KAP/Pro™ Tool st
Reference Manual

\Verson 4.0

Copyright © 1983-2001 by Intel Corporation. All rights reserved. Intel
Corporation, 2200 Mission College Blvd., Santa Clara, CA 95052-8119, USA.

KAP/Pro™ Reference Manual
Version 4.0

Revised May 23, 2001

KAI Software, A Division of Intel Americas, Inc.
1906 Fox Drive
Champaign, IL 61820-7345
USA
Phone: (217) 356-2288
FAX: (217) 356-5199
Email: kappro-support@kai.com
URL.: http://www.kai.com/parallel/kappro

The information in this document is subject to change without notice. No part of this doc-
ument may be reproduced, copied or distributed in any form or by any means, electronic
or mechanical, for any purpose, without the express written consent of KAI Software, A
Division of Intel Americas, Inc.

© Copyright 1983-2001 by Intel Corporation. All rights reserved. Intel Corporation, 2200
Mission College Blvd., Santa Clara, CA 95052-8119, USA.

KAI”, KAP/Pro Toolset, Assuré, and Guidé are trademarks of Intel Corporation.

Cray is a registered trademark of Cray Research, Inc.

DEC" and Digital are trademarks of Digital Equipment Corp.

Java is a trademark of Sun Microsystems, Inc.

Microsoft’, Windows, Windows NT and Windows 20G0are trademarks or registered
trademarks of Microsoft Corporation.

UNIX" is a registered Trademark in the USA and other countries, licensed exclusively
through X/Open Company Limited.

GOVERNMENT RESTRICTED RIGHTS. Use, duplication, or disclosure by the U.S.
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 or subpara-

*. Third party brand and product names are trademarks or registered trademarks of their
respective companies.

graphs (¢) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at
48 CFR 52.227-19, as applicable.

Printed in the United States of America.

Table of Contents

Introduction

About KAP/Pro

Requirements

Installing KAP/Pro

Using this Reference Manual
Reference Manual Contents

CHAPTER 1

Reference Manual Conventions
KAP/Pro On-line
Technical Support
Comments

O OO0 A W W WDNPEFEP B

CHAPTER 2 7 Parallel Processing and OpenMP

7 Parallel Processing Model
9 Increasing Efficiency
13 DataSharing

kappro-support@kai.com

Table of Contents

14
15

CHAPTER 3 17

17
19
19
19
19
20

CHAPTER 4 21

21
22
22
22
23
24
25
25
26
26
26
26
26
27

27

27
27

Orphaned Directives
A Few Rules about Orphaned Directives

Using Guide

Introduction
Using Guide to Develop Parallel Programs
Prepare
Analyze
Restructure
Tune

Libraries and External Routines

Selecting a Library
Serial
Turnaround
Throughput
The guide_stats Library
The guide perview Library
External Routines
int kmp_get_blocktime(void), integer function kmp_get_blocktime()
int kmp_get_library(void), integer function kmp_get_library()
int kmp_get_stacksize(void), integer function kmp_get_stacksize()
void kmp_set_blocktime(int), subroutine kmp_set_blocktime(<integer>)
void kmp_set_library(int), subroutine kmp_set_library(<integer>)
void kmp_set_library_serial(void), subroutine kmp_set_library_serial()

void kmp_set_library_throughput(void), subroutine
kmp_set_library_throughput()

void kmp_set_library_turnaround(void), subroutine
kmp_set_library_turnaround()

void kmp_set_stacksize(int), subroutine kmp_set_stacksize(<integer>)

void kmp_set_parallel_name(char *), subroutine
kmp_set_parallel_name(<string>)

ii http://mwww.kai .conVparallel/kappro/

Table of Contents

CHAPTER 5

CHAPTER 6

28

29

31

31
32
36
37
39
39

49
51

57

57
58
58
60
60
62
63
63
63
63

GREYB

void mppbeg(void), subroutine mppbeg()
void mppend(void), subroutine mppend()

Signal Handling (Unix only)

Using Assure

Introduction
How to Verify an Application
An Example
Storage Conflicts
Correcting Errors
Example: Parallelizing Reduction Loops
Example: Privatizing to Resolve Sorage Conflicts
Example: Using private variables outside of parallel regions
Example: Using firstprivate()

The KAP/Pro Drivers

About the KAP/Pro drivers

Overview of the C/C++ Guide and Assure drivers
Using the C/C++ drivers

Overview of the Fortran Guide and Assure drivers
Using the Fortran drivers

KAP/Pro driver options
Displaying all Command Lines
Disabling automatic linking of object files
Suppressing warnings (Fortran only)
Additional KAP/Pro driver options

Alphabetica listing of Driver Options
-WGcatch=<class> (Unix C/C++ only)
-WGcheck=<string> (Assure only)

-WGcompiler=<path>
-WGcc=<path> (C/C++ only)
-WGftn=<path> (Fortran only)

kappro-support@kai.com i

Table of Contents

-WGfortran=<path> (Fortran only)
-WGf77=<path> (Fortran only)
-WGf90=<path> (Fortran only)

65 -WG[no] cpp

65 -WGcpp=<file>

65 -WGcritname= < pattern>

66 -WGI[no] debug (Fortran only)

66 -WGdefault=<class>

66 -WGdefault_library

67 -WGdynamic_library

67 -WGfullpath

67 -WGhelp

67 -WGimplylang (Windows C only)

67 -WGincpath

67 -WGI[no] keep

68 -WGkeepcpp

68 -WGJ[no] keeperr

68 -WGJ no] keepobjects

68 -WGlibpath=<path>

68 -WGlink=<file>
-WGld=<file>

68 -WGlocation=<string> (Assure only)

69 -WGnoimply=<kwd>[,<kwd>...] (hot C/C++ Unix)

69 -WGnorc

70 -WGnorpath (Unix only)

70 -WGnowork

70 -WGonly

70 -WGI[no] openmp (Guide only)

70 -WGopt=<integer>

71 -WGpath=<path>

71 -WGI[no] perview (Guide only)

71 -WGprefix=<string>

71 -WGJ[no] process

71 -WG][no] prof

iv http://mwww.kai .conVparallel/kappro/

Table of Contents

71 -WGprof_leafprune=<integer>

72 -WGproject_name=<file> (Assure only)
-WGpname=<file> (Assure only)
-WGprj=<file> (Assure only)

72 -WGsched=<type>[,<integer>]

72 -WGsrcdir

73 -WGstatic_library

73 -WGJ no] stats (Guide only)

73 -WG[no] strict

73 -WGuser=<string>

74 -WGversion

75 Environment Variables for Guide

75 KMP_BLOCKTIME=<integer>[<character>]

75 KMP_IGNORE_MPPBEG <integer>

75 KMP_IGNORE_MPPEND <integer>

75 KMP_INTERVAL <integer>[{s,mh,d}]

76 KMP_LIBRARY=<string>

76 KMP_STACKOFFSET=<integer>[<character>]

76 KMP_STACKSIZE=<integer>[<character>]

7 KMP_STATSCOLS <integer>

7 KMP_STATSFILE=<file>

77 LD_LIBRARY_PATH=<path>

77 Environment Variables for Assure

78 KDD_OUTPUT <file>

78 KDD_INTERVAL <integer>[{smh,d}]
KDD_DELAY <integer>[{s,m,h,d}]

79 KDD_MALLOC

80 Preprocessor Macros

80 _OPENMP

80 _GUIDE

80 _ASSURE

kappro-support@kai.com

Table of Contents

CHAPTER 7 81

81
81
82
87
87
87
88
88
88
88
89
89

89

CHAPTER 8 91

91
92
93

97
97
97
97
97
98

98

98
99

GuideView

Introduction

Using GuideView

Using Named Parallel Regions

GuideView Options
-mhz=<integer>
-ovh=<file>
-jpath=<file>
-WJ,[java_option]

Java Options
-ms<integer>[{k,m}]
-mx<integer>[{k,m}]

-nojit
-Djava.compiler=none
M easuring OpenMP Overhead

AssureView

Introduction
Using AssureView
AssureView GUI Elements
How to Use the GUI
AssureView Options
-?or-h
-agi=<file>
-[no] gui
-prefix=<remove>:<add>
-project_name=<file>
-pri=<file>
-run_data=<file>
-kdd=<file>

-[no] suppress
-txt

Vi http://mwww.kai .conVparallel/kappro/

Table of Contents

CHAPTER 9

APPENDIX A

99
99
99
99
100

101

101
101
102
102
102
103
103
103
103
104
105
105
106
107
107
108
109
109
110
110

1

m
112

-WJ,[java_option]
JAVA Options
-ms<integer>[{k,m}]
-mx<integer>[{k,m}]
-nojit
-Djava.compiler=none

PerView

Introduction

Enabling the PerView Server

PerView Environment Variables
KMP_HTTP_PORT=<port>
KMP_HTTP_HOME=<path>

KMP_HTTP_ACCESS=<password>

Security
Running with PerView
Sarting the Server
Sarting the Client
Using PerView
Performance
Controls
Satus Bar
Minimal Monitor
Progress Data
Progress Bar
Progress Graph
Progress String
Extending PerView

OpenMP Directives

Introduction
Parallel Directive

kappro-support@kai.com

Vii

Table of Contents

113 Worksharing Directives

117 Workqueuing Pragmasin C/C++

118 The Taskq Model in C/C++

120 Data Privatization in Workqueues

122 Examples

122 Combined Parallel Worksharing and Workqueuing Directives

129 Synchronization Directives

133 Data Scope Attribute Clauses

136 Privatization of Fortran Variables, Common Blocks and Use-Associated

Variables

137 threadprivate

137 Declaring Private Variables or Commons

137 Privatization of Global Variablesin C/C++

139 Initializing Threadprivate Variables

139 Persistence of Threadprivate Variables

139 Scheduling Options

140 Scheduling Options Using OpenMP Directives

140 Scheduling Options Using Environment Variables

141 Scheduling Options using Command Line Switches

141 Scheduling Options Table

148 OpenMP Environment Variables

149 OMP_DYNAMIC=<boolean>

149 OMP_NUM_THREADS=<integer>

149 OMP_SCHEDULE=<string>[,<integer>]

149 OMP_NESTED=<boolean>

150 OpenMP Routines

150 void omp_destroy lock(omp_lock_t *lock), subroutine
omp_destroy_lock(<var>)

150 int omp_get_max_threads(void), integer function omp_get_max_threads()

150 int omp_get_num_procs(void), integer function omp_get_num_procs()

150 int omp_get_num_threads(void), integer function omp_get_num_threads()

151 int omp_get_thread_num(void), integer function omp_get_thread num()

151 double omp_get_wtime(void), double precision function omp_get_ wtime()

viii http://mwww.kai .conVparallel/kappro/

Table of Contents

APPENDIX B

151
151
151

152
152
152

152
152

153
153

153
153
153
154
154

155

155
156
157
158
159
160
161
162
163
164
165
166

double omp_get_wtick(void), double precision function omp_get_wtick()

void omp_init_lock(omp_lock_t *lock), subroutine omp_init_lock(<var>)

void omp_init_nest_lock(omp_nest_lock_t *lock), subroutine
omp_init_nest_lock(<var>)

int omp_in_parallel(void), logical function omp_in_parallel()

void omp_set_lock(omp_lock t *lock), subroutine omp_set_lock(<var>)

void omp_set_nest_lock(omp_nest_lock_t *lock), subroutine
omp_set_nest_lock(<var>)

int omp_test lock(omp_lock_t *lock), logical function omp_test_lock(<var>)

int omp_test nest_lock(omp_nest_lock_t *lock), logical function
omp_test_nest_lock(<var>)

void omp_unset_lock(omp_lock_t *lock), subroutine omp_unset_lock(<var>)

void omp_unset_nest_lock(omp_nest_lock t *lock), subroutine
omp_unset_nest_lock(<var>)

void omp_set_num_threads(int), subroutine omp_set_num_threads(<integer>)
void omp_set_dynamic(int), subroutine omp_set_dynamic(<logical>)

int omp_get_dynamic(void), logical function omp_get_dynamic()

void omp_set_nested(int), subroutine omp_set_nested(<logical>)

int omp_get_nested(void), logical function omp_get_nested()

C/C++ Examples

Examples of OpenMP usage in C/C++

for: A Simple Difference Operator

for: Two Difference Operators

for: Reduce Fork/Join Overhead

sections: Two Difference Operators
single: Updating a Shared Scalar

sections: Updating a Shared Scalar

for: Updating a Shared Scalar

paralel for: A Simple Difference Operator
parallel sections. Two Difference Operators
Simple Reduction

threadprivate: Private File-Scope Variable

kappro-support@kai.com iX

Table of Contents

167 threadprivate: Private File-Scope Variable and Master Thread
168 Avoiding External Routines: reduction

170 Avoiding External Routines. Temporary Storage

172 firstprivate: Copying in Initialization Values

173 threadprivate: Copying in Initialization Values

174 taskq: Parallelizing across Loop Nests

APPENDIX C 175 Fortran Examples

175 Examplesof OpenMP usage in Fortran

176 do: A Simple Difference Operator

177 do: Two Difference Operators

178 do: Reduce Fork/Join Overhead

179 sections. Two Difference Operators

180 single: Updating a Shared Scalar

181 sections. Updating a Shared Scalar

182 do: Updating a Shared Scalar

183 parallel do: A Simple Difference Operator

184 parallel sections: Two Difference Operators

185 barrier: Testing then Modifying a Shared Object
186 Simple Reduction

187 threadprivate: Private Common

188 threadprivate: Private Common and Master Thread
189 Avoiding External Routines: reduction

191 Avoiding External Routines: Temporary Storage
193 firstprivate: Copying in Initialization Values
194 threadprivate: Copying in Initialization Values
195 Manual loop collapsing

197 workshare

APPENDIX D 199 Additional KAP/Pro Options
199 Additional KAP/Pro Options. Alphabetic Listing

X http://mwww.kai .conVparallel/kappro/

Table of Contents

199
200
200

201

201

201
202
202

202

202

203

203
204

204
204
205
205
205

205
206
206
207

207
207
207

c*$*options line (Fortran only)
-alignmax=<integer>

-assume=<string> (-a=<string>)
-noassume (-nas)

-blank_padding (-bp)
(-noblank_padding) (-nbp)

-nocase (-ncase)
-chunk=<integer> (-chk=<integer>) (Guide only)
-cmp[=<file>]

-concurrentize (-conc) (Guide only)
-noconcurrentize (-noconc) (Guide only)

-datasave (-ds) (Fortran only)
-nodatasave (-nds) (Fortran only)

-directives=p (-dr=p)
-nodirectives (-ndr)

-dlines (-dl) (Fortran only)
-nodlines (-ndl) (Fortran only)

-heaplimit=<integer> (-heap=<integer>)

-ignoreoptions (-ig) (Fortran only)
-noignoreoptions (-nig) (Fortran only)

-include=<path> (-inc=<path>)
-input=<file> (-i=<file>)
-integer=<integer> (-int=<integer>)
-lines=<integer> (-In=<integer>)

-list[=<file>]
-nolist

-listoptions=<string> (-lo=<string>)
-logical=<integer> (-log=<integer>)
-minconcurrent=<integer> (-mc=<integer>) (Guide only)

-onetrip (-1)
-noonetrip (-nl)

-optimize=<integer> (-o=<integer>)
-real=<integer> (-rl=<integer>)

-recursion (-rc) (Fortran only)
-norecursion (-nrc) (Fortran only)

kappro-support@kai.com Xi

Table of Contents

208
208
209
209
210
210
210
211
211

211
212
212
212
212
212
212
212
213

APPENDIX E 217

218
219
221
222
223

-roundoff=<string> (-r=<string>) (Guide only)
-save=<string> (-sv=<string>)
-scalaropt=<integer> (-so=<integer>) (Guide only)
-scan=<integer> (-scan=<integer>)
-scheduling=<character> (-schd=<character>) (Guide only)
-suppress=<string> (-su=<string>)
-syntax=<string> (-sy=<string>)
-tablesize=<integer> (-ts=<integer>)
-type (-ty)

-notype (-nty)

Additional KAP/Pro Options. Table

General Optimization
Input-Output
Listing
Advanced Optimization
Fortran Dialect
Limits
Directive Recognition
Scheduling

Fortran Directive Trandation

KAP/Pro Parallel Directive to OpenMP Directive Trandator
Cray Directive to OpenMP Directive Trand ator

Cray TASKCOMMON as opposed to OpenMP THREADPRIVATE
SGI Directive to OpenMP Directive Translator
KAP Directive to OpenMP Directive Trandator

Xii http://mwww.kai .conVparallel/kappro/

About KAP/Pro Introduction « 1

c
o
)
(&)
=)
©
o
s
+—
c

CHAPTER 1 I ntrOdUCU On

About KAP/Pro

The KAP/Pro Toolset is a system of tools and application accelerators for develop-
ersof parallel scientific-engineering software.

The KAP/Pro Toolset is intended for users who understand their application pro-
grams and understand parallel processing. The Guide component of the toolset

implements the OpenMP" Application Programming Interface (API) on all popular

shared memory parallel (SMP) systems that support threads. The KAP/Pro Toolset

uses the de facto industry standard OpenM P directives to express parallelism. This
directive set is compatible with the older directives from PCF, X3H5, SGI and

Cray. Throughout this manual, the term “OpenMP directives” is used to refer to the
KAP/Pro Toolset implementation of the OpenMP specification, unless stated other-
wise.

The Guide component of the toolset compiles parallel programs annotated with
OpenMP directives and can provide detailed performance statistics which are use-
ful in performance tuning parallel programs. The input to Guide is either a Fortran,
C, or C++ program annotated with OpenMP directives, which take the form of
comments in Fortran programs and pragmas in C/C++ programs. The output of
Guide is either a Fortran or C program, with the parallelism implemented using

kappro-support@kai.com 1

1« Introduction Requirements

threads and the Guide support libraries. This output is then compiled using your
existing Fortran or C compiler. Parallel performance datais displayed using the
GuideView GUI, which can be used to find regions where additional tuning
could yield better performance.

The Assure component of the toolset validates the correctness of parallel pro-

grams annotated with OpenM P directives and identifies programming errors

that occurred when parallelizing a sequential application. The inputs to Assure

are an OpenMP parallel program that is assumed to run correctly in sequential

mode and a data set for that program. Assure uses the semantics of a program'’s
sequential execution to find differences that could occur in that program’s paral-
lel execution. For each data set that is used when an Assure-processed program
is run, errors are identified when the parallel program is inconsistent with the
corresponding sequential program. Assure displays its results using Assure-
View, a graphical user interface (GUI). AssureView pinpoints any errors that
Assure finds down to the exact location in your source code.

The KAP/Pro Toolset also includes utilities to translate directives from older
parallel processing directives to the new OpenMP directives.

Requirements

KAP/Pro requires a Fortran compiler and/or a C compiler, depending on the pro-
gramming language(s) of the original source. Users running Unix or Linux will
need the native C and/or Fortran compiler; C++ support is supplied by KCC.
Users running Microsoft Windows have more optiaither the Intel C++

and/or Fortran compilear Microsoft Visual C++ and/or Compaq Visual For-

tran. Both 32-bit and 64-bit multithreaded executables can be built on Windows
systems.

GuideView, AssureView, and PerView require a Java™ interpreter, which can
be obtained from Sun or Microsoft via the world wide web. Perl is required for
the directive translation scripts described in Appendix E. Links to these pack-
ages are available on the KAl web sitdtsp: //mww.kai.conVparallel/kap-
pro/helpers/.

Newer versions of operating systems and compilers are constantly being
announced; please see our web sitatat//www.kai.com/parallel/kappro/plat-
formg/ for information on which versions are currently supported.

http://mww.kai .conmv/parallel/kappro

Installing KAP/Pro Introduction« 1

Installing KAP/Pro

Toinstall the KAP/Pro Toolset on a machine running Windows simply run

guide* .exe (the exact file name depends on your hardware platform and operating
system) by double-clicking on itsicon and then answering afew questions. Unix or
Linux users can run this program by typing its name at acommand prompt and
pressing <ent er >.

c
o
)
(&)
=)
©
o
s
+—
c

The KAP/Pro Toolset is licensed software and requires alicense file from KAl in
addition to the installer package(s). The installer will install any necessary license
manager components, and will prompt you for the location of your license file. If

you intend to use the AssureView, GuideView, or PerView GUI's, you will need to
supply the location of your Java™ interpreter to the installer. The installation pro-
cess for the Assure package is similar; use thadder e*.exe. Please contact us at
kappro-support@kai.com for assistance if you have difficulty with the installa-
tion.

Using this Reference Manual

Reference Manual Contents

Chapter 2, “Parallel Processing and OpenMP,” beginning on page 7, contains an
overview of the OpenMP parallel processing model, and examples illustrating how
to insert OpenMP directives.

Chapter 3, “Using Guide,” beginning on page 17, contains an overview of Guide’s
functionality and examples illustrating how to build multithreaded programs using
Guide.

Chapter 4, “Libraries and External Routines,” beginning on page 21, explains the
differences between Guide’s several run—time libraries.

Chapter 5, “Using Assure,” beginning on page 31, contains an overview of
Assure’s functionality and examples illustrating how to correct common parallel
programming errors.

kappro-support@kai.com 3

1« Introduction Using this Reference Manual

Chapter 6, “The KAP/Pro Drivers,” beginning on page 57, describes the Assure
and Guide drivers, as well as descriptions of all Assure and Guide command line
options. These options allow you to alter Assure or Guide’s default behaviors.

Chapter 7, “GuideView,” beginning on page 81, describes the GuideView graph-
ical performance viewer.

Chapter 8, “AssureView,” beginning on page 91, describes how to use Assure-
View, which graphically displays Assure output.

Chapter 9, “PerView,” beginning on page 101, describes the PerView applica-
tion manager and monitor.

Appendix A, “OpenMP Directives,” beginning on page 111, contains definitions
for all OpenMP directives. OpenMP directives specify the parallelism within
your code. This chapter also defines the Guide environment variables.

Appendix B, “C/C++ Examples,” beginning on page 155, contains code exam-
ples demonstrating the usage of OpenMP pragmas in C/C++.

Appendix C, “Fortran Examples,” beginning on page 175, contains Fortran code
examples demonstrating the usage of OpenMP directives in Fortran.

Appendix D, “Additional KAP/Pro Options,” beginning on page 199, contains
Fortran code examples demonstrating the usage of OpenMP directives in For-
tran.

Appendix E, “Fortran Directive Translation,” beginning on page 217, describes
the included utilities that translate older directives to OpenMP directives.

Reference M anual Conventions

To distinguish filenames, commands, variable names, and code examples from
the remainder of the text, these terms are printedinr i er typeface. Com-
mand line options within text are printeddald typeface.

With KAP/Pro’scommand line options anddirectives, you can control a pro-
gram’s parallelization by providing information to either Guide or Assure. Some
of these command line options and directives require arguments. In their
descriptions<integer> indicates an integer numbepath> indicates a direc-

tory, <file> indicates a filename, possibly with path includethar acter> indi-

http://mww.kai .conmv/parallel/kappro

KAP/Pro On-line Introduction « 1

cates a single character, and <string> indicates a string of characters. For example,
-lines=<integer > in this user’s guide indicates that an integer must be provided
order to change thdines option from the default value to a new value (such as
-lines=0). As another exampleW Gdefault=<string> in this user’s guide indi-
cates that a string must be provided in order to changé@elefault option from
the default value to a new value (such\&&Gdefault=private).

c
o
)
(&)
=)
©
o
s
+—
c

Optional items are denoted with square brackets:
-[no]dlines

In the above example, tm® is optional. If-dlinesis useddlines is turned on; to
turn dlines off, use-nodlines.

To differentiate user input and code examples from descriptive text, they are pre-
sented:

In Courier typeface, indented where possible.

The KAP/Pro Toolset is available on a variety of platforms. Supported Windows
platforms include Windows NT and Windows 2000; these will all be referred to in
this manual as Windows. In general, anything specified for Unix users in this man-
ual is also applicable to Linux users. Any counterexamples will be specifically indi-
cated. For brevity, throughout this manual we Aisuref to represent any of the
various Assure Fortran driver&gsuref77, Assuref90, Assureifl, etc...) and

Assurec to represent the corresponding C/C++ drivers. Similathdef and

Guidec represent the Guide drivers. When more generality is reqéissdre is

used to represent any Assure driver @&uide is used to represent any Guide

driver.

KAP/ProOn-line

Visit the KAP/Pro Home Page Hhttp://www.kai.comyparallel/kappro for the latest
information on the KAP/Pro Toolset.

kappro-support@kai.com 5

1« Introduction Technical Support

Technical Support

KAI strivesto produce high-quality software. However, if any component of
KAP/Pro produces afatal error or incorrect results, please send a copy of the

source code, alist of the switches and options used, and as much output and

error information as possible (see “Displaying all Command Lines” on page 63)
to KAI Software, a division of Intel Americas, Inc. at

kappro-support@kai.com.

Comments

If there is a way for Assure or Guide to provide more meaningful results, mes-
sages, or features that would improve their usability, let us know. Our goal is to
make the KAP/Pro Toolset easy to use as you improve your productivity and the
execution speed of your applications. Please send your comments to
kappro-support@kai.com.

http://mww.kai .conmv/parallel/kappro

Parallel Processing Model Parallel Processing and OpenMP ¢ 2

CHAPTER 2 Paralld Processng
and OpenMP

2
2
S
&
O
T
g

Parallel Processing Model

This chapter defines general parallel processing terms and explains how different

OpenMP constructs affect parallel code. Further OpenMP details are available in

the appendix called “OpenMP Directives,” beginning on page 111. For exact
semantics, please consult the OpenMP C/C++ or Fortran API standard document
available atttp://www.openmp.org, or contact KAl Software, a division of Intel
Americas, Inc. ahttp://www.kai.conmvparallel/kappro or

kappro-support@kai.com.

After placing OpenMP parallel processing directives in an application, and after the
application is processed with Guide and compiled, it can be executed in parallel.
When the parallel program begins execution, a single thread exists. This thread is
called the base or master thread. The master thread will continue serial processing
until it encounters a parallel region. Several OpenMP directives apply to sections,
or blocks, of source code.

In C/C++, these OpenMP directives come in the form of pragmas and have the fol-
lowing form:

kappro-support@kai.com 7

2« Parallel Processing and OpenMP Parallel Processing Model

C/ C++ synt ax:
#pragma onp <directive>
<structured bl ock of code>

Here a structured block can be a single statement or several statements delin-
eated by a “{" “}" pair. See the OpenMP C/C++ documentation for other rules
on structured blocks.

In Fortran, these OpenMP directives have one of the following forms:

Fortran synt ax:
' $onp <directive>

<structured bl ock of code>
I $onp end <directive>

or

I $onp <directive>
<st at enent >

When the master thread enters a parallel region, a team of threads is formed.
Starting from the beginning of the parallel region, code is replicated (executed
by all team members) until a worksharing construct is encountered. The
OpenMPsect i ons, si ngl e, C/C++f or, and Fortramo constructs are
defined as worksharing constructs because they distribute the enclosed work
among the threads of the current team. A worksharing construct is only distrib-
uted if it occurs dynamically inside of a parallel region. If the worksharing con-
struct occurs lexically inside of the parallel region then it is always executed by
distributing the work among the team members. If the worksharing construct is
not lexically enclosed by a parallel region (i.e. it is orphaned), then the work-
sharing construct will be distributed among the team members of the closest
dynamically enclosing parallel region, if one exists. Otherwise, it will be exe-
cuted serially.

The C/C++f or and Fortrardo directives specify parallel execution of loop
iterations. Thesect i ons directive specifies parallel execution for arbitrary

blocks of sequential code. Eaghct i on will be assigned to a unique thread

within the team. Thei ngl e directive defines a section of code where exactly

one thread is allowed to execute the code; threads not chosen to execute this sec-
tion ignore the code.

http://mww.kai .conmv/parallel/kappro

Increasing Efficiency Parallel Processing and OpenMP ¢ 2

The OpenMP synchronization directivesarecri ti cal ,or der ed, mast er,
atom c,fl ush,andbar ri er.Within aparalel region or aworksharing con-
struct only onethread at atimeis allowed to execute the code withinacri ti cal
section. The or der ed directiveis used in conjunction with a C/C++ f or , Fortran
do, or sect i ons construct to impose a serial order on the execution of a section
of code. The mast er directive is used to force execution by the master thread. A
barri er directive forcesall team members to gather at a particular point in code.
Each team member that executesabar ri er waitsat thebar ri er until al of the
team members have arrived. A bar ri er cannot be used within worksharing or
other synchronization constructs due to the potential for deadlock.

When athread reaches the end of aworksharing construct, it may wait until all
team members within that construct have completed their work. When al of the
work defined by the worksharing construct is finished, the team exits the workshar-
ing construct and continues executing the code that follows.

At the end of the parallel region, threads wait until all team members have arrived.
Theteamislogically disbanded (but may be reused in the next parallel region), and
the master thread continues serial execution until it encounters the next parallel
region.

A sample program using some of the more common OpenMP directivesis shownin
Figure 2-1 on page 11 Figure 2-2 on page 12. These examples also indicate the dif-
ference between serial regions and parallel regions.

