s Guide

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Note: The support for long long is controlled by _LONG_LONG,
__EXTENDED__, or the -q(no)longlong option.

Overload 8
public:ostream& operator <<(unsigned int a)

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Overload 9
public:ostream& operator <<(double)

The output operator performs a conversion operation on the
argument and inserts it into the stream buffer attached to the
output stream. The conversion depends on the values returned by
the following functions:
v precision() - returns the number of significant digits that appear

after the decimal. The default value is 6.

Appendix. Non-ISO USL Classes 209

v width() - if this returns 0, the argument is inserted without any
fill characters. If the return value is greater than the number of
characters needed to represent the argument, extra fill characters
are inserted so that the total number of characters inserted is
equal to the return value.

The conversion also depends on the values of the following format
flags:
v If ios::scientific is set, the argument is converted to scientific

notation with one digit before the decimal, and the number of
digits after the decimal equal to the value returned by
precision(). The exponent begins with a lowercase ″e″ unless
ios::uppercase is set, in which case the exponent begins with an
uppercase ″E″.

v If ios::fixed is set, the argument is converted to fixed notation,
with the number of digits after the decimal point equal to the
value returned by precision().

v If neither ios::fixed nor ios::scientific is set, the conversion
depends upon the value of the argument. If ios::uppercase is set,
the exponents of values in scientific notation begin with an
uppercase ″E″.

Overload 10
public:ostream& operator <<(short i)

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Overload 11
public:ostream& operator <<(long double)

210 Programmer’s Guide

The output operator performs a conversion operation on the
argument and inserts it into the stream buffer attached to the
output stream. The conversion depends on the values returned by
the following functions:
v precision() - returns the number of significant digits that appear

after the decimal. The default value is 6.
v width() - if this returns 0, the argument is inserted without any

fill characters. If the return value is greater than the number of
characters needed to represent the argument, extra fill characters
are inserted so that the total number of characters inserted is
equal to the return value.

The conversion also depends on the values of the following format
flags:
v If ios::scientific is set, the argument is converted to scientific

notation with one digit before the decimal, and the number of
digits after the decimal equal to the value returned by
precision(). The exponent begins with a lowercase ″e″ unless
ios::uppercase is set, in which case the exponent begins with an
uppercase ″E″.

v If ios::fixed is set, the argument is converted to fixed notation,
with the number of digits after the decimal point equal to the
value returned by precision().

v If neither ios::fixed nor ios::scientific is set, the conversion
depends upon the value of the argument. If ios::uppercase is set,
the exponents of values in scientific notation begin with an
uppercase ″E″.

Overload 12
public:ostream& operator <<(int a)

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted

Appendix. Non-ISO USL Classes 211

v If the integral type is positive and ios::showpos is set, a positive
sign ″+″ is inserted before the decimal digits.

Overload 13
public:ostream& operator <<(long)

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Overload 14
public:ostream& operator <<(unsigned long long)

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

212 Programmer’s Guide

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Note: The support for long long is controlled by _LONG_LONG,
__EXTENDED__, or the -q(no)longlong option.

Overload 15
public:ostream& operator <<(unsigned short i)

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Overload 16
public:ostream& operator <<(const wchar_t*)

The output operator converts the wchar_t string to its equivalent
multibyte character string, and then inserts it into the stream buffer
with the exception of the null character that terminates the string.

If ios::x_width is greater than zero and the representation of the
value to be inserted is less than ios::x_width, the output operator
inserts enough fill characters to ensure that the representation
occupies an entire field in the stream buffer.

Overload 17
public:ostream& operator <<(signed char c)

Appendix. Non-ISO USL Classes 213

The output operator inserts the character into the stream buffer
without performing any conversion on it.

Overload 18
public:ostream& operator <<(float)

The output operator performs a conversion operation on the
argument and inserts it into the stream buffer attached to the
output stream. The conversion depends on the values returned by
the following functions:
v precision() - returns the number of significant digits that appear

after the decimal. The default value is 6.
v width() - if this returns 0, the argument is inserted without any

fill characters. If the return value is greater than the number of
characters needed to represent the argument, extra fill characters
are inserted so that the total number of characters inserted is
equal to the return value.

The conversion also depends on the values of the following format
flags:
v If ios::scientific is set, the argument is converted to scientific

notation with one digit before the decimal, and the number of
digits after the decimal equal to the value returned by
precision(). The exponent begins with a lowercase ″e″ unless
ios::uppercase is set, in which case the exponent begins with an
uppercase ″E″.

v If ios::fixed is set, the argument is converted to fixed notation,
with the number of digits after the decimal point equal to the
value returned by precision().

v If neither ios::fixed nor ios::scientific is set, the conversion
depends upon the value of the argument. If ios::uppercase is set,
the exponents of values in scientific notation begin with an
uppercase ″E″.

Overload 19
public:ostream& operator <<(ostream & (* f) (ostream &))

The following built-in manipulators are accepted by this output
operator:

ostream& endl(ostream&)
ostream& ends(ostream&)
ostream& flush(ostream&)

These manipulators have a specific effect on an ostream object
beyond inserting their own values. For example, If outs is a
reference to an ostream object, then this statement inserts a newline
character and calls flush():

outs << endl;

This statement inserts a null character:
outs << ends;

This statement flushes the stream buffer attached to outs. It is
equivalent to flush():

outs << flush;

214 Programmer’s Guide

Overload 20
public:ostream& operator <<(wchar_t)

The output operator inserts the character into the stream buffer
without performing any conversion on it.

Overload 21
public:ostream& operator <<(streambuf*)

If opfx() returns a nonzero value, the output operator inserts all of
the characters that can be taken from the streambuf pointer into
the stream buffer attached to the output stream. Insertion stops
when no more characters can be fetched from the streambuf. No
padding is performed.

Overload 22
public:ostream& operator <<(const signed char*)

The output operator inserts all the characters in the string into the
stream buffer with the exception of the null character that
terminates the string.

If ios::x_width is greater than zero and the representation of the
value to be inserted is less than ios::x_width, the output operator
inserts enough fill characters to ensure that the representation
occupies an entire field in the stream buffer.

Overload 23
public:ostream& operator <<(char c)

The output operator inserts the character into the stream buffer
without performing any conversion on it.

Positioning Functions
seekp

Functions that work with the put pointer of the ultimate consumer.

Overload 1
public:ostream& seekp(streampos p)

Repositions the put pointer of the ultimate consumer. Sets the put
pointer to the position p.

Overload 2
public:ostream& seekp(streamoff o, ios::seek_dir d)

Repositions the put pointer of the ultimate consumer. Sets the put
pointer to the position specified by d with the offset of o. The seek
dir, d, can have the following values:
v ios::beg - the beginning of the stream
v ios::cur - the current position of the put pointer
v ios::end - the end of the stream

The new position of the put pointer is equal to the position
specified by d offset by the value o. If you attempt to move the put
pointer to a position that is not valid, seekp() sets ios::badbit.

Appendix. Non-ISO USL Classes 215

tellp
public:streampos tellp()

Returns the current position of the put pointer of the stream buffer that is
attached to the output stream.

Prefix and Suffix Functions
Functions that are called either before or after inserting characters into the ultimate
consumer.
opfx

public:int opfx()

opfx() is called by the output operator before inserting characters into a
stream buffer. opfx() checks the error state of the output stream. If the
internal flag ios::hardfail is set, opfx() returns 0. Otherwise, opfx() flushes
the stream buffer attached to the ios object pointed to by tie(), if one exists,
and returns the value returned by ios::good(). ios::good() returns 0 if
ios::failbit, ios::badbit, or ios:eofbit is set. Otherwise, ios::good() returns a
nonzero value.

osfx
public:void osfx()

osfx() is called before a formatted output function returns. osfx() flushes
the streambuf object attached to the output stream if ios::unitbuf is set.

osfx() is called by the output operator. If you overload the output operator
to handle your own classes, you should ensure that osfx() is called after
any direct manipulation of a streambuf object. Binary output functions do
not call osfx().

do_opfx
protected:int do_opfx()

Internal function. Do not use.
do_osfx

protected:void do_osfx()

Internal function. Do not use.

ostream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

216 Programmer’s Guide

ios

Definition Page
Number

char fill(char) 145

long flags() const 146

long flags(long f) 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision(int) 146

int precision() const 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie() 150

ostream* tie(ostream* s) 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static int xalloc() 151

static long xalloc() 151

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Appendix. Non-ISO USL Classes 217

Inherited Protected Functions

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

ostream_withassign
Use this class to assign another stream to an ostream object.

Class header file: iostream.h

ostream_withassign - Hierarchy List
ios
ostream
ostream_withassign

218 Programmer’s Guide

ostream_withassign - Member Functions and Data by Group

Constructors & Destructor
Objects of the ostream_withassign class can be constructed and destructed. They
can also be copied.
~ostream_withassign

public:virtual ~ostream_withassign()

Destructs an ostream_withassign object.
operator =

public:ostream_withassign& operator =(ostream_withassign& rhs)

Copy constructor.
ostream_withassign

public:ostream_withassign()

Constructs an ostream_withassign object. It does not do any initialization
on the object.

Assignment Operator
Assignment operators for ostream_withassign.
operator =

Overload 1
public:ostream_withassign& operator =(streambuf*)

This assignment operator takes a pointer to a streambuf object as
its argument. It associates the streambuf with the
ostream_withassign object that is on the left side of the assignment
operator.

Overload 2
public:ostream_withassign& operator =(ostream&)

This assignment operator takes a reference to an ostream object as
its argument. It associates the streambuf attached to the output
stream with the ostream_withassign object that is on the left side of
the assignment operator.

ostream_withassign - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

Appendix. Non-ISO USL Classes 219

ios

Definition Page
Number

char fill() const 145

char fill(char) 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision(int) 146

int precision() const 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie() 150

ostream* tie(ostream* s) 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static long xalloc() 151

static int xalloc() 151

ostream

Definition Page
Number

virtual ~ostream() 205

ostream& complicated_put(char c) 206

ostream& flush() 206

ostream& ls_complicated(unsigned char) 206

220 Programmer’s Guide

ostream

Definition Page
Number

ostream& ls_complicated(signed char) 206

ostream& ls_complicated(char) 206

ostream& operator <<(double) 207

ostream& operator <<(long) 207

ostream& operator <<(signed char c) 207

ostream& operator <<(unsigned short i) 207

ostream& operator <<(streambuf*) 207

ostream& operator <<(const signed char*) 207

ostream& operator <<(char c) 207

ostream& operator <<(short i) 207

ostream& operator <<(const unsigned char*) 207

ostream& operator <<(long double) 207

ostream& operator <<(float) 207

ostream& operator <<(const void*) 207

ostream& operator <<(unsigned long long) 207

ostream& operator <<(unsigned int a) 207

ostream& operator <<(unsigned char c) 207

ostream& operator <<(unsigned long) 207

ostream& operator <<(long long) 207

ostream& operator <<(ios & (* f) (ios &)) 207

ostream& operator <<(const char*) 207

ostream& operator <<(int a) 207

ostream& operator <<(ostream & (* f) (ostream &)) 207

ostream& operator <<(wchar_t) 207

ostream& operator <<(const wchar_t*) 207

int opfx() 216

void osfx() 216

ostream(streambuf*) 205

ostream(int fd) 205

ostream(int size, char*) 205

ostream& put(char c) 206

ostream& seekp(streamoff o, ios::seek_dir d) 215

ostream& seekp(streampos p) 215

Appendix. Non-ISO USL Classes 221

ostream

Definition Page
Number

streampos tellp() 216

ostream& write(const char* s, int n) 206

ostream& write(const unsigned char* s, int n) 206

ostream& write(const signed char* s, int n) 206

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

ostream

Definition Page
Number

int do_opfx() 216

void do_osfx() 216

ostream() 205

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

222 Programmer’s Guide

ios

Definition Page
Number

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

ostrstream
ostrstream is the class that specializes ostream to use a strstreambuf for insertion
into arrays of characters in memory. You can create an ostrstream object by
associating the object with a previously allocated array of characters. You can then
write to it and apply other operations to it just as you would to another type of
stream.

Class header file: strstream.h

ostrstream - Hierarchy List
ios
strstreambase
ostrstream

ostrstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the ostrstream class can be constructed and destructed.
~ostrstream

public:~ostrstream()

The ostrstream destructor frees space allocated by the ostrstream
constructor. The destructor also writes a null byte to the stream buffer to
terminate the stream.

ostrstream

Overload 1
public:ostrstream(signed char* str, int size, int = ios::out)

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at

Appendix. Non-ISO USL Classes 223

the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 2
public:ostrstream(unsigned char* str, long size, int = ios::out)

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 3
public:ostrstream(char* str, long size, int = ios::out)

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 4
public:ostrstream(signed char* str, long size, int = ios::out)

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 5
public:ostrstream(unsigned char* str, int size, int = ios::out)

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is

224 Programmer’s Guide

set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 6
public:ostrstream(char* str, int size, int = ios::out)

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 7
public:ostrstream()

This constructor specifies that space is allocated dynamically for
the stream buffer that is attached to the ostrstream object.

