
KAP/Pro™ Toolset
Reference Manual

Version 4.0
Copyright © 1983-2001 by Intel Corporation. All rights reserved. Intel
Corporation, 2200 Mission College Blvd., Santa Clara, CA 95052-8119, USA.

00

y

hts
a-

their
KAP/Pro™ Reference Manual
Version 4.0

Revised May 23, 2001

KAI Software, A Division of Intel Americas, Inc.
1906 Fox Drive

Champaign, IL 61820-7345
USA

Phone: (217) 356-2288
FAX: (217) 356-5199

Email: kappro-support@kai.com
URL: http://www.kai.com/parallel/kappro

The information in this document is subject to change without notice. No part of this doc-
ument may be reproduced, copied or distributed in any form or by any means, electronic
or mechanical, for any purpose, without the express written consent of KAI Software, A
Division of Intel Americas, Inc.

© Copyright 1983-2001 by Intel Corporation. All rights reserved. Intel Corporation, 22
Mission College Blvd., Santa Clara, CA 95052-8119, USA.

KAI *, KAP/Pro Toolset*, Assure*, and Guide* are trademarks of Intel Corporation.

Cray* is a registered trademark of Cray Research, Inc.

DEC* and Digital* are trademarks of Digital Equipment Corp.

Java* is a trademark of Sun Microsystems, Inc.

Microsoft*, Windows*, Windows NT* and Windows 2000* are trademarks or registered
trademarks of Microsoft Corporation.

UNIX* is a registered Trademark in the USA and other countries, licensed exclusivel
through X/Open Company Limited.

GOVERNMENT RESTRICTED RIGHTS. Use, duplication, or disclosure by the U.S.
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rig
in Technical Data and Computer Software clause at DFARS 252.227-7013 or subpar

*. Third party brand and product names are trademarks or registered trademarks of
respective companies.

graphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at
48 CFR 52.227-19, as applicable.

Printed in the United States of America.

Table of Contents
CHAPTER 1 1 Introduction

1 About KAP/Pro

2 Requirements

3 Installing KAP/Pro

3 Using this Reference Manual

3 Reference Manual Contents

4 Reference Manual Conventions

5 KAP/Pro On-line

6 Technical Support

6 Comments

CHAPTER 2 7 Parallel Processing and OpenMP

7 Parallel Processing Model

9 Increasing Efficiency

13 Data Sharing
kappro-support@kai.com i

Table of Contents
14 Orphaned Directives

15 A Few Rules about Orphaned Directives

CHAPTER 3 17 Using Guide

17 Introduction

19 Using Guide to Develop Parallel Programs

19 Prepare

19 Analyze

19 Restructure

20 Tune

CHAPTER 4 21 Libraries and External Routines

21 Selecting a Library

22 Serial

22 Turnaround

22 Throughput

23 The guide_stats Library

24 The guide_perview Library

25 External Routines

25 int kmp_get_blocktime(void), integer function kmp_get_blocktime()

26 int kmp_get_library(void), integer function kmp_get_library()

26 int kmp_get_stacksize(void), integer function kmp_get_stacksize()

26 void kmp_set_blocktime(int), subroutine kmp_set_blocktime(<integer>)

26 void kmp_set_library(int), subroutine kmp_set_library(<integer>)

26 void kmp_set_library_serial(void), subroutine kmp_set_library_serial()

27 void kmp_set_library_throughput(void), subroutine
kmp_set_library_throughput()

27 void kmp_set_library_turnaround(void), subroutine
kmp_set_library_turnaround()

27 void kmp_set_stacksize(int), subroutine kmp_set_stacksize(<integer>)

27 void kmp_set_parallel_name(char *), subroutine
kmp_set_parallel_name(<string>)
ii http://www.kai.com/parallel/kappro/

Table of Contents
28 void mppbeg(void), subroutine mppbeg()
void mppend(void), subroutine mppend()

29 Signal Handling (Unix only)

CHAPTER 5 31 Using Assure

31 Introduction

32 How to Verify an Application

36 An Example

37 Storage Conflicts

39 Correcting Errors

39 Example: Parallelizing Reduction Loops

44 Example: Privatizing to Resolve Storage Conflicts

49 Example: Using private variables outside of parallel regions

51 Example: Using firstprivate()

CHAPTER 6 57 The KAP/Pro Drivers

57 About the KAP/Pro drivers

58 Overview of the C/C++ Guide and Assure drivers

58 Using the C/C++ drivers

60 Overview of the Fortran Guide and Assure drivers

60 Using the Fortran drivers

62 KAP/Pro driver options

63 Displaying all Command Lines

63 Disabling automatic linking of object files

63 Suppressing warnings (Fortran only)

63 Additional KAP/Pro driver options

63 Alphabetical listing of Driver Options

64 -WGcatch=<class> (Unix C/C++ only)

64 -WGcheck=<string> (Assure only)

65 -WGcompiler=<path>
-WGcc=<path> (C/C++ only)
-WGftn=<path> (Fortran only)
kappro-support@kai.com iii

Table of Contents
-WGfortran=<path> (Fortran only)
-WGf77=<path> (Fortran only)
-WGf90=<path> (Fortran only)

65 -WG[no]cpp

65 -WGcpp=<file>

65 -WGcritname=<pattern>

66 -WG[no]debug (Fortran only)

66 -WGdefault=<class>

66 -WGdefault_library

67 -WGdynamic_library

67 -WGfullpath

67 -WGhelp

67 -WGimplylang (Windows C only)

67 -WGincpath

67 -WG[no]keep

68 -WGkeepcpp

68 -WG[no]keeperr

68 -WG[no]keepobjects

68 -WGlibpath=<path>

68 -WGlink=<file>
-WGld=<file>

68 -WGlocation=<string> (Assure only)

69 -WGnoimply=<kwd>[,<kwd>...] (not C/C++ Unix)

69 -WGnorc

70 -WGnorpath (Unix only)

70 -WGnowork

70 -WGonly

70 -WG[no]openmp (Guide only)

70 -WGopt=<integer>

71 -WGpath=<path>

71 -WG[no]perview (Guide only)

71 -WGprefix=<string>

71 -WG[no]process

71 -WG[no]prof
iv http://www.kai.com/parallel/kappro/

Table of Contents
71 -WGprof_leafprune=<integer>

72 -WGproject_name=<file> (Assure only)
-WGpname=<file> (Assure only)
-WGprj=<file> (Assure only)

72 -WGsched=<type>[,<integer>]

72 -WGsrcdir

73 -WGstatic_library

73 -WG[no]stats (Guide only)

73 -WG[no]strict

73 -WGuser=<string>

74 -WGversion

75 Environment Variables for Guide

75 KMP_BLOCKTIME=<integer>[<character>]

75 KMP_IGNORE_MPPBEG <integer>

75 KMP_IGNORE_MPPEND <integer>

75 KMP_INTERVAL <integer>[{s,m,h,d}]

76 KMP_LIBRARY=<string>

76 KMP_STACKOFFSET=<integer>[<character>]

76 KMP_STACKSIZE=<integer>[<character>]

77 KMP_STATSCOLS <integer>

77 KMP_STATSFILE=<file>

77 LD_LIBRARY_PATH=<path>

77 Environment Variables for Assure

78 KDD_OUTPUT <file>

78 KDD_INTERVAL <integer>[{s,m,h,d}]
KDD_DELAY <integer>[{s,m,h,d}]

79 KDD_MALLOC

80 Preprocessor Macros

80 _OPENMP

80 _GUIDE

80 _ASSURE
kappro-support@kai.com v

Table of Contents
CHAPTER 7 81 GuideView

81 Introduction

81 Using GuideView

82 Using Named Parallel Regions

87 GuideView Options

87 -mhz=<integer>

87 -ovh=<file>

88 -jpath=<file>

88 -WJ,[java_option]

88 Java Options

88 -ms<integer>[{k,m}]

89 -mx<integer>[{k,m}]

89 -nojit
-Djava.compiler=none

89 Measuring OpenMP Overhead

CHAPTER 8 91 AssureView

91 Introduction

92 Using AssureView

93 AssureView GUI Elements

94 How to Use the GUI

97 AssureView Options

97 -? or -h

97 -agi=<file>

97 -[no]gui

97 -prefix=<remove>:<add>

98 -project_name=<file>
-prj=<file>

98 -run_data=<file>
-kdd=<file>

98 -[no]suppress

99 -txt
vi http://www.kai.com/parallel/kappro/

Table of Contents
99 -WJ,[java_option]

99 JAVA Options

99 -ms<integer>[{k,m}]

99 -mx<integer>[{k,m}]

100 -nojit
-Djava.compiler=none

CHAPTER 9 101 PerView

101 Introduction

101 Enabling the PerView Server

102 PerView Environment Variables

102 KMP_HTTP_PORT=<port>

102 KMP_HTTP_HOME=<path>

103 KMP_HTTP_ACCESS=<password>

103 Security

103 Running with PerView

103 Starting the Server

104 Starting the Client

105 Using PerView

105 Performance

106 Controls

107 Status Bar

107 Minimal Monitor

108 Progress Data

109 Progress Bar

109 Progress Graph

110 Progress String

110 Extending PerView

APPENDIX A 111 OpenMP Directives

111 Introduction

112 Parallel Directive
kappro-support@kai.com vii

Table of Contents
113 Worksharing Directives

117 Workqueuing Pragmas in C/C++

118 The Taskq Model in C/C++

120 Data Privatization in Workqueues

122 Examples

122 Combined Parallel Worksharing and Workqueuing Directives

129 Synchronization Directives

133 Data Scope Attribute Clauses

136 Privatization of Fortran Variables, Common Blocks and Use-Associated
Variables

137 threadprivate

137 Declaring Private Variables or Commons

137 Privatization of Global Variables in C/C++

139 Initializing Threadprivate Variables

139 Persistence of Threadprivate Variables

139 Scheduling Options

140 Scheduling Options Using OpenMP Directives

140 Scheduling Options Using Environment Variables

141 Scheduling Options using Command Line Switches

141 Scheduling Options Table

148 OpenMP Environment Variables

149 OMP_DYNAMIC=<boolean>

149 OMP_NUM_THREADS=<integer>

149 OMP_SCHEDULE=<string>[,<integer>]

149 OMP_NESTED=<boolean>

150 OpenMP Routines

150 void omp_destroy_lock(omp_lock_t *lock), subroutine
omp_destroy_lock(<var>)

150 int omp_get_max_threads(void), integer function omp_get_max_threads()

150 int omp_get_num_procs(void), integer function omp_get_num_procs()

150 int omp_get_num_threads(void), integer function omp_get_num_threads()

151 int omp_get_thread_num(void), integer function omp_get_thread_num()

151 double omp_get_wtime(void), double precision function omp_get_wtime()
viii http://www.kai.com/parallel/kappro/

Table of Contents
151 double omp_get_wtick(void), double precision function omp_get_wtick()

151 void omp_init_lock(omp_lock_t *lock), subroutine omp_init_lock(<var>)

151 void omp_init_nest_lock(omp_nest_lock_t *lock), subroutine
omp_init_nest_lock(<var>)

152 int omp_in_parallel(void), logical function omp_in_parallel()

152 void omp_set_lock(omp_lock_t *lock), subroutine omp_set_lock(<var>)

152 void omp_set_nest_lock(omp_nest_lock_t *lock), subroutine
omp_set_nest_lock(<var>)

152 int omp_test_lock(omp_lock_t *lock), logical function omp_test_lock(<var>)

152 int omp_test_nest_lock(omp_nest_lock_t *lock), logical function
omp_test_nest_lock(<var>)

153 void omp_unset_lock(omp_lock_t *lock), subroutine omp_unset_lock(<var>)

153 void omp_unset_nest_lock(omp_nest_lock_t *lock), subroutine
omp_unset_nest_lock(<var>)

153 void omp_set_num_threads(int), subroutine omp_set_num_threads(<integer>)

153 void omp_set_dynamic(int), subroutine omp_set_dynamic(<logical>)

153 int omp_get_dynamic(void), logical function omp_get_dynamic()

154 void omp_set_nested(int), subroutine omp_set_nested(<logical>)

154 int omp_get_nested(void), logical function omp_get_nested()

APPENDIX B 155 C/C++ Examples

155 Examples of OpenMP usage in C/C++

156 for: A Simple Difference Operator

157 for: Two Difference Operators

158 for: Reduce Fork/Join Overhead

159 sections: Two Difference Operators

160 single: Updating a Shared Scalar

161 sections: Updating a Shared Scalar

162 for: Updating a Shared Scalar

163 parallel for: A Simple Difference Operator

164 parallel sections: Two Difference Operators

165 Simple Reduction

166 threadprivate: Private File-Scope Variable
kappro-support@kai.com ix

Table of Contents
167 threadprivate: Private File-Scope Variable and Master Thread

168 Avoiding External Routines: reduction

170 Avoiding External Routines: Temporary Storage

172 firstprivate: Copying in Initialization Values

173 threadprivate: Copying in Initialization Values

174 taskq: Parallelizing across Loop Nests

APPENDIX C 175 Fortran Examples

175 Examples of OpenMP usage in Fortran

176 do: A Simple Difference Operator

177 do: Two Difference Operators

178 do: Reduce Fork/Join Overhead

179 sections: Two Difference Operators

180 single: Updating a Shared Scalar

181 sections: Updating a Shared Scalar

182 do: Updating a Shared Scalar

183 parallel do: A Simple Difference Operator

184 parallel sections: Two Difference Operators

185 barrier: Testing then Modifying a Shared Object

186 Simple Reduction

187 threadprivate: Private Common

188 threadprivate: Private Common and Master Thread

189 Avoiding External Routines: reduction

191 Avoiding External Routines: Temporary Storage

193 firstprivate: Copying in Initialization Values

194 threadprivate: Copying in Initialization Values

195 Manual loop collapsing

197 workshare

APPENDIX D 199 Additional KAP/Pro Options

199 Additional KAP/Pro Options: Alphabetic Listing
x http://www.kai.com/parallel/kappro/

Table of Contents
199 c*$*options line (Fortran only)

200 -alignmax=<integer>

200 -assume=<string> (-a=<string>)
-noassume (-nas)

201 -blank_padding (-bp)
(-noblank_padding) (-nbp)

201 -case
-nocase (-ncase)

201 -chunk=<integer> (-chk=<integer>) (Guide only)

202 -cmp[=<file>]

202 -concurrentize (-conc) (Guide only)
-noconcurrentize (-noconc) (Guide only)

202 -datasave (-ds) (Fortran only)
-nodatasave (-nds) (Fortran only)

202 -directives=p (-dr=p)
-nodirectives (-ndr)

203 -dlines (-dl) (Fortran only)
-nodlines (-ndl) (Fortran only)

203 -heaplimit=<integer> (-heap=<integer>)

204 -ignoreoptions (-ig) (Fortran only)
-noignoreoptions (-nig) (Fortran only)

204 -include=<path> (-inc=<path>)

204 -input=<file> (-i=<file>)

205 -integer=<integer> (-int=<integer>)

205 -lines=<integer> (-ln=<integer>)

205 -list[=<file>]
-nolist

205 -listoptions=<string> (-lo=<string>)

206 -logical=<integer> (-log=<integer>)

206 -minconcurrent=<integer> (-mc=<integer>) (Guide only)

207 -onetrip (-1)
-noonetrip (-n1)

207 -optimize=<integer> (-o=<integer>)

207 -real=<integer> (-rl=<integer>)

207 -recursion (-rc) (Fortran only)
-norecursion (-nrc) (Fortran only)
kappro-support@kai.com xi

Table of Contents
208 -roundoff=<string> (-r=<string>) (Guide only)

208 -save=<string> (-sv=<string>)

209 -scalaropt=<integer> (-so=<integer>) (Guide only)

209 -scan=<integer> (-scan=<integer>)

210 -scheduling=<character> (-schd=<character>) (Guide only)

210 -suppress=<string> (-su=<string>)

210 -syntax=<string> (-sy=<string>)

211 -tablesize=<integer> (-ts=<integer>)

211 -type (-ty)
-notype (-nty)

211 Additional KAP/Pro Options: Table

212 General Optimization

212 Input-Output

212 Listing

212 Advanced Optimization

212 Fortran Dialect

212 Limits

212 Directive Recognition

213 Scheduling

APPENDIX E 217 Fortran Directive Translation

218 KAP/Pro Parallel Directive to OpenMP Directive Translator

219 Cray Directive to OpenMP Directive Translator

221 Cray TASKCOMMON as opposed to OpenMP THREADPRIVATE

222 SGI Directive to OpenMP Directive Translator

223 KAP Directive to OpenMP Directive Translator
xii http://www.kai.com/parallel/kappro/

About KAP/Pro Introduction • 1

In
tr

od
uc

ti
on

1

 the
ther-

h
use-
ran,

f

CHAPTER 1 Introduction

About KAP/Pro

The KAP/Pro Toolset is a system of tools and application accelerators for develop-
ers of parallel scientific-engineering software.

The KAP/Pro Toolset is intended for users who understand their application pro-
grams and understand parallel processing. The Guide component of the toolset
implements the OpenMP* Application Programming Interface (API) on all popular
shared memory parallel (SMP) systems that support threads. The KAP/Pro Toolset
uses the de facto industry standard OpenMP directives to express parallelism. This
directive set is compatible with the older directives from PCF, X3H5, SGI and
Cray. Throughout this manual, the term “OpenMP directives” is used to refer to
KAP/Pro Toolset implementation of the OpenMP specification, unless stated o
wise.

The Guide component of the toolset compiles parallel programs annotated wit
OpenMP directives and can provide detailed performance statistics which are
ful in performance tuning parallel programs. The input to Guide is either a Fort
C, or C++ program annotated with OpenMP directives, which take the form of
comments in Fortran programs and pragmas in C/C++ programs. The output o
Guide is either a Fortran or C program, with the parallelism implemented using
kappro-support@kai.com 1

1 • Introduction Requirements

2

ram’s
aral-
gram
e
-

t

r

 pro-
ill
.

ows

n
for
k-
threads and the Guide support libraries. This output is then compiled using your
existing Fortran or C compiler. Parallel performance data is displayed using the
GuideView GUI, which can be used to find regions where additional tuning
could yield better performance.

The Assure component of the toolset validates the correctness of parallel pro-
grams annotated with OpenMP directives and identifies programming errors
that occurred when parallelizing a sequential application. The inputs to Assure
are an OpenMP parallel program that is assumed to run correctly in sequential
mode and a data set for that program. Assure uses the semantics of a prog
sequential execution to find differences that could occur in that program’s p
lel execution. For each data set that is used when an Assure-processed pro
is run, errors are identified when the parallel program is inconsistent with th
corresponding sequential program. Assure displays its results using Assure
View, a graphical user interface (GUI). AssureView pinpoints any errors tha
Assure finds down to the exact location in your source code.

The KAP/Pro Toolset also includes utilities to translate directives from olde
parallel processing directives to the new OpenMP directives.

Requirements

KAP/Pro requires a Fortran compiler and/or a C compiler, depending on the
gramming language(s) of the original source. Users running Unix or Linux w
need the native C and/or Fortran compiler; C++ support is supplied by KCC
Users running Microsoft Windows have more options: either the Intel C++
and/or Fortran compiler or Microsoft Visual C++ and/or Compaq Visual For-
tran. Both 32-bit and 64-bit multithreaded executables can be built on Wind
systems.

GuideView, AssureView, and PerView require a Java™ interpreter, which ca
be obtained from Sun or Microsoft via the world wide web. Perl is required
the directive translation scripts described in Appendix E. Links to these pac
ages are available on the KAI web site at http://www.kai.com/parallel/kap-
pro/helpers/.

Newer versions of operating systems and compilers are constantly being
announced; please see our web site at http://www.kai.com/parallel/kappro/plat-
forms/ for information on which versions are currently supported.
http://www.kai.com/parallel/kappro

Installing KAP/Pro Introduction • 1

In
tr

od
uc

ti
on

1

 to
ro-

an
how

e’s
ing

he

l
Installing KAP/Pro

To install the KAP/Pro Toolset on a machine running Windows simply run
guide*.exe (the exact file name depends on your hardware platform and operating
system) by double-clicking on its icon and then answering a few questions. Unix or
Linux users can run this program by typing its name at a command prompt and
pressing <enter>.

The KAP/Pro Toolset is licensed software and requires a license file from KAI in
addition to the installer package(s). The installer will install any necessary license
manager components, and will prompt you for the location of your license file. If
you intend to use the AssureView, GuideView, or PerView GUI’s, you will need
supply the location of your Java™ interpreter to the installer. The installation p
cess for the Assure package is similar; use the file assure*.exe. Please contact us at
kappro-support@kai.com for assistance if you have difficulty with the installa-
tion.

Using this Reference Manual

Reference Manual Contents

Chapter 2, “Parallel Processing and OpenMP,” beginning on page 7, contains
overview of the OpenMP parallel processing model, and examples illustrating
to insert OpenMP directives.

Chapter 3, “Using Guide,” beginning on page 17, contains an overview of Guid
functionality and examples illustrating how to build multithreaded programs us
Guide.

Chapter 4, “Libraries and External Routines,” beginning on page 21, explains t
differences between Guide’s several run–time libraries.

Chapter 5, “Using Assure,” beginning on page 31, contains an overview of
Assure’s functionality and examples illustrating how to correct common paralle
programming errors.
kappro-support@kai.com 3

1 • Introduction Using this Reference Manual

4

ure
 line
rs.

aph-

re-

a-

ns

m-

ode

s
or-

es

from

me
Chapter 6, “The KAP/Pro Drivers,” beginning on page 57, describes the Ass
and Guide drivers, as well as descriptions of all Assure and Guide command
options. These options allow you to alter Assure or Guide’s default behavio

Chapter 7, “GuideView,” beginning on page 81, describes the GuideView gr
ical performance viewer.

Chapter 8, “AssureView,” beginning on page 91, describes how to use Assu
View, which graphically displays Assure output.

Chapter 9, “PerView,” beginning on page 101, describes the PerView applic
tion manager and monitor.

Appendix A, “OpenMP Directives,” beginning on page 111, contains definitio
for all OpenMP directives. OpenMP directives specify the parallelism within
your code. This chapter also defines the Guide environment variables.

Appendix B, “C/C++ Examples,” beginning on page 155, contains code exa
ples demonstrating the usage of OpenMP pragmas in C/C++.

Appendix C, “Fortran Examples,” beginning on page 175, contains Fortran c
examples demonstrating the usage of OpenMP directives in Fortran.

Appendix D, “Additional KAP/Pro Options,” beginning on page 199, contain
Fortran code examples demonstrating the usage of OpenMP directives in F
tran.

Appendix E, “Fortran Directive Translation,” beginning on page 217, describ
the included utilities that translate older directives to OpenMP directives.

Reference Manual Conventions

To distinguish filenames, commands, variable names, and code examples
the remainder of the text, these terms are printed in courier typeface. Com-
mand line options within text are printed in bold typeface.

With KAP/Pro’s command line options and directives, you can control a pro-
gram’s parallelization by providing information to either Guide or Assure. So
of these command line options and directives require arguments. In their
descriptions, <integer> indicates an integer number, <path> indicates a direc-
tory, <file> indicates a filename, possibly with path included, <character> indi-
http://www.kai.com/parallel/kappro

KAP/Pro On-line Introduction • 1

In
tr

od
uc

ti
on

1

 in

re-

s
 in
an-

ndi-
cates a single character, and <string> indicates a string of characters. For example,
-lines=<integer> in this user’s guide indicates that an integer must be provided
order to change the -lines option from the default value to a new value (such as
-lines=0). As another example, -WGdefault=<string> in this user’s guide indi-
cates that a string must be provided in order to change the -WGdefault option from
the default value to a new value (such as -WGdefault=private).

Optional items are denoted with square brackets:

-[no]dlines

In the above example, the no is optional. If -dlines is used, dlines is turned on; to
turn dlines off, use -nodlines.

To differentiate user input and code examples from descriptive text, they are p
sented:

In Courier typeface, indented where possible.

The KAP/Pro Toolset is available on a variety of platforms. Supported Window
platforms include Windows NT and Windows 2000; these will all be referred to
this manual as Windows. In general, anything specified for Unix users in this m
ual is also applicable to Linux users. Any counterexamples will be specifically i
cated. For brevity, throughout this manual we use Assuref to represent any of the
various Assure Fortran drivers (Assuref77, Assuref90, Assureifl, etc...) and
Assurec to represent the corresponding C/C++ drivers. Similarly Guidef and
Guidec represent the Guide drivers. When more generality is required, Assure is
used to represent any Assure driver and Guide is used to represent any Guide
driver.

KAP/Pro On-line

Visit the KAP/Pro Home Page at http://www.kai.com/parallel/kappro for the latest
information on the KAP/Pro Toolset.
kappro-support@kai.com 5

1 • Introduction Technical Support

6

63)

es-
s to
 the
Technical Support

KAI strives to produce high-quality software. However, if any component of
KAP/Pro produces a fatal error or incorrect results, please send a copy of the
source code, a list of the switches and options used, and as much output and
error information as possible (see “Displaying all Command Lines” on page
to KAI Software, a division of Intel Americas, Inc. at
kappro-support@kai.com.

Comments

If there is a way for Assure or Guide to provide more meaningful results, m
sages, or features that would improve their usability, let us know. Our goal i
make the KAP/Pro Toolset easy to use as you improve your productivity and
execution speed of your applications. Please send your comments to
kappro-support@kai.com.
http://www.kai.com/parallel/kappro

Parallel Processing Model Parallel Processing and OpenMP • 2

P
ar

al
le

l P
ro

ce
ss

in
g

an
d

O
pe

nM
P

2

ent

r the
el.
d is
ssing
ns,

e fol-
CHAPTER 2 Parallel Processing
and OpenMP

Parallel Processing Model

This chapter defines general parallel processing terms and explains how different
OpenMP constructs affect parallel code. Further OpenMP details are available in
the appendix called “OpenMP Directives,” beginning on page 111. For exact
semantics, please consult the OpenMP C/C++ or Fortran API standard docum
available at http://www.openmp.org, or contact KAI Software, a division of Intel
Americas, Inc. at http://www.kai.com/parallel/kappro or
kappro-support@kai.com.

After placing OpenMP parallel processing directives in an application, and afte
application is processed with Guide and compiled, it can be executed in parall
When the parallel program begins execution, a single thread exists. This threa
called the base or master thread. The master thread will continue serial proce
until it encounters a parallel region. Several OpenMP directives apply to sectio
or blocks, of source code.

In C/C++, these OpenMP directives come in the form of pragmas and have th
lowing form:
kappro-support@kai.com 7

2 • Parallel Processing and OpenMP Parallel Processing Model

8

s

d.
ted

rk
rib-
n-
 by
t is
-
t
-

ly
is sec-
C/C++ syntax:
#pragma omp <directive>

<structured block of code>

Here a structured block can be a single statement or several statements delin-
eated by a “{” “}” pair. See the OpenMP C/C++ documentation for other rule
on structured blocks.

In Fortran, these OpenMP directives have one of the following forms:

Fortran syntax:
!$omp <directive>

<structured block of code>
!$omp end <directive>

or

!$omp <directive>
<statement>

When the master thread enters a parallel region, a team of threads is forme
Starting from the beginning of the parallel region, code is replicated (execu
by all team members) until a worksharing construct is encountered. The
OpenMP sections, single� C/C++ for, and Fortran do constructs are
defined as worksharing constructs because they distribute the enclosed wo
among the threads of the current team. A worksharing construct is only dist
uted if it occurs dynamically inside of a parallel region. If the worksharing co
struct occurs lexically inside of the parallel region then it is always executed
distributing the work among the team members. If the worksharing construc
not lexically enclosed by a parallel region (i.e. it is orphaned), then the work
sharing construct will be distributed among the team members of the closes
dynamically enclosing parallel region, if one exists. Otherwise, it will be exe
cuted serially.

The C/C++ for and Fortran do directives specify parallel execution of loop
iterations. The sections directive specifies parallel execution for arbitrary
blocks of sequential code. Each section will be assigned to a unique thread
within the team. The single directive defines a section of code where exact
one thread is allowed to execute the code; threads not chosen to execute th
tion ignore the code.
http://www.kai.com/parallel/kappro

Increasing Efficiency Parallel Processing and OpenMP • 2

P
ar

al
le

l P
ro

ce
ss

in
g

an
d

O
pe

nM
P

2

The OpenMP synchronization directives are critical, ordered, master,
atomic, flush, and barrier. Within a parallel region or a worksharing con-
struct only one thread at a time is allowed to execute the code within a critical
section. The ordered directive is used in conjunction with a C/C++ for, Fortran
do, or sections construct to impose a serial order on the execution of a section
of code. The master directive is used to force execution by the master thread. A
barrier directive forces all team members to gather at a particular point in code.
Each team member that executes a barrier waits at the barrier until all of the
team members have arrived. A barrier cannot be used within worksharing or
other synchronization constructs due to the potential for deadlock.

When a thread reaches the end of a worksharing construct, it may wait until all
team members within that construct have completed their work. When all of the
work defined by the worksharing construct is finished, the team exits the workshar-
ing construct and continues executing the code that follows.

At the end of the parallel region, threads wait until all team members have arrived.
The team is logically disbanded (but may be reused in the next parallel region), and
the master thread continues serial execution until it encounters the next parallel
region.

A sample program using some of the more common OpenMP directives is shown in
Figure 2-1 on page 11 Figure 2-2 on page 12. These examples also indicate the dif-
ference between serial regions and parallel regions.

Increasing Efficiency

Scheduling options can be selected for a C/C++ for or a Fortran do worksharing
construct to increase efficiency. Scheduling options specify the way threads are
assigned iterations of a loop. The scheduling options include static, dynamic,
guided, and runtime.

Also attached to for and do worksharing constructs, a nowait option can be
used to increase efficiency. The nowait option allows threads that finish their
work to continue executing code, regardless of whether the other threads in the
team have finished. These threads do not wait at the end of the worksharing or
workqueuing construct, but proceed immediately to the code following.
kappro-support@kai.com 9

2 • Parallel Processing and OpenMP Increasing Efficiency

10
Enabling certain Guide compile options can also help increase efficiency. These
options are covered in Chapter 6.
http://www.kai.com/parallel/kappro

Increasing Efficiency Parallel Processing and OpenMP • 2

P
ar

al
le

l P
ro

ce
ss

in
g

an
d

O
pe

nM
P

2

Figure 2-1 Pseudo C/C++ Code of the Parallel Processing Model

main() { // Begin serial execution
 ... // Only the master thread executes
#pragma omp parallel // Begin a Parallel Construct,form
 { // a team. This is Replicated Code
 ... // (each team member executes
 ... // the same code)
 //
 #pragma omp sections // Begin a Worksharing Construct
 { //
 #pragma omp section // One unit of work
 {...} //
 #pragma omp section // Another unit of work
 {...} //
 } // Wait until both units of work
 // complete
 ... // More Replicated Code
 //
 #pragma omp for nowait // Begin a Worksharing Construct;
 for(...) { // each iteration is unit of work
 //
 ... // Work is distributed among the
 // team members
 //
 } // End of Worksharing Construct;
 // nowait was specified, so
 // threads proceed
 //
 #pragma omp critical // Begin a Critical Section
 { //
 ... // Replicated Code, but only one
 // thread can execute it at a
 } // given time
 ... // More Replicated Code
 //
 #pragma omp barrier // Wait for all team members to
 // arrive
 ... // More Replicated Code
 //
} // End of Parallel Construct;

// disband team and continue
// serial execution
//

... // Possibly more Parallel
 // Constructs
 //
} // End serial execution
kappro-support@kai.com 11

2 • Parallel Processing and OpenMP Increasing Efficiency

12
Figure 2-2 Pseudo Fortran Code of the Parallel Processing
Model

program main ! Begin Serial Execution
 !
 ... ! Only the master thread executes
 !
!$omp parallel ! Begin a Parallel Construct,
 ! form a team
 !
 ... ! This is Replicated Code where
each
 ... ! team member executes the same
code
 !
 !$omp sections ! Begin a Worksharing Construct
 !
 !$omp section ! One unit of work
 ... !
 !$omp section ! Another unit of work
 ... !
 !$omp end sections ! Wait until both units of work
 ! complete
 !
 ... ! More Replicated Code
 !
 !$omp do ! Begin a Worksharing Construct,
 do ! each iteration is a unit of work
 !
 ... ! Work is distributed among the
team
 end do !
 !$omp end do nowait ! End of Worksharing Construct,
 ! nowait is specified
 !
 ... ! More Replicated Code
 !
 !$omp barrier ! Wait for all team members to
 ! arrive
 !
 ... ! More Replicated Code
 !
!$omp end parallel ! End of Parallel Construct,
 ! disband team and continue with
 ! serial execution
 !
 ... ! Possibly more Parallel
http://www.kai.com/parallel/kappro

Data Sharing Parallel Processing and OpenMP • 2

P
ar

al
le

l P
ro

ce
ss

in
g

an
d

O
pe

nM
P

2

 syn-

liza-

t

d the

pe

em-
n of
Constructs
 !
end ! End serial execution

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing construct by
using the shared and private clauses. All variables in the shared clause are
shared among the members of a team. It is the programmer’s responsibility to
chronize access to these variables. All variables in the private clause are private
to each team member. For the entire parallel region, assuming t team members, we
have t+1 copies of all the variables in the private clause: one global copy that is
active outside parallel regions and a private copy for each team member. Initia
tion of private variables at the start of a parallel region is the programmer’s
responsibility, unless the firstprivate clause is specified. In this case, the
private copy is initialized from the global copy at the start of the construct a
which the firstprivate clause is specified. In general, updating the global
copy of a private variable at the end of a parallel region is the programmer’s
responsibility. However, the lastprivate clause of a C/C++ for or Fortran do
directive enables updating the global copy from the team member that execute
serially last iteration of the loop.

In addition to shared and private variables, individual variables and entire
COMMON blocks in Fortran can be privatized using the threadprivate direc-
tive. For compatibility with Cray taskcommon directives, threadprivate
common blocks always create t copies, one for each of the t team members. The
master thread uses the global copy as its private copy for the duration of each
parallel region.

In addition to the shared and private clauses, file-scope and namespace-sco
variables in C++ can be made private to a thread using the threadprivate
directive. Threadprivate variables always have a copy created for each team m
ber. The master thread uses the global copy as its private copy for the duratio
each parallel region.

Local static variables in C can also be made threadprivate. This is a KAP/Pro
Toolset extension to OpenMP.
kappro-support@kai.com 13

2 • Parallel Processing and OpenMP Orphaned Directives

14

 a
y
Orphaned Directives

OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives. By orphaning we mean that directives
related to a parallel region are not required to occur lexically within a single pro-
gram unit. Directives such as critical, barrier, sections, single,
master, and C/C++ for or Fortran do, can occur by themselves in a program
unit, dynamically “binding” to the enclosing parallel region at run time.

Orphaned directives allow parallelism to be inserted into existing code with
minimum of code restructuring. Orphaning can also improve performance b
allowing a single parallel region to bind with multiple C/C++ for or For-
tran do directives located within called subroutines. Consider the following
code segment:

C/C++ syntax:
void main() {
 #pragma omp parallel
 {
 phase1();
 phase2();
 }
}

void phase1(void) {
 ...
 #pragma omp for private(i) shared(n)
 for(i=0; i < n; i++) {
 some_work(i);
 }
}

void phase2(void) {
 ...
 #pragma omp for private(j) shared(n)
 for(j=0; j < n; j++) {
 more_work(j);
 }
}

http://www.kai.com/parallel/kappro

Orphaned Directives Parallel Processing and OpenMP • 2

P
ar

al
le

l P
ro

ce
ss

in
g

an
d

O
pe

nM
P

2

Fortran syntax:
...
!$omp parallel
 call phase1
 call phase2
!$omp end parallel
 ...

 subroutine phase1
!$omp do private(i) shared(n)
 do i = 1, n
 call some_work(i)
 end do
!$omp end do
 end

 subroutine phase2
!$omp do private(j) shared(n)
 do j = 1, n
 call more_work(j)
 end do
!$omp end do
 end

Notice in this example, the directives specifying the parallelism are divided across
three separate program units.

A Few Rules about Orphaned Directives

1. An orphaned worksharing construct (section, single, C/C++ for or For-
tran do) or C/C++ workqueuing construct (taskq) that is dynamically exe-
cuted outside of a parallel region will be executed by a team consisting of one
thread; i.e. serially. In the following example the first call to phase0 is exe-
cuted serially, and the second call is partitioned among the threads created for
the parallel region.

2. Any collective operation (worksharing construct, workqueuing construct, or
barrier) executed inside of a worksharing construct is illegal.

3. It is illegal to execute a collective operation (worksharing, workqueuing, or bar-
rier) from within a synchronization region (critical/ordered).
kappro-support@kai.com 15

2 • Parallel Processing and OpenMP Orphaned Directives

16
4. The opening and closing directives of a Fortran directive pair must occur in a
single block of the program.

5. Private scoping of a variable can be specified at a worksharing construct.
Shared scoping must be specified at the parallel region. Please consult the
OpenMP API standard documentation for complete details.
http://www.kai.com/parallel/kappro

Introduction Using Guide • 3

U
si

ng
 G

ui
de

3

CHAPTER 3 Using Guide

Introduction

Guide accepts a C/C++ or Fortran program containing OpenMP directives as input
and produces a multithreaded version of the code which is then passed to an under-
lying C or Fortran compiler. To run multithreaded, the user simply assigns the num-
ber of threads desired to the OpenMP environment variable
OMP_NUM_THREADS before execution.