Increasing Efficiency

Scheduling options can be selected for a C/C++ f or or a Fortran do worksharing
construct to increase efficiency. Scheduling options specify the way threads are
assigned iterations of aloop. The scheduling optionsinclude st at i ¢, dynani c,
gui ded, andr unt i ne.

Also attached to f or and do worksharing constructs, anowai t option can be
used to increase efficiency. The nowai t option allows threads that finish their
work to continue executing code, regardless of whether the other threadsin the
team have finished. These threads do not wait at the end of the worksharing or
workqueuing construct, but proceed immediately to the code following.

kappro-support@kai.com 9

2
2
S
&
O
T
g

2 « Parallel Processing and OpenMP Increasing Efficiency

Enabling certain Guide compile options can a so help increase efficiency. These
options are covered in Chapter 6.

10

http://mww.kai .conmv/parallel/kappro

Increasing Efficiency Parallel Processing and OpenMP ¢ 2

Figure 2-1 Pseudo C/C++ Code of the Parallel Processing M odel

mai n() { /1 Begin serial execution
/1 Only the master thread executes
#pragma onp parall el /1 Begin a Parallel Construct,form
/l a team This is Replicated Code 2
/'l (each team nenber executes o
/1 the sane code) c
I '
#pragma onp sections /1 Begin a Wrksharing Construct
{ I
#pragma onp section // One unit of work g
{...} I
#pragma onp section // Another unit of work E
{...} I . . . <
[/ Wit until both units of work 8
/1 complete o
/1 More Replicated Code
I
#pragma onp for nowait // Begin a Wrksharing Construct;
for(...) { /1 each iteration is unit of work
I

/1 Work is distributed anong the
/| team menbers

} /1 End of Worksharing Construct;
/1 nowait was specified, so
/1 threads proceed
#pragma onp critical /1 Begin a Critical Section

/1 Replicated Code, but only one
/!l thread can execute it at a

} /1 given tine
/1 More Replicated Code
/1
#pragma onp barrier /1 Wait for all team nmenbers to

/1 arrive

/1 More Replicated Code

/1

} /! End of Parallel Construct;

/! disband team and conti nue
/! serial execution

/1 Possibly nmore Parall el
/'l Constructs
I
} /1 End serial execution

kappro-support@kai.com 1

2« Parallel Processing and OpenMP

Increasing Efficiency

Figure 2-2 Pseudo Fortran Code of the Parallel Processing

program main

! $onp paral | el

each. -

code.”
I'$onmp sections
!'$omp section
!$oﬁﬁ.section

!'$omp end sections

! $onmp do
do

teamll
end do
!'$omp end do nowait

! $onmp barrier

1'$onmp end parallel

M odd

Begi n Serial Execution
Only the naster thread executes

Begin a Parallel Construct,
forma team

This is Replicated Code where

t eam nenber executes the sane

Begi n a Worksharing Construct
One unit of work
Anot her unit of work

Wait until both units of work
conpl ete

More Replicated Code

Begi n a Worksharing Construct,
each iteration is a unit of work

Work is distributed anong the
End of Wbrksharing Construct,
nowait is specified
More Replicated Code

Wait for all team nenbers to
arrive

More Replicated Code
End of Parallel Construct,
di sbhand team and continue with

serial execution

Possi bly nmore Parall el

12

http://mww.kai .conmv/parallel/kappro

Data Sharing Parallel Processing and OpenMP « 2

Constructs
!

end I End serial execution

Data Sharing

Datasharing is specified at the start of aparallel region or worksharing construct by
using the shar ed and pr i vat e clauses. All variablesin theshar ed clause are
shared among the members of a team. It is the programmer’s responsibility to
chronize access to these variables. All variables ipthe at e clause are private
to each team member. For the entire parallel region, asstit@am members, we
havet+1 copies of all the variables in thei vat e clause: one global copy that is
active outside parallel regions and a private copy for each team member. Initia
tion of pri vat e variables at the start of a parallel region is the programmer’s
responsibility, unless thfei r st pri vat e clause is specified. In this case, the
pri vat e copy is initialized from the global copy at the start of the construct at
which thef i r st pri vat e clause is specified. In general, updating the global

copy of apri vat e variable at the end of a parallel region is the programmer’s
responsibility. However, thieast pri vat e clause of a C/C+for or Fortrardo
directive enables updating the global copy from the team member that executed the
serially last iteration of the loop.

Parallel Processing [\§)

In addition toshar ed andpr i vat e variables, individual variables and entire
COMMON blocks in Fortran can be privatized using tte eadpr i vat e direc-
tive. For compatibility with Cray askcomon directivest hr eadpri vat e
conmon blocks always createcopies, one for each of théeam members. The
master thread uses the global copy agriisvat e copy for the duration of each
parallel region.

In addition to theshar ed andpr i vat e clauses, file-scope and namespace-scope
variables in C++ can be made private to a thread usinghtheadpri vat e

directive. Threadprivate variables always have a copy created for each team mem-
ber. The master thread uses the global copy as its private copy for the duration of
each parallel region.

Local static variables in C can also be made threadprivate. This is a KAP/Pro
Toolset extension to OpenMP.

kappro-support@kai.com 13

2« Parallel Processing and OpenMP Orphaned Directives

Orphaned Directives

OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives. By orphaning we mean that directives
related to a parallel region are not required to occur lexically within asingle pro-
gram unit. Directivessuch ascri ti cal ,barri er,secti ons, si ngl e,
mast er, and C/C++ f or or Fortran do, can occur by themselvesin a program
unit, dynamically “binding” to the enclosirgar al | el region at run time.

Orphaned directives allow parallelism to be inserted into existing code with a
minimum of code restructuring. Orphaning can also improve performance by
allowing a singlgpar al | el region to bind with multiple C/C+#or or For-
trando directives located within called subroutines. Consider the following
code segment:

C/ C++ synt ax:
void main() {
#pragma onp parall el
{

phasel();
phase2();

}
voi d phasel(void) {
#b.ragrra onp for private(i) shared(n)

for(i=0; i < n; i++) {
some_wor k(i) ;
}

}
voi d phase2(void) {
#b.ragma onp for private(j) shared(n)

for(j=0; j < n; j++) {
nmore_work(j);
}

14

http://mww.kai .conmv/parallel/kappro

Orphaned Directives Parallel Processing and OpenMP « 2

Fortran synt ax:

I $onmp parall el
call phasel
call phase2 2
I $onmp end parall el
- 2
(/
subroutine phasel
' $onp do private(i) shared(n) 8
doi =1, n g
call some_work(i)
end do)
I $onp end do ©
end E

subroutine phase2
' $onp do private(j) shared(n)

doj =1, n
call nmore_work(j)
end do
I $onp end do
end

Notice in this example, the directives specifying the parallelism are divided across
three separate program units.

A Few Rules about Orphaned Directives

1. An orphaned worksharing construct (sect i on, si ngl e, C/C++ for or For-
tran do) or C/C++ workqueuing construct (t askq) that is dynamically exe-
cuted outside of aparallel region will be executed by ateam consisting of one
thread; i.e. serialy. In the following example the first call to phaseO is exe-
cuted serially, and the second call is partitioned among the threads created for
the paralel region.

2. Any collective operation (worksharing construct, workqueuing construct, or
barrier) executed inside of aworksharing construct isillegal.

3. ltisillegal to execute a collective operation (worksharing, workqueuing, or bar-
rier) from within a synchronization region (cri ti cal / or der ed).

kappro-support@kai.com 15

2 « Parallel Processing and OpenMP Orphaned Directives

4. Theopening and closing directives of aFortran directive pair must occurin a
single block of the program.

5. Private scoping of avariable can be specified at aworksharing construct.
Shared scoping must be specified at the parallel region. Please consult the
OpenMP API standard documentation for compl ete details.

16

http://mww.kai .conmv/parallel/kappro

Introduction Using Guide * 3

CHAPTER 3 US ng GUIde

w
2
5
O
o)
c
D
)

Introduction

Guide accepts a C/C++ or Fortran program containing OpenM P directives as input
and produces a multithreaded version of the code which is then passed to an under-
lying C or Fortran compiler. To run multithreaded, the user simply assigns the num-
ber of threads desired to the OpenMP environment variable
OMP_NUM_THREADS before execution.

Guide also provides functionality for performance analysis of parallel programs; by
liking with a statistics library one can obtain detailed information about which por-
tions of the code require the largest amount of time to execute and where parallel
performance bottlenecks arelocated. Thisinformation can be displayed graphically
by using the GuideView GUI, a powerful tool which shows performance informa-
tion that is not avail able with traditional profilers.

The components of Guide include:

kappro-support@kai.com 17

3+ Using Guide Introduction

* The Guide compile driver, named as listed in the following table:

Windows Unix Linux
C guideicl, guidec guideicc,
guideec!, guideecc,
or guidec[64] or guidec
C++ not available guidec++ guideicc,
guideecc,
or guidec++
FORTRAN 77 | guideifl, guidef77 guideifc
guideefl, or guideefc
or guidef[64]
Fortran 90 guideifl, guidef90 guideifc
guidesfl, or guideefc
or guidef[64]

* GuideView, atool for viewing parallel performance statistics

On Windows, use guideicl for building 32-bit applications using the Intel C++
compiler, guideec! for building 64-bit applications using the Intel C++ compiler,
and guidec for building C applications using the Microsoft Visual Studio C++
compiler. C++ is not currently supported on Windows.

Similarly, use guideifl on Windows for building 32-bit applications using the
Intel Fortran compiler, guideef| for building 64-bit applications using the Intel
Fortran compiler, and guidef for building 32-bit or 64-bit applications using the
appropriate Compaq Visual Fortran compiler.

Special drivers called guidec64 and guidef64 are supplied for Windows users
who install the KAP/Pro Toolset on a 32-bit machine and wish to build 64-bit
applications with the appropriate Microsoft Visual Studio C++ compiler and
Compaq Visual Fortran compiler, respectively. The guidec and guidef drivers
produce executabl es compatible with the machine architecture on which
KAP/Proisinstalled.

On Linux, use guideicc for building 32-bit applications using the Intel C++
compiler, guideecc for building 64-bit applications using the Intel C++ com-
piler, and guidec or guidec++ for building C or C++ applications, respectively,
using the gcc or g++ compiler. Use guideifc for building 32-bit applications

18

http://mww.kai .conmv/parallel/kappro

Using Guide to Develop Parallel Programs Using Guide * 3

using the Intel Fortran compiler, guideefc for building 64-bit applications using the
Intel Fortran compiler.

Using Guide to Develop Parallel Programs

To help those familiar with parallel programming, this section contains a high-level
overview for using Guide to develop a parallel application. This manual is not
intended to be a comprehensive treatment of parallel processing. For more informa-
tion about parallel processing, consult a parallel computing text.

w
2
5
O
o)
c
D
)

Prepare

* Beforeinserting any OpenMP parallel directives, verify that your code is safe
for parallel execution by placing local variables on the stack. Thisis the default
behavior of many compilers. Normally, a- aut onat i ¢ flag or similar com-
piler option achievesthis. If your application is unable to execute correctly with
stack allocation of local data, this generally indicates that your code has subrou-
tines that need some variables saved across invocations. These variables should
be made STATI Cwhen using C/C++, or be placed in a SAVE statement in For-
tran. By default these variables become shared across threads, and you may
need to add synchronization code to ensure proper access by threads.

Analyze

* Profile the program to find out where it spends most of itstime. Thisisthe part
of the program that would benefit most from parallelization efforts. This stage
can be accomplished using a standard profiler, such aspr of , or by using the
profiling features of GuideView.

* Inthispart of the program there are usually nested loops. Locate aloop that has
very few cross-iteration dependences.

Restructure

* If achosen loop is able to execute iterations in paralel, introduce apar al | el
for orparal | el do directivearound thisloop.

e Attempt to remove any cross-iteration dependencies by rewriting the algorithm.

kappro-support@kai.com 19

3+ Using Guide Using Guide to Develop Parallel Pro-

* Synchronize the remaining cross-iteration dependences by placingcri ti -
cal directives around the uses and assignments to variables involved in the
dependences.

e Listthevariablesthat are present in the loop within appropriate shar ed() ,
private(),lastprivate(),orfirstprivate() clauses.

e Listthef or (C/C++) or do (Fortran) index of the parallel loop aspri -
vat e() . Thisstep isoptional in Fortran.

* In C/C++: File-scope variables must not be placed onthepri vat e() listif
their file-scope visibility isto be preserved. Instead, usethet hr eadpri -
vat e directive to make a variable private to athread while preserving its
file-scope visihility.

* InFortran: COVMON block elements must not be placed onthepri vat e()
listif their global scopeisto be preserved. Thet hr eadpr i vat e directive
can be used to privatize to a thread the COMVON block containing those vari-
ables with global scope.

* Anyl/Ointheparal | el region should be synchronized.
* Identify more parallel loops and restructure them.

* If possible, merge adjacent C/C++ par al | el f or or Fortran par al | el
do sectionsinto asingle parallel region with multiplef or or do directives
to reduce execution overhead.

Tune

* Guide supports the tuning process viathe guide_stats library and Guide-
View. The tuning process should include minimizing the sequential codein
critical sectionsand load balancing by using the scheduling options
listed in “Scheduling Options” on page 139.

For parallel Fortran programs containing older parallel directives, a tool is
included with Guide to help automate the job of translating them to OpenMP
parallel directives. See “Fortran Directive Translation” on page 217.

20

http://mww.kai .conmv/parallel/kappro

Selecting a Library Libraries and External Routines ¢ 4

CHAPTER 4 Librariesand
External Routines

Slecting a Library

The standard edition of Guide supplies three libraries: a development library, a
management and monitoring library, and a production library. These libraries allow
the user to run an application under different execution modes. The production
library is called the guide library. It should be used for normal or performance-crit-
ical runs on applications that have already been tuned. The development library is
guide_stats. It provides performance information about the code, but dlightly
degrades performance and should be used to tune the performance of applications.
The management and monitoring library is called the guide_perview library. It can
be used to interactively and remotely monitor and manage the parallel performance
of arunning application. Thislibrary degrades application performance slightly
also.

To switch between the guide, guide_stats, and guide_perview libraries, only relink-
ing of the object files is necessary; recompilation of the source code is not needed.

Guide alows the user the ability to run an application under different execution
modes that can be specified at run time. All three libraries support the serial, turn-

kappro-support@kai.com 21

4
©
=
k)
5
_
-

External Routines

4+ Libraries and External Routines Selecting a Library

around, and throughput modes described below. These modes are selected by
using the KMP_L| BRARY environment variable at run time; see
“KMP_IGNORE_MPPBEG <integer>" on page 75.

Serial

The serial mode forces parallel applications to run on a single processor.

Turnaround

In a dedicated (batch or single user) parallel environment where all of the pro-
cessors for a program are exclusively allocated to the program for its entire run,
it is most important to effectively utilize all of the processors all of the time. The
turnaround mode is designed to keep active all of the processors involved in the
parallel computation in order to minimize the execution time of a single job. In
this mode, the worker threads actively wait for more parallel work, without
yielding to other threads.

NOTE: Avoid over-allocating system resources. This occurs if either too many
threads have been specified, or if too few processors are available at run time. If
system resources are over-allocated, this mode will cause poor performance.
The throughput mode should be used instead if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not con-
stant or where the job stream is not predictable, it may be better to design and
tune for throughput. This minimizes the total time to run multiple jobs simulta-
neously. In this mode, the worker threads will yield to other threads while wait-
ing for more parallel work.

The throughput mode is designed to make the program aware of its environment
(i.e., the system load) and to adjust its resource usage to produce efficient execu-
tion in a dynamic environment. This mode is the default.

After a certain period of wall-clock time has elapsed, during which the worker
threads do not find parallel work, the threads will stop seeking work. Instead,
they will wait for the master thread to notify them of the availability of new par-
allel work. This time is set by th&vP_BLOCKTI ME environment variable and
theknmp_set bl ockti me() library call, described in the sections “OpenMP
Environment Variables” on page 148 and “External Routines” on page 25,

22

http://mww.kai .conmv/parallel/kappro

The guide_stats Library Libraries and External Routines « 4

respectively. The default time before “blocking” is one second. It is recommended
thatKMP_BLOCKTI ME be set to a small value if your application contains “hand-
threaded” regions, to avoid contention for compute resources.

The guide_stats Library

Guide links in theguide library by default. To use ttguide stats library, include
the-WGstats option to the Guide driver within the command line. For example, the
following command line can be used on Windows to compile a Fortran source file
with theguide stats library:

gui def -WGstats source. f

Theguide statslibrary is designed to provide detailed statistics about a program’s
execution. These statistics help you to “see inside” the program, to analyze perfor-
mance bottlenecks, and to make parallel performance predictions. With this infor-
mation, it is possible to modify the program (or the execution environment) to
make more efficient use of the parallel machine. The resulting statistics are most
easily viewed and analyzed using GuideView, discussed in Chapter 7, “Guide-
View,” beginning on page 81.

When a program is compiled with Guide, linked with gnide_stats library, and
executed, statistics are output to the file specified wittKie STATSFI LE envi-
ronment variable. The default file namei de. gvs is used if this environment
variable is not specified. In addition, running with tluede stats library enables
additional runtime checks that may aid in program debugging. When using the
guide_stats library, make sure that the main program and any program units that
cause program termination have been compiled with Guide.

Theguide stats library gathers performance statistics for each parallel region exe-
cuted during a run. Thguide_stats library also gathers statistics for each of these
serial portions of code around and between the OpenMP parallel regions. The par-
allel regions are designat®d, R2, etc., following the order in which they are first
executed. Similarly, the sequential code blocks are desigBategP, etc., follow-
ing the order in which they are first executed.

If a parallel region contains one or more barriers, including implicit barriers aft
worksharing constructs, the parallel region statistics are further subdivided. Fd
example, if the parallel regid®3 contains two barriers with the second barrier

kappro-support@kai.com 23

Librariesand xS

External Routines

4+ Libraries and External Routines The guide_perview Library

being at the end of the parallel region, we have separate performance statistics
for regions R3 (extending from the beginning of the parallel region to the first
barrier) and R3B1 (extending from the first barrier to the end of the parallel

region).

By default, each region is given a name, based on the name of the file that con-
tains the beginning of the region. However, it is possible to manually specify a
name for each parallel region by means of an external routine,

knp_set _paral |l el _nane() . Thisroutine takes a character string as an
argument, and should be called before the start of the parallel region to be
named. All parallel regionsfollowing a call to this routine get the specified
name until another call ismadetoknp_set paral | el _nane() . Default
names can be restored by supplying an empty string as the argument.

The guide_stats library may minimally degrade application performance com-
pared to the guide library. The amount of application slowdown is proportional
to the frequency with which OpenM P directives are encountered.

The guide_perview Library

To link with the guide _perview library, use the -W Gperview command line
option to the Guide driver. The guide perview library is part of the interactive
parallel performance monitoring and management tool called PerView. Using
PerView, one can remotely monitor parallel performance and application
progress, modify the number of threads, switch between dynamic and static
thread count, and pause or abort parallel applications. When using the
guide_perview library, make sure that the main program and any program units
that cause program termination have been compiled with Guide.

In the current version of Guide, the guide_perview library also provides all the
functionality of the guide_stats library. Future versions are not guaranteed to
support the guide_statslibrary functionality. The guide perview library enables
additional runtime checks that may aid in program debugging. This library may
minimally degrade application performance compared to the guide library by an
amount proportional to the frequency with which the OpenMP directives are
encountered.

See “PerView,” beginning on page 101 for more information about the use of

theguide perview library and the PerView tool.

24

http://mww.kai .conmv/parallel/kappro

External Routines Libraries and External Routines « 4

External Routines

This section details library routines that can be used for low-level debugging to ver-
ify that the library code and application are functioning as intended. These routines
are not part of the OpenMP standard and their use is discouraged; using them
requires that the application be linked with one of the Guide libraries, even when
the code is executed sequentially. In addition, using these routines makes validating
the program with Assure more difficult or impossible.

In most cases, directives can be used in place of these routines. For example,

thread-private storage should be implemented by using the PRI VATE() clause of

thepar al | el directiveorthet hr eadpr i vat e directive rather than by explicit
expansion and indexing with onp_get _t hr ead_nun{) . Appendix A, “C/C++
Examples,” beginning on page 155, and Appendix C, “Fortran Examples,” begin-
ning on page 175, contain examples of coding styles that avoid the use of these rou-
tines. A run-time procedure call takes precedence over an environment variable
setting.

To use these functions in a C/C++ program, include the OpenMP header file

#i ncl ude <onp. h>

in your source. In the descriptions of the routines that follow, the C/C++ prototype
is given first, followed by the Fortran calling convention.

In some cases, the same effect can be achieved by either setting an environment
variable or by using one of these routines. In these cases, the external routine over-
rides any environment variable settings.

int kmp_get_blocktime(void), integer function kmp_get_blocktime()

This routine returns the integer value of time, in milliseconds, that the Guide librar-
ies wait after completing the execution of a parallel region before putting threads to
sleep. This value can be set viakimp_set bl ockti nme() routine or the
KMP_BLOCKTI ME environment variable. See the description of the

KMP_BLOCKTI ME environment variable on page 75 for more information.

kappro-support@kai.com

4
©
=
k)
5
_
-

External Routines

4+ Libraries and External Routines External Routines

int kmp_get_library(void), integer function kmp_get_library()

This routine returns an integer value that designates the version of the Guide
runtime library being used. This value can be used as the parameter to subse-
quent callstoknp_set i brary() . Thelibrary setting can also be set via
theknp_set library_ <nbde>() set of routinesor the KMP_LI BRARY
environment variable.

int kmp_get_stacksize(void), integer function kmp_get_stacksize()

This routine returns the number of bytes that will be allocated for each parallel
thread to use asits private stack. This value can be changed viathe

knp_set stacksi ze() routine, prior to thefirst parallel region or viathe
KMP_STACKSI ZE environment variable. See the description of the
KMP_STACKSI ZE environment variable on page 76 for more information.

void kmp_set_blocktime(int), subroutine
kmp_set_blocktime(<integer>)

This routine sets the number of milliseconds that the Guide libraries wait after
completing the execution of a paralléel region before putting threads to sleep.
This value can also be changed viathe KMP_BLOCKTI ME environment vari-
able. See the description of KMP_BLOCKTI ME on page 75 for more informa-
tion.

Inorder for knp_set _bl ockt i ne() to have an effect, it must be called
before the beginning of the first (dynamically executed) parallel regionin the
program.

void kmp_set_library(int), subroutinekmp_set_library(<integer>)

Thisroutine selectsthe Guide run time library. The parameter value corresponds
to the version number previously returned by acall toknmp_get _|i brary().
To determine the values of this parameter that correspond to particular libraries,
cal theknp_set | i brary_<node> routines and then call the

knp_get |ibrary() routineto obtainthe parameter values. Thelibrary set-
ting can also be set viathe KMP_LI BRARY environment variable.

void kmp_set_library_serial(void), subroutine

26

http://mww.kai .conmv/parallel/kappro

External Routines Libraries and External Routines « 4

kmp_set_library_serial()

This routine selects the Guide serial runtime library. The library setting can also be
setviatheknp_set _|i brary() cal orthe KMP_LI BRARY environment vari-
able.

void kmp_set_library_throughput(void), subroutine
kmp_set_library_throughput()
This routine selects the Guide throughput runtime library. The library setting can

alsobesetviatheknp_set |ibrary() cal ortheKMP_LI BRARY environ-
ment variable.

void kmp_set_library_turnaround(void), subroutine
kmp_set_library_turnaround()
This routine selects the Guide turnaround runtime library. The library setting can

also besetviatheknp_set i brary() cal or theKMP_LI BRARY environ-
ment variable.

void kmp_set_stacksize(int), subroutinekmp_set_stacksize(<integer>)

This routine sets the number of bytesthat will be allocated for each parallel thread
to use asiits private stack. Thisvalue can aso be set viathe KMP_STACKSI ZE
environment variable (see page 76 for more information).

Inorder for knp_set _st acksi ze() to have an effect, it must be called before
the beginning of the first (dynamically executed) parallel region in the program.

void kmp_set_parallel_name(char *), subroutine
kmp_set_parallel_name(<string>)
This routine associates the character string argument to subsequent parallel regions.

The name remainsin effect until the next call to the routine. To restore default nam-
ing of parallel regions, supply an empty string as the argument.

Thisroutine should be called before the start of the parallel region to be named. The
associated name will appear in the statistics file output by the guide_stats library
and in the GuideView performance viewer.

4
o
=
k)
5
_
-

kappro-support@kai.com 27

External Routines

4+ Libraries and External Routines External Routines

void mppbeg(void), subroutine mppbeg()
void mppend(void), subroutine mppend()

These routines are not necessary if the main program unit and all exit points are
compiled using Guide. If this isn’t the case, you must ensureimieg() is
called at the beginning of the main program andrtpatend() is called at all
points that lead to program termination.

Calling these routines from another programming language requires knowledge
of the cross-language calling standards on your platform. Typically an under-
score is appended to names that are declared in Fortran subroutines when called
from C code. Thus, a main program in C that can be used with Guide Fortran
code might look like:

voi d
mai n(int argc, char *argv[])
{
extern nppbeg (), nppend_();
nppbeg_();
Fortran_work();
nppend_() ;
exit(0);

}

A main program written in Fortran might look like:

program mai n

call mppbeg()
call C work
call nppend()
end

In other programming languages, you may need to append an underscore to the
routine names to successfully link: emppbeg () andnppend ().

The call tomppbeg() must occur when the program is executing sequentially,
not when a parallel region is active.

28

http://mww.kai .conmv/parallel/kappro

Signal Handling (Unix only) Libraries and External Routines « 4

Sgnal Handling (Unix only)

In order for interrupts and runtime errors to be handled correctly during parallel
execution on Unix, the Guide libraries normally install their own handlers for inter-
rupt signals (e.g. SI GHUP, SI G NT, SI GQUI T, and SI GTERM and for runtime
error signals (e.g. SI GSEGV, SI GBUS, SI d LL, SI GABRT, SI G-PE, and SI G-

SYS) .

The Guide libraries normally install their handlers at the beginning of the first
(dynamically executed) parallel region in the program. These handlers remain
active until the end of program execution, throughout all parallel and remaining
serial portions of the program.

The Guide libraries provide a mechanism for allowing user—installed signal han-
dlers. If the program installs a handler for a signal before the beginning of the first
parallel region, the libraries will not install their handlers for that signal.

kappro-support@kai.com

4
©
=
k)
5
_
-

External Routines

4+ Libraries and External Routines

Signal Handling (Unix only)

30

http://mww.kai .conmv/parallel/kappro

Introduction Using Assure ¢ 5

CHAPTER 5 Using Assure

ol

Using Assure

Introduction

Assureis designed to validate the correctness of an OpenMP parallel program and

to identify programming errors that occur when parallelizing a serial application.

Assure uses the semantics of a program’s sequential execution to find errors that
could occur in that program’s parallel execution. For each data set that is used when
executing an Assure-processed program, errors are identified when the parallel pro-
gram is inconsistent with the corresponding serial program.

Programs validated by Assure must be assumed to be sequentially correct. Serial
programs should be compiled and tested with all local variables in each routine
allocated on the stack (i.e., agomatic variables), and no uninitialized accesses,
out-of-bounds memory references, etc. should be present in the sequential code.

kappro-support@kai.com 31

5 Using Assure How to Verify an Application

How to Verify an Application

The components of Assure include:

* The Assure compile driver, named as listed in the following table.

Windows NT Unix Linux
C assureicl, assurec assureicc,
assureecl, assureecc
or assurec[64] or assurec
C++ not available assurect++ assureicc,
assureecc,
or assurec++
FORTRAN 77 assureifl, assuref 77 assureifc
assureefl, or assureefc
or assuref[64]
Fortran 90 assureifl, assurefo0 assureifc
assureefl, or assureefc
or assuref[64]

e AssureView, atool for viewing the results of Assure

On Windows, use assureicl for debugging 32-bit applications using the Intel
C++ compiler, assureecl for debugging 64-bit applications using the Intel C++
compiler, and assur ec for debugging C applications using the Microsoft Visual
Studio C++ compiler. C++ is not currently supported on Windows.

Similarly, use assureifl on Windows for debugging 32-bit applications using the
Intel Fortran compiler, assureefl for debugging 64-bit applications using the
Intel Fortran compiler, and assuref for debugging 32-bit or 64-bit applications
using the appropriate Compag Visual Fortran compiler.

Special drivers called assur ec64 and asssur ef64 are supplied for Windows users
who install the KAP/Pro Toolset on a 32-bit machine and wish to debug 64-bit
applications with the appropriate Microsoft Visual Studio C++ compiler and
Compaq Visual Fortran compiler, respectively. The assurec and assur ef drivers
produce executables compatible with the machine architecture on which
KAP/Proisinstalled.

32

http://mww.kai .conmv/parallel/kappro

How to Verify an Application Using Assure* 5

On Linux, use assureicc for debugging 32-bit applications using the Intel C++
compiler, assureecc for debugging 64-bit applications using the Intel C++ com-
piler, and assurec or assurec++ for debugging C or C++ applications, respectively,
using the gcc or g++ compiler. Use assureifc for debugging 32-bit applications
using the Intel Fortran compiler, assureefc for debugging 64-bit applications using
the Intel Fortran compiler.