Stream Buffer Functions
Use these functions to work with the stream buffer.
pcount

Returns the number of bytes that have been stored in the stream buffer.
pcount() is mainly useful when binary data has been stored and the stream
buffer attached to the ostrstream object is not a null-terminated string.
pcount() returns the total number of bytes, not just the number of bytes up
to the first null character.

Overload 1
public:int pcount()
AIX Considerations

This function returns an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:long pcount()
AIX Considerations

This function returns a long value for 64-bit applications. It
is not available for 32-bit applications.

str
public:char* str()

Returns a pointer to the stream buffer attached to the ostrstream and calls
freeze() with a nonzero value to prevent the stream buffer from being
deleted. If the stream buffer was constructed with an explicit array, the

Appendix. Non-ISO USL Classes 225

value returned is a pointer to that array. If the stream buffer was
constructed in dynamic mode, str points to the dynamically allocated area.

Until you call str(), deleting the dynamically allocated stream buffer is the
responsibility of the ostrstream object. After str() has been called, the
calling application has responsibility for the dynamically allocated stream
buffer.

ostrstream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill(char) 145

char fill() const 145

long flags() const 146

long flags(long f) 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long) 147

long setf(long setbits, long field) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

226 Programmer’s Guide

ios

Definition Page
Number

ostream* tie() 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static int xalloc() 151

static long xalloc() 151

strstreambase

Definition Page
Number

strstreambuf* rdbuf() 253

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

strstreambase

Definition Page
Number

~strstreambase() 253

strstreambase() 253

strstreambase(char*, int, char*) 253

strstreambase(char*, long, char*) 253

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Appendix. Non-ISO USL Classes 227

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

stdiobuf
This class is used to mix standard C input and output functions with C++ I/O
Stream Library functions. This class is obsolete. New programs should avoid using
this class.

Class header file: stdiostream.h

stdiobuf - Hierarchy List
streambuf
stdiobuf

stdiobuf - Member Functions and Data by Group

Constructors & Destructor
Objects of the stdiobuf class can be constructed and destructed.
~stdiobuf

public:virtual ~stdiobuf()

Destructor for stdiobuf. Frees the spaces allocated by the stdiobuf
constructor and flushes the file that this stdiobuf object is associated with.

stdiobuf
public:stdiobuf(FILE* f)

228 Programmer’s Guide

Creates an stdiobuf object that is associated with the FILE pointed to by f.
Changes that are made to the stream buffer in an stdiobuf object are also
made to the associated FILE pointed to by f.

Note: If ios::stdio is set in the format state of an ostream object, a call to
osfx() flushes stdout and stderr.

Positioning Functions
overflow

public:virtual int overflow(int = EOF)

Emptys an output buffer. Returns EOF on error, 0 otherwise.
pbackfail

public:virtual int pbackfail(int c)

Attempts to put back a character.
seekoff

public:virtual streampos seekoff(streamoff, ios::seek_dir, int)
sync

public:virtual int sync()
underflow

public:virtual int underflow()

Fills an input buffer. Returns EOF on error or end of input, 0 otherwise.

Query Functions
stdiofile

public:FILE* stdiofile()

Returns a pointer to the FILE object that the stdiobuf object is associated
with.

stdiobuf - Inherited Member Functions and Data
Inherited Public Functions

streambuf

Definition Page
Number

virtual ~streambuf() 235

void dbp() 238

long in_avail() 236

int in_avail() 236

int optim_in_avail() 236

int optim_sbumpc() 236

int out_waiting() 242

long out_waiting() 242

virtual int overflow(int c = EOF) 242

int pptr_non_null() 239

Appendix. Non-ISO USL Classes 229

streambuf

Definition Page
Number

int sbumpc() 237

virtual streampos
seekoff(streamoff,

ios::seek_dir,
int = ios::in|ios::out)

239

virtual streampos
seekpos(streampos,

int = ios::in|ios::out)

239

virtual streambuf* setbuf(char* p, long len) 244

streambuf* setbuf(char* p, int len, int count) 244

streambuf* setbuf(unsigned char* p, long len) 244

streambuf* setbuf(unsigned char* p, int len) 244

virtual streambuf* setbuf(char* p, int len) 244

int sgetc() 237

long sgetn(char* s, long n) 237

int sgetn(char* s, int n) 237

int snextc() 237

int sputbackc(char c) 243

int sputc(int c) 243

long sputn(const char* s, long n) 243

int sputn(const char* s, int n) 243

void stossc() 240

streambuf(char* p, int l, int c) 235

streambuf(char* p, long l) 235

streambuf() 235

streambuf(char* p, int l) 235

virtual int xsgetn(char* s, int n) 238

virtual long xsgetn(char* s, long n) 238

virtual int xsputn(const char* s, int n) 244

virtual long xsputn(const char* s, long n) 244

Inherited Public Data

None

230 Programmer’s Guide

Inherited Protected Functions

streambuf

Definition Page
Number

int allocate() 246

char* base() 240

long blen() const 246

int blen() const 246

virtual int doallocate() 247

char* eback() 240

char* ebuf() 240

char* egptr() 240

char* epptr() 240

void gbump(long n) 240

void gbump(int n) 240

char* gptr() 241

char* pbase() 241

void pbump(long n) 241

void pbump(int n) 241

char* pptr() 241

void setb(char* b, char* eb, int a = 0) 242

void setg(char* eb, char* g, char* eg) 242

void setp(char* p, char* ep) 242

void unbuffered(int unb) 247

int unbuffered() const 247

Inherited Protected Data

None

stdiostream
This class uses stdiobuf objects as stream buffers.

Class header file: stdiostream.h

stdiostream - Hierarchy List
ios
stdiostream

Appendix. Non-ISO USL Classes 231

stdiostream - Member Functions and Data by Group

Constructors & Destructor
Objects of the stdiostream class can be constructed and destructed.
~stdiostream

public:~stdiostream()

Destructs a stdiostream object.
stdiostream

public:stdiostream(FILE*)

Creates a stdiostream object that is attached to the FILE pointed to by the
argument.

Miscellaneous
rdbuf

public:stdiobuf* rdbuf()

Returns a pointer to the stdiobuf object that is attached to the stdiostream
object.

stdiostream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

char fill(char) 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

232 Programmer’s Guide

ios

Definition Page
Number

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width(int w) 148

int width() const 148

static int xalloc() 151

static long xalloc() 151

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Appendix. Non-ISO USL Classes 233

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

streambuf
You can use the streambuf class to manipulate objects of its derived classes filebuf,
stdiobuf, and strstreambuf, or to derive other classes from it.

streambuf has both a public interface and a protected interface. You should think
of these two interfaces as being two separate classes, because the interfaces are
used for different purposes. You should also treat streambuf as if it were defined
as a virtual base class. Do not create objects of the streambuf class itself.

Although most virtual functions are declared public, you should overload them in
the classes that you derive from streambuf, and consider them part of the
protected interface.

Public interface

You should not create objects of the streambuf public interface directly. Instead,
you should use streambuf through one of the predefined classes derived from
streambuf. You can use objects of filebuf, strstreambuf and stdiobuf directly as
implementations of stream buffers. The public interface consists of the streambuf
public member functions that can be called on objects of these predefined classes.
streambuf itself does not have any facilities for taking characters from the ultimate
producer or sending them to the ultimate consumer. The specialized member
functions that handle the interface with the ultimate producer and the ultimate
consumer are defined in filebuf, strstreambuf and stdiobuf.

234 Programmer’s Guide

Except for the destructor of the streambuf class, the virtual functions are described
as part of the protected interface.

Protected interface

Use the streambuf protected interface in the following ways:
v As a base class to implement your own specialized stream buffers. In this sense

you can think of streambuf as a virtual base class. The streambuf class only
provides the basic functions needed to manipulate characters in a stream buffer.
The filebuf, strstreambuf and stdiobuf classes contain functions that handle the
interface with the standard ultimate consumers and producers. If you want to
perform more sophisticated operations, or if you want to use other ultimate
consumers and producers, you will have to create your own class derived from
streambuf. You need to know about the protected interface if you want to create
a class derived from streambuf.

v Through a predefined class derived from streambuf.

There are two kinds of functions in the protected interface:
v Nonvirtual member functions, which manipulate streambuf objects at a level of

detail that would be inappropriate in the public interface.
v Virtual member functions, which permit classes that you derive from streambuf

to customize their operations depending on the ultimate producer or ultimate
consumer. When you define the virtual functions in your derived classes, you
must ensure that these definitions fulfill the conditions stated in the descriptions
of the virtual functions. If your definitions of the virtual functions do not fulfill
these conditions, objects of the derived class may have unspecified behavior.
Although most virtual functions are declared as public members, they are
described with the protected interface (with the exception of the destructor for
the streambuf class) because they are meant to be overridden in the classes that
you derive from streambuf.

Class header file: iostream.h

streambuf - Hierarchy List
streambuf

stdiobuf
filebuf
strstreambuf

streambuf - Member Functions and Data by Group

Constructors & Destructor
Objects of the streambuf class can be constructed and destructed.
~streambuf

public:virtual ~streambuf()

The destructor for streambuf calls sync(). If a stream buffer has been set up
and ios::alloc is set, sync() deletes the stream buffer.

streambuf

Overload 1
public:streambuf(char* p, long l)

Appendix. Non-ISO USL Classes 235

Constructs an empty stream buffer of length l starting at the
position pointed to by p.
AIX Considerations

This constructor is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:streambuf(char* p, int l)

Constructs an empty stream buffer of length l starting at the
position pointed to by p.
AIX Considerations

This constructor is available for 32-bit applications. The
second argument is an int value.

Overload 3
public:streambuf(char* p, int l, int c)

This constructor is obsolete. It is included for compatibility with
the AT&T C++ Language System Release 1.2. Use strstreambuf.

Overload 4
public:streambuf()

Constructs an empty stream buffer corresponding to an empty
sequence. The values returned by base(), eback(), ebuf(), egptr(),
epptr(), pptr(), gptr(), and pbase() are initially all zero for this
stream buffer.

Extraction Functions
Functions that extract characters from the ultimate producer, determine if
characters are waiting to be extracted and handle underflow situations.
in_avail

Returns the number of characters that are available to be extracted from
the get area of the stream buffer object. You can extract the number of
characters equal to the value that in_avail() returns without causing an
error.

Overload 1
public:int in_avail()
AIX Considerations

This function returns an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:long in_avail()
AIX Considerations

This function returns a long value for 64-bit applications. It
is not available for 32-bit applications.

optim_in_avail
public:int optim_in_avail()

Returns true if the current get pointer is less then the end of the get area.
optim_sbumpc

public:int optim_sbumpc()

236 Programmer’s Guide

Moves the get pointer past one character and returns the character that it
moved past.

sbumpc
public:int sbumpc()

Moves the get pointer past one character and returns the character that it
moved past. sbumpc() returns EOF if the get pointer is already at the end
of the get area.

sgetc
public:int sgetc()

Returns the character after the get pointer without moving the get pointer
itself. If no character is available, sgetc() returns EOF.

Note: sgetc() does not change the position of the get pointer.
sgetn

Overload 1
public:long sgetn(char* s, long n)

Extracts the n characters following the get pointer, and copies them
to the area starting at the position pointed to by s. If there are
fewer than n characters following the get pointer, sgetn() takes the
characters that are available and stores them in the position
pointed to by s. sgetn() repositions the get pointer following the
extracted characters and returns the number of extracted
characters.
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

Overload 2
public:int sgetn(char* s, int n)

Extracts the n characters following the get pointer, and copies them
to the area starting at the position pointed to by s. If there are
fewer than n characters following the get pointer, sgetn() takes the
characters that are available and stores them in the position
pointed to by s. sgetn() repositions the get pointer following the
extracted characters and returns the number of extracted
characters.
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

snextc
public:int snextc()

Moves the get pointer forward one character and returns the character
following the new position of the get pointer. snextc() returns EOF if the
get pointer is at the end of the get area either before or after it is moved
forward.

underflow
public:virtual int underflow()

Takes characters from the ultimate producer and puts them in the get area.

Appendix. Non-ISO USL Classes 237

The default definition of underflow() is compatible with the AT&T C++
Language System Release 1.2 version of the stream package, but it is not
considered part of the current I/O Stream Library. Thus the default
definition of underflow() should not be used, and every class derived from
streambuf should define underflow() itself.

If you derive underflow() in a class derived from streambuf, it should
return the first character in the get area if the get area is not empty. If the
get area is empty, underflow() should create a get area that is not empty
and return the next character. If no more characters are available in the
ultimate producer, underflow() should return EOF and leave the get area
empty.

xsgetn

Overload 1
public:virtual int xsgetn(char* s, int n)

Similar to sputn.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 2
public:virtual long xsgetn(char* s, long n)

Similar to sgetn.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Get/Put Pointer Functions
dbp

public:void dbp()

Writes to standard output the values returned by the following functions:
v base()
v eback()
v ebuf()
v egptr()
v epptr()
v gptr()
v pptr()

dbp() is intended for debugging. streambuf does not specify anything
about the form of the output. dbp() is considered part of the protected
interface because the information that it prints can only be understood in
relation to that interface. It is declared as a public function so that it can be
called anywhere during debugging.