Guide also provides functionality for performance analysis of parallel programs; by
liking with a statistics library one can obtain detailed information about which por-
tions of the code require the largest amount of time to execute and where parallel
performance bottlenecks are located. This information can be displayed graphically
by using the GuideView GUI, a powerful tool which shows performance informa-
tion that is not available with traditional profilers.

The components of Guide include:
kappro-support@kai.com 17

3 • Using Guide Introduction

18
• The Guide compile driver, named as listed in the following table:

• GuideView, a tool for viewing parallel performance statistics

On Windows, use guideicl for building 32-bit applications using the Intel C++
compiler, guideecl for building 64-bit applications using the Intel C++ compiler,
and guidec for building C applications using the Microsoft Visual Studio C++
compiler. C++ is not currently supported on Windows.

Similarly, use guideifl on Windows for building 32-bit applications using the
Intel Fortran compiler, guideefl for building 64-bit applications using the Intel
Fortran compiler, and guidef for building 32-bit or 64-bit applications using the
appropriate Compaq Visual Fortran compiler.

Special drivers called guidec64 and guidef64 are supplied for Windows users
who install the KAP/Pro Toolset on a 32-bit machine and wish to build 64-bit
applications with the appropriate Microsoft Visual Studio C++ compiler and
Compaq Visual Fortran compiler, respectively. The guidec and guidef drivers
produce executables compatible with the machine architecture on which
KAP/Pro is installed.

On Linux, use guideicc for building 32-bit applications using the Intel C++
compiler, guideecc for building 64-bit applications using the Intel C++ com-
piler, and guidec or guidec++ for building C or C++ applications, respectively,
using the gcc or g++ compiler. Use guideifc for building 32-bit applications

Windows Unix Linux

C guideicl,

guideecl,

or guidec[64]

guidec guideicc,

guideecc,

or guidec

C++ not available guidec++ guideicc,

guideecc,

or guidec++

FORTRAN 77 guideifl,

guideefl,

or guidef[64]

guidef77 guideifc

or guideefc

Fortran 90 guideifl,

guideefl,

or guidef[64]

guidef90 guideifc

or guideefc
http://www.kai.com/parallel/kappro

Using Guide to Develop Parallel Programs Using Guide • 3

U
si

ng
 G

ui
de

3

using the Intel Fortran compiler, guideefc for building 64-bit applications using the
Intel Fortran compiler.

Using Guide to Develop Parallel Programs

To help those familiar with parallel programming, this section contains a high-level
overview for using Guide to develop a parallel application. This manual is not
intended to be a comprehensive treatment of parallel processing. For more informa-
tion about parallel processing, consult a parallel computing text.

Prepare

• Before inserting any OpenMP parallel directives, verify that your code is safe
for parallel execution by placing local variables on the stack. This is the default
behavior of many compilers. Normally, a -automatic flag or similar com-
piler option achieves this. If your application is unable to execute correctly with
stack allocation of local data, this generally indicates that your code has subrou-
tines that need some variables saved across invocations. These variables should
be made STATIC when using C/C++, or be placed in a SAVE statement in For-
tran. By default these variables become shared across threads, and you may
need to add synchronization code to ensure proper access by threads.

Analyze

• Profile the program to find out where it spends most of its time. This is the part
of the program that would benefit most from parallelization efforts. This stage
can be accomplished using a standard profiler, such as prof, or by using the
profiling features of GuideView.

• In this part of the program there are usually nested loops. Locate a loop that has
very few cross-iteration dependences.

Restructure

• If a chosen loop is able to execute iterations in parallel, introduce a parallel
for or parallel do directive around this loop.

• Attempt to remove any cross-iteration dependencies by rewriting the algorithm.
kappro-support@kai.com 19

3 • Using Guide Using Guide to Develop Parallel Pro-

20

• Synchronize the remaining cross-iteration dependences by placing criti-
cal directives around the uses and assignments to variables involved in the
dependences.

• List the variables that are present in the loop within appropriate shared(),
private(), lastprivate(), or firstprivate() clauses.

• List the for (C/C++) or do (Fortran) index of the parallel loop as pri-
vate(). This step is optional in Fortran.

• In C/C++: File-scope variables must not be placed on the private() list if
their file-scope visibility is to be preserved. Instead, use the threadpri-
vate directive to make a variable private to a thread while preserving its
file-scope visibility.

• In Fortran: COMMON block elements must not be placed on the private()
list if their global scope is to be preserved. The threadprivate directive
can be used to privatize to a thread the COMMON block containing those vari-
ables with global scope.

• Any I/O in the parallel region should be synchronized.

• Identify more parallel loops and restructure them.

• If possible, merge adjacent C/C++ parallel for or Fortran parallel
do sections into a single parallel region with multiple for or do directives
to reduce execution overhead.

Tune

• Guide supports the tuning process via the guide_stats library and Guide-
View. The tuning process should include minimizing the sequential code in
critical sections and load balancing by using the scheduling options
listed in “Scheduling Options” on page 139.

For parallel Fortran programs containing older parallel directives, a tool is
included with Guide to help automate the job of translating them to OpenMP
parallel directives. See “Fortran Directive Translation” on page 217.
http://www.kai.com/parallel/kappro

Selecting a Library Libraries and External Routines • 4

es
 a

nd

R
ou

tin
es

4

CHAPTER 4 Libraries and
External Routines

Selecting a Library

The standard edition of Guide supplies three libraries: a development library, a
management and monitoring library, and a production library. These libraries allow
the user to run an application under different execution modes. The production
library is called the guide library. It should be used for normal or performance-crit-
ical runs on applications that have already been tuned. The development library is
guide_stats. It provides performance information about the code, but slightly
degrades performance and should be used to tune the performance of applications.
The management and monitoring library is called the guide_perview library. It can
be used to interactively and remotely monitor and manage the parallel performance
of a running application. This library degrades application performance slightly
also.

To switch between the guide, guide_stats, and guide_perview libraries, only relink-
ing of the object files is necessary; recompilation of the source code is not needed.

Guide allows the user the ability to run an application under different execution
modes that can be specified at run time. All three libraries support the serial, turn-
kappro-support@kai.com 21

L
ib

ra
ri

E
xt

er
na

l

4 • Libraries and External Routines Selecting a Library

22

ro-
 run,
he
n the
 In

ny
e. If

e.

on-
nd

ta-
ait-

ment
xecu-

er
d,
ar-

around, and throughput modes described below. These modes are selected by
using the KMP_LIBRARY environment variable at run time; see
“KMP_IGNORE_MPPBEG <integer>” on page 75.

Serial

The serial mode forces parallel applications to run on a single processor.

Turnaround

In a dedicated (batch or single user) parallel environment where all of the p
cessors for a program are exclusively allocated to the program for its entire
it is most important to effectively utilize all of the processors all of the time. T
turnaround mode is designed to keep active all of the processors involved i
parallel computation in order to minimize the execution time of a single job.
this mode, the worker threads actively wait for more parallel work, without
yielding to other threads.

NOTE: Avoid over-allocating system resources. This occurs if either too ma
threads have been specified, or if too few processors are available at run tim
system resources are over-allocated, this mode will cause poor performanc
The throughput mode should be used instead if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not c
stant or where the job stream is not predictable, it may be better to design a
tune for throughput. This minimizes the total time to run multiple jobs simul
neously. In this mode, the worker threads will yield to other threads while w
ing for more parallel work.

The throughput mode is designed to make the program aware of its environ
(i.e., the system load) and to adjust its resource usage to produce efficient e
tion in a dynamic environment. This mode is the default.

After a certain period of wall-clock time has elapsed, during which the work
threads do not find parallel work, the threads will stop seeking work. Instea
they will wait for the master thread to notify them of the availability of new p
allel work. This time is set by the KMP_BLOCKTIME environment variable and
the kmp_set_blocktime() library call, described in the sections “OpenMP
Environment Variables” on page 148 and “External Routines” on page 25,
http://www.kai.com/parallel/kappro

The guide_stats Library Libraries and External Routines • 4

es
 a

nd

R
ou

tin
es

4

ded
-

he
file

’s
rfor-
for-

ost

t

xe-

 par-
t

r
r
respectively. The default time before “blocking” is one second. It is recommen
that KMP_BLOCKTIME be set to a small value if your application contains “hand
threaded” regions, to avoid contention for compute resources.

The guide_stats Library

Guide links in the guide library by default. To use the guide_stats library, include
the -WGstats option to the Guide driver within the command line. For example, t
following command line can be used on Windows to compile a Fortran source
with the guide_stats library:

guidef -WGstats source.f

The guide_stats library is designed to provide detailed statistics about a program
execution. These statistics help you to “see inside” the program, to analyze pe
mance bottlenecks, and to make parallel performance predictions. With this in
mation, it is possible to modify the program (or the execution environment) to
make more efficient use of the parallel machine. The resulting statistics are m
easily viewed and analyzed using GuideView, discussed in Chapter 7, “Guide-
View,” beginning on page 81.

When a program is compiled with Guide, linked with the guide_stats library, and
executed, statistics are output to the file specified with the KMP_STATSFILE envi-
ronment variable. The default file name guide.gvs is used if this environment
variable is not specified. In addition, running with the guide_stats library enables
additional runtime checks that may aid in program debugging. When using the
guide_stats library, make sure that the main program and any program units tha
cause program termination have been compiled with Guide.

The guide_stats library gathers performance statistics for each parallel region e
cuted during a run. The guide_stats library also gathers statistics for each of these
serial portions of code around and between the OpenMP parallel regions. The
allel regions are designated R1, R2, etc., following the order in which they are firs
executed. Similarly, the sequential code blocks are designated S1, S2, etc., follow-
ing the order in which they are first executed.

If a parallel region contains one or more barriers, including implicit barriers afte
worksharing constructs, the parallel region statistics are further subdivided. Fo
example, if the parallel region R3 contains two barriers with the second barrier
kappro-support@kai.com 23

L
ib

ra
ri

E
xt

er
na

l

4 • Libraries and External Routines The guide_perview Library

24

f
being at the end of the parallel region, we have separate performance statistics
for regions R3 (extending from the beginning of the parallel region to the first
barrier) and R3B1 (extending from the first barrier to the end of the parallel
region).

By default, each region is given a name, based on the name of the file that con-
tains the beginning of the region. However, it is possible to manually specify a
name for each parallel region by means of an external routine,
kmp_set_parallel_name(). This routine takes a character string as an
argument, and should be called before the start of the parallel region to be
named. All parallel regions following a call to this routine get the specified
name until another call is made to kmp_set_parallel_name(). Default
names can be restored by supplying an empty string as the argument.

The guide_stats library may minimally degrade application performance com-
pared to the guide library. The amount of application slowdown is proportional
to the frequency with which OpenMP directives are encountered.

The guide_perview Library

To link with the guide_perview library, use the -WGperview command line
option to the Guide driver. The guide_perview library is part of the interactive
parallel performance monitoring and management tool called PerView. Using
PerView, one can remotely monitor parallel performance and application
progress, modify the number of threads, switch between dynamic and static
thread count, and pause or abort parallel applications. When using the
guide_perview library, make sure that the main program and any program units
that cause program termination have been compiled with Guide.

In the current version of Guide, the guide_perview library also provides all the
functionality of the guide_stats library. Future versions are not guaranteed to
support the guide_stats library functionality. The guide_perview library enables
additional runtime checks that may aid in program debugging. This library may
minimally degrade application performance compared to the guide library by an
amount proportional to the frequency with which the OpenMP directives are
encountered.

See “PerView,” beginning on page 101 for more information about the use o
the guide_perview library and the PerView tool.
http://www.kai.com/parallel/kappro

External Routines Libraries and External Routines • 4

es
 a

nd

R
ou

tin
es

4

in-
e rou-
le

ype

ent
 over-

rar-
s to
External Routines

This section details library routines that can be used for low-level debugging to ver-
ify that the library code and application are functioning as intended. These routines
are not part of the OpenMP standard and their use is discouraged; using them
requires that the application be linked with one of the Guide libraries, even when
the code is executed sequentially. In addition, using these routines makes validating
the program with Assure more difficult or impossible.

In most cases, directives can be used in place of these routines. For example,
thread-private storage should be implemented by using the PRIVATE() clause of
the parallel directive or the threadprivate directive rather than by explicit
expansion and indexing with omp_get_thread_num(). Appendix A, “C/C++
Examples,” beginning on page 155, and Appendix C, “Fortran Examples,” beg
ning on page 175, contain examples of coding styles that avoid the use of thes
tines. A run-time procedure call takes precedence over an environment variab
setting.

To use these functions in a C/C++ program, include the OpenMP header file

#include <omp.h>

in your source. In the descriptions of the routines that follow, the C/C++ protot
is given first, followed by the Fortran calling convention.

In some cases, the same effect can be achieved by either setting an environm
variable or by using one of these routines. In these cases, the external routine
rides any environment variable settings.

int kmp_get_blocktime(void), integer function kmp_get_blocktime()

This routine returns the integer value of time, in milliseconds, that the Guide lib
ies wait after completing the execution of a parallel region before putting thread
sleep. This value can be set via the kmp_set_blocktime() routine or the
KMP_BLOCKTIME environment variable. See the description of the
KMP_BLOCKTIME environment variable on page 75 for more information.
kappro-support@kai.com 25

L
ib

ra
ri

E
xt

er
na

l

4 • Libraries and External Routines External Routines

26
int kmp_get_library(void), integer function kmp_get_library()

This routine returns an integer value that designates the version of the Guide
runtime library being used. This value can be used as the parameter to subse-
quent calls to kmp_set_library(). The library setting can also be set via
the kmp_set_library_<mode>() set of routines or the KMP_LIBRARY
environment variable.

int kmp_get_stacksize(void), integer function kmp_get_stacksize()

This routine returns the number of bytes that will be allocated for each parallel
thread to use as its private stack. This value can be changed via the
kmp_set_stacksize() routine, prior to the first parallel region or via the
KMP_STACKSIZE environment variable. See the description of the
KMP_STACKSIZE environment variable on page 76 for more information.

void kmp_set_blocktime(int), subroutine
kmp_set_blocktime(<integer>)

This routine sets the number of milliseconds that the Guide libraries wait after
completing the execution of a parallel region before putting threads to sleep.
This value can also be changed via the KMP_BLOCKTIME environment vari-
able. See the description of KMP_BLOCKTIME on page 75 for more informa-
tion.

In order for kmp_set_blocktime() to have an effect, it must be called
before the beginning of the first (dynamically executed) parallel region in the
program.

void kmp_set_library(int), subroutine kmp_set_library(<integer>)

This routine selects the Guide run time library. The parameter value corresponds
to the version number previously returned by a call to kmp_get_library().
To determine the values of this parameter that correspond to particular libraries,
call the kmp_set_library_<mode> routines and then call the
kmp_get_library() routine to obtain the parameter values. The library set-
ting can also be set via the KMP_LIBRARY environment variable.

void kmp_set_library_serial(void), subroutine
http://www.kai.com/parallel/kappro

External Routines Libraries and External Routines • 4

es
 a

nd

R
ou

tin
es

4

kmp_set_library_serial()

This routine selects the Guide serial runtime library. The library setting can also be
set via the kmp_set_library() call or the KMP_LIBRARY environment vari-
able.

void kmp_set_library_throughput(void), subroutine
kmp_set_library_throughput()

This routine selects the Guide throughput runtime library. The library setting can
also be set via the kmp_set_library() call or the KMP_LIBRARY environ-
ment variable.

void kmp_set_library_turnaround(void), subroutine
kmp_set_library_turnaround()

This routine selects the Guide turnaround runtime library. The library setting can
also be set via the kmp_set_library() call or the KMP_LIBRARY environ-
ment variable.

void kmp_set_stacksize(int), subroutine kmp_set_stacksize(<integer>)

This routine sets the number of bytes that will be allocated for each parallel thread
to use as its private stack. This value can also be set via the KMP_STACKSIZE
environment variable (see page 76 for more information).

In order for kmp_set_stacksize() to have an effect, it must be called before
the beginning of the first (dynamically executed) parallel region in the program.

void kmp_set_parallel_name(char *), subroutine
kmp_set_parallel_name(<string>)

This routine associates the character string argument to subsequent parallel regions.
The name remains in effect until the next call to the routine. To restore default nam-
ing of parallel regions, supply an empty string as the argument.

This routine should be called before the start of the parallel region to be named. The
associated name will appear in the statistics file output by the guide_stats library
and in the GuideView performance viewer.
kappro-support@kai.com 27

L
ib

ra
ri

E
xt

er
na

l

4 • Libraries and External Routines External Routines

28

dge
r-
called
n

to the

lly,
void mppbeg(void), subroutine mppbeg()
void mppend(void), subroutine mppend()

These routines are not necessary if the main program unit and all exit points are
compiled using Guide. If this isn’t the case, you must ensure that mppbeg() is
called at the beginning of the main program and that mppend() is called at all
points that lead to program termination.

Calling these routines from another programming language requires knowle
of the cross-language calling standards on your platform. Typically an unde
score is appended to names that are declared in Fortran subroutines when
from C code. Thus, a main program in C that can be used with Guide Fortra
code might look like:

void
main(int argc, char *argv[])
{
 extern mppbeg_(), mppend_();
 mppbeg_();
 Fortran_work();
 mppend_();
 exit(0);
}

A main program written in Fortran might look like:

program main
call mppbeg()
call C_work
call mppend()
end

In other programming languages, you may need to append an underscore
routine names to successfully link: e.g., mppbeg_() and mppend_().

The call to mppbeg() must occur when the program is executing sequentia
not when a parallel region is active.
http://www.kai.com/parallel/kappro

Signal Handling (Unix only) Libraries and External Routines • 4

es
 a

nd

R
ou

tin
es

4

n-
first
Signal Handling (Unix only)

In order for interrupts and runtime errors to be handled correctly during parallel
execution on Unix, the Guide libraries normally install their own handlers for inter-
rupt signals (e.g. SIGHUP, SIGINT, SIGQUIT, and SIGTERM) and for runtime
error signals (e.g. SIGSEGV, SIGBUS, SIGILL, SIGABRT, SIGFPE, and SIG-
SYS).

The Guide libraries normally install their handlers at the beginning of the first
(dynamically executed) parallel region in the program. These handlers remain
active until the end of program execution, throughout all parallel and remaining
serial portions of the program.

The Guide libraries provide a mechanism for allowing user–installed signal ha
dlers. If the program installs a handler for a signal before the beginning of the
parallel region, the libraries will not install their handlers for that signal.
kappro-support@kai.com 29

L
ib

ra
ri

E
xt

er
na

l

4 • Libraries and External Routines Signal Handling (Unix only)

30
 http://www.kai.com/parallel/kappro

Introduction Using Assure • 5

U
si

ng
 A

ss
ur

e

5

hat
when
l pro-

rial
e
,
de.
CHAPTER 5 Using Assure

Introduction

Assure is designed to validate the correctness of an OpenMP parallel program and
to identify programming errors that occur when parallelizing a serial application.
Assure uses the semantics of a program’s sequential execution to find errors t
could occur in that program’s parallel execution. For each data set that is used
executing an Assure-processed program, errors are identified when the paralle
gram is inconsistent with the corresponding serial program.

Programs validated by Assure must be assumed to be sequentially correct. Se
programs should be compiled and tested with all local variables in each routin
allocated on the stack (i.e., as automatic variables), and no uninitialized accesses
out-of-bounds memory references, etc. should be present in the sequential co
kappro-support@kai.com 31

5 • Using Assure How to Verify an Application

32
How to Verify an Application

The components of Assure include:

• The Assure compile driver, named as listed in the following table.

• AssureView, a tool for viewing the results of Assure

On Windows, use assureicl for debugging 32-bit applications using the Intel
C++ compiler, assureecl for debugging 64-bit applications using the Intel C++
compiler, and assurec for debugging C applications using the Microsoft Visual
Studio C++ compiler. C++ is not currently supported on Windows.

Similarly, use assureifl on Windows for debugging 32-bit applications using the
Intel Fortran compiler, assureefl for debugging 64-bit applications using the
Intel Fortran compiler, and assuref for debugging 32-bit or 64-bit applications
using the appropriate Compaq Visual Fortran compiler.

Special drivers called assurec64 and asssuref64 are supplied for Windows users
who install the KAP/Pro Toolset on a 32-bit machine and wish to debug 64-bit
applications with the appropriate Microsoft Visual Studio C++ compiler and
Compaq Visual Fortran compiler, respectively. The assurec and assuref drivers
produce executables compatible with the machine architecture on which
KAP/Pro is installed.

Windows NT Unix Linux

C assureicl,

assureecl,

or assurec[64]

assurec assureicc,

assureecc

or assurec

C++ not available assurec++ assureicc,

assureecc,

or assurec++

FORTRAN 77 assureifl,

assureefl,

or assuref[64]

assuref77 assureifc

or assureefc

Fortran 90 assureifl,

assureefl,

or assuref[64]

assuref90 assureifc

or assureefc
http://www.kai.com/parallel/kappro

How to Verify an Application Using Assure • 5

U
si

ng
 A

ss
ur

e

5

d with

re
re-

ignif-

ula-
ts
On Linux, use assureicc for debugging 32-bit applications using the Intel C++
compiler, assureecc for debugging 64-bit applications using the Intel C++ com-
piler, and assurec or assurec++ for debugging C or C++ applications, respectively,
using the gcc or g++ compiler. Use assureifc for debugging 32-bit applications
using the Intel Fortran compiler, assureefc for debugging 64-bit applications using
the Intel Fortran compiler.

The steps involved in using Assure to verify an application program are depicted in
Figure 5-1, “Assure Process,” on page 34:

1. Compile the program using Assure.

Assure takes as input a correct, sequential program that has been annotate
OpenMP parallel directives. This step produces a project file, a file with a .prj
suffix, used by AssureView to document the structure of the code. An Assu
link step produces a program that, when executed, generates data for Assu
View.

2. Run the compiled program.

This step produces simulation output in a file with a .kdd suffix, which con-
tains encoded results of the execution. Execution with Assure can require s
icantly more time and memory. Whenever possible, use input datasets of
minimal size that exercise as much of the code as possible.

3. View the results using AssureView.

AssureView takes as its inputs the project file produced in step 1 and the sim
tion output file produced in step 2 and displays the results via a GUI. Resul
may also be displayed as text.
kappro-support@kai.com 33

5 • Using Assure How to Verify an Application

34
Figure 5-1 Assure Process

When the application program, here called pgm, is contained in a single source
file, the following sequence of commands can be used on Unix to run Assure
and AssureView:

assurec -WGpname=prog -o pgm pgm.c
pgm
assureview prog.prj

The -WGpname flag is used to select the name of the project file (in this exam-
ple, prog.prj). On Windows the following sequence of commands can be
used:

assurec -WGpname=prog -exe:pgm.exe pgm.c
pgm.exe
assureview prog.prj

Assure

Application
Source

Program

Compiler

Program
Executable

Simulation
Output

Project

AssureView

(.kdd)

File
(.prj)

File
http://www.kai.com/parallel/kappro

How to Verify an Application Using Assure • 5

U
si

ng
 A

ss
ur

e

5

When the application program consists of multiple source files, the following
sequence of commands could be used on Unix for compiling and linking:

assurec -WGpname=prog -c f1.c
assurec -WGpname=prog -c f2.c
assurec -WGpname=prog -o pgm f1.o f2.o

The following sequence of commands could be used on Windows:

assurec -WGpname=prog -c f1.c
assurec -WGpname=prog -c f2.c
assurec -WGpname=prog -exe:pgm.exe f1.obj f2.obj

Running the executable and viewing the Assure results is the same as in the single
source file example. When using makefiles, it may be sufficient to change your
compile and link commands in each makefile to

assurec -WGpname=prog

For projects with multiple build directories, the project file should be specified as
an absolute path to ensure that the same project file is used in each step of the build
process. For example on Unix:

assurec -WGpname=/projects/prog/prog.prj f.c

or on Windows:

assurec -WGpname=c:\projects\prog\prog.prj f.c

The results of Assure can be viewed by using the full name of the project file on the
command line:

assureview /projects/prog/prog.prj

In addition, the make clean rule in makefiles should be modified to remove any
files with .prj or .kdd suffixes.

During compilation, in order to serialize access to project files (e.g., when running
makefiles in parallel) an explicit lockfile is associated with each file. If a project
name is not specified, the default name is assure.prj and the corresponding
lockfile would be named .assure.prj.lck. Each lockfile is placed in the same
directory as its corresponding project file. Periodic messages may appear if an
Assure or AssureView step is waiting for the release of a lockfile. These messages
can be ignored in a properly executed parallel make. Parallel makes may fail in
NFS mounted directories due to problems with file locking.
kappro-support@kai.com 35

5 • Using Assure An Example

36

rect
An Example

The following is a correct sequential program fragment to multiply matrices a
and b. This program has been parallelized with OpenMP directives and can be
validated by Assure.

C/C++ syntax:
#pragma omp parallel for \
 shared(a,b,c,s,n,m) \
 private(i,j,k)
for (j = 0; j < n; j++) {
 for (i = 0; i < m; i++) {
L10: s = 0.0;
 for (k = 0; k < m; k++) {
L20: s += a[k][i] * b[j][k]
 }
L30: c[j][i] = s;
 }
}

Fortran syntax:
!$omp parallel do
!$omp& shared(a,b,c,n,m,s)
!$omp& private(i,j,k)

do j = 1, n
 do i = 1, m

10 s = 0.0
do k = 1, m

20 s = s + a(i,k) * b(k,j)
enddo

30 c(i,j) = s
 enddo
enddo

!$omp end parallel do

When Assure is run on a complete program containing this program fragment,
AssureView will report storage conflicts errors (see “Storage Conflicts” on
page 37) on the statements labeled 10, 20, and 30. The programmer forgot to
make s a private variable, which would cause the program to generate incor
results when run in parallel. The correct parallel program fragment is given
below.
http://www.kai.com/parallel/kappro

Storage Conflicts Using Assure • 5

U
si

ng
 A

ss
ur

e

5

C/C++ syntax:
#pragma omp parallel for \
 shared(a,b,c,n,m) \
 private(i,j,k,s)
for (j = 0; j < n; j++) {
 for (i = 1; i < m; i++) {
L10: s = 0.0;
 for (k = 0; k < m; k++) {
L20: s += a[k][i] * b[j][k];
 }
L30: c[j][i] = s;
 }
}

Fortran syntax:
!$omp parallel do
!$omp& shared(a,b,c,n,m)
!$omp& private(i,j,k,s)

do j = 1, n
 do i = 1, m

10 s = 0.0
do k = 1, m

20 s = s + a(i,k) * b(k,j)
enddo

30 c(i,j) = s
 enddo
enddo

!$omp end parallel do

When Assure is run on a complete program containing this program fragment, no
storage conflict errors are reported, so this portion of the program will run correctly
in parallel.

Storage Conflicts

In order to produce correct results, a correctly-parallelized program must preserve
the constraints on the order of variable references imposed by the original sequen-
tial program execution (these constraints are also known as data dependence con-
straints). Storage conflicts are violations of these variable-reference-order
constraints which cause a parallel program to yield incorrect or indeterminate
results when compared to the original serial program.
kappro-support@kai.com 37

5 • Using Assure Storage Conflicts

38
Three different types of storage conflicts occur in parallel programs, each of
which is identified by Assure:

1. Write → Read storage conflicts

These conflicts denote violations of flow-dependence (or true dependence)
constraints. Such a constraint is introduced in a serial program when one
statement updates a variable that may be read by a subsequent statement.

For example, consider the following sequence of statements:
 s1: a = b + c
 s2: d = a + e

A flow-dependence constraint on the variable a exists between s1 and s2
since s1 must execute before s2 in order for s2 to use the correct value for
a (i.e., the value produced by s1).

2. Read → Write storage conflicts

These conflicts denote violations of anti-dependence constraints. Such a
constraint is introduced in a serial program when one statement reads a vari-
able that may be written by a subsequent statement.

For example, consider the following sequence of statements:

 s1: a = b + c
 s2: b = d + e

An anti-dependence constraint on the variable b exists between s1 and s2
since s1 must execute before s2 in order for s1 to use the correct value for
b (i.e., the value produced by some statement before s1, not the value pro-
duced by s2).

3. Write → Write storage conflicts

These conflicts denote violations of output-dependence constraints. Such a
constraint is introduced in a serial program when one statement updates a
variable that may be written by a subsequent statement.

For example, consider the following sequence of statements:

 s1: a = b + c
 s2: a = d + e

An output-dependence constraint on the variable a exists between s1 and
s2 since s1 must execute before s2 in order for subsequent statements to
use the correct value for a (i.e., the value produced by s2, not the value pro-
duced by s1).
http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

n the
sfor-

ng

ugh
Assure reports storage conflicts by specifying the variable(s) and statement(s)
involved in a sequential-program constraint that may be violated in the correspond-
ing parallel program. A source and a sink variable reference are specified; the con-
straint being violated is that the source reference must always occur before the sink
reference.

Storage conflicts occur when two variable references can be executed by two dif-
ferent threads in an indeterminate order. Common causes of storage conflicts
include:

1. A variable was shared between threads when it should have been private
to each thread.

2. A variable was shared but its accesses were not synchronized (e.g., by enclos-
ing references to the variable in critical sections).

3. The algorithm used by the program cannot be directly executed in parallel by
the simple change of a variable’s classification to shared or private. Usu-
ally, in this case, the algorithm used in the computation must be changed. I
next section we give examples to illustrate some of the more advanced tran
mations needed to correctly execute a serial program in parallel.

Correcting Errors

The following examples are designed to illustrate common parallel programmi
errors, how Assure treats each one, and how they may be corrected by using
OpenMP directives to restructure the parallel code.

Example: Parallelizing Reduction Loops

Consider the following sequential program, which sums the numbers one thro
ten and prints the answer (55).

C/C++ syntax:
#include <stdio.h>
main ()
{
 int i, k = 0;
 for (i = 1; i <= 10; i++) k += i;
 printf("%d\n", k);
}

kappro-support@kai.com 39

5 • Using Assure Correcting Errors

40
Fortran syntax:
program sum10a
k = 0
do i = 1, 10

 k = k + i
end do
print *, k
end

In this program, the variable k is reused (between loop iterations) to act as an
accumulator. This reuse causes a storage conflict that must be resolved in order
to execute the loop in parallel. Suppose that the sequential program is parallel-
ized as follows. Assure identifies a Write → Write storage conflict in this pro-
gram, on the variable k inside the for or do loop.

C/C++ syntax:
#include <stdio.h>
main ()
{
 int i, k = 0;
 #pragma omp parallel for shared(k) private(i)
 for (i = 1; i <= 10; i++) k += i;
 printf("%d\n", k);
}

Fortran syntax:
program sum10b
k = 0

!$omp parallel do shared(k) private(i)
do i = 1, 10
 k = k + i
end do

!$omp end parallel do
print *, k
end

Since multiple threads are executing the update of the variable k without proper
synchronization, threads could easily overwrite the results of other threads, thus
yielding the wrong final answer.

One common method of parallelizing reduction (accumulation) loops is to per-
form partial reductions on each processor and then perform the final reduction
http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

into the output variable. This can also be written as a sequential algorithm as fol-
lows:

C/C++ syntax:
#include <stdio.h>
main ()
{
 int i, k = 0, kl = 0;
 for (i = 1; i <= 10; i++)
 kl += i;
 k += kl;
 printf("%d\n", k);
}

Fortran syntax:
program sum10c
k = 0

 kl = 0
 do i = 1, 10
 kl = kl + i
 end do
 k = k + kl
 print *, k
 end

This new sequential algorithm is potentially less efficient than the previous exam-
ple; however, by introducing a new variable, we are allowed more freedom in par-
allelizing the code since we have removed constraints on its parallel execution. The
new sequential code can be parallelized as follows.
kappro-support@kai.com 41

5 • Using Assure Correcting Errors

42
C/C++ syntax:
#include <stdio.h>
main ()
{
 int i, k = 0, kl;
 #pragma omp parallel shared(k) private(i,kl)
 {
 kl = 0;
 #pragma omp for
 for (i = 1; i <= 10; i++)
 kl += i;
 k += kl;
 }
 printf("%d\n", k);
}

Fortran syntax:
program sum10d
k = 0

!$omp parallel shared(k) private(i,kl)
kl = 0

!$omp do
do i = 1, 10
 kl = kl + i
enddo

!$omp end do
k = k + kl

!$omp end parallel
print *, k
end

Unfortunately, Assure will identify storage conflicts in this parallel program as
well. By introducing a new private variable, kl, we removed the original stor-
age conflict in the parallel loop. However, there is still a storage conflict in the
final reduction, k += kl or k = k + kl. This final reduction needs to be
synchronized (serialized) to produce a correct parallel algorithm as follows:
http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

C/C++ syntax:
#include <stdio.h>
main ()
{
 int i, k = 0, kl;
 #pragma omp parallel shared(k) private(i,kl)
 {
 kl = 0;
 #pragma omp for
 for (i = 1; i <= 10; i++)
 kl += i;
 #pragma omp critical
 k += kl;
 }
 printf("%d\n", k);
}

Fortran syntax:
program sum10e
k = 0

!$omp parallel shared(k) private(i,kl)
kl = 0

!$omp do
do i = 1, 10
 kl = kl + i
enddo

!$omp end do
!$omp critical

k = k + kl
!$omp end critical
!$omp end parallel

print *, k
end

Assure identifies no errors in this version of the parallel code.

Alternatively, this same code segment could be written using the OpenMP reduc-
tion directive as follows:
kappro-support@kai.com 43

5 • Using Assure Correcting Errors

44
C/C++ syntax:
#include <stdio.h>
main ()
{
 int i, k = 0;
 #pragma omp parallel for reduction(+:k) \

private(i)
 for (i = 1; i <= 10; i++)
 k += i;
 printf("%d\n", k);
}

Fortran syntax:
program sum10f
k = 0

!$omp parallel do reduction(+:k) private(i)
do i = 1, 10
 k = k + i
enddo

!$omp end parallel do
print *, k
end

Each parallel version of this summation algorithm has a corresponding sequen-
tial program that correctly computes the desired result. In each case, if the paral-
lel program is run on one processor it will be equivalent to the corresponding
sequential program, as if the OpenMP directives were ignored. This pairing of
the sequential and parallel semantics of a program allows Assure to determine
when the parallel program is incorrect when compared to the specification pro-
vided by the sequential program.

Example: Privatizing to Resolve Storage Conflicts

As shown in the previous example, the act of parallelization (converting a serial
algorithm into a parallel algorithm) is often an incremental process. This process
proceeds from the assumption that the computation to be performed is logically
concurrent but that a particular implementation of the algorithm introduces
dependences that can be removed through the use of OpenMP directives or code
restructuring.

Two of the most common techniques for resolving storage conflicts are privati-
zation (storage localization, replication) and synchronization (serialization).
Consider the following example:
http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

C/C++ syntax:
void dsq(float a[], float b[], float c[], int n)
{
 float x, y;
 int i;
 for (i = 0; i < n; i++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i] = x * y;
 }
}

Fortran syntax:
subroutine dsq(a, b, c, n)
integer n
real a(n), b(n), c(n), x, y
do i = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(i) = x * y
end do
end subroutine

The above serial routine implements a logically concurrent algorithm: applying a
function to each element of a vector. A first attempt at parallelization of this pro-
gram might yield the following:

C/C++ syntax:
void dsq_a(float a[], float b[], float c[], int n)
{
 float x, y;
 int i;
 #pragma omp parallel for shared(a,b,c,n,x,y) \
 private(i)
 for (i = 0; i < n; i++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i] = x * y;
 }
}

kappro-support@kai.com 45

5 • Using Assure Correcting Errors

46
Fortran syntax:
subroutine dsq_a (a,b,c,n)
integer n
real a(n), b(n), c(n), x, y

!$omp parallel do shared(a,b,c,n,x,y) private(i)
do i = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(i) = x * y
enddo

!$omp end parallel do
end

Assure reports Write → Write storage conflicts on the variables x and y in this
parallel program. This means that, on two different iterations of the parallel
loop, these variables were updated (potentially by different threads). These stor-
age conflicts can be resolved through privatization or synchronization. To cor-
rectly synchronize this code, a critical section should be added surrounding
the definitions and uses of the offending variables:

C/C++ syntax:
void dsq_b(float a[], float b[], float c[], int n)
{
 float x, y;
 int i;
 #pragma omp parallel for shared(a,b,c,n,x,y) \
 private(i)
 for (i = 0; i < n; i++) {
 #pragma omp critical
 {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i] = x * y;
 }
 }
}

http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

Fortran syntax:
subroutine dsq_b (a,b,c,n)
integer n
real a(n), b(n), c(n), x, y

!$omp parallel do shared(a,b,c,n,x,y) private(i)
do i = 1, n

!$omp critical
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(i) = x * y

!$omp end critical
enddo

!$omp end parallel do
end

Assure reports no storage conflicts in this parallel program. However, this is not an
efficient method of resolving the previous conflicts. The addition of the criti-
cal section serializes the execution of the loop entirely, thereby prohibiting any
performance improvement through parallelism. If the only way to resolve storage
conflicts is through synchronization, then it is likely that the original algorithm was
not inherently concurrent and that this algorithm should be run sequentially.

The storage conflicts on x and y could also be resolved through privatization.