The stepsinvolved in using Assure to verify an application program are depicted in
Figure 5-1, “Assure Process,” on page 34:

1. Compile the program using Assure.

Assure takes as input a correct, sequential program that has been annotate
OpenMP parallel directives. This step producpsogect file, a file with a. prj
suffix, used by AssureView to document the structure of the code. An Assu
link step produces a program that, when executed, generates data for Ass
View.

2. Run the compiled program.

This step produces simulation output in a file withkald suffix, which con-

tains encoded results of the execution. Execution with Assure can require signif-
icantly more time and memory. Whenever possible, use input datasets of
minimal size that exercise as much of the code as possible.

3. View the results using AssureView.

AssureView takes as its inputs the project file produced in step 1 and the simula-
tion output file produced in step 2 and displays the results via a GUI. Results
may also be displayed as text.

Using Assure

kappro-support@kai.com 33

5 Using Assure How to Verify an Application

Figure5-1 Assure Process

Application
Source
Program

I

Assure
Compiler

I

Program
Executable

\ 4 v

Simulation Project
Output (. kdd) (.prj)
File File

!

AssureView

A

When the application program, here called pgm is contained in a single source
file, the following sequence of commands can be used on Unix to run Assure
and AssureView:

assurec -W3pnanme=prog -0 pgm pgm c
pgm))
assurevi ew prog. prj

The - Wepnane flag is used to select the name of the project file (in this exam-
ple, pr og.prj). On Windows the following sequence of commands can be
used:

assurec -WGpnane=prog -exe: pgm exe pgm c
pgm exe
assurevi ew prog. prj

http://mww.kai .conmv/parallel/kappro

How to Verify an Application Using Assure* 5

When the application program consists of multiple source files, the following
sequence of commands could be used on Unix for compiling and linking:

assurec -Wsnane=prog -c¢ fl.c
assurec -Wsnane=prog -c f2.c
assurec -Wsnane=prog -o pgmfl.o f2.0

The following sequence of commands could be used on Windows:

assurec -Wxpnanme=prog -c fl.c
assurec -Wspnane=prog -c f2.c
assurec -W3pnanme=prog -exe: pgmexe f1l.obj f2.o0bj

Running the executable and viewing the Assure resultsis the same as in the single
source file example. When using makefiles, it may be sufficient to change your
compile and link commands in each makefile to

assurec -WGEnane=prog

For projects with multiple build directories, the project file should be specified as
an absolute path to ensure that the same project fileis used in each step of the build
process. For example on Unix:

assurec -Wspname=/projects/prog/prog.prj f.c

or on Windows:

assurec -Wsname=c:\projects\prog\prog.prj f.c

The results of Assure can be viewed by using the full name of the project file onthe
command line;

assurevi ew / proj ects/ prog/ prog. prj

In addition, the make cl ean rule in makefiles should be modified to remove any
fileswith. prj or. kdd suffixes.

During compilation, in order to serialize access to project files (e.g., when running
makefilesin parallel) an explicit lockfile is associated with each file. If aproject
name is not specified, the default nameisassur e. prj and the corresponding
lockfilewould benamed . assur e. prj . | ck.Eachlockfileisplacedinthe same
directory as its corresponding project file. Periodic messages may appear if an
Assure or AssureView step iswaiting for the release of alockfile. These messages
can beignored in aproperly executed parallel make. Parallel makes may fail in
NFS mounted directories due to problems with file locking.

Using Assure

kappro-support@kai.com 35

ol

5 Using Assure An Example

An Example

Thefollowing is a correct sequential program fragment to multiply matricesa
and b. This program has been parallelized with OpenMP directives and can be
validated by Assure.

C/ C++ synt ax:

#pragma onp parallel for \
shared(a, b,c,s,n,n) \
private(i,j,k)

for (j =0; j <n; j++) {

for (i =0; i <m i++) {
L10: s = 0.0;
for (k =0; k <m k++) {
L20: s += a[k][i] * b[j]l[kK]
}
L30: c[jl1[i] = s;
}

}

Fortran synt ax:

I $onp parallel do

I $omp& shared(a,b,c,n, ms)
' $omp& private(i,j,k)

doj =1, n
doi =1, m
10 s =0.0
do k =1, m
20 s =s + a(i,k) * b(k,j)
enddo
30 c(i,j) =s
enddo
enddo

I $omp end parallel do

When Assure is run on a complete program containing this program fragment,
AssureView will report storage conflicts errors (see “Storage Conflicts” on

page 37) on the statements label@d 20, and30. The programmer forgot to
makes a private variable, which would cause the program to generate incorrect
results when run in parallel. The correct parallel program fragment is given
below.

36

http://mww.kai .conmv/parallel/kappro

Storage Conflicts Using Assure ¢ 5

C/ C++ synt ax:

#pragma onp parallel for \
shared(a, b,c,n,n \
private(i,j,k,s)

for (j =05 j <n; j++) {

for (i =1; i <m i++) {

ol

L10: s = 0.0;
for (k = 0; k < m k++)
L20: s += a[k][i] * b[j][k];

L30: clilli]l =s;
}
}

Fortran synt ax:

I $onp parallel do

I $onmp& shared(a,b,c,n,m
I'$omp& private(i,j,k,s)

Using Assure

doj =1, n
doi =1, m
10 s =0.0
do k =1, m
20 s =s +a(i,k) * b(k,j)
enddo
30 c(i,j) =s
enddo
enddo

I $omp end parallel do

When Assure is run on a complete program containing this program fragment, no
storage conflict errors are reported, so this portion of the program will run correctly
inparalel.

Sorage Conflicts

In order to produce correct results, a correctly-parallelized program must preserve
the constraints on the order of variable references imposed by the original sequen-
tial program execution (these constraints are also known as data dependence con-
straints). Storage conflicts are violations of these variable-reference-order
constraints which cause a parallel program to yield incorrect or indeterminate
results when compared to the original seria program.

kappro-support@kai.com 37

5 Using Assure Storage Conflicts

Three different types of storage conflicts occur in parallel programs, each of
which isidentified by Assure:

1. Write —» Read storage conflicts

These conflicts denote violations of flow-dependence (or true dependence)
constraints. Such a constraint isintroduced in a serial program when one
statement updates a variable that may be read by a subsequent statement.

For example, consider the following sequence of statements:

sl: a=b+c

s2. d =a + e
A flow-dependence constraint on the variable a exists between s1 and s2
since s1 must execute before s2 in order for s2 to use the correct value for
a (i.e., the value produced by s1).

2. Read - Write storage conflicts

These conflicts denote violations of anti-dependence constraints. Such a
constraint isintroduced in a serial program when one statement reads a vari-
able that may be written by a subsequent statement.

For example, consider the following sequence of statements:

b +c
d +e

sl: a

s2. b
An anti-dependence constraint on the variable b exists between s1 and s2
since s1 must execute before s2 in order for s1 to use the correct value for

b (i.e., the value produced by some statement before s 1, not the value pro-
duced by s2).

3. Write —» Write storage conflicts

These conflicts denote violations of output-dependence constraints. Such a
constraint isintroduced in a serial program when one statement updates a
variable that may be written by a subsequent statement.

For example, consider the following sequence of statements:

sl: a=b+c

s2: a=d + e

An output-dependence constraint on the variable a exists between s1 and
s2 since s1 must execute before s2 in order for subsequent statements to
use the correct value for a (i.e., the value produced by s2, not the value pro-

duced by s1).

http://mww.kai .conmv/parallel/kappro

Correcting Errors Using Assure ¢ 5

Assure reports storage conflicts by specifying the variable(s) and statement(s)
involved in a sequential-program constraint that may be violated in the correspond-
ing parallel program. A source and a sink variable reference are specified; the con-
straint being violated is that the source reference must always occur before the sink
reference.

ol

Storage conflicts occur when two variable references can be executed by two dif-
ferent threads in an indeterminate order. Common causes of storage conflicts
include:

1. A variablewasshar ed between threads when it should have been pri vat e
to each thread.

2. Avariablewasshar ed but its accesses were not synchronized (e.g., by enclos-
ing referencesto thevariableincri ti cal sections).

3. Thealgorithm used by the program cannot be directly executed in paralel by
the simple change of a variable’s classificatioahiar ed orpri vat e. Usu-
ally, in this case, the algorithm used in the computation must be changed. In the
next section we give examples to illustrate some of the more advanced transfor-
mations needed to correctly execute a serial program in parallel.

Using Assure

Correcting Errors

The following examples are designed to illustrate common parallel programming
errors, how Assure treats each one, and how they may be corrected by using
OpenMP directives to restructure the parallel code.

Example: Parallelizing Reduction L oops

Consider the following sequential program, which sums the numbers one through
ten and prints the answer (55).

C/ C++ synt ax:

#i ncl ude <stdi o. h>

main ()

{
int i, k=0;
for (i =1; i <=10; i++) k +=i;
printf("%\n", k);

kappro-support@kai.com 39

5 Using Assure Correcting Errors

Fortran synt ax:
program sumlOa

k =0

doi =1, 10
k =k + i

end do

print *, k

end

In this program, the variable k is reused (between loop iterations) to act as an
accumulator. This reuse causes a storage conflict that must be resolved in order
to execute the loop in parallel. Suppose that the sequential program is parallel-
ized as follows. Assure identifies a Write — Write storage conflict in this pro-
gram, on thevariable k insidethef or or do loop.

C/ C++ synt ax:
#i ncl ude <stdio. h>
main ()

int i, k=0;
#pragma onp parallel for shared(k) private(i)
for (i =1; i <=10; i++) k +=1i;
printf("%l\n", k);

}

Fortran synt ax:
pr ogram suniOb

k =0
I $onmp parallel do shared(k) private(i)
doi =1, 10
k =k +i
end do
I $omp end parallel do
print *, k
end

Since multiple threads are executing the update of the variable k without proper
synchronization, threads could easily overwrite the results of other threads, thus
yielding the wrong final answer.

One common method of parallelizing reduction (accumulation) loopsisto per-
form partial reductions on each processor and then perform the final reduction

http://mww.kai .conmv/parallel/kappro

Correcting Errors

Using Assure ¢ 5

into the output variable. This can also be written as a sequential algorithm as fol-

lows:

C/ C++ synt ax:
#i ncl ude <stdio. h>

main ()
int i, k=20, kIl =0;
for (i =1; i <= 10; i++)
kI +=i;
k += kl;

printf("%l\n", Kk);
}

Fortran synt ax:
program sumlOc

k =0

kI =0

doi =1, 10
kl = kI + i

end do

k = k + ki

print *, k

end

ol

Using Assure

This new sequential algorithm is potentially less efficient than the previous exam-
ple; however, by introducing a new variable, we are allowed more freedom in par-
allelizing the code since we have removed constraints on its parallel execution. The

new sequential code can be parallelized as follows.

kappro-support@kai.com

41

5 Using Assure Correcting Errors

C/ C++ synt ax:
#i ncl ude <stdio. h>
main ()

int i, k=0, kl;
#pragma onp parall el shared(k) private(i,kl)
{

kil = 0;

#pragma onp for

for (i = 1; i <= 10; i++4)
kI +=i;

k += kil ;

}
printf("%\n", k);
}

Fortran synt ax:
program suniOd
k =0

I'$onp parallel shared(k) private(i,kl)
ki =0

I $onp do
doi =1, 10

kI = kI + i

enddo

I $onp end do
k = k + ki

I $omp end parall el
print *, Kk
end

Unfortunately, Assure will identify storage conflictsin this parallel program as
well. By introducing a new private variable, k| , we removed the original stor-
age conflict in the parallel loop. However, thereis still a storage conflict in the
fina reduction, k += kl or k = k + kil . Thisfina reduction needsto be
synchronized (serialized) to produce a correct parallel agorithm as follows:

a2 http://mww.kai .conmv/parallel/kappro

Correcting Errors Using Assure ¢ 5

C/ C++ synt ax:
#i ncl ude <stdio. h>
main ()

int i, k=0, kl;
#pragma onp parall el shared(k) private(i,kl)
{

kl = 0;

#pragma onp for

for (i = 1; i <= 10; i++4)
kI +=i;

#pragma onp critical

k += kil ;

}
printf("%l\n", Kk);

Fortran synt ax:
pr ogram sumnilOe

k =0
I $onp parallel shared(k) private(i,kl)
ki =0
I $onmp do
doi =1, 10
kI = kI + i
enddo
I $onp end do
I'$onmp critical
k = k + ki

I'$onmp end critical

I $onmp end parall el
print *, k
end

Assureidentifies no errorsin this version of the parallel code.

Alternatively, this same code segment could be written using the OpenMPr educ-

t i on directive as follows:

kappro-support@kai.com

43

ol

Using Assure

5 Using Assure Correcting Errors

C/ C++ synt ax:
#i ncl ude <stdio. h>

main ()
int i, k=0;
#pragma onp parallel for reduction(+:k) \
private(i)
for (i = 1; i <= 10; i++4)
k +=i;

printf("%l\n", Kk);

Fortran synt ax:
pr ogr am suniOf

k =0
I'$onp parallel do reduction(+:k) private(i)
doi =1, 10
k = k +i
enddo
I $omp end parallel do
print *, k
end

Each parallel version of this summation algorithm has a corresponding sequen-
tial program that correctly computes the desired result. In each case, if the paral-
lel program is run on one processor it will be equivalent to the corresponding
sequential program, asif the OpenMP directives were ignored. This pairing of
the sequential and parallel semantics of a program allows Assure to determine
when the parallel program is incorrect when compared to the specification pro-
vided by the sequential program.

Example: Privatizing to Resolve Storage Conflicts

As shown in the previous example, the act of parall€elization (converting a serial
algorithminto aparallel algorithm) is often an incremental process. This process
proceeds from the assumption that the computation to be performed islogically
concurrent but that a particular implementation of the algorithm introduces
dependences that can be removed through the use of OpenMP directives or code
restructuring.

Two of the most common techniques for resolving storage conflicts are privati-
zation (storage localization, replication) and synchronization (serialization).
Consider the following example:

http://mww.kai .conmv/parallel/kappro

Correcting Errors Using Assure ¢ 5

C/ C++ synt ax:
void dsq(float a[], float b[], float c[], int n)

int i;
for (i =0; i <n; i++) { 5
x =a[i] - b[i]
y = b[i] + a[i] o
cli] =x ™y,
) ’
} 5
Fortran synt ax: gj
subroutine dsq(a, b, ¢, n))
i nteger n
real a(n), b(n), c(n), x, y
doi =1, n
x =a(i) - b(i)
y = b(i) + a(i)
c(i) =x *vy
end do

end subroutine

The above serial routine implements alogically concurrent algorithm: applying a
function to each element of a vector. A first attempt at parallelization of this pro-
gram might yield the following:

C/ C++ synt ax:
void dsq_a(float a[], float b[], float c[], int n)

float x, v;

int i;
#pragma onp parallel for shared(a,b,c,n, x,y) \
private(i)
for (i =0; i <n; i++) {
x =a[i] - b[i]
y = b[i] + a[i]
c[i] =x*y;
}

kappro-support@kai.com 45

5 Using Assure Correcting Errors

Fortran synt ax:
subroutine dsqg_a (a, b, c,n)
i nteger n
real a(n), b(n), c(n), x, y
I $onmp parallel do shared(a,b,c,n,x,y) private(i)
doi =1, n
X a(i)
y = b(i)
c(i) =x
enddo
I'$onmp end parallel do
end

b
a

(i)
(i)

* 4 0

y

Assure reports Write - Write storage conflicts on the variables x andy in this
parallel program. This means that, on two different iterations of the parallel
loop, these variables were updated (potentially by different threads). These stor-
age conflicts can be resolved through privatization or synchronization. To cor-
rectly synchronizethiscode, acri ti cal section should be added surrounding
the definitions and uses of the offending variables:

C/ C++ synt ax:
void dsqg_b(float a[], float b[], float c[], int n)
{

float x, v;

int i;

#pragma onp parallel for shared(a,b,c,n, x,y) \
private(i)

for (i =0; i <n; i++) {

#pragma onp critical

=a[i] - b[i];
y = b[i] +a[i];
i] =x *vy;

[a—

46

http://mww.kai .conmv/parallel/kappro

Correcting Errors Using Assure ¢ 5

Fortran synt ax:

I $onp
! $onp

I $onp
I $onp

Assure reports no storage conflictsin this parallel program. However, thisis not an

subroutine dsq_b (a, b, c,n)
i nteger n
real a(n), b(n), c(n), x, vy

paral l el do shared(a,b,c,n,x,y) private(i) 5
doi =1, n
critical
x =a(i) - b(i) Qo
y = b(i) + a(i) §
c(i) =x *vy
end critical <
enddo g’
end parallel do ‘B
end)

efficient method of resolving the previous conflicts. The addition of thecri ti -
cal section serializes the execution of the loop entirely, thereby prohibiting any
performance improvement through parallelism. If the only way to resolve storage
conflictsisthrough synchronization, then it islikely that the original algorithm was
not inherently concurrent and that this algorithm should be run sequentially.

The storage conflicts on x and 'y could also be resolved through privatization.

Cl C++

synt ax:

void dsq_c(float a[], float b[], float c[], int n)

float x, v;
int i;
#pragma onp parallel for shared(a,b,c,n) \

for

private(i,X,y)
i =0; i <n; i++) {
bli];
afil];
Y;

* 4 1

kappro-support@kai.com 47

5 Using Assure Correcting Errors

Fortran synt ax:
subroutine dsqg_c (a, b, c,n)
i nteger n
real a(n), b(n), c(n), x, y
I $onmp parallel do shared(a,b,c,n) private(i,X,Yy)
doi =1, n
X a(i)
y = b(i)
c(i) =x
enddo
I'$onmp end parallel do
end

b
a

(i)
(i)

* 4 0

y

Inthis parallel program, x and y have been declared private to each thread that
executes the parallél region. Privatization removes the storage conflicts by giv-
ing each thread executing the parallel loop its own local copy of the variables x
andy. Thisisthe preferred way to resolve these types of storage conflicts.

Parallelism isinhibited by synchronization and is enabled by privatization. To
enhance the performance of parallel programs, privatization should be utilized
instead of synchronization whenever possible. Some runtime operations (e.g.,
1/0O routines) may not be safe to execute in parallel; in these cases, synchroniz-
ing these operations allows the rest of a parallel region to be executed in paral-
lel. If the percentage of time spent in a synchronization region is small, when
compared to the time spent executing in parallel, it can be beneficial to add syn-
chronization to a paralel region.

Static allocation of local variablesin Fortran and variables defined within anew
scope in C/C++ into the stack is an easy way to specify variables as private to
each thread. Thisistypically specified with the- aut omat i ¢ option on most
compilersif thisis not the default. Since each thread executing a parallel region
hasits own stack, this ensures that whenever multiple threads concurrently call a
routine, variables local to that routine are not shared between threads.

Aswe have seen, OpenMP directives permit variables to be made privatein a
particular parallel construct. Thepri vat e() clauseindicates, for the duration
of aparallé region, that each thread executing the region will have a unique,
local instance of each listed variable.

http://mww.kai .conmv/parallel/kappro

Correcting Errors Using Assure ¢ 5

Example: Using private variables outside of parallel regions

Another class of errors occursin the interfaces between parallel regions and
sequential code. Consider the following sequential routine:

ol

C/ C++ synt ax:
void dsg2(float a[], float b[], float c[], int n)

fl =

oat X, Vy;

int i; ﬁ

for (i =0; i <n; i++) { <C
x =a[i] - b[i]; (@)
y = b[i] + a[i]; =
c[i] =x *y; -

Fortran synt ax:
subroutine dsg2(a, b, ¢, n)

i nteger n
real a(n), b(n), c(n), x, y
doi =1, n
x = a(i) - b(i)
y = b(i) + a(i)
c(i) =x *vy
end do
print *, X, vy
end

This program isidentical to the previous example except that the final values of the
variablesx andy are propagated out of the loop to be printed. This sequential code
could be paralelized as in the previous example.

kappro-support@kai.com 49

5 Using Assure Correcting Errors

C/ C++ synt ax:
void dsg2_a(float a[],float b[],float c[],int n)

float x, v;

int i;

#pragma onp parallel for shared(a,b,c,n) \
private(i,X,Yy)

for i < i++) {

}

Fortran synt ax:
subroutine dsg2_a (a,b,c,n)
i nteger n
real a(n), b(n), c(n), x, y
I $onp parallel do shared(a,b,c,n) private(i,Xx,y)

doi =1, n
x = a(i) - b(i)
y = b(i) + a(i)
c(i) =x *vy
enddo

I $omp end parallel do
print *, x, vy
end

Here, Assureidentifiesthat the pri vat e variablesx and y have their values
used outside the parallél region. Sincex andy are private to each thread execut-
ing the region, the values of these variables outside the region are undefined.
Thel ast pri vat e() clause can be used to copy the values of x and y from
the last serial iteration of the parallel loop back into the sequential code.

50 http://mww.kai .conmv/parallel/kappro

Correcting Errors Using Assure ¢ 5

C/ C++ synt ax:
void dsg2_b(float a[],float b[],float c[],int n)

float x, v;

int i;

#pragma onp parallel for shared(a,b,c,n) \
private(i) lastprivate(x,y)

for i < i++) {

}

Fortran synt ax:

subroutine dsg2_b (a,b,c,n)

i nteger n

real a(n), b(n), c(n), x, y
I $onp parallel do shared(a,b,c,n) private(i)
I $onmp& | astprivate(x,y)

doi =1, n
x =a(i) - b(i)
y = b(i) + a(i)
c(i) =x *vy
enddo

I $omp end parallel do
print *, x, vy
end

Assureidentifiesno errorsin this parallel program. Thel ast pri vat e() clause
specifies, during the execution of the parallel loop, that each thread is to haveits

own instance of the variables x andy, but that the values assigned on the last serial
iteration of the loop are to be copied to the global x and y after the loop compl etes.

Example: Using firstprivate()

Another interface problem occurs in the transition between sequentia code and par-
allel regions. Consider the following parallel routine:

Using Assure

kappro-support@kai.com 51

ol

5 Using Assure Correcting Errors

C/ C++ synt ax:
void dsq3(float *c[], int n)

float a[100], b[100], X, V;

int i, j;
/*
Initialize all elements of arrays a and b
in the serial region

*/
init_a(a, n);
init _b(b, n);
#pragma onp parallel for shared(a,b,c,n) \
private(i,j) lastprivate(x,y)
for (i =0; i <n; i++) {
for (j =0; j <=1i; j++) {
/*

Re- assi gn sone el enments of arrays a and b

in the parallel region. In serial execution

this step sinply overwites sone of the val ues

set in routines init_a and init_b. In parallel
execution, this results in partially uninitialized
arrays a and b

*/

a[j] = calc_a[i];
b[j] = calc_b[i];

}

for (j =0; j <n; j++) {
x =a[j] - b[j];
y =b[j] +a[jl];

} clillil =x*y;

}
printf("% %\n", X, y);

http://mww.kai .conmv/parallel/kappro

Correcting Errors Using Assure ¢ 5

Fortran synt ax:

subroutine dsg3 (c,n)

i nteger n

real a(100), b(100), c(n,n), X, Yy
c Initialize all elenents of arrays a and b
c in the serial region

call init_a(a, n)

call init_b(b, n)
I $onp parallel do shared(a,b,c,n) private(i,j)
I $onp& | astprivate(x,y)
Re- assi gn sone el enents of arrays a and b

ol

Using Assure

c inthe parallel region. In serial execution
c this step sinply overwites sone of the val ues
c set inroutines init_a and init_b. In parallel
c execution, this results in partially
c uninitialized arrays a and b
doi =1, n
doj =1, i
a(j) = calc_a(i)
b(j) = calc_b(i)
enddo
doj =1, n
x =a(j) - b(j)
y =b(j) + a(j)
c(j,i) =x*y
enddo
enddo

I $omp end parallel do
print *, X, vy
end

In this example, the arrays a and b are being used as temporary vectors for the cal-
culation of the matrix ¢. However, not al of thevaluesof a and b areinitialized in
thefirst j-loop before they are used in the second j-loop (aninitial set of values for
all relevant array elements are passed in to theloop fromi nit _a andi ni t _b).
Assure reports Write — Write storage conflicts on a and b that can be removed by
privatizing these variables to the parallel loop.

kappro-support@kai.com 53

5 Using Assure Correcting Errors

C/ C++ synt ax:
void dsg3_a(float *c[], int n)

fl oat a[100] b[100], Xx, V;
int i, j;
init_a(a, n);
init_b(b, n);
#pragma onp parallel for shared(c,n) \
private(i,j,a,b) lastprivate(x,y)
for (i =0; i <n; i++) {
for (j =0; j <=1i; j++) {
calc_a[i];
calc _b[i];
o< j+) |
i1 - b[jl;
i1+ aljl;
] o=x 0y,
}
printf("% %\n", X, y);
}

Fortran synt ax:
subroutine dsq3_a (c,n)

i nteger n
real a(100), b(100), c(n,n), X, y
call init_a(a, n)

call init_b(b, n)
I $onmp parallel do shared(c,n) private(i,j,a,b)
' $onp& | ast private(x,y)

doi =1, n
do j =1, i
a(j) = calc_a(i)
b(j) = calc_b(i)
enddo
doj =1, n
x =a(j) - b(j)
y =b(j) + a(j)
c(j,i) =x*y
enddo
enddo

I'$onmp end parallel do
print *, x, vy
end

http://mww.kai .conmv/parallel/kappro

Correcting Errors Using Assure ¢ 5

This parallel program now has a different problem: each processor hasits own pri-
vate copy of a and b, but a and b are not fully-initialized on each processor
because values of copies of pri vat e variables are initially undefined. Assure
reports this error by identifying the uninitialized referencesto a and b inside the
parallel loop. Thistype of error can be resolved through the use of thef i r st pri -
vat e() clause.

ol

C/ C++ synt ax:
void dsg3_b(float *c[], int n)
{
float a[100], b[100], X, vV;
int i, j;
init_a(a, n);
init_b(b, n);
#pragma onp parallel for shared(c,n) \
private (i,j) lastprivate(x,y) firstprivate(a,Db)
for (i =0; i <n; i++) {
for (j jo<=1i; i+ A
i calc_a[i];
calc_b[i];

Using Assure

nio

jo<n j++) |
b[j];
aljl;
*y,

}
printf("% %\n", X, y);

kappro-support@kai.com 55

5 Using Assure Correcting Errors

Fortran synt ax:
subroutine dsq3_b (c,n)

i nteger n
real a(100), b(100), c(n,n), X, Yy
call init_a(a, n)

call init_b(b, n)
I $onmp parallel do shared(c,n) private(i,j)
I $omp& Iafstprivate(x,y) firstprivate(a,b)

doi =1, n
doj =1, i
a(j) = calc_a(i)
b(j) = calc_b(i)
enddo
doj =1, n
x =a(j) - b(j)
y =b(j) + a(j)
c(j,i) =x*y
enddo
enddo

I $omp end parallel do
print *, x, vy
end

Thisparallel codeis correct sincethefi rst pri vat e() clauseinstructs each
processor to begin with a private copy of thedatain a and b initialized with val-
ues from the sequential code before the parallel 1oop. Each processor then (par-
tialy) overwritesits private copy of a and b with additional initialization data

and proceeds with its computation.

56

http://mww.kai .conmv/parallel/kappro

About the KAP/Pro drivers The KAP/Pro Drivers « 6

CHAPTER 6 -I-he KAP/PFO
Drivers

About the KAP/Pro drivers

This chapter describes the functionality of the KAP/Pro drivers. There are many
different driver names, depending on the source language and computational envi-
ronment, but they all behave in essentially the same manner. The material in this
chapter is organized as follows:

* Overview of the C/C++ Guide and Assure drivers

* Overview of the Fortran Guide and Assure drivers

e List of KAP/Pro driver options

* Environment variables that influence driver behavior

(@)
o8
o
<.
X
)
=
—

kappro-support@kai.com 57

6 « The KAP/Pro Drivers Overview of the C/C++ Guide and Assure drivers

Overview of the C/C++ Guide and Assure
drivers

The KAP/Pro C/C++ drivers, referred to here collectively as guidec and
assurec, are designed to replace native compiler driverssuchascc ori cl . The
actual driver name depends on the operating system and native compiler; com-
plete lists of Guide and Assure driver names are given in the tables on page 18
and page 32, respectively.

Both the Guide and Assure instrumentation and the compile/link steps are com-
bined into one command line which may be invoked manually, from a script, or
from aMakefile. The necessary C preprocessor, KAP/Pro, and compiler com-
mands are executed automatically. The standard | i nk command on Windows,
which automatically adds the appropriate KAP/Pro library to the link step, can
be replaced with guidec or assurec followed by the -l i nk flag or aternatively
by using the special drivers guidel or assurel.

Guidec and assurec are based on KAI C++, a high-performance, 1SO standard-
compliant C and C++ compiler. This reference manual documents only the
places where KAP/Pro’s default behavior differs from or extends upon KAl
C++. Documentation for KAl C++ is located in tKEC_docs subdirectory
within the Guide or Assure installation directory.