The following example shows the output produced by dbp() when it is
called as part of a filebuf object:

238 Programmer’s Guide

#include < iostream.h >
int main()
{
cout << "Here is some sample output." << endl;
cout.rdbuf()->dbp();
}

If you compile and run this example, your output will look like this:
Here is some sample output.
buf at 0x90210, base=0x91010, ebuf=0x91410,
pptr=0x91010, epptr=0x91410, eback=0, gptr=0, egptr=0

pptr_non_null
public:int pptr_non_null()

Returns true if the put pointer is not null.
seekoff

public:virtual streampos
seekoff(streamoff,

ios::seek_dir,
int = ios::in|ios::out)

Repositions the get or put pointer of the ultimate producer or ultimate
consumer. seekoff() does not change the values returned by gptr() or pptr().

The default definition of seekoff() returns EOF.

If you define your own seekoff() function, it should return EOF if the
derived class does not support repositioning. If the class does support
repositioning, seekoff() should return the new position of the affected
pointer, or EOF if an error occurs.

The first argument is an offset from a position in the ultimate producer or
ultimate consumer. The second argument is a position in the ultimate
produce or ultimate consumer. It can have the following values:
v ios::beg - the beginning of the ultimate producer or consumer
v ios::cur - the current position in the ultimate producer or consumer
v ios::end - the end of the ultimate producer or consumer

The new position of the affected pointer is the position specified by the
seek dir offset by the value of the stream offset. If you derive your own
classes from streambuf, certain values of the seek dir may not be valid
depending on the nature of the ultimate consumer or producer.

If ios::in is set in the third argument, the seekoff() should modify the get
pointer. If ios::out is set, the put pointer should be modified. If both ios::in
and ios::out are set, both the get pointer and the put pointer should be
modified.

seekpos
public:virtual streampos

seekpos(streampos,
int = ios::in|ios::out)

Repositions the get or put pointer of the ultimate producer or consumer to
the streampos position. If ios::in is set, the get pointer is repositioned. If
ios::out is set, the put pointer is repositioned. If both ios::in and ios::out are
set, both the get pointer and the put pointer are affected. seekpos() does
not change the values returned by gptr() or pptr().

Appendix. Non-ISO USL Classes 239

The default definition of seekpos() returns the return value of the function
seekoff(streamoff(pos), ios::beg, mode). Thus, if you want to define seeking
operations in a class derived from streambuf, you can define seekoff() and
use the default definition of seekpos().

If you define seekpos() in a class derived from streambuf, seekpos() should
return EOF if the class does not support repositioning or if the streampos
points to a position equal to or greater than the end of the stream. If not,
seekpos() should return the streampos.

stossc
public:void stossc()

Moves the get pointer forward one character. If the get pointer is already at
the end of the get area, stossc() does not move it.

base
protected:char* base()

Returns a pointer to the first byte of the stream buffer. The stream buffer
consists of the space between the pointer returned by base() and the
pointer returned by ebuf().

eback
protected:char* eback()

Returns a pointer to the lower bound of the space available for the get area
of the streambuf. The space between the pointer returned by eback() and
the pointer returned by gptr() is available for putback.

ebuf
protected:char* ebuf()

Returns a pointer to the byte after the last byte of the stream buffer.
egptr

protected:char* egptr()

Returns a pointer to the byte after the last byte of the get area of the
streambuf.

epptr
protected:char* epptr()

Returns a pointer to the byte after the last byte of the put area of the
streambuf.

gbump

Overload 1
protected:void gbump(long n)

Offsets the beginning of the get area by the value of n. The value
of n can be positive or negative. gbump() does not check to see if
the new value returned by gptr() is valid.

The beginning of the get area is equal to the value returned by
gptr().
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

240 Programmer’s Guide

Overload 2
protected:void gbump(int n)

Offsets the beginning of the get area by the value of n. The value
of n can be positive or negative. gbump() does not check to see if
the new value returned by gptr() is valid.

The beginning of the get area is equal to the value returned by
gptr().
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

gptr
protected:char* gptr()

Returns a pointer to the first byte of the get area of the streambuf. The get
area consists of the space between the pointer returned by gptr() and the
pointer returned by egptr(). Characters are extracted from the stream buffer
beginning at the character pointed to be gptr().

pbase
protected:char* pbase()

Returns a pointer to the beginning of the space available for the put area of
the streambuf. Characters between the pointer returned by pbase() and the
pointer returned by pptr() have been stored in the stream buffer, but they
have not been consumed by the ultimate consumer.

pbump

Overload 1
protected:void pbump(long n)

Offsets the beginning of the put area by the value of n. The value
of n can be positive or negative. pbump() does not check to see if
the new value returned by pptr() is valid.

The beginning of the put area is equal to the value returned by
pptr().
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

Overload 2
protected:void pbump(int n)

Offsets the beginning of the put area by the value of n. The value
of n can be positive or negative. pbump() does not check to see if
the new value returned by pptr() is valid.

The beginning of the put area is equal to the value returned by
pptr().
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

pptr

Appendix. Non-ISO USL Classes 241

protected:char* pptr()

Returns a pointer to the beginning of the put area of the streambuf. The
put area consists of the space between the pointer returned by pptr() and
the pointer returned by epptr().

setb
protected:void setb(char* b, char* eb, int a = 0)

Sets the beginning of the existing stream buffer (the pointer returned by
base()) to the position pointed to by b, and sets the end of the stream
buffer (the pointer returned by ebuf()) to the position pointed to by eb.

If a is a nonzero value, the stream buffer will be deleted when setb() is
called again. If b and eb are both equal to 0, no stream buffer is established.
If b is not equal to 0, a stream buffer is established, even if eb is less than b.
If this is the case, the stream buffer has length zero.

setg
protected:void setg(char* eb, char* g, char* eg)

Sets the beginning of the get area of streambuf (the pointer returned by
gptr()) to g, and sets the end of the get area (the pointer returned by
egptr()) to eg. setg() also sets the beginning of the area available for
putback (the pointer returned by eback()) to eb.

setp
protected:void setp(char* p, char* ep)

Sets the spaces available for the put area. Both the start (pbase()) and the
beginning (pptr()) of the put area are set to the value p.

Sets the beginning of the put area of the streambuf (the pointer returned
by pptr()) to the position pointed to by p, and sets the end of the put area
(the pointer returned by epptr()) to the position pointed to by ep.

Insertion Functions
Functions that insert characters into the ultimate consumer, determine if characters
are waiting to be inserted and handle overflow situations.
out_waiting

Returns the number of characters that are in the put area waiting to be
sent to the ultimate consumer.

Overload 1
public:int out_waiting()
AIX Considerations

This function returns an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:long out_waiting()
AIX Considerations

This function returns a long value for 64-bit applications. It
is not available for 32-bit applications.

overflow
public:virtual int overflow(int c = EOF)

242 Programmer’s Guide

Called when the put area is full, and an attempt is made to store another
character in it. overflow() may be called at other times.

The default definition of overflow() is compatible with the AT&T C++
Language System Release 1.2 version of the stream package, but it is not
considered part of the current I/O Stream Library. Thus, the default
definition of overflow() should not be used, and every class derived from
streambuf should define overflow() itself.

The definition of overflow() in your classes derived from streambuf should
cause the ultimate consumer to consume the characters in the put area, call
setp() to establish a new put area, and store the argument c in the put area
if c does not equal EOF. overflow() should return EOF if an error occurs,
and it should return a value not equal to EOF otherwise.

pbackfail
public:virtual int pbackfail(int c)

Called when both of the following conditions are true:
v An attempt has been made to put back a character.
v There is no room in the putback area. The pointer returned by eback()

equals the pointer returned by gptr().

The default definition of pbackfail() returns EOF.

If you define pbackfail() in your own classes, your definition of pbackfail()
should attempt to deal with the full putback area by, for instance,
repositioning the get pointer of the ultimate producer. If this is possible,
pbackfail() should return the argument c. If not, pbackfail() should return
EOF.

sputbackc
public:int sputbackc(char c)

Moves the get pointer back one character. The get pointer may simply
move, or the ultimate producer may rearrange the internal data structures
so that the character c is saved. The argument c must equal the character
that precedes the get pointer in the stream buffer. The effect of sputbackc()
is undefined if c is not equal to the character before the get pointer.
sputbackc() returns EOF if an error occurs. The conditions that cause errors
depend on the derived class.

sputc
public:int sputc(int c)

Stores the argument c after the put pointer and moves the put pointer past
the stored character. If there is enough space in the stream buffer, this will
extend the size of the put area. sputc() returns EOF if an error occurs. The
conditions that cause errors depend on the derived class.

sputn

Overload 1
public:int sputn(const char* s, int n)

Stores the n characters starting at s after the put pointer and moves
the put pointer to the end of the series. sputn() returns the number
of characters successfully stored. If an error occurs, sputn() returns
a value less than n.

Appendix. Non-ISO USL Classes 243

AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

Overload 2
public:long sputn(const char* s, long n)

Stores the n characters starting at s after the put pointer and moves
the put pointer to the end of the series. sputn() returns the number
of characters successfully stored. If an error occurs, sputn() returns
a value less than n.
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

xsputn

Overload 1
public:virtual int xsputn(const char* s, int n)

Similar to sputn.
AIX Considerations

This function is available for use when building 32-bit
applications. The second argument is an int value.

Overload 2
public:virtual long xsputn(const char* s, long n)

Similar to sputn.
AIX Considerations

This function is available for use when building 64-bit
applications. The second argument is a long value.

Stream Buffer Functions
Functions that work with the underlying streambuf object.
setbuf

Overload 1
public:streambuf* setbuf(unsigned char* p, long len)

Sets up a stream buffer consisting of the array of bytes starting at p
with length len.

This function is different from setb(). setb() sets pointers to an
existing stream buffer. setbuf(), however, creates the stream buffer.

The default definition of setbuf() sets up the stream buffer if the
streambuf object does not already have a stream buffer.

If you define setbuf() in a class derived from streambuf, setbuf()
can either accept or ignore a request for an unbuffered streambuf
object. The call to setbuf() is a request for an unbuffered streambuf
object if p equals 0 or len equals 0. setbuf() should return a pointer
to the streambuf if it accepts the request, and 0 otherwise.
AIX Considerations

244 Programmer’s Guide

This function is available for 64-bit applications. It accepts
an long argument.

Overload 2
public:virtual streambuf* setbuf(char* p, long len)

Sets up a stream buffer consisting of the array of bytes starting at p
with length len.

This function is different from setb(). setb() sets pointers to an
existing stream buffer. setbuf(), however, creates the stream buffer.

The default definition of setbuf() sets up the stream buffer if the
streambuf object does not already have a stream buffer.

If you define setbuf() in a class derived from streambuf, setbuf()
can either accept or ignore a request for an unbuffered streambuf
object. The call to setbuf() is a request for an unbuffered streambuf
object if p equals 0 or len equals 0. setbuf() should return a pointer
to the streambuf if it accepts the request, and 0 otherwise.
AIX Considerations

This function is available for 64-bit applications. It accepts
an long argument.

Overload 3
public:streambuf* setbuf(char* p, int len, int count)

This function is obsolete. The I/O Stream Library includes it to be
compatible with AT&T C++ Language System Release 1.2
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

Overload 4
public:virtual streambuf* setbuf(char* p, int len)

Sets up a stream buffer consisting of the array of bytes starting at p
with length len.

This function is different from setb(). setb() sets pointers to an
existing stream buffer. setbuf(), however, creates the stream buffer.

The default definition of setbuf() sets up the stream buffer if the
streambuf object does not already have a stream buffer.

If you define setbuf() in a class derived from streambuf, setbuf()
can either accept or ignore a request for an unbuffered streambuf
object. The call to setbuf() is a request for an unbuffered streambuf
object if p equals 0 or len equals 0. setbuf() should return a pointer
to the streambuf if it accepts the request, and 0 otherwise.
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

Overload 5
public:streambuf* setbuf(unsigned char* p, int len)

Appendix. Non-ISO USL Classes 245

Sets up a stream buffer consisting of the array of bytes starting at p
with length len.

This function is different from setb(). setb() sets pointers to an
existing stream buffer. setbuf(), however, creates the stream buffer.

The default definition of setbuf() sets up the stream buffer if the
streambuf object does not already have a stream buffer.

If you define setbuf() in a class derived from streambuf, setbuf()
can either accept or ignore a request for an unbuffered streambuf
object. The call to setbuf() is a request for an unbuffered streambuf
object if p equals 0 or len equals 0. setbuf() should return a pointer
to the streambuf if it accepts the request, and 0 otherwise.
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

sync
public:virtual int sync()

Synchronizes the stream buffer with the ultimate producer or the ultimate
consumer.

The default definition of sync() returns 0 if either of the following
conditions is true:
v The get area is empty and there are no characters waiting to go to the

ultimate consumer.
v No stream buffer has been allocated for the streambuf.

Otherwise, sync() returns EOF.