C/C++ syntax:
void dsq_c(float a[], float b[], float c[], int n)
{
 float x, y;
 int i;
 #pragma omp parallel for shared(a,b,c,n) \
 private(i,x,y)
 for (i = 0; i < n; i++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i] = x * y;
 }
}

kappro-support@kai.com 47

5 • Using Assure Correcting Errors

48
Fortran syntax:
subroutine dsq_c (a,b,c,n)
integer n
real a(n), b(n), c(n), x, y

!$omp parallel do shared(a,b,c,n) private(i,x,y)
do i = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(i) = x * y
enddo

!$omp end parallel do
end

In this parallel program, x and y have been declared private to each thread that
executes the parallel region. Privatization removes the storage conflicts by giv-
ing each thread executing the parallel loop its own local copy of the variables x
and y. This is the preferred way to resolve these types of storage conflicts.

Parallelism is inhibited by synchronization and is enabled by privatization. To
enhance the performance of parallel programs, privatization should be utilized
instead of synchronization whenever possible. Some runtime operations (e.g.,
I/O routines) may not be safe to execute in parallel; in these cases, synchroniz-
ing these operations allows the rest of a parallel region to be executed in paral-
lel. If the percentage of time spent in a synchronization region is small, when
compared to the time spent executing in parallel, it can be beneficial to add syn-
chronization to a parallel region.

Static allocation of local variables in Fortran and variables defined within a new
scope in C/C++ into the stack is an easy way to specify variables as private to
each thread. This is typically specified with the -automatic option on most
compilers if this is not the default. Since each thread executing a parallel region
has its own stack, this ensures that whenever multiple threads concurrently call a
routine, variables local to that routine are not shared between threads.

As we have seen, OpenMP directives permit variables to be made private in a
particular parallel construct. The private() clause indicates, for the duration
of a parallel region, that each thread executing the region will have a unique,
local instance of each listed variable.
http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

Example: Using private variables outside of parallel regions

Another class of errors occurs in the interfaces between parallel regions and
sequential code. Consider the following sequential routine:

C/C++ syntax:
void dsq2(float a[], float b[], float c[], int n)
{
 float x, y;
 int i;
 for (i = 0; i < n; i++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i] = x * y;
 }
 printf("%f %f\n", x, y);
}

Fortran syntax:
subroutine dsq2(a, b, c, n)
integer n
real a(n), b(n), c(n), x, y
do i = 1, n

 x = a(i) - b(i)
 y = b(i) + a(i)
 c(i) = x * y

end do
print *, x, y
end

This program is identical to the previous example except that the final values of the
variables x and y are propagated out of the loop to be printed. This sequential code
could be parallelized as in the previous example.
kappro-support@kai.com 49

5 • Using Assure Correcting Errors

50
C/C++ syntax:
void dsq2_a(float a[],float b[],float c[],int n)
{
 float x, y;
 int i;
 #pragma omp parallel for shared(a,b,c,n) \
 private(i,x,y)
 for (i = 0; i < n; i++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i] = x * y;
 }
 printf("%f %f\n", x, y);
}

Fortran syntax:
subroutine dsq2_a (a,b,c,n)
integer n
real a(n), b(n), c(n), x, y

!$omp parallel do shared(a,b,c,n) private(i,x,y)
do i = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(i) = x * y
enddo

!$omp end parallel do
print *, x, y
end

Here, Assure identifies that the private variables x and y have their values
used outside the parallel region. Since x and y are private to each thread execut-
ing the region, the values of these variables outside the region are undefined.
The lastprivate() clause can be used to copy the values of x and y from
the last serial iteration of the parallel loop back into the sequential code.
http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

C/C++ syntax:
void dsq2_b(float a[],float b[],float c[],int n)
{
 float x, y;
 int i;
 #pragma omp parallel for shared(a,b,c,n) \
 private(i) lastprivate(x,y)
 for (i = 0; i < n; i++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i] = x * y;
 }
 printf("%f %f\n", x, y);
}

Fortran syntax:
subroutine dsq2_b (a,b,c,n)
integer n
real a(n), b(n), c(n), x, y

!$omp parallel do shared(a,b,c,n) private(i)
!$omp& lastprivate(x,y)

do i = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(i) = x * y
enddo

!$omp end parallel do
print *, x, y
end

Assure identifies no errors in this parallel program. The lastprivate() clause
specifies, during the execution of the parallel loop, that each thread is to have its
own instance of the variables x and y, but that the values assigned on the last serial
iteration of the loop are to be copied to the global x and y after the loop completes.

Example: Using firstprivate()

Another interface problem occurs in the transition between sequential code and par-
allel regions. Consider the following parallel routine:
kappro-support@kai.com 51

5 • Using Assure Correcting Errors

52
C/C++ syntax:
void dsq3(float *c[], int n)
{
 float a[100], b[100], x, y;
 int i, j;
/*
Initialize all elements of arrays a and b
in the serial region
*/
 init_a(a, n);
 init_b(b, n);
 #pragma omp parallel for shared(a,b,c,n) \
 private(i,j) lastprivate(x,y)
 for (i = 0; i < n; i++) {
 for (j = 0; j <= i; j++) {
/*
Re-assign some elements of arrays a and b
in the parallel region. In serial execution,
this step simply overwrites some of the values
set in routines init_a and init_b. In parallel
execution, this results in partially uninitialized
arrays a and b
*/
 a[j] = calc_a[i];
 b[j] = calc_b[i];
 }
 for (j = 0; j < n; j++) {
 x = a[j] - b[j];
 y = b[j] + a[j];
 c[i][j] = x * y;
 }
 }
 printf("%f %f\n", x, y);
}

http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

Fortran syntax:
subroutine dsq3 (c,n)
integer n
real a(100), b(100), c(n,n), x, y

c Initialize all elements of arrays a and b
c in the serial region

call init_a(a, n)
call init_b(b, n)

!$omp parallel do shared(a,b,c,n) private(i,j)
!$omp& lastprivate(x,y)
c Re-assign some elements of arrays a and b
c in the parallel region. In serial execution,
c this step simply overwrites some of the values
c set in routines init_a and init_b. In parallel
c execution, this results in partially
c uninitialized arrays a and b

do i = 1, n
 do j = 1, i

a(j) = calc_a(i)
b(j) = calc_b(i)

 enddo
 do j = 1, n

x = a(j) - b(j)
y = b(j) + a(j)
c(j,i) = x * y

 enddo
enddo

!$omp end parallel do
print *, x, y
end

In this example, the arrays a and b are being used as temporary vectors for the cal-
culation of the matrix c. However, not all of the values of a and b are initialized in
the first j-loop before they are used in the second j-loop (an initial set of values for
all relevant array elements are passed in to the loop from init_a and init_b).
Assure reports Write → Write storage conflicts on a and b that can be removed by
privatizing these variables to the parallel loop.
kappro-support@kai.com 53

5 • Using Assure Correcting Errors

54
C/C++ syntax:
void dsq3_a(float *c[], int n)
{
 float a[100], b[100], x, y;
 int i, j;
 init_a(a, n);
 init_b(b, n);
 #pragma omp parallel for shared(c,n) \
 private(i,j,a,b) lastprivate(x,y)
 for (i = 0; i < n; i++) {
 for (j = 0; j <= i; j++) {
 a[j] = calc_a[i];
 b[j] = calc_b[i];
 }
 for (j = 0; j < n; j++) {
 x = a[j] - b[j];
 y = b[j] + a[j];
 c[i][j] = x * y;
 }
 }
 printf("%f %f\n", x, y);
}

Fortran syntax:
subroutine dsq3_a (c,n)
integer n
real a(100), b(100), c(n,n), x, y
call init_a(a, n)
call init_b(b, n)

!$omp parallel do shared(c,n) private(i,j,a,b)
!$omp& lastprivate(x,y)

do i = 1, n
 do j = 1, i

a(j) = calc_a(i)
b(j) = calc_b(i)

 enddo
 do j = 1, n

x = a(j) - b(j)
y = b(j) + a(j)
c(j,i) = x * y

 enddo
enddo

!$omp end parallel do
print *, x, y
end
http://www.kai.com/parallel/kappro

Correcting Errors Using Assure • 5

U
si

ng
 A

ss
ur

e

5

This parallel program now has a different problem: each processor has its own pri-
vate copy of a and b, but a and b are not fully-initialized on each processor
because values of copies of private variables are initially undefined. Assure
reports this error by identifying the uninitialized references to a and b inside the
parallel loop. This type of error can be resolved through the use of the firstpri-
vate() clause.

C/C++ syntax:
void dsq3_b(float *c[], int n)
{
 float a[100], b[100], x, y;
 int i, j;
 init_a(a, n);
 init_b(b, n);
 #pragma omp parallel for shared(c,n) \

private (i,j) lastprivate(x,y) firstprivate(a,b)
 for (i = 0; i < n; i++) {
 for (j = 0; j <= i; j++) {
 a[j] = calc_a[i];
 b[j] = calc_b[i];
 }
 for (j = 0; j < n; j++) {
 x = a[j] - b[j];
 y = b[j] + a[j];
 c[i][j] = x * y;
 }
 }
 printf("%f %f\n", x, y);
}

kappro-support@kai.com 55

5 • Using Assure Correcting Errors

56
Fortran syntax:
subroutine dsq3_b (c,n)
integer n
real a(100), b(100), c(n,n), x, y
call init_a(a, n)
call init_b(b, n)

!$omp parallel do shared(c,n) private(i,j)
!$omp& lastprivate(x,y) firstprivate(a,b)

do i = 1, n
 do j = 1, i

a(j) = calc_a(i)
b(j) = calc_b(i)

 enddo
 do j = 1, n

x = a(j) - b(j)
y = b(j) + a(j)
c(j,i) = x * y

 enddo
enddo

!$omp end parallel do
print *, x, y
end

This parallel code is correct since the firstprivate() clause instructs each
processor to begin with a private copy of the data in a and b initialized with val-
ues from the sequential code before the parallel loop. Each processor then (par-
tially) overwrites its private copy of a and b with additional initialization data
and proceeds with its computation.
http://www.kai.com/parallel/kappro

About the KAP/Pro drivers The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

CHAPTER 6 The KAP/Pro
Drivers

About the KAP/Pro drivers

This chapter describes the functionality of the KAP/Pro drivers. There are many
different driver names, depending on the source language and computational envi-
ronment, but they all behave in essentially the same manner. The material in this
chapter is organized as follows:

• Overview of the C/C++ Guide and Assure drivers

• Overview of the Fortran Guide and Assure drivers

• List of KAP/Pro driver options

• Environment variables that influence driver behavior
kappro-support@kai.com 57

6 • The KAP/Pro Drivers Overview of the C/C++ Guide and Assure drivers

58

-
the

via

iler,
s
ses

ing
Overview of the C/C++ Guide and Assure
drivers

The KAP/Pro C/C++ drivers, referred to here collectively as guidec and
assurec, are designed to replace native compiler drivers such as cc or icl. The
actual driver name depends on the operating system and native compiler; com-
plete lists of Guide and Assure driver names are given in the tables on page 18
and page 32, respectively.

Both the Guide and Assure instrumentation and the compile/link steps are com-
bined into one command line which may be invoked manually, from a script, or
from a Makefile. The necessary C preprocessor, KAP/Pro, and compiler com-
mands are executed automatically. The standard link command on Windows,
which automatically adds the appropriate KAP/Pro library to the link step, can
be replaced with guidec or assurec followed by the -link flag or alternatively
by using the special drivers guidel or assurel.

Guidec and assurec are based on KAI C++, a high-performance, ISO standard-
compliant C and C++ compiler. This reference manual documents only the
places where KAP/Pro’s default behavior differs from or extends upon KAI
C++. Documentation for KAI C++ is located in the KCC_docs subdirectory
within the Guide or Assure installation directory.

The default language of guidec and assurec is ANSI C, whereas the default lan
guage of KAI C++ is C++. To enable C++ in KAP/Pro on Unix systems, use
--c++ command line switch or the guidec++ or assurec++ driver (C++ is cur-
rently not supported on Windows systems). To improve performance, guidec
and assurec disable C++ exceptions by default. Exceptions can be enabled
the --exceptions command line switch.

In addition to all of the command line options accepted by the C/C++ comp
the assurec and guidec drivers accept prefixed forms of all KAP/Pro options a
well as driver-specific options. An absence of command line arguments cau
the driver to emit a usage message.

Using the C/C++ drivers

To compile a C or C++ program with Guide or Assure, use one of the follow
command lines on Unix systems:
http://www.kai.com/parallel/kappro

Overview of the C/C++ Guide and Assure drivers The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6
on

ld
C program

guidec [<Guide options>] [<KAI C++ options>] <filenames>
assurec [<Assure options>] [<KAI C++ options>] <filenames>

C++ program

guidec++ [<Guide options>] [<KAI C++ options>] <filenames>
assurec++ [<Assure options>] [<KAI C++ options>] <filenames>

or one of the following command lines on Linux systems:

C or C++ program

guideicc [<Guide options>] [<icc options>] <filenames>
guideecc [<Guide options>] [<ecc options>] <filenames>

assureicc [<Assure options>] [<icc options>] <filenames>
assureecc [<Assure options>] [<ecc options>] <filenames>

or one of the following command lines on Windows systems:

C or C++ program

guideicl [<Guide options>] [<icl options>] <filenames>
guideecl [<Guide options>] [<ecl options>] <filenames>
guidec [<Guide options>] [<standard options>] <filenames>

assureicl [<Assure options>] [<icl options>] <filenames>
assureecl [<Assure options>] [<icl options>] <filenames>
assurec [<Assure options>] [<standard options>] <filenames>

where <filenames> is one or more input files to Guide or Assure.

Guide and Assure produce intermediate source files which are then passed to the
underlying compiler. These files are removed by default after successful instrumen-
tation and compilation. See “-WG[no]keep” on page 67 and “-WG[no]keeperr”
page 68 for more information.

The output filename from guidec or assurec is derived from the input filename by
removing the file extension and adding the extension .int.c. The object file cre-
ated by the driver does not have this suffix. For example, Guide or Assure wou
generate a file called foo.int.c from a file called foo.c, but the object file
would be called foo.o.
kappro-support@kai.com 59

6 • The KAP/Pro Drivers Overview of the Fortran Guide and Assure drivers

60
Overview of the Fortran Guide and Assure
drivers

The KAP/Pro Fortran drivers, referred to collectively as guidef and assuref, are
designed to replace native compiler drivers such as f90 or ifl. The actual
driver name depends on the operating system and native compiler; complete
lists of Guide and Assure driver names are given in the tables on page 18 and
page 32, respectively.

On Unix systems, the Assure or Guide Fortran drivers replace the system FOR-
TRAN 77 and Fortran 90 compilers on the command line and integrate Assure
or Guide instrumentation and the compile/link step into one command line. In
scripts and Makefiles, replacing the standard compiler (typically f77 or f90)
with the appropriate Assure or Guide driver will execute the necessary C prepro-
cessor, Assure or Guide, and compiler commands automatically.

On Windows systems, the Assure or Guide Fortran drivers replace the Intel For-
tran compiler or the Compaq Visual Fortran compiler and integrate Assure or
Guide instrumentation and the compile/link step into one command line. Addi-
tionally, assurel and guidel replace the standard link to automatically
add the Assure or Guide library to the link step.

In addition to all of the command line options accepted by the Fortran compiler,
the assuref and guidef drivers accept prefixed forms of all Assure and Guide
options as well as driver-specific options. An absence of command line argu-
ments causes the drivers to emit a usage message.

Using the Fortran drivers

To compile a Fortran program with Guide or Assure, use one of the following
command lines on Unix systems:

FORTRAN 77 program

guidef77 [<Guide options>] [<f77 options>] <filenames>
assuref77 [<Assure options>] [<f77 options>] <filenames>

Fortran 90 program

guidef90 [<Guide options>] [<f90 options>] <filenames>
assuref90 [<Assure options>] [<f90 options>] <filenames>

or one of the following command lines on Linux systems:
http://www.kai.com/parallel/kappro

Overview of the Fortran Guide and Assure drivers The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

on

ile
d

ll cre-

Fortran program

guideifc [<Guide options>] [<ifc options>] <filenames>
guideefc [<Guide options>] [<efc options>] <filenames>

assureifc [<Assure options>] [<ifc options>] <filenames>
assureefc [<Assure options>] [<efc options>] <filenames>

or one of the following command lines on Windows systems:

Fortran program

guideifl [<Guide options>] [<ifl options>] <filenames>
guideefl [<Guide options>] [<efl options>] <filenames>
guidef [<Guide options>] [<standard options>] <filenames>

assureifl [<Assure options>] [<ifl options>] <filenames>
assureefl [<Assure options>] [<ifl options>] <filenames>
assuref [<Assure options>] [<standard options>] <filenames>

where <filenames> is one or more input files to Guide or Assure.

Guide and Assure produce intermediate source files which are then passed to the
underlying compiler. These files are removed by default after successful instrumen-
tation and compilation. See “-WG[no]keep” on page 67 and “-WG[no]keeperr”
page 68 for more information.

The output filename from guidef or assuref is derived from the input filename by
adding the prefix G_ or A_, respectively. For example, Guide would generate a f
called G_foo.f from a file called foo.f, and Assure would generate a file calle
A_foo.f.

Fortran files with capitalized suffixes (e.g. filename.F) are first passed through
the C preprocessor before Assure or Guide is invoked. The C preprocessor wi
ate files with a cppA_ or cppG_ prefix (e.g. cppA_filename.F). As men-
tioned above, assuref and guidef will create output files whose name is based on
the original source file name.
kappro-support@kai.com 61

6 • The KAP/Pro Drivers KAP/Pro driver options

62
KAP/Pro driver options

Default processing by Assure and Guide is to compile all source files listed on
the command line and link them to produce an executable. This behavior can be
modified by command line options and/or environment variables, as described
in the remainder of this chapter. Use the -WGhelp flag on the Guide or Assure
command line for a list of KAP/Pro options.

Most of these options only directly affect the behavior of Guide and Assure and
are not passed to the underlying compiler; exceptions to this rule, such as -c, are
identified in the individual descriptions. If Guide or Assure fails to recognize a
command line option, it simply ignores it and passes it to the compiler.

The guidec and assurec drivers recognize all the KAI C++ compiler options (on
Unix), Intel C++ compiler options (on Windows), and many of the Microsoft
Visual C++ compiler options (on Windows). The assuref and guidef drivers
recognize all the Intel Fortran compiler options (on Window) and most of the
native Fortran compiler options (on Unix). In addition, all KAP/Pro drivers rec-
ognize several OpenMP-related options.

The following conventions apply to the KAP/Pro drivers:

• Anything in the form -WGxxx is a KAP/Pro driver option. The -WG distin-
guishes it from standard compiler options.

• Anything in the form -WG,-xxx is an option that affects the internal work-
ings of KAP/Pro. Normally, these options are not needed by end users.

• Anything undecorated, such as -O3, is an underlying compiler option. Some
of these options, such as the -v, -c, and -wnowarn flags described below,
influence both KAP/Pro and the underlying compiler.

Some driver options are listed with [no] as part of the name; this means that both
positive and negative settings, such as -WGkeep and -WGnokeep, are
accepted. Some driver options are specific to a particular KAP/Pro component
or computational platform; these are listed in individual sections after the alpha-
betical list.
http://www.kai.com/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

,

nt;
ver
/”
Displaying all Command Lines

The -v option causes the driver to display all command lines executed. This flag is
passed on to the compiler. Use -WGnorpath (Unix only) if your compiler does not
recognize the -v option.

Disabling automatic linking of object files

If the -c compiler option is included, the drivers will only compile the source files.
If Assure or Guide is unable to correctly process one or more source files, all other
source files within the command will be compiled (but not linked) regardless of
whether or not the -c option is present.

Suppressing warnings (Fortran only)

Use the -wnowarn option to suppress mild assuref and guidef warnings. This flag
is passed on to the compiler.

Additional KAP/Pro driver options

Guide and Assure accept several advanced options that can be specified by the
-WG,... driver option. These options have the following syntax:

-WG,assure_option_1[[[,assure_option_2],assure_option_3
],...]

-WG,guide_option_1[[[,guide_option_2],guide_option_3],.
..]

A list of these additional options, which are normally not needed by end users, is
given in appendix D, “Additional KAP/Pro Options,” beginning on page 199

Alphabetical listing of Driver Options

In the following descriptions, <integer> indicates an integer number, <path> indi-
cates a directory name, <file> indicates a file name, possibly including a full path
<character> indicates a single character, and <string> indicates a string of charac-
ters. All other bracketed symbols are strings whose values are option-depende
legal values for these symbols will be listed in the option description. Every dri
option should be preceded by the “-” character; Windows users can also use the “
character.
kappro-support@kai.com 63

6 • The KAP/Pro Drivers Alphabetical listing of Driver Options

64

o
ge.

ep-
as
t

e
-WGcatch=<class> (Unix C/C++ only)

This option instructs Guide or Assure to intercept certain exceptions which vio-
late the OpenMP API and abort with an error message at run-time. Legal values
for <class> are all, safe, and none. The default is none.

The OpenMP standard requires that exceptions thrown within an active parallel
construct must cause execution to resume within the dynamic extent of the same
OpenMP construct in which the throw occurs. In addition, under the same con-
ditions, the exception must be thrown and caught by the same thread. Setting
this switch to “all” or “safe” will cause exceptions that violate these rules t
be intercepted. When this occurs, the program will exit with an error messa

The “-WGcatch=all” setting causes the program to intercept and report
exceptions which violate the OpenMP API for all OpenMP constructs. This
option has the largest run–time overhead. Use this option to help determine
whether your application has OpenMP-compliant exception handling.

The “-WGcatch=safe” setting causes the program to intercept and report
exceptions which violate the OpenMP API for only the C/C++ parallel,
parallel for, parallel sections, parallel for, taskq, and
task constructs. This option has medium run–time overhead.

The “-WGcatch=none” setting causes the program to ignore exceptions
which violate the OpenMP API. A program which violates the OpenMP exc
tion rules may exhibit unpredictable behavior with this setting. This option h
no run-time overhead and is the default. Use this setting if you are confiden
your application has OpenMP-compliant exception handling.

-WGcheck=<string> (Assure only)

Controls the overall speed at which Assure checks a program for errors. Thefast
setting typically reports the fewest errors while the slow setting reports all
errors. The medium setting typically finds most errors, but runs faster than th
slow setting. The default is slow.
http://www.kai.com/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

-WGcompiler=<path>
-WGcc=<path> (C/C++ only)
-WGftn=<path> (Fortran only)
-WGfortran=<path> (Fortran only)
-WGf77=<path> (Fortran only)
-WGf90=<path> (Fortran only)

This option is used to specify an alternative path to the native compiler. The default
is determined when the KAP/Pro Toolset is installed.

-WG[no]cpp

This option forces the C preprocessor to be run on all source files. Normally the
driver will invoke the C preprocessor in situations where the native compiler would
do the same. On most Unix platforms, for example, the C preprocessor is invoked
for Fortran source files with a capital F in the extension (.F, .F77, .F90).

-WGcpp=<file>

This option allows you to specify an alternate path for the C preprocessor execut-
able.

Specifying a preprocessor path does not force preprocessing. In order to force all
compiler input to be processed by another preprocessor, use the following options:

-WGcpp=/bin/cpp2 -WGcpp

-WGcritname=<pattern>

This option applies to mixed language programs to allow matching of named and
unnamed critical and ordered directives in C/C++ to their Fortran counter-
parts. Valid values are lower, upper, _lower, _upper, lower_, upper_,
lower, and _upper_. The default value is chosen to match the default behav-
ior of the native Fortran compiler.
kappro-support@kai.com 65

6 • The KAP/Pro Drivers Alphabetical listing of Driver Options

66
Guide creates a global lock object for every named and unnamed critical and
ordered section in the source code. An unnamed section and a named section
with name Foo would be translated, respectively, as follows:

-WG[no]debug (Fortran only)

When -WGdebug is specified, #line directives are generated in the intermedi-
ate source file (typically beginning with the prefix G_ when using Guide or A_
when using Assure) so that debuggers can relate back to the actual input source
file and not the intermediate files. The default is -WGdebug on most platforms,
except on platforms where the underlying Fortran compiler is unable to process
#line directives.

-WGdefault=<class>

This option specifies the default classification of unlisted variables in OpenMP
parallel directives. Its effect is as if default(<class>) were placed on
every parallel directive that doesn’t have an explicit default(…) clause.
Allowed values of <class> are shared and none . When not in strict
OpenMP mode, the value private is also allowed. The default value is
shared.

-WGdefault_library

By default, Guide and Assure link using static libraries on Windows systems
and shared libraries on Unix systems. This option instructs the driver to use the
default linking conventions when linking the Guide or Assure libraries into the
generated executable. See also -WGstatic_library and -WGdynamic_library.

<pattern> Symbol for unnamed section Symbol for named section “Foo”

lower mpp_uc_none mpp_nc_Foo

upper MPP_UC_NONE MPP_NC_Foo

_lower _mpp_uc_none _mpp_nc_Foo

_upper _MPP_UC_NONE _MPP_NC_Foo

lower_ mpp_uc_none_ mpp_nc_Foo_

upper_ MPP_UC_NONE_ MPP_NC_Foo_

lower _mpp_uc_none_ _mpp_nc_Foo_

upper _MPP_UC_NONE_ _MPP_NC_Foo_
http://www.kai.com/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

 or
nd

ide

ro-
nta-
-WGdynamic_library

By default, Guide and Assure link using static libraries on Windows systems and
shared libraries on Unix systems. This option instructs the driver to dynamically
link the Guide or Assure libraries into the generated executable. See also
-WGstatic_library and -WGdefault_library.

-WGfullpath

Use this option to make all filenames and directories fully qualified. This option
can sometimes improve the functionality of debugging tools; see also
-WG[no]debug on page 66.

-WGhelp

This option directs the driver to print a usage message and exit (Windows users can
also type -?, -h, or -help).

-WGimplylang (Windows C only)

If this option is specified, KAP/Pro will assume that source files ending in “.cpp”
“.cxx” are C++, thus allowing mixed C and C++ compilation in a single comma
line.

-WGincpath

This option specifies an alternate path in which to search for the Assure or Gu
include files.

-WG[no]keep

Instrumented source files (Assure or Guide output files) and temporary C prep
cessor files are removed by default after successful Assure or Guide instrume
tion and compilation. There are several instances where output files are not
removed:

• When Assure or Guide fails to process a source file, the output files from each
failing source file are not removed, while the output files from successfully pro-
cessed files are removed.

• If the compile/link step fails for any of the source files Assure or Guide success-
fully instruments, none of the output files are removed.
kappro-support@kai.com 67

6 • The KAP/Pro Drivers Alphabetical listing of Driver Options

68
• If you specify -WGkeep, none of the output files are removed.

The presence of the -WGnokeep flag overrides any previous instance of
-WGkeep on the command line, including the -WGkeep implied from
-WGonly and -g (Unix) or -Zi (Windows).

-WGkeepcpp

If -WGkeepcpp is stated, output files generated by the preprocessor will not be
removed after a successful compilation.

-WG[no]keeperr

If -WGnokeeperr is stated, then Guide and Assure will remove intermediate
files even if there are compile errors. The default is -WGkeeperr.

-WG[no]keepobjects

If -WGkeepobjects is stated, then object files will not be removed after linking.
The default is -WGkeepobjects except when compiling a single source file on
Unix systems.

-WGlibpath=<path>

This option specifies an alternate path in which to search for the Assure or
Guide libraries at link time.

-WGlink=<file>
-WGld=<file>

This option allows you to specify an alternate filename for the linker executable.

-WGlocation=<string> (Assure only)

Controls the level of accuracy with which Assure pinpoints errors in a program.
The exact setting will determine the exact location of errors while the approx
setting will approximate the location of errors. The default is exact.
http://www.kai.com/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

-WGnoimply=<kwd>[,<kwd>...] (not C/C++ Unix)

Each keyword describes a type of switch that the driver should avoid implying.
These driver switch implications are usually made to make sure particular switches
or libraries are passed to the backend compiler to ensure correct KAP/Pro operation
in typical/default cases.

Use these keywords to have the driver avoid passing certain switches to the back-
end compiler and/or linker:

• auto: switches like -automatic specifying that local variables should be allo-
cated from the stack

• threads: switches that make compilation thread-safe

• align: switches that set up the correct variable alignment/padding in the back-
end compiler

• io: switches that make runtime I/O libraries thread-safe

• rpath: switches like -rpath that set the path to the KAP/Pro runtime libraries
when doing shared linking (applicable Unix platforms only)

Use these keywords to have the driver avoid putting certain libraries on the link
line:

• extra_lib: any extra libraries that the driver might have to add for correct link-
ing on a per-platform basis (e.g., -lnsl on Solaris)

• kpts_lib: the main KAP/Pro runtime library

• threads_lib: the system threading library used by kpts_lib

• all_lib: same as extra_lib, kpts_lib, threads_lib

-WGnorc

This flag will turn off driver-specific options that were found in any initialization
file in your home directory (e.g. $HOME/.assurefrc or $HOME/.guidefrc
on Unix or $HOME\.assureini or $HOME\.guideini on Windows). Since
this option will also cancel any driver-specific options that precede it, -WGnorc
should be the first driver-specific option to appear on the command line to allow all
succeeding options to be used.
kappro-support@kai.com 69

6 • The KAP/Pro Drivers Alphabetical listing of Driver Options

70
-WGnorpath (Unix only)

Normally, Guide or Assure encodes the location of shared libraries into an exe-
cutable. This option instructs the driver to omit the path to shared libraries.
Often, when this option is used, the LD_LIBRARY_PATH variable must be set
at run-time to locate the Guide or Assure libraries.

-WGnowork

This option tells the driver to only print the commands it would normally exe-
cute.

-WGonly

When -WGonly is used, Assure or Guide will process the source code in all
listed source files, but neither the compiler nor linker will be executed. This
option implies the -WGkeep option.

-WG[no]openmp (Guide only)

Setting -WGnoopenmp specifies that Guide is being run for profiling purposes
only, and that OpenMP directives are to be ignored. This flag can be used along
with -WGprof to enable profiling but not OpenMP.

-WGopt=<integer>

This option sets the optimization level for OpenMP directives. Valid values are
the integers 0 through 3.

Level 0 optimization disables all directive optimizations.

Level 1 optimization attempts to remove unnecessary barrier directives from
the code.

Level 2 includes level 1 optimizations and is reserved for future use.

Level 3 includes level 1 and 2 optimizations and adds parallel region merging.

The default value is 3.
http://www.kai.com/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

,”

and

into
as
at
ed by
f

file.
than
-WGpath=<path>

This option is used to specify an alternate path to the Guide or Assure executable.
The default is determined when the KAP/Pro Toolset is installed.

-WG[no]perview (Guide only)

This option specifies whether the Guide driver uses the application management
and monitoring version of the Guide run–time library. See Chapter 9, “PerView
beginning on page 101 for a complete description of this library. The default is
-WGnoperview.

-WGprefix=<string>

The -WGprefix option changes the prefix string added to the Assure or Guide
preprocessor output files. For instance, if you specify the following:

assuref -WGprefix=qqq -WGcpp -WGkeep file1.F

the results are cppqqqfile1.f and qqqfile1.f instead of the default
cppA_file1.f and A_file1.f.

-WG[no]process

This option specifies whether Guide or Assure processes OpenMP directives
parallel code. The -WGnoprocess flag can be used to compile source code that h
already been processed by Assure or Guide or to bypass processing of files th
cannot be handled. Note that Assure may report false errors if files not process
Assure are linked with successfully processed files. See also the description o
-WG[no]openmp. The default is -WGprocess.

-WG[no]prof

Specifying -WGprof activates standard performance profiling for Vampir and
GuideView; this flag implies -WGstats. Specifying -WGnoprof disables profiling.
The default behavior is -WGnoprof.

-WGprof_leafprune=<integer>

Sets the minimum size of procedures to retain in the Vampir or GuideView pro
Guide will not instrument the entry and exit of leaf subroutines that have fewer
kappro-support@kai.com 71

6 • The KAP/Pro Drivers Alphabetical listing of Driver Options

72

:

e

r

rec-
integer lines. This scheme may significantly reduce the tracefile size and the
overhead due to subroutine instrumentation.

-WGproject_name=<file> (Assure only)
-WGpname=<file> (Assure only)
-WGprj=<file> (Assure only)

Any of these equivalent options specifies a name for the Assure project file, the
program database that Assure uses to record static information about the appli-
cation. This information is then merged with the data gathered at runtime to be
displayed by AssureView. A project file is required for applications with more
than one source file. If an application’s source files are spread over multiple
directories, then an absolute path to the project file is required, for example

-WGpname=/home/me/apps/myproject.prj

If the specified project file name does not end in the suffix .prj, it is added
automatically. By default, Assure will create a project file named assure.prj if
this option is not specified. In this mode Assure requires all source files to b
contained in one directory.

-WGsched=<type>[,<integer>]

This option specifies the default scheduling type and optional chunk size fo
C/C++ for and Fortran do directives. Its effect is as if sched-
ule(<type>[,<integer>]) were placed on every C/C++ parallel
for, for and Fortran parallel do, do that doesn’t have an explicit
schedule(…) clause. Allowed values of <type> are static , dynamic ,
guided , and runtime . Valid values of the optional <integer> chunk size
are positive integers. The default value is static, with no chunk size. For
dynamic and guided , the default chunk size is 1. See “Scheduling Options,”
beginning on page 139 for many more details.

-WGsrcdir

-WGsrcdir specifies that the preprocessor and Assure or Guide output files
should be in the same directory as the source file rather than the current di
tory.
http://www.kai.com/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

on-
xten-
-WGstatic_library

By default, Guide and Assure link using static libraries on Windows systems and
shared libraries on Unix systems. This option instructs the driver to statically link
the Guide or Assure libraries into the generated executable. See also
-WGdynamic_library and -WGdefault_library.

-WG[no]stats (Guide only)

This option specifies whether the Guide driver uses the statistics version of the
Guide run-time library. See Chapter 7, “GuideView,” beginning on page 81 for
more information on this option. The default is -WGnostats.

-WG[no]strict

This option specifies whether Guide or Assure in strict mode, in which it flags n
standard usage of OpenMP directives as errors. KAP/Pro Toolset’s OpenMP e
sions include:

• psingle, psections, and pfor are accepted as synonyms for the C/C++
single, sections, and for directives, respectively.

• The ordered clause is allowed on the sections directive and ordered
directives are allowed within section blocks.

• The lastprivate and reduction clauses are allowed on single direc-
tive.

• A default(private) clause is allowed on the parallel directive.

• The C/C++ taskq model of unstructured parallelism is enabled.

• The curly braces may be omitted for the C/C++ sections directive if it con-
tains only a single section.

• The threadprivate directive can be used with local static variables in C.

The default is -WGnostrict.

-WGuser=<string>

The -WGuser driver option allows a string to be invoked as a command on each
source file specified on the driver command line. This command is invoked after
the C-preprocessor (cpp) but before Assure or Guide source file processing. The
syntax for using the -WGuser driver option is as follows:

-WGuser=<cmd>[%_<options>][%_%i][%_<options>][%_%o]
[%_<options>]
kappro-support@kai.com 73

6 • The KAP/Pro Drivers Alphabetical listing of Driver Options

74
where <cmd> is the name of the command to be executed.

Spaces are not allowed in the command string. If a space is required then the
token %_ is used to generate a space.

The %i and %o arguments are tokens for the filenames passed to the command.
The %i refers to the input file and %o refers to output file. The order of these
tokens and the options in the command string correspond to the order of the
input/output files and options for the command to be executed. Both filename
tokens are optional and are case-insensitive. If %i is omitted, then the input file
is piped as stdin. If %o is omitted, then the stdout output is redirected to a
disk file. The output file name is created by prepending the text usrA_ or
usrG_ to the name of the file being processed by Assure or Guide, respectively.
For example, if the file being processed is named x.f, the output file would be
named usrA_x.f. This file is then passed on to Assure or Guide, respectively.

The return status of the command is checked, and success is assumed to be zero.
Failed files will not be processed further.

The table below gives the command that the driver will execute when x.f is the
file being processed.

-WGversion

When this option is present, Guide or Assure displays its version number to
stderr. A source file must be supplied on the command line for version infor-
mation to be printed.

Switch Command Executed

-WGuser=cat cat < x.f > usrG_x.f

-WGuser=cmd1%_%i cmd1 x.f > usrG_x.f

-WGuser=cmd2%_%o cmd2 usrG_x.f < x.f

-WGuser=cmd3%_%o%_%i cmd3 usrG_x.f x.f

-WGuser=cmd4%_-G cmd4 -G < x.f > usrG_x.f
http://www.kai.com/parallel/kappro

Environment Variables for Guide The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

uld
o

be
y be

rite

-

lts
left
 to
Environment Variables for Guide

The following environment variables affect the run time behavior of Guide-pro-
cessed executables. All of the standard OpenMP environment variables are also
recognized; see “OpenMP Directives,” beginning on page 111 for details.

KMP_BLOCKTIME=<integer>[<character>]

This variable specifies the number of milliseconds that the Guide libraries sho
wait after completing the execution of a parallel region before putting threads t
sleep. Use the optional character suffix s, m, h, or d to specify seconds, minutes,
hours, or days. The default value of 1000 (one second) is used if
KMP_BLOCKTIME is not specified. This default may be too large if threads will
used to execute other threaded code between parallel regions. The default ma
too small if threads are reserved solely for the use by the Guide library.