The default language gtiidec andassurec is ANSI C, whereas the default lan-
guage of KAl C++ is C++. To enable C++ in KAP/Pro on Unix systems, use the
- - c++ command line switch or thguidec++ or assurec++ driver (C++ is cur-
rently not supported on Windows systems). To improve performguiiec
andassurec disable C++ exceptions by default. Exceptions can be enabled via
the- - except i ons command line switch.

In addition to all of the command line options accepted by the C/C++ compiler,
theassurec andguidec drivers accept prefixed forms of all KAP/Pro options as
well as driver-specific options. An absence of command line arguments causes
the driver to emit a usage message.

Using the C/C++ drivers

To compile a C or C++ program with Guide or Assure, use one of the following
command lines on Unix systems:

58

http://mww.kai .conmv/parallel/kappro

Overview of the C/C++ Guide and Assure drivers The KAP/Pro Drivers « 6

C program

gui dec [<Cui de options>] [<KAI C++ options>] <fil enames>
assurec [<Assure options>] [<KAl C++ options>] <filenames>

C++ program

gui dec++ [<Gui de options>] [<KAl C++ options>] <filenames>
assurec++ [<Assure options>] [<KAl C++ options>] <filenames>

or one of the following command lines on Linux systems:

C or C++ program

gui dei cc [<Cui de options>] [<icc options>] <filenanes>
gui deecc [<Gui de options>] [<ecc options>] <filenanes>

assureicc [<Assure options>] [<icc options>] <filenanmes>
assureecc [<Assure options>] [<ecc options>] <filenanmes>

or one of the following command lines on Windows systems:

C or C++ program

gui dei cl [<Guide options>] [<icl options>] <filenanes>
gui deecl [<Guide options>] [<ecl options>] <filenanes>
gui dec [<Cui de options>] [<standard options>] <fil enames>

assureicl [<Assure options>] [<icl options>] <filenames>
assureecl [<Assure options>] [<icl options>] <filenames>
assurec [<Assure options>] [<standard options>] <filenames>

where <f i | enanes> isoneor moreinput files to Guide or Assure.

Guide and Assure produce intermediate source files which are then passed to the
underlying compiler. These files are removed by default after successful instrumen-
tation and compilation. See “-WG[no]keep” on page 67 and “-WG[nolkeeperr”
page 68 for more information.

The output filename frorguidec or assurec is derived from the input filename by
removing the file extension and adding the extensiomt . c. The object file cre-
ated by the driver does not have this suffix. For example, Guide or Assure wo
generate a file calleddoo. i nt . ¢ from a file called 00. ¢, but the object file
would be called oo. o.

(@)
o8
o
<.
X
)
=
—

kappro-support@kai.com 59

6 « The KAP/Pro Drivers Overview of the Fortran Guide and Assure drivers

Overview of the Fortran Guide and Assure
drivers

The KAP/Pro Fortran drivers, referred to collectively as guidef and assuref, are
designed to replace native compiler driverssuchasf 90 ori f | . The actual
driver name depends on the operating system and native compiler; complete
lists of Guide and Assure driver names are given in the tables on page 18 and
page 32, respectively.

On Unix systems, the Assure or Guide Fortran drivers replace the system FOR-
TRAN 77 and Fortran 90 compilers on the command line and integrate Assure
or Guide instrumentation and the compile/link step into one command line. In
scripts and Makefiles, replacing the standard compiler (typicaly 77 or f90)
with the appropriate Assure or Guide driver will execute the necessary C prepro-
cessor, Assure or Guide, and compiler commands automatically.

On Windows systems, the Assure or Guide Fortran drivers replace the Intel For-
tran compiler or the Compaq Visual Fortran compiler and integrate Assure or
Guide instrumentation and the compilée/link step into one command line. Addi-
tionally, assur el and gui del replacethe standard | i nk to automatically
add the Assure or Guide library to thelink step.

In addition to all of the command line options accepted by the Fortran compiler,
the assur ef and guidef drivers accept prefixed forms of all Assure and Guide
options as well as driver-specific options. An absence of command line argu-
ments causes the drivers to emit a usage message.

Using theFortran drivers

To compile aFortran program with Guide or Assure, use one of the following
command lines on Unix systems:

FORTRAN 77 program

gui def 77 [<Gui de options>] [<f77 options>] <filenames>
assuref 77 [<Assure options>] [<f77 options>] <filenanes>

Fortran 90 program

gui def 90 [<Gui de options>] [<f90 options>] <filenames>
assuref 90 [<Assure options>] [<f90 options>] <filenanes>

or one of the following command lines on Linux systems:

60

http://mww.kai .conmv/parallel/kappro

Overview of the Fortran Guide and Assure drivers The KAP/Pro Drivers « 6

Fortran program

gui dei fc [<Quide options>] [<ifc options>] <filenanes>
gui deefc [<Cui de options>] [<efc options>] <filenanmes>

assureifc [<Assure options>] [<ifc options>] <filenanes>
assureefc [<Assure options>] [<efc options>] <filenanes>

or one of the following command lines on Windows systems:

Fortran program

guidei fl [<Quide options>] [<ifl options>] <filenanmes>
gui deefl [<Quide options>] [<efl options>] <filenanmes>
gui def [<Cuide options>] [<standard options>] <filenanes>

assurei fl [<Assure options>] [<ifl options>] <filenanes>
assureefl [<Assure options>] [<ifl options>] <filenanes>
assuref [<Assure options>] [<standard options>] <fil enanes>

where <f i | enanes> isoneor moreinput files to Guide or Assure.

Guide and Assure produce intermediate source files which are then passed to the
underlying compiler. These files are removed by default after successful instrumen-
tation and compilation. See “-WG[no]keep” on page 67 and “-WG[nolkeeperr” on
page 68 for more information.

The output filename frorguidef or assuref is derived from the input filename by
adding the prefixc_ or A _, respectively. For example, Guide would generate a file
calledG f oo. f from afile called 0o. f, and Assure would generate a file called
A foo.f.

Fortran files with capitalized suffixes (efg.| enane. F) are first passed through
the C preprocessor before Assure or Guide is invoked. The C preprocessor wi
ate files with a&ppA_orcppG_ prefix (e.g.cppA fil enane. F). As men-
tioned aboveassuref andguidef will create output files whose name is based o
the original source file name.

The KAP/Pro

kappro-support@kai.com 61

6 « The KAP/Pro Drivers KAP/Pro driver options

KAP/Pro driver options

Default processing by Assure and Guide isto compile al source files listed on
the command line and link them to produce an executable. This behavior can be
modified by command line options and/or environment variables, as described
in the remainder of this chapter. Use the -WGhelp flag on the Guide or Assure
command line for alist of KAP/Pro options.

Most of these options only directly affect the behavior of Guide and Assure and
are not passed to the underlying compiler; exceptions to this rule, such as-c, are
identified in the individual descriptions. If Guide or Assure failsto recognize a
command line option, it sSimply ignoresit and passes it to the compiler.

The guidec and assurec driversrecognize all the KAI C++ compiler options (on
Unix), Intel C++ compiler options (on Windows), and many of the Microsoft
Visual C++ compiler options (on Windows). The assuref and guidef drivers
recognize all the Intel Fortran compiler options (on Window) and most of the
native Fortran compiler options (on Unix). In addition, all KAP/Pro drivers rec-
oghize several OpenMP-related options.

The following conventions apply to the KAP/Pro drivers:

Anything in the form -WGxxx is a KAP/Pro driver option. The -WG distin-
guishesit from standard compiler options.

Anything in the form -WG,-xxx is an option that affects the internal work-
ings of KAP/Pro. Normally, these options are not needed by end users.

Anything undecorated, such as-O3, is an underlying compiler option. Some
of these options, such as the -v, -¢, and -wnowar n flags described below,
influence both KAP/Pro and the underlying compiler.

Some driver options are listed with [no] as part of the name; this means that both
positive and negative settings, such as -WGkeep and -WGnokeep, are
accepted. Some driver options are specific to a particular KAP/Pro component
or computational platform; these are listed in individual sections after the alpha-
betical list.

http://mww.kai .conmv/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers « 6

Displaying all Command Lines

The -v option causes the driver to display all command lines executed. Thisflag is
passed on to the compiler. Use -WGnorpath (Unix only) if your compiler does not
recognize the -v option.

Disabling automatic linking of object files

If the -c compiler option isincluded, the drivers will only compile the source files.
If Assure or Guide is unable to correctly process one or more source files, all other
source files within the command will be compiled (but not linked) regardless of
whether or not the -c option is present.

Suppressing war nings (Fortran only)

Use the -wnowar n option to suppress mild assur ef and guidef warnings. Thisflag
is passed on to the compiler.

Additional KAP/Pro driver options

Guide and Assure accept severa advanced options that can be specified by the
-WG,... driver option. These options have the following syntax:

-WG assure_option_1[[[, assure_option_2],assure_option_3

|
-W5 guide_option_1[[[, gui de_option_2], guide_option_3],.
o]

A list of these additional options, which are normally not needed by end users, is
given in appendix D, “Additional KAP/Pro Options,” beginning on page 199

Alphabetical listing of Driver Options

In the following descriptionssinteger > indicates an integer numbeipath> indi-

cates a directory namefile> indicates a file name, possibly including a full path
<character> indicates a single character, arstiring> indicates a string of charac-

(@)
o8
o
<.
X
)
=
—

ters. All other bracketed symbols are strings whose values are option-dependent;
legal values for these symbols will be listed in the option description. Every driver

option should be preceded by th& ¢haracter; Windows users can also use the “/”

character.

kappro-support@kai.com 63

6 « The KAP/Pro Drivers Alphabetical listing of Driver Options

-WGcatch=<class> (Unix C/C++ only)

This option instructs Guide or Assure to intercept certain exceptions which vio-
late the OpenM P API and abort with an error message at run-time. Legal values
for <cl ass>areal | , saf e, and none. The default is none.

The OpenMP standard requires that exceptions thrown within an active parallel
construct must cause execution to resume within the dynamic extent of the same
OpenMP construct in which the throw occurs. In addition, under the same con-
ditions, the exception must be thrown and caught by the same thread. Setting

this switch to al | " or “saf e” will cause exceptions that violate these rules to
be intercepted. When this occurs, the program will exit with an error message.

The “ W&cat ch=al | " setting causes the program to intercept and report
exceptions which violate the OpenMP API for all OpenMP constructs. This
option has the largest run—time overhead. Use this option to help determine
whether your application has OpenMP-compliant exception handling.

The “ W&cat ch=saf e” setting causes the program to intercept and report
exceptions which violate the OpenMP API for only the C/@afal | el ,
paral | el for,parallel sections,parallel for,taskq, and

t ask constructs. This option has medium run-time overhead.

The “ W&cat ch=none” setting causes the program to ignore exceptions
which violate the OpenMP API. A program which violates the OpenMP excep-
tion rules may exhibit unpredictable behavior with this setting. This option has
no run-time overhead and is the default. Use this setting if you are confident
your application has OpenMP-compliant exception handling.

-WGcheck=<string> (Assure only)

Controls the overall speed at which Assure checks a program for errofasfThe
setting typically reports the fewest errors while $togv setting reportsl|

errors. Themedium setting typically finds most errors, but runs faster than the
slow setting. The default Bow.

http://mww.kai .conmv/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers « 6

-WGcompiler=<path>
-WGcc=<path> (C/C++ only)
-WGftn=<path> (Fortran only)
-WGfortran=<path> (Fortran only)
-WGf77=<path> (Fortran only)
-WGf90=<path> (Fortran only)

Thisoption is used to specify an alternative path to the native compiler. The default
is determined when the KAP/Pro Toolset is installed.

-WG[no]cpp
This option forces the C preprocessor to be run on al sourcefiles. Normally the
driver will invoke the C preprocessor in situations where the native compiler would

do the same. On most Unix platforms, for example, the C preprocessor is invoked
for Fortran source files with a capital F inthe extension (. F, . F77,. F90).

-WGcpp=<file>
This option alows you to specify an alternate path for the C preprocessor execut-
able.

Specifying a preprocessor path does not force preprocessing. In order to force all
compiler input to be processed by another preprocessor, use the following options:

-Wecpp=/ bi n/ cpp2 - W&xpp

-WGcritname=<pattern>

This option applies to mixed language programs to allow matching of named and
unnamed cri ti cal andor der ed directivesin C/C++ to their Fortran counter-
parts. Valid valuesare| ower , upper, | ower, _upper,| ower _, upper _,
_l ower _,and _upper _. The default value is chosen to match the default behav-
ior of the native Fortran compiler.

kappro-support@kai.com 65

(@)
o8
o
<.
X
)
=
—

6 « The KAP/Pro Drivers Alphabetical listing of Driver Options

Guide creates a global lock object for every named and unnamed critical and
ordered section in the source code. An unnamed section and a named section
with name Foo would be tranglated, respectively, as follows:

<pattern> Symbol for unnamed section | Symbol for named section “Foo”

| owner npp_uc_none nmpp_nc_Foo

upper MPP_UC_NONE MPP_NC _Foo

_| owner _npp_uc_none _npp_nc_Foo

_upper _IVPP_UC_NONE _IMPP_NC Foo

| ower _ npp_uc_none_ nmpp_nc_Foo_

upper _ MPP_UC _NONE MPP_NC Foo

_|l ower _ _npp_uc_none_ _npp_nc_Foo_

_upper _ _IVPP_UC_NONE_ _IMPP_NC Foo_

-WG[no]debug (Fortran only)

When -WGdebug is specified, #1 i ne directives are generated in the intermedi-
ate source file (typically beginning with the prefix G_ when using Guide or A_
when using Assure) so that debuggers can relate back to the actual input source
file and not the intermediate files. The default is -WGdebug on most platforms,
except on platforms where the underlying Fortran compiler is unable to process
#l i ne directives.

-WGdefault=<class>

This option specifies the default classification of unlisted variablesin OpenMP
par al | el directives. Itseffectisasif def aul t (<cl ass>) were placed on
every parallel directive that doesn’t have an exptlefault(...) clause.
Allowed values of <class> areshared and none.When not in strict
OpenMP mode, the value private isalso allowed. The default valueis
shared.

-WGdefault_library

By default, Guide and Assure link using static libraries on Windows systems
and shared libraries on Unix systems. This option instructs the driver to use the
default linking conventions when linking the Guide or Assure libraries into the
generated executable. See also -WGstatic_library and -WGdynamic_library.

66

http://mww.kai .conmv/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers « 6

-WGdynamic_library

By default, Guide and Assure link using static libraries on Windows systems and
shared libraries on Unix systems. This option instructs the driver to dynamically
link the Guide or Assure librariesinto the generated executable. See also
-WGstatic_library and -WGdefault_library.

-WGfullpath

Use this option to make al filenames and directories fully qualified. This option
can sometimes improve the functionality of debugging tools; see also
-WG[no]debug on page 66.

-WGhelp

This option directs the driver to print a usage message and exit (Windows users can
also type -?, -h, or -help).

-WGimplylang (Windows C only)

If this option is specified, KAP/Pro will assume that source files ending in “.cpp” or
“.cxx” are C++, thus allowing mixed C and C++ compilation in a single command
line.

-WGincpath

This option specifies an alternate path in which to search for the Assure or Gujde 6
include files.

-WG[no]keep

Instrumented source files (Assure or Guide output files) and temporary C prep
cessor files are removed by default after successful Assure or Guide instrume
tion and compilation. There are several instances where output files are not
removed:

The KAP/Pro

* When Assure or Guide fails to process a source file, the output files from each
failing sourcefile are not removed, while the output files from successfully pro-
cessed files are removed.

* If the compile/link step fails for any of the source files Assure or Guide success-
fully instruments, none of the output files are removed.

kappro-support@kai.com 67

6 « The KAP/Pro Drivers Alphabetical listing of Driver Options

* If you specify -WGkeep, none of the output files are removed.

The presence of the -WGnokeep flag overrides any previous instance of
-WGkeep on the command line, including the -W Gkeep implied from
-WGonly and -g (Unix) or -Zi (Windows).

-WGkeepcpp

If -WGkeepcpp is stated, output files generated by the preprocessor will not be
removed after a successful compilation.

-WG[no]keeperr

If -WGnokeeperr is stated, then Guide and Assure will remove intermediate
files even if there are compile errors. The default is -WGkeeperr.

-WG[no]keepobjects

If -WGkeepobjectsis stated, then object fileswill not be removed after linking.
The default is -W Gkeepobj ects except when compiling a single source file on
Unix systems.

-WGlibpath=<path>

This option specifies an aternate path in which to search for the Assure or
Guide libraries at link time.

-WGlink=<file>
-WGld=<file>

This option allows you to specify an alternate filename for the linker executable.

-WGlocation=<string> (Assure only)

Controls the level of accuracy with which Assure pinpoints errorsin a program.
The exact setting will determine the exact location of errors while the approx
setting will approximate the location of errors. The default is exact.

68

http://mww.kai .conmv/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers « 6

-WGnoimply=<kwd>[,<kwd>...] (not C/C++ Unix)

Each keyword describes a type of switch that the driver should avoid implying.
These driver switch implications are usually made to make sure particular switches
or libraries are passed to the backend compiler to ensure correct KAP/Pro operation
in typical/default cases.

Use these keywords to have the driver avoid passing certain switches to the back-
end compiler and/or linker:

e auto: switcheslike -automatic specifying that local variables should be allo-
cated from the stack
* threads. switchesthat make compilation thread-safe

» align: switches that set up the correct variable alignment/padding in the back-
end compiler
¢ jo: switches that make runtime I/O libraries thread-safe

* rpath: switcheslike -rpath that set the path to the KAP/Pro runtime libraries
when doing shared linking (applicable Unix platforms only)

Use these keywords to have the driver avoid putting certain libraries on the link

line:

e extra lib: any extralibraries that the driver might have to add for correct link-
ing on a per-platform basis (e.g., -Ind on Solaris)

e kpts lib: the main KAP/Pro runtime library

* threads lib: the system threading library used by kpts lib

e all_lib: ssameasextra_lib, kpts lib, threads lib

-WGnorc

This flag will turn off driver-specific options that were found in any initialization
filein your home directory (e.g. $HOVE/ . assur ef r c or SHOVE/ . gui defrc
on Unix or $HOME\ . assur ei ni or $HOVE\ . gui dei ni on Windows). Since
this option will also cancel any driver-specific options that precedeit, -WGhorc
should bethe first driver-specific option to appear on the command lineto allow all
succeeding options to be used.

(@)
o8
o
<.
X
)
=
—

kappro-support@kai.com 69

6 « The KAP/Pro Drivers Alphabetical listing of Driver Options

-WGnor path (Unix only)

Normally, Guide or Assure encodes the location of shared librariesinto an exe-
cutable. This option instructs the driver to omit the path to shared libraries.
Often, when this option isused, the LD _LI BRARY_PATH variable must be set
at run-time to locate the Guide or Assure libraries.

-WGnowork

This option tells the driver to only print the commands it would normally exe-
cute.

-WGonly

When -WGonly is used, Assure or Guide will process the source codein all
listed source files, but neither the compiler nor linker will be executed. This
option implies the -WGkeep option.

-WG[no]openmp (Guide only)

Setting -W Gnoopenmp specifies that Guide is being run for profiling purposes
only, and that OpenMP directives are to be ignored. This flag can be used along
with -WGpr of to enable profiling but not OpenMP.

-W Gopt=<integer >

This option sets the optimization level for OpenMP directives. Valid values are
the integers O through 3.

Level O optimization disables all directive optimizations.

Level 1 optimization attemptsto remove unnecessary bar r i er directivesfrom
the code.

Level 2includeslevel 1 optimizations and is reserved for future use.

Level 3includeslevel 1 and 2 optimizations and adds parallel region merging.

The default valueis 3.

70

http://mww.kai .conmv/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers « 6

-WGpath=<path>

This option is used to specify an aternate path to the Guide or Assure executable.
The default is determined when the KAP/Pro Toolset is installed.

-WG[no]perview (Guide only)

This option specifies whether the Guide driver uses the application management

and monitoring version of the Guide run-time library. See Chapter 9, “PerView,”
beginning on page 101 for a complete description of this library. The default is
-WGhoperview.

-WGprefix=<string>

The-WGprefix option changes the prefix string added to the Assure or Guide and
preprocessor output files. For instance, if you specify the following:

assuref -Woeprefix=qqq -Wepp -Wkeep filel. F

the results areppqqqfi | el. f andgqqqfi |l el. f instead of the default
cppA filel.f andA filel.f.

-WG[no]process

This option specifies whether Guide or Assure processes OpenMP directives into
parallel code. TheWGnoprocess flag can be used to compile source code that has
already been processed by Assure or Guide or to bypass processing of files tha
cannot be handled. Note that Assure may report false errors if files not processgd §y
Assure are linked with successfully processed files. See also the description o
-WG[nolopenmp. The default iV Gprocess.

-WG[no]prof

Specifying-WGprof activates standard performance profiling for Vampir and
GuideView; this flag implieswW Gstats. Specifying-W Gnopr of disables profiling.
The default behavior i8N Gnopr of.

The KAP/Pro

-WGprof_leafprune=<integer>

Sets the minimum size of procedures to retain in the Vampir or GuideView profile.
Guide will not instrument the entry and exit of leaf subroutines that have fewer than

kappro-support@kai.com 71

6 « The KAP/Pro Drivers Alphabetical listing of Driver Options

i nt eger lines. This scheme may significantly reduce the tracefile size and the
overhead due to subroutine instrumentation.

-WGproject_name=<file> (Assure only)
-WGpname=<file> (Assure only)
-WGprj=<file> (Assure only)

Any of these equivalent options specifies a name for the Assure project file, the
program database that Assure uses to record static information about the appli-
cation. Thisinformation is then merged with the data gathered at runtime to be
displayed by AssureView. A project fileisrequired for applications with more
than one source file. If an application’s source files are spread over multiple
directories, then an absolute path to the project file is required, for example:

- Wpnanme=/ hone/ ne/ apps/ nypr oj ect . prj

If the specified project file name does not end in the suffixj , it is added
automatically. By default, Assure will create a project file naassdre.prj if

this option is not specified. In this mode Assure requires all source files to be
contained in one directory.

-WGsched=<type>[,<integer>]

This option specifies the default scheduling type and optional chunk size for
C/C++f or and Fortrardo directives. Its effect is assfched-

ul e(<type>[, <i nt eger >]) were placed on every C/C#ar al | el

f or,for and Fortrarpar al | el do, do that doesn’t have an explicit
schedule(...) clause. Allowed values of <type> arestatic , dynamic ,
guided , and runtime . Valid values of the optional <integer> chunk size
are positive integers. The default value is static, with no chunk size. For

dynamic and guided , the default chunk sizeis1. See “Scheduling Options,”
beginning on page 139 for many more details.

-WGsrcdir

-WGsrcdir specifies that the preprocessor and Assure or Guide output files
should be in the same directory as the source file rather than the current direc-

tory.

72

http://mww.kai .conmv/parallel/kappro

Alphabetical listing of Driver Options The KAP/Pro Drivers « 6

-WGstatic library

By default, Guide and Assure link using static libraries on Windows systems and
shared libraries on Unix systems. This option instructs the driver to statically link
the Guide or Assure libraries into the generated executable. See also
-WGdynamic_library and -WGdefault_library.

-WG[no]stats (Guide only)

This option specifies whether the Guide driver uses the statistics version of the
Guide run-time library. See Chapter 7, “GuideView,” beginning on page 81 for
more information on this option. The default\g Gnostats.

-WG[no]strict
This option specifies whether Guide or Assure in strict mode, in which it flags non-

standard usage of OpenMP directives as errors. KAP/Pro Toolset's OpenMP exten-
sions include:

e psingl e, psections, andpf or areaccepted as synonyms for the C/C++
si ngl e,sections,andf or directives, respectively.

* Theordered clauseisalowed onthesect i ons directive and or der ed
directives are allowed within sect i on blocks.

e Thel astprivate andreducti on clausesare allowed onsi ngl e direc-
tive.

e Adefaul t(private) clauseisalowed onthepar al | el directive.

e TheC/C++t askq modd of unstructured parallelism is enabled.

e The curly braces may be omitted for the C/C++ sect i ons directiveif it con-
tainsonly asinglesect i on.

e Thet hreadpri vat e directive can be used with local static variablesin C.

The default is -WGnostrict.

(@)
o8
o
<.
X
)
=
—

-WGuser =<string>

The-WGuser driver option allows a string to be invoked as a command on each
source file specified on the driver command line. This command isinvoked after
the C-preprocessor (cpp) but before Assure or Guide source file processing. The
syntax for using the -WGuser driver optionisasfollows:

-Wauser =<cnd>[% <options>] [% %] [% <opti ons>] [% %]
[% <opti ons>]

kappro-support@kai.com 73

6 « The KAP/Pro Drivers Alphabetical listing of Driver Options

where <cnd> is the name of the command to be executed.

Spaces are not allowed in the command string. If a space is required then the
token % isused to generate a space.

The % and % arguments are tokens for the filenames passed to the command.
The % refersto theinput fileand %o refers to output file. The order of these
tokens and the optionsin the command string correspond to the order of the
input/output files and options for the command to be executed. Both filename
tokens are optional and are case-insensitive. If % is omitted, then the input file
ispiped asst di n. If % is omitted, then thest dout outputisredirectedtoa
disk file. The output file name is created by prepending thetext usr A_or

usr G_ tothe name of thefile being processed by Assure or Guide, respectively.
For example, if thefile being processed is named x. f , the output file would be
named usr A x. f . Thisfileisthen passed on to Assure or Guide, respectively.

The return status of the command is checked, and success is assumed to be zero.
Failed files will not be processed further.

Thetable below givesthe command that the driver will executewhen x. f isthe
file being processed.

Switch Command Executed

- Wauser =cat cat < x.f > usrGx.f

-Wauser =cnmd1% % cndl x.f > usrGx.f

-Wauser =cnd2% %o cnd2 usrG x.f < x.f

-Wauser =cnd3% %% % cmd3 usrG x.f x.f

-Wauser =cnd4% -G cndd -G < x.f > usrGx.f
-WGversion

When this option is present, Guide or Assure displays its version number to
st der r. A source file must be supplied on the command line for version infor-
mation to be printed.

74

http://mww.kai .conmv/parallel/kappro

Environment Variables for Guide The KAP/Pro Drivers « 6

Environment Variables for Guide

The following environment variables affect the run time behavior of Guide-pro-
cessed executables. All of the standard OpenMP environment variables are also
recognized; see “OpenMP Directives,” beginning on page 111 for details.

KMP_BLOCK TIM E=<integer >[<char acter >]

This variable specifies the number of milliseconds that the Guide libraries should
wait after completing the execution of a parallel region before putting threads to
sleep. Use the optional character sufiym h, ord to specify seconds, minutes,
hours, or days. The default valuel®00 (one second) is used if

KMP_BLOCKTI ME is not specified. This default may be too large if threads will be
used to execute other threaded code between parallel regions. The default may be
too small if threads are reserved solely for the use by the Guide library.

KMP_IGNORE_MPPBEG <integer>

If this environment variable is set to 1, then all explicit callsREBEG and
__knpc_begi n() are ignored.

KMP_IGNORE_MPPEND <integer>

If this environment variable is set to 1, then all explicit calls to MPPEND and
__kmpc_end() are ignored.

KMP_INTERVAL <integer>[{s,m,h,d}]

By default a program that has been instrumented with Guide stats library will
its results to the stats file gvs file) when the program terminates. Guide has a
control that allows performance information to be written periodically. The env
ronment variablé&KMP_| NTERVAL indicates the time interval that the program
waits before updating a partial stats file. For exampkDid_| NTERVAL is set to
5m then every 5 minutes the program will update the stats file with all the res
found during the last time interval. If no new results were found, the file will be
unchanged. Any open GuideView windows will not be updated; it is necessary to
restart GuideView to see any new results.

(@)
I
o
<.
X
)
=
—

Valid suffixes for the time interval, an integer number,sa¢seconds)n(minutes),
h (hours), andl (days). The default suffix is.

kappro-support@kai.com 75

6 « The KAP/Pro Drivers Environment Variables for Guide

KMP_LIBRARY=<string>

This variable selects the Guide run time library. The three available options for
<string>are

e serial
e turnaround
* throughput

The default value of throughput isused if KMP_LI BRARY is not specified. See
Chapter 4, “Libraries and External Routines,” beginning on page 21 for more
information about the Guide libraries.

KMP_STACKOFFSET=<integer >[<char acter>]

If no suffix is specified, the value oint eger is interpreted as given in bytes.
On 32-bit Microsoft Windows platforms, settik@y/P_STACKOFFSET causes
each worker thread’s stack to be padded with

onp_get _t hr ead_nunt KMP_STACKOFFSET bytes, relative to the initial
stack base address. Use the optional sbffk, ormto specify bytes, kilobytes,
or megabytes. For Pentium 4 processors and earlier, the default vahieeof
ger isO.