If you define sync() in a class derived from streambuf, it should send any
characters that are stored in the put area to the ultimate consumer, and (if
possible) send any characters that are waiting in the get area back to the
ultimate producer. When sync() returns, both the put area and the get area
should be empty. sync() should return EOF if an error occurs.

allocate
protected:int allocate()

Attempts to set up a stream buffer. allocate() returns the following values:
v 0, if the streambuf has a stream buffer set up (that is, base() returns a

nonzero value), or if unbuffered() returns a nonzero value. allocate()
does not do any further processing if it returns 0.

v 1, if allocate() does set up a stream buffer.
v EOF, if the attempt to allocate space for the stream buffer fails.

allocate() is not called by any other nonvirtual member function of
streambuf.

blen

Returns the length (in bytes) of the stream buffer.

Overload 1
protected:long blen() const
AIX Considerations

246 Programmer’s Guide

The value returned is a long when building 64-bit
aplications. This function is not available for 32-bit
applications.

Overload 2
protected:int blen() const
AIX Considerations

The value returned is an int when building 32-bit
applications. This function is not available for 64-bit
applications.

doallocate
protected:virtual int doallocate()

Called when allocate() determines that space is needed for a stream buffer.

The default definition of doallocate() attempts to allocate space for a
stream buffer using the operator new.

If you define your own version of doallocate(), it must call setb() to
provide space for a stream buffer or return EOF if it cannot allocate space.
doallocate() should only be called if unbuffered() and base() return zero.

In your own version of doallocate(), you provide the size of the buffer for
your constructor. Assign the buffer size you want to a variable using a
#define statement. This variable can then be used in the constructor for
your doallocate() function to define the size of the buffer.

unbuffered

Overload 1
protected:void unbuffered(int unb)

Manipulates the private streambuf variable called the buffering
state. If the buffering state is nonzero, a call to allocate() does not
set up a stream buffer.

Changes the value of the buffering state to unb.

Overload 2
protected:int unbuffered() const

Manipulates the private streambuf variable called the buffering
state. If the buffering state is nonzero, a call to allocate() does not
set up a stream buffer.

Returns the current value of the buffering state.

streambuf - Inherited Member Functions and Data
Inherited Public Functions

None
Inherited Public Data

None
Inherited Protected Functions

None
Inherited Protected Data

Appendix. Non-ISO USL Classes 247

None

strstream
strstream is the class that specializes iostream to use a strstreambuf for input and
output with arrays of characters in memory. You can create an strstream object by
associating the object with a previously allocated array of characters. You can then
write output to it, read input from it, and apply other operations to it just as you
would to another type of stream.

Class header file: strstream.h

strstream - Hierarchy List
ios
strstreambase
strstream

strstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the strstream class can be constructed and destructed.
~strstream

public:~strstream()

The strstream destructor frees the space allocated by the strstream
constructor.

strstream

Overload 1
public:strstream(char* str, long size, int mode)

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:strstream(char* str, int size, int mode)

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

248 Programmer’s Guide

This function is available for 32-bit applications. The
second argument is an int value.

Overload 3
public:strstream(signed char* str, long size, int mode)

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 4
public:strstream(unsigned char* str, int size, int mode)

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 5
public:strstream(signed char* str, int size, int mode)

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 6
public:strstream(unsigned char* str, long size, int mode)

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

Appendix. Non-ISO USL Classes 249

This function is available for 64-bit applications. The
second argument is a long value.

Overload 7
public:strstream()

This constructor takes no arguments and specifies that space is
allocated dynamically for the stream buffer that is attached to the
strstream object.

Stream Buffer Functions
str

public:char* str()

Returns a pointer to the stream buffer attached to the strstream and calls
freeze() with a nonzero value to prevent the stream buffer from being
deleted. If the stream buffer was constructed with an explicit array, the
value returned is a pointer to that array. If the stream buffer was
constructed in dynamic mode, str points to the dynamically allocated area.

Until you call str(), deleting the dynamically allocated stream buffer is the
responsibility of the strstream object. After str() has been called, the calling
application has responsibility for the dynamically allocated stream buffer.

Note: If your application calls str() without calling freeze() with a nonzero
argument (to unfreeze the strstream), or without explicitly deleting the
array of characters returned by the call to str(), the array of characters will
not be deallocated by the strstream when it is destroyed. This situation is a
potential source of a memory leak.

strstream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

char fill(char) 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

250 Programmer’s Guide

ios

Definition Page
Number

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width() const 148

int width(int w) 148

static int xalloc() 151

static long xalloc() 151

strstreambase

Definition Page
Number

strstreambuf* rdbuf() 253

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Appendix. Non-ISO USL Classes 251

Inherited Protected Functions

strstreambase

Definition Page
Number

~strstreambase() 253

strstreambase(char*, int, char*) 253

strstreambase() 253

strstreambase(char*, long, char*) 253

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

252 Programmer’s Guide

strstreambase
The strstreambase class is an internal class that provides common functions for the
classes that are derived from it; strstream, istrstream, and ostrstream. Do not use
the strstreambase class directly.

Class header file: strstream.h

strstreambase - Hierarchy List
ios
strstreambase

strstream
istrstream
ostrstream

strstreambase - Member Functions and Data by Group

Constructors & Destructor
Objects of the strstreambase class can be constructed and destructed by objects
derived from it. Do not use these functions directly.
~strstreambase

protected:~strstreambase()

Destructs a strstreambase object.
strstreambase

Overload 1
protected:strstreambase(char*, long, char*)

Constructs a strstreambase object.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
protected:strstreambase(char*, int, char*)

Constructs a strstreambase object.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 3
protected:strstreambase()

Constructs a strstreambase object.

Misc
rdbuf

public:strstreambuf* rdbuf()

Returns a pointer to the stream buffer that the strstreambase object is
attached to.

Appendix. Non-ISO USL Classes 253

strstreambase - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition Page
Number

virtual ~ios() 143

int bad() const 144

static long bitalloc() 149

void clear(int i = 0) 145

int eof() const 145

int fail() const 145

char fill() const 145

char fill(char) 145

long flags(long f) 146

long flags() const 146

int good() const 145

ios(streambuf*) 143

long& iword(int) 149

int operator !() const 149

operator const void *() const 149

operator void *() 149

int precision() const 146

int precision(int) 146

void *& pword(int) 149

streambuf* rdbuf() 149

int rdstate() const 145

long setf(long setbits, long field) 147

long setf(long) 147

int skip(int i) 147

static void sync_with_stdio() 149

ostream* tie(ostream* s) 150

ostream* tie() 150

long unsetf(long) 147

int width() const 148

int width(int w) 148

static int xalloc() 151

254 Programmer’s Guide

ios

Definition Page
Number

static long xalloc() 151

Inherited Public Data

ios

Definition Page
Number

static const long adjustfield 143

static const long basefield 144

static const long floatfield 144

Inherited Protected Functions

ios

Definition Page
Number

void init(streambuf*) 149

ios() 143

void setstate(int b) 145

Inherited Protected Data

ios

Definition Page
Number

static void (* stdioflush) () 151

int assign_private 144

streambuf* bp 144

int delbuf 144

int isfx_special 144

int ispecial 144

int osfx_special 144

int ospecial 144

int state 144

char x_fill 148

long x_flags 144

short x_precision 148

ostream* x_tie 144

short x_width 148

Appendix. Non-ISO USL Classes 255

strstreambuf
This class specializes streambuf to use an array of bytes in memory as the source
or target of data.

Class header file: strstream.h

strstreambuf - Hierarchy List
streambuf
strstreambuf

strstreambuf - Member Functions and Data by Group

Constructors & Destructor
Objects of the strstreambuf class can be constructed and destructed.
~strstreambuf

public:~strstreambuf()

If freeze() has not been called for the strstreambuf object and a stream
buffer is associated with the strstreambuf object, the strstreambuf
destructor frees the space allocated by the strstreambuf constructor. The
effect of the destructor depends on the constructor used to create the
strstreambuf object:
v If you created the strstreambuf object using the constructor that takes

two pointers to functions as arguments, the destructor frees the space
allocated by the destructor by calling the function pointed to by the
second argument to the constructor.

v If you created the strstreambuf object using any of the other
constructors, the destructor calls the delete operator to free the space
allocated by the constructor.

strstreambuf

Overload 1
public:strstreambuf(long)

This constructor takes one argument and constructs an empty
strstreambuf object in dynamic mode. The initial size of the stream
buffer will be at least as long as the argument in bytes.
AIX Considerations

This constructor is available for 64-bit applications. It
accepts a long argument.

Overload 2
public:strstreambuf(int)

This constructor takes one argument and constructs an empty
strstreambuf object in dynamic mode. The initial size of the stream
buffer will be at least as long as the argument in bytes.
AIX Considerations

This constructor is available for 32-bit applications. It
accepts an int argument.

Overload 3
public:strstreambuf(char* b, int size, char* pstart = 0)

256 Programmer’s Guide

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 32-bit applications. The
second argument is an int value.

Overload 4
public:strstreambuf(unsigned char* b,

int size,
unsigned char* pstart = 0)

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 32-bit applications. The
second argument is an int value.

Overload 5
public:strstreambuf(unsigned char* b,

long size,
unsigned char* pstart = 0)

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.

Appendix. Non-ISO USL Classes 257

v If size equals 0, b points to the beginning of a null-terminated
string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 64-bit applications. The
second argument is a long value.

Overload 6
public:strstreambuf(void * (* a) (long),

void (* f) (void *))

This constructor takes two arguments and creates an empty
strstreambuf object in dynamic mode. a is a pointer to the function
that is used to allocate space. a is passed a long value that equals
the number of bytes that it is supposed to allocate. If the value of a
is 0, the operator new is used to allocate space. f is a pointer to the
function that is used to free space. f is passed an argument that is a
pointer to the array of bytes that a allocated. If f has a value of 0,
the operator delete is used to free space.

Overload 7
public:strstreambuf(signed char* b,

int size,
signed char* pstart = 0)

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 32-bit applications. The
second argument is an int value.

Overload 8
public:strstreambuf(signed char* b,

long size,
signed char* pstart = 0)

258 Programmer’s Guide

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 64-bit applications. The
second argument is a long value.

Overload 9
public:strstreambuf(char* b, long size, char* pstart = 0)

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 64-bit applications. The
second argument is a long value.

Overload 10
public:strstreambuf()

This constructor takes no arguments and constructs an empty
strstreambuf object in dynamic mode. Space will be allocated
automatically to accommodate the characters that are put into the
strstreambuf objet. This space will be allocated using the operator
new and deallocated using the operator delete. The characters that
are already stored by the strstreambuf object may have to be
copied when new space is allocated. If you know you are going to
insert many characters into an strstreambuf object, you can give
the I/O Stream Library an estimate of the size of the object before
you create it by calling strstreambuf::setbuf().

Appendix. Non-ISO USL Classes 259

Get/Put Pointer Functions
seekoff

public:virtual streampos seekoff(streamoff, ios::seek_dir, int)

Repositions the get or put pointer in the array of bytes in memory that
serves as the ultimate producer or consumer.

If you constructed the strstreambuf in dynamic mode, the results of
seekoff() are unpredictable. Therefore, do not use seekoff() with an
strstreambuf object that you created in dynamic mode.

If you did not construct the strstreambuf object in dynamic mode, seekoff()
attempts to reposition the get pointer or the put pointer, depending on the
value of the third argument, the mode. If ios::in is set, seekoff() repositions
the get pointer. If ios::out is set, seekoff() repositions the put pointer. If
both ios::in and ios::out are set, seekoff() repositions both pointers.

seekoff() attempts to reposition the affected pointer to the value of
ios::seek_dir + streamoff. ios::seek_dir can have the following values:
ios::beg, ios::cur, or ios::end.

If the value of ios::seek_dir + streamoff is equal to or greater than the end
of the array, the value is not valid and seekoff() returns EOF. Otherwise,
seekoff() sets the affected pointer to this value and returns this value.

Insertion & Extraction Functions
overflow

public:virtual int overflow(int)

Causes the ultimate consumer to consume the characters in the put area
and calls setp() to establish a new put area. The argument is stored in the
new put area if its value is not equal to EOF.

pcount

This function is internal and should not be used.

Overload 1
public:long pcount()
AIX Considerations

This function returns a long for 64-bit applications. It is not
available for 32-bit applications.

Overload 2
public:int pcount()
AIX Considerations

This function returns an int for 32-bit applications. It is not
available for 64-bit applications.

underflow
public:virtual int underflow()

If the get area is not empty, underflow() returns the first character in the
get area. If the get area is empty, underflow() creates a new get area that is
not empty and returns the first character. If no more characters are
available in the ultimate producer, underflow() returns EOF and leaves the
get area empty.

260 Programmer’s Guide

Stream Buffer Functions
doallocate

public:virtual int doallocate()

Attempts to allocate space for a stream buffer. If you created the
strstreambuf object using the constructor that takes two pointers to
functions as arguments, doallocate() allocates space for the stream buffer
by calling the function pointed to by the first argument to the constructor.
Otherwise, doallocate() calls the operator new to allocate space for the
stream buffer.

freeze
public:void freeze(int n = 1)

Controls whether the array that makes up a stream buffer can be deleted
automatically. If n has a nonzero value, the array is not deleted
automatically. If n equals 0, the array is deleted automatically when more
space is needed or when the strstreambuf object is deleted. If you call
freeze() with a nonzero argument for a strstreambuf object that was
allocated in dynamic mode, any attempts to put characters in the stream
buffer may result in errors. Therefore, you should avoid insertions to such
stream buffers because the results are unpredictable. However, if you have
a ″frozen″ stream buffer and you call freeze() with an argument equal to 0,
you can put characters in the stream buffer again.