KMP_IGNORE_MPPBEG <integer>

If this environment variable is set to 1, then all explicit calls to MPPBEG and
__kmpc_begin() are ignored.

KMP_IGNORE_MPPEND <integer>

If this environment variable is set to 1, then all explicit calls to MPPEND and
__kmpc_end() are ignored.

KMP_INTERVAL <integer>[{s,m,h,d}]

By default a program that has been instrumented with Guide stats library will w
its results to the stats file (.gvs file) when the program terminates. Guide has a
control that allows performance information to be written periodically. The envi
ronment variable KMP_INTERVAL indicates the time interval that the program
waits before updating a partial stats file. For example, if KDD_INTERVAL is set to
5m, then every 5 minutes the program will update the stats file with all the resu
found during the last time interval. If no new results were found, the file will be
unchanged. Any open GuideView windows will not be updated; it is necessary
restart GuideView to see any new results.

Valid suffixes for the time interval, an integer number, are s (seconds), m (minutes),
h (hours), and d (days). The default suffix is m.
kappro-support@kai.com 75

6 • The KAP/Pro Drivers Environment Variables for Guide

76

e

ll be
l suf-

o
allel

ation
e
KMP_LIBRARY=<string>

This variable selects the Guide run time library. The three available options for
<string> are:

• serial

• turnaround

• throughput

The default value of throughput is used if KMP_LIBRARY is not specified. See
Chapter 4, “Libraries and External Routines,” beginning on page 21 for mor
information about the Guide libraries.

KMP_STACKOFFSET=<integer>[<character>]

If no suffix is specified, the value of integer is interpreted as given in bytes.
On 32-bit Microsoft Windows platforms, setting KMP_STACKOFFSET causes
each worker thread’s stack to be padded with
omp_get_thread_num*KMP_STACKOFFSET bytes, relative to the initial
stack base address. Use the optional suffix b, k, or m to specify bytes, kilobytes,
or megabytes. For Pentium 4 processors and earlier, the default value of inte-
ger is 0.

KMP_STACKSIZE=<integer>[<character>]

This variable specifies the number of bytes, kilobytes, or megabytes that wi
allocated for each parallel thread to use as its private stack. Use the optiona
fix b, k, or m to specify bytes, kilobytes, or megabytes. The default of 1m (one
megabyte) is used if KMP_STACKSIZE is not set. This default value may be to
small if many private variables are used in the parallel regions, or if the par
region calls subroutines that have many local variables.

Windows users should be aware that executables contain stack size inform
that can be modified with the “editbin” command. For example, to change th
stack size of executable program.exe to 16 megabytes, type:

editbin /STACKSIZE:16000000 program.exe

from a command prompt.

The default value for <character> is b; in this case KMP_STACKSIZE will
be set to <integer> or 8192, whichever is larger.
http://www.kai.com/parallel/kappro

Environment Variables for Assure The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

o-
the
c-
KMP_STATSCOLS <integer>

Specifies how many columns are in the Guide stats file which is produced
(guide.gvs by default) when running an executable that has been compiled with
-WGstats. The default value is 80.

KMP_STATSFILE=<file>

When this variable is used in conjunction with the guide_stats library, the statistics
report is written to the specified file. The default file name for the statistics report
file is guide.gvs.

Three metacharacter sequences can be included in the file name and will be
expanded at runtime to provide unique context-sensitive information as part of the
file name. These three metacharacter sequences are:

%H: This expands into the hostname of the machine running the parallel program.

%I: This expands into a unique numeric identifier for this execution of the pro-
gram. It is the process identifier of the program.

%P: This is replaced with the value of the OMP_NUM_THREADS environment
variable which determines the number of threads that are created by the par-
allel program.

LD_LIBRARY_PATH=<path>

This variable is used to specify an alternate path for the run time libraries. You may
need to set this variable to the directory where the guide libraries are installed when
you run your application if you compile with shared objects or use dynamic linking.

Environment Variables for Assure

The following environment variables affect the run-time behavior of Assure–pr
cessed executables. All of the standard OpenMP environment variables, with
exception of OMP_NUM_THREADS, are also recognized; see “OpenMP Dire
tives,” beginning on page 111 for details.
kappro-support@kai.com 77

6 • The KAP/Pro Drivers Environment Variables for Assure

78
KDD_OUTPUT <file>

The KDD_OUTPUT environment variable is used to specify where the output of
the simulation is stored. The .kdd extension is automatically appended to the
end of the filename if it is not specified. If not specified, the base name of this
filename is the same as the base of the .prj filename. Both the project file
(.prj) and output file (.kdd) must be specified to the AssureView viewer
when their base names do not match.

Three metacharacter sequences are defined that can be included into the file
name and expanded at runtime to provide unique context sensitive information
as part of the file name. These three metacharacter sequences are:

%H: This expands into the hostname of the machine running the parallel pro-
gram.

%I: This expands into a unique numeric identifier for this execution of the
program. It is the process identifier of the program.

%P: This expands into the value of the OMP_NUM_THREADS environment
variable.

KDD_INTERVAL <integer>[{s,m,h,d}]
KDD_DELAY <integer>[{s,m,h,d}]

By default a program that has been instrumented with Assure will write its
results to the output file (.kdd file) every fifteen minutes.

For some programs this may be too often or too seldom. Assure has two controls
that help solve this problem. The environment variable KDD_INTERVAL indi-
cates the time interval that the program waits before updating a partial results
file. For example, if KDD_INTERVAL is set to 5m, then every five minutes the
program will update the results file with all the results found during the last time
interval. If no new results were found, the file will be left unchanged. Any open
AssureView windows will not be updated; it is necessary to restart AssureView
to see any new results.

Valid suffixes for the time interval, an integer number, are s (seconds), m (min-
utes), h (hours), and d (days). If no suffix is specified, the unit of time is
assumed to be minutes.
http://www.kai.com/parallel/kappro

Environment Variables for Assure The KAP/Pro Drivers • 6

T
he

 K
A

P/
Pr

o
D

ri
ve

rs

6

-
as
.

d
is
The second control, KDD_DELAY, deals with the problem of long running programs
by letting the program run without error checking for a specified period of time.
After the period has elapsed, the program starts checking for errors on entry to the
next parallel region. This variable is also specified as a time duration. For example,
if KDD_DELAY is set to 30m, then for the first 30 minutes of the program’s execu
tion, no errors will be checked, and no errors recorded. After the 30 minutes h
elapsed, Assure will turn on error checking on entry to the next parallel region
Once error checking is enabled, the KDD_INTERVAL variable is used to determine
how often updates to the results file are to be done.

If you only want to calculate the amount of stack memory used, set KDD_DELAY to
a large number so that the program finishes before the time elapses.

KDD_MALLOC

The KDD_MALLOC environment variable is used to control how storage allocate
via malloc() calls inside parallel regions but outside worksharing constructs
treated by the Assure simulator.

To make such storage shared, set KDD_MALLOC to one of the following values:

• shared

• 1

• true

To make such storage private, set KDD_MALLOC to one of the following values:

• private

• 0

• false

The default is private for such storage. Any storage allocated in the serial part of
the program or inside a worksharing construct is always considered shared.
kappro-support@kai.com 79

6 • The KAP/Pro Drivers Preprocessor Macros

80
Preprocessor Macros

Several preprocessor macros are defined which may be useful when different
instructions should be executed depending on the guild environment. As an
example, the following lines could be inserted into your source code if some
instructions are to be executed only when compiling with Guide:

#ifdef _GUIDE

... executed only when compiling with Guide

#endif

_OPENMP

This has the form YYYYMM where YYYY is the year and MM is the month of the
OpenMP Fortran specification supported.

_GUIDE

This is defined only when compiling with Guide.

_ASSURE

This is defined only when compiling with Assure.
http://www.kai.com/parallel/kappro

Introduction GuideView • 7

G
ui

de
V

ie
w

7

at a
ks.

ls of
ant
 code
 per-

nted
o
iew
CHAPTER 7 GuideView

Introduction

GuideView is a graphical tool that presents a window into the performance details
of a program’s parallel execution. Performance anomalies can be understood
glance with the intuitive, color-coded display of parallel performance bottlenec

GuideView graphically illustrates what each processor is doing at various leve
detail by using a hierarchical summary. Statistical data are collapsed into relev
summaries that indicate where attention should be focused, i.e. regions of the
where improving local performance would have the greatest impact on overall
formance.

Using GuideView

GuideView uses as input the statistics file that is output when a Guide instrume
program is run. See “Libraries and External Routines,” beginning on page 21 t
learn how to build an instrumented executable. The syntax for invoking GuideV
is as follows:
kappro-support@kai.com 81

7 • GuideView Using Named Parallel Regions

82

ive

allel
med

guideview [<guideview_options>] <file> [<file> …]

The file arguments are the names of the statistics files created by Guide runs that
used the guide_stats library (see Chapter 4). Optional GuideView arguments are
the topic of a subsequent section.

The GuideView browser looks for a configuration file named
GVproperties.txt when it starts up. The directory search order is first in
the current directory, then in your home directory, and then in each directory in
turn that appears in your CLASSPATH environment variable setting. Using this
file you can configure several options that control fonts, colors, window sizes,
window locations, line numbering, tab expansion in source, and other features of
the GUI. Under Windows, a home directory can be specified via the HOME
environment variable.

An example initialization file is provided with your Guide installation. This
example file contains comments that explain the meaning and usage of the sup-
ported options. The example initialization file will be in

/class/example.GVproperties/

under the Guide installation directory. If the default location is different from the
installed location, then a symbolic link will be created from the default location
to the installed location if the default location is writable at install time. The eas-
iest way to use this file is to copy it and then edit the copy as needed, uncom-
menting lines you want and/or setting the options to values you prefer or need.

Detailed information about GuideView’s operation can be found in its extens
online help system, under the Help menu.

Using Named Parallel Regions

By default, parallel regions are identified only by the file that contains the
region. It is also possible to associate a specific name with one or more par
regions. Such regions are known as “named parallel regions,” or simply “na
regions.” To name a parallel region, call the external routine
kmp_set_parallel_name. This routine takes a character string name
for the region as an argument.
http://www.kai.com/parallel/kappro/

Using Named Parallel Regions GuideView • 7

G
ui

de
V

ie
w

7

Once enabled, all following parallel regions are assigned the most recently supplied
name, until named regions are disabled by a call to
kmp_set_parallel_name with an empty string. The guide_stats library
gathers performance statistics separately for each named parallel region.

A simple use of this feature is to name a parallel region of interest so that its perfor-
mance statistics can be readily located in the GuideView display. The following
program illustrates this. This approach can be extended to multiple parallel regions,
by using the same or different names. Even when multiple parallel regions have the
same name, however, their performance statistics are shown separately by Guide-
View.
kappro-support@kai.com 83

7 • GuideView Using Named Parallel Regions

84
C syntax:
#include <omp.h>
main() {
 /* The following parallel region is named

"REGION1". */
 kmp_set_parallel_name("REGION1");
 #pragma omp parallel
 work(iiter);

 /* The following parallel region is named
"REGION2". */

 kmp_set_parallel_name("REGION2");
 #pragma omp parallel
 work(jiter);

...

 /* Naming is disabled for this and subsequent
regions. */

 kmp_set_parallel_name("");
 #pragma omp parallel
 work(kiter);

}

void work(int niter) {

 int i;

 #pragma omp for private(i)
 for(i = 0; i < niter; i++) {

...

 }
}

http://www.kai.com/parallel/kappro/

Using Named Parallel Regions GuideView • 7

G
ui

de
V

ie
w

7

Fortran syntax:
program use_region_1
external kmp_set_parallel_name

...

! The following parallel region is named "REGION1"
 call kmp_set_parallel_name(’REGION1’)
 !$omp parallel
 call work(iiter)
 !$omp end parallel

...

! The following parallel region is named "REGION2".
 call kmp_set_parallel_name(’REGION2’)
 !$omp parallel
 call work(jiter)
 !$omp end parallel

...

 ! Naming is disabled for subsequent regions.
 call kmp_set_parallel_name(’’)
 !$omp parallel
 call work(kiter)
 !$omp end parallel

...

 end

 subroutine work(niter)

 !$omp do
 do i = 1, niter

...

 end do
 !$omp end do

 return
 end
kappro-support@kai.com 85

7 • GuideView Using Named Parallel Regions

86
Named regions can also be used to split the performance statistics of a parallel
region for different data sets. In the following example, the parallel region of
interest is assigned a name based upon the size of the data set. During a run, the
parallel region is executed multiple times, each time with a different data set that
activates different names for the parallel region. Performance statistics are gath-
ered separately for each range of data sizes, and the statistics are associated with
the appropriate names in the guide_stats report and GuideView display. The sep-
arate sets of statistics allow analysis of the parallel region as a function of the
data set size.

C syntax:
#include <omp.h>
main() {

 ...

 for(i = 0; i < nsizes; i++) {
 int iter = isizes[i];

 if (iter <= n1)
 kmp_set_parallel_name("FIRST BIN");
 else if (iter <= n2)
 kmp_set_parallel_name("SECOND BIN");
 else
 kmp_set_parallel_name("");

 #pragma omp parallel
 work(iter);
 }
}

http://www.kai.com/parallel/kappro/

GuideView Options GuideView • 7

G
ui

de
V

ie
w

7

Fortran syntax:
program use_region_2

 external kmp_set_parallel_name

 ..

 do i=1,nsizes

 iter = isize(i)

 if (iter .le. n1) then
 call kmp_set_parallel_name(’FIRST BIN’)
 else if (iter .le. n2) then
 call kmp_set_parallel_name(’SECOND BIN’)
 else
 call kmp_set_parallel_name(’’)
 end if

 !$omp parallel
 call work(iter)
 !$omp end parallel

 end do

 end

GuideView Options

-mhz=<integer>

The -mhz=<integer> option denotes the processor rate in MHz for the machine
used for calculating statistics.

-ovh=<file>

The -ovh=<file> specifies an overheads file for the input statistics file. There are
small overheads that exist in the GuideView library. These overheads can be mea-
sured in terms of the number of cycles for each library call or event. You can over-
ride the default values to get more accurate overhead values for your machine by
using the -ovh=<file> option to create a file that contains machine-specific values.
kappro-support@kai.com 87

7 • GuideView Java Options

88
An example overheads file is provided with your Guide installation. This exam-
ple file contains comments that explain the meaning and usage of the supported
options. This example file resides in

/class/guide.ovh/

under the Guide installation directory.

-jpath=<file>

The -jpath=<file> option specifies the path to an alternate Java interpreter. This
can be used to override the Java virtual machine selected at installation or to
provide a path to the Java virtual machine if none was selected during installa-
tion.

-WJ,[java_option]

The GuideView GUI is implemented in Java. The -WJ flag prefixes any Java
option that should be passed to the Java interpreter. Any valid Java interpreter
option may be used. However, the options listed in the next section may be par-
ticularly beneficial when used with GuideView to enhance the performance of
the GUI.

Java Options

The -WJ flag must prefix Java options. For example, to pass the -ms5m option
to the Java interpreter, use -WJ,-ms5m.

-ms<integer>[{k,m}]

The -ms option specifies how much memory is allocated for the heap when the
interpreter starts up. The initial memory is specified either in bytes, kilobytes
(with the suffix k), or megabytes (with the suffix m). For example, to specify
one megabyte, use -ms1m.
http://www.kai.com/parallel/kappro/

Measuring OpenMP Overhead GuideView • 7

G
ui

de
V

ie
w

7

-mx<integer>[{k,m}]

The -mx option specifies the maximum heap size the interpreter will use for
dynamically allocated objects. The maximum heap size is specified either in bytes,
kilobytes (with the suffix k), or megabytes (with the suffix m). For example, to
specify two megabytes, use -mx2m.

-nojit
-Djava.compiler=none

The -nojit or -Djava.compiler=none option disables the Java just-in-time com-
piler. This Java feature can sometimes lead to incorrect Java behavior. Use
-WJ,-nojit or -WJ,-Djava.compiler=none to disable the just-in-time compiler if
you experience problems with either the GuideView or AssureView GUI.

Measuring OpenMP Overhead

The following table demonstrates the amount of time expended for OpenMP direc-
tives compared to a null call for a typical microprocessor based SMP. A null call is
a call to an empty function.

C/C++ syntax:
void null(){};

Fortran syntax:
subroutine null
return
end

As shown in the table below, it took about ten cycles to call the null function. A
barrier construct is about ten times slower for one processor, and about 70 times
slower for two processors.
kappro-support@kai.com 89

7 • GuideView Measuring OpenMP Overhead

90

Guide Construct X es

function call

barrier 0

single 0

critical section 0

parallel region 0
The program to produce this information is included in your Guide distribution.
Please run it to calibrate your particular environment. You can use this informa-
tion to determine the relative costs of various Guide constructs.

This information can be used to draw the following general conclusions:

• A barrier statement is 30 to 50 percent less expensive than a parallel
region.

• barriers and singles have roughly the same overhead.

After two processors, all the costs follow a nearly linear pattern as you add pro-
cessors.

Typical Overhead

1 processor 2 processor 3 processor 4 processor

 null call cycles X null call cycles X null call cycles X null call cycl

1 10 1 10 1 10 1 10

10 100 70 700 90 900 100 100

20 200 90 900 110 1100 130 130

30 300 70 700 150 1500 210 210

50 500 190 1900 220 2200 280 280
http://www.kai.com/parallel/kappro/

Introduction AssureView • 8

eV
ie

w
8

CHAPTER 8 AssureView

Introduction

AssureView displays the results of Assure instrumentation by using the project file
information produced by Assure and the simulation output produced by running the
Assure-compiled program. The results can be viewed via the AssureView Graphi-
cal User Interface (GUI) or as text output.

The AssureView output describes all the errors identified by Assure and pinpoints
their exact locations in the source code. The AssureView GUI allows you to browse
the errors associated with each parallel construct and to view the corresponding
offending locations in the source code.

Documentation for the features and usage of the GUI is available within the GUI
itself, under the Help menu on the menu bar.
kappro-support@kai.com 91

A
ss

ur

8 • AssureView Using AssureView

92

 If

-
ro-
use
ings,
Using AssureView

AssureView takes as its primary arguments a project file (.prj suffix) and a
simulation output file (.kdd suffix) from Assure. By default, AssureView out-
put is displayed via the GUI. If the -txt option is used, text output is produced on
the standard output instead. When the GUI is used, AssureView also produces
an AssureView GUI Input file (.agi suffix) that may be used subsequently with
the AssureView GUI in place of the project and simulation output files.

Several aspects of the AssureView browser, such as fonts, window size, window
location, line numbering in source, etc... can be configured by using an initial-
ization file. This file is named .assureviewrc on Unix systems or
assure.ini on Windows systems. AssureView looks for the configuration
file, in order, in the current directory, in your home directory, and in the directo-
ries listed in the CLASSPATH environment variable.

This capability of reading initialization files is included primarily for backwards
compatibility; most, if not all, of these options can be controlled by the Prefer-
ences menu in the GUI (see “How to Use the GUI” on page 94).

An example of the configuration file is provided with the Assure installation.
Assure is installed in directory <install-dir> on your machine, the exam-
ple file that explains the options available will be in

<install-dir>/class/example.assureviewrc.

The default location for this example configuration file is in the directory:

/usr/local/KAI/assure40/class/example.assureviewrc

on Unix and

C:\kai\assure40\class\example.assureviewrc

on Windows.

If the install location on Unix is different from the default location, then a sym
bolic link will be created from the default location to the installed location, p
viding that the default location is writable at install time. The easiest way to
this file is to copy it to a new file, and then edit it as needed. To change sett
uncomment the desired lines and set the options to preferred values.
http://www.kai.com/parallel/kappro/

AssureView GUI Elements AssureView • 8

eV
ie

w
8

o

I

The following examples show the most common ways of invoking AssureView:

assureview

When AssureView is run with no arguments, it uses the default project
name, assure.prj, and the default run file, assure.kdd, in the
current directory. The results are displayed using the AssureView GUI.
This produces an assure.agi file that can be used with a subsequent
“assureview -agi=assure” command.

assureview -txt
Run AssureView when Assure was run on a single-file program and n
-WGpname= was specified to Assure. Output the results as text to the
standard output.

assureview myprogram

Run AssureView when Assure was run on a multi-file program with
-WGpname=myprogram specified to Assure. Use the AssureView GU
to display the results. This produces a myprogram.agi file that can be
used with a subsequent “assureview -agi=myprogram” command.

assureview <path_to_project_file>/myprogram.prj

Run AssureView when the project file is located in a different directory
than the directory in which the program was run. AssureView will read
the run data from the file myprogram.kdd, located in the current
directory. This also produces a myprogram.agi file.

assureview <path1>/myprogram.prj
<path2>/myprogram.kdd

Run AssureView with a specific project file and specific run data file.

AssureView GUI Elements

The AssureView GUI displays the following types of information in its various
windows:

• A main error list that summarizes and displays errors found in a program by
Assure.

• Graphs that display error counts by location in a program.
kappro-support@kai.com 93

A
ss

ur

8 • AssureView How to Use the GUI

94

dow.

e’s
alled
ber

ub-
• Source code display windows (accessible by selecting a particular error in
the error list) that display the source location(s) associated with a selected
error.

• A whole-program dynamic call tree display (accessible from the Windows
menu).

• Windows that display the dynamic call sequences (call stack) made to arrive
at particular source code locations in source code display windows.

• Windows that allow searching for strings in the error list and in source code.

How to Use the GUI

Start the GUI by invoking AssureView with options other than -txt or -nogui. If
any errors were found by Assure, the main error list is displayed to summarize
these errors and their locations. Lines in the error list are marked with red octa-
gons for serious errors, orange diamonds for less serious cautions, yellow trian-
gles for warning conditions, and green check marks for areas where no errors
occurred. Clicking on one of these errors causes the source code location(s)
associated with that error to be shown in source code display window(s) with the
same red, orange, and yellow markings on the offending lines. Errors are
grouped in the error list according to the parallel construct in which they
occurred.

The colored graphs at the bottom of the window display the number of errors,
cautions, and warnings for constructs that were run. Constructs that were not run
are also identified in blue. Clicking on a graph will highlight the list of errors
associated with that construct. A separate panel shows graphs for program wide
problems, such as insufficient stack space.

From a source code display window, the dynamic subroutine call sequence that
occurred to arrive at the displayed point in the source code can be seen by press-
ing the “Show Stack” button. Clicking on one of the calls in this display will
cause the location of that call to be displayed in the source code display win

The “CallTree” option in the Windows menu causes the whole-program
dynamic call tree to be displayed. At a given level of this display, a subroutin
name can be seen; below this name, a list of all the subroutines that were c
from this calling subroutine will be displayed, each preceded by the line num
in the calling subroutine. An icon on each line gives the depth (number of s
http://www.kai.com/parallel/kappro/

How to Use the GUI AssureView • 8

eV
ie

w
8

 sub-
line
ed

l par-
n or

in
is-

rse

les,
fix
 if
.

s
ions

s of

able
y

l
-

sure-

idden.
routines) in the call tree below that line. For instance, an “8” icon on a line for a
subroutine indicates eight more levels of subroutines in the call tree below that
routine; a “>” icon indicates that there are more than nine levels. Clicking on a
in this display will cause the location of that subroutine or call site to be display
in a source code display window. The call tree also displays the locations of al
allel constructs encountered during the run. Individual constructs can be show
hidden via toggle buttons located at the bottom of the window.

The Search menu and the “Go Search” button bring up windows that allow
searches of the error list and source code display windows to be performed.

The Print menu and the “Printer” button on the toolbar allow you to print the ma
error list or the call tree information to a printer or to a file. Individual call stack d
plays can also be printed.

The Preferences menu controls many aspects of AssureView. You can specify te
or verbose messages, whether to number source lines, how searching works,
appearance (look-and-feel), fonts, colors, search directories for source code fi
and other preferences. If you choose to save these preferences, a file with suf
“.opt” is created in the current directory. Copy this file to your home directory
you want these saved preferences to be used every time you use AssureView

An option exists to operate the GUI in a low-memory mode (which typically run
more slowly) when examining data from particularly large programs. These opt
are further explained within the online Help menu. While AssureView still sup-
ports an initialization file, the Preferences menu offers a broader set of options.

When working with AssureView, you may want to ignore or hide certain classe
error messages. The Preferences menu option “Hiding Errors” allows you to hide
errors based upon their priority, their type, or upon rules you create. Also avail
on the toolbar is an “Eye” (Hide Error) button. Clicking this button automaticall
creates a new rule to hide the currently selected error message.

Low Priority Errors occur when the semantics of the parallel program and seria
program differ, but Assure has determined that the difference likely is not a pro
gramming error. Such errors can occur, for example, in parallel reductions. As
View flags these messages as “Low Priority”, and hides them by default.

Custom rules consist of one or more “clauses” logically ANDed with each other. If
an error message satisfies all the clauses in a rule, then that message will be h
Each “clause” compares an object to a string via a comparison function.
kappro-support@kai.com 95

A
ss

ur

8 • AssureView How to Use the GUI

96

ol-
Objects include:

• error message text

• source or sink routine name

• source or sink file name

• line numbers

Comparison functions include:

• is

• is not

• starts with

• ends with

• does not start with

• does not end with

• contains

• does not contain

• equals

• does not equal

• is greater than

• is less than

Some examples of rules you can create are:

• Don’t show an error if it is in file notMyFile.f

• Only show errors that are in file currentTask.c

• Don’t show errors that refer to (contain) variable notMyProblem

• Don’t show errors of a particular type (for example, a message that contains
the string “inconsistent size”)

• Don’t show errors from lines 200 through 350 of file worksOk.c of type
“READ->WRITE”.

Rules can be deactivated and reactivated via a checkmark in the “Active” c
umn of the rules display.
http://www.kai.com/parallel/kappro/

AssureView Options AssureView • 8

eV
ie

w
8

r-

ods.

ced
n

 The

d are
 and
y be
 the

tput,
The Reorder menu allows you to sort the errors within each program construct.
Errors can be sorted by error message text, symbol name, or subroutine name. The
Options menu lets you control several aspects of the GUI operation and appear-
ance. Please see the Help menu for a detailed explanation of these options.

AssureView Options

The command line options listed below are recognized by AssureView. Each option
should be preceded by the “-” character (Windows users can also use the “/” cha
acter).

-? or -h

Display a summary of AssureView command line options and invocation meth

-agi=<file>

The -agi option specifies the name of the AssureView text file, which was produ
by a previous AssureView GUI invocation, to be used as input to AssureView i
place of project and simulation output files.

-[no]gui

The -nogui option is used to process a .prj file and a .kdd file to create an .agi
file but without viewing the .agi results with the GUI. The results in the .agi
file can then be viewed later with AssureView (the .prj and .kdd files are no
longer needed; use the AssureView -agi= option to invoke the GUI). The -gui
option specifies that results should be displayed by using the AssureView GUI.
default is -gui.

-prefix=<remove>:<add>

The paths to the source files processed by Assure are known to AssureView an
displayed in the output. In some circumstances, such as when running Assure
AssureView on different machines, or when using networked filesystems, it ma
necessary to modify this path information in order to allow AssureView to reach
source files. The -prefix option stipulates that the <remove> string, if specified, is
to be deleted from the head of the path names displayed in the AssureView ou
kappro-support@kai.com 97

A
ss

ur

8 • AssureView AssureView Options

98

e

ut to
om-

le is

 typi-

tego-
and then that the <add> string, if specified, is to be prepended to the (resulting)
path names. This mechanism provides a way to remove, add, or edit path infor-
mation. Either <remove> or <add> can be omitted.

-project_name=<file>
-prj=<file>

This option specifies the name of the project file to be used as input to Assure-
View (see “Using AssureView” on page 92). If no such option is specified, th
first file specified on the command line is used as the project file (a .prj exten-
sion is appended if the filename does not already have this extension). If no
project file is specified, the default project filename assure.prj is used.

-run_data=<file>
-kdd=<file>

This option specifies the name of the simulation output file to be used as inp
AssureView. If no such option is specified, the second file specified on the c
mand line is used as the simulation output file (a .kdd extension is appended if
the filename does not already have this extension). If no simulation output fi
specified, a default filename based on the project filename is used.

-[no]suppress

Certain messages are normally not displayed by AssureView because they
cally do not cause errors during parallel execution; the -nosuppress setting
causes these messages to be displayed. The messages fall into several ca
ries:

• Properly synchronized, unordered variable references that would have
caused storage conflicts had they not been synchronized. While these refer-
ences are not errors, not employing ORDERED synchronization might cause
the results of parallel runs to differ from those of serial runs because of vary-
ing roundoff behavior.

• Properly synchronized, unordered I/O operations inside of parallel con-
structs. While these references are not errors, not employing ORDERED syn-
chronization might cause the I/O behavior of parallel runs to differ from that
of serial runs.
http://www.kai.com/parallel/kappro/

JAVA Options AssureView • 8

eV
ie

w
8

• Variable references for local reductions that would otherwise cause errors. In
most cases, these messages are due to reductions that have been coded by using
the REDUCTION clause of a C/C++ PARALLEL FOR or Fortran PARALLEL
DO or by using local reduction variables and correctly synchronized updates of a
global result variable.

The default is -suppress.

-txt

The -txt option specifies that results should be displayed as text on the standard out-
put.

-WJ,[java_option]

The AssureView GUI is implemented in JAVA. The -WJ flag prefixes any speci-
fied JAVA option. The JAVA options are passed to the JAVA interpreter. Any valid
JAVA interpreter option may be used. However, the options listed below may be
particularly beneficial when used with AssureView to enhance the performance of
the GUI.

JAVA Options

The -WJ flag must prefix any specified JAVA option. For example, to pass the
-ms5m option to the JAVA interpreter, use -WJ,-ms5m.

-ms<integer>[{k,m}]

The -ms option specifies how much memory is allocated for the heap when the
interpreter starts up. The initial memory is specified either in bytes, kilobytes (with
the suffix k), or megabytes (with the suffix m). For example, to specify one mega-
byte, use -ms1m.

-mx<integer>[{k,m}]

The -mx option specifies the maximum heap size the interpreter will use for
dynamically allocated objects. The maximum heap size is specified either in bytes,
kilobytes (with the suffix k), or megabytes (with the suffix m). For example, to
specify twenty megabytes, use -mx20m.
kappro-support@kai.com 99

A
ss

ur

8 • AssureView JAVA Options

100

em-

-

UI.
You should use this option to increase the heap size if you receive “Out of M
ory” messages when running AssureView.

-nojit
-Djava.compiler=none

The -nojit or -Djava.compiler=none option disables the Java just-in-time com
piler. This Java feature can sometimes lead to incorrect Java behavior. Use
-WJ,-nojit or -WJ,-Djava.compiler=none to disable the just-in-time compiler
if you experience problems with the either the Assure View or GuideView G
http://www.kai.com/parallel/kappro/

Introduction PerView • 9

Pe
rV

ie
w

9

tion,

om-
CHAPTER 9 PerView

Introduction

PerView is an interactive parallel performance monitoring and management tool.
With PerView, users of your application can remotely monitor parallel performance
and application progress, modify the number of threads, switch between dynamic
and static thread count, and pause or abort parallel applications.

Enabling the PerView Server

PerView makes its capabilities available through the use of a web server embedded
in the parallel application. By default, Guide does not include the PerView server in
your application. Its functionality is only included when specifically requested.

Including the PerView server in your application is as simple as relinking your
application with the guide_perview library, introduced in “Libraries and External
Routines,” beginning on page 21. To embed the PerView server in your applica
add the -WGperview flag when linking with the Guide driver. For example, to
build a PerView-enabled Fortran application on Windows issue the following c
mands (guidef can be replaced by guidec for a C application):
kappro-support@kai.com 101

9 • PerView PerView Environment Variables

102

y
-

 URL

guidef -compile_only main.for
guidef -WGperview main.obj

You may need to add other libraries when linking manually, since PerView
requires network functions often not included in the standard C library. To see
the libraries required on your system, inspect the output of the following com-
mand:

guidef -compile_only main.for
link main.obj guide_perview.lib kweb.lib wsock32.lib

PerView Environment Variables

Several environment variables influence the behavior of PerView; they are listed
below:

KMP_HTTP_PORT=<port>

This variable specifies the network port on which the server will listen. It should
be a positive integer larger than 1024. If KMP_HTTP_PORT has value 0 or is
unspecified, the PerView server is disabled. This is the default.

KMP_HTTP_HOME=<path>

In addition to its built-in documents, the PerView server can serve documents
out of a “public_html” directory. This variable specifies the top-level director
that contains the public_html directory. The default value is the current direc
tory, “.”, so files in ./public_html will be available through the server. If
you specify a valid directory path, the PerView server will instead serve files
from <path>/public_html.

Documents located in and below the public_html directory are accessible
via a standard Web browser, such as Netscape or Internet Explorer, via the
“http://<host>:<port>/”. Use the following URL instead if a password
is specified using KMP_HTTP_ACCESS:
“http://<host>:<port>/cgi-pwd/<password>/”. You may need to
use the full machine name for <host>.

To disable this feature, set KMP_HTTP_HOME=/dev/null or any non-exis-
tent directory.
http://www.kai.com/parallel/kappro/

Security PerView • 9

Pe
rV

ie
w

9

KMP_HTTP_ACCESS=<password>

Using this variable, you can limit access to a running parallel application to those
who know the password given in <password>. The password is an arbitrary
string containing no white space characters.

Security

The PerView server provides an access control mechanism, which limits unautho-
rized access to your parallel application at run-time. Access control is specified via
the KMP_HTTP_ACCESS environment variable, the value of which behaves like a
password. This variable can take on any string value, but the string should contain
no white space. The value of KMP_HTTP_ACCESS is read once upon application
execution, and the PerView server requires any connecting PerView client know
this value.

If KMP_HTTP_ACCESS is not specified, the server disables access control, and cli-
ents can communicate without a password. This is the default.

Running with PerView

Using PerView is a two-step process. First, a PerView enabled parallel application
is run, which listens for PerView client requests. During the execution of the paral-
lel application, one or more PerView clients can connect to the server to remotely
monitor the application.

The server and client applications can be run on the same or different hosts.

Starting the Server

The server starts when the application begins running if the environment variable
KMP_HTTP_PORT is set. If this variable is unset when the application starts, the
server becomes inactive for the duration of the run. Normally, the PerView server
serves documents from and below a top-level directory. This top-level directory is
specified via the KMP_HTTP_HOME environment variable.
kappro-support@kai.com 103

9 • PerView Running with PerView

104

red

, to
Starting the Client

The PerView client, or simply PerView, communicates with the server in the
application via a network connection, specified by two values: a host name and
a port number. The correct password must also be used if the
KMP_HTTP_ACCESS variable was set before running the application.

To start the PerView client, type:

perview <host> <port>

or

perview <host> <port> <password>

The following Fortran example illustrates the use of PerView on two machines,
named “server” and “desktop”. The application runs on server but is monito
from desktop:

Unix syntax:
server % guidef77 -o mondo mondo.f -WGperview
server % setenv KMP_HTTP_PORT 8000
server % setenv KMP_HTTP_ACCESS secret
server % ./mondo

desktop % perview server 8000 secret

Windows syntax:
server C: guidef /exe:mondo.exe mondo.f /WGperview
server C: set KMP_HTTP_PORT=8000
server C: set KMP_HTTP_ACCESS=secret
server C: mondo.exe

desktop % perview server 8000 secret

Multiple clients can simultaneously communicate with each PerView server
allow monitoring from more than one location.
http://www.kai.com/parallel/kappro/

Using PerView PerView • 9

Pe
rV

ie
w

9dis-

ted
nMP
ad.
 into
erial
ctive
Using PerView

Once PerView has started and has connected to the server, it presents its main
screen, shown in Figure 9-1. The PerView interface consists of two “views” of
plays and controls, selectable by the tabs labeled Performance and Controls.

Figure 9-1

Performance

The Performance view consists of three panels, displaying thread states, projec
speedup, and progress. The thread states panel shows the state of each Ope
thread present in the application, by displaying one stacked bar graph per thre
The height of the bar represents 100% of each thread’s time. The bar is divided
time spent doing productive work (green), time lost to parallel overheads and s
waiting time (red), and time lost due to excess load on the machine (blue). Ina
threads are shown in gray.
kappro-support@kai.com 105

9 • PerView Using PerView

106

ed
ss

e

xam-
PerView uses this thread state data to estimate the parallel speedup of the appli-
cation. This instantaneous speedup estimate is plotted, along with its time-aver-
aged value and the thread count, in the center panel. PerView contacts the server
at regular intervals to obtain new data. Each data set is one sample, and the
speedup graph is plotted in terms of these samples.

The bottom panel displays the progress of the application. By default, only the
elapsed time since the beginning of the application run is shown here. With the
application’s cooperation, however, PerView can display a percent complet
graph, a string representing progress, or a convergence graph. See “Progre
Data” on page 108 for details.

Controls

Using the Controls panel shown in Figure 9-2 you can modify the parallel
behavior of the application to respond to changing conditions on the machin
where it is running.

Figure 9-2

You might reduce the number of threads being used by an application, for e
ple, to make room for another application to start. To adjust the number of
threads, click on the up and down arrows in the Processor Utilization group to
http://www.kai.com/parallel/kappro/

Using PerView PerView • 9

Pe
rV

ie
w

9

nnec-

lica-

.
rk

 for
set the desired number of threads. To allow an application to monitor and automati-
cally adjust its own thread count, select Use up to N threads in the top panel.