KMP_STACK SIZE=<integer >[<char acter>]

This variable specifies the number of bytes, kilobytes, or megabytes that will be
allocated for each parallel thread to use as its private stack. Use the optional suf-
fix b, k, ormto specify bytes, kilobytes, or megabytes. The defaultofone
megabyte) is used KMP_STACKSI ZE is not set. This default value may be too
small if many private variables are used in the parallel regions, or if the parallel
region calls subroutines that have many local variables.

Windows users should be aware that executables contain stack size information
that can be modified with the “editbin” command. For example, to change the
stack size of executabpr ogr am exe to 16 megabytes, type:

edi t bi n / STACKSI ZE: 16000000 pr ogram exe
from a command prompt.

The default value foxchar act er > isb; in this cas&KMP_STACKSI ZE will
be set ta<i nt eger > or 8192, whichever is larger.

76

http://mww.kai .conmv/parallel/kappro

Environment Variables for Assure The KAP/Pro Drivers ¢ 6

KMP_STATSCOL S<integer >

Specifies how many columns are in the Guide stats file which is produced
(guide.gvs by default) when running an executable that has been compiled with
-WGstats. The default value is 80.

KMP_STATSFIL E=<file>

When this variable is used in conjunction with the guide_statslibrary, the statistics
report iswritten to the specified file. The default file name for the statistics report
fileisguide.gvs.

Three metacharacter sequences can be included in the file name and will be
expanded at runtime to provide unique context-sensitive information as part of the
file name. These three metacharacter sequences are:

%+ Thisexpands into the hosthame of the machine running the paralle program.

% : Thisexpandsinto aunique numeric identifier for this execution of the pro-
gram. It isthe process identifier of the program.

%°. Thisisreplaced with the value of the OVP_NUM_THREADS environment
variable which determines the number of threads that are created by the par-
allel program.

LD_LIBRARY_PATH=<path>

Thisvariableis used to specify an alternate path for the run timelibraries. You may
need to set this variable to the directory where the guide libraries are installed when
you run your application if you compile with shared objects or use dynamic linking.

Environment Variables for Assure

The following environment variables affect the run-time behavior of Assure—pr@

(@)
o8
o
<.
X
)
=
—

cessed executables. All of the standard OpenMP environment variables, with the

exception of OMP_NUM_THREADS, are also recognized; see “OpenMP Direc-

tives,” beginning on page 111 for details.

kappro-support@kai.com 77

6 « The KAP/Pro Drivers Environment Variables for Assure

KDD_OUTPUT <file>

The KDD_OUTPUT environment variable is used to specify where the output of
the simulation is stored. The . kdd extension is automatically appended to the
end of the filename if it is not specified. If not specified, the base name of this
filename is the same as the base of the . prj filename. Both the project file

(- prj) and output file (. kdd) must be specified to the AssureView viewer
when their base names do not match.

Three metacharacter sequences are defined that can be included into the file
name and expanded at runtime to provide unique context sensitive information
as part of the file name. These three metacharacter sequences are:

% This expands into the hostname of the machine running the parallel pro-
gram.

% : Thisexpandsinto aunique numeric identifier for this execution of the
program. It is the process identifier of the program.

%°: This expandsinto the value of the OVP_NUM THREADS environment
variable.

KDD_INTERVAL <integer>[{s,m,h,d}]
KDD_DELAY <integer>[{s,m,h,d}]

By default a program that has been instrumented with Assure will write its
results to the output file (. kdd file) every fifteen minutes.

For some programs this may be too often or too seldom. Assure hastwo controls
that help solve this problem. The environment variable KDD_| NTERVAL indi-
catesthe time interval that the program waits before updating a partial results
file. For example, if KDD_| NTERVAL is set to 5m then every five minutes the
program will update the resultsfile with all the results found during the last time
interval. If no new results were found, the file will be left unchanged. Any open
AssureView windows will not be updated; it is necessary to restart AssureView
to see any new results.

Valid suffixes for the time interval, an integer number, are s (seconds), m(min-
utes), h (hours), and d (days). If no suffix is specified, the unit of timeis
assumed to be minutes.

78

http://mww.kai .conmv/parallel/kappro

Environment Variables for Assure The KAP/Pro Drivers ¢ 6

The second control, KDD_DEL AY, deals with the problem of long running programs

by letting the program run without error checking for a specified period of time.

After the period has el apsed, the program starts checking for errors on entry to the

next parallel region. Thisvariableis also specified as atime duration. For example,

if KDD_DELAY is set to 30m then for the first 30 minutes of the program’s execu-
tion, no errors will be checked, and no errors recorded. After the 30 minutes has
elapsed, Assure will turn on error checking on entry to the next parallel region.
Once error checking is enabled, #i#D | NTERVAL variable is used to determine
how often updates to the results file are to be done.

If you only want to calculate the amount of stack memory uselDEEtDELAY to
a large number so that the program finishes before the time elapses.

KDD_MALLOC

TheKDD_MALLQOC environment variable is used to control how storage allocated
viamal | oc() calls inside parallel regions but outside worksharing constructs is
treated by the Assure simulator.

To make such storage shared,ie®d MALLOC to one of the following values:

e shared
e 1
e true

To make such storage private, set KDD_MALL OC to one of the following values:

e private
e 0
e false

Thedefaultispri vat e for such storage. Any storage allocated in the serial part of
the program or inside a worksharing construct is always considered shar ed.

(@)
o8
o
<.
X
)
=
—

kappro-support@kai.com 79

6 « The KAP/Pro Drivers Preprocessor Macros

Preprocessor Macros

Several preprocessor macros are defined which may be useful when different
instructions should be executed depending on the guild environment. Asan
example, the following lines could be inserted into your source code if some
instructions are to be executed only when compiling with Guide:

#i f def _QUI DE
executed only when conpiling with Guide

#endi f

_OPENMP

This has the form YYYYMMwhere YYYY isthe year and MMis the month of the
OpenM P Fortran specification supported.

_GUIDE
Thisis defined only when compiling with Guide.

_ASSURE

Thisis defined only when compiling with Assure.

80

http://mww.kai .conmv/parallel/kappro

7

Introduction GuideView « 7

CHAPTER 7 GU| dE\/faN

Introduction

GuideView isagraphical tool that presents a window into the performance details
of a program’s parallel execution. Performance anomalies can be understood at a
glance with the intuitive, color-coded display of parallel performance bottlenecks.

GuideView graphically illustrates what each processor is doing at various levels of
detail by using a hierarchical summary. Statistical data are collapsed into relevant
summaries that indicate where attention should be focused, i.e. regions of the code
where improving local performance would have the greatest impact on overall per-
formance.

Using GuideView

GuideView uses as input the statistics file that is output when a Guide instrumented
program is run. See “Libraries and External Routines,” beginning on page 21 to
learn how to build an instrumented executable. The syntax for invoking GuideView
is as follows:

kappro-support@kai.com 81

7« GuideView Using Named Parallel Regions

guideview [<guideview_options>] <file> [<file> ...]

The file arguments are the names of the statistics files created by Guide runs that
used the guide_statslibrary (see Chapter 4). Optional GuideView arguments are
the topic of a subsequent section.

The GuideView browser looks for a configuration file named
GVproperties.txt when it starts up. The directory search order isfirstin
the current directory, then in your home directory, and then in each directory in
turn that appearsin your CLASSPAT Hnvironment variable setting. Using this
file you can configure several options that control fonts, colors, window sizes,
window locations, line numbering, tab expansion in source, and other features of
the GUI. Under Windows, a home directory can be specified viathe HOME
environment variable,

An exampleinitialization file is provided with your Guide installation. This
exampl e file contains comments that explain the meaning and usage of the sup-
ported options. The example initialization file will bein

/class/example.GVproperties/

under the Guide installation directory. If the default |ocation isdifferent from the
installed location, then a symbolic link will be created from the default location
to the installed location if the default location is writable at install time. The eas-
iest way to usethisfileisto copy it and then edit the copy as needed, uncom-
menting lines you want and/or setting the options to values you prefer or need.

Detailed information about GuideView’s operation can be found in its extensive
online help system, under thielp menu.

Using Named Parallel Regions

By default, parallel regions are identified only by the file that contains the
region. It is also possible to associate a specific name with one or more parallel
regions. Such regions are known as “named parallel regions,” or simply “named
regions.” To name a parallel region, call the external routine

knmp_set _paral | el _nan®. This routine takes a character string name

for the region as an argument.

http://mww.kai .conVparallel/kappro/

7

Using Named Parallel Regions GuideView « 7

Once enabled, al following parallel regions are assigned the most recently supplied
name, until named regions are disabled by acall to

knp_set paral | el _name with an empty string. The guide_stats library
gathers performance statistics separately for each named parallel region.

A simple use of thisfeature isto name aparallel region of interest so that its perfor-
mance statistics can be readily located in the GuideView display. The following
program illustrates this. This approach can be extended to multiple parallél regions,
by using the same or different names. Even when multiple parallel regions have the
same name, however, their performance statistics are shown separately by Guide-
View.

kappro-support@kai.com 83

7« GuideView Using Named Parallel Regions

C synt ax:
#i ncl ude <onp. h>
mai n() {
/* The followi ng parallel region is naned
"REG ON1". */
knp_set _paral l el _name("REQ ON1");
#pragma onp parall el
work(iiter);

/* The followi ng parallel region is naned
"REG ON2". */
knp_set _paral |l el _name("REQ ON2");
#pragma onp parall el
work(jiter);

/* Naming is disabled for this and subsequent
regions. */
knmp_set _parallel _name("");
#pragma onp parall el
work(kiter);

void work(int niter) {
int i;

#pragma onp for private(i)
for(i =0; i <niter; i++) {

http://mww.kai .conVparallel/kappro/

Using Named Parallel Regions GuideView « 7

Fortran synt ax:
program use_region_1
external knp_set _parallel _nane

I The following parallel region is naned "REGQ ON1"
call knp_set _parallel _name(’ REA ON1')
I $omp parall el
call work(iiter)
I $onp end parall el

I The following parallel region is naned "REG ON2".
call knp_set _parallel _name(’ REG ON2')
I $onmp parall el
call work(jiter)
I $onmp end parall el

! Naming is disabled for subsequent regions.
call knp_set parallel _nanme('’)

I $onmp parall el

call work(kiter)

I $omp end parall el

end

subroutine work(niter)

I $onmp do

doi =1, niter
end do

I $onmp end do
return

end

kappro-support@kai.com 85

7« GuideView Using Named Parallel Regions

Named regions can also be used to split the performance statistics of a parallel
region for different data sets. In the following example, the parallel region of
interest is assigned a name based upon the size of the data set. During arun, the
parallel region is executed multiple times, each timewith adifferent data set that
activates different names for the parallel region. Performance statistics are gath-
ered separately for each range of data sizes, and the statistics are associated with
the appropriate namesin the guide_stats report and GuideView display. The sep-
arate sets of statistics allow analysis of the parallel region as afunction of the
data set size.

C synt ax:
#i ncl ude <onp. h>
mai n() {
for(i = 0; i < nsizes; i++) {
int iter = isizes[i];

if (iter <= nl1)

knp_set _parall el _name("FI RST BIN');
else if (iter <= n2)

knmp_set _paral | el _name(" SECOND BI N');
el se

knp_set _parallel _name("");

#pragma onp parall el
work(iter);

86

http://mww.kai .conVparallel/kappro/

GuideView Options GuideView « 7

Fortran synt ax:
program use_regi on_2
external knp_set_parallel _nane

do i =1, nsi zes
iter = isize(i)

if (iter .le. nl1) then

call knp_set parallel _nanme(’ FIRST BIN)
else if (iter .le. n2) then

call knp_set _parallel _name(’ SECOND BI N)

el se

call knp_set _parallel _name('’)
end if
I $onmp parall el

call work(iter)
I $omp end parall el

end do

end

GuideView Options

-mhz=<integer>

The -mhz=<integer > option denotes the processor rate in MHz for the machine
used for calculating statistics.

-ovh=<file>

The -ovh=<file> specifies an overheads file for the input statisticsfile. There are
small overheads that exist in the GuideView library. These overheads can be mea-
sured in terms of the number of cyclesfor each library call or event. You can over-
ride the default values to get more accurate overhead values for your machine by
using the -ovh=<file> option to create afile that contains machine-specific values.

kappro-support@kai.com 87

7« GuideView Java Options

An example overheads file is provided with your Guide installation. This exam-
plefile contains comments that explain the meaning and usage of the supported
options. This examplefileresidesin

/ cl ass/ gui de. ovh/

under the Guide installation directory.

-jpath=<file>

The -jpath=<file> option specifies the path to an alternate Javainterpreter. This
can be used to override the Java virtual machine selected at installation or to
provide a path to the Java virtual machine if none was selected during installa-
tion.

-WJ,[java_option]

The GuideView GUI isimplemented in Java. The -WJ flag prefixes any Java
option that should be passed to the Javainterpreter. Any valid Javainterpreter
option may be used. However, the options listed in the next section may be par-
ticularly beneficia when used with GuideView to enhance the performance of
the GUI.

Java Options

The -WJ flag must prefix Java options. For example, to pass the -ms5m option
to the Javainterpreter, use -WJ,-mssm.

-ms<integer >[{k,m}]

The -ms option specifies how much memory is allocated for the heap when the
interpreter starts up. Theinitial memory is specified either in bytes, kilobytes
(with the suffix k), or megabytes (with the suffix . For example, to specify
one megabyte, use -msim.

http://mww.kai .conVparallel/kappro/

Measuring OpenMP Overhead GuideView « 7

-mx<integer >[{k,m}]

The -mx option specifies the maximum heap size the interpreter will use for
dynamically allocated objects. The maximum heap size is specified either in bytes,
kilobytes (with the suffix k), or megabytes (with the suffix m). For example, to
specify two megabytes, use -mx2m.

-nojit

-Djava.compiler=none

The -ngjit or -Djava.compiler=none option disables the Java just-in-time com-
piler. This Java feature can sometimes lead to incorrect Java behavior. Use
-WJ,-ngjit or -WJ,-Djava.compiler=none to disable the just-in-time compiler if
you experience problems with either the GuideView or AssureView GUI.

Measuring OpenMP Overhead

The following table demonstrates the amount of time expended for OpenM P direc-
tives compared to a null call for atypical microprocessor based SMP. A null call is
acall to an empty function.

C/ C++ synt ax:
void null (){};

Fortran synt ax:
subroutine null
return

end

As shown in the table below, it took about ten cyclesto call the null function. A
bar ri er construct isabout ten times slower for one processor, and about 70 times
slower for two processors.

kappro-support@kai.com 89

7« GuideView Measuring OpenMP Overhead

The program to produce this information is included in your Guide distribution.
Pleaserun it to calibrate your particular environment. You can use this informa-
tion to determine the relative costs of various Guide constructs.

Typical Overhead

1 processor 2 processor 3 processor 4 processor
Guide Construct X null call cyclesf X null call «cyclesf X null call cyclesf X null call cycles
function call 1 10 1 10 1 10 1 10
barrier 10 100 70 700 90 900 100 1000
single 20 200 90 900 110 1100 130 1300
critical section 30 300 70 700 150 1500 210 2100
paral l el region 50 500 190 1900 220 2200 280 2800

This information can be used to draw the following general conclusions:

* Abarrier statementis30to 50 percent less expensivethan apar al | el
region.

e barriersandsi ngl eshave roughly the same overhead.

After two processors, all the costs follow anearly linear pattern as you add pro-
CEssors.

90

http://mww.kai .conVparallel/kappro/

Introduction AssureView « 8

CHAPTER 8 AsaureView

Introduction

AssureView displaysthe results of Assure instrumentation by using the project file
information produced by Assure and the simulation output produced by running the
Assure-compiled program. The results can be viewed via the AssureView Graphi-
cal User Interface (GUI) or as text output.

The AssureView output describes all the errors identified by Assure and pinpoints
their exact locationsin the source code. The AssureView GUI allows you to browse
the errors associated with each parallel construct and to view the corresponding
offending locations in the source code.

Documentation for the features and usage of the GUI is available within the GUI
itself, under the Help menu on the menu bar.

kappro-support@kai.com 91

AssureView (o)

8 ¢ AssureView Using AssureView

Using AssureView

AssureView takes as its primary arguments a project file (. prj suffix) and a
simulation output file (. kdd suffix) from Assure. By default, AssureView out-
put isdisplayed viathe GUI. If the -txt option isused, text output is produced on
the standard output instead. When the GUI is used, AssureView also produces
an AssureView GUI Input file (. agi suffix) that may be used subsequently with
the AssureView GUI in place of the project and simulation output files.

Several aspects of the AssureView browser, such asfonts, window size, window
location, line numbering in source, etc... can be configured by using an initial-
ization file. Thisfileisnamed . assur evi ewr ¢ on Unix systems or
assure. i ni onWindows systems. AssureView looks for the configuration
file, in order, in the current directory, in your home directory, and in the directo-
rieslisted in the CLASSPATH environment variable.

This capability of reading initialization filesisincluded primarily for backwards
compatibility; most, if not all, of these options can be controlled by the Prefer -
ences menu in the GUI (see “How to Use the GUI” on page 94).

An example of the configuration file is provided with the Assure installation. If
Assure is installed in directorsi nst al | -di r > on your machine, the exam-
ple file that explains the options available will be in

<install -di r>/ cl ass/ exanpl e. assur evi ew c.

The default location for this example configuration file is in the directory:

[usr/ | ocal / KAl / assur ed0/ cl ass/ exanpl e. assur evi ew ¢

on Unix and

C: \ kai \ assur e40\ cl ass\ exanpl e. assurevi ewr ¢

on Windows.

If the install location on Unix is different from the default location, then a sym-
bolic link will be created from the default location to the installed location, pro-
viding that the default location is writable at install time. The easiest way to use
this file is to copy it to a new file, and then edit it as needed. To change settings,
uncomment the desired lines and set the options to preferred values.

92

http://mww.kai .conVparallel/kappro/

AssureView GUI Elements AssureView « 8

The following examples show the most common ways of invoking AssureView:

assurevi ew

When AssureView isrun with no arguments, it uses the default project
name, assur e. prj , and the default run file, assur e. kdd, inthe
current directory. The results are displayed using the AssureView GUI.
Thisproducesan assur e. agi filethat can be used with a subsequent
“assur evi ew- agi =assur e” command.

assurevi ew -t xt

Run AssureView when Assure was run on a single-file program and no
-WGpname= was specified to Assure. Output the results as text to the
standard output.

assurevi ew nyprogr am

Run AssureView when Assure was run on a multi-file program with
-WGpname=myprogram specified to Assure. Use the AssureView GUI
to display the results. This producesygr ogr am agi file that can be
used with a subsequerdssur evi ew- agi =mypr ogr anf command.

assurevi ew <pat h_t o_project_fil e> nyprogram prj
Run AssureView when the project file is located in a different directory
than the directory in which the program was run. AssureView will read
the run data from the fileypr ogr am kdd, located in the current
directory. This also produces@pr ogr am agi file.

assurevi ew <pat hl>/ nyprogram prj
<pat h2>/ mypr ogr am kdd

Run AssureView with a specific project file and specific run data file.

AssureView GUI Elements

The AssureView GUI displays the following types of information in its various
windows:

* A main error list that summarizes and displays errors found in a program by
Assure.

e Graphsthat display error counts by location in a program.

kappro-support@kai.com 93

AssureView (o)

8 ¢ AssureView How to Use the GUI

* Source code display windows (accessible by selecting a particular error in
the error list) that display the source location(s) associated with a selected
error.

* A whole-program dynamic call tree display (accessible from the Windows
menu).

e Windowsthat display the dynamic call sequences (call stack) madeto arrive
at particular source code locations in source code display windows.

¢ Windowsthat allow searching for strings in the error list and in source code.

How to Use the GUI

Start the GUI by invoking AssureView with options other than -txt or -nogui. If
any errors were found by Assure, the main error list is displayed to summarize
these errors and their locations. Linesin the error list are marked with red octa-
gons for serious errors, orange diamonds for less serious cautions, yellow trian-
gles for warning conditions, and green check marks for areas where no errors
occurred. Clicking on one of these errors causes the source code location(s)
associated with that error to be shown in source code display window(s) with the
same red, orange, and yellow markings on the offending lines. Errors are
grouped in the error list according to the parallel construct in which they
occurred.

The colored graphs at the bottom of the window display the number of errors,
cautions, and warningsfor constructs that were run. Constructs that were not run
areaso identified in blue. Clicking on a graph will highlight the list of errors
associated with that construct. A separate panel shows graphs for program wide
problems, such as insufficient stack space.

From a source code display window, the dynamic subroutine call sequence that
occurred to arrive at the displayed point in the source code can be seen by press-
ing the “Show Stack” button. Clicking on one of the calls in this display will

cause the location of that call to be displayed in the source code display window.

The “CallTree” option in th&/indows menu causes the whole-program

dynamic call tree to be displayed. At a given level of this display, a subroutine’s
name can be seen; below this name, a list of all the subroutines that were called
from this calling subroutine will be displayed, each preceded by the line number
in the calling subroutine. An icon on each line gives the depth (number of sub-

http://mww.kai .conVparallel/kappro/

How to Use the GUI AssureView « 8

routines) in the call tree below that line. For instance, an “8” icon on a line for a
subroutine indicates eight more levels of subroutines in the call tree below that sub-
routine; a “>" icon indicates that there are more than nine levels. Clicking on a line
in this display will cause the location of that subroutine or call site to be displayed
in a source code display window. The call tree also displays the locations of all par-
allel constructs encountered during the run. Individual constructs can be shown or
hidden via toggle buttons located at the bottom of the window.

The Search menu and the “Go Search” button bring up windows that allow
searches of the error list and source code display windows to be performed.

ThePrint menu and the “Printer” button on the toolbar allow you to print the main
error list or the call tree information to a printer or to a file. Individual call stack dis-
plays can also be printed.

ThePreferences menu controls many aspects of AssureView. You can specify terse
or verbose messages, whether to number source lines, how searching works,
appearance (look-and-feel), fonts, colors, search directories for source code files,
and other preferences. If you choose to save these preferences, a file with suffix
“. opt " is created in the current directory. Copy this file to your home directory if
you want these saved preferences to be used every time you use AssureView.

An option exists to operate the GUI in a low-memory mode (which typically runs
more slowly) when examining data from particularly large programs. These options
are further explained within the onlitelp menu. While AssureView still sup-

ports an initialization file, th@references menu offers a broader set of options.

When working with AssureView, you may want to ignore or hide certain classes of
error messages. TiReeferences menu option “Hiding Errors” allows you to hide
errors based upon their priority, their type, or upon rules you create. Also available
on the toolbar is an “Eye” (Hide Error) button. Clicking this button automatically
creates a new rule to hide the currently selected error message.

Low Priority Errors occur when the semantics of the parallel program and serial
program differ, but Assure has determined that the difference likely is not a pro-
gramming error. Such errors can occur, for example, in parallel reductions. Assure-
View flags these messages as “Low Priority”, and hides them by default.

Custom rules consist of one or more “clauses” logicaNiped with each other. If
an error message satisfies all the clauses in a rule, then that message will be
Each “clause” compares an object to a string via a comparison function.

kappro-support@kai.com 95

g
®
3
<

8 ¢ AssureView

How to Use the GUI

Objectsinclude:

error message text

source or sink routine name
source or sink file name
line numbers

Comparison functions include:

Some exampl es of rules you can create are:

is

is not

starts with

ends with

does not start with
does not end with
contains

does not contain
equals

does not equal

is greater than
islessthan

Don't show an error if itisin filenot MyFi | e. f
Only show errorsthat areinfilecur r ent Task. c
Don't show errorsthat refer to (contain) variable not MyPr obl em

Don't show errors of aparticular type (for example, a message that contains

the string “inconsistent size”)

Don't show errors from lines 200 through 350 of filewor ks k. ¢ of type

“READ->WRITE".

Rules can be deactivated and reactivated via a checkmark in the “Active” col-
umn of the rules display.

96

http://mww.kai .conVparallel/kappro/

AssureView Options AssureView « 8

The Reorder menu allows you to sort the errors within each program construct.
Errors can be sorted by error message text, symbol name, or subroutine name. The
Options menu lets you control several aspects of the GUI operation and appear-
ance. Please see the Help menu for a detailed explanation of these options.

AssureView Options

The command line options listed bel ow are recognized by AssureView. Each option
should be preceded by the tharacter (Windows users can also use the “/” char-
acter).

-?or -h

Display a summary of AssureView command line options and invocation methods.

-agi=<file>

The-agi option specifies the name of the AssureView text file, which was produced
by a previous AssureView GUI invocation, to be used as input to AssureView in
place of project and simulation output files.

-[no]gui

The-nogui option is used to process prj file and a kdd file to create anagi

file but without viewing the agi results with the GUI. The results in thagi

file can then be viewed later with AssureView (thi j and. kdd files are no

longer needed; use the AssureViagi= option to invoke the GUI). Theyui

option specifies that results should be displayed by using the AssureView GUI. The
default is-gui.

-prefix=<remove>:<add>

The paths to the source files processed by Assure are known to AssureView and are
displayed in the output. In some circumstances, such as when running Assure and
AssureView on different machines, or when using networked filesystems, it maj
necessary to modify this path information in order to allow AssureView to reachghe
source files. Theprefix option stipulates that theremove> string, if specified, is
to be deleted from the head of the path names displayed in the AssureView o

fv'

kappro-support@kai.com 97

AssureVi

8 ¢ AssureView AssureView Options

and then that the <add> string, if specified, is to be prepended to the (resulting)
path names. This mechanism provides a way to remove, add, or edit path infor-
mation. Either <remove> or <add> can be omitted.

-project_name=<file>
-prj=<file>

This option specifies the name of the project file to be used as input to Assure-

View (see “Using AssureView” on page 92). If no such option is specified, the
first file specified on the command line is used as the project filpr(p exten-
sion is appended if the filename does not already have this extension). If no
project file is specified, the default project filenaasesur e. prj is used.

-run_data=<file>
-kdd=<file>

This option specifies the name of the simulation output file to be used as input to
AssureView. If no such option is specified, the second file specified on the com-
mand line is used as the simulation output fileKad extension is appended if

the filename does not already have this extension). If no simulation output file is
specified, a default filename based on the project filename is used.

-[no]suppress

Certain messages are normally not displayed by AssureView because they typi-
cally do not cause errors during parallel execution:rlsuppr ess setting

causes these messages to be displayed. The messages fall into several catego-
ries:

* Properly synchronized, unordered variable references that would have
caused storage conflicts had they not been synchronized. While these refer-
ences are not errors, not employing ORDERED synchronization might cause
the results of parallel runsto differ from those of seria runs because of vary-
ing roundoff behavior.

* Properly synchronized, unordered 1/0 operationsinside of parallel con-
structs. While these references are not errors, not employing ORDERED syn-
chronization might cause the 1/0O behavior of parallel runsto differ from that
of serial runs.

98

http://mww.kai .conVparallel/kappro/

JAVA Options AssureView « 8

* Variable references for local reductions that would otherwise cause errors. In
most cases, these messages are due to reductions that have been coded by using
the REDUCTI ON clause of a C/C++ PARALLEL FOR or Fortran PARALLEL
DOor by using local reduction variables and correctly synchronized updates of a
global result variable.

The default is -suppress.

-txt

The -txt option specifiesthat results should be displayed astext on the standard out-
put.

-WJ,[java_option]

The AssureView GUI isimplemented in JAVA. The -W J flag prefixes any speci-
fied JAVA option. The JAVA options are passed to the JAVA interpreter. Any valid
JAVA interpreter option may be used. However, the options listed below may be
particularly beneficial when used with AssureView to enhance the performance of
the GUI.

JAVA Options

The -WJ flag must prefix any specified JAVA option. For example, to passthe
-ms5m option to the JAVA interpreter, use -WJ,-ms5m.

-ms<integer >[{k,m}]

The -ms option specifies how much memory is allocated for the heap when the
interpreter starts up. Theinitial memory is specified either in bytes, kilobytes (with
the suffix k), or megabytes (with the suffix n). For example, to specify one mega-
byte, use -msim.

-mx<integer >[{k,m}]

The -mx option specifies the maximum heap size the interpreter will use for
dynamically allocated objects. The maximum heap size is specified either in bytes,
kilobytes (with the suffix k), or megabytes (with the suffix m). For example, to
specify twenty megabytes, use -mx20m.

kappro-support@kai.com 99

8
3
3
7
<

8 ¢ AssureView JAVA Options

You should use this option to increase the heap size if you receive “Out of Mem-
ory” messages when running AssureView.

-nojit

-Djava.compiler=none

The-ngjit or-Djava.compiler=none option disables the Java just-in-time com-
piler. This Java feature can sometimes lead to incorrect Java behavior. Use
-WJ,-ngjit or -WJ,-Djava.compiler=noneto disable the just-in-time compiler

if you experience problems with the either the Assure View or GuideView GUI.

100

http://mww.kai .conVparallel/kappro/

Introduction PerView « 9

CHAPTER 9 Pa‘\AaN

Introduction

PerView is an interactive parallel performance monitoring and management tool.
With PerView, users of your application can remotely monitor parallel performance
and application progress, modify the number of threads, switch between dynamic
and static thread count, and pause or abort parallel applications.