Only space that is acquired through dynamic allocation is ever freed.
isfrozen

public:int isfrozen()

Returns true if the stream buffer is frozen.
setbuf

Overload 1
public:virtual streambuf* setbuf(char* p, long l)

setbuf() records the buffer size. The next time that the strstreambuf
object dynamically allocates a stream buffer, the stream buffer is at
least l bytes long.

Note: If you call setbuf() for an strstreambuf object, you must call
it with the first argument equal to 0.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:virtual streambuf* setbuf(char* p, int l)

setbuf() records the buffer size. The next time that the strstreambuf
object dynamically allocates a stream buffer, the stream buffer is at
least l bytes long.

Note: If you call setbuf() for an strstreambuf object, you must call
it with the first argument equal to 0.
AIX Considerations

Appendix. Non-ISO USL Classes 261

This function is available for 32-bit applications. The
second argument is an int value.

str
public:char* str()

Returns a pointer to the first character in the stream buffer and calls
freeze() with a nonzero argument. Any attempts to put characters in the
stream buffer may result in errors. If the strstreambuf object was created
with an explicit array (that is, the strstreambuf constructor with three
arguments was used), str() returns a pointer to that array. If the
strstreambuf object was created in dynamic mode and nothing is stored in
the array, str() may return 0.

strstreambuf - Inherited Member Functions and Data
Inherited Public Functions

streambuf

Definition Page
Number

virtual ~streambuf() 235

void dbp() 238

long in_avail() 236

int in_avail() 236

int optim_in_avail() 236

int optim_sbumpc() 236

long out_waiting() 242

int out_waiting() 242

virtual int overflow(int c = EOF) 242

virtual int pbackfail(int c) 243

int pptr_non_null() 239

int sbumpc() 237

virtual streampos
seekoff(streamoff,

ios::seek_dir,
int = ios::in|ios::out)

239

virtual streampos
seekpos(streampos,

int = ios::in|ios::out)

239

streambuf* setbuf(unsigned char* p, long len) 244

virtual streambuf* setbuf(char* p, long len) 244

virtual streambuf* setbuf(char* p, int len) 244

streambuf* setbuf(unsigned char* p, int len) 244

streambuf* setbuf(char* p, int len, int count) 244

int sgetc() 237

262 Programmer’s Guide

streambuf

Definition Page
Number

int sgetn(char* s, int n) 237

long sgetn(char* s, long n) 237

int snextc() 237

int sputbackc(char c) 243

int sputc(int c) 243

int sputn(const char* s, int n) 243

long sputn(const char* s, long n) 243

void stossc() 240

streambuf(char* p, long l) 235

streambuf(char* p, int l, int c) 235

streambuf() 235

streambuf(char* p, int l) 235

virtual int sync() 246

virtual int xsgetn(char* s, int n) 238

virtual long xsgetn(char* s, long n) 238

virtual int xsputn(const char* s, int n) 244

virtual long xsputn(const char* s, long n) 244

Inherited Public Data

None
Inherited Protected Functions

streambuf

Definition Page
Number

int allocate() 246

char* base() 240

int blen() const 246

long blen() const 246

char* eback() 240

char* ebuf() 240

char* egptr() 240

char* epptr() 240

void gbump(long n) 240

void gbump(int n) 240

Appendix. Non-ISO USL Classes 263

streambuf

Definition Page
Number

char* gptr() 241

char* pbase() 241

void pbump(int n) 241

void pbump(long n) 241

char* pptr() 241

void setb(char* b, char* eb, int a = 0) 242

void setg(char* eb, char* g, char* eg) 242

void setp(char* p, char* ep) 242

int unbuffered() const 247

void unbuffered(int unb) 247

Inherited Protected Data

None

264 Programmer’s Guide

Appendix. MEMDBG Library Functions

_debug_calloc — Allocate and Initialize Memory
Format

#include <stdlib.h> /* also in <malloc.h> */
void *_debug_calloc(size_t num, size_t size,

const char *file, size_t line);

Language Level: Extension
_debug_calloc is the debug version of calloc. Like calloc, it allocates memory from
the default heap for an array of num elements, each of length size bytes. It then
initializes all bits of each element to 0.

In addition, _debug_calloc makes an implicit call to _heap_check, and stores the
name of the file file and the line number line where the storage is allocated. This
information can be used later by the _heap_check, _dump_allocated or
_dump_allocated_delta functions.

To use _debug_calloc, you must compile with the debug memory -qheapdebug
option. This option maps all calloc calls to _debug_calloc.

Note: -qheapdebug maps all calls to memory management functions (including
heap-specific versions) to their debug counterparts. To prevent a call from being
mapped, parenthesize the function name.

To reallocate or free memory allocated by _debug_calloc, use _debug_realloc and
_debug_free; you can also use realloc and free if you do not want debug
information about the operation.

A heap-specific version (_debug_ucalloc) is available. _debug_calloc always
allocates memory from the default heap.

Return Value
_debug_calloc returns a pointer to the reserved space. If not enough memory is
available, or if num or size is 0, _debug_calloc returns NULL.

Example
This example reserves storage of 100 bytes. It then attempts to write to storage that
was not allocated. When _debug_calloc is called again, _heap_check detects the
error, generates several messages, and stops the program.

Note: You must compile this example with -qheapdebug to map the calloc calls to
_debug_calloc.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)calloc(1, 100))) {
puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}

© Copyright IBM Corp. 1998, 2002 265

memset(ptr1, ’a’, 105); /* overwrites storage that was not allocated */
ptr2 = (char*)calloc(2, 20); /* this call to calloc invokes _heap_check */
puts(“_debug_calloc did not detect that a memory block was overwritten.”);
return 0;

/**
The output should be similar to:

End of allocated object 0x00073890 was overwritten at 0x000738f4.
The first eight bytes of the memory block (in hex) are: 6161616161616161.
This memory block was (re)allocated at line number 9 in _debug_callo.c.
Heap state was valid at line 9 of _debug_callo.c.
Memory error detected at line 14 of _debug_callo.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_free — Free Allocated Memory
Format

#include <stdlib.h> /* also in <malloc.h> */
void _debug_free(void *ptr, const char *file,

size_t line);

Language Level: Extension
_debug_free is the debug version of free. Like free, it frees the block of memory
pointed to by ptr. _debug_free also sets each block of freed memory to 0xFB, so
you can easily locate instances where your program uses the data in freed memory.

In addition, _debug_free makes an implicit call to the _heap_check, and stores the
file name file and the line number line where the memory is freed. This information
can be used later by the _heap_check, _dump_allocated, or _dump_allocated_delta
functions.

266 Programmer’s Guide

To use _debug_free, you must compile with the -qheapdebug option. This option
maps all free calls to _debug_free.

Note: -qheapdebug maps all calls to memory management functions (including
heap-specific versions) to their debug counterparts. To prevent a call from being
mapped, parenthesize the function name.

Because _debug_free always checks what heap the memory was allocated from,
you can use _debug_free to free memory blocks allocated by the regular,
heap-specific, or debug versions of the memory management functions. However,
if the memory was not allocated by the memory management functions, or was
previously freed, _debug_free generates an error message and the program ends.

Return Value
There is no return value.

Example
This example reserves two blocks, one of 10 bytes and the other of 20 bytes. It then
frees the first block and attempts to overwrite the freed storage. When _debug_free
is called a second time, _heap_check detects the error, prints out several messages,
and stops the program.

Note: You must compile this example with -qheapdebug to map the free calls to
_debug_free.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)malloc(10)) || NULL == (ptr2 = (char*)malloc(20))) {
puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
free(ptr1);
memset(ptr1, ’a’, 5); /* overwrites storage that has been freed */
free(ptr2); /* this call to free invokes _heap_check */
puts(“_debug_free did not detect that a freed memory block was overwritten.”);
return 0;

/**
The output should be similar to:

Free heap was overwritten at 0x00073890.
Heap state was valid at line 12 of _debug_free.c.
Memory error detected at line 14 of _debug_free.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)

Appendix. MEMDBG Library Functions 267

_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_heapmin — Free Unused Memory in the Default Heap
Format

#include <stdlib.h> /* also in <malloc.h> */
int _debug_heapmin(const char *file, size_t line);

Language Level: Extension
_debug_heapmin is the debug version of _heapmin. Like _heapmin, it returns all
unused memory from the default runtime heap to the operating system.

In addition, _debug_heapmin makes an implicit call to _heap_check, and stores the
file name file and the line number line where the memory is returned. This
information can be used later by the _heap_check function.

To use _debug_heapmin, you must compile with the -qheapdebug option. This
option maps all _heapmin calls to _debug_heapmin.

Note: -qheapdebug maps all calls to memory management functions (including
heap-specific versions) to their debug counterparts. To prevent a call from being
mapped, parenthesize the function name.

A heap-specific version of this function (_debug_uheapmin) is also available.
_debug_heapmin always operates on the default heap.

Return Value
If successful, _debug_heapmin returns 0; otherwise, it returns -1.

Example
This example allocates 10000 bytes of storage, changes the storage size to 10 bytes,
and then uses _debug_heapmin to return the unused memory to the operating
system. The program then attempts to overwrite memory that was not allocated.
When _debug_heapmin is called again, _heap_check detects the error, generates
several messages, and stops the program.

Note: You must compile this example with the -qheapdebug option to map the
_heapmin calls to _debug_heapmin.
#include <stdlib.h>
#include <stdio.h>

268 Programmer’s Guide

int main(void)
{

char *ptr;

/* Allocate a large object from the system */
if (NULL == (ptr = (char*)malloc(100000))) {

puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
ptr = (char*)realloc(ptr, 10);
_heapmin(); /* No allocation problems to detect */

(ptr - 1) = ’a’; / Overwrite memory that was not allocated */
_heapmin(); /* This call to _heapmin invokes _heap_check */

puts(“_debug_heapmin did not detect that a non-allocated memory block”
“was overwritten.”);

return 0;

/**
Possible output is:

Header information of object 0x000738b0 was overwritten at 0x000738ac.
The first eight bytes of the memory block (in hex) are: AAAAAAAAAAAAAAAA.
This memory block was (re)allocated at line number 13 in _debug_heapm.c.
Heap state was valid at line 14 of _debug_heapm.c.
Memory error detected at line 17 of _debug_heapm.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_malloc — Allocate Memory
Format

#include <stdlib.h> /* also in <malloc.h> */
void *_debug_malloc(size_t size,

const char *file, size_t line);

Appendix. MEMDBG Library Functions 269

Language Level: Extension
_debug_malloc is the debug version of malloc. Like malloc, it reserves a block of
storage of size bytes from the default heap. _debug_malloc also sets all the memory
it allocates to 0xAA, so you can easily locate instances where your program uses
the data in the memory without initializing it first.

In addition, _debug_malloc makes an implicit call to _heap_check, and stores the
file name file and the line number line where the storage is allocated. This
information can later be used by the _heap_check , _dump_allocated, or
_dump_allocated_delta functions.

To use _debug_malloc, you must compile with the -qheapdebug option. This
option maps all malloc calls to _debug_malloc.

Note: -qheapdebug maps all calls to memory management functions (including
heap-specific versions) to their debug counterparts. To prevent a call from being
mapped, parenthesize the function name.

To reallocate or free memory allocated by _debug_malloc, use _debug_realloc and
_debug_free; you can also use realloc and free if you do not want debug
information about the operation.

A heap-specific version of this function (_debug_umalloc) is also available.
_debug_malloc always allocates memory from the default heap.

Return Value
_debug_malloc returns a pointer to the reserved space. If not enough memory is
available or if size is 0, _debug_malloc returns NULL.

Example
This example allocates 100 bytes of storage. It then attempts to write to storage
that was not allocated. When _debug_malloc is called again, _heap_check detects
the error, generates several messages, and stops the program.

Note: You must compile this example with the -qheapdebug option to map the
malloc calls to _debug_malloc.
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)malloc(100))) {
puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
(ptr1 - 1) = ’a’; / overwrites storage that was not allocated */
ptr2 = (char*)malloc(10); /* this call to malloc invokes _heap_check */
puts(“_debug_malloc did not detect that a memory block was overwritten.”);
return 0;

/**
Possible output is:

Header information of object 0x00073890 was overwritten at 0x0007388c.
The first eight bytes of the memory block (in hex) are: AAAAAAAAAAAAAAAA.
This memory block was (re)allocated at line number 8 in _debug_mallo.c.
Heap state was valid at line 8 of _debug_mallo.c.
Memory error detected at line 13 of _debug_mallo.c.

**/
}

270 Programmer’s Guide

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_memcpy — Copy Bytes
Format

#include <string.h>
void *_debug_memcpy(void *dest, const void *src, size_t count,

const char *file, size_t line);

Language Level: Extension
_debug_memcpy is the debug version of memcpy. Like memcpy, it copies count
bytes of src to dest, where the behavior is undefined if copying takes place between
objects that overlap.