To temporarily suspend the application, click on Pause in the Program Controls
group. The button text changes to Resume once the application has been paused.
When the Resume button is pressed, the application resumes processing.

The Abort… button can be used to prematurely terminate the application.

The Perview Settings group contains a sampling interval control. This specifies
how frequently PerView contacts the server for new data. To change the sampling
interval type to a new, positive integer, then press Apply.

Status Bar

The bottom of the PerView window contains a status bar, shown in Figure 9-3. The
icons in the status bar summarize the state of the application and PerView’s co
tion to it.

Figure 9-3

The application status icon uses familiar symbols to represent whether the app
tion is running (), paused (), or complete ().

The connection icon indicates whether PerView is connected to the application
When the connection is broken, whether due to application completion, netwo
failure, or application failure, the icon is obscured by a large, red X.

The dynamic threads icon indicates with an “S” or “D”, respectively, whether the
application’s thread count is static (fixed) or dynamic (variable).

Minimal Monitor

The rightmost icon on the status bar is the minimize button. Clicking this button
replaces the PerView screen with a minimal view, shown in Figure 9-4, suitable
general performance monitoring.
kappro-support@kai.com 107

9 • PerView Progress Data

108

ts
i-
 on
.

nd
n
l.
 or

llow
rob-

im-
-Y
ply
Figure 9-4

This view consists of a colored button, surrounded by a “marching” segmen
performance display. The colored button shows the current value of the est
mated speedup in its center. The button is green, yellow, or red, depending
the value of the estimated speedup, relative to the number of threads in use

The marching display consists of colored rays, emanating from the button a
representing the time history of the button’s color. Using this display, you ca
get recent performance information at a glance. An all green display is idea
Occasional yellow or red rays are normal, but a display dominated by yellow
red usually requires attention. Green indicates good projected speedup, ye
represents marginal performance, and red indicates parallel performance p
lems.

Click on the colored button to return to the detailed view and, if necessary,
adjust the processor utilization.

Progress Data

By default, PerView displays the elapsed time in the bottom panel of the Perfor-
mance view. This area, however, is provided for you to communicate more
detailed information about your application’s progress to the user. Using a s
ple API, you can enable a progress meter, showing percent complete, an X
graph, showing the evolution of a convergence variable or other data, or sim
display a string, representing the current phase of the computation.
http://www.kai.com/parallel/kappro/

Progress Data PerView • 9

Pe
rV

ie
w

9

Progress Bar

The progress bar is automatically displayed in PerView when you provide progress
information to the PerView server via the kwebc_set_meter (C/C++) or
kweb_set_meter (Fortran) library routine. The interface to this routine is:

C/C++ syntax:
void kwebc_set_meter(char* meter_name, int icurrent,

int istart, int iend);

Fortran syntax:
call kweb_set_meter(meter_name,icurrent,istart,iend)

Meter_name is a string value used to label this meter. It is unused at this time.

icurrent, istart, and iend are integer values, representing the current,
beginning, and ending values of a computation, such as a time-stepping loop.

The progress bar computes percent complete as
(icurrent-istart)/(iend-istart).

The PerView client computes a percentage complete from these values and displays
it in a progress meter.

Progress Graph

The progress graph is automatically displayed in PerView when you provide
progress information to the PerView server via the kwebc_set_residual
(C/C++) or kweb_set_residual (Fortran) library routine. The interface to this
routine is:

C/C++ syntax:
void kwebc_set_residual(char* meter_name, int

current, int ymin, int ymax);

Fortran syntax:
call kweb_set_residual(meter_name, current, ymin,

ymax)

Meter_name is a string value used to label this meter. It is unused at this time.

current is a double precision value representing the data to be plotted as a func-
tion of time.
kappro-support@kai.com 109

9 • PerView Progress Data

110
ymin and ymax are double precision values representing initial minimum and
maximum Y coordinate limits for the graph.

Progress String

The progress string is automatically displayed in PerView when you provide
progress information to the PerView server via the kwebc_set_string
(C/C++) or kweb_set_string (Fortran) library routine. The interface to this
routine is:

C/C++ syntax:
void kwebc_set_string(char* meter_name, char*

current_phase);

Fortran syntax:
call kweb_set_string(meter_name, current_phase)

meter_name is a string value used to label this meter. It is unused at this time.

current_phase is a string value used to describe the current state of the
application. It could be used, for example, to present the major phases of a com-
putation, such as problem setup, solution, and I/O.

Extending PerView

Both the PerView server and client are extensible, to allow application-specific
data and displays. Please contact us at kappro-support@kai.com for more infor-
mation.
http://www.kai.com/parallel/kappro/

Introduction OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

t be
t be

ts

nted
rsion
e at
APPENDIX A OpenMP Directives

Introduction

The KAP/Pro Toolset uses OpenMP directives to support a single level of parallel-
ism. Each directive begins with *omp, comp, or !$omp in Fortran and
#pragma omp in C/C++. The Fortran directives are not case-sensitive. The
!$omp sentinel can be used in either free or fixed Fortran source, whereas the other
sentinels are only allowed in fixed source mode. For the sake of clarity we will use
the !$omp form in examples and when describing the syntax. When a Fortran
directive is continued on subsequent lines, each additional line begins with
!$omp&; continuation in C/C++ is accomplished by using the standard backslash
at the end of a line. Comments may be appended to the end of Fortran directive
lines by using a “!” character; otherwise OpenMP directives and clauses can no
interleaved with comments or executable code. Several Fortran directives mus
paired (directive and end directive); in some cases the end directive statement is
optional. In this manual, items that are optional are enclosed in square bracke
([]).

The syntax of the OpenMP directives accepted by the KAP/Pro Toolset is prese
below. These directives are a superset of the OpenMP C/C++ Specification ve
1.0 and OpenMP Fortran specification version 2.0. More information is availabl
the OpenMP website “http://www.openmp.org”.
kappro-support@kai.com 111

A • OpenMP Directives Parallel Directive

112
Many of the directives in this chapter include a reference to a <structured-
block> in their description. A structured block is a sequence of statements that
has a single entry point and a single exit point. No sequence is a structured block
if there is a jump into or out of that sequence (including a call to longjmp() or
a use of throw; however a call to exit is permitted). As another example,
Fortran goto statements and labeled statements may not be included in struc-
tured blocks unless both the goto and its corresponding labeled statement are
both contained within the sequence of statements which comprise the structured
block. A compound statement is a structured block in C/C++ if its execution
always begins at the opening curly brace and always ends at the closing curly
brace. An expression statement, selection statement, or iteration statement is a
structured block if the corresponding statement obtained by enclosing it in curly
braces would be a structured block. For example, jump statements and labeled
statements are not structured blocks.

Parallel Directive

parallel

The parallel directive defines a parallel region.

C/C++ syntax:
#pragma omp parallel [<clause> [<clause>] ...]
 <structured-block>

where <clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
reduction (<operator> : <list>)
copyin (<list>)

Fortran syntax:
!$!$omp parallel [<clause> [[,] <clause>] ...]
 <structured-block>
!$omp end parallel

where <clause> is one of the following:

if (<scalar-logical-expression>)
http://www.kai.com/parallel/kappro/

Worksharing Directives OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

rk-

n

e,
 exe-
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
copyin (<list>)
num_threads (<scalar-integer-expression>)

When the logical if clause exists, the <scalar-logical-expression> is
evaluated at run time. If the logical expression evaluates to false (0 in C/C++,
.false. in Fortran) then all of the code in the parallel region is executed by a
team of one thread. If the logical expression evaluates to true (non-zero in
C/C++, .true. in Fortran) then the code in the parallel region may be executed
by a team of multiple threads.

When the num_threads clause exists, the <scalar-integer-expres-
sion> is evaluated at run time, and a team of the specified number of threads is
created to execute the code in the parallel region.

When a parallel region is encountered in the dynamic scope of another parallel
region, the inner parallel region is executed using a team of one thread. The remain-
ing clauses are described in “Data Scope Attribute Clauses” on page 133.

Work within a parallel region is divided up among the threads by means of wo
sharing directives.

Worksharing Directives

for (C/C++) and do (Fortran)

The C/C++ for pragma and Fortran do directive state that the next statement is a
iterative loop which will be executed using multiple threads. If the directive is
encountered in the execution of the program while a parallel region is not activ
then the directive does not cause work to be distributed, and the entire loop is
cuted by the thread that encounters this construct.

C/C++ syntax:
#pragma omp for [<clause> [<clause>] ...]
 <for-loop>
kappro-support@kai.com 113

A • OpenMP Directives Worksharing Directives

114
where <clause> is one of the following:

schedule (<type>[, <chunk-size>])
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered
nowait

and the <for-loop> header is restricted to have the following form:

for (<var> = <lb>; <var> <logic-op> <ub>; <incr-expr>)

where <var> is a signed integer variable that must not be modified in the body
of the for loop;

<logic-op> is one of <, <=, >, or >= ; and

<incr-expr> is one of the following:

++<var>
<var>++
--<var>
<var>--
<var> += <incr>
<var> -= <incr>
<var> = <var> + <incr>
<var> = <incr> + <var>
<var> = <var> - <incr>

<lb>, <ub>, and <incr> are loop invariant integer expressions for lower
bound, upper bound, and loop increment, respectively. Any side effects from
these expressions may produce indeterminate results.

Fortran syntax:
!$omp do [<clause> [[,] <clause>] ...]
 <do-loop>
[!$omp end do [nowait]]

where <clause> is one of the following:

schedule (<type>[, <chunk-size>])
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
ordered
http://www.kai.com/parallel/kappro/

Worksharing Directives OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A
dif-

ral-
and
A few words are in order regarding the end do directive in Fortran. The end do is
optional. Without the nowait clause, all threads that reach the end of the loop will
wait until all iterations have been completed. Therefore, the end do directive with-
out the nowait clause has no effect, and the end of the do directive is marked by
the end of the do loop. Specifying the end do nowait directive allows early fin-
ishing threads to execute code within the parallel region that follows the loop. If the
end do directive is used, no statements or directives may appear between the last
statement of the do loop and the end do directive.

The schedule clause is described in more detail in “Scheduling Options” on
page 139. The ordered clause is described on page 129.

sections

The sections directive delineates sections of code that can be executed on
ferent threads. Each parallel section except the first must be preceded by the sec-
tion directive in Fortran or enclosed by the section pragma in C/C++. If the
sections directive is encountered in the execution of the program while a pa
lel region is not active then the directives do not cause work to be distributed,
all the enclosed section structured blocks are executed sequentially on the
thread that encounters this construct.

C/C++ syntax:
#pragma omp sections [<clause> [<clause>] ...]
{
[#pragma omp section]
 <structured-block>
[#pragma omp section
 <structured-block>
 .
 .
 .]
}

or,

#pragma omp sections [<clause> [<clause>] ...]
 <structured-block>

where <clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered
kappro-support@kai.com 115

A • OpenMP Directives Worksharing Directives

116
nowait

Fortran syntax:
!$omp sections [<clause> [[,] <clause>] ...]
[!$omp section]
 <structured-block>
[!$omp section
 <structured-block>
.
.
.]
!$omp end sections [nowait]

where <clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
ordered

The ordered clause on OpenMP sections is a KAP/Pro Toolset extension
and is described on page 129.

single

The single directive defines a section of code where exactly one thread is
allowed to execute the code.

C/C++ syntax:
#pragma omp single [<clause> [<clause>] ...]
 <structured-block>

where <clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
nowait

Fortran syntax:
!$omp single [<clause> [[,] <clause>] ...]
 <structured-block>
!$omp end single [<end-single-modifier>]

where <clause> is one of the following:

private (<list>)
http://www.kai.com/parallel/kappro/

Workqueuing Pragmas in C/C++ OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)

and <end-single-modifier> is one of the following (but not both):

nowait
copyprivate (<list>) [[,] copyprivate(<list>) ...]

The first arriving thread is allowed to execute the <structured-block> of
code following the single directive. Other threads wait until this thread has fin-
ished the section of code, then all continue executing with the statement after the
single block. If the nowait clause is present, threads not executing the
<structured-block> do not wait, but instead immediately begin execution of
the statement following the construct.

The copyprivate clause copies listed private values computed within the sin-
gle construct to all other threads. It is an alternative to using a shared variable for
the value, or pointer association, and is useful when providing such a shared vari-
able would be difficult (for example, in a recursion requiring a different variable at
each level). The names of any common blocks appearing in <list> must have
their names enclosed in slashes. Any variables appearing <list> in must not
appear in a PRIVATE, FIRSTPRIVATE or LASTPRIVATE clause for the SIN-
GLE construct.

The lastprivate and reduction clauses on OpenMP single are KAP/Pro
Toolset extensions.

Workqueuing Pragmas in C/C++

While the OpenMP worksharing constructs (for, sections, single) are use-
ful for single loops and statically defined parallel sections, they cannot easily han-
dle the more general cases of recursive and list structured data and complicated
control structures. The KAP/Pro Toolset addresses this limitation by introducing
the concept of workqueuing. The workqueuing constructs are only available to
C/C++ codes.

Workqueuing is a new construct type that supplements the existing OpenMP con-
struct types (parallel, worksharing, and synchronization). Workqueuing constructs
kappro-support@kai.com 117

A • OpenMP Directives Workqueuing Pragmas in C/C++

118
are similar to worksharing constructs but are distinguished by the following fea-
tures:

• Workqueuing constructs may be nested inside one other. (But they may not
be nested inside worksharing constructs and vice versa.)

• Re-privatization of variables is allowed at workqueuing constructs. That is,
variables made private at the dynamically enclosing parallel pragma can
also be made private to a taskq and/or task.

The taskq and task pragmas are very similar to the sections and sec-
tion pragmas but offer more flexibility:

• A task pragma may be placed anywhere lexically inside a taskq region.
The task pragma cannot be orphaned

• The number of active tasks will be determined at runtime depending on
the placement of pragmas inside a taskq region. For example, a task can
occur inside a loop contained in a taskq region

• taskq pragmas can be recursively nested, allowing for parallelism in multi-
dimensional loops, across linked lists, over tree-based data, etc.

The Taskq Model in C/C++

taskq

The workqueuing model centers on the concept of a task queue (taskq). A
taskq contains tasks that can be executed concurrently. A taskq can also
contain another taskq to enable multi-level parallelism.

#pragma omp taskq [<clause> [<clause>] ...]
 <structured-block>

where <clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered
nowait

When a team of OpenMP threads encounters a taskq pragma, the behavior is
as if a single thread first creates an empty queue and then executes the structured
http://www.kai.com/parallel/kappro/

Workqueuing Pragmas in C/C++ OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

block that follows. When the controlling thread encounters a task pragma inside
the taskq block, the work in the task block is enqueued. Any available thread
within the taskq pool can dequeue and execute tasks from the queue.

A taskq pragma is legal when a team of threads is executing redundant code in a
parallel construct or a single thread is executing a task or taskq construct.
In either case, the code in a taskq construct is always executed in single-threaded
fashion. The enqueued tasks are themselves executed concurrently among available
threads.

No worker thread may exit a taskq construct until the thread executing the
taskq construct exits. Likewise, the thread executing the taskq construct cannot
exit until all enqueued tasks are complete. When the nowait clause is present on a
taskq construct, however, a thread may exit the taskq construct, once all the
enclosed tasks, including those recursively queued, have been dequeued.

When a thread is already inside a taskq or task construct and encounters a
taskq pragma, it forms another queue and executes the taskq construct to insert
work in the new queue.

Tasks may contain ordered sections, provided the enclosing taskq contains an
ordered clause. The ordered sections of code are executed in the same order the
tasks were enqueued.

It should be noted that transfer of execution of the taskq block between threads is
allowed. Thus, it is recommended that the use of data indexed by
omp_get_thread_num() should be avoided.

task

#pragma omp task [<clause> [<clause>] ...]
 <structured-block>

where <clause> may be:

private (<list>)

A task pragma must be lexically enclosed within the structured block following a
taskq pragma. The task pragma is said to bind to the lexically enclosing
taskq.
kappro-support@kai.com 119

A • OpenMP Directives Workqueuing Pragmas in C/C++

120

l vari-

ach
When a thread encounters a task pragma, the work in the block following the
task pragma is enqueued on the queue associated with the binding taskq.
Any thread, including that which enqueued the work, can dequeue and execute
this work.

Data Privatization in Workqueues

Like OpenMP worksharing constructs, taskq and task constructs can clas-
sify variables as private. An important distinction, however, is that such vari-
ables become private to the task queue and task, respectively, rather than to a
thread.

Variables are privatized at a taskq via the private(), firstprivate(),
and lastprivate() clauses. Variables classified as private are uninitial-
ized upon entry to the taskq block. Variables classified as firstprivate
are initialized from the same-named variable in the enclosing context. The val-
ues of lastprivate variables are copied from the final values in the last
enqueued task to the same-named variables in the enclosing context.

When a task is enqueued, it receives a “snapshot” of the current state of al
ables private to the taskq. In addition, variables can be privatized at the task
itself. Private variables of this type provide uninitialized private storage to e
task.

The following example illustrates use of the data privatization rules (the
ordered clause enforces correct order for the printf output):
http://www.kai.com/parallel/kappro/

Workqueuing Pragmas in C/C++ OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

of

ri-
C/C++ syntax:
#include <omp.h>

main() {
 int me, i, temp, out, three=3, four=4, five=5;
 #pragma omp parallel private(me)
 {
 me = omp_get_thread_num();
 #pragma omp taskq private(i,four) firstprivate(five) \
 lastprivate(out) ordered
 {
 printf("1: me=%d\n", me);
 for(i = 0; i < 3; i++) {
 #pragma omp task private(temp)
 {
 temp = i*2;
 out = temp*2;
 #pragma omp ordered
 printf("2: me=%d i=%d three=%d four=%d five=%d\n",\
 me, i, three, four, five);
 }
 }
 }
 #pragma omp single
 printf("3: out=%d temp=%d\n", out, temp);
 }
}

The output of this program is:

1: me=0
2: me=2 i=0 three=3 four=0 five=5
2: me=1 i=1 three=3 four=0 five=5
2: me=3 i=2 three=3 four=0 five=5
3: out=8 temp=536877680

Line “1:” is executed by only one thread, in this case thread zero. The output
this is indeterminate, since any thread can execute the taskq. Lines “2:” show
the correct values of me, since data made private at a parallel pragma remains p
vate to each thread. The variable i has the same value as when the task was
enqueued, because it is private to the taskq. The variable three is correct,
because shared variables remain visible to tasks. The value of four is undefined
but uniform across tasks, since it is private to the taskq but was not initialized in
the taskq region. The value of five is correct, since it was privatized with a
firstprivate clause. In line “3:”, the value of out is obtained from the last
task enqueued, in which i==2. The value of temp is undefined, since it was
assigned only inside the tasks, where it was private.
kappro-support@kai.com 121

A • OpenMP Directives Combined Parallel Worksharing and Workqueuing Directives

122

to
rk of
 in

te
pres-

an

red
Examples

Appendix B, “C/C++ Examples” on page 155 includes taskq examples. These
may serve to clarify the workqueuing model and illustrate its possible uses.

workshare (Fortran only)

The workshare directive divides the work of executing the enclosed code in
separate units of work, and causes the threads of the team to share the wo
executing the enclosed code. The units of work may be assigned to threads
any manner as long as each unit of work gets executed exactly once.

Fortran syntax:
!$omp workshare
 <structured-block>
!$omp end workshare [nowait]

The primary use of a workshare construct is to parallelize Fortran90 array
expressions, including transformational array intrinsic functions that compu
scalar values from arrays. Evaluation of each array element of the array ex
sion is a unit of work. Individual assignments, including atomic and criti-
cal constructs, are also units of work. Please see the latest OpenMP Fortr
Specification at http://www.openmp.org for specific details on how a unit of
work is defined.

Without the nowait clause, all threads that reach the end of the workshare
directive will wait until all units of work have been completed.

Combined Parallel Worksharing and
Workqueuing Directives

parallel for (C/C++) and parallel do (Fortran)

The C/C++ parallel for and Fortran parallel do directives are a short
form syntax for a parallel region enclosing a single for or do. The combined
directive is used in place of the two lines taken by a parallel directive fol-
lowed immediately by the worksharing directive. If this directive is encounte
http://www.kai.com/parallel/kappro/

Combined Parallel Worksharing and Workqueuing Directives OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

while a parallel region is already active the directive is executed by a team of one
thread and the entire loop is executed by each thread of the enclosing parallel
region that encounters it.

C/C++ syntax:
#pragma omp parallel for [<clause> [<clause>] ...]
 <for-loop>

where <clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
schedule (<type>[, <chunk-size>])
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
copyin (<list>)
ordered
num_threads(<scalar-integer-expression>)

The parallel for construct above is equivalent to the following nested par-
allel and for constructs:

#pragma omp parallel [<par-clause> \
 [<par-clause>] ...]
{
 #pragma omp for nowait [<for-clause> \
 [<for-clause>] ...]
 <for-loop>
}

where <par-clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)

and <for-clause> is one of the following:

schedule (<type>[, <chunk-size>])
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered

Fortran syntax:
!$omp parallel do [<clause> [[,] <clause>] ...]
kappro-support@kai.com 123

A • OpenMP Directives Combined Parallel Worksharing and Workqueuing Directives

124
 <do-loop>
[!$omp end parallel do]

where <clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
schedule (<type>[, <chunk-size>])
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
copyin (<list>)
ordered
num_threads(<scalar-integer-expression>)

The parallel do construct above is equivalent to the following nested par-
allel and do constructs:

!$omp parallel [<par-clause> [[,] <par-clause>] ...]
!$omp do [<do-clause> [[,] <do-clause>] ...]
 <do-loop>
!$omp end do nowait
!$omp end parallel

where <par-clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)
num_threads(<scalar-integer-expression>)

and <do-clause> is one of the following:

schedule (<type>[, <chunk-size>])
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
ordered
http://www.kai.com/parallel/kappro/

Combined Parallel Worksharing and Workqueuing Directives OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

parallel sections

The parallel sections directive is a short form for a parallel region contain-
ing a single sections directive. If the parallel sections directive is
encountered in the execution of the program while a parallel region is already
active the directive is executed by a team of one thread and the entire construct is
executed by each thread from the enclosing parallel region that encounters it.

C/C++ syntax:
#pragma omp parallel sections [<clause> \
 [<clause>] ...]
{
[#pragma omp section]
 <structured-block>
[#pragma omp section
 <structured-block>
 .
 .
 .]
}

or,

#pragma omp parallel sections [<clause> \
 [<clause>] ...]
 <structured-block>

where <clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
copyin (<list>)
ordered

The parallel sections construct above is equivalent to the following nested
parallel and sections constructs:

#pragma omp parallel [<par-clause> [\
 <par-clause>] ...]
{
 #pragma omp sections nowait [<sec-clause> \
 [<sec-clause>] ...]
 {
[#pragma omp section]
 <structured-block>
 [#pragma omp section
kappro-support@kai.com 125

A • OpenMP Directives Combined Parallel Worksharing and Workqueuing Directives

126
 <structured-block>
 .
 .]
 }
}

or,

#pragma omp parallel [<par-clause> \
 [<par-clause>] ...]
{
 #pragma omp sections nowait [<sec-clause> \
 [<sec-clause>] ...]
 <structured-block>
}

where <par-clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)

and <sec-clause> is one of the following:

firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered

Fortran syntax:
!$omp parallel sections [<clause> [[,] <clause>] ...]
[!$omp section]
 <structured-block>
[!$omp section
 <structured-block>
.
.]
!$omp end parallel sections

where <clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
copyin (<list>)
ordered
http://www.kai.com/parallel/kappro/

Combined Parallel Worksharing and Workqueuing Directives OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

num_threads(<scalar-integer-expression>)

The parallel sections construct above is equivalent to the following nested
parallel and sections constructs:

!$omp parallel [<par-clause> [[,] <par-clause>] ...]
!$omp sections [<sec-clause> [[,] <sec-clause>] ...]
[!$omp section]
 <structured-block>
[!$omp section
 <structured-block>
.
.]
!$omp end sections nowait
!$omp end parallel

where <par-clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)
num_threads(<scalar-integer-expression>)

and <sec-clause> is one of the following:

firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
ordered

parallel taskq (C/C++ only)

C/C++ syntax:
#pragma omp parallel taskq [<clause> \
 [<clause>] ...]
 <structured-block>

where <clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
copyin (<list>)
ordered
kappro-support@kai.com 127

A • OpenMP Directives Combined Parallel Worksharing and Workqueuing Directives

128
The parallel taskq construct above is equivalent to the following nested
parallel and taskq constructs:

#pragma omp parallel [<par-clause> \
 [<par-clause>] ...]
{
 #pragma omp taskq nowait [<taskq-clause> \
 [<taskq-clause>] ...]
 <structured-block>
}

where <par-clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
copyin (<list>)

and <taskq-clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered

parallel workshare (Fortran only)

Fortran syntax:
!$omp parallel workshare [<clause> [[,] <clause>] ...]
 <structured-block>
!$omp end parallel workshare

where <clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
copyin (<list>)
num_threads (<scalar-integer-expression>)

The parallel workshare construct above is equivalent to the following
nested parallel and workshare constructs:

!$omp parallel [<par-clause> [[,] <par-clause>] ...]
!$omp workshare
 <structured-block>
http://www.kai.com/parallel/kappro/

Synchronization Directives OpenMP Directives • A

O
pe

nM
P

D

ir
ec

ti
ve

s

A

!$omp end workshare nowait
!$omp end parallel

where <par-clause> is one of the following:

if (<scalar-logical-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
copyin (<list>)
num_threads (<scalar-integer-expression>)

Synchronization Directives

critical

The critical directive defines the scope of a critical section. Only one thread at
a time is allowed inside the critical section.

C/C++ syntax:
#pragma omp critical [(<name>)]
 <structured-block>

Fortran syntax:
!$omp critical [(<name>)]
 <structured-block>
!$omp end critical [(<name>)]

The name has global scope. Two or more critical directives with the same
name are automatically mutually exclusive. That is, while a thread is executing
within critical section foo, no other thread will be allowed to enter any other critical
section named foo no matter where it may reside within the code. All unnamed
critical sections are assumed to map to the same name.

ordered

The ordered directive defines the scope of an ordered section. Only one thread at
a time is allowed inside an ordered section of a given name.

C/C++ syntax:
#pragma omp ordered
kappro-support@kai.com 129

A • OpenMP Directives Synchronization Directives

130
 <structured-block>

Fortran syntax:
!$omp ordered [(<name>)]
 <structured-block>
!$omp end ordered [(<name>)]

An optional name can be given to an ordered section in Fortran, but not in
C/C++. Named ordered sections in Fortran are a KAP/Pro Toolset extension to
OpenMP. Ordered sections are allowed either lexically within or outside of par-
allel regions, but when they occur lexically outside of a parallel region, they
must be unnamed.

The ordered section must be dynamically enclosed in a sections, (KAP/Pro
Toolset extension) C/C++ for, or Fortran do or taskq construct. The enclos-
ing construct must have the ordered clause attached to its definition. It is an
error to use this directive within a construct without an ordered clause.

The semantics of an ordered section are defined in terms of the sequential order
of execution for the construct. The threads are granted permission, one thread at
a time, to enter the ordered section. The ordered sections are executed in the
same order as the for or do iterations, sections, or tasks would be exe-
cuted in the sequential version of the code.

In general, an iteration of a loop with a for or do directive must not execute the
same ordered section more than once and must not execute more than one
ordered section. With the KAP/Pro Toolset extension of named ordered sections
in Fortran, the above restriction applies to ordered sections of the same name.
That is, parallel do loop iterations may execute more than one ordered section if
the ordered sections do not have the same name. This constraint applies to
named ordered sections within the scope of sections directives. As with
named critical sections, all unnamed ordered sections are assumed to share the
same name.

In other words, each ordered section with a given name must only be entered
once or not at all during the execution of each for or do iteration, section,
or task. Only one ordered section with a given name may be encountered dur-
ing the execution of each for or do iteration, or section, or task.

A deadlock situation can occur if these rules are not observed.
http://www.kai.com/parallel/kappro/

Synchronization Directives OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

master

The section of code following a master directive is executed by the master thread
of the team.

C/C++ syntax:
#pragma omp master
 <structured-block>

Fortran syntax:
!$omp master
 <structured-block>
!$omp end master

Other threads of the team skip the section of code and continue execution. There is
no implied barrier on entry to or exit from the master section.

atomic

This directive ensures atomic update of a location in memory that may otherwise be
exposed to the possibility of multiple, simultaneous, writing threads.

C/C++ syntax:
#pragma omp atomic
 <expression-statement>

where <expression-statement> must have one of the following forms:

x <binary-op> = <expr>;
x++;
++x;
x--;
--x;

and where

x is an lvalue expression with scalar type and without side effects.

<expr> is a scalar expression without side effects that does not reference x.

<binary-op> is one of +, -, *, /, &, ^, |, <<, or >>.

Fortran syntax:
!$omp atomic
 <assignment-statement>

where <assignment-statement> must have one of the following forms:
kappro-support@kai.com 131

A • OpenMP Directives Synchronization Directives

132
x = x <op> <expr>
x = <expr> <op> x
x = <intrinsic> (x, <expr>)
x = <intrinsic> (<expr>, x)

and where

x is a scalar variable of intrinsic type.

<expr> is a scalar expression that does not reference x.

<intrinsic> is one of MAX, MIN, IAND, IOR, or IEOR.

<op> is one of +, -, *, /, .AND., .OR., .EQV., or .NEQV.

Correct use of this directive requires that if an object is updated using this direc-
tive, then all future atomic updates to that object must have a compatible type.

flush

This directive causes thread-visible variables to be written back to memory and
is provided for users who wish to write their own synchronization directly
through shared memory.

C/C++ syntax:
#pragma omp flush [(<list>)]

Fortran syntax:
!$omp flush [(<list>)]

The optional list may be used to specify variables that need to be flushed. If the
list is absent, all variables are flushed to memory. A flush is implied on the
parallel, end parallel, barrier, critical, and end critical
OpenMP constructs.

barrier

The barrier directive gathers all team members to a particular point in the
code.

C/C++ syntax:
#pragma omp barrier
http://www.kai.com/parallel/kappro/

Data Scope Attribute Clauses OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

Fortran syntax:
!$omp barrier

Barriers force threads within a team to wait at that point in the code until all of the
team members encounter that barrier. The barrier directive is not allowed inside
of worksharing constructs, workqueuing constructs, or other synchronization con-
structs.

Data Scope Attribute Clauses

default (shared | private | none)
shared (<list>)
private (<list>)

The shared() and private() lists in the parallel region state the explicit
forms of data sharing among threads that execute the parallel code. When distinct
threads should reference the same variable, place the variable in the shared list.
When distinct threads should reference distinct instances of a variable, place the
variable in the private list.

The private clause is allowed on parallel, sections, single, Fortran
do, C/C++ for, taskq, and task directives. Reprivatizion of variables is now
allowed in Fortran. That is, variables made private or shared at a parallel region
may be declared private for an enclosed worksharing construct. The default
and shared clauses are only allowed on parallel directives. Variables on the
private list are uninitialized upon entering a parallel region; see also the follow-
ing description of firstprivate .

When a variable is not present in any list, its default sharing classification is deter-
mined based upon the default clause. default(shared) causes unlisted
variables to be shared, default(private) causes unlisted variables to be
private, and default(none) causes unlisted, but referenced, variables to
generate an error. Scalar variables, pointers, and arrays (including deferred shape
and assumed size arrays) can be privatized.

The only exceptions to the default rules in Fortran are loop control variables
(loop indices) and Fortran 90 statement-scoped entities, which are private
unless explicitly overridden. The only exceptions to the default() rules in
kappro-support@kai.com 133

A • OpenMP Directives Data Scope Attribute Clauses

134
C/C++ are loop control variables (loop indices) within for pragmas, threadpri-
vate variables, and const-qualified variables. The first two are private, and the
latter is shared, unless explicitly overridden. The default for both C/C++ and
Fortran is default(shared).

Note that default(private) in C/C++ is a KAP/Pro Toolset extension to
OpenMP.

firstprivate (<list>)

A variable included in <list> has the semantics of a private data scope.
Before execution of the affiliated construct, the value from the variable of the
same name in the enclosing context is copied into the private counterpart of each
thread.

The firstprivate clause is allowed on parallel, sections, single,
C/C++ for, taskq, and Fortran do directives.

lastprivate (<list>)

A variable included in <list> has the semantics of a private data scope.
Upon completion of the affiliated construct, the value of the variable in the
enclosing context is assigned the value of the corresponding private copy held
by the thread that executes the last dynamically encountered task of a taskq
construct in C/C++, the final iteration of the index set for a C/C++ for or For-
tran do loop, the last lexical section of a sections construct, or the code
enclosed by a single, as appropriate. If the lastprivate variable is not
updated within the sequentially final iteration, section, task, or single
code, the value of the original variable following the completed construct will be
undefined.

The lastprivate clause is allowed on sections, single, C/C++ for,
taskq and Fortran do directives. The use of the lastprivate clause on a
single or taskq is a KAP/Pro Toolset extension.

reduction (<operator>:<list>)
reduction (<intrinsic>:<list>)

A variable, array element, or array in the reduction list creates a private
temporary for each thread. Deferred shape and assumed size arrays are not
allowed on the reduction clause. Upon completion of the affiliated con-
http://www.kai.com/parallel/kappro/

Data Scope Attribute Clauses OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

struct, the value of the original variable is updated by combining the values held in
the temporary variables with the given associative operator or intrinsic function.
The allowed C/C++ operators are +, -, *, &, ^, |, &&, and ||. The allowed Fortran
operators are +, -, *, .AND., .OR., .EQV., and .NEQV. The allowed Fortran
intrinsics are MAX, MIN, IAND, IOR, and IEOR.

The reduction clause is allowed on parallel, sections, single,
C/C++ for, taskq and Fortran do directives. The use of the reduction clause
on a single or taskq is a KAP/Pro Toolset extension.

C/C++ syntax:
#pragma omp parallel for shared(a,t,n) \
 private(i) reduction(+:sum) \
 reduction(&&:truth)

 for(i=0; i < n; i++) {
 sum += a[i];
 truth = truth && t[i];
 }

The above C/C++ example is equivalent to the following:

C/C++ syntax:
#pragma omp parallel shared(a,t,n) private(i)
{
 int sum_local = 0;
 int truth_local = 1;

 #pragma omp for nowait
 for(i=0; i < n; i++) {
 sum_local += a[i];
 truth_local = truth_local && t[i];
 }

 #pragma omp critical
 {
 sum += sum_local;
 truth = truth && truth_local;
 }
}

Fortran syntax:
!$omp parallel do
!$omp& shared (a,n)
!$omp& private (i)
!$omp& reduction (max:maxa)

do i = 1, n
maxa = max (maxa, a(i))

enddo
!$omp end parallel do
kappro-support@kai.com 135

A • OpenMP Directives Privatization of Fortran Variables, Common Blocks and Use-

136

he

 is
nt
 sup-
The above Fortran example is equivalent to the following:

Fortran syntax:
!$omp parallel
!$omp& shared (a,n,maxa,maxa_orig)
!$omp& private (i,maxa_local)

maxa_local = minimum_valu_for_type_of_maxa
!$omp do

do i = 1, n
maxa_local = max (maxa_local, a(i))

enddo
!$omp end do nowait
!$omp critical

maxa = max (maxa, maxa_local)
!$omp end critical
!$omp end parallel

copyin (<list>)

The copyin() clause applies only to threadprivate variables in C/C++
and to threadprivate variables, COMMON blocks and use-associated vari-
ables in Fortran. The <list> can contain individual variables or entire
threadprivate COMMON blocks; names of common blocks must be sur-
rounded by slashes. This clause provides a mechanism to copy the master
thread’s values of the listed variables to the other members of the team at t
start of a parallel region. The copyin directive is only allowed on parallel
directives and combined parallel worksharing and workqueuing directives.

The threadprivate clause is described in the next two sections.

Privatization of Fortran Variables, Common
Blocks and Use-Associated Variables

Globally addressable storage that is private to each thread in a computation
useful as a place to store information needed to coordinate between differe
subroutines executed by the same thread in a parallel region. This notion is
ported by the !$omp threadprivate directive.
http://www.kai.com/parallel/kappro/

Privatization of Global Variables in C/C++ OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

GI’s

r

al

n.

rs in

d-

in
te
threadprivate

The !$omp threadprivate directive in Fortran creates thread-private copies
of one or more variables or COMMON blocks for use within parallel regions. This
directive can also be used as a migration feature for Cray’s taskcommon. The
copyin clause on parallel directives can be used as a migration feature for S
copyin directive. A threadprivate variable or COMMON block is always pri-
vate in each parallel region of each routine where the threadprivate directive
appears.

Declaring Private Variables or Commons

Private variables or COMMON blocks in Fortran are declared by the threadpri-
vate directive. The syntax for the directive is as follows:

Fortran syntax:
!$omp threadprivate (<list>)

This directive is placed in the declaration section of a routine. If a variable or COM-
MON block appears in a threadprivate directive in one routine, it must appea
in that same directive in all routines where the variable or COMMON block is used.
Names of COMMON blocks in <list> must be surrounded by slashes.