Enabling the PerView Server

PerView makes its capabilities available through the use of aweb server embedded
inthe parallel application. By default, Guide does not include the PerView server in
your application. Its functionality is only included when specifically requested.

Including the PerView server in your application is as simple as relinking your

application with the guide perview library, introduced in “Libraries and External
Routines,” beginning on page 21. To embed the PerView server in your application,
add the W Gperview flag when linking with the Guide driver. For example, to

build a PerView-enabled Fortran application on Windows issue the following com-
mands §ui def can be replaced lyui dec for a C application):

kappro-support@kai.com 101

9« PerView PerView Environment Variables

gui def -conpile_only main.for
gui def -WG&pervi ew mai n. obj

You may need to add other libraries when linking manually, since PerView
requires network functions often not included in the standard C library. To see
the libraries required on your system, inspect the output of the following com-
mand:

gui def -conpile_only main.for
link main.obj guide perview lib kweb.lib wsock32.1ib

PerView Environment Variables

Severa environment variablesinfluence the behavior of PerView; they arelisted
below:

KMP_HTTP_PORT=<port>

This variabl e specifies the network port on which the server will listen. It should
be a positive integer larger than 1024. If KMP_HTTP_PORT hasvaue O or is
unspecified, the PerView server is disabled. Thisis the default.

KMP_HTTP_HOME=<path>

In addition to its built-in documents, the PerView server can serve documents

out of a “public_html” directory. This variable specifies the top-level directory
that contains the public_html directory. The default value is the current direc-
tory, “.”, so files in. / publ i c_ht ml will be available through the server. If
you specify a valid directory path, the PerView server will instead serve files
from <pat h>/ public_htn .

Documents located in and below fnabl i ¢_ht m directory are accessible

via a standard Web browser, such as Netscape or Internet Explorer, via the URL
“htt p://<host >: <port >/". Use the following URL instead if a password

is specified usingfMP_HTTP_ACCESS:

“http://<host>: <port>/cgi - pwd/ <passwor d>/". You may need to

use the full machine name fehost >.

To disable this feature, s€vP_HTTP_HOVE=/ dev/ nul | or any non-exis-
tent directory.

102 http://mww.kai .conVparallel/kappro/

Security PerView ¢ 9

KMP_HTTP_ACCESS=<password>

Using this variable, you can limit access to a running parallel application to those
who know the password given in <passwor d>. The password is an arbitrary
string containing no white space characters.

Security

The PerView server provides an access control mechanism, which limits unautho-
rized access to your parallel application at run-time. Access control is specified via
the KMP_HTTP_ACCESS environment variable, the value of which behaveslike a
password. This variable can take on any string value, but the string should contain
no white space. The value of KMP_HTTP_ACCESS is read once upon application
execution, and the PerView server requires any connecting PerView client know
thisvalue.

If KMP_HTTP_ACCESS is not specified, the server disables access control, and cli-
ents can communicate without a password. Thisis the default.

Running with PerView

Using PerView is atwo-step process. First, a PerView enabled parallel application
isrun, which listens for PerView client requests. During the execution of the paral-
lel application, one or more PerView clients can connect to the server to remotely
monitor the application.

The server and client applications can be run on the same or different hosts.

Starting the Server

The server starts when the application begins running if the environment variable
KMP_HTTP_PORT is set. If this variable is unset when the application starts, the
server becomesinactive for the duration of the run. Normally, the PerView server
serves documents from and below atop-level directory. Thistop-level directory is
specified viathe KMP_HTTP_HOVE environment variable.

kappro-support@kai.com 103

9« PerView Running with PerView

Starting the Client

The PerView client, or simply PerView, communicates with the server in the
application via a network connection, specified by two values: a host name and
aport number. The correct password must also be used if the
KMP_HTTP_ACCESS variable was set before running the application.

To start the PerView client, type:

pervi ew <host> <port>

or

pervi ew <host > <port> <passwor d>

The following Fortran example illustrates the use of PerView on two machines,
named “server” and “desktop”. The application runs on server but is monitored
from desktop:

Uni X synt ax:

server % gui def77 -o nmondo nondo.f -WGperview
server % setenv KMP_HTTP_PORT 8000

server % setenv KMP_HTTP_ACCESS secret

server % ./ nondo

deskt op % pervi ew server 8000 secret

W ndows synt ax:

server C. guidef /exe:nondo.exe nondo.f /W3erview
server C. set KMP_HITP_PORT=8000

server C. set KMP_HITP_ACCESS=secr et

server C. nondo. exe

deskt op % pervi ew server 8000 secret

Multiple clients can simultaneously communicate with each PerView server, to
allow monitoring from more than one location.

104

http://mww.kai .conVparallel/kappro/

Using PerView PerView « 9

Using PerView

Once PerView has started and has connected to the server, it presentsits main
screen, shown in Figure 9-1. The PerView interface consists of two “views” of fiis-
plays and controls, selectable by the tabs ladeétbrmance andControls. 9

Figure 9-1

[SLEAl Prriess
Fartaimance | Conrob |

Thiaed Statas

= T By ii:a-
OOTTll £

1345 8

Ezmated Spaedup

[IEE

= R

RN oW T H 3
warmpleE

Elepsad Time: @#5.17 5

I Deil2 [sasidual

Rk il

: T | TR P | B | |

samghas

v o= B 4

Performance

ThePerformance view consists of three panels, displaying thread states, projected
speedup, and progress. The thread states panel shows the state of each OpenMP
thread present in the application, by displaying one stacked bar graph per thread.
The height of the bar represents 100% of each thread'’s time. The bar is divided into
time spent doing productive work (green), time lost to parallel overheads and serial
waiting time (red), and time lost due to excess load on the machine (blue). Inactive

threads are shown in gray.

kappro-support@kai.com 105

9« PerView Using PerView

PerView usesthisthread state data to estimate the parallel speedup of the appli-
cation. This instantaneous speedup estimate is plotted, along with its time-aver-
aged value and the thread count, in the center panel. PerView contacts the server
at regular intervals to obtain new data. Each data set is one sample, and the
speedup graph is plotted in terms of these samples.

The bottom panel displays the progress of the application. By default, only the
elapsed time since the beginning of the application run is shown here. With the
application’s cooperation, however, PerView can display a percent completed
graph, a string representing progress, or a convergence graph. See “Progress
Data” on page 108 for details.

Controls

Using the Controls panel shown in Figure 9-2 you can modify the parallel
behavior of the application to respond to changing conditions on the machine
where it is running.

Figure9-2

(=t KAl Ferves s

Purtarmancs | Eoivas] |

Proeers s Likzaion

€ (e pocty [1 2 tewnds

e g |il ITiaaits

Progean Lol s

Fapss | Dysperd Esspriion

bt |Tlrrr|r|'.|'h Pregeam

Exilirgy

Badnigha diay | 1 PETTTAT I|'.||H1-|

o2 D _Jl

You might reduce the number of threads being used by an application, for exam-
ple, to make room for another application to start. To adjust the number of
threads, click on the up and down arrows inRha@cessor Utilization group to

106 http://mww.kai .conVparallel/kappro/

Using PerView PerView « 9

set the desired number of threads. To allow an application to monitor and automati-
cally adjust its own thread count, select Use up to N threads in the top panel.

To temporarily suspend the application, click on Pause in the Program Controls
group. The button text changes to Resume once the application has been paused. 9
When the Resume button is pressed, the application resumes processing.

The Abort... button can be used to prematurely terminate the application.
The Perview Settings group contains a sampling interval control. This specifies

how frequently PerView contacts the server for new data. To change the sampling
interval type to a new, positive integer, then press Apply.

Status Bar

The bottom of the PerView window contains a status bar, shown in Figure 9-3. The
icons in the status bar summarize the state of the application and PerView’s connec-
tion to it.

Figure9-3

The application status icon uses familiar symbols to represent whether the applica-
tionis running »), pause(m), or comple= ().

The connection icon indicates whether PerView is connected to the application.
When the connection is broken, whether due to application completion, network
failure, or application failure, the icon is obscured by a large, red X.

The dynamic threads icon indicates with &3 br “D”, respectively, whether the
application’s thread count is static (fixed) or dynamic (variable).

Minimal Monitor

The rightmost icon on the status bar istfigimize button. Clicking this button
replaces the PerView screen with a minimal view, shown in Figure 9-4, suitable for
general performance monitoring.

kappro-support@kai.com 107

9« PerView Progress Data

Figure9-4

This view consists of a colored button, surrounded by a “marching” segments
performance display. The colored button shows the current value of the esti-
mated speedup in its center. The button is green, yellow, or red, depending on
the value of the estimated speedup, relative to the number of threads in use.

The marching display consists of colored rays, emanating from the button and
representing the time history of the button’s color. Using this display, you can
get recent performance information at a glance. An all green display is ideal.
Occasional yellow or red rays are normal, but a display dominated by yellow or
red usually requires attention. Green indicates good projected speedup, yellow
represents marginal performance, and red indicates parallel performance prob-
lems.

Click on the colored button to return to the detailed view and, if necessary,
adjust the processor utilization.

Progress Data

By default, PerView displays the elapsed time in the bottom panel Bettfer-
mance view. This area, however, is provided for you to communicate more
detailed information about your application’s progress to the user. Using a sim-
ple API, you can enable a progress meter, showing percent complete, an X-Y
graph, showing the evolution of a convergence variable or other data, or simply
display a string, representing the current phase of the computation.

108

http://mww.kai .conVparallel/kappro/

Progress Data PerView « 9

Progress Bar

The progress bar is automatically displayed in PerView when you provide progress
information to the PerView server viathekwebc_set _net er (C/C++) or
kweb_set _met er (Fortran) library routine. The interface to thisroutineiis:

C/ C++ synt ax:
voi d kwebc_set _neter(char* nmeter_name, int icurrent,
int istart, int iend);

Fortran synt ax:
call kweb_set neter(neter_nane,icurrent,istart,iend)

Met er _nane isastring value used to label this meter. It is unused at thistime.

icurrent,istart,andi end areinteger values, representing the current,
beginning, and ending values of a computation, such as atime-stepping loop.

The progress bar computes percent compl ete as
(icurrent-istart)/(iend-istart).

The PerView client computes a percentage complete from these values and displays
it in aprogress meter.

Progress Graph

The progress graph is automatically displayed in PerView when you provide
progress information to the PerView server viathe kwebc_set _r esi dual
(C/C++) or kweb_set _resi dual (Fortran) library routine. Theinterfaceto this
routineis:

C/ C++ synt ax:
voi d kwebc_set _residual (char* neter_nane, int
current, int ymn, int ynmax);

Fortran synt ax:
call kweb_set residual (neter_nane, current, ymn,
ymex)

Met er _nane isastring value used to label this meter. It is unused at thistime.

cur rent isadouble precision value representing the data to be plotted as a func-
tion of time.

kappro-support@kai.com 109

9« PerView Progress Data

yni n and ymax are double precision values representing initial minimum and
maximum Y coordinate limits for the graph.

Progress String

The progress string is automatically displayed in PerView when you provide
progress information to the PerView server viathe kwebc_set _string
(C/C++) or kweb_set _stri ng (Fortran) library routine. Theinterfaceto this
routineis:

C/ C++ synt ax:
voi d kwebc_set _string(char* neter_nane, char*
current _phase);

Fortran synt ax:
call kweb_set string(nmeter_name, current_ phase)

nmet er _nane isastring value used to label this meter. It is unused at thistime.

current _phase isastring value used to describe the current state of the
application. It could be used, for example, to present the major phases of a com-
putation, such as problem setup, solution, and 1/0O.

Extending PerView

Both the PerView server and client are extensible, to alow application-specific
data and displays. Please contact us at kappro-support@kai.com for more infor-
mation.

110

http://mww.kai .conVparallel/kappro/

Introduction OpenMP Directives ¢ A

APPENDIX A OpenMP Directives

Introduction

The KAP/Pro Toolset uses OpenM P directives to support asingle level of parallel-
ism. Each directive begins with * onp, conp, or ! $onp in Fortran and

#pr agma onp in C/C++. The Fortran directives are not case-sensitive. The

I $onp sentinel can be used in either free or fixed Fortran source, whereas the other
sentinels are only allowed in fixed source mode. For the sake of clarity we will use
the ! $onp form in examples and when describing the syntax. When a Fortran
directive is continued on subsequent lines, each additional line begins with

I $onmp&; continuation in C/C++ is accomplished by using the standard backslash
at the end of aline. Comments may be appended to the end of Fortran directive
lines by using a!*” character; otherwise OpenMP directives and clauses can not be
interleaved with comments or executable code. Several Fortran directives must be
paired (lirective andend directive); in some cases thead directive statement is
optional. In this manual, items that are optional are enclosed in square brackets

1)

The syntax of the OpenMP directives accepted by the KAP/Pro Toolset is presented
below. These directives are a superset of the OpenMP C/C++ Specification version
1.0 and OpenMP Fortran specification version 2.0. More information is available at
the OpenMP website “http://www.openmp.org”.

kappro-support@kai.com m

A ¢« OpenMP Directives Parallel Directive

Many of the directivesin this chapter include areferenceto a<st r uct ur ed-
bl ock> intheir description. A structured block is a sequence of statements that
has a single entry point and asingle exit point. No sequenceisastructured block
if thereisajump into or out of that sequence (including acall tol ongj np() or
auseof t hr ow;, however acall to exi t ispermitted). As another example,
Fortran got o statements and labeled statements may not be included in struc-
tured blocks unless both the got 0 and its corresponding labeled statement are
both contained within the sequence of statements which comprise the structured
block. A compound statement is a structured block in C/C++ if its execution
always begins at the opening curly brace and always ends at the closing curly
brace. An expression statement, selection statement, or iteration statement isa
structured block if the corresponding statement obtained by enclosing it in curly
braces would be a structured block. For example, jump statements and labeled
statements are not structured blocks.

Parallel Directive

parallel
Thepar al | el directive defines aparallel region.

C/ C++ synt ax:

#pragma onp parallel [<clause> [<clause>] ...]
<struct ur ed- bl ock>

where <cl ause> isone of the following:

if (<scal ar-1ogical - expressi on>)
default (shared | private | none)
shared (<list>)

private (<list>)

firstprivate (<list>)

reduction (<operator> : <list>)
copyin (<list>)

Fortran synt ax:
1'$!$onmp parallel [<clause> [[,] <clause>] ...]

<struct ured- bl ock>
I'$onmp end parallel

where <c| ause> isone of the following:

if (<scal ar-1ogical -expressi on>)

112

http://mww.kai .conVparallel/kappro/

Worksharing Directives OpenMP Directives « A

default (shared | private | none)

shared (<list>)

private (<list>)

firstprivate (<list>)

reduction (<operator> : <list>)

reduction (<intrinsic>: <list>)

copyin (<list>)

num t hreads (<scal ar-i nteger-expressi on>)

Whenthelogical i f clause exists, the<scal ar - | ogi cal - expressi on>is
evaluated at runtime. If the logical expression evaluatesto false (0 in C/C++,

. fal se. inFortran) then al of the codein the parallel region is executed by a
team of one thread. If the logical expression evaluatesto true (non-zer o in
C/C++, . t rue. inFortran) then the code in the parallel region may be executed
by a team of multiple threads.

When the num t hr eads clause exists, the<scal ar - i nt eger - expr es-
si on> isevauated at run time, and ateam of the specified number of threadsis
created to execute the code in the parallel region.

When aparallél region is encountered in the dynamic scope of another parallel
region, theinner parallel region is executed using ateam of one thread. The remain-
ing clauses are described in “Data Scope Attribute Clauses” on page 133.

Work within a parallel region is divided up among the threads by means of wo
sharing directives.

Worksharing Directives

for (C/C++) anddo (Fortran)

The C/C++ or pragma and Fortratho directive state that the next statement is an
iterative loop which will be executed using multiple threads. If the directive is
encountered in the execution of the program while a parallel region is not active,
then the directive does not cause work to be distributed, and the entire loop is exe-
cuted by the thread that encounters this construct.

C/ C++ synt ax:
#pragma onmp for [<clause> [<clause>] ...]
<for-1| oop>

kappro-support@kai.com 113

A ¢« OpenMP Directives Worksharing Directives

where <c| ause> isone of the following:

schedul e (<type>[, <chunk-size>])
private (<list>)

firstprivate (<list>)

lastprivate (<list>)

reduction (<operator> : <list>)
or dered

nowai t

and the <f or - | oop> header is restricted to have the following form:

for (<var> = <l b>; <var> <l ogi c-op> <ub>; <incr-expr>)

where <var > isasigned integer variable that must not be modified in the body
of thef or loop;

<l ogi c- op>isoneof <, <=,>, or>=; and

<i ncr - expr > isone of the following:

++<var >

<var >++

--<var>

<var >- -

<var> += <jincr>

<var> -= <jncr>

<var> = <var> + <incr>
<var> = <incr> + <var>
<var> = <var> - <incr>

<l b>, <ub>, and <i ncr > areloop invariant integer expressions for lower
bound, upper bound, and loop increment, respectively. Any side effects from
these expressions may produce indeterminate results.

Fortran synt ax:
I $onp do [<clause> [[,] <clause>] ...]
<do- | oop>
['$onp end do [nowait]]

where <cl ause> isone of the following:

schedul e (<type>[, <chunk-size>])
private (<list>)

firstprivate (<list>)

lastprivate (<list>)

reduction (<operator> : <list>)
reduction (<intrinsic>: <list>)
ordered

114 http://mww.kai .conVparallel/kappro/

Worksharing Directives OpenMP Directives « A

A few words arein order regarding the end do directivein Fortran. Theend do is
optional. Without the nowai t clause, all threads that reach the end of the loop will
wait until all iterations have been completed. Therefore, theend do directive with-
out thenowai t clause has no effect, and the end of the do directive is marked by
the end of the do loop. Specifying theend do nowai t directive allows early fin-
ishing threads to execute code within the parallel region that follows the loop. If the
end do directiveis used, no statements or directives may appear between the last
statement of the do loop and the end do directive.

Theschedul e clause is described in more detail in “Scheduling Options” on
page 139. Ther der ed clause is described on page 129.

sections

Thesect i ons directive delineates sections of code that can be executed on ¢fif=
ferent threads. Each parallel section except the first must be preceded by the
t i on directive in Fortran or enclosed by thect i on pragma in C/C++. If the
sect i ons directive is encountered in the execution of the program while a pg
lel region is not active then the directives do not cause work to be distributed,
all the enclosedect i on structured blocks are executed sequentially on the
thread that encounters this construct.

C/ C++ synt ax:
#pragma onp sections [<clause> [<clause>] ...]

[#pragnma onp section]
<structured- bl ock>

[#pragma onp section
<structured- bl ock>

}

or,

#pragma onp sections [<clause> [<clause>] ...]
<structured- bl ock>

where<cl ause> is one of the following:

private (<list>)

firstprivate (<list>)

| astprivate (<list>)

reduction (<operator> : <list>)
or dered

kappro-support@kai.com 115

A ¢« OpenMP Directives

Worksharing Directives

nowai t

Fortran synt ax:
I'$onp sections [<clause> [[,] <clause>]
[!'$onp section]
<structured- bl ock>
[!'$onp section
<structured- bl ock>

i$orrp end sections [nowait]

where <cl ause> isone of the following:

private (<list>)

firstprivate (<list>)
lastprivate (<list>)

reduction (<operator> : <list>)
reduction (<intrinsic>: <list>)
or dered

Theor der ed clause on OpenMP sect i ons isaKAP/Pro Toolset extension

and is described on page 129.

single

Thesi ngl e directive defines a section of code where exactly one thread is

allowed to execute the code.

C/ C++ synt ax:
#pragma onp single [<clause> [<clause>]
<struct ur ed- bl ock>

where <c| ause> isone of the following:

private (<list>)

firstprivate (<list>)
lastprivate (<list>)

reduction (<operator> : <list>)
nowai t

Fortran syntax:
I'$onp single [<clause> [[,] <clause>]
<struct ur ed- bl ock>
1'$omp end single [<end-single-nodifier>]

where <c| ause> isone of the following:

private (<list>)

116

http://mww.kai .conVparallel/kappro/

Workqueuing Pragmas in C/C++ OpenMP Directives ¢ A

firstprivate (<list>)
| astprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic>: <list>)

and <end- si ngl e- nodi fi er > isone of the following (but not both):

nowai t
copyprivate (<list>) [[,] copyprivate(<list>) ...]

Thefirst arriving thread is allowed to execute the <st r uct ur ed- bl ock> of
code following the si ngl e directive. Other threads wait until this thread has fin-
ished the section of code, then all continue executing with the statement after the
si ngl e block. If the nowai t clauseis present, threads not executing the

<st ruct ur ed- bl ock> do not wait, but instead immediately begin execution of
the statement following the construct.

Thecopypri vat e clause copies listed private values computed within thesi n-
gl e construct to all other threads. It is an alternative to using a shared variable for
the value, or pointer association, and is useful when providing such a shared vari-
ablewould be difficult (for example, in arecursion requiring a different variable at
each level). The names of any common blocks appearing in <l i st > must have
their names enclosed in slashes. Any variables appearing <l i st > in must not
appear in aPRI VATE, FI RSTPRI VATE or LASTPRI VATE clause for the SI N-
GLE construct.

Thel ast pri vat e andr educt i on clauseson OpenMPsi ngl e are KAP/Pro
Toolset extensions.

Workqueuing Pragmas in C/C++

While the OpenM P worksharing constructs (f or, sect i ons, si ngl e) are use-
ful for single loops and statically defined parallel sections, they cannot easily han-
dle the more general cases of recursive and list structured data and complicated
control structures. The KAP/Pro Toolset addresses this limitation by introducing
the concept of workqueuing. The workqueuing constructs are only available to
C/C++ codes.

Workqueuing is a new construct type that supplements the existing OpenM P con-
struct types (parallel, worksharing, and synchronization). Workqueuing constructs

kappro-support@kai.com 117

A ¢« OpenMP Directives Workqueuing Pragmas in C/C++

are similar to worksharing constructs but are distinguished by the following fea-
tures:

* Workqgueuing constructs may be nested inside one other. (But they may not
be nested inside worksharing constructs and vice versa.)

* Re-privatization of variablesis allowed at workqueuing constructs. That is,
variables made private at the dynamically enclosing par al | el pragmacan
also be made privateto at askq and/or t ask.

Thet askqg andt ask pragmas are very similar tothesect i ons andsec-
ti on pragmas but offer more flexibility:

* At ask pragmamay be placed anywhere lexically inside at askq region.
Thet ask pragma cannot be orphaned

* Thenumber of activet asks will be determined at runtime depending on
the placement of pragmasinside at askq region. For example, at ask can
occur inside aloop containedin at askq region

* taskq pragmas can berecursively nested, allowing for parallelism in multi-
dimensional loops, across linked lists, over tree-based data, etc.

TheTaskq Model in C/C++

taskq

The workqueuing model centers on the concept of atask queue (t askq). A
t askq containst asksthat can be executed concurrently. A t askq can also
contain another t askq to enable multi-level parallelism.

#pragma onp taskq [<clause> [<clause>] ...]
<struct ured- bl ock>

where <c| ause> isone of the following:

private (<list>)

firstprivate (<list>)
lastprivate (<list>)

reduction (<operator> : <list>)
ordered

nowai t

When ateam of OpenMP threads encountersat askq pragma, the behavior is
asif asinglethread first creates an empty queue and then executes the structured

118

http://mww.kai .conVparallel/kappro/

Workqueuing Pragmas in C/C++ OpenMP Directives ¢ A

block that follows. When the controlling thread encounters at ask pragmainside
thet askq block, thework inthet ask block is enqueued. Any available thread
within thet askq pool can dequeue and execute tasks from the queue.

At askq pragmaislegal when ateam of threadsis executing redundant codein a
par al | el construct or asingle thread is executing at ask or t askq construct.
In either case, thecodein at askq construct is always executed in single-threaded
fashion. The enqueued tasks are themsel ves executed concurrently among available
threads.

No worker thread may exit at askq construct until the thread executing the

t askq construct exits. Likewise, the thread executing thet askq construct cannot
exit until all enqueued tasks are complete. Whenthenowai t clauseis present on a
t askq construct, however, athread may exit the t askqg construct, once al the
enclosed tasks, including those recursively queued, have been dequeued.

When athread is already inside at askq or t ask construct and encounters a
t askq pragma, it forms another queue and executesthe t askq construct to insert
work in the new queue.

Tasks may contain or der ed sections, provided the enclosing t askqg contains an
or der ed clause. The ordered sections of code are executed in the same order the
tasks were enqueued.

It should be noted that transfer of execution of thet askq block between threadsis
allowed. Thus, it is recommended that the use of dataindexed by
onp_get thread _nun{) should be avoided.

task

#pragma onp task [<clause> [<clause>] ...]
<struct ured- bl ock>

where <cl ause> may be:
private (<list>)

A t ask pragmamust be lexically enclosed within the structured block following a
t askq pragma. Thet ask pragmais said to bind to the lexically enclosing
t askq.

kappro-support@kai.com 119

A ¢« OpenMP Directives Workqueuing Pragmas in C/C++

When athread encounters at ask pragma, the work in the block following the
t ask pragmais enqueued on the queue associated with the binding t askq.
Any thread, including that which enqueued the work, can dequeue and execute
this work.

Data Privatization in Workqueues

Like OpenMP worksharing constructs, t askq andt ask constructs can clas-
sify variables as private. An important distinction, however, isthat such vari-

ables become private to the task queue and task, respectively, rather than to a

thread.

Variablesare privatized at at askq viathepri vate(),firstprivate(),
and| ast privat e() clauses. Variablesclassified aspri vat e are uninitial-
ized upon entry to thet askq block. Variables classified asfi r st pri vat e
areinitialized from the same-named variable in the enclosing context. The val-
uesof | ast pri vat e variables are copied from the final valuesin the last
enqueued t ask to the same-named variables in the enclosing context.

When a task is enqueued, it receives a “snapshot” of the current state of all vari-
ables private to theaskq. In addition, variables can be privatized atttask

itself. Private variables of this type provide uninitialized private storage to each

t ask.

The following example illustrates use of the data privatization rules (the
or der ed clause enforces correct order for fira nt f output):

120 http://mww.kai .conVparallel/kappro/

Workqueuing Pragmas in C/C++ OpenMP Directives ¢ A

C/ C++ synt ax:
#i ncl ude <onp. h>

mai n() {
int me, i, tenp, out, three=3, four=4, five=5;
#pragma onp parallel private(ne)

me = onp_get _thread_num();
#pragma onp taskq private(i,four) firstprivate(five) \
| ast private(out) ordered

printf("1: me=%\n", ne);
for(i =0; i <3; i++) {
#pragma onp task private(tenp)

tenmp = i*2;
out = tenmp*2;
#pragma onp ordered
printf("2: me=% i =% three=% four=% five=%\n",\
me, i, three, four, five);
}

}
}

#pragma onp single
printf("3: out=% tenp=%\n", out, tenp);
}

The output of this programis:

me=0

me=2 i =0 three=3 four=0 five=5
me=1 i=1 three=3 four=0 five=5
me=3 i =2 three=3 four=0 five=5
out =8 t enp=536877680

Line “1: " is executed by only one thread, in this case thread zero. The output of
this is indeterminate, since any thread can executeabkq. Lines 2: ” show

the correct values afe, since data made private at a parallel pragma remains pri-
vate to each thread. The variabléas the same value as whentthsk was
enqueued, because it is private totthskq. The variable hr ee is correct,
because shared variables remain visible to tasks. The vdluweiofis undefined

but uniform across tasks, since it is private totthekqg but was not initialized in
thet askq region. The value dfi ve is correct, since it was privatized with a
firstprivate clause. Inline3: ", the value ofout is obtained from the last
task enqueued, in whiégh==2. The value of enp is undefined, since it was
assigned only inside the tasks, where it was private.

kappro-support@kai.com 121

A ¢« OpenMP Directives Combined Parallel Worksharing and Workqueuing Directives

Examples

Appendix B, “C/C++ Examples” on page 155 inclutles kg examples. These
may serve to clarify the workqueuing model and illustrate its possible uses.

workshare (Fortran only)

Thewor kshar e directive divides the work of executing the enclosed code into
separate units of work, and causes the threads of the team to share the work of
executing the enclosed code. The units of work may be assigned to threads in
any manner as long as each unit of work gets executed exactly once.

Fortran synt ax:

I'$omp wor kshare
<struct ured- bl ock>
!'$omp end wor kshare [nowait]

The primary use of aor kshar e construct is to parallelize Fortran90 array
expressions, including transformational array intrinsic functions that compute
scalar values from arrays. Evaluation of each array element of the array expres-
sion is a unit of work. Individual assignments, includigm ¢ andcri ti -

cal constructs, are also units of work. Please see the latest OpenMP Fortran
Specification at http://www.openmp.org for specific details on how a unit of
work is defined.

Without thenowai t clause, all threads that reach the end ofustnrekshar e
directive will wait until all units of work have been completed.