_debug_memcpy validates the heap after copying the bytes to the target location,
and performs this check only when the target is within a heap. _debug_memcpy
makes an implicit call to _heap_check. If _debug_memcpy detects a corrupted heap
when it makes a call to _heap_check, _debug_memcpy will report the file name file
and line number line in a message.

Note: _debug_memcpy checks only the current default heap. Therefore, this debug
support will not check all heaps within applications that have multiple user heaps.

To use _debug_memcpy, you must compile with the -qheapdebug option. This
option maps all memcpy calls to _debug_memcpy. You do not have to change your
source code, in order for _debug_memcpy to verify the heap.

Note: -qheapdebug maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug
counterparts. To prevent a call from being mapped, parenthesize the function
name.

Appendix. MEMDBG Library Functions 271

Return Value
_debug_memcpy returns a pointer to dest.

Example
This example contains a programming error. On the memcpy used to initialize the
target location, the count is more than the size of the target object, and the
memcpy operation copies bytes past the end of the allocated object.
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define MAX_LEN 10

int main(void)
{

char *source, *target;

target = (char*)malloc(MAX_LEN);
memcpy(target, “This is the target string”, 11);

printf(“Target is \”%s\“\n”, target);
return 0;

/**
The output should be similar to:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 5468697320697320.
This memory block was (re)allocated at line number 11 in memcpy.c.
Heap state was valid at line 11 of memcpy.c.
Memory error detected at line 12 of memcpy.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

272 Programmer’s Guide

_debug_memmove — Copy Bytes
Format

#include <string.h>
void *_debug_memmove(void *dest, const void *src, size_t count,

const char *file, size_t line);

Language Level: Extension
_debug_memmove is the debug version of memmove. Like memmove, it copies
count bytes of src to dest, and allows for copying between objects that may overlap.

_debug_memmove validates the heap after copying the bytes to the target location,
and performs this check only when the target is within a heap. _debug_memmove
makes an implicit call to _heap_check. If _debug_memmove detects a corrupted
heap when it makes a call to _heap_check, _debug_memmove will report the file
name file and line number line in a message.

Note: _debug_memmove checks only the current default heap. Therefore, this
debug support will not check all heaps within applications that have multiple user
heaps.

To use _debug_memmove, you must compile with the -qheapdebug option. This
option maps all memcpy calls to _debug_memmove. You do not have to change
your source code, in order for _debug_memmove to verify the heap.

Note: -qheapdebug maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug
counterparts. To prevent a call from being mapped, parenthesize the function
name.

Return Value
_debug_memmove returns a pointer to dest.

Example
This example contains a programming error. The count specified on memmove is
15 instead of 5, and the memmove operation copies bytes past the end of the
allocated object.
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define SIZE 21

int main(void)
{

char *target, *p, *source;

target = (char*)malloc(SIZE);
strcpy(target, “a shiny white sphere”);
p = target+8; /* p points at the starting character

of the word we want to replace */
source = target+2; /* start of “shiny” */

printf(“Before memmove, target is \”%s\“\n”, target);
memmove(p, source, 15);
printf(“After memmove, target becomes \”%s\“\n”, target);
return 0;

/**
The output should be similar to:

Appendix. MEMDBG Library Functions 273

Before memmove, target is “a shiny white sphere”
End of allocated object 0x00073c80 was overwritten at 0x00073c95.
The first eight bytes of the memory block (in hex) are: 61207368696E7920.
This memory block was (re)allocated at line number 11 in memmove.c.
Heap state was valid at line 12 of memmove.c.
Memory error detected at line 18 of memcpy.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_memset — Set Bytes to Value
Format

#include <string.h>
void *_debug_memset(void *dest, int c, size_t count,

const char *file, size_t line);

Language Level: Extension
_debug_memset is the debug version of memset. Like memset, it sets the first count
bytes of dest to the value c. The value of c is converted to an unsigned character.

_debug_memset validates the heap after setting the bytes, and performs this check
only when the target is within a heap. _debug_memset makes an implicit call to
_heap_check. If _debug_memset detects a corrupted heap when it makes a call to
_heap_check, _debug_memset will report the file name file and line number line in
a message.

Note: _debug_memset checks only the current default heap. Therefore, this debug
support will not check all heaps within applications that have multiple user heaps.

274 Programmer’s Guide

To use _debug_memset, you must compile with the -qheapdebug option. This
option maps all memset calls to _debug_memset. You do not have to change your
source code, in order for _debug_memset to verify the heap.

Note: -qheapdebug maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug
counterparts. To prevent a call from being mapped, parenthesize the function
name.

Return Value
_debug_memset returns a pointer to dest.

Example
This example contains a programming error. The invocation of memset that puts
’B’ in the buffer specifies the wrong count, and stores bytes past the end of the
buffer.
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define BUF_SIZE 20

int main(void)
{

char *buffer, *buffer2;
char *string;

buffer = (char*)calloc(1, BUF_SIZE+1); /* +1 for null-terminator */

string = (char*)memset(buffer, ’A’, 10);
printf(“\nBuffer contents: %s\n”, string);
memset(buffer+10, ’B’, 20);

return 0;

/**
The output should be:

Buffer contents: AAAAAAAAAA
End of allocated object 0x00073c80 was overwritten at 0x00073c95.
The first eight bytes of the memory block (in hex) are: 4141414141414141.
This memory block was (re)allocated at line number 12 in memset.c.
Heap state was valid at line 14 of memset.c.
Memory error detected at line 16 of memset.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)

Appendix. MEMDBG Library Functions 275

_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_realloc — Reallocate Memory Block
Format

#include <stdlib.h> /* also in <malloc.h> */
void *_debug_realloc(void *ptr, size_t size,

const char *file, size_t line);

Language Level: Extension
_debug_realloc is the debug version of realloc. Like realloc, it reallocates the block
of memory pointed to by ptr to a new size, specified in bytes. It also sets any new
memory it allocates to 0xAA, so you can easily locate instances where your
program tries to use the data in that memory without initializing it first.

In addition, _debug_realloc makes an implicit call to _heap_check, and stores the
file name file and the line number line where the storage is reallocated. This
information can be used later by the _heap_check, _dump_allocated, or
_dump_allocated_delta functions.

If ptr is NULL, _debug_realloc behaves like _debug_malloc (or malloc) and
allocates the block of memory.

To use _debug_realloc, you must compile with the _qheapdebug option. This
option maps all realloc calls to _debug_realloc.

Note: The -qheapdebug option maps all calls to memory management functions
(including heap-specific versions) to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

Because _debug_realloc always checks what heap the memory was allocated from,
you can use _debug_realloc to reallocate memory blocks allocated by the regular or
debug versions of the memory management functions. However, if the memory
was not allocated by the memory management functions, or was previously freed,
_debug_realloc generates an error message and the program ends.

Return Value
_debug_realloc returns a pointer to the reallocated memory block. The ptr
argument to _debug_realloc is not the same as the return value; _debug_realloc
always changes the memory location to help you locate references to the memory
that were not freed before the memory was reallocated.

If size is 0, _debug_realloc returns NULL. If not enough memory is available to
expand the block to the given size, the original block is unchanged and NULL is
returned.

Example
This example uses _debug_realloc to allocate 100 bytes of storage. It then attempts

276 Programmer’s Guide

to write to storage that was not allocated. When _debug_realloc is called again,
_heap_check detects the error, generates several messages, and stops the program.

Note: You must compile this example with alloc(debug,yes) to map the realloc calls
to _debug_realloc.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr;

if (NULL == (ptr = (char*)realloc(NULL, 100))) {
puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
memset(ptr, ’a’, 105); /* overwrites storage that was not allocated */
ptr = (char*)realloc(ptr, 200); /* realloc invokes _heap_check */
puts(“_debug_realloc did not detect that a memory block was overwritten.”);
return 0;

/**
The output should be similar to:

End of allocated object 0x00073890 was overwritten at 0x000738f4.
The first eight bytes of the memory block (in hex) are: 6161616161616161.
This memory block was (re)allocated at line number 8 in _debug_reall.c.
Heap state was valid at line 8 of _debug_reall.c.
Memory error detected at line 13 of _debug_reall.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

Appendix. MEMDBG Library Functions 277

_debug_strcat — Concatenate Strings
Format

#include <string.h>

char *_debug_strcat(char *string1, const char *string2,

const char *file, size_t file);

Language Level: Extension
_debug_strcat is the debug version of strcat. Like strcat, it concatenates string2 to
string1 and ends the resulting string with the null character.

_debug_strcat validates the heap after concatenating the strings, and performs this
check only when the target is within a heap. _debug_strcat makes an implicit call
to _heap_check. If _debug_strcat detects a corrupted heap when it makes a call to
_heap_check, _debug_strcat will report the file name file and line number file in a
message.

Note: _debug_strcat checks only the current default heap. Therefore, this debug
support will not check all heaps within applications that have multiple user heaps.

To use _debug_strcat, you must compile with the -qheapdebug option. This option
maps all strcat calls to _debug_strcat. You do not have to change your source code,
in order for _debug_strcat to verify the heap.

Note: -qheapdebug maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug
counterparts. To prevent a call from being mapped, parenthesize the function
name.

Return Value
_debug_strcat returns a pointer to the concatenated string string1.

Example
This example contains a programming error. The buffer1 object is not large enough
to store the result after the string “ program” is concatenated.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *buffer1;
char *ptr;

buffer1 = (char*)malloc(SIZE);
strcpy(buffer1, “computer”);

ptr = strcat(buffer1, “ program”);
printf(“buffer1 = %s\n”, buffer1);
return 0;

/**

The output should be similar to:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 636F6D7075746572.
This memory block was (re)allocated at line number 12 in strcat.c.
Heap state was valid at line 13 of strcat.c.

278 Programmer’s Guide

Memory error detected at line 15 of strcat.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_strcpy — Copy Strings
Format

#include <string.h>
char *_debug_strcpy(char *string1, const char *string2,

const char *file, size_t line);

Language Level: Extension
_debug_strcpy is the debug version of strcpy. Like strcpy, it copies string2,
including the ending null character, to the location specified by string1.

_debug_strcpy validates the heap after copying the string to the target location,
and performs this check only when the target is within a heap. _debug_strcpy
makes an implicit call to _heap_check. If _debug_strcpy detects a corrupted heap
when it makes a call to _heap_check, _debug_strcpy will report the file name file
and line number line in a message.

Note: _debug_strcpy checks only the current default heap. Therefore, this debug
support will not check all heaps within applications that have multiple user heaps.

To use _debug_strcpy, you must compile with the -qheapdebug option. This option
maps all strcpy calls to _debug_strcpy. You do not have to change your source
code in order for _debug_strcpy to verify the heap.

Appendix. MEMDBG Library Functions 279

Note: -qheapdebug maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug
counterparts. To prevent a call from being mapped, parenthesize the function
name.

Return Value
_debug_strcpy returns a pointer to the copied string string1.

Example
This example contains a programming error. The source string is too long for the
destination buffer, and the strcpy operation damages the heap.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *source = “1234567890123456789”;
char *destination;
char *return_string;

destination = (char*)malloc(SIZE);
strcpy(destination, “abcdefg”),

printf(“destination is originally = ’%s’\n”, destination);
return_string = strcpy(destination, source);
printf(“After strcpy, destination becomes ’%s’\n\n”, destination);
return 0;

/**
The output should be similar to:

destination is originally = ’abcdefg’
End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 3132333435363738.
This memory block was (re)allocated at line number 13 in strcpy.c.
Heap state was valid at line 14 of strcpy.c.
Memory error detected at line 17 of strcpy.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)

280 Programmer’s Guide

_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_strnset — Set Characters in String
Format

#include <string.h>
char *_debug_strnset(char *string, int c, size_t n,

const char *file, size_t line);

Language Level: Extension
_debug_strnset is the debug version of strnset. Like strnset, it sets, at most, the first
n characters of string to c (converted to a char), where if n is greater than the
length of string, the length of string is used in place of n.

_debug_strnset validates the heap after setting the bytes, and performs this check
only when the target is within a heap. _debug_strnset makes an implicit call to
_heap_check. If _debug_strnset detects a corrupted heap when it makes a call to
_heap_check, _debug_strnset will report the file name file and line number line
in a message.

Note: _debug_strnset checks only the current default heap. Therefore, this debug
support will not check all heaps within applications that have multiple user heaps.

To use _debug_strnset, you must compile with the debug memory -qheapdebug
option. This option maps all strnset calls to _debug_strnset. You do not have to
change your source code in order for _debug_memset to verify the heap.

Note: -qheapdebug maps all calls to memory management functions (including a
heap-specific version) to their debug counterparts. To prevent a call from being
mapped, parenthesize the function name.

Return Value
_debug_strnset returns a pointer to the altered string. There is no error return
value.

Example
This example contains two programming errors. The string, str, was created
without a null-terminator to mark the end of the string, and without the
terminator strnset with a count of 10 stores bytes past the end of the allocated
object.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *str;

str = (char*)malloc(10);

printf(“This is the string after strnset: %s\n”, str);
return 0;

/**
The output should be:

Appendix. MEMDBG Library Functions 281

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 7878787878797979.
This memory block was (re)allocated at line number 9 in strnset.c.
Heap state was valid at line 11 of strnset.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Problems with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_strncat — Concatenate Strings
Format

#include <string.h>
char *_debug_strncat(char *string1, const char *string2, size_t count,

const char *file, size_t line);

Language Level: Extension
_debug_strncat is the debug version of strncat. Like strncat, it appends the first
count characters of string2 to string1 and ends the resulting string with a null
character (\0). If count is greater than the length of string2, the length of string2
is used in place of count.