The threadprivate directive assigns each specified variable or COMMON block
to the master thread and creates an uninitialized private copy for each addition
thread. Updated values to threadprivate variables will not be seen by other
threads. The copyin clause can be used to initialize a threadprivate COM-
MON block from the master copy. Thread–private copies for threadprivate
COMMON blocks in Fortran are always allocated, implicitly, at each parallel regio

If a common block or a variable that is declared in the scope of a module appea
a threadprivate directive, it implicitly has the SAVE attribute. A variable that
appears in a threadprivate directive and is not declared in the scope of a mo
ule must have the SAVE attribute.

Privatization of Global Variables in C/C++

OpenMP provides privatization of file-scope and namespace-scope variables
C/C++ via the threadprivate pragma. Threadprivate variables become priva
kappro-support@kai.com 137

A • OpenMP Directives Privatization of Global Variables in C/C++

138
to each thread but retain their file-scope or namespace-scope visibility within
each thread.

The syntax of the threadprivate pragma is:

C/C++ syntax:
#pragma omp threadprivate(<list>)

where list is a comma-separated list of one or more file-scope or namespace-
scope variables. The threadprivate pragma must follow the declaration of
the listed variables and appear in the same scope. The following example is
legal:

C/C++ syntax
extern int x;
#pragma omp threadprivate(x)

namespace foo {
 int me;
 #pragma omp threadprivate(me)
};

main() {
}

while the following is illegal, since the variable x is neither file-scope nor
namespace-scope:

C/C++ syntax:
main() {
 extern int x;
 #pragma omp threadprivate(x)
}

As an extension to OpenMP, KAP/Pro allows the use of the threadprivate
pragma with local static variables in C. The following, for example, is legal:
http://www.kai.com/parallel/kappro/

Scheduling Options OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

. If

on

ach
C/C++ syntax:
main() {

int x;
{

static int y;
#pragma omp threadprivate(y)

}
}

Initializing Threadprivate Variables

When a team consists of t threads, there are exactly t copies of each threadpri-
vate variable. The master thread uses the global copy of each variable as its pri-
vate copy. Each threadprivate variable is initialized once before its first use.
If an explicit initializer is present, then each thread’s copy is suitably initialized
no explicit initializer is present, then each thread’s copy is zero-initialized.

threadprivate variables can also be initialized upon entry to a parallel regi
via the copyin clause on the parallel pragma. When this clause is present,
each thread’s copy of each listed threadprivate variable is copied, as if by
assignment, from the master’s copy upon each entry to the parallel region. The
copyin is executed each time the associated parallel region executes.

Persistence of Threadprivate Variables

After the first parallel region executes, the data in the threadprivate variables
are guaranteed to persist only if the dynamic threads mechanism is disabled.
Dynamic threading is disabled by default, but can be enabled via the
OMP_DYNAMIC environment variable and the omp_set_dynamic() library
call.

Scheduling Options

Scheduling options are used to specify the iteration dispatch mechanism for e
parallel loop (C/C++ for or Fortran do) construct. They can be specified in the
following three ways

1. OpenMP Directives

2. Environment Variables

3. Command Line Switches
kappro-support@kai.com 139

A • OpenMP Directives Scheduling Options

140
If a parallel loop has a schedule clause (except for runtime), then the direc-
tive specifies the loop scheduling. If a parallel loop has a schedule (runt-
ime) clause, described below, then the environment variable
OMP_SCHEDULE specifies the loop scheduling at run time. Guide command
line switches are used to specify the default scheduling mechanism for parallel
loops with no schedule clause. In the absence of OpenMP directives, envi-
ronment variables, and command line switches the default loop scheduling
mechanism is static.

Scheduling Options Using OpenMP Directives

The list below shows the syntax for specifying scheduling options with the
C/C++ for, parallel for and Fortran do, parallel do directives.

schedule (static [,<integer>])
schedule (dynamic [,<integer>])
schedule (guided [,<integer>])
schedule (runtime)

The list below shows the syntax for specifying scheduling options that are only
available with the Fortran do and parallel do directives.

schedule (trapezoidal [,<integer>])
schedule (interleaved)

The <integer> parameter is a chunk size for the dispatch method. If <inte-
ger> is not specified, it is assumed to be 1 for dynamic, guided and trap-
ezoidal, and assumed to be missing for static. See Table 9-5 on page 142
for a complete description of these scheduling options.

The default is schedule (static).

Scheduling Options Using Environment Variables

The OMP_SCHEDULE environment variable sets, at run time, scheduling
options for loops containing a schedule (runtime) clause. The syntax for
this environment variable is as follows:

OMP_SCHEDULE = <string>[,<integer>]

where <string> is one of static, dynamic, or guided, (trapezoi-
dal, interleaved in Fortran only) and the optional <integer> parame-
ter is a chunk size for the dispatch method.
http://www.kai.com/parallel/kappro/

Scheduling Options OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

See Table 9-5 on page 142 for a complete description of these scheduling options.

Scheduling Options using Command Line Switches

The following command line switches affect the scheduling of loops without an
explicit schedule clause. These options are available in both C/C++ and Fortran.

-WGsched=dynamic or -WGsched=d
-WGsched=guided or -WGsched=g
-WGsched=runtime or -WGsched=r
-WGsched=static or -WGsched=s

The KAP/Pro Toolset also allows several command line scheduling mechanisms
that are extensions to the OpenMP standard; the following are available in Fortran
only:

-WGsched=even or -WGsched=e
-WGsched=interleaved or -WGsched=i
-WGsched=trapezoidal or -WGsched=t

Assure accepts all the scheduling methods present in OpenMP directives that Guide
supports. However, the only scheduling method which currently affects the opera-
tion of Assure is the ordered clause. For this reason, command line options and
environment variables for scheduling are not supported in Assure.

These scheduling options are fully described in Table 9-5 on page 142.

Scheduling Options Table

The various scheduling options are summarized in the following table. Assume the
following: the loop has l iterations, p threads execute the loop, and n is a positive
integer specifying the chunk size.
kappro-support@kai.com 141

A • OpenMP Directives Scheduling Options

142

ly to
sched-

d line

ct]

=e; the

lause.
 direc-
 a

ULE
using
he
e.
Table 9-5 Scheduling Options

Scheduling
Type Chunk Meaning

even, e

(Fortran
only)

ignored Even scheduling. l/p iterations are dispatched statical
each thread. The chunk size has no effect here. Even
uling is the default method of loop scheduling.

To specify even scheduling from the Fortran comman
use:

-WGsched=even

or

-WGsched=even,<integer> [same as
-WGsched=even; the chunk size has no effe

Alternatively, the word even may be abbreviated:

-WGsched=e

or

-WGsched=e,<integer> [same as -WGsched
chunk size has no effect]

To specify static even scheduling with the SCHEDULE
clause use:

schedule (static)

There is no even argument for the schedule c
To perform even scheduling using the schedule
tive, use the static argument without specifying
chunk size.

To specify static even scheduling with the
OMP_SCHEDULE environment variable use:

OMP_SCHEDULE = static

There is no even argument for the OMP_SCHED
environment variable. To perform even scheduling
the OMP_SCHEDULE environment variable, use t
static argument without specifying a chunk siz
http://www.kai.com/parallel/kappro/

Scheduling Options OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

(

F

Sc
static, s

C/C++,

ortran)

n Static scheduling with a chunk size of n. n iterations are dis-
patched statically to each thread (repeat until l iterations
have been dispatched in a round robin fashion among all
threads). If n is missing, this is the same as static even
scheduling. In C/C++, l/p iterations are dispatched statically
to each thread so that each thread gets only a single chunk
of the iteration space.

To specify static scheduling from the command line use:

-WGsched=static,<integer>

or

-WGsched=static [specifies even scheduling when
chunk is not stated]

Alternatively, the word static may be abbreviated as fol-
lows:

-WGsched=s,<integer>

or

-WGsched=s [specifies even scheduling when chunk
is not stated]

To specify static scheduling with the schedule clause
use:

schedule (static[,<integer>])

To specify static scheduling with the OMP_SCHEDULE
environment variable use:

OMP_SCHEDULE = static[,<integer>]

heduling
Type Chunk Meaning
kappro-support@kai.com 143

A • OpenMP Directives Scheduling Options

144

ffect
 i+2p,

 Fortran

 as
no

eviated

i; the

ed-

nsion to
inter-
leaved, i

(Fortran
only)

ignored Static interleaved scheduling. The chunk size has no e
here. Thread i is statically dispatched iterations i, i+p,
…

To specify static interleaved scheduling from the
command line use:

-WGsched=interleaved

or

-WGsched=interleaved,<integer> [same
-WGsched=interleaved; the chunk size has
effect]

Alternatively the word interleaved may be abbr
as follows:

-WGsched=i

or

-WGsched=i,<integer> [same as -WGsched=
chunk size has no effect]

To specify static interleaved scheduling with the sch
ule clause use:

schedule (interleaved)

To specify static interleaved scheduling with the
OMP_SCHEDULE environment variable use:

OMP_SCHEDULE = interleaved

Interleaved scheduling is a KAP/Pro Toolset exte
OpenMP.

Scheduling
Type Chunk Meaning
http://www.kai.com/parallel/kappro/

Scheduling Options OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

dy

(

F

Sc
namic, d

C/C++,

ortran)

n Dynamic scheduling with a chunk size of n. The first n*p
iterations are statically assigned to threads in chunks of n
iterations. Once a thread finishes the assigned set of itera-
tions, a new set of n iterations is scheduled. This dynamic
scheduling continues until all iterations have been con-
signed.

To specify dynamic scheduling from the command line use:

-WGsched=dynamic[,<integer>]

If no chunk size is specified, a size of 1 will be used.

Alternatively the word dynamic may be abbreviated as
follows:

-WGsched=d[,<integer>]

If no chunk size is specified, a size of 1 will be used.

To specify dynamic scheduling with the schedule clause
use:

schedule (dynamic[,<integer>])

To specify dynamic scheduling with the OMP_SCHEDULE
environment variable use:

OMP_SCHEDULE = dynamic[,<integer>]

If no chunk size is specified, a size of 1 will be used.

heduling
Type Chunk Meaning
kappro-support@kai.com 145

A • OpenMP Directives Scheduling Options

146

n

ns are

 use:

as fol-

ause

LE
guided, g

(C/C++,

Fortran)

n Guided scheduling with a minimum chunk size of n. A
exponentially decreasing number of iterations are dis-
patched dynamically to each thread. At least n iteratio
dispatched every time except the last.

To specify guided scheduling from the command line

-WGsched=guided[,<integer>]

If no chunk size is specified, a size of 1 will be used.

Alternatively, the word guided may be abbreviated
lows:

-WGsched=g[,<integer>]

If no chunk size is specified, a size of 1 will be used.

To specify guided scheduling with the schedule cl
use:

schedule (guided[,<integer>])

To specify guided scheduling with the OMP_SCHEDU
environment variable use:

OMP_SCHEDULE = guided[,<integer>]

If no chunk size is specified, a size of 1 will be used.

Scheduling
Type Chunk Meaning
http://www.kai.com/parallel/kappro/

Scheduling Options OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

t

(

Sc
rapezoi-
dal, t

Fortran
only)

n Trapezoidal scheduling with minimum chunk size of n. A
linearly decreasing number of iterations are dispatched
dynamically to each thread. At least n iterations are dis-
patched every time except the last.

To specify trapezoidal scheduling from the Fortran com-
mand line use:

-WGsched=trapezoidal[,<integer>]

If no chunk size is specified, a size of 1 will be used.

Alternatively the word trapezoidal may be abbreviated
as follows:

-WGsched=t[,<integer>]

If no chunk size is specified, a size of 1 will be used.

Trapezoidal scheduling is a KAP/Pro Toolset extension to
OpenMP.

To specify trapezoidal scheduling with the schedule
clause use:

schedule (trapezoidal,<integer>)

To specify trapezoidal scheduling with the
OMP_SCHEDULE environment variable use:

OMP_SCHEDULE = trapezoidal,<integer>

If no chunk size is specified, a size of 1 will be used.

Trapezoidal scheduling is a KAP/Pro Toolset extension to
OpenMP.

heduling
Type Chunk Meaning
kappro-support@kai.com 147

A • OpenMP Directives OpenMP Environment Variables

148

t will be
ariable

g from the

ted as

lause,

ULE

>]

tran
e chunk

t set,
OpenMP Environment Variables

Some environment variables may need to be set before running Guide-generated
programs. A list and description of each OpenMP environment variable, along
with acceptable option values is presented in this section. Additional KAP/Pro
environment variables are described in sections “Environment Variables for
Guide” and “Environment Variables for Assure” in Chapter 6, “The KAP/Pro
Drivers,” beginning on page 57

runtime, r

(C/C++,

Fortran)

ignored Runtime scheduling specifies the scheduling tha
determined via the OMP_SCHEDULE environment v
at run time.

To specify scheduling at runtime, use the followin
command line:

-WGsched=runtime

Alternatively, the word runtime may be abbrevia
follows:

-WGsched=r

To specify runtime scheduling with the schedule c
use:

schedule (runtime)

To specify runtime scheduling with the OMP_SCHED
environment variable use:

OMP_SCHEDULE = <string>[,<integer

where <string> is one of static, dynamic, or
guided, (trapezoidal, interleaved in For
only) and the optional <integer> parameter is th
size for the dispatch method.

If the OMP_SCHEDULE environment variable is no
then the default is assumed to be “dynamic,1”.

Scheduling
Type Chunk Meaning
http://www.kai.com/parallel/kappro/

OpenMP Environment Variables OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

iable
le-
OMP_DYNAMIC=<boolean>

The OMP_DYNAMIC environment variable enables or disables dynamic adjustment
of the number of threads between parallel regions. Enabling dynamic threads
allows the Guide library to adjust the number of threads in response to system load.
Such an adjustment can improve the turnaround time for all jobs on a loaded sys-
tem. A value of TRUE for <boolean> enables dynamic adjustment, whereas a
value of FALSE disables any change in the number of threads. If dynamic adjust-
ment is enabled, the number of threads may be adjusted only at the beginning of
each parallel region. No threads are created or destroyed during the execution of the
parallel region. The default value is FALSE.

OMP_NUM_THREADS=<integer>

The OMP_NUM_THREADS environment variable is used to specify the number of
threads. The <integer> is a positive number. Performance of parallel programs
usually degrades when the number of threads exceeds the number of physical pro-
cessors.

The special value ALL is also allowed. The default value of ALL specifies that one
thread will be created per processor on the machine.

OMP_SCHEDULE=<string>[,<integer>]

The OMP_SCHEDULE environment variable controls the schedule type and chunk
size for C/C++ for and Fortran do constructs with a schedule(runtime)
clause or those with no schedule clause if the command line scheduling designa-
tor is set to r (runtime). The schedule type is given by <string>, which is
one of static, dynamic, or guided, (trapezoidal, interleaved in
Fortran only) and the optional chunk size is given by <integer> for those sched-
uling types which allow a chunk size. See “Scheduling Options” on page 139.

OMP_NESTED=<boolean>

The OMP_NESTED environment variable controls whether nested parallelism is
enabled at run time. Nested parallelism is currently unimplemented, so this var
has no effect. This environment variable does not affect nested parallelism imp
mented via nested taskq pragmas within a single parallel pragma in C/C++.
Allowed values are TRUE and FALSE, and the default value is FALSE.
kappro-support@kai.com 149

A • OpenMP Directives OpenMP Routines

150
OpenMP Routines

This section describes the syntax of several OpenMP routines which can be used
to manipulate locks, determine the number of threads and/or processors, and
determine elapsed wallclock time.

void omp_destroy_lock(omp_lock_t *lock), subroutine
omp_destroy_lock(<var>)

This routine ensures that the lock pointed to by the parameter *lock (using
C/C++) or <var> (using Fortran) is uninitialized. No thread may own the lock
when this routine is called. This parameter must be a lock variable that was ini-
tialized by the OMP_INIT_LOCK() routine.

int omp_get_max_threads(void), integer function
omp_get_max_threads()

This routine returns the maximum number of threads that are available for paral-
lel execution. The returned value is a positive integer, and is equal to the value
of the OMP_NUM_THREADS environment variable, if set.

int omp_get_num_procs(void), integer function
omp_get_num_procs()

This routine returns the number of processors that are available on the parallel
machine. The returned value is a positive integer.

int omp_get_num_threads(void), integer function
omp_get_num_threads()

This routine returns the number of threads that are being used in the current par-
allel region. The returned value is a positive integer. When called outside a par-
allel region, this function returns 1.

NOTE: The number of threads used may change from one parallel region to the
next. When designing parallel programs it is best to not introduce assumptions
that the number of threads is constant across different instances of parallel
regions. The number of threads may increase or decrease between parallel
regions, but will never exceed the maximum number of threads specified via the
http://www.kai.com/parallel/kappro/

OpenMP Routines OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

OMP_NUM_THREADS environment variable or the OMP_SET_NUM_THREADS()
API call.

int omp_get_thread_num(void), integer function
omp_get_thread_num()

This routine returns the id of the calling thread. The returned value is an integer
between zero and OMP_GET_NUM_THREADS()-1.

When called from a serial region or a serialized parallel region, this function returns
0.

double omp_get_wtime(void), double precision function
omp_get_wtime()

This function returns a double precision value equal to the elapsed wallclock time
in seconds relative to an arbitrary reference time. The reference time is guaranteed
not to change during program execution.

double omp_get_wtick(void), double precision function
omp_get_wtick()

This function returns a double precision value equal to the number of seconds
between successive clock ticks.

void omp_init_lock(omp_lock_t *lock), subroutine
omp_init_lock(<var>)

void omp_init_nest_lock(omp_nest_lock_t *lock), subroutine
omp_init_nest_lock(<var>)

These routines initialize a lock associated with the lock variable *lock (using
C/C++) or <var> (using Fortran) for use by subsequent calls. The initial state is
unlocked. For a nestable lock, the initial nesting count is zero. The lock variable
must only be accessed through the OpenMP library lock routines. When using
C/C++, the lock parameter must be a pointer to type omp_lock_t or
omp_init_nest_lock_t (as defined in the header file omp.h). When using
kappro-support@kai.com 151

A • OpenMP Directives OpenMP Routines

152
Fortran, <var> must of integer type and of KIND large enough to hold an
address. Two special KIND types, OMP_LOCK_KIND, and
OMP_NEST_LOCK_KIND are defined for simple and nested lock variables,
respectively.

int omp_in_parallel(void), logical function omp_in_parallel()

The C/C++ function returns non-zero if it is called within the dynamic extent of
a parallel region executing in parallel, otherwise it returns zero. The Fortran
function returns.TRUE. if it is called within the dynamic extent of a parallel
region executing in parallel, otherwise .FALSE. is returned.

void omp_set_lock(omp_lock_t *lock), subroutine
omp_set_lock(<var>)

void omp_set_nest_lock(omp_nest_lock_t *lock), subroutine
omp_set_nest_lock(<var>)

These routines force the executing thread to wait until the specified lock is avail-
able. If the lock is not available, the thread is blocked from further execution
until the thread is granted ownership of the lock. The lock parameter *lock
(using C/C++) or <var> (using Fortran) must first be initialized by the appro-
priate OMP_INIT_LOCK() or OMP_INIT_NEST_LOCK() routine.

For a nestable lock, the nesting count is incremented, and the calling thread is
granted, or retains, ownership of the lock.

int omp_test_lock(omp_lock_t *lock), logical function
omp_test_lock(<var>)

int omp_test_nest_lock(omp_nest_lock_t *lock), logical function
omp_test_nest_lock(<var>)

These routines try to obtain ownership of the lock, but do not block execution of
the calling thread if the lock is not available. The C/C++ routines return a non-
zero value if the lock was successfully obtained, otherwise they return zero. The
Fortran routines return.TRUE. if the lock was successfully obtained, otherwise
.FALSE. is returned. The lock parameter *lock (using C/C++) or <var>
(using Fortran) must be an initialized lock variable.
http://www.kai.com/parallel/kappro/

OpenMP Routines OpenMP Directives • A

O
pe

nM
P

D
ir

ec
ti

ve
s

A

void omp_unset_lock(omp_lock_t *lock), subroutine
omp_unset_lock(<var>)

void omp_unset_nest_lock(omp_nest_lock_t *lock), subroutine
omp_unset_nest_lock(<var>)

These routines release the executing thread from ownership of the lock. The behav-
ior is undefined if the executing thread is not the owner of the lock. The lock
parameter *lock (using C/C++) or <var> (using Fortran) must be an initialized
lock variable.

void omp_set_num_threads(int), subroutine
omp_set_num_threads(<integer>)

This function sets the number of threads to use for subsequent parallel regions. The
value of the argument must be positive. Its effect depends upon whether dynamic
adjustment of threads is enabled. If dynamic adjustment is disabled, the value is
used as the number of threads for all subsequent parallel regions prior to the next
call to this function; otherwise, the value is the maximum number of threads that
will be used. This function can only be called from serial regions of the code.

void omp_set_dynamic(int), subroutine omp_set_dynamic(<logical>)

This function enables or disables dynamic adjustment of the number of threads
available for execution of parallel regions. It has effect only when called from serial
regions. If the argument is not 0 (using C/C++) or .TRUE. (using Fortran) the
number of threads that are used for executing subsequent parallel regions may be
adjusted automatically by the run-time environment to best utilize system
resources. As a consequence, the number of threads specified by the
OMP_NUM_THREADS environment variable or omp_set_num_threads()
function is the maximum thread count. The number of threads always remains fixed
over the duration of each parallel region. If the argument is 0 (using C/C++) or
.FALSE. (using Fortran) dynamic adjustment is disabled.

int omp_get_dynamic(void), logical function omp_get_dynamic()

The C/C++ function returns non-zero if dynamic thread adjustment is enabled and
returns 0 otherwise. The Fortran function returns .TRUE. if dynamic thread
adjustment is enabled and returns .FALSE. otherwise.
kappro-support@kai.com 153

A • OpenMP Directives OpenMP Routines

154

in
void omp_set_nested(int), subroutine omp_set_nested(<logical>)

This function enables or disables nested parallelism. Nested parallelism is not
implemented in the KAP/Pro Toolset, so this function has no effect. To exploit
nested parallelism when using C/C++, please see “Workqueuing Pragmas
C/C++” on page 117.

int omp_get_nested(void), logical function omp_get_nested()

The C/C++ function always returns 0 and the Fortran function always returns
.FALSE. in the current version of KAP/Pro Toolset.
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

APPENDIX B C/C++ Examples

Examples of OpenMP usage in C/C++

The following examples show usage of OpenMP examples in C/C++.
kappro-support@kai.com 155

B • C/C++ Examples Examples of OpenMP usage in C/C++

156
B.1 for: A Simple Difference Operator
This example shows a simple parallel loop where the amount of work in each
iteration is different. We used dynamic scheduling to get good load balancing.
The for has a nowait because there is an implicit barrier at the end of the
parallel region. Alternately, using the option -WGopt=1 would have also elimi-
nated the barrier.

void for_1 (float a[], float b[], int n)
{
 int i, j;

 #pragma omp parallel shared(a,b,n) \
 private(i,j)
 {
 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = \
 (a[j + n*i] + a[j + n*(i-1)])/2.0;
 }
 }
}

http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

B.2 for: Two Difference Operators
Shows two parallel loops fused to reduce fork/join overhead. The first for has a
nowait because all the data used in the second loop is different than all the data
used in the first loop.

void for_2 (float a[], float b[], float c[], \
float d[], int n, int m)
{
 int i, j;

 #pragma omp parallel shared(a,b,c,d,n,m) \
 private(i,j)
 {
 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = \
 (a[j + n*i] + a[j + n*(i-1)])/2.0;
 }

 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < m; i++) {
 for(j = 0; j <= i; j++)
 d[j + m*i] = \
 (c[j + m*i] + c[j + m*(i-1)])/2.0;
 }
 }
}

kappro-support@kai.com 157

B • C/C++ Examples Examples of OpenMP usage in C/C++

158
B.3 for: Reduce Fork/Join Overhead
Routines for_3a and for_3b perform numerically equivalent computations,
but because the parallel pragma in routine for_3b is outside the loop, rou-
tine for_3b probably forms teams less often, and thus reduces overhead.

void for_3a (float a[], float b[], int n, int m)
{
 int i, j;

 for(j = 0; j < m; j++) {
 #pragma omp parallel shared(a,b,n,j) \
 private(i)
 {
 #pragma omp for nowait
 for(i = 0; i < n; i++)
 a[i + n*j] = \
 b[i + n*] / a[i + n*(j-1)];
 }
 }
}

void for_3b (float a[], float b[], int n, int m)
{
 int i, j;

 #pragma omp parallel shared(a,b,n) \
 private(i,j)
 {
 for(j = 0; j < m; j++) {
 #pragma omp for nowait
 for(i = 0; i < n; i++)
 a[i + n*j] = \
 b[i + n*j] / a[i + n*(j-1)];
 }
 }
}

http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

of
B.4 sections: Two Difference Operators
Identical to “for: Two Difference Operators” on page 157 but uses sections
instead of for. Here the speedup is limited to 2 because there are only 2 units
work whereas in “for: Two Difference Operators” on page 157 there are n-1 + m-1
units of work.

void sections_1 (float a[], float b[], \
 float c[], float d[], int n, int m)
{
 int i, j;

 #pragma omp parallel shared(a,b,c,d,n,m) \
 private(i,j)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = \
 (a[j + n*i]+a[j + n*(i-1)])/2.0;
 }

 #pragma omp section
 for(i = 1; i < m; i++) {
 for(j = 0; j <= i; j++)
 d[j + m*i] = \
 (c[j + m*i]+c[j + m*(i-1)])/2.0;
 }
 }
 }
}

kappro-support@kai.com 159

B • C/C++ Examples Examples of OpenMP usage in C/C++

160
B.5 single: Updating a Shared Scalar
This example demonstrates how to use a single construct to update an ele-
ment of the shared array a. The optional nowait after the first loop is omitted
because we need to wait at the end of the loop before proceeding into the
single.

void single_sp_1a (float a[], float b[], int n)
{
 int i;

 #pragma omp parallel shared(a,b,n) private(i)
 {
 #pragma omp for
 for(i = 0; i < n; i++)
 a[i] = 1.0 / a[i] ;

 #pragma omp single nowait
 a[0] = min(a[0], 1.0) ;

 #pragma omp for nowait
 for(i = 0; i < n; i++)
 b[i] = b[i] / b[i] ;
 }
}

http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

B.6 sections: Updating a Shared Scalar
Identical to “single: Updating a Shared Scalar” on page 160 but using different
pragmas.

void sections_sp_1 (float a[], float b[], int n)
{
 int i;

 #pragma omp parallel shared(a,b,n) private(i)
 {
 #pragma omp for
 for(i = 0; i < n; i++)
 a[i] = 1.0 / a[i] ;

 #pragma omp sections nowait
 a[0] = min(a[0], 1.0) ;

 #pragma omp for nowait
 for(i = 0; i < n; i++)
 b[i] = b[i] / b[i] ;
 }
}

kappro-support@kai.com 161

B • C/C++ Examples Examples of OpenMP usage in C/C++

162

ent
B.7 for: Updating a Shared Scalar
Identical to “single: Updating a Shared Scalar” on page 160 but using differ
pragmas.

void for_sp_1 (float a[], float b[], int n)
{
 int i;

 #pragma omp parallel shared(a,b,n) private(i)
 {
 #pragma omp for
 for(i = 0; i < n; i++)
 a[i] = 1.0 / a[i] ;

 #pragma omp for nowait
 for(i = 0; i < 1; i++)
 a[i] = min(a[i], 1.0) ;

 #pragma omp for nowait
 for(i = 0; i < n; i++)
 b[i] = b[i] / b[i] ;
 }
}

http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

t
B.8 parallel for: A Simple Difference Operator
Identical to “for: A Simple Difference Operator” on page 156 but using differen
pragmas.

void parallelfor_1 (float a[], float b[], int n)
{
 int i, j;

 #pragma omp parallel for shared(a,b,n) \
 private(i,j) schedule(dynamic,1)
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = \
 (a[j + n*i] + a[j + n*(i-1)]) / 2.0;
 }
}

kappro-support@kai.com 163

B • C/C++ Examples Examples of OpenMP usage in C/C++

164

er-
B.9 parallel sections: Two Difference Operators
Identical to “sections: Two Difference Operators” on page 159 but using diff
ent pragmas.

void sections_2 (float a[], float b[], \
 float c[], float d[], int n, int m)
{
 int i, j;

 #pragma omp parallel sections \
 shared(a,b,c,d,n,m) private(i,j)
 {
 #pragma omp section
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = \
 (a[j + n*i] + a[j + n*(i-1)])/2.0;
 }

 #pragma omp section
 for(i = 1; i < m; i++) {
 for(j = 0; j <= i; j++)
 d[j + m*i] = \
 (c[j + m*i] + c[j + m*(i-1)])/2.0;
 }
 }
}

http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

B.10 Simple Reduction
This demonstrates how to perform a reduction using partial sums while avoiding
synchronization in the loop body.

void reduction_1 (float a[], int m, int n, \
 float sum)
{
 int i, j;
 float local_sum;

 #pragma omp parallel shared(a,m,n,sum) \
 private(i,j,local_sum)
 {
 local_sum = 0.0;
 #pragma omp for nowait
 for(i = 0; i < n; i++) {
 for(j = 0; j < m; j++)
 local_sum = local_sum + a[j + i*m];
 }
 #pragma omp critical
 sum = sum + local_sum;
 }
}

The above reduction could also use the reduction() clause as follows:

void reduction_2 (float a[], int m, int n, \
 float sum)
{
 int i, j;

 #pragma omp parallel for shared(a,m,n) \
 private(i,j) reduction(+:sum)
 for(i = 0; i < n; i++) {
 for(j = 0; j < m; j++)
 sum = sum + a[j + i*m];
 }
}

kappro-support@kai.com 165

B • C/C++ Examples Examples of OpenMP usage in C/C++

166
B.11 threadprivate: Private File-Scope Variable
This example demonstrates the use of threadprivate file-scope variables.

float work[10000];
#pragma omp threadprivate(work)

extern void construct_data() ;
extern void use_data() ;

void tc_1(int n)
{
 int i;

 #pragma omp parallel shared(n) private(i)
 {
 #pragma omp for
 for(i = 0; i < n; i++) {
 construct_data(); /* fills array work() */
 use_data(); /* uses array work() */
 }
 }
}

http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

B.12 threadprivate: Private File-Scope Variable and
Master Thread
In this example, the value 2 is printed since the master thread’s copy of
threadprivate variable is accessed within a master section or in serial code
sections. If a single was used in place of the master section, some single
thread, but not necessarily the master thread, would set j to 2 and the printed result
would be indeterminate.

#include <stdio.h>

int j;
#pragma omp threadprivate(j)

int main()
{
 j = 1;

 #pragma omp parallel copyin(j)
 {
 #pragma omp master
 j = 2;
 }

 printf(“j = %d\n”, j);
}

kappro-support@kai.com 167

B • C/C++ Examples Examples of OpenMP usage in C/C++

168
B.13 Avoiding External Routines: reduction
This example demonstrates two coding styles for reductions, one using the
external routines omp_get_max_threads() and
omp_get_thread_num() and the other using only OpenMP pragmas.

#include <stdio.h>
#include <omp.h>

void reduction_3a (int n, float a[])
{
 int i;
 float gx[8], lx, x; /* assume 8 processors */

 x = 0.0 ;
 for(i = 0; i < omp_get_max_threads(); i++)
 gx[i] = 0.0;

 #pragma omp parallel shared(a,n,g) \
 private(i,lx)
 {
 lx = 0.0;
 #pragma omp for nowait
 for(i = 0; i < n; i++)
 lx = lx + a[i];

 gx[omp_get_thread_num()] = lx;
 }

 for(i = 0; i < omp_get_max_threads(); i++)
 x = x + gx[i];

 printf(“x = %f\n”, x);
}

As shown below, this example can be written without the external routines.

#include <stdio.h>
void reduction_3b (int n, float a[])
{
 int i;
 float lx, x;

 x = 0.0;
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

 #pragma omp parallel shared(a,n) private(i,lx)
 {
 lx = 0.0;
 #pragma omp for nowait
 for(i = 0; i < n; i++)
 lx = lx + a[i];

 #pragma omp critical
 x = x + lx;
 }

 printf(“x = %f\n”, x);
}

This example can also be written more simply using the reduction() clause as
follows:

#include <stdio.h>
void reduction_3c (int n, float a[])
{
 int i;
 float x;

 x = 0.0 ;

 #pragma omp parallel for shared(a,n) \
 private(i) reduction(+:x)
 for(i = 0; i < n; i++)
 x = x + a[i];

 printf(“x = %f\n”, x) ;
}

kappro-support@kai.com 169

B • C/C++ Examples Examples of OpenMP usage in C/C++

170
B.14 Avoiding External Routines: Temporary Stor-
age
This example demonstrates three coding styles for temporary storage, one using
the external routine and omp_get_thread_num() and the other two using
only pragmas.

#include <omp.h>

void local_1a (int n, float a[])
{
 int i, j;
 extern float t[8][100]; /* assume 8 procs max. */
 #pragma omp parallel for shared(a,t,n) \
 private(i,j)
 for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++)
 t[omp_get_thread_num()][j] = a[i] * a[i];
 work(&(t[omp_get_thread_num()][0]));
 }
}

If t is not global, then the above can be accomplished by putting t in the
private clause:

void local_1b (int n, float a[])
{
 int i, j;
 float t[100];

 #pragma omp parallel for shared(a,n) \
 private(i,t,j)
 for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++)
 t[j] = a[i] * a[i];
 work(t);
 }
}

If t is global, then the threadprivate pragma can be used instead.

float t[100];
#pragma omp threadprivate(t)

void local_1c (int n, float a[])
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

{
 int i, j;

 #pragma omp parallel for shared(a,n) \
 private(i,j)
 for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++)
 t[j] = a[i] * a[i];
 work(t);
 }
}

kappro-support@kai.com 171

B • C/C++ Examples Examples of OpenMP usage in C/C++

172
B.15 firstprivate: Copying in Initialization Values
Not all of the values of a and b are initialized in the loop before they are used.
(The rest of the values are produced by init_a and init_b.) Using
firstprivate for a and b causes the initialization values produced by
init_a and init_b to be copied into private copies of a and b for use in the
loops.