Combined Parallel Worksharing and
Workqueuing Directives

parallel for (C/C++) andparallel do (Fortran)

The C/C++par al | el for and Fortrampar al | el do directives are a short
form syntax for a parallel region enclosing a sirfgbe or do. The combined
directive is used in place of the two lines taken lppamral | el directive fol-

lowed immediately by the worksharing directive. If this directive is encountered

122

http://mww.kai .conVparallel/kappro/

Combined Parallel Worksharing and Workqueuing Directives OpenMP Directives « A

while aparallel region is aready active the directive is executed by ateam of one
thread and the entire loop is executed by each thread of the enclosing parallel
region that encountersiit.

C/ C++ synt ax:

#pragma onp parallel for [<clause> [<clause>] ...]
<for-| oop>

where <cl ause> isone of the following:

i f (<scal ar-1ogical - expressi on>)
default (shared | private | none)
schedul e (<type>[, <chunk-size>])
shared (<list>)

private (<list>)

firstprivate (<list>)

| astprivate (<list>)

reduction (<operator> : <list>)
copyin (<list>)

ordered

num t hr eads(<scal ar-i nt eger - expr essi on>)

Theparal | el for construct above is equivalent to the following nested par -
al | el andf or constructs:

#pragma onp parallel [<par-clause> \
[<par-clause>] .

#pragma onp for nowait [<for-clause> \
[<for-clause>1] ...]
<for-| oop>

}

where <par - ¢l ause> isone of the following:

i f (<scal ar-1ogical - expressi on>)
default (shared | private | none)
shared (<list>)

private (<list>)

copyin (<list>)

and <f or - cl ause> isone of the following:

schedul e (<type>[, <chunk-size>])
firstprivate (<list>)

| astprivate (<list>)

reduction (<operator> : <list>)
ordered

Fortran synt ax:
I'$omp parallel do [<clause> [[,] <clause>] ...]

kappro-support@kai.com 123

A ¢« OpenMP Directives Combined Parallel Worksharing and Workqueuing Directives

<do- | oop>
[!'$onp end parallel do]

where <c| ause> isone of the following:

if (<scalar-1|ogical -expression>)
default (shared | private | none)
schedul e (<type>[, <chunk-size>])
shared (<list>)

private (<list>)

firstprivate (<list>)

lastprivate (<list>)

reduction (<operator> : <list>)
reduction (<intrinsic>: <list>)
copyin (<list>)

ordered

num t hr eads(<scal ar -i nt eger - expr essi on>)

Thepar al | el do construct above is equivalent to the following nested par -
al | el and do constructs:

!'$omp parallel [<par-clause> [[,] <par-clause>] ...]
!'$onp do [<do-clause> [[,] <do-clause>]
<do- | oop>

' $omp end do nowai t
I'$onmp end parall el

where <par - cl ause> isone of the following:

if (<scal ar-1ogical -expressi on>)

default (shared | private | none)

shared (<list>)

private (<list>)

copyin (<list>)

num t hr eads(<scal ar-i nt eger - expr essi on>)

and <do- cl ause> isone of the following:

schedul e (<type>[, <chunk-size>])
firstprivate (<list>)

lastprivate (<list>)

reduction (<operator> : <list>)
reduction (<intrinsic>: <list>)
ordered

124 http://mww.kai .conVparallel/kappro/

Combined Parallel Worksharing and Workqueuing Directives OpenMP Directives « A

parallel sections

Theparal | el secti ons directiveisashort form for aparallel region contain-
ingasinglesect i ons directive. If thepar al | el secti ons directiveis
encountered in the execution of the program while a parallel region is already
active the directive is executed by ateam of one thread and the entire construct is
executed by each thread from the enclosing parallel region that encountersiit.

C/ C++ synt ax:

#pragma onp parallel sections [<clause> \
[<clause>]

[#pragma onp section]
<struct ured-bl ock>

[#pragnma onp section
<struct ured-bl ock>

}

or,

#pragma onp parallel sections [<clause> \
[<clause>] ...
<struct ured- bl ock>

where <cl ause> isone of the following:

i f (<scal ar-1ogical - expressi on>)
default (shared | private | none)
shared (<list>)

private (<list>)

firstprivate (<list>)

| astprivate (<list>)

reduction (<operator> : <list>)
copyin (<list>)

or dered

Theparal | el secti ons construct above is equivalent to the following nested
paral | el andsecti ons constructs:

#pragma onp parallel [<par-clause> [\
<par - cl ause>]

#pragma onp sections nowait [<sec-clause> \
[<sec-clause>1] ...]

[#pragma onp section]
<struct ured- bl ock>
[#pragnma onp section

kappro-support@kai.com 125

A ¢« OpenMP Directives Combined Parallel Worksharing and Workqueuing Directives

<struct ured- bl ock>

}
}

or,

#pragma onp parallel [<par-clause> \
[<par-clause>]

#pragnma onp sections nowait [<sec-clause> \
[<sec-clause>] ...
<structured- bl ock>

}

where <par - cl ause> isone of the following:

if (<scalar-1|ogical -expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)

and <sec- cl ause> isone of the following:

firstprivate (<list>)
lastprivate (<list>)

reducti on (<operator> : <list>)
ordered

Fortran synt ax:

1'$onp parallel sections [<clause> [[,] <clause>] ...]
[!'$onmp section]

<struct ured- bl ock>
['$onmp section

<struct ured- bl ock>

i$onp end parallel sections

where <c| ause> isone of the following:

if (<scal ar-1ogical - expressi on>)
default (shared | private | none)
shared (<list>)

private (<list>)

firstprivate (<list>)

lastprivate (<list>)

reduction (<operator> : <list>)
reduction (<intrinsic>: <list>)
copyin (<list>)

ordered

126 http://mww.kai .conVparallel/kappro/

Combined Parallel Worksharing and Workqueuing Directives OpenMP Directives « A

num t hreads(<scal ar-i nt eger - expr essi on>)

Theparal | el secti ons construct above is equivalent to the following nested
paral | el andsecti ons constructs:

I'$omp parallel [<par-clause> [[,] <par-clause>] ...]
I $onp sections [<sec-clause> [[,] <sec-clause>] ...]
[!'$onp section]

<struct ured- bl ock>
[!'$onp section

<struct ured- bl ock>

i$onp end sections nowait
I'$onp end paralle

where <par - ¢l ause> isone of the following:

i f (<scal ar-1ogical - expressi on>)

default (shared | private | none)

shared (<list>)

private (<list>)

copyin (<list>)

num t hr eads(<scal ar-i nt eger - expr essi on>)

and <sec- cl ause> isone of the following:

firstprivate (<list>)

| astprivate (<list>)

reduction (<operator> : <list>)
reduction (<intrinsic>: <list>)
or dered

parallel taskq (C/C++ only)

C/ C++ synt ax:
#pragma onp parallel taskq [<clause> \
[<clause>] ...
<structured- bl ock>

where <cl ause> isone of the following:

i f (<scal ar-1ogical - expressi on>)
default (shared | private | none)
shared (<list>)

private (<list>)

firstprivate (<list>)

| astprivate (<list>)

reduction (<operator> : <list>)
copyin (<list>)

or dered

kappro-support@kai.com 127

A ¢« OpenMP Directives Combined Parallel Worksharing and Workqueuing Directives

Thepar al | el taskq construct aboveis equivaent to the following nested
paral | el andtaskq constructs:

#pragma onp parallel [<par-clause> \
[<par-clause>] ...

#pragma onp taskqg nowait [<taskg-clause> \
[<taskqg-cl ause>]
<struct ured- bl ock>

}

where <par - cl ause> isone of the following:

if (<scal ar-1ogical -expressi on>)
default (shared | private | none)
shared (<list>)
copyin (<list>)

and <t askqg- cl ause> isone of the following:

private (<list>)

firstprivate (<list>)
lastprivate (<list>)

reduction (<operator> : <list>)
or dered

parallel workshare (Fortran only)

Fortran syntax:
I'$omp parallel workshare [<clause> [[,] <clause>] ...]
<struct ured- bl ock>
!'$omp end paral |l el workshare

where <cl ause> isone of the following:

if (<scal ar-1ogical - expressi on>)

default (shared | private | none)

shared (<list>)

private (<list>)

firstprivate (<list>)

reduction (<operator> : <list>)

reduction (<intrinsic>: <list>)

copyin (<list>)

num t hreads (<scal ar-int eger-expressi on>)

Thepar al | el wor kshar e construct above is equivalent to the following
nested par al | el andwor kshar e constructs:

!'$omp parallel [<par-clause> [[,] <par-clause>] ...]
I $onp wor kshare
<structured- bl ock>

128 http://mww.kai .conVparallel/kappro/

Synchronization Directives OpenMP Directives « A

' $onp end wor kshare nowai t
I $onp end parall el

where <par - ¢l ause> isone of the following:

i f (<scal ar-1ogical -expressi on>)

default (shared | private | none)

shared (<list>)

private (<list>)

firstprivate (<list>)

reduction (<operator> : <list>)

reduction (<intrinsic>: <list>)

copyin (<list>)

num t hreads (<scal ar-integer-expressi on>)

Synchronization Directives

critical

Thecriti cal directivedefinesthe scope of acritical section. Only one thread at
atimeisallowed inside the critical section.

C/ C++ synt ax:
#pragma onp critical [(<name>)]
<struct ured-bl ock>

Fortran synt ax:
I'$Somp critical [(<name>)]
<struct ured- bl ock>
I'$omp end critical [(<name>)]

The name has global scope. Two or morecri ti cal directiveswith the same
name are automatically mutually exclusive. That is, while athread is executing
within critical section foo, no other thread will be allowed to enter any other critical
section named foo no matter where it may reside within the code. All unnamed
critical sectionsareassumed to map to the same name.

ordered
The or der ed directive defines the scope of an ordered section. Only one thread at
atimeisallowed inside an ordered section of a given name.

C/ C++ synt ax:
#pragma onp ordered

kappro-support@kai.com 129

A ¢« OpenMP Directives Synchronization Directives

<struct ured-bl ock>

Fortran synt ax:

!'$omp ordered [(<nane>)]
<structured- bl ock>
! $omp end ordered [(<name>)]

An optional hame can be given to an ordered section in Fortran, but not in
C/C++. Named ordered sections in Fortran are a KAP/Pro Toolset extension to
OpenMP. Ordered sections are allowed either lexically within or outside of par-
allel regions, but when they occur lexically outside of a parallel region, they
must be unnamed.

The ordered section must be dynamically enclosedinasect i ons, (KAP/Pro
Toolset extension) C/C++ f or, or Fortran do or t askq construct. The enclos-
ing construct must have the or der ed clause attached to its definition. It isan
error to use this directive within a construct without an or der ed clause.

The semantics of an ordered section are defined in terms of the sequential order
of execution for the construct. The threads are granted permission, one thread at
atime, to enter the ordered section. The ordered sections are executed in the
same order asthef or or do iterations, sect i ons, or t askswould be exe-
cuted in the sequential version of the code.

In general, aniteration of aloop with af or or do directive must not execute the
same ordered section more than once and must not execute more than one
ordered section. With the KAP/Pro Tool set extension of named ordered sections
in Fortran, the above restriction applies to ordered sections of the same name.
That is, parallel do loop iterations may execute more than one ordered section if
the ordered sections do not have the same name. This constraint applies to
named ordered sections within the scope of sect i ons directives. Aswith
named critical sections, all unnamed ordered sections are assumed to share the
same name.

In other words, each ordered section with a given name must only be entered
once or not at al during the execution of each f or or do iteration, secti on,
or t ask. Only one ordered section with a given name may be encountered dur-
ing the execution of each f or or do iteration, or sect i on, or t ask.

A deadlock situation can occur if these rules are not observed.

130

http://mww.kai .conVparallel/kappro/

Synchronization Directives OpenMP Directives « A

master

The section of codefollowing amast er directiveis executed by the master thread
of the team.

C/ C++ synt ax:
#pragma onp master
<structured- bl ock>

Fortran synt ax:
I $onp mast er
<struct ured- bl ock>
I $onp end naster

Other threads of the team skip the section of code and continue execution. Thereis
no implied bar ri er on entry to or exit from the master section.

atomic

This directive ensures atomic update of alocation in memory that may otherwise be
exposed to the possibility of multiple, simultaneous, writing threads.

C/ C++ synt ax:
#pragma onp atonic
<expr essi on- st at enent >

where <expr essi on- st at enent > must have one of the following forms:

X <bi nary-op> = <expr>;
X++;
+4X;
X--;
--X;

and where

X isan Ivalue expression with scalar type and without side effects.

a
s >
T3
OC A

<expr > isascalar expression without side effects that does not reference x.

<bi nary-op>isoneof +,-,*,/,&",|,<<,0r>>,
Fortran synt ax:
I $onp atomic
<assi gnnent - st at ement >

where <assi gnment - st at enent > must have one of the following forms:

kappro-support@kai.com 131

A ¢« OpenMP Directives Synchronization Directives

X = X <op> <expr>

X = <expr> <op> x

X = <intrinsic> (x, <expr>)
X = <intrinsic> (<expr>, X)
and where

X isascalar variable of intrinsic type.

<expr > isascalar expression that does not reference x.
<intrinsic>isoneof MAX, M N, | AND, | OR, or | EOR.
<op>isoneof +,-,*,/,. AND.,. OR.,. EQV. ,or. NEQV.

Correct use of thisdirective requiresthat if an object is updated using this direc-
tive, then all future atomic updates to that object must have a compatible type.

flush

This directive causes thread-visible variables to be written back to memory and
is provided for users who wish to write their own synchronization directly
through shared memory.

C/ C++ synt ax:
#pragma onp flush [(<list>)]

Fortran syntax:
'$omp flush [(<list>)]

The optional list may be used to specify variables that need to be flushed. If the
list is absent, al variables are flushed to memory. A f | ush isimplied on the
paral | el ,end parallel,barrier,critical,andend critical
OpenMP constructs.

barrier
Thebar ri er directive gathers all team membersto a particular point in the
code.

C/ C++ synt ax:
#pragm onp barrier

132

http://mww.kai .conVparallel/kappro/

Data Scope Attribute Clauses OpenMP Directives ¢ A

Fortran synt ax:
I $onp barrier

Barriers force threads within ateam to wait at that point in the code until al of the
team members encounter that barrier. Thebar ri er directiveisnot allowed inside
of worksharing constructs, workqueuing constructs, or other synchronization con-
structs.

Data Scope Attribute Clauses

default (shared | private | none)
shared (<list>)
private (<list>)

Theshared() andpri vat e() listsinthe parallel region state the explicit
forms of data sharing among threads that execute the parallel code. When distinct
threads should reference the same variable, place the variable in the shar ed list.
When distinct threads should reference distinct instances of a variable, place the
variableinthepri vat e list.

Thepri vat e clauseisalowed onpar al | el ,secti ons, si ngl e, Fortran
do, C/C++for, taskq, andt ask directives. Reprivatizion of variablesis nhow
allowed in Fortran. That is, variables made private or shared at a paralléel region
may be declared pri vat e for an enclosed worksharing construct. The def aul t
and shar ed clauses are only allowed on par al | el directives. Variables on the
pri vat e list are uninitialized upon entering a parallel region; see also the follow-
ing descriptionof fi rstprivate.

When avariableis not present in any list, its default sharing classification is deter-
mined based upon thedef aul t clause. def aul t (shar ed) causesunlisted
variablesto beshar ed, def aul t (pri vat e) causesunlisted variables to be
privat e,anddef aul t (none) causesunlisted, but referenced, variables to
generate an error. Scalar variables, pointers, and arrays (including deferred shape
and assumed size arrays) can be privatized.

The only exceptionsto thedef aul t rulesin Fortran are loop control variables
(loop indices) and Fortran 90 statement-scoped entities, which arepri vat e
unless explicitly overridden. The only exceptionsto thedef aul t () rulesin

kappro-support@kai.com 133

a
s >
T3
OC A

A ¢« OpenMP Directives Data Scope Attribute Clauses

C/C++ areloop control variables (loop indices) within f or pragmas, threadpri-
vate variables, and const-qualified variables. The first two are private, and the
latter is shared, unless explicitly overridden. The default for both C/C++ and
Fortranisdef aul t (shar ed) .

Note that def aul t (pri vat e) in C/C++isaKAP/Pro Toolset extension to
OpenMP.

firstprivate (<list>)

A variableincluded in <l i st > hasthe semantics of apri vat e data scope.
Before execution of the affiliated construct, the value from the variable of the
same hame in the enclosing context is copied into the private counterpart of each
thread.

Thefirstprivateclauseisalowedonparal | el ,sections,si ngl e,
C/C++f or,t askq, and Fortran do directives.

lastprivate (<list>)

A variableincluded in <l i st > hasthe semantics of apri vat e data scope.
Upon completion of the affiliated construct, the value of the variablein the
enclosing context is assigned the value of the corresponding private copy held
by the thread that executes the last dynamically encountered t ask of at askq
construct in C/C++, the final iteration of the index set for aC/C++ f or or For-
tran do loop, thelast lexical sect i on of asect i ons construct, or the code
enclosed by asi ngl e, as appropriate. If thel ast pri vat e variableis not
updated within the sequentially final iteration, sect i on, t ask, or si ngl e
code, the value of the original variable following the completed construct will be
undefined.

Thel ast pri vat e clauseisalowed onsecti ons, si ngl e, C/C++f or,
t askq and Fortran do directives. The use of thel ast pri vat e clauseona
si ngl e ort askq isaKAP/Pro Toolset extension.

reduction (<operator>:<list>)
reduction (<intrinsic>:<list>)
A variable, array element, or array inther educt i on list createsapri vat e

temporary for each thread. Deferred shape and assumed size arrays are not
allowed onther educt i on clause. Upon completion of the affiliated con-

134

http://mww.kai .conVparallel/kappro/

Data Scope Attribute Clauses OpenMP Directives ¢ A

struct, the value of the original variable is updated by combining the values held in
the temporary variables with the given associative operator or intrinsic function.
Thealowed C/C++ operatorsare +, - ,*, & ", | , &&, and| | . The allowed Fortran
operatorsare+,-,*,. AND. ,. OR.,. EQV. , and. NEQV. Thealowed Fortran
intrinsicsare MAX, M N, | AND, | OR, and | EOR.

Ther educti on clauseisalowed onparal | el ,secti ons, si ngl e,
C/C++f or,t askq and Fortran do directives. The use of ther educt i on clause
onasi ngl e ort askq isaKAP/Pro Toolset extension.

C/ C++ synt ax:

#pragma onp parallel for shared(a,t,n) \
private(i) reduction(+:sum \
reduction(& truth)

for(i=0; i <n; i++) {
sum += a[i];
truth = truth & t[i];
}

The above C/C++ example is equivalent to the following:

C/ C++ synt ax:
#pragma onp parallel shared(a,t,n) private(i)

int sum| ocal

= O,
int truth_local =

1;

#pragma onp for nowait
for(i=0; i <n; i++) {

sum | ocal += a[i];

truth_local = truth_local & t[i];
}

#pragma onp critical

sum += sum | ocal ;
truth = truth & truth_| ocal

a
s >
T3
OC A

Fortran synt ax:
I $omp paral l el do
I $omp& shared (a, n)
I $omp& private (i)
I $omp& reduction (nmax: maxa)
doi =1, n
maxa = max (maxa, a(i))
enddo
I'$omp end parallel do

kappro-support@kai.com 135

A ¢« OpenMP Directives Privatization of Fortran Variables, Common Blocks and Use-

The above Fortran example is equivalent to the following:

Fortran syntax:
! $onp paral | el
!'$omp& shared (a, n, maxa, naxa_ori g)
! $onp& private (i, maxa_| ocal)

maxa_l ocal = mininumyval u_for_type_of maxa
! $omp do
doi =1, n
maxa_l ocal = max (maxa_l ocal, a(i))
enddo

! $omp end do nowai t
!'$onmp critical
maxa = max (maxa, nmaxa_l ocal)
I'$onmp end critical
! $omp end parall el

copyin (<list>)

Thecopyi n() clauseappliesonly tot hr eadpri vat e variablesin C/C++
andtot hr eadpri vat e variables, COMVON blocks and use-associated vari-
ablesin Fortran. The <l i st > can contain individual variables or entire

t hr eadpri vat e COMMON blocks; names of common blocks must be sur-

rounded by slashes. This clause provides a mechanism to copy the master

thread'’s values of the listed variables to the other members of the team at the
start of a parallel region. Tleepyi n directive is only allowed opar al | el
directives and combined parallel worksharing and workqueuing directives.

Thet hr eadpri vat e clause is described in the next two sections.

Privatization of Fortran Variables, Common
Blocks and Use-Associated Variables

Globally addressable storage that is private to each thread in a computation is
useful as a place to store information needed to coordinate between different
subroutines executed by the same thread in a parallel region. This notion is sup-
ported by the $onp t hr eadpri vat e directive.

136 http://mww.kai .conVparallel/kappro/

Privatization of Global Variables in C/C++ OpenMP Directives ¢ A

threadprivate

The! $onmp t hr eadpr i vat e directive in Fortran creates thread-private copies

of one or more variables or COMMON blocks for use within parallel regions. This
directive can also be used as a migration feature for Gragkconmon. The

copyi n clause on parallel directives can be used as a migration feature for SGI's
copyi n directive. At hr eadpr i vat e variable orCOVMON block is always pri-

vate in each parallel region of each routine where tiveeadpr i vat e directive
appears.

Declaring Private Variablesor Commons

Private variables dEOVMON blocks in Fortran are declared by ther eadpri -
vat e directive. The syntax for the directive is as follows:

Fortran synt ax:
I $onp threadprivate (<list>)

This directive is placed in the declaration section of a routine. If a variaBiehér
MON block appears intahr eadpr i vat e directive in one routine, it must appear
in that same directive in all routines where the variabl@@MON block is used.
Names ofCOMVON blocks in<l i st > must be surrounded by slashes.

Thet hr eadpri vat e directive assigns each specified variabl€E@WMON block
to the master thread and creates an uninitialized private copy for each additional
thread. Updated valuestdr eadpr i vat e variables will not be seen by other
threads. Theopyi n clause can be used to initializé lar eadpr i vat e COV
MON block from the master copy. Thread—private copies fareadpri vat e
COMMON blocks in Fortran are always allocated, implicitly, at each parallel regig

If a common block or a variable that is declared in the scope of a module appe3
at hr eadpri vat e directive, it implicitly has th&AVE attribute. A variable that
appears in &ahr eadpr i vat e directive and is not declared in the scope of a mq
ule must have thBAVE attribute.

OpenM P
Directives

Privatization of Global Variablesin C/C++

OpenMP provides privatization of file-scope and namespace-scope variables in
C/C++ via the hr eadpri vat e pragma. Threadprivate variables become private

kappro-support@kai.com 137

A ¢« OpenMP Directives Privatization of Global Variables in C/C++

to each thread but retain their file-scope or namespace-scope visibility within
each thread.

The syntax of thet hr eadpri vat e pragmais:

C/ C++ synt ax:
#pragma onp threadprivate(<list>)

where list is acomma-separated list of one or more file-scope or namespace-
scope variables. Thet hr eadpr i vat e pragmamust follow the declaration of
the listed variables and appear in the same scope. The following exampleis

legal:

C/ C++ synt ax
extern int x;
#pragma onp threadprivat e(x)

nanespace foo {

int ne;

#pragma onp threadprivate(ne)
b

main() {

while the followingisillegd, since the variable x is neither file-scope nor
namespace-scope:

C/ C++ synt ax:
mai n() {
extern int x;
#pragma onp threadprivate(x)

As an extension to OpenMP, KAP/Pro allows the use of thet hr eadpri vat e
pragmawith local static variablesin C. The following, for example, islegal:

138 http://mww.kai .conVparallel/kappro/

Scheduling Options OpenMP Directives « A

C/ C++ synt ax:
mai n() {
int x;
{ o
static int vy;
#pragma onp threadprivate(y)

Initializing Threadprivate Variables

When ateam consists of t threads, there are exactly t copies of eacht hr eadpri -

vat e variable. The master thread uses the global copy of each variable asiits pri-

vate copy. Eacht hr eadpr i vat e variableisinitialized once beforeits first use.

If an explicit initializer is present, then each thread’s copy is suitably initialized. If
no explicit initializer is present, then each thread’s copy is zero-initialized.

t hr eadpri vat e variables can also be initialized upon entry to a parallel region
via thecopyi n clause on thpar al | el pragma. When this clause is present,
each thread'’s copy of each listeldr eadpr i vat e variable is copied, as if by
assignment, from the master’s copy upon each entry to the parallel region. The
copyi n is executed each time the associated parallel region executes.

Persistence of Threadprivate Variables

After the first parallel region executes, the data irt theeadpr i vat e variables
are guaranteed to persist only if the dynamic threads mechanism is disabled.
Dynamic threading is disabled by default, but can be enabled via the
OVP_DYNAM C environment variable and tloerp_set _dynami c() library
call.

a
s >
T3
OC A

Scheduling Options

Scheduling options are used to specify the iteration dispatch mechanism for e
parallel loop (C/C+# or or Fortrando) construct. They can be specified in the
following three ways

1. OpenMP Directives
2. Environment Variables
3. Command Line Switches

kappro-support@kai.com 139

A ¢« OpenMP Directives Scheduling Options

If aparalel loop hasaschedul e clause (except for r unt i ne), then the direc-
tive specifies the loop scheduling. If aparallel loop hasaschedul e (runt -

i me) clause, described below, then the environment variable
OMP_SCHEDULE specifies the loop scheduling at run time. Guide command
line switches are used to specify the default scheduling mechanism for parallel
loopswith no schedul e clause. In the absence of OpenMP directives, envi-
ronment variables, and command line switches the default loop scheduling
mechanismisst ati c.

Scheduling Options Using OpenM P Directives

The list below shows the syntax for specifying scheduling options with the
C/C++for,paral |l el for andFortrando, paral | el do directives.

schedul e (static [, <integer>])
schedul e (dynam c [, <integer>])
schedul e (gui ded [, <integer>])

schedul e (runtine)

Thelist below shows the syntax for specifying scheduling options that are only
available with the Fortran do and par al | el do directives.

schedul e (trapezoidal [, <integer>])
schedul e (interl eaved)

The <i nt eger > parameter isachunk size for the dispatch method. If <i nt e-
ger > isnot specified, itisassumed to be 1 for dynami c, gui ded andt r ap-
ezoi dal , and assumed to be missing for st at i ¢c. See Table 9-5 on page 142
for a complete description of these scheduling options.

Thedefaultisschedul e (static).

Scheduling Options Using Environment Variables

The OVP_SCHEDUL E environment variable sets, at run time, scheduling
options for loops containing aschedul e (runti ne) clause. The syntax for
this environment variableis as follows:

OWP_SCHEDULE = <string>[, <i nteger>]
where<stri ng>isoneof st ati c,dynam c, or gui ded, (tr apezoi -

dal , i nt erl eaved in Fortran only) and the optional <i nt eger > parame-
ter isachunk size for the dispatch method.

140

http://mww.kai .conVparallel/kappro/

Scheduling Options OpenMP Directives « A

See Table 9-5 on page 142 for a complete description of these scheduling options.

Scheduling Options using Command L ine Switches

The following command line switches affect the scheduling of loops without an
explicit schedul e clause. These options are available in both C/C++ and Fortran.

Wssched=dynam ¢ or -Wssched=d
WGsched=gui ded or -WGsched=g
WGsched=runti me or -Wssched=r
WGsched=static or -Wisched=s

The KAP/Pro Toolset also allows several command line scheduling mechanisms
that are extensions to the OpenMP standard; the following are available in Fortran
only:

-Wesched=even or -WGsched=e

-Wesched=i nterl eaved or -Wssched=i
-Wesched=t r apezoi dal or -WGsched=t

Assure accepts all the scheduling methods present in OpenM P directives that Guide
supports. However, the only scheduling method which currently affects the opera-
tion of Assureistheor der ed clause. For this reason, command line options and
environment variables for scheduling are not supported in Assure.

These scheduling options are fully described in Table 9-5 on page 142.

Scheduling Options Table

The various scheduling options are summarized in the following table. Assume the
following: the loop has| iterations, p threads execute the loop, and n is a positive
integer specifying the chunk size.

a
s >
T3
OC A

kappro-support@kai.com 141

A ¢« OpenMP Directives

Scheduling Options

Table 9-5 scheduling Options

Scheduling
Type Chunk Meaning
even, e ignored Even scheduling. I/p iterations are dispatched statically to
(Fortran each thread. The chunk size has no effect here. Even sched-
only) uling is the default method of loop scheduling.

To specify even scheduling from the Fortran command line
use:

-WGsched=even
or

-Wasched=even, <i nt eger > [sameas
-WGsched=even; the chunk size has no effect]

Alternatively, the word even may be abbreviated:
-Wasched=e
or
-WGsched=e, <i nt eger > [same as-WGsched=€; the
chunk size has no effect]
To specify static even scheduling with the SCHEDULE
clause use:

schedul e (static)

Thereisno even argument for theschedul e clause.
To perform even scheduling using the schedul e direc-
tive, usethe st at i ¢ argument without specifying a
chunk size.

To specify static even scheduling with the
OVP_SCHEDULE environment variable use:

OWP_SCHEDULE = static

Thereisno even argument for the OVP_SCHEDUL E
environment variable. To perform even scheduling using
the OVP_ SCHEDUL E environment variable, use the
st at i ¢ argument without specifying a chunk size.