_debug_strncat validates the heap after appending the characters, and performs
this check only when the target is within a heap. _debug_strncat makes an implicit
call to _heap_check. If _debug_strncat detects a corrupted heap when it makes a
call to _heap_check, _debug_strncat will report the file name file and line number
line in a message.

Note: _debug_strncat checks only the current default heap. Therefore, this debug
support will not check all heaps within applications that have multiple user heaps.

282 Programmer’s Guide

To use _debug_strncat, you must compile with the -qheapdebug option. This
option maps all strncat calls to _debug_strncat. You do not have to change your
source code, in order for _debug_strncat to verify the heap.

Note: -qheapdebug maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug
counterparts. To prevent a call from being mapped, parenthesize the function
name.

Return Value
_debug_strncat returns a pointer to the joined string string1.

Example
This example contains a programming error. The buffer1 object is not large
enough to store the result after eight characters from the string “ programming” are
concatenated.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *buffer1;
char *ptr;

buffer1 = (char*)malloc(SIZE);
strcpy(buffer1, “computer”);

/* Call strncat with buffer1 and “ programming” */

ptr = strncat(buffer1, “ programming”, 8);
printf(“strncat: buffer1 = \”%s\“\n”, buffer1);
return 0;

/**
The output should be similar to:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 636F6D7075746572.
This memory block was (re)allocated at line number 12 in strncat.c.
Heap state was valid at line 13 of strncat.c.
Memory error detected at line 17 of strncat.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)

Appendix. MEMDBG Library Functions 283

_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_strncpy — Copy Strings
Format

#include <string.h>
char *_debug_strncpy(char *string1, const char *string2, size_t count,

const char *file, size_t line);

Language Level: Extension
_debug_strncpy is the debug version of strncpy. Like strncpy, it copies count
characters of string2 to string1. If count is less than or equal to the length of
string2, a null character (\0) is not appended to the copied string. If count is
greater than the length of string2, the string1 result is padded with null
characters (\0) up to length count.

_debug_strncpy validates the heap after copying the strings to the target location,
and performs this check only when the target is within a heap. _debug_strncpy
makes an implicit call to _heap_check. If _debug_strncpy detects a corrupted heap
when it makes a call to _heap_check, _debug_strncpy will report the file name
file and line number line in a message.

Note: _debug_strncpy checks only the current default heap. Therefore, this debug
support will not check all heaps within applications that have multiple user heaps.

To use _debug_strncpy, you must compile with the -qheapdebug option. This
option maps all strncpy calls to _debug_strncpy. You do not have to change your
source code, in order for _debug_strncpy to verify the heap.

Note: The -qheapdebug option maps all calls to other string functions and all calls
to memory management functions (including a heap-specific version), to their
debug counterparts. To prevent a call from being mapped, parenthesize the
function name.

Return Value
_debug_strncpy returns a pointer to string1.

Example
This example contains a programming error. The source string is too long for the
destination buffer, and the strncpy operation damages the heap.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

284 Programmer’s Guide

int main(void)
{

char *source = “1234567890123456789”;
char *destination;
char *return_string;
int index = 15;

destination = (char*)malloc(SIZE);
strcpy(destination, “abcdefg”),

printf(“destination is originally = ’%s’\n”, destination);
return_string = strncpy(destination, source, index);
printf(“After strncpy, destination becomes ’%s’\n\n”, destination);
return 0;

/**
The output should be similar to:

destination is originally = ’abcdefg’
End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 3132333435363738.
This memory block was (re)allocated at line number 14 in strncpy.c.
Heap state was valid at line 15 of strncpy.c.
Memory error detected at line 18 of strncpy.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_strset — Set Characters in String
Format

#include <string.h>
char *_debug_strset(char *string, size_t c,

const char *file, size_t line);

Appendix. MEMDBG Library Functions 285

Language Level: Extension
_debug_strset is the debug version of strset. Like strset, it sets all characters of
string, except the ending null character (\0), to c (converted to a char).

_debug_strset validates the heap after setting all characters of string, and
performs this check only when the target is within a heap. _debug_strset makes an
implicit call to _heap_check. If _debug_strset detects a corrupted heap when it
makes a call to _heap_check, _debug_strset will report the file name file and line
number line in a message.

Note: _debug_strset checks only the current default heap. Therefore, this debug
support will not check all heaps within applications that have multiple user heaps.

To use _debug_strset, you must compile with the debug memory -qheapdebug
option. This option maps all strset calls to _debug_strset. You do not have to
change your source code, in order for _debug_strset to verify the heap.

Note: -qheapdebug maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug
counterparts. To prevent a call from being mapped, parenthesize the function
name.

Return Value
_debug_strset returns a pointer to the altered string. There is no error return
value.

Example
This example contains a programming error. The string, str, was created without a
null-terminator, and strset propagates the letter ’k’ until it finds what it thinks is
the null-terminator.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *str;

str = (char*)malloc(10);

strnset(str, ’x’, 5);
strset(str+5, ’k’);
printf(“This is the string after strset: %s\n”, str);
return 0;

/**
The output should be:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 78787878786B6B6B.
This memory block was (re)allocated at line number 9 in strset.c.
Heap state was valid at line 11 of strset.c.
Memory error detected at line 12 of strnset.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

286 Programmer’s Guide

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_ucalloc — Reserve and Initialize Memory from User Heap
Format

#include <umalloc.h>
void *_debug_ucalloc(Heap_t heap, size_t num, size_t size,

const char *file, size_t line);

Language Level: Extension
_debug_ucalloc is the debug version of _ucalloc. Like _ucalloc, it allocates memory
from the heap you specify for an array of num elements, each of length size bytes.
It then initializes all bits of each element to 0.

In addition, _debug_ucalloc makes an implicit call to _uheap_check, and stores the
name of the file file and the line number line where the storage is allocated. This
information can be used later by the _uheap_check, _uheap_allocated, or
_udump_allocated_delta functions.

To use _debug_ucalloc, you must compile with the -qheapdebug option. This
option maps all _ucalloc calls to _debug_ucalloc.

Note: The -qheapdebug option maps all calls to memory management functions
(including heap-specific versions) to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

_debug_ucalloc works just like _debug_calloc except that you specify the heap to
use; _debug_calloc always allocates from the default heap.

If the heap does not have enough memory for the request, _debug_ucalloc calls the
getmore_fn that you specified when you created the heap with _ucreate.

To reallocate or free memory allocated with _debug_ucalloc, use the
non-heap-specific _debug_realloc and _debug_free. These functions always check
what heap the memory was allocated from.

Appendix. MEMDBG Library Functions 287

Return Value
_debug_ucalloc returns a pointer to the reserved space. If size or num was specified
as zero, or if your getmore_fn cannot provide enough memory, _debug_ucalloc
returns NULL. Passing _debug_ucalloc a heap that is not valid results in undefined
behavior.

Example
This example creates a user heap and allocates memory from it with
_debug_ucalloc. It then attempts to write to memory that was not allocated. When
_debug_free is called, _uheap_check detects the error, generates several messages,
and stops the program.

Note: You must compile this example with the -qheapdebug option to map the
_ucalloc calls to _debug_ucalloc and free to _debug_free.
#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>
#include <string.h>

int main(void)
{

Heap_t myheap;
char *ptr;

/* Use default heap as user heap */
myheap = _udefault(NULL);

if (NULL == (ptr = (char*)_ucalloc(myheap, 100, 1))) {
puts(“Cannot allocate memory from user heap.”);
exit(EXIT_FAILURE);

}
memset(ptr, ’x’, 105); /* Overwrites storage that was not allocated */
free(ptr);
return 0;

/**
The output should be similar to :

End of allocated object 0x00073890 was overwritten at 0x000738f4.
The first eight bytes of the memory block (in hex) are: 7878787878787878.
This memory block was (re)allocated at line number 14 in _debug_ucallo.c.
Heap state was valid at line 14 of _debug_ucallo.c.
Memory error detected at line 19 of _debug_ucallo.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)

288 Programmer’s Guide

_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_uheapmin — Free Unused Memory in User Heap
Format

#include <umalloc.h>
int _debug_uheapmin(Heap_t heap, const char *file, size_t line);

Language Level: Extension
_debug_uheapmin is the debug version of _uheapmin. Like _uheapmin, it returns
all unused memory blocks from the specified heap to the operating system.

To return the memory, _debug_uheapmin calls the release_fn you supplied when
you created the heap with _ucreate. If you do not supply a release_fn,
_debug_uheapmin has no effect and returns 0.

In addition, _debug_uheapmin makes an implicit call to _uheap_check to validate
the heap.

_debug_uheapmin works just like _debug_heapmin except that you specify the
heap to use; _debug_heapmin always uses the default heap.

To use _debug_uheapmin, you must compile with the -qheapdebug option. This
option maps all _uheapmin calls to _debug_uheapmin.

Note: -qheapdebug maps all calls to memory management functions (including
heap-specific versions) to their debug counterparts. To prevent a call from being
mapped, parenthesize the function name.

Return Value
If successful, _debug_uheapmin returns 0. A nonzero return value indicates failure.
If the heap specified is not valid, _debug_uheapmin generates an error message
with the file name and line number where the call to _debug_uheapmin was made.

Example
This example creates a heap and allocates memory from it, then uses
_debug_heapmin to release the memory.

Note: You must compile this example with -qheapdebug to map the _uheapmin
calls to _debug_uheapmin.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <umalloc.h>

int main(void)
{

Heap_t myheap;
char *ptr;

Appendix. MEMDBG Library Functions 289

/* Use default heap as user heap */
myheap = _udefault(NULL);

/* Allocate a large object */
if (NULL == (ptr = (char*)_umalloc(myheap, 60000))) {

puts(“Cannot allocate memory from user heap.\n”);
exit(EXIT_FAILURE);

}
memset(ptr, ’x’, 60000);
free(ptr);

/* _debug_uheapmin will attempt to return the freed object to the system */
if (0 != _uheapmin(myheap)) {

puts(“_debug_uheapmin returns failed.\n”);
exit(EXIT_FAILURE);

}
return 0;

}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_umalloc - Reserve Memory Block from User Heap (page 290)
-qheapdebug Compile Option

_debug_umalloc — Reserve Memory Blocks from User Heap
Format

#include <umalloc.h>
void *_debug_umalloc(Heap_t heap, size_t size,

const char *file, size_t line);

Language Level: Extension
_debug_umalloc is the debug version of _umalloc. Like _umalloc, it reserves
storage space from the heap you specify for a block of size bytes. _debug_umalloc
also sets all the memory it allocates to 0xAA, so you can easily locate instances
where your program uses the data in the memory without initializing it first.

290 Programmer’s Guide

In addition, _debug_umalloc makes an implicit call to _uheap_check, and stores
the name of the file file and the line number line where the storage is allocated.
This information can be used later by the _uheap_check, _udump_allocated, or
_udump_allocated_delta functions. _debug_umalloc also sets all the memory it
allocates to 0xAA; this can help you debug problems where your program uses the
data in the memory without initializing it.

_debug_umalloc works just like _debug_malloc except that you specify the heap to
use; _debug_malloc always allocates from the default heap.

If the heap does not have enough memory for the request, _debug_umalloc calls
the getmore_fn that you specified when you created the heap with _ucreate.

To use _debug_umalloc, you must compile with the -qheapdebug option. This
option maps all _umalloc calls to _debug_umalloc.

Note: -qheapdebug maps all calls to memory management functions (including
heap-specific versions) to their debug counterparts. To prevent a call from being
mapped, parenthesize the function name.

To reallocate or free memory allocated with _debug_umalloc, use the
non-heap-specific _debug_realloc and _debug_free. These functions always check
what heap the memory was allocated from.

Return Value
_debug_umalloc returns a pointer to the reserved space. If size was specified as
zero, or the getmore_fn cannot provide enough memory, _debug_umalloc returns
NULL. Passing _debug_umalloc a heap that is not valid results in undefined
behavior.

Example
This example creates a heap myheap and uses _debug_umalloc to allocate 100
bytes from it. It then attempts to overwrite storage that was not allocated. The call
to _debug_free invokes _uheap_check, which detects the error, generates messages,
and ends the program.

Note: You must compile this example with the -qheapdebug to map _umalloc to
_debug_umalloc, and free to _debug_free.
#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>
#include <string.h>

int main(void)
{

Heap_t myheap;
char *ptr;

/* Use default heap as user heap */
myheap = _udefault(NULL);

if (NULL == (ptr = (char*)_umalloc(myheap, 100))) {
puts(“Cannot allocate memory from user heap.\n”);
exit(EXIT_FAILURE);

}
memset(ptr, ’x’, 105); /* Overwrites storage that was not allocated */
free(ptr);
return 0;

/**
The output should be similar to :

Appendix. MEMDBG Library Functions 291

End of allocated object 0x00073890 was overwritten at 0x000738f4.
The first eight bytes of the memory block (in hex) are: 7878787878787878.
This memory block was (re)allocated at line number 14 in _debug_umallo.c.
Heap state was valid at line 14 of _debug_umallo.c.
Memory error detected at line 19 of _debug_umallo.c.