#include <stdio.h>

void dsq3_b (float c[], int n)
{
 int i, j;
 float a[100], b[100], x, y;
 init_a(a, n);
 init_b(b, n);
 #pragma omp parallel for shared(c,n) \
 private(i,j,x,y) firstprivate(a,b)
 for(i = 0; i < n; i++) {
 for(j = 0; j <= i; j++) {
 a[j] = calc_a(i);
 b[j] = calc_b(i);
 }
 for(j = 0; j < n; j++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[j + n*i] = x*y;
 }
 }
 printf(“x, y = %f, %f\n”, x, y);
}

http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples • B

C
/C

+
+

 E
xa

m
pl

es

B

g

f
B.16 threadprivate: Copying in Initialization Values
Similar to “firstprivate: Copying in Initialization Values” on page 172 except usin
threadprivate variables. For threadprivate, copyin is used instead of
firstprivate to copy initialization values from the shared (master) copies oa
and b to the private copies.

float a[100], b[100];
#pragma omp threadprivate(a,b)

void dsq3_b_tc (float c[], int n) {
 int i, j;
 float x, y;

 init_a(a, n);
 init_b(b, n);

 #pragma omp parallel for shared(c,n) \
 private(i,j,x,y) copyin(a,b)
 for(i = 0; i < n; i++) {
 for(j = 0; j <= i; j++) {
 a[j] = calc_a(i);
 b[j] = calc_b(i);
 }
 for(j = 0; j < n; j++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i+n*j] = x*y;
 }
 }
 printf(“x, y = %f, %f\n”, x, y);
}

kappro-support@kai.com 173

B • C/C++ Examples Examples of OpenMP usage in C/C++

174
B.17 taskq: Parallelizing across Loop Nests
The OpenMP for pragma is limited in that it can only parallelize on a single
for loop at a time. Using taskq, nested loops can be parallelized. Each itera-
tion of the loop is independent and is enqueued as a task.

void multiple_doalls(int m, int n, int* sum_p) {
 int i, j;
 int sum = 0;
 #pragma omp parallel taskq shared(n,m) \
 private(i) lastprivate(j) reduction(+:sum)
 for(i = 0; i < n; ++i) {
 for(j = 0; j < m; ++j) {
 partial_sum(&sum);
 #pragma omp task
 do_work(i, j, &sum);
 }
 }
 *sum_p += sum;
 foo(&j);
}

http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

APPENDIX C Fortran Examples

Examples of OpenMP usage in Fortran

The following example programs illustrate the use of OpenMP directives in For-
tran.
kappro-support@kai.com 175

C • Fortran Examples Examples of OpenMP usage in Fortran

176
C.1 do: A Simple Difference Operator
This example shows a simple parallel loop where the amount of work in each
iteration is different. We used dynamic scheduling to get good load balancing.
The end do has a nowait because there is an implicit barrier at the end of
the parallel region. Alternately, using the option -optimize=1 would have also
eliminated the barrier.

 subroutine do_1 (a,b,n)
 real a(n,n), b(n,n)

!$omp parallel
!$omp& shared(a,b,n)
!$omp& private(i,j)
!$omp do schedule(dynamic,1)
 do i = 2, n
 do j = 1, i
 b(j,i)=(a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
!$omp end do nowait
!$omp end parallel
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

C.2 do: Two Difference Operators
Shows two parallel regions fused to reduce fork/join overhead. The first end do
has a nowait because all the data used in the second loop is different than all the
data used in the first loop.

 subroutine do_2 (a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)

!$omp parallel
!$omp& shared(a,b,c,d,m,n)
!$omp& private(i,j)
!$omp do schedule(dynamic,1)
 do i = 2, n
 do j = 1, i
 b(j,i)=(a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
!$omp end do nowait
!$omp do schedule(dynamic,1)
 do i = 2, m
 do j = 1, i
 d(j,i)=(c(j,i) + c(j,i-1)) / 2
 enddo
 enddo
!$omp end do nowait
!$omp end parallel
 end
kappro-support@kai.com 177

C • Fortran Examples Examples of OpenMP usage in Fortran

178
C.3 do: Reduce Fork/Join Overhead
Routines do_3a and do_3b perform numerically equivalent computations, but
because the parallel directive in routine do_3b is outside the do j loop,
routine do_3b probably forms teams less often, and thus reduces overhead.

 subroutine do_3a (a,b,m,n)
 real a(n,m), b(n,m)

 do j = 2, m
!$omp parallel
!$omp& shared(a,b,n,j)
!$omp& private(i)
!$omp do
 do i = 1, n
 a(i,j) = b(i,j) / a(i,j-1)
 enddo
!$omp end do nowait
!$omp end parallel
 enddo
 end

 subroutine do_3b (a,b,m,n)
 real a(n,m), b(n,m)

!$omp parallel
!$omp& shared(a,b,m,n)
!$omp& private(i,j)
 do j = 2, m
!$omp do
 do i = 1, n
 a(i,j) = b(i,j) / a(i,j-1)
 enddo
!$omp end do nowait
 enddo
!$omp end parallel
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

f
C.4 sections: Two Difference Operators
Identical to “do: Two Difference Operators” on page 177 but uses sections
instead of do. Here the speedup is limited to 2 because there are only 2 units o
work whereas in “do: Two Difference Operators” on page 177 there are n-1 + m-1
units of work.

 subroutine sections_1 (a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)

!$omp parallel
!$omp& shared(a,b,c,d,m,n)
!$omp& private(i,j)
!$omp sections
!$omp section
 do i = 2, n
 do j = 1, i
 b(j,i)=(a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
!$omp section
 do i = 2, m
 do j = 1, i
 d(j,i)=(c(j,i) + c(j,i-1)) / 2
 enddo
 enddo
!$omp end sections nowait
!$omp end parallel
 end
kappro-support@kai.com 179

C • Fortran Examples Examples of OpenMP usage in Fortran

180
C.5 single: Updating a Shared Scalar
This example demonstrates how to use a single construct to update an ele-
ment of the shared array a. The optional nowait after the first loop is omitted
because we need to wait at the end of the loop before proceeding into the sin-
gle.

 subroutine sp_1a (a,b,n)
 real a(n), b(n)

!$omp parallel
!$omp& shared(a,b,n)
!$omp& private(i)
!$omp do
 do i = 1, n
 a(i) = 1.0 / a(i)
 enddo
!$omp single
 a(1) = min(a(1), 1.0)
!$omp end single
!$omp do
 do i = 1, n
 b(i) = b(i) / a(i)
 enddo
!$omp end do nowait
!$omp end parallel
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

C.6 sections: Updating a Shared Scalar
Identical to “single: Updating a Shared Scalar” on page 180 but using different
directives.

 subroutine psection_sp_1 (a,b,n)
 real a(n), b(n)

!$omp parallel
!$omp& shared(a,b,n)
!$omp& private(i)
!$omp do
 do i = 1, n
 a(i) = 1.0 / a(i)
 enddo
!$omp sections
 a(1) = min(a(1), 1.0)
!$omp end sections
!$omp do
 do i = 1, n
 b(i) = b(i) / a(i)
 enddo
!$omp end do nowait
!$omp end parallel
 end
kappro-support@kai.com 181

C • Fortran Examples Examples of OpenMP usage in Fortran

182

ent
C.7 do: Updating a Shared Scalar
Identical to “single: Updating a Shared Scalar” on page 180 but using differ
directives.

 subroutine do_sp_1 (a,b,n)
 real a(n), b(n)

!$omp parallel
!$omp& shared(a,b,n)
!$omp& private(i)
!$omp do
 do i = 1, n
 a(i) = 1.0 / a(i)
 enddo
!$omp end do
!$omp do
 do i = 1, 1
 a(1) = min(a(1), 1.0)
 enddo
!$omp end do
!$omp do
 do i = 1, n
 b(i) = b(i) / a(i)
 enddo
!$omp end do nowait
!$omp end parallel
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

t
C.8 parallel do: A Simple Difference Operator
Identical to “do: A Simple Difference Operator” on page 176 but using differen
directives.

 subroutine paralleldo_1 (a,b,n)
 real a(n,n), b(n,n)

!$omp parallel do
!$omp& shared(a,b,n)
!$omp& private(i,j)
!$omp& schedule(dynamic,1)
 do i = 2, n
 do j = 1, i
 b(j,i)=(a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
 end
kappro-support@kai.com 183

C • Fortran Examples Examples of OpenMP usage in Fortran

184

er-
m-
of 2.
C.9 parallel sections: Two Difference Operators
Identical to “sections: Two Difference Operators” on page 179 but using diff
ent directives. The maximum performance improvement is limited to the nu
ber of sections run in parallel, so this example has a maximum parallelism

 subroutine sections_2 (a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)

!$omp parallel sections
!$omp& shared(a,b,c,d,m,n)
!$omp& private(i,j)
!$omp section
 do i = 2, n
 do j = 1, i
 b(j,i)=(a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
!$omp section
 do i = 2, m
 do j = 1, i
 d(j,i)=(c(j,i) + c(j,i-1)) / 2
 enddo
 enddo
!$omp end parallel sections
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

C.10 barrier: Testing then Modifying a Shared Object
Using a barrier after the first end do instead of synchronizing on array b
everywhere. The end do after the first loop is optional but specified in this case.

 subroutine barrier_1 (a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)
 real div

!$omp parallel
!$omp& shared(a,b,c,d,m,n)
!$omp& local(i,j,div)
!$omp do always dynamic trapezoidal
 do i = 1, n-1
 do j = 1, i
 b(j,i) = a(j,i) + a(j,i+1)
 enddo
 enddo
!$omp end do
 if (b(1,1) .gt. 100.0) then
 div = 2.0
 else
 div = 4.0
 endif
!$omp barrier
!$omp do always dynamic guided
 do i = 1, n
 do j = 1, i
 b(j,i) = b(j,i) / div
 enddo
 enddo
!$omp end do nowait
!$omp end parallel
 end
kappro-support@kai.com 185

C • Fortran Examples Examples of OpenMP usage in Fortran

186
C.11 Simple Reduction
This demonstrates how to perform a reduction using partial sums while avoiding
synchronization in the loop body.

 subroutine reduction_1 (a,m,n,sum)
 real a(m,n)

!$omp parallel
!$omp& shared(a,m,n,sum)
!$omp& private(i,j,local_sum)
 local_sum = 0.0
!$omp do
 do i = 1, n
 do j = 1, m
 local_sum = local_sum + a(j,i)
 enddo
 enddo
!$omp end do nowait
!$omp critical
 sum = sum + local_sum
!$omp end critical
!$omp end parallel
 end

The above reduction could also use the REDUCTION () clause as follows:

 subroutine reduction_2 (a,m,n,sum)
 real a(m,n)

!$omp parallel do
!$omp& shared(a,m,n)
!$omp& private(i,j)
!$omp& reduction(+:sum)
 do i = 1, n
 do j = 1, m
 sum = sum + a(j,i)
 enddo
 enddo
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

C.12 threadprivate: Private Common
This example demonstrates the use of threadprivate privatizable common
blocks.

 subroutine tc_1 (n)
 common /shared/ a
 real a(100,100)
 common /private/ work
 real work(10000)
!$omp threadprivate (/private/) ! this privatizes
 ! common /private/
!$omp parallel
!$omp& shared(n)
!$omp& private(i)
!$omp do
 do i = 1, n
 call construct_data() ! fills array work()
 call use_data() ! uses array work()
 enddo
!$omp end do nowait
!$omp end parallel
 end
kappro-support@kai.com 187

C • Fortran Examples Examples of OpenMP usage in Fortran

188
C.13 threadprivate: Private Common and Master
Thread
In this example, the value 2 is printed since the master thread’s copy of a vari-
able in a threadprivate privatizable common block is accessed within a
master section or in serial code sections. If a single was used in place of the
master section, some single thread, but not necessarily the master thread,
would set j to 2 and the printed result would be indeterminate.

 subroutine tc_2
 common /blk/ j
!$omp threadprivate (/blk/)

 j = 1
!$omp parallel
!$omp master
 j = 2
!$omp end master
!$omp end parallel

 print *, j
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

C.14 Avoiding External Routines: reduction
This example demonstrates two coding styles for reductions, one using the external
routines omp_get_max_threads() and omp_get_thread_num() and the
other using only OpenMP directives.

 subroutine reduction_3a (n)
 real gx(0:7) ! assume 8 processors

 do i = 0, omp_get_max_threads()-1
 gx(i) = 0
 enddo

!$omp parallel
!$omp& shared(a)
!$omp& private(i,lx)
 lx = 0
!$omp do
 do i = 1, n
 lx = lx + a(i)
 enddo
!$omp end do nowait
 gx(omp_get_thread_num()) = lx
!$omp end parallel

 x = 0
 do i = 0, omp_get_max_threads()-1
 x = x + gx(i)
 enddo

 print *, x
 end

As shown below, this example can be written without the external routines.

 subroutine reduction_3b (n)

 x = 0
!$omp parallel
!$omp& shared(a,x)
!$omp& private(i,lx)
 lx = 0
!$omp do
 do i = 1, n
 lx = lx + a(i)
kappro-support@kai.com 189

C • Fortran Examples Examples of OpenMP usage in Fortran

190
 enddo
!$omp end do nowait
!$omp critical
 x = x + lx
!$omp end critical
!$omp end parallel

 print *, x
 end

This example can also be written more simply using the reduction () clause
as follows:

 subroutine reduction_3c (n)

 x = 0
!$omp parallel
!$omp& shared(a)
!$omp& private(i)
!$omp do reduction(+:x)
 do i = 1, n
 x = x + a(i)
 enddo
!$omp end do nowait
!$omp end parallel

 print *, x
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

C.15 Avoiding External Routines: Temporary Storage
This example demonstrates three coding styles for temporary storage, one using the
external routine and omp_get_thread_num() and the other two using only
directives.

 subroutine local_1a (n)
 dimension a(100)
 common /cmn/ t(100,0:7) ! assume 8 procs max
!$omp parallel do
!$omp& shared(a,t)
!$omp& private(i)
 do i = 1, n
 do j = 1, n
 t(j, omp_get_thread_num()) = a(i) ** 2
 enddo
 call work(t(1,omp_get_thread_num()))
 enddo
 end

If t is not global, then the above can be accomplished by putting t in the
private clause:

 subroutine local_1b (n)
 dimension t(100)

!$omp parallel do
!$omp& shared(a)
!$omp& private(i,t)
 do i = 1, n
 do j = 1, n
 t(j) = a(i) ** 2
 enddo
 call work(t)
 enddo
 end

If t is global, then the threadprivate directive can be used instead.

 subroutine local_1c (n)
 dimension t(100)
 common /cmn/ t
!$omp threadprivate (/cmn/)

!$omp parallel do
kappro-support@kai.com 191

C • Fortran Examples Examples of OpenMP usage in Fortran

192
!$omp& shared(a)
!$omp& private(i)
 do i = 1, n
 do j = 1, n
 t(j) = a(i) ** 2
 enddo
 call work ! access t from common /cmn/
 enddo
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

C.16 firstprivate: Copying in Initialization Values
Not all of the values of a and b are initialized in the loop before they are used (the
rest of the values are produced by init_a and init_b). Using firstprivate
for a and b causes the initialization values produced by init_a and init_b to
be copied into private copies of a and b for use in the loops.

 subroutine dsq3_b (c,n)
 integer n
 real a(100), b(100), c(n,n), x, y
 call init_a(a, n)
 call init_b(b, n)
!$omp parallel do shared(c,n) private(i,j,x,y)
!$omp& firstprivate(a,b)
 do i = 1, n
 do j = 1, i
 a(j) = calc_a(i)
 b(j) = calc_b(i)
 enddo
 do j = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(j,i) = x * y
 enddo
 enddo
!$omp end parallel do
 print *, x, y
 end
kappro-support@kai.com 193

C • Fortran Examples Examples of OpenMP usage in Fortran

194
C.17 threadprivate: Copying in Initialization Values
Similar to “firstprivate: Copying in Initialization Values” on page 193 except
using threadprivate common blocks. For threadprivate, copyin is
used instead of firstprivate to copy initialization values from the shared
(master) copy of /blk/ to the private copies.

 subroutine dsq3_b_tc (c,n)
 integer n
 real a(100), b(100), c(n,n), x, y
 common /blk/ a,b
!$omp threadprivate (/blk/)

 call init_a(a, n)
 call init_b(b, n)
!$omp parallel do shared(c,n) private(i,j,x,y)
!$omp& copyin(a,b)
 do i = 1, n
 do j = 1, i
 a(j) = calc_a(i)
 b(j) = calc_b(i)
 enddo
 do j = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(j,i) = x * y
 enddo
 enddo
!$omp end parallel do
 print *, x, y
 end
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

C.18 Manual loop collapsing

Consider the following FORTRAN 77 code segment which performs the addition
of two arrays:

...
integer i, j, k, n, m, l
parameter (n=1000, m=100, l=10)
real a(n,m,l), b(n,m,l), c(n,m,l)

...
do k = 1, l
do j = 1, m
do i = 1, n

a(i,j,k) = b(i,j,k) + c(i,j,k)
end do
end do
end do

...

Since most current implementations of OpenMP do not support multiple levels of
nested parallelism, only the outermost loop is parallelizable without loop restruc-
turing:

...
integer i, j, k, n, m, l
parameter (n=1000, m=100, l=10)
real a(n,m,l), b(n,m,l), c(n,m,l)

...
c Only the outermost loop is parallelized.
!$omp parallel do private(i,j,k) shared(a,b,c,n,m,l)

do k = 1, l
 do j = 1, m
 do i = 1, n

a(i,j,k) = b(i,j,k) + c(i,j,k)
 end do
 end do
end do

!$omp end parallel do
...

This is not necessarily the most efficient parallelization possible, because even
though the k iterations are distributed among threads, the inner i and j loops still
execute in serial. Parallel performance and scalability are likely to be poor if the
value of k is small compared to the number of processors and/or the values of i and
kappro-support@kai.com 195

C • Fortran Examples Examples of OpenMP usage in Fortran

196
j. One possible parallelization strategy is to manually collapse two or more of
the loops as follows:

...
integer i, j, k, n, m, l, kj
parameter (n=1000, m=100, l=10)
real a(n,n,n), b(n,n,n), c(n,n,n)

...
c Now all of the “k” and “j” iterations are
c distributed among threads; the inner loop is
c still executed in serial.
!$omp parallel do private(i,j,k,kj)
!$omp& shared(a,b,c,n,m,l)

do kj = 0, l*m - 1
k = 1 + kj/m
j = 1 + mod(kj, m)
 do i = 1, n

a(i,j,k) = b(i,j,k) + c(i,j,k)
 end do
end do

!$omp end parallel do
...

Instead of distributing l iterations among threads, now l*m iterations are dis-
tributed. However, calculating the loop indices involves an additional computa-
tional expense. GuideView can be used to determine whether this parallelization
strategy is appropriate for any particular loop (performance and scalability will
likely depend on the actual values of the loop indices and the amount of work
performed within the loop). See the example called “workshare” on page 197
for another possible parallelization strategy.
http://www.kai.com/parallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples • C

F
or

tr
an

 E
xa

m
pl

es

C

an-
C.19 workshare
Consider the following FORTRAN 77 code segment which performs the addition
of two arrays:

...
integer i, j, k, n, m, l
parameter (n=1000, m=100, k=10)
real a(n,m,l), b(n,m,l), c(n,m,l)

...
do k = 1, l
do j = 1, m
do i = 1, n

a(i,j,k) = b(i,j,k) + c(i,j,k)
end do
end do
end do

...

This computation can be expressed more succintly using Fortran 90 array syntax as
follows:

...
integer i, j, k, n, m, l
parameter (n=1000, m=100, l=10)
real a(n,m,l), b(n,m,l), c(n,m,l)

...
a = b + c

...

Satisfactory parallelization of this computation is difficult without the work-
share directive. Since most current implementations of OpenMP do not support
multiple levels of nested parallelism, only the outermost loop in the FORTRAN 77
example is parallelizable without code restructuring (see the example called “M
ual loop collapsing” on page 195):

...
integer i, j, k, n, m, l
parameter (n=1000, m=100, l=10)
real a(n,m,l), b(n,m,l), c(n,m,l)

...
c Only the outermost loop is parallelized.
!$omp parallel do private(i,j,k)
!$omp& shared(a,b,c,n,m,l)

do k = 1, l
kappro-support@kai.com 197

C • Fortran Examples Examples of OpenMP usage in Fortran

198
 do j = 1, m
 do i = 1, n

a(i,j,k) = b(i,j,k) + c(i,j,k)
 end do
 end do
end do

!$omp end parallel do
...

The Fortran 90 example cannot be parallelized at all without the workshare
directive; placing the array assignment inside of a parallel region merely causes
each thread to duplicate the computation:

...
integer i, j, k, n, m, l
parameter (n=1000, m=100, l=10)
real a(n,m,l), b(n,m,l), c(n,m,l)

...
c Placing the array assignment inside a parallel
c region produces NO performance gain; all threads
c perform the entire computation
!$omp parallel

a = b + c
!$omp end parallel
...

Finally, here is how this computation can be efficiently parallelized using the
workshare directive:

...
integer i, j, k, n, m, l
parameter (n=1000, m=100, l=10)
real a(n,m,l), b(n,m,l), c(n,m,l)

...
c Placing the array assignment inside a workshare
c directive causes the work to be divided among
c threads
!$omp parallel workshare

a = b + c
!$omp end parallel workshare
...

Evaluation of each element of the array expression is a unit of work, and these
units of work are assigned to threads in an such a way that each unit is executed
exactly once.
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

ddi-

t of
APPENDIX D Additional KAP/Pro
Options

Additional KAP/Pro Options: Alphabetic Listing

This section lists the additional Assure and Guide options that can be specified
using the -WG,... driver option. To make these options easy to find, they are listed
alphabetically rather than by functional category. The headings in the following
sections list the full and short names for each option (short names are given in
parentheses). Note that each of these options is preceded by a ‘-’ character. A sum-
mary of these options in the form of a table is given in the following section, “A
tional KAP/Pro Options: Table” on page 211

c*$*options line (Fortran only)

When a Fortran source file should always be run with the same command line
options, the first line of the file may be used to specify those options. The forma
this line is:

c*$*options option[=value] [option[=value]]...

The c*$*options (or *$*options) must appear in columns 1-11 (or 1-10) with a
character space between this command and the options that follow.
kappro-support@kai.com 199

D • Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

200

ari-
’s
Only the first line may be used for c*$*options. Short or long option names
may be used on this line.

Options of the form -option=<name> (e.g., -cmp) cannot be specified on the
c*$*options line of the source file. These options may be specified on the com-
mand line only.

If conflicting options are specified on the command line and on the c*$*options
line, the c*$*options line takes precedence. If additional options are specified
on the c*$*options line, these are used in addition to those specified on the
command line.

If the command line option -ignoreoptions is set (see page 204), any
c*$*options line in the source file is treated as a comment.

-alignmax=<integer>

This is an expert option that you would normally not use. The -alignmax option
tells Assure or Guide the size of the largest data type the native compiler will
pad in a common block or VAX structure in order to achieve natural alignment.
The default value is platform-specific, and the driver provides an appropriate
value based on the command line switches passed to the native compiler.

-assume=<string> (-a=<string>)
-noassume (-nas)

The -assume option instructs Assure or Guide to make certain global assump-
tions about the program being processed. The -assume option switch values are
the following:

a Different subroutine or function parameters may refer to the same object.

b Array subscripts may go outside the declared bounds.

c Constants used in subroutine or function calls will be placed in temporary
variables.

e EQUIVALENCE statements may cause different names to refer to the same
memory location.

f The ‘l’ value applies only to parallel loops generated automatically from
array syntax by Assure or Guide, when -concurrent is specified. When ‘l’
is specified, Assure or Guide ensures the shared copy of each private v
able is updated after a parallel loop, using the value assigned in the loop
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

 the

il-

wer-

s the

ensi-

any

d in

ing

 of
final iteration. This behavior is analogous to using the lastprivate()
instead of private() for all private variables. If ‘l’ is omitted, Assure or
Guide will assume private variables do not need their final values stored in
shared copy.

The default value is -assume=cel. To disable all the above assumptions, specify
-noassume on the command line.

-blank_padding (-bp)
(-noblank_padding) (-nbp)

The -blank_padding option instructs Assure or Guide to pad input lines with tra
ing blanks. The default value of this option varies by platform and is chosen to
match the behavior of the native compiler.

-case
-nocase (-ncase)

The -case option instructs Assure or Guide to distinguish between upper and lo
case in identifier names. The default -nocase instructs Assure or Guide to ignore
case in variable names.

When Assure or Guide inserts or modifies lines in a program, it usually create
new code in capital letters. The -case option requires Assure or Guide to preserve
the original case of variables in the new code. Making Assure or Guide case-s
tive can be important. If, for example, there is a variable named n and a variable
named N in the original source code, Assure or Guide will change the n to N, caus-
ing a conflict between two different variables which now have the same name.
Using -WG,-case would preserve the case-sensitive variable names and avoid
contention.

-chunk=<integer> (-chk=<integer>) (Guide only)

This option specifies a parameter for parallel loop scheduling, and is to be use
conjunction with the -scheduling option. Together, the -scheduling and the -chunk
options establish default scheduling for parallel loops within the source files be
compiled. Individual loops can override this default scheduling mechanism by
using explicit scheduling options on the parallel do or do directive. The
default chunk size is 1. See “Scheduling Options” on page 139 for descriptions
the -chunk options.
kappro-support@kai.com 201

D • Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

202

ub-

e
pil-

o

n
-cmp[=<file>]

The -cmp option instructs Assure or Guide to place the optimized Fortran pro-
gram in a specified file. The default name of this file is derived from the input
filename by adding A_ (Assure) or G_ (Guide) to the beginning of the input file-
name. If -cmp=<file> is specified, the Fortran output file is written to the speci-
fied file. If -cmp is specified with no argument, then the output is written to
standard output.

-concurrentize (-conc) (Guide only)
-noconcurrentize (-noconc) (Guide only)

Guide uses the -concurrentize switch to enable parallelization of loops derived
from array syntax only. This option can be used to generate parallel loops from
Fortran 90 array syntax. Guide will only run a loop in parallel if it determines
there is sufficient work available to benefit from parallelism. You can adjust
Guide’s idea of sufficient work via the -minconcurrent option. The -concur-
rentize option also implies -scalaropt=1.

-datasave (-ds) (Fortran only)
-nodatasave (-nds) (Fortran only)

The -datasave option instructs Assure or Guide to treat local variables in a s
routine or function which appear in DATA statements as if they were also in
SAVE statements. That is, values will be retained between invocations of th
subroutine or function. This is the practice of many commercial Fortran com
ers, and -datasave is on by default. This choice affects certain optimizations
performed by Assure or Guide.

The negative option, -nodatasave, complies with the Fortran standard. See als
the description of the -save command line option.

-directives=p (-dr=p)
-nodirectives (-ndr)

The -directives=p option enables parallel programming directives. This optio
is on by default. To disable parallel programming directives, use -nodirectives.
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

ory”

ay
 the

em
t
g the
-dlines (-dl) (Fortran only)
-nodlines (-ndl) (Fortran only)

The -dlines option instructs Assure or Guide to treat a D or d in column 1 of Fortran
source as a space character. The rest of that line will then be parsed as a normal For-
tran statement. By default, Assure or Guide treats these lines as comments. This
option is useful for the inclusion or exclusion of debugging lines.

In the following example, the first (default) case shows that the D line is ignored:

Fortran syntax:
 do 10 i = 1,n
 a (i) = b (i)
 d write (*,*) a (i)
 10 continue

becomes

 do 10 i=1,n
 a(i) = b(i)
 10 continue

But when -dlines is specified, Assure or Guide sees a WRITE statement:

Fortran syntax:
 do 10 i=1,n
 a(i) = b(i)
 write (*, *) a(i)
 10 continue

-heaplimit=<integer> (-heap=<integer>)

Assure and Guide may require large amounts of memory in order to process the
source code. The -heaplimit option specifies the maximum size in megabytes that
Assure or Guide can use for a heap. If this limit is breached, Assure or Guide will
stop processing the source code and try to exit gracefully with an “out of mem
error message. The default size is system-dependent.

If integer is greater than the amount of available memory, Assure or Guide m
run out of memory before it reaches the heaplimit. Assure and Guide rely upon
operating system to tell it that the OS has run out of memory before that probl
occurs. Some operating systems kill Assure and Guide without first saying tha
there is insufficient memory. In that case, Assure or Guide may stop processin
kappro-support@kai.com 203

D • Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

204

e

ode
ame
code and exit in an undefined manner. Using -heaplimit makes a graceful exit
more likely.

-ignoreoptions (-ig) (Fortran only)
-noignoreoptions (-nig) (Fortran only)

The -ignoreoptions option directs Assure or Guide to ignore any c*$*options
or *$*options line that may appear at the top of a Fortran input file. Normally,
Assure and Guide read the c*$*options or *$*options instruction for further
command line options, as explained in the description of the c*$*options line
on page 199.

Setting -noignoreoptions directs Assure or Guide to acknowledge and accept
the c*$*options line in the source program. This is the default.

-include=<path> (-inc=<path>)

By default, Assure and Guide look only in the current directory to locate files
specified in INCLUDE statements. The -include option allows an alternate
directory to be specified for locating those files. An INCLUDE file whose name
does not begin with a slash (/) is sought first in the directory containing the file
being processed, then in the directory named in the -include option. Multiple
-include options may be used to specify multiple include directories. It is rec-
ommended that you use the native compiler’s include option, often -I, instead.

-input=<file> (-i=<file>)

When running Assure or Guide in stand-alone mode, simply enter the sourc
filename on the command line. This option is available for special circum-
stances and for compatibility with other operating systems.

On UNIX systems, if the -input option is specified without a filename, Assure
or Guide will read its source from standard input and write the transformed c
to standard output. In this case, no listing file will be generated unless a filen
is explicitly provided with the -list option.
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

-integer=<integer> (-int=<integer>)

This option specifies a size in bytes, integer, for the default size of INTEGER
variables. When integer=2 or 4, take INTEGER*<integer> as the default
INTEGER type. When -integer=0 is specified, Assure and Guide use the ordinary
default length for INTEGER variables. The default is -integer=4.

-lines=<integer> (-ln=<integer>)

The -lines option enables the listing from Assure or Guide to be paginated for print-
ing in different formats. The number of lines per page on the listing may be
changed using the -lines option. The setting -lines=0 instructs Assure or Guide to
paginate only at subroutine boundaries. The default setting is -lines=55.

-list[=<file>]
-nolist

The -list option informs Assure or Guide where to place the listing file. When no
filename is specified, Assure and Guide derive the default name of the listing file
from the input filename by adding A_ (Assure) or G_ (Guide) to the beginning of
the filename and changing the extension to .out. If a filename is specified, then
the listing file is written to that file. To disable generation of the listing file, enter
-nolist on the command line. The default is -nolist.

-listoptions=<string> (-lo=<string>)

The -listoptions option tells Assure or Guide what optional information to include
in the listing, transformed code, and error files, if such files are to be generated.

Any of the following information can be selected:

The -listoptions=k command line option can be used to determine what your
default settings are. The default listing file name is derived from the input filename
by adding A_ (Assure) or G_ (Guide) to the beginning of the filename and chang-
ing the extension to .out.

Value Prints
k Additional Assure and Guide command line options used,

printed at the end of each program unit
o Original source program annotated listing
t Transformed program annotated listing
kappro-support@kai.com 205

D • Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

206
To produce no listing file, enter -nolist on the command line. The default value
is -listoptions=ko.

-logical=<integer> (-log=<integer>)

This option specifies a size in bytes, integer, for the default size of LOGI-
CAL variables. When integer=1, 2, or 4, take LOGICAL*<integer> as the
default LOGICAL type. The value assigned to -logical should be equal to the
value assigned to -integer. The default is -logical=4.

-minconcurrent=<integer> (-mc=<integer>) (Guide only)

The -minconcurrent option only applies to parallel loops created by Guide
from array syntax. The -minconcurrent option implies the -concurrentize
switch.

Executing a loop in parallel incurs overhead which varies with different sys-
tems. If a loop has little work, parallel execution may be slower than serial exe-
cution because of the overhead. However, beyond a certain level, performance
gain may be obtained through parallel execution. This level is passed to Guide
with the -minconcurrent option.

The argument value must be a positive integer or 0. The higher the -minconcur-
rent value, the larger the loop body must be (have more iterations, more state-
ments, or both) to run concurrently.

At compilation time, Guide estimates the amount of computation inside a loop
by multiplying the loop iteration count by the sum of the non-index operands/
results and the non-assignment operators and compares this value with the -min-
concurrent value. If the estimated amount of work is greater than the -mincon-
current value, Guide generates concurrent code for the loop. Otherwise, it
leaves the loop serial. If the DO loop bounds are known at compilation time, the
exact iteration count can be computed. However, if the DO loop bounds are
unknown, Guide generates an IF expression in the directive. This is interpreted
by the compiler as a request to generate two loops, one concurrentized and one
left serial, and an IF-THEN-ELSE to make a run time check to decide whether
or not to execute the loop in parallel. (This case is called a two-version loop.)

To disable the generation of two-version loops throughout the program, use the
command line option -minconcurrent=0. This setting might affect performance
if branch prediction is an issue.
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

-onetrip (-1)
-noonetrip (-n1)

The -onetrip option allows one-trip DO loops to be specified. Many pre-FOR-
TRAN 77 compilers implemented DO loops which would always have at least one
iteration, even if the initial value of the loop control variable was higher than the
final value. This option informs Assure or Guide that the program being processed
contains loops which need the one-trip feature. This option is off by default.

-optimize=<integer> (-o=<integer>)

The -optimize option sets the base optimization and analysis level. The allowed
optimization levels and their meanings are:

0 Assure and Guide perform no optimizations on parallel directives.

1 Assure and Guide optimize parallel directives.

The default is -optimize=1.

-real=<integer> (-rl=<integer>)

This option specifies a size in bytes, for the default size of REAL variables. When
the -real option is present, Assure and Guide use REAL*<integer> as the default
REAL type.

The default value is -real=4.

NOTE: This option merely informs Assure and Guide about the default REAL size;
it does NOT ask Assure or Guide to convert from REAL*4 to REAL*8.

-recursion (-rc) (Fortran only)
-norecursion (-nrc) (Fortran only)

The -recursion option informs Assure and Guide that subroutines and functions in
the source program may be called recursively (that is, a subroutine or function calls
itself, or it calls another routine which calls it). Recursion affects storage allocation
decisions and the interpretation of the -save option. This option is off by default.

The -recursion option must be in force in each recursive routine that Assure or
Guide processes or unsafe transformations could result.
kappro-support@kai.com 207

D • Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

208
-roundoff=<string> (-r=<string>) (Guide only)

The -roundoff option specifies the amount of change from serial roundoff error
that is tolerable in the program. If an arithmetic reduction is accumulated in a
different order in the processed program than it was in the original program,
then the roundoff error is accumulated differently, and the final result may differ
from that of the original program. In most cases, the difference is insignificant.
However, if the source program is numerically unstable or if it requires extreme
precision, certain restructuring transformations performed by Guide must be dis-
abled in order to obtain exactly the same results as those obtained in the original
program.

The allowed -roundoff levels and their meanings are:

0 Guide allows no roundoff-changing transformations. When -roundoff=0, the
transformed code is in strict conformance to the Fortran standard. This is the
default. When -roundoff>0, the standards are relaxed.

1 Guide enables expression simplification and code floating.

-save=<string> (-sv=<string>)

The -save option instructs Assure or Guide on how to handle the storage class of
local scalar variables. In particular, Assure and Guide can be instructed to per-
form live variable analysis to help decide whether to save the value of a local
scalar variable between invocations of a function or a routine by generating a
SAVE statement. Assure and Guide can also be instructed to treat the default
storage class of all local scalar variables as either AUTOMATIC or STATIC. In
any case, neither Assure nor Guide will delete or ignore a hand coded SAVE
statement.

There are four possible settings for the -save option:

Specifying -save=all (-save=a) tells Assure or Guide not to perform live vari-
able analysis. However, all variables local to a function or a routine and COM-
MON blocks will be treated as if they are saved. The -save=all option is not
affected by the -[no]recursion option.

The default -save=manual (-save=m) tells Assure or Guide not to perform live
variable analysis. Assure and Guide assume that the necessary SAVE statements
have been inserted into the code, and will perform no corresponding analysis of
its own. Hand coded SAVE statements are assumed to be correct and sufficient.
The -save=manual setting is not affected by the -[no]recursion option.
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

Specifying -save=manual_adjust (-save=ma) instructs Assure or Guide to per-
form live variable analysis. The effect of -save=manual_adjust depends on the
-[no]recursion setting:

With -norecursion, SAVE statements will be added for variables that are
used before being defined on at least one path from one entry point to the
routine.

With -recursion, SAVE statements will be added for variables that are
used before being defined on all paths from all entry points to the routine.

Specifying -save=all_adjust (-save=aa) instructs Assure or Guide to perform live
variable analysis. The effect of -save=all_adjust depends on the -[no]recursion
setting:

With -norecursion, treat all local variables as saved, except those that are
defined before use in all paths from all entry points and that are not in
hand coded SAVE statements.

With -recursion, this is the same as -save=all.

Saving local variables may be required for correct execution, but can restrict
Assure and Guide optimizations. Accordingly, -save=ma should be used with cau-
tion.

-scalaropt=<integer> (-so=<integer>) (Guide only)

The -scalaropt option sets the level of scalar transformations performed. The
allowed values and their meanings are:

0 No scalar optimizations are performed. This is the default.

1 Forward substitution and backward elimination are performed.

-scan=<integer> (-scan=<integer>)

The -scan option allows the length of Fortran input lines to be set. Assure and
Guide will ignore (by treating as a comment) characters on columns beyond the
value of the -scan option. The value must be one of 72, 120, or 132. The default is
-scan=72.
kappro-support@kai.com 209

D • Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

210

e

error
ues of

le
-

er-
-

ted

I
which

ub-
-scheduling=<character> (-schd=<character>) (Guide only)

The -scheduling option tells Guide what kind of scheduling to use for loop iter-
ations on a multiprocessor machine. This option is used in conjunction with the
-chunk option. See “Scheduling Options” on page 139 for a description of th
-scheduling options.

-suppress=<string> (-su=<string>)

The -suppress option disables the printing of individual classes of Assure or
Guide messages. These message classes range from syntax warning and
messages to messages about the optimizations performed. The allowed val
the -suppress option are as follows:

Any number of these options can be combined in a single string, for examp
-WG,-suppress=eq. The default instructs Assure and Guide to report all mes
sage types listed above.

-syntax=<string> (-sy=<string>)

The -syntax option directs Assure and Guide to check for compliance with c
tain syntactic rules. If you are familiar with a different implementation of For
tran, then using a dialect switch can prevent a construct from being transla
differently than expected.

With -syntax=a, Assure and Guide check for strict compliance with the ANS
Fortran 77/90 standard. Warning and error messages are issued for syntax
does not conform to the standard.

Note: With -syntax=a, syntax errors are issued for array references without s
scripts.

Value Disables
d Data Dependence messages
e Syntax Error messages
i Informational messages
n Not Optimized messages
q Questions
s Standardized messages
w Syntax Warning messages
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Table Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

With -syntax=v, Assure and Guide accept the extensions and interpretations of
Digital or DEC Fortran 77/90.

The default, nosyntax, instructs Assure and Guide to accept a superset FORTRAN
77 and Fortran 90.

-tablesize=<integer> (-ts=<integer>)

The tablesize value is compared to the mathematical product of the number of state-
ments and the number of variables referenced in a given program unit. When the
tablesize value is less than this product, a "program-too-large" message will be
issued stating the required tablesize.

For Unix-based platforms, please note that you should also carefully review your
process resource limits with the limit command before adjusting the tablesize
command-line switch. Use the commands

unlimit

or e.g.

limit stacksize 32768

to increase all, or specific resource limits.

-type (-ty)
-notype (-nty)

The -type option instructs Assure and Guide to issue error messages for variables
not explicitly typed. The -notype default suppresses this checking.