**/
}

Debugging Memory Heaps (page 29)
Memory Management Functions (page 25)
Managing Memory with Multiple Memory Heaps (page 27)

Debug Programs with Heap Memory (page 35)

_debug_calloc - Allocate and Initialize Memory (page 265)
_debug_free - Free Allocated Memory (page 266)
_debug_heapmin - Free Unused Memory in the Default Heap (page 268)
_debug_malloc - Allocate Memory (page 269)
_debug_memcpy - Copy Bytes (page 271)
_debug_memmove - Copy Bytes (page 273)
_debug_memset - Set Bytes to Value (page 274)
_debug_realloc - Reallocate Memory Block (page 276)
_debug_strcat - Concatenate Strings (page 278)
_debug_strcpy - Copy Strings (page 279)
_debug_strncat - Concatenate Strings (page 282)
_debug_strncpy - Copy Strings (page 284)
_debug_strnset - Set Characters in String (page 281)
_debug_strset - Set Characters in String (page 285)
_debug_ucalloc - Reserve and Initialize Memory from User Heap (page 287)
_debug_uheapmin - Free Unused Memory in User Heap (page 289)
-qheapdebug Compile Option

292 Programmer’s Guide

Contacting IBM

We’re delighted to offer a solid cornerstone for your application development:
IBM’s comprehensive support services. Whether you are an occasional user with a
simple question, a power user with many complex technical questions, or someone
who requires application design assistance and consulting, IBM Support can meet
your needs.

Comments on This Help
Please let us know about any errors or omissions in this online help or in the
hardcopy Memo to Users, or our PDF documents. Send your e-mail to:
compinfo@ca.ibm.com

Fee Support
Developers on the VisualAge C++ for AIX Service and Support team handle
everything from simple how-to’s to complex technical problems. Solutions may
take the form of a brief explanation, a workaround, a fix to the current product, or
a fix to the next release.

http://www.ibm.com/software/ad/vacpp/support.html describes IBM Support
Offerings for VisualAge C++.

http://www.ibm.com/support/ describes IBM Support Offerings on all platforms,
worldwide.

http://www.ibm.com/rs6000/support/ describes support offerings on the RS/6000
platform, in your country. It also indicates whether your country provides support
electronically over the Internet in addition to telephone support.

http://www.lotus.com/passport describes the IBM and Lotus Passport Advantage
contracting option.

The IBM Software Support Handbook, accessible from
http://www.ibm.com/software/support, also lists worldwide support contacts.

Phone numbers for information on Support Line offerings are:
v United States: 1-888-426-4343 (IBM Global Services), option 3 as of December

1999. Should this number change, IBM general information at 1-800-IBM-4YOU
(1-800-426-4968) can route you to the appropriate group.

v Canada: 1-800-465-9600, option 3 as of December 1999. Should this number
change, you can also contact IBM general information at 1-800-IBM-4YOU
(1-800-426-4968).

Please call 1-800-266-8720 in the U.S. and Canada for information on Passport
Advantage offerings.

Elsewhere, please contact your local IBM office.

© Copyright IBM Corp. 1998, 2002 293

http://www.ibm.com/software/ad/vacpp/support.html
http://www.ibm.com/support/
http://www.ibm.com/rs6000/support/
http://www.lotus.com/passport
http://www.ibm.com/software/support

If you contact support, please have the following information available:
v The product name
v The product version
v The hardware configuration and software (product names and versions you are

using)
v What happened and what you were doing when the problem occurred
v Whether you tried to solve the problem and how
v The exact wording of any messages displayed

Consulting Services
VisualAge and WebSphere Product Affinity Services Group is a core group of
technical specialists from the IBM development labs that created the IBM
VisualAge and WebSphere products. With access to a network of IBM product area
experts, IBM and industry business partners, and some of the best resources in the
industry, we can put the optimal team in place to meet the challenge of absorbing
new technology. Our goal is to enable organizational success with VisualAge and
WebSphere — ensuring that our products are used effectively within your
development team.

For more information, visit http://www.ibm.com/software/ad/vaws-services/ or
contact the Product Affinity Services Team at:

AIM_SERVICES@us.ibm.com

294 Programmer’s Guide

http://www.ibm.com/software/ad/vaws-services/

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. Program Stream I/O
	Stream Processing
	Standard Streams
	Redirect Standard Streams
	File Handles for Standard Streams
	I/O Buffering
	Considerations for Programming Stream I/O

	Chapter 2. Data Mapping and Storage
	Format of Double-Byte Character Data
	Format of Eight-Byte Floating Point Data
	Format of Four-Byte Integer Data
	Format of Single-Byte Character Data
	Data Mapping
	Mapping of Fundamental Data Types
	Mapping of Compound Data Types
	MacIntosh and Twobyte Alignment Rules
	Alignment Rules for Nested Aggregates
	Packed Alignment Rules
	RISC System/6000 Alignment Rules
	Storage of float and double Types
	Storage of int, long, and short Types

	Chapter 3. Signals and Exception Handling
	Choose Signal Handlers
	Signal Handling
	Signals
	Program Signal Handling
	Signal Handling Considerations
	Example of Using Volatile Variables

	Chapter 4. Using Memory Heaps
	Memory Management Functions
	Managing Memory with Multiple Heaps
	Types of Memory
	Debugging Memory Heaps
	Create and Use a Fixed Size Heap
	Create and Use an Expandable Heap
	Debug Programs with Heap Memory
	Change the Default Heap Used in a Program
	Example of Creating and Using a User Heap
	Example of Creating and Using a Shared-Memory User Heap

	Chapter 5. Program Optimization
	Overview of Optimization
	Optimization Techniques Used by VisualAge C++
	Enhanced Handling of Math and String Library Functions
	Find Faster I/O Techniques
	Optimize Your Application
	Reduce Function-Call Overhead
	Coding Techniques That Can Improve Performance
	Memory Management and Performance
	Mixed-Mode Arithmetic
	Expressions
	Variables and Optimization
	Optimize String Manipulation

	Chapter 6. Floating Point Operations
	Floating Point Hardware
	Compile-Time Floating-Point Arithmetic
	Rounding Mode Restrictions

	Chapter 7. USL Input/Output Stream Classes
	USL I/O Streaming
	The USL I/O Stream Class Hierarchy
	USL I/O Stream Header Files
	Open a File for Input and Read from the File
	Open a File for Output and Write to the File
	Manipulate Strings with the strstream Classes
	Stream Buffers
	Format State Flags
	Manipulators
	Thread Safety and USL I/O Streaming
	Create Manipulators
	Define an APP Parameterized Manipulator
	Define a MANIP Parameterized Manipulator
	Define Nonassociative Parameterized Manipulators

	Chapter 8. USL Complex Math Classes
	Complex Mathematics Library Overview
	Review of Complex Numbers
	Header Files and Constants for the complex and c_exception Classes
	Mathematical Operators for complex
	Friend Functions for complex
	Input and Output Operators for complex
	Error Functions
	Construct complex Objects
	Use complex Input and Output Operators
	Use Friend Functions with complex

	Handle complex Mathematics Errors
	Example: Calculate Roots
	Example: Use Equality and Inequality Operators

	Chapter 9. Other Utilities
	c++filt Name Demangling Utility
	CreateExportList Command
	linkxlC Command
	Constructing a Library
	makeC++SharedLib Command
	Initialize Shared Library
	Specify Priority Levels for Library Objects
	Example of Object Initialization in a Group of Files

	loadAndInit Routine
	Format
	Description
	Parameters
	Return Values

	terminateAndUnload Routine
	Format
	Description
	Parameters
	Return Values
	Error Codes

	_makepath — Create Path
	_splitpath — Decompose Path Name

	Appendix. Non-ISO USL Classes
	complex
	complex - Hierarchy List
	complex - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operators

	complex - Associated Globals
	complex - Inherited Member Functions and Data

	c_exception
	c_exception - Hierarchy List
	c_exception - Member Functions and Data by Group
	Constructors & Destructor

	c_exception - Associated Globals
	c_exception - Inherited Member Functions and Data

	filebuf
	filebuf - Hierarchy List
	filebuf - Member Functions and Data by Group
	Constructors & Destructor
	Attach Functions
	Data members
	Detach Functions
	File Pointer Functions
	Query Functions
	Stream Buffer Functions

	filebuf - Inherited Member Functions and Data

	fstream
	fstream - Hierarchy List
	fstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions

	fstream - Inherited Member Functions and Data

	fstreambase
	fstreambase - Hierarchy List
	fstreambase - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Miscellaneous Functions
	Open Functions
	Stream Buffer Functions

	fstreambase - Inherited Member Functions and Data

	ifstream
	ifstream - Hierarchy List
	ifstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Open Functions

	ifstream - Inherited Member Functions and Data

	ios
	ios - Hierarchy List
	ios - Member Functions and Data by Group
	Constructors & Destructor
	Data members
	Error State Functions
	Format State Functions
	Format State Variables
	Initialization Functions
	Miscellaneous Functions

	ios - Enumerations
	ios - Inherited Member Functions and Data

	iostream
	iostream - Hierarchy List
	iostream - Member Functions and Data by Group
	Constructors & Destructor

	iostream - Inherited Member Functions and Data

	iostream_withassign
	iostream_withassign - Hierarchy List
	iostream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operators

	iostream_withassign - Inherited Member Functions and Data

	istream
	istream - Hierarchy List
	istream - Member Functions and Data by Group
	Constructors & Destructor
	Extract Functions
	Input Operators
	Positioning Functions
	Prefix and Suffix Functions

	istream - Inherited Member Functions and Data

	istream_withassign
	istream_withassign - Hierarchy List
	istream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operator

	istream_withassign - Inherited Member Functions and Data

	istrstream
	istrstream - Hierarchy List
	istrstream - Member Functions and Data by Group
	Constructors & Destructor

	istrstream - Inherited Member Functions and Data

	ofstream
	ofstream - Hierarchy List
	ofstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Open Functions

	ofstream - Inherited Member Functions and Data

	ostream
	ostream - Hierarchy List
	ostream - Member Functions and Data by Group
	Constructors & Destructor
	Insertion Functions
	Output operators
	Positioning Functions
	Prefix and Suffix Functions

	ostream - Inherited Member Functions and Data

	ostream_withassign
	ostream_withassign - Hierarchy List
	ostream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operator

	ostream_withassign - Inherited Member Functions and Data

	ostrstream
	ostrstream - Hierarchy List
	ostrstream - Member Functions and Data by Group
	Constructors & Destructor
	Stream Buffer Functions

	ostrstream - Inherited Member Functions and Data

	stdiobuf
	stdiobuf - Hierarchy List
	stdiobuf - Member Functions and Data by Group
	Constructors & Destructor
	Positioning Functions
	Query Functions

	stdiobuf - Inherited Member Functions and Data

	stdiostream
	stdiostream - Hierarchy List
	stdiostream - Member Functions and Data by Group
	Constructors & Destructor
	Miscellaneous

	stdiostream - Inherited Member Functions and Data

	streambuf
	streambuf - Hierarchy List
	streambuf - Member Functions and Data by Group
	Constructors & Destructor
	Extraction Functions
	Get/Put Pointer Functions
	Insertion Functions
	Stream Buffer Functions

	streambuf - Inherited Member Functions and Data

	strstream
	strstream - Hierarchy List
	strstream - Member Functions and Data by Group
	Constructors & Destructor
	Stream Buffer Functions

	strstream - Inherited Member Functions and Data

	strstreambase
	strstreambase - Hierarchy List
	strstreambase - Member Functions and Data by Group
	Constructors & Destructor
	Misc

	strstreambase - Inherited Member Functions and Data

	strstreambuf
	strstreambuf - Hierarchy List
	strstreambuf - Member Functions and Data by Group
	Constructors & Destructor
	Get/Put Pointer Functions
	Insertion & Extraction Functions
	Stream Buffer Functions

	strstreambuf - Inherited Member Functions and Data

	Appendix. MEMDBG Library Functions
	_debug_calloc — Allocate and Initialize Memory
	_debug_free — Free Allocated Memory
	_debug_heapmin — Free Unused Memory in the Default Heap
	_debug_malloc — Allocate Memory
	_debug_memcpy — Copy Bytes
	_debug_memmove — Copy Bytes
	_debug_memset — Set Bytes to Value
	_debug_realloc — Reallocate Memory Block
	_debug_strcat — Concatenate Strings
	_debug_strcpy — Copy Strings
	_debug_strnset — Set Characters in String
	_debug_strncat — Concatenate Strings
	_debug_strncpy — Copy Strings
	_debug_strset — Set Characters in String
	_debug_ucalloc — Reserve and Initialize Memory from User Heap
	_debug_uheapmin — Free Unused Memory in User Heap
	_debug_umalloc — Reserve Memory Blocks from User Heap

	Contacting IBM
	Comments on This Help
	Fee Support
	Consulting Services