Additional KAP/Pro Options: Table

The -WG driver option specifies additional arguments for Assure or Guide. To state
an Assure or Guide option, the long (full) name, short name, or any portion of the
long name, starting from the beginning, that uniquely identifies the option may be
used. Multiple options must be separated by a comma. For example, to change the
default size of INTEGER, LOGICAL, and REAL variables, use
-WG,-integer=8,-logical=8,-real=8. As another example, to change the scheduling
designator and the chunk size, use -WG,scheduling=d,chunk=4.
kappro-support@kai.com 211

D • Additional KAP/Pro Options Additional KAP/Pro Options: Table

212
Table D-1 lists the additional KAP/Pro options, grouped into the following func-
tional categories:

General Optimization

These options control large classes of optimizations.

Input-Output

These options affect the input file selection and output file naming, placement,
and characteristics.

Listing

Assure and Guide can generate listing files that contain information about the
transformations and optimizations it performs. The options in this category con-
trol the information Assure or Guide includes in its listing file.

Advanced Optimization

These options customize and fine-tune Guide or Assure for maximum perfor-
mance.

Fortran Dialect

These options specify the dialect of Fortran in use.

Limits

These options inform Assure or Guide about hardware or software limitations
imposed by your target architecture. The default settings have been chosen to
take advantage of the architecture of the target machine. In most cases, you will
not need to change the default settings.

Directive Recognition

These options enable or disable recognition and processing of directives present
in the code.
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Table Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

Scheduling

These options inform Assure or Guide about scheduling options for parallel work-
sharing loops.

.

kappro-support@kai.com 213

D • Additional KAP/Pro Options Additional KAP/Pro Options: Table

214
Table D-1: Additional “-WG,...” KAP/Pro Options

Long Name Short Name Default Setting

General Optimization:

-optimize=<integer> -o=<integer> 1

-roundoff=<integer> (Guide
only)

-r=<integer> 0

-scalaropt=<integer> (Guide
only)

-so=<integer> 0

Input-Output:

-cmp[=<file>] -cmp[=<file>] A_<file> (Assure) or
G_<file> (Guide)

-input=<file> -i=<file> <file>

-[no]list=<file> -[no]list=<file> nolist

-project_name=<file>
(Assure only)

-pname=<file> assure.prj

Listing:

-lines=<integer> -ln=<integer> 55

-listoptions=<string> -lo=<string> ko

-suppress=<string> -su=<string> nosuppress

Advanced Optimization:

-[no]assume -[n]as=<string> cel

-[no]concurrentize (Guide
only)

-[no]conc noconcurrentize

-minconcurrent=<integer>
(Guide only)

-mc=<integer> 1000
http://www.kai.com/parallel/kappro/

Additional KAP/Pro Options: Table Additional KAP/Pro Options • D

A
dd

it
io

na
l K

A
P/

Pr
o

O
pt

io
ns

D

Fortran Dialect:

-alignmax=<integer> -alignmax=<integer> platform dependent

-[no]blank_padding -[n]bp platform dependent

-[no]case -[n]case nocase

-[no]datasave -[n]ds datasave

-[no]dlines -[n]dl nodlines

-include=<path> -inc=<path> noinclude

-integer=<integer> -int=<integer> 4

-logical=<integer> -log=<integer> 4

-[no]onetrip -[n]1 noonetrip

-real=<integer> -rl=<integer> 4

-[no]recursion -[n]rc norecursion

-save=<string> -sv=<string> manual

-scan=<integer> -scan=<integer> 72

-syntax=<string> -sy=<string> nosyntax

-[no]type -[n]ty notype

Directive Recognition:

-[no]directives=<string> -[n]dr=<string> p

-[no]ignoreoptions -[n]ig noignoreoptions

-[no]openmpcc_lines -[no]openmpcc_lines openmpcc_lines

-default=<string> -default=<string> shared

Limits:

-heaplimit=<integer> -heap=<integer> system-specific

-tablesize=<integer> -ts=<integer> 24000000

Scheduling:

-chunk=<integer> -chk=<integer> 1

-scheduling=<character> -schd=<character> e

Table D-1: Additional “-WG,...” KAP/Pro Options

Long Name Short Name Default Setting
kappro-support@kai.com 215

D • Additional KAP/Pro Options Additional KAP/Pro Options: Table

216
 http://www.kai.com/parallel/kappro/

Fortran Directive Translation • E

Fo
rt

ra
n

D
ir

ec
ti

ve

T
ra

ns
la

tio
n

E

APPENDIX E Fortran Directive
Translation

Many Fortran programs written with older directive-based parallel programming
models can be easily moved to equivalent OpenMP implementations. While the
translation is often simple, it can also be tedious. Guide includes a number of trans-
lator scripts designed to automate much of the work involved in updating codes to
OpenMP.

All of the translation scripts require Perl to operate. Perl is generally available on
Unix systems, but is less frequently installed on Windows systems. Links to UNIX
Perl source and Windows binaries are available from http://www.kai.com/parallel/
kappro/helpers.

Most Unix systems can run the Perl-based translators as if they were executable
files, for example:

sgi2omp.pl pgm.f > pgm_omp.f

On Windows systems, however, you may need to call the translator scripts directly
from Perl, for example:

perl c:\KAI\guide40\bin\sgi2omp.pl pgm.f > pgm_omp.f
kappro-support@kai.com 217

E • Fortran Directive Translation KAP/Pro Parallel Directive to OpenMP Directive

218

KAP/Pro Parallel Directive to OpenMP
Directive Translator

Fortran programs which have been parallelized with KAP/Pro Toolset directives
can be used as the basis for a port to the new OpenMP version of Assure and
Guide. The kpts2omp.pl program will help translate KAP/Pro Parallel direc-
tives into OpenMP directives that Assure and Guide accept.

The kpts2omp.pl program accepts as an argument the name of a Fortran file
with KAP/Pro Toolset directives. The translated file is written to stdout with
OpenMP directives added. The stdout can be redirected to capture the trans-
lated file. Any directives or constructs that cannot be handled automatically
cause diagnostics to be added inline in the translated output. The stderr out-
put contains a synopsis of the diagnostics.

The kpts2omp.pl translation is a totally automatic process because all of the
functionality provided by KAP/Pro Toolset directives is available in the KAP/
Pro Toolset implementation of OpenMP directives.

Table 9-6, “kpts2omp.pl Translator Options,” below lists the options that are
available when running kpts2omp.pl.

NOTE: Perl must be installed on the system to use kpts2omp.pl.

Table 9-6 kpts2omp.pl Translator Options

Option Description

 -[hH?] print usage info

 -i ifdef mode, generates ‘#ifdef _OPENMP/#endif’ around
directives

 -I disables ifdef mode (default setting)

 -o original directives included in output

 -O original directives not included in output (default setting)

 -t
<num>

number of spaces for continuation directives (0 <= num <= 8,
default = 4)

 -v verbose mode, give messages about likely errors (default setting)

 -V disables verbose messages
http://www.kai.com/parallel/kappro/

Cray Directive to OpenMP Directive Translator Fortran Directive Translation • E

Fo
rt

ra
n

D
ir

ec
ti

ve

T
ra

ns
la

tio
n

E

ail-
Cray Directive to OpenMP Directive Translator

Fortran programs which have been parallelized with Cray directives can be used as
the basis for a port to Assure or Guide. The cray2omp.pl program will help
translate Cray Autotasking directives into OpenMP directives that Assure and
Guide accept. It is assumed that the Cray program with Autotasking directives has
been ported to work on the target machine and compiler in serial mode.

The cray2omp.pl program accepts as an argument the name of a Fortran file
with Cray Autotasking directives. The translated file is written to stdout with
OpenMP directives added. The stdout can be redirected to capture the translated
file. Any directives or constructs that cannot be handled automatically cause diag-
nostics to be added inline in the translated output. The stderr output contains a
synopsis of the diagnostics.

The cray2omp.pl translation is not a totally automatic process because of some
semantic differences between the two directive sets. However, this translation per-
forms a majority of the work required for migration, and most programs will not
require manual intervention. If manual intervention is required, searching for
“cray2omp” in the output will lead to places where cray2omp.pl had trouble
performing translations automatically.

Table 9-7, “cray2omp.pl Translator Options,” below lists the options that are av
able when running cray2omp.pl.

Table 9-7 cray2omp.pl Translator Options

Option Description

 -[hH?] print usage info

 -i ifdef mode, generates ‘#ifdef _OPENMP/#endif’ around
directives

 -I disables ifdef mode (default setting)

 -o original directives included in output (default setting)

 -O original directives not included in output

 -t
<num>

number of spaces for continuation directives (0 <= num <= 8,
default = 4)

 -v verbose mode, give messages about likely errors (default setting)

 -V disables verbose messages
kappro-support@kai.com 219

E • Fortran Directive Translation Cray Directive to OpenMP Directive Translator

220

onal

Table 9-8, “Cray to OpenMP Translations,” below lists the cray2omp.pl
translations that are performed. Many of the directives in the table have opti
clauses that are translated by cray2omp.pl when possible. A diagnostic is
produced when there is not an equivalent OpenMP directive.

Table 9-8 Cray to OpenMP Translations

Cray OpenMP

cmic$ taskcommon tcb c$omp threadprivate (/tcb/)

cdir$ taskcommon tcb c$omp threadprivate (/tcb/)

cdir$ ivdep *$* assert no recurrence

cdir$ no recurrence *$* assert no recurrence

cmic$ guard c$omp critical

cmic$ end guard c$omp end critical

cmic$ parallel c$omp parallel

First cmic$ case c$omp sections
c$omp section

Subsequent cmic$ case c$omp section

cmic$ endcase c$omp end sections

cmic$ do parallel c$omp do

cmic$ enddo c$omp barrier

cmic$ doall c$omp parallel do

single schedule(dynamic)

guided schedule(guided,64)

vector schedule(guided,64)

guided(n) schedule(guided,n)

chunksize(n) schedule(dynamic,n)
http://www.kai.com/parallel/kappro/

Cray Directive to OpenMP Directive Translator Fortran Directive Translation • E

Fo
rt

ra
n

D
ir

ec
ti

ve

T
ra

ns
la

tio
n

E

Cray TASKCOMMON as opposed to OpenMP THREADPRIVATE

The tools provided with Assure and Guide perform a semi-automatic translation of
Cray Fortran parallel directives into OpenMP directives. However, some hand edit-
ing of the resulting program may be necessary.

With Cray taskcommon, the individual elements of a taskcommon can be
placed in the private list of a parallel do. This is not supported in OpenMP.

In the following example, the scalar elements of taskcommon /tcb1/, which
are x and y, are on the private list but the large array z is not. With OpenMP, one
could use the copyin clause to achieve this effect. Since all the elements of
taskcommon /tcb2/ are on the private list, the entire /tcb2/ can be placed on
the copyin clause.

For example, this Cray version

Fortran syntax:
cmic$ taskcommon tcb1, tcb2
 common /tcb1/ x,y,z(10000)
 common /tcb2/ a,b,c

 x = 1
 y = 2
cmic$ do parallel private(i,x,y,a,b,c) shared(n)
 do i = 1, n

The following directives are not directly translatable into OpenMP syntax:

cmic$ process
cmic$ also process
cmic$ end process
cmic$ stop all pro-
cess
cmic$ do global
cmic$ continue
cmic$ getcpus
cmic$ numcpus
cmic$ relcpus
cmic$ soft exit
cmic$ micro

Table 9-8 Cray to OpenMP Translations (Continued)

Cray OpenMP
kappro-support@kai.com 221

E • Fortran Directive Translation SGI Directive to OpenMP Directive Translator

222

e
 ...
 enddo

should be translated into:

Fortran syntax:
c$omp threadprivate tcb1, tcb2
 common /tcb1/ x,y,z(10000)
 common /tcb2/ a,b,c

 x = 1
 y = 2
c$omp parallel do private(i) shared(n)
c$omp& copyin(x,y,/tcb2/)
 do i = 1, n
 ...
 enddo

SGI Directive to OpenMP Directive Translator

Fortran programs which have been parallelized with SGI c$ directives can be
used as the basis for a port to Assure and Guide. The sgi2omp.pl program
will help translate SGI directives into OpenMP directives.

The sgi2omp.pl program accepts as an argument the name of a Fortran file
with SGI directives. The translated file is written to stdout with OpenMP
directives added. The stdout can be redirected to capture the translated file.
Any directives or constructs that cannot be handled automatically cause diag-
nostics to be added inline in the translated output. The stderr output contains
the synopsis of the diagnostics.

Most of the common SGI directives are handled automatically by this program.
Whenever manual intervention is required, searching for “sgi2omp.pl” in the
output will lead to places where sgi2omp.pl had trouble performing transla-
tions.

Table 9-9, “SGI to OpenMP Translations,” below lists the SGI directives and
their translations that are performed. Many of the directives in the table hav
optional clauses that are translated by sgi2omp.pl when possible. A diagnos-
tic is produced when there is not an equivalent OpenMP directive.
http://www.kai.com/parallel/kappro/

KAP Directive to OpenMP Directive Translator Fortran Directive Translation • E

Fo
rt

ra
n

D
ir

ec
ti

ve

T
ra

ns
la

tio
n

E

-

-

-

-

None of the SGI scheduling keywords are automatically translated by
sgi2omp.pl. Sgi2omp.pl produces a diagnostic to assist in manually insert-
ing scheduling keywords into the program.

NOTE: Perl must be installed on your system to use sgi2omp.pl.

KAP Directive to OpenMP Directive Translator

Fortran programs which contain the older PCF directives of the form *KAP* can be
used as the basis for a port to OpenMP. The kap2omp.pl program will help trans-
late KAP directives into OpenMP directives.

The kap2omp.pl program accepts the name of a Fortran file with KAP direc-
tives. The translated file is written to stdout with OpenMP directives added. The
stdout can be redirected to capture the translated file. Any directives or con-
structs that cannot be handled automatically cause diagnostics to be added inline in
the translated output. The stderr output contains the synopsis of the diagnostics.

Table 9-9 SGI to OpenMP Translations

SGI directive or clause or library routine KAP/Pro Translation

c$doacross c$omp parallel do

c$ call mp_barrier c$omp barrier

c$ call mp_setlock c$omp critical

c$ call mp_unsetlock c$omp end critical

mp_my_threadnum Not translated automatically, but can be trans
lated using omp_get_thread_num()

mp_numthreads Not translated automatically, but can be trans
lated using omp_get_num_threads()
and omp_get_max_threads()

c$copyin Not translated automatically, but can be trans
lated manually

c$ mp_schedtype clause Not translated automatically, but can be trans
lated manually

c$mp_schedtype directive No translation, have to propagate scheduling
type to rest of file manually
kappro-support@kai.com 223

E • Fortran Directive Translation KAP Directive to OpenMP Directive Translator

224

-
All cray2omp.pl translator options given in Table 9-7, “cray2omp.pl Trans
lator Options,” on page 219, are also available for the kap2omp.pl program.
http://www.kai.com/parallel/kappro/

Index
A
advanced optimization 212, 214

command line options 212, 214
alignmax 200, 215
all

save option 208
all_adjust

save option 209
as 200, 214
assume 200, 214
ATOMIC 131
atomic 131

B
BARRIER 132
barrier 132, 185
blank_padding 201, 215
bold typeface 4
bp 201, 215
branch prediction 206

C
c*$*options 199, 204
case 215
chk 201, 215
chunk 142, 201, 215
cmp 202, 214
command line options 208, 214

1 207, 215
advanced optimization 212, 214
alignmax 200, 215
alphabetic listing 199–200
as 200, 214
assume 200, 214
blank_padding 201, 215
bp 201, 215
case 215
chk 201, 215
chunk 201, 215
cmp 202, 214
conc 202, 214
concurrentize 202, 214
datasave 202, 215
kappro-support@kai.com 225

Index

226
directives 202, 215
dl 203, 215
dlines 203, 215
dr 202, 215
ds 202, 215
heap 203, 215
heaplimit 203, 215
i 204, 214
ig 204, 215
ignoreoptions 204, 215
inc 204, 215
include 204, 215
input 204, 214
int 205, 215
integer 205, 215
l 205, 214
lines 205, 214
list 205, 214
listoptions 205, 214
ln 205, 214
lo 205, 214
log 206, 215
logical 206, 215
mc 214
minconcurrent 214
o 207, 214
onetrip 207, 215
optimize 207, 214
rc 207, 215
real 207, 215
recursion 207, 215
rl 207, 215
roundoff 208, 214
save 208, 215
scalaropt 209, 214
scan 209, 215
schd 210, 215
scheduling 210, 215
so 209, 214
specifying 199, 204
su 210, 214
suppress 210, 214
sv 208, 215
sy 210, 215
syntax 210, 215

ty 211, 215
type 211, 215

common blocks
declaring private 137
privatizing 20

common privatization
declaring private commons 137

common privatization directives
THREADPRIVATE 137
threadprivate 137

conc 202, 214
concurrentize 202, 214
control directives

DO 113
PARALLEL DO 122

control pragmas
parallel for 122

COPYIN 136
copyin 136
courier font 4
CRITICAL 129
critical 129

D
data scope attribute clauses

COPYIN 136
default 133
FIRSTPRIVATE 134
LASTPRIVATE 134
private 133
REDUCTION 134
shared 133

datasave 202, 215
debugging code 203
DEC

FORTRAN extensions 211
Fortran extensions 211

default 133
Digital

FORTRAN extensions 211
Fortran extensions 211

directives 202, 215
ATOMIC 131
BARRIER 132
DO 113
http://www.kai.com/parallel/kappro/

Index
FLUSH 132
MASTER 131
ORDERED 129
parallel 112
PARALLEL DO 122
PARALLEL SECTIONS 125
recognition 202
SECTIONS 115
SINGLE 116, 117
THREADPRIVATE 137

dl 203, 215
dlines 203, 215
DO 113
do 113
dr 202, 215
driver options

w 63
WA 63
WAcpp 65
WAkeepcpp 68
WAlibpath 68
WAnorc 69
WAonly 70
WAprefix 71
WAsrcdir 72
WGcpp 65
WGkeepcpp 68
WGlibpath 68
WGnorc 69
WGprefix 71
WGsrcdir 72

ds 202, 215

E
end critical 129
end do 113
end master 131
end ordered 129
end parallel 112
end parallel do 122
end parallel sections 125
end sections 115
end single 116, 117
environment variables 75, 77, 140, 149

kmp_blocktime 77

kmp_library 75
kmp_statsfile 75
ld_library_path 77
omp_dynamic 149
omp_num_threads 149
omp_schedule 149
omp_scheduling 140
scheculing options 140

error messages 210, 211
suppressing 210

example 185
external routines 25

kmp_get_blocktime 25
kmp_get_library 26
kmp_get_stacksize 26
kmp_set_blocktime 26
kmp_set_library 26
kmp_set_library_serial 26
kmp_set_library_throughput 27
kmp_set_library_turnaround 27
kmp_set_stacksize 27
mppbeg() 28
mppend() 28
omp_destroy_lock() 150
omp_get_max_threads() 150
omp_get_num_procs() 150
omp_get_num_threads() 150
omp_get_thread_num() 151
omp_init_lock() 151
omp_test_lock() 152
omp_unset_lock() 153

F
FIRSTPRIVATE 134
firstprivate 134
FLUSH 132
flush 132
for 113
FORTRAN

dialects 211

G
GuideView 81
kappro-support@kai.com 227

Index

228
H
heap 203, 215
heaplimit 203, 215

I
i 204, 214
ig 204, 215
ignoreoptions 204, 215
inc 204, 215
include 204, 215
input 204, 214
installation 3
int 205, 215
integer 205, 215

K
kmp_blocktime 77
kmp_get_blocktime 25
kmp_get_library 26
kmp_get_stacksize 26
kmp_library 75
kmp_set_blocktime 26
kmp_set_library 26
kmp_set_library_serial 26
kmp_set_library_throughput 27
kmp_set_library_turnaround 27
kmp_set_stacksize 27
kmp_statsfile 75

L
l 205, 214
LASTPRIVATE 134
lastprivate 134
ld_library_path 77
libraries 21

selecting 21
lines 205, 214
list 205, 214
listoptions 205, 214
ln 205, 214
lo 205, 214
log 206, 215
logical 206, 215

M
manual

save option 208
manual_adjust

save option 209
MASTER 131
master 131
mc 214
messages

suppressing 210
minconcurrent 214
mppbeg() 28
mppend() 28

O
o 207, 214
omp_destroy_lock() 150
omp_dynamic 149
omp_get_max_threads() 150
omp_get_num_procs() 150
omp_get_num_threads() 150
omp_get_thread_num() 151
omp_init_lock() 151
omp_num_threads 149
omp_schedule 149
omp_scheduling 140
omp_test_lock() 152
omp_unset_lock() 153
onetrip 207, 215
openmp common privatization

directives
threadprivate 137

openmp control directives
copyin 136
do 113
end do 113
end parallel 112
end parallel do 122
end parallel sections 125
end sections 115
end single 116, 117
firstprivate 134
lastprivate 134
parallel 112
parallel do 122
http://www.kai.com/parallel/kappro/

Index
parallel sections 125
reduction 134
sections 115
single 116, 117

openmp directives
atomic 131
barrier 132
copyin 136
critical 129
do 113
end critical 129
end do 113
end master 131
end ordered 129
end parallel 112
end parallel do 122
end parallel sections 125
end sections 115
end single 116, 117
firstprivate 134
flush 132
lastprivate 134
master 131
ordered 129
parallel 112
parallel do 122
parallel sections 125
reduction 134
sections 115
single 116, 117
threadprivate 137

openmp environment variables 148–
149

ld_library_path 77
omp_dynamic 149
omp_num_threads 149
omp_schedule 149

openmp synchronization directives
atomic 131
barrier 132
critical 129
end critical 129
end master 131
end ordered 129
flush 132

master 131
ordered 129

optimize 207, 214
options 199, 204
ORDERED 129
ordered 129

P
parallel 112
parallel directives

parallel 112
PARALLEL DO 122
parallel do 122
PARALLEL FOR 122
parallel for 122
parallel pragmas

parallel 112
PARALLEL SECTIONS 125
parallel sections 125
parallel taskq 128
Perview 101–110
pragmas

ATOMIC 131
BARRIER 132
CRITICAL 129
FLUSH 132
for 113
MASTER 131
ORDERED 129
parallel 112
PARALLEL FOR 122
parallel for 122
PARALLEL SECTIONS 125
parallel taskq 128
SECTIONS 115
SINGLE 116, 117
task 119
taskq 118

private 133
private commons

declaring 137
Privatization 136
privatization

directives 20
kappro-support@kai.com 229

Index

230
R
r 208, 214
rc 207, 215
real 207, 215
recursion 207, 215
REDUCTION 134
reduction 134
Reprivatizion 133
roundoff 208, 214

S
save 208, 215

all 208
all_adjust 209
manual 208
manual_adjust 209

scalaropt 209, 214
scan 209, 215
schd 210, 215
scheduling 210, 215
scheduling options 139

chunk size 142
environment variables 140

SECTIONS 115
sections 115
setting the number of processors

omp_num_threads 149
shared 133
Signal 29
SINGLE 116, 117
single 116, 117
so 209, 214
su 210, 214
suppress 210, 214
sv 208, 215
sy 210, 215
synchronization directives 129, 131

ATOMIC 131
atomic 131
BARRIER 132
barrier 132
critical 129
FLUSH 132
flush 132
MASTER 131

master 131
ORDERED 129
ordered 129

synchronization pragmas 129, 131
ATOMIC 131
BARRIER 132
CRITICAL 129
FLUSH 132
MASTER 131
ORDERED 129

syntax 210, 215

T
task 119
taskq 118
THREADPRIVATE 137
threadprivate 137
ty 211, 215
type 211, 215

W
WA 63
WAcpp 65
WAkeepcpp 68
WAlibpath 68
WAnorc 69
WAonly 70
WAprefix 71
warnings

suppressing 210
WAsrcdir 72
WGcpp 65
WGkeepcpp 68
WGlibpath 68
WGnorc 69
WGprefix 71
WGsrcdir 72
workqueuing pragmas

task 119
taskq 118

worksharing directives
parallel sections 125
sections 115
single 116, 117

worksharing pragmas
http://www.kai.com/parallel/kappro/

Index
for 113
parallel for 122
parallel sections 125
parallel taskq 128
sections 115
single 116, 117
kappro-support@kai.com 231

	CHAPTER 1 Introduction
	About KAP/Pro
	Requirements
	Installing KAP/Pro
	Using this Reference Manual
	Reference Manual Contents
	Reference Manual Conventions

	KAP/Pro On-line
	Technical Support
	Comments

	CHAPTER 2 Parallel Processing and OpenMP
	Parallel Processing Model
	Increasing Efficiency
	Data Sharing
	Orphaned Directives
	A Few Rules about Orphaned Directives

	CHAPTER 3 Using Guide
	Introduction
	Using Guide to Develop Parallel Programs
	Prepare
	Analyze
	Restructure
	Tune

	CHAPTER 4 Libraries and External Routines
	Selecting a Library
	Serial
	Turnaround
	Throughput

	The guide_stats Library
	The guide_perview Library
	External Routines
	int kmp_get_blocktime(void), integer function kmp_get_blocktime()
	int kmp_get_library(void), integer function kmp_get_library()
	int kmp_get_stacksize(void), integer function kmp_get_stacksize()
	void kmp_set_blocktime(int), subroutine kmp_set_blocktime(<integer>)
	void kmp_set_library(int), subroutine kmp_set_library(<integer>)
	void kmp_set_library_serial(void), subroutine kmp_set_library_serial()
	void kmp_set_library_throughput(void), subroutine kmp_set_library_throughput()
	void kmp_set_library_turnaround(void), subroutine kmp_set_library_turnaround()
	void kmp_set_stacksize(int), subroutine kmp_set_stacksize(<integer>)
	void kmp_set_parallel_name(char *), subroutine kmp_set_parallel_name(<string>)
	void mppbeg(void), subroutine mppbeg() void mppend(void), subroutine mppend()

	Signal Handling (Unix only)

	CHAPTER 5 Using Assure
	Introduction
	How to Verify an Application
	An Example
	Storage Conflicts
	Correcting Errors
	Example: Parallelizing Reduction Loops
	Example: Privatizing to Resolve Storage Conflicts
	Example: Using private variables outside of parallel regions
	Example: Using firstprivate()

	CHAPTER 6 The KAP/Pro Drivers
	About the KAP/Pro drivers
	Overview of the C/C++ Guide and Assure drivers
	Using the C/C++ drivers

	Overview of the Fortran Guide and Assure drivers
	Using the Fortran drivers

	KAP/Pro driver options
	Displaying all Command Lines
	Disabling automatic linking of object files
	Suppressing warnings (Fortran only)
	Additional KAP/Pro driver options

	Alphabetical listing of Driver Options
	 WGcatch=<class> (Unix C/C++ only)
	 WGcheck=<string> (Assure only)
	 WGcompiler=<path> �WGcc=<path> (C/C++ only) �WGftn=<path> (Fortran only) �WGfortran=<path> (Fort...
	 WG[no]cpp
	 WGcpp=<file>
	 WGcritname=<pattern>
	 WG[no]debug (Fortran only)
	 WGdefault=<class>
	 WGdefault_library
	 WGdynamic_library
	 WGfullpath
	 WGhelp
	 WGimplylang (Windows C only)
	 WGincpath
	 WG[no]keep
	 WGkeepcpp
	 WG[no]keeperr
	 WG[no]keepobjects
	 WGlibpath=<path>
	 WGlink=<file> �WGld=<file>
	 WGlocation=<string> (Assure only)
	 WGnoimply=<kwd>[,<kwd>...] (not C/C++ Unix)
	 WGnorc
	 WGnorpath (Unix only)
	 WGnowork
	 WGonly
	 WG[no]openmp (Guide only)
	 WGopt=<integer>
	 WGpath=<path>
	 WG[no]perview (Guide only)
	 WGprefix=<string>
	 WG[no]process
	 WG[no]prof
	 WGprof_leafprune=<integer>
	 WGproject_name=<file> (Assure only) �WGpname=<file> (Assure only) �WGprj=<file> (Assure only)
	 WGsched=<type>[,<integer>]
	 WGsrcdir
	 WGstatic_library
	 WG[no]stats (Guide only)
	 WG[no]strict
	 WGuser=<string>
	 WGversion

	Environment Variables for Guide
	KMP_BLOCKTIME=<integer>[<character>]
	KMP_IGNORE_MPPBEG <integer>
	KMP_IGNORE_MPPEND <integer>
	KMP_INTERVAL <integer>[{s,m,h,d}]
	KMP_LIBRARY=<string>
	KMP_STACKOFFSET=<integer>[<character>]
	KMP_STACKSIZE=<integer>[<character>]
	KMP_STATSCOLS <integer>
	KMP_STATSFILE=<file>
	LD_LIBRARY_PATH=<path>

	Environment Variables for Assure
	KDD_OUTPUT <file>
	KDD_INTERVAL <integer>[{s,m,h,d}] KDD_DELAY <integer>[{s,m,h,d}]
	KDD_MALLOC

	Preprocessor Macros
	_OPENMP
	_GUIDE
	_ASSURE

	CHAPTER 7 GuideView
	Introduction
	Using GuideView
	Using Named Parallel Regions
	GuideView Options
	 mhz=<integer>
	 ovh=<file>
	 jpath=<file>
	 WJ,[java_option]

	Java Options
	 ms<integer>[{k,m}]
	 mx<integer>[{k,m}]
	 nojit �Djava.compiler=none

	Measuring OpenMP Overhead

	CHAPTER 8 AssureView
	Introduction
	Using AssureView
	AssureView GUI Elements
	How to Use the GUI
	AssureView Options
	 ? or �h
	 agi=<file>
	 [no]gui
	 prefix=<remove>:<add>
	 project_name=<file> �prj=<file>
	 run_data=<file> �kdd=<file>
	 [no]suppress
	 txt
	 WJ,[java_option]

	JAVA Options
	 ms<integer>[{k,m}]
	 mx<integer>[{k,m}]
	 nojit �Djava.compiler=none

	CHAPTER 9 PerView
	Introduction
	Enabling the PerView Server
	PerView Environment Variables
	KMP_HTTP_PORT=<port>
	KMP_HTTP_HOME=<path>
	KMP_HTTP_ACCESS=<password>

	Security
	Running with PerView
	Starting the Server
	Starting the Client

	Using PerView
	Performance
	Controls
	Status Bar
	Minimal Monitor

	Progress Data
	Progress Bar
	Progress Graph
	Progress String
	Extending PerView

	APPENDIX A OpenMP Directives
	Introduction
	Parallel Directive
	Worksharing Directives
	Workqueuing Pragmas in C/C++
	The Taskq Model in C/C++
	Data Privatization in Workqueues
	Examples

	Combined Parallel Worksharing and Workqueuing Directives
	Synchronization Directives
	Data Scope Attribute Clauses
	Privatization of Fortran Variables, Common Blocks and Use-Associated Variables
	threadprivate
	Declaring Private Variables or Commons

	Privatization of Global Variables in C/C++
	Initializing Threadprivate Variables
	Persistence of Threadprivate Variables

	Scheduling Options
	Scheduling Options Using OpenMP Directives
	Scheduling Options Using Environment Variables
	Scheduling Options using Command Line Switches
	Scheduling Options Table

	OpenMP Environment Variables
	OMP_DYNAMIC=<boolean>
	OMP_NUM_THREADS=<integer>
	OMP_SCHEDULE=<string>[,<integer>]
	OMP_NESTED=<boolean>

	OpenMP Routines
	void omp_destroy_lock(omp_lock_t *lock), subroutine omp_destroy_lock(<var>)
	int omp_get_max_threads(void), integer function omp_get_max_threads()
	int omp_get_num_procs(void), integer function omp_get_num_procs()
	int omp_get_num_threads(void), integer function omp_get_num_threads()
	int omp_get_thread_num(void), integer function omp_get_thread_num()
	double omp_get_wtime(void), double precision function omp_get_wtime()
	double omp_get_wtick(void), double precision function omp_get_wtick()
	void omp_init_lock(omp_lock_t *lock), subroutine omp_init_lock(<var>)
	void omp_init_nest_lock(omp_nest_lock_t *lock), subroutine omp_init_nest_lock(<var>)
	int omp_in_parallel(void), logical function omp_in_parallel()
	void omp_set_lock(omp_lock_t *lock), subroutine omp_set_lock(<var>)
	void omp_set_nest_lock(omp_nest_lock_t *lock), subroutine omp_set_nest_lock(<var>)
	int omp_test_lock(omp_lock_t *lock), logical function omp_test_lock(<var>)
	int omp_test_nest_lock(omp_nest_lock_t *lock), logical function omp_test_nest_lock(<var>)
	void omp_unset_lock(omp_lock_t *lock), subroutine omp_unset_lock(<var>)
	void omp_unset_nest_lock(omp_nest_lock_t *lock), subroutine omp_unset_nest_lock(<var>)
	void omp_set_num_threads(int), subroutine omp_set_num_threads(<integer>)
	void omp_set_dynamic(int), subroutine omp_set_dynamic(<logical>)
	int omp_get_dynamic(void), logical function omp_get_dynamic()
	void omp_set_nested(int), subroutine omp_set_nested(<logical>)
	int omp_get_nested(void), logical function omp_get_nested()

	APPENDIX B C/C++ Examples
	Examples of OpenMP usage in C/C++
	B.1 for: A Simple Difference Operator
	B.2 for: Two Difference Operators
	B.3 for: Reduce Fork/Join Overhead
	B.4 sections: Two Difference Operators
	B.5 single: Updating a Shared Scalar
	B.6 sections: Updating a Shared Scalar
	B.7 for: Updating a Shared Scalar
	B.8 parallel for: A Simple Difference Operator
	B.9 parallel sections: Two Difference Operators
	B.10 Simple Reduction
	B.11 threadprivate: Private File-Scope Variable
	B.12 threadprivate: Private File-Scope Variable and Master Thread
	B.13 Avoiding External Routines: reduction
	B.14 Avoiding External Routines: Temporary Storage
	B.15 firstprivate: Copying in Initialization Values
	B.16 threadprivate: Copying in Initialization Values
	B.17 taskq: Parallelizing across Loop Nests

	APPENDIX C Fortran Examples
	Examples of OpenMP usage in Fortran
	C.1 do: A Simple Difference Operator
	C.2 do: Two Difference Operators
	C.3 do: Reduce Fork/Join Overhead
	C.4 sections: Two Difference Operators
	C.5 single: Updating a Shared Scalar
	C.6 sections: Updating a Shared Scalar
	C.7 do: Updating a Shared Scalar
	C.8 parallel do: A Simple Difference Operator
	C.9 parallel sections: Two Difference Operators
	C.10 barrier: Testing then Modifying a Shared Object
	C.11 Simple Reduction
	C.12 threadprivate: Private Common
	C.13 threadprivate: Private Common and Master Thread
	C.14 Avoiding External Routines: reduction
	C.15 Avoiding External Routines: Temporary Storage
	C.16 firstprivate: Copying in Initialization Values
	C.17 threadprivate: Copying in Initialization Values
	C.18 Manual loop collapsing
	C.19 workshare

	APPENDIX D Additional KAP/Pro Options
	Additional KAP/Pro Options: Alphabetic Listing
	c*$*options line (Fortran only)
	 alignmax=<integer>
	 assume=<string> (�a=<string>) �noassume (�nas)
	 blank_padding (�bp) (�noblank_padding) (�nbp)
	 case �nocase (�ncase)
	 chunk=<integer> (�chk=<integer>) (Guide only)
	 cmp[=<file>]
	 concurrentize (�conc) (Guide only) �noconcurrentize (�noconc) (Guide only)
	 datasave (�ds) (Fortran only) �nodatasave (�nds) (Fortran only)
	 directives=p (�dr=p) �nodirectives (�ndr)
	 dlines (�dl) (Fortran only) �nodlines (�ndl) (Fortran only)
	 heaplimit=<integer> (�heap=<integer>)
	 ignoreoptions (�ig) (Fortran only) �noignoreoptions (�nig) (Fortran only)
	 include=<path> (�inc=<path>)
	 input=<file> (�i=<file>)
	 integer=<integer> (�int=<integer>)
	 lines=<integer> (�ln=<integer>)
	 list[=<file>] �nolist
	 listoptions=<string> (�lo=<string>)
	 logical=<integer> (�log=<integer>)
	 minconcurrent=<integer> (�mc=<integer>) (Guide only)
	 onetrip (�1) �noonetrip (�n1)
	 optimize=<integer> (�o=<integer>)
	 real=<integer> (�rl=<integer>)
	 recursion (�rc) (Fortran only) �norecursion (�nrc) (Fortran only)
	 roundoff=<string> (�r=<string>) (Guide only)
	 save=<string> (�sv=<string>)
	 scalaropt=<integer> (�so=<integer>) (Guide only)
	 scan=<integer> (�scan=<integer>)
	 scheduling=<character> (�schd=<character>) (Guide only)
	 suppress=<string> (�su=<string>)
	 syntax=<string> (�sy=<string>)
	 tablesize=<integer> (�ts=<integer>)
	 type (�ty) �notype (�nty)

	Additional KAP/Pro Options: Table
	General Optimization
	Input-Output
	Listing
	Advanced Optimization
	Fortran Dialect
	Limits
	Directive Recognition
	Scheduling

	APPENDIX E Fortran Directive Translation
	KAP/Pro Parallel Directive to OpenMP Directive Translator
	Cray Directive to OpenMP Directive Translator
	Cray TASKCOMMON as opposed to OpenMP THREADPRIVATE

	SGI Directive to OpenMP Directive Translator
	KAP Directive to OpenMP Directive Translator