142

http://mww.kai .conVparallel/kappro/

Scheduling Options OpenMP Directives « A

Scheduling
Type Chunk M eaning
static, s n Static scheduling with a chunk size of n. niterations are dis-
(CIC++, patched statically to each thread (repeat until | iterations
have been dispatched in around robin fashion among all
Fortran)

threads). If nismissing, thisisthe same as static even
scheduling. In C/C++, |/p iterations are dispatched statically
to each thread so that each thread gets only a single chunk
of the iteration space.

To specify static scheduling from the command line use:
-Wssched=st ati c, <i nt eger >
or

- Wasched=st at i ¢ [specifies even scheduling when
chunk isnot stated]

Alternatively, theword st at i ¢ may be abbreviated as fol-
lows:

-Wasched=s, <i nt eger >
or

-WGsched=s [specifies even scheduling when chunk
is not stated]

To specify static scheduling with the schedul e clause
use:

schedul e (static[, <i nteger>])

To specify static scheduling with the OVP_SCHEDULE
environment variable use:

OWP_SCHEDULE = static[, <i nteger>]

a
s >
T3
OC A

kappro-support@kai.com 143

A ¢« OpenMP Directives

Scheduling Options

Scheduling
Type Chunk M eaning
inter- ignored Static interleaved scheduling. The chunk size has no effect
leaved, i here. Thread i is statically dispatched iterationsi, i+p, i+2p,
(Fortran
only)

To specify static interleaved scheduling from the Fortran
command line use:

-WGsched=i nt er| eaved
or

-Wesched=i nt er | eaved, <i nt eger > [sameas
-WGsched=interleaved; the chunk size has no
effect]

Alternatively the word nt er | eaved may be abbreviated
as follows:

-WGsched=i
or

-WGsched=i , <i nt eger > [same as -WGsched=i; the
chunk size has no effect]

To specify static interleaved scheduling with sehed-
ul e clause use:

schedul e (interl eaved)

To specify static interleaved scheduling with the
OWVP_SCHEDULE environment variable use:

OWP_SCHEDULE = interl eaved

Interleaved scheduling is a KAP/Pro Toolset extension to
OpenMP.

144

http://mww.kai .conVparallel/kappro/

Scheduling Options OpenMP Directives « A

Scheduling
Type Chunk M eaning
dynamic, d n Dynamic scheduling with achunk size of n. Thefirst n*p
(CIC++, iterations are statically assigned to threads in chunks of n
iterations. Once a thread finishes the assigned set of itera-
Fortran)

tions, anew set of niterationsis scheduled. This dynamic
scheduling continues until al iterations have been con-
signed.

To specify dynamic scheduling from the command line use:
-Wesched=dynami c[, <i nt eger >]
If no chunk sizeis specified, asize of 1 will be used.

Alternatively the word dynani ¢ may be abbreviated as
follows:

-WGsched=d[, <i nt eger >]
If no chunk sizeis specified, asize of 1 will be used.

To specify dynamic scheduling with the schedul e clause
use:

schedul e (dynami c[, <i nteger>])

To specify dynamic scheduling with the OMP_SCHEDULE
environment variable use:

OVP_SCHEDULE = dynani c[, <i nt eger >]
If no chunk sizeis specified, asize of 1 will be used.

a
s >
T3
OC A

kappro-support@kai.com 145

A ¢« OpenMP Directives

Scheduling Options

Scheduling
Type Chunk M eaning
guided, g n Guided scheduling with a minimum chunk size of n. An
(CIC++ exponentially decreasing number of iterations are dis-
Fort) patched dynamically to each thread. At least niterations are
ortran

dispatched every time except the last.

To specify guided scheduling from the command line use:
-Wesched=gui ded[, <i nt eger >]

If no chunk sizeis specified, asize of 1 will be used.

Alternatively, the word gui ded may be abbreviated asfol-
lows:

-Wesched=g[, <i nt eger >]
If no chunk sizeis specified, asize of 1 will be used.

To specify guided scheduling with the schedul e clause
use:

schedul e (gui ded[, <i nteger>])

To specify guided scheduling with the OVP_SCHEDULE
environment variable use:

OWP_SCHEDULE = gui ded[, <i nt eger >]
If no chunk sizeis specified, asize of 1 will be used.

146

http://mww.kai .conVparallel/kappro/

Scheduling Options OpenMP Directives « A

Scheduling
Type Chunk M eaning
trapezoi- n Trapezoidal scheduling with minimum chunk size of n. A
dal, t linearly decreasing number of iterations are dispatched
(Fortran dynamically to each thread. At least niterations are dis-
only) patched every time except the last.

To specify trapezoidal scheduling from the Fortran com-
mand line use:

-Wesched=t r apezoi dal [, <i nt eger >]
If no chunk sizeis specified, asize of 1 will be used.

Alternatively thewordt r apezoi dal may be abbreviated
asfollows:

-Wesched=t [, <i nt eger >]
If no chunk sizeis specified, asize of 1 will be used.

Trapezoidal scheduling is a KAP/Pro Toolset extension to
OpenMP.

To specify trapezoidal scheduling with theschedul e
clause use:

schedul e (trapezoidal, <i nteger>)

To specify trapezoidal scheduling with the
OVP_SCHEDULE environment variable use:

OWP_SCHEDULE = trapezoi dal, <i nt eger >
If no chunk sizeis specified, asize of 1 will be used.

Trapezoidal scheduling is a KAP/Pro Toolset extension to
OpenMP.

a
s >
T3
OC A

kappro-support@kai.com 147

A ¢« OpenMP Directives OpenMP Environment Variables

Scheduling
Type Chunk M eaning
runtime,r ignored Runtime scheduling specifies the scheduling that will be
determined via th&vP_SCHEDULE environment variable
(C/C++1 . -
at run time.
Fortran)

To specify scheduling at runtime, use the following from the
command line:

-WGsched=runti ne

Alternatively, the word unt i me may be abbreviated as
follows:

-WGsched=r
To specify runtime scheduling with teghedul e clause,
use:

schedul e (runti ne)

To specify runtime scheduling with tid/P_SCHEDULE
environment variable use:

OWP_SCHEDULE = <stri ng>[, <i nt eger >]

where<st ri ng> is one ofst ati c, dynani c, or

gui ded, (trapezoi dal, i nterl eaved in Fortran
only) and the optionati nt eger > parameter is the chunk
size for the dispatch method.

If the OVP_SCHEDUL E environment variable is not set,
then the default is assumed to g fiam c, 1”.

OpenMP Environment Variables

Some environment variables may need to be set before running Guide-generated
programs. A list and description of each OpenMP environment variable, along
with acceptable option values is presented in this section. Additional KAP/Pro
environment variables are described in sections “Environment Variables for
Guide” and “Environment Variables for Assure” in Chapter 6, “The KAP/Pro
Drivers,” beginning on page 57

148

http://mww.kai .conVparallel/kappro/

OpenMP Environment Variables OpenMP Directives « A

OMP_DYNAMIC=<bhoolean>

The OVP_DYNAM C environment variable enables or disables dynamic adjustment
of the number of threads between parallel regions. Enabling dynamic threads
allowsthe Guide library to adjust the number of threads in response to system load.
Such an adjustment can improve the turnaround time for all jobs on aloaded sys-
tem. A value of TRUE for <bool ean> enables dynamic adjustment, whereas a
value of FALSE disables any change in the number of threads. If dynamic adjust-
ment is enabled, the number of threads may be adjusted only at the beginning of
each parallel region. No threads are created or destroyed during the execution of the
parallel region. The default value is FALSE.

OMP_NUM_THREADS=<integer>

The OMP_NUM_THREADS environment variable is used to specify the number of
threads. The<i nt eger > is apositive number. Performance of parallel programs
usually degrades when the number of threads exceeds the number of physical pro-
CESsOrs.

The special value ALL is also allowed. The default value of ALL specifies that one
thread will be created per processor on the machine.

OMP_SCHEDUL E=<string>[,<integer>]

The OMP_SCHEDUL E environment variable controls the schedul e type and chunk
sizefor C/C++f or and Fortran do constructswithaschedul e(runti ne)
clause or those with no schedul e clauseif the command line scheduling designa-
torissettor (runti ne) . The scheduletypeisgiven by <st ri ng>, whichis
oneof stati c,dynam c, orgui ded, (t rapezoi dal ,i nterl eaved in
Fortran only) and the optional chunk size is given by <i nt eger > for those sched-
uling types which allow a chunk size. See “Scheduling Options” on page 139.

OMP_NESTED=<boolean>

The OMP_NESTED environment variable controls whether nested parallelism is
enabled at run time. Nested parallelism is currently unimplemented, so this var
has no effect. This environment variable does not affect nested parallelism impte
mented via nestetdaskq pragmas within a singlear al | el pragma in C/C++.
Allowed values ar§ RUE andFALSE, and the default value FALSE.

OpenMP
Directives

kappro-support@kai.com 149

A ¢« OpenMP Directives OpenMP Routines

OpenMP Routines

This section describes the syntax of several OpenM P routines which can be used
to manipulate locks, determine the number of threads and/or processors, and
determine elapsed wallclock time.

void omp_destroy_lock(omp_lock_t *lock), subroutine
omp_destroy_lock(<var>)

This routine ensures that the lock pointed to by the parameter * | ock (using
C/C++) or <var > (using Fortran) is uninitialized. No thread may own the lock
when thisroutine is called. This parameter must be alock variable that was ini-
tialized by the OVP_I NI T_LOCK() routine.

int omp_get_max_threads(void), integer function
omp_get_max_threads()
This routine returns the maximum number of threads that are available for paral-

lel execution. The returned valueis a positive integer, and is equal to the value
of the OMP_NUM_THREADS environment variable, if set.

int omp_get_num_procs(void), integer function
omp_get_num_procs()

This routine returns the number of processors that are available on the parallel
machine. The returned value is a positive integer.

int omp_get_num_threads(void), integer function
omp_get_num_threads()

This routine returns the number of threads that are being used in the current par-
allel region. Thereturned value is a positive integer. When called outside a par-
allel region, this function returns 1.

NOTE: The number of threads used may change from one parallel region to the
next. When designing parallel programsit is best to not introduce assumptions
that the number of threads is constant across different instances of parallel
regions. The number of threads may increase or decrease between parallel
regions, but will never exceed the maximum number of threads specified viathe

150

http://mww.kai .conVparallel/kappro/

OpenMP Routines OpenMP Directives « A

OVP_NUM_THREADS environment variable or the OMP_SET_NUM_THREADS()
API call.

int omp_get_thread_num(void), integer function
omp_get_thread_num()

This routine returns the id of the calling thread. The returned value is an integer
between zero and OVP_GET_NUM THREADS() -1.

When called from aserial region or aserialized parallel region, thisfunction returns
0.

doubleomp_get_wtime(void), double precision function
omp_get_wtime()
This function returns a double precision value equal to the elapsed wallclock time

in seconds relative to an arbitrary reference time. The reference time is guaranteed
not to change during program execution.

doubleomp_get_wtick(void), double precision function
omp_get_wtick()

This function returns a double precision value equal to the number of seconds
between successive clock ticks.

void omp_init_lock(omp_lock _t *lock), subroutine
omp_init_lock(<var>)

void omp_init_nest_lock(omp_nest_lock_t *lock), subroutine
omp_init_nest_lock(<var>)

a
s >
T3
OC A

These routines initialize alock associated with the lock variable *lock (using
C/C++) or <var > (using Fortran) for use by subsequent calls. Theinitia stateis
unlocked. For a nestable lock, the initial nesting count is zero. The lock variable
must only be accessed through the OpenMP library lock routines. When using
C/C++, thel ock parameter must be a pointer to typeonp_| ock_t or
onp_init_nest | ock_t (asdefined inthe header file onp. h). When using

kappro-support@kai.com 151

A ¢« OpenMP Directives OpenMP Routines

Fortran, <var > must of integer type and of KI ND large enough to hold an
address. Two special KIND types, OMP_LOCK_KIND, and
OMP_NEST_LOCK_KIND are defined for simple and nested lock variables,
respectively.

int omp_in_parallel(void), logical function omp_in_parallel()

The C/C++ function returns non-zero if it is called within the dynamic extent of
aparallel region executing in parallel, otherwise it returns zero. The Fortran
function returns. TRUE. if itiscalled within the dynamic extent of aparallel
region executing in parallel, otherwise . FALSE. isreturned.

void omp_set_lock(omp_lock _t *lock), subroutine
omp_set_lock(<var>)

void omp_set_nest_lock(omp_nest_lock_t *lock), subroutine
omp_set_nest_lock(<var>)

These routines force the executing thread to wait until the specified lock isavail-
able. If thelock is not available, the thread is blocked from further execution
until the thread is granted ownership of the lock. Thel ock parameter *| ock
(using C/C++) or <var > (using Fortran) must first be initialized by the appro-
priate OMP_I NI T_LOCK() or OMP_I NI T_NEST_LOCK() routine.

For a nestable lock, the nesting count is incremented, and the calling thread is
granted, or retains, ownership of the lock.

int omp_test_lock(omp_lock_t *lock), logical function
omp_test_lock(<var>)

int omp_test nest_lock(omp_nest_lock _t *lock), logical function
omp_test_nest_lock(<var>)

These routinestry to obtain ownership of the lock, but do not block execution of
the calling thread if the lock is not available. The C/C++ routines return a non-
zero valueif the lock was successfully obtained, otherwise they return zero. The
Fortran routines return. TRUE. if the lock was successfully obtained, otherwise
. FALSE. isreturned. Thelock parameter *| ock (using C/C++) or <var >
(using Fortran) must be an initialized lock variable.

152

http://mww.kai .conVparallel/kappro/

OpenMP Routines OpenMP Directives « A

void omp_unset_lock(omp_lock_t *lock), subroutine
omp_unset_lock(<var>)

void omp_unset_nest_lock(omp_nest_lock_t *lock), subroutine
omp_unset_nest_lock(<var>)

These routines rel ease the executing thread from ownership of the lock. The behav-
ior is undefined if the executing thread is not the owner of the lock. The lock
parameter * | ock (using C/C++) or <var > (using Fortran) must be an initialized
lock variable.

void omp_set_num_threads(int), subroutine
omp_set_num_threads(<integer>)

This function sets the number of threads to use for subsequent parallel regions. The
value of the argument must be positive. Its effect depends upon whether dynamic
adjustment of threads is enabled. If dynamic adjustment is disabled, the valueis
used as the number of threads for all subsequent parallel regions prior to the next
call to this function; otherwise, the value is the maximum number of threads that
will be used. This function can only be called from serial regions of the code.

void omp_set_dynamic(int), subroutine omp_set_dynamic(<logical>)

This function enables or disables dynamic adjustment of the number of threads
availablefor execution of paralel regions. It has effect only when called from serial
regions. If the argument isnot O (using C/C++) or . TRUE. (using Fortran) the
number of threads that are used for executing subsequent parallel regions may be
adjusted automatically by the run-time environment to best utilize system
resources. As a consequence, the number of threads specified by the

OVP_NUM_ THREADS environment variable or onp_set _num t hr eads()
function isthe maximum thread count. The number of threads always remains fixed
over the duration of each parallel region. If the argument is 0 (using C/C++) or

. FALSE. (using Fortran) dynamic adjustment is disabled.

a
s >
T3
OC A

int omp_get_dynamic(void), logical function omp_get_dynamic()

The C/C++ function returns non-zero if dynamic thread adjustment is enabled and
returns O otherwise. The Fortran function returns. TRUE. if dynamic thread
adjustment is enabled and returns . FALSE. otherwise.

kappro-support@kai.com 153

A ¢« OpenMP Directives OpenMP Routines

void omp_set_nested(int), subroutine omp_set_nested(<logical>)

This function enables or disables nested parallelism. Nested parallelism is not
implemented in the KAP/Pro Tool set, so this function has no effect. To exploit
nested parallelism when using C/C++, please see “Workqueuing Pragmas in
C/C++" on page 117.

int omp_get_nested(void), logical function omp_get _nested()

The C/C++ function always retur@sand the Fortran function always returns
. FALSE. in the current version of KAP/Pro Toolset.

154

http://mww.kai .conVparallel/kappro/

C/C++ Examples « B

Examples of OpenMP usage in C/C++

APPENDIX B C/C+ + E)(&Tpl%

Examples of OpenMP usage in C/C++

The following examples show usage of OpenMP examplesin C/C++.

C/C++ Examples |gp]

kappro-support@kai.com 155

B ¢ C/C++ Examples Examples of OpenMP usage in C/C++

B.1 for: A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each
iteration is different. We used dynamic scheduling to get good load balancing.
Thef or hasanowai t becausethereisanimplicitbarri er at theend of the

parallel region. Alternately, using the option -WGopt=1 would have aso elimi-
nated thebarri er.

void for_1 (float a[], float b[], int n)
{

int i, j;

#pragma onp parallel shared(a,b,n) \
private(i,j)

#pragma onp for schedul e(dynam ¢, 1) nowait
for(i = 1; i <n; i++) {
for(j =0; j <=1i; j++)
b[j + n*i] =\
(a[j +n*i] + a[j +n*(i-1)])/2.0;

156

http://mww.kai .conVparallel/kappro/

C/C++ Examples « B

Examples of OpenMP usage in C/C++

B.2 for: Two Difference Operators
Shows two parallel loops fused to reduce fork/join overhead. The first f or hasa
nowai t because all the data used in the second loop is different than al the data
used in the first loop.

void for_2 (float a[], float b[], float c[], \
float d[], int n, int m

int i, j;
#pragma onp parallel shared(a,b,c,d,n,m \
private(i,j)

{
#pragma onp for schedul e(dynam ¢, 1) nowait
for(i =1; i <n; i++) {
for(j =05 j <=1i; j+4)
b[j + n*i] =\ B
(a[j +n*i] +a[j + n*(i-1)])/2.0; B
o
#pragma onp for schedul e(dynam ¢, 1) nowait %
for(i =1; i <m i++) { L|>j
for(j =0; j <=1i; j++) -
d[j + nri] =\ +
(c[j +mi] +c[j + nt(i-1)])/2.0; @)
S~
} @)

kappro-support@kai.com 157

B ¢ C/C++ Examples Examples of OpenMP usage in C/C++

B.3 for: Reduce Fork/Join Overhead

Routinesf or _3a and f or _3b perform numerically equivalent computations,
but becausethepar al | el pragmainroutine f or _3b isoutside the loop, rou-
tinef or _3b probably forms teams |ess often, and thus reduces overhead.

void for_3a (float a[], float b[], int n, int m

t
int i, j;
for(j =0; j <m j++) {
#pragma onp parallel shared(a,b,n,j) \
private(i)
#pragma onp for nowait
for(i =0; i < n; i++)
a[i + n*j] =\
bli +n*] / a[i +n*(j-1)];
}
}
}
void for_3b (float a[], float b[], int n, int n
{
int i, j;
#pragma onp parallel shared(a,b,n) \
private(i,j)
for(j =0; j <m j++) {
#pragma onp for nowait
for(i =0; i <n; i++4)
a[i + n*j] =\
b[i + n*j] / a[i + n*(j-1)];
}
}
}

158 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples « B

B.4 sections: Two Difference Operators

Identical to “for: Two Difference Operators” on page 157 but gged i ons
instead of or . Here the speedup is limited to 2 because there are only 2 units of
work whereas in “for: Two Difference Operators” on page 157 thera-are m-1

units of work.

void sections_1 (float a[], float b[], \
float c[], float d[], int n, int nm

t
int i, j;
#pragma onp parallel shared(a,b,c,d, n,m \
private(i,j)
#pragma onp sections nowait
#pragma onp section B
for(i =1; i <n; i++) { g
for(j =0; j <=1i; j++) rel

b[j + n*i] =\ %
(a[j + n*i]+a[j + n*(i-1)])/2.0;

) n

. +
#pragma onmp section +
for(i =1; i <m i++) { o
for(j =0; j <=1i; j++) @)

dij + nri] =1\
(clj + nmtiJ+c[j + n(i-1)])/2.0;

}

}
}
}

kappro-support@kai.com 159

B ¢ C/C++ Examples

B.5 sgingle: Updating a Shared Scalar

This example demonstrates how to use asi ngl e construct to update an ele-
ment of the shared array a. The optional nowai t after the first loop is omitted
because we need to wait at the end of the loop before proceeding into the

singl e.
void single_sp la (float a[],
{
int i;
#pragma onp parall el
#pragma onp for
for(i =0; i < n;
a[i] = 1.0/ a[i]
#pragma onp singl e nowait
a[0] = mn(a[0],
#pragma onp for nowait
for(i =0; i < n;
b[i] = b[i] / b[i]
}

160

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in C/C++

float b[],

shared(a, b,n) private(i)

Examples of OpenMP usage in C/C++ C/C++ Examples « B

B.6 sections: Updating a Shared Scalar

Identical to “single: Updating a Shared Scalar” on page 160 but using different
pragmas.
void sections_sp_ 1 (float a[], float b[], int n)
{ int i;
#pragma onp parall el shared(a,b,n) private(i)

#pragma onp for
for(i =0; i < n; i++)
a[i] = 1.0/ a[i] ;

#pragma onp sections nowait
a[0] = mn(a[0], 1.0) ;

#pragma onp for nowait
for(i = 0; i <n; i++)
b[i] = b[i] / b[i] ;

C/C++ Examples |gp]

kappro-support@kai.com 161

B ¢ C/C++ Examples Examples of OpenMP usage in C/C++

B.7 for: Updating a Shared Scalar

Identical to “single: Updating a Shared Scalar” on page 160 but using different
pragmas.

void for_sp_1 (float a[], float b[], int n)
{

int i;
#pragma onp parallel shared(a,b,n) private(i)

#pragma onp for
for(i =0; i < n; i++)
a[i] = 1.0/ a[i]

#pragma onp for nowait
for(i =0; i <1; i++)

a[i] = mn(afi], 1.0) ;
#pragma onp for nowait

for(i =0; i <n; i++)
b[i] =Db[i] / b[i]

162

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples « B

B.8 paralle for: A Simple Difference Operator

Identical to “for: A Simple Difference Operator” on page 156 but using different
pragmas.
void parallelfor_1 (float a[], float b[], int

{

n)

int i, j;

#pragma onp parallel for shared(a,b,n) \
private(i,j) schedul e(dynam c, 1)
for(i = 1; i <n; i++) {
for(j =0; j <=1i; j++)
b[j + n*i] =\
(afj +n*i] +a[j +n*(i-1)]) / 2.0;

C/C++ Examples |gp]

kappro-support@kai.com 163

B ¢ C/C++ Examples Examples of OpenMP usage in C/C++

B.9 paralle sections: Two Difference Operators

Identical to “sections: Two Difference Operators” on page 159 but using differ-
ent pragmas.

void sections_2 (float a[], float b[], \
float c[], float d[], int n, int m
{

int i, j;

#pragma onp parallel sections \
shared(a, b,c,d,n,m private(i,j)
{
#pragma onp section
for(i =1; i <n; i++) {
for(j =0; j <=1i; j++)
b[j + n*i] =\
(a[j + n*i] + a[j + n*(i-1)])/2.0;
}

#pragma onp section
for(i =1; i <nm i++) {
for(j =0; j <=1i; j++)
d[j + nri] =\
(c[j + nmri] + c[j + m(i-1)])/2.0;

164

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples « B

B.10 Simple Reduction

This demonstrates how to perform areduction using partial sums while avoiding
synchronization in the loop body.

void reduction_1 (float a[], int m int n, \
float sum
{

int i, j;
float local _sum

#pragma onp parallel shared(a, mn, sum \
private(i,j,local_sum
{
| ocal _sum = 0. 0;
#pragma onp for nowait
for(i =0; i <n; i++) {
for(j =0; j < n j++4)
| ocal _sum = local _sum+ a[j + i*m;
}
#pragma onp critical
sum = sum + | ocal _sum

}

The above reduction could also usether educt i on() clause asfollows:
\

C/C++ Examples |gp]

void reduction_2 (float a[], int m int n,

float sum
L
int i, j;
#pragma onp parallel for shared(a, mn) \
private(i,j) reduction(+:sum
for(i =0; i <n; i++) {
for(j =0; j <m j++)
sum= sum+ a[j + i*nm;
}
}

kappro-support@kai.com 165

B ¢ C/C++ Examples

Examples of OpenMP usage in C/C++

B.11 threadprivate: Private File-Scope Variable

This example demonstrates the use of t hr eadpr i vat e file-scope variables.

float work[10000];

#pragma onp threadprivat e(wor k)

extern void construct_data()

extern void use_data()

void tc_1(int n)

r .

int i;

#pragma onp parall el
#pragma onp for
for(i =0; i <nm

construct _data();
use_data();
}
}
}

shared(n) private(i)

i ++) {
[* fills array work() */
/* uses array work() */

166

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples « B

B.12 threadprivate: Private File-Scope Variable and
Master Thread

In this example, the value 2 is printed since the master thread's copy of

t hr eadpri vat e variableis accessed within anast er section or in serial code
sections. If asi ngl e was used in place of themast er section, some single
thread, but not necessarily the master thread, would setj to 2 and the printed result

would be indeterminate.
#i ncl ude <stdio. h>

int j;
#pragma onp threadprivate(j)

int main()
=15
#pragma onp parallel copyin(j)
#pragrra onp naster

=2
}

printf(“j = %d\n”, j);
}

C/C++ Examples |gp]

kappro-support@kai.com 167

B ¢ C/C++ Examples Examples of OpenMP usage in C/C++

B.13 Avoiding External Routines: reduction

This example demonstrates two coding styles for reductions, one using the
external routinesonp_get _nax_t hreads() and
onp_get thread_nun{) and the other using only OpenMP pragmas.

#i ncl ude <stdi o. h>
#i ncl ude <onp. h>

void reduction_3a (int n, float a[])

t
int i;
float gx[8], Ix, x; [/* assunme 8 processors */
x = 0.0 ;

for(i = 0; i < onp_get_max_threads(); i++)
gx[i] = 0.0;

#pragma onp parallel shared(a,n,g) \
private(i,I|x)

Ix = 0.0;

#pragma onp for nowait

for(i =0; i < n; i++)
Ix =1Ix + a[i];

gx[omp_get _thread _num()] = Ix;

0; i < onp_get_max_threads(); i++)
X + ox[i];

for(i
X

printf(“x = %f\n", x);
}

As shown below, this example can be written without the external routines.

#include <stdio.h>
void reduction_3b (int n, float a[])

t
inti;
float Ix, x;

x =0.0;

168 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples « B

#pragma onp parallel shared(a,n) private(i,!|Xx)

Ix = 0.0;

#pragma onp for nowait

for(i =0; i < n; i++)
Ix =1Ix + a[i];

#pragma onp critical
X =X + Ix;

}
printf(“x = %f\n", X);

This example can also be written more simply using the reduction() clause as
follows:

#include <stdio.h>
void reduction_3c (int n, float a[])
L

inti;

float x;

x=0.0;

C/C++ Examples |gp]

#pragma omp parallel for shared(a,n) \
private(i) reduction(+:x)
for(i=0;i<n;i++)

x=x+ali];

printf(“x = %f\n”, X) ;

kappro-support@kai.com 169

B ¢ C/C++ Examples Examples of OpenMP usage in C/C++

B.14 Avoiding External Routines. Temporary Stor-
age
This example demonstrates three coding styles for temporary storage, one using

the external routineand onp_get _t hr ead_nun{) and the other two using
only pragmas.

#i ncl ude <onp. h>

void local _l1a (int n, float a[])
{
int i, j;
extern float t[8][100]; /* assune 8 procs nax. */
#pragma onp parallel for shared(a,t,n) \
private(i,j)
for(i =0; i <n; i++) {
for(j =05 j < n; j++)
t[onmp_get _thread_num()][j] = a[i] * a[i];
work(&(t[onp_get_thread_num()][0]));

}

If t isnot global, then the above can be accomplished by puttingt inthe
privat e clause

void local _1b (int n, float a[])

L
int i, j;
float t[100];
#pragma onp parallel for shared(a,n) \
private(i,t,j)
for(i =0; i <n; i++) {
for(j =0; j <n; j++)
tlj] = afi] * a[i];
work(t);
}
}

If t isglobal, thenthet hr eadpri vat e pragmacan be used instead.

float t[100];
#pragma onp threadprivate(t)

void local _1c (int n, float a[])

170 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples « B

t
int i, j;
#pragma onp parallel for shared(a,n) \
private(i,j)
for(i =0; i <n; i++) {
for(j =0; j < n; j++)
tfj] = afi] * a[i];
work(t);
}

C/C++ Examples |gp]

kappro-support@kai.com 171

B ¢ C/C++ Examples Examples of OpenMP usage in C/C++

B.15 firstprivate: Copyingin Initialization Values

Not al of thevalues of a and b are initialized in the loop before they are used.
(Therest of thevaluesareproduced by i nit _aandi nit_b.) Using
firstprivate foraandb causestheinitialization values produced by
init_aandinit_btobecopiedinto private copiesof a and b for usein the
loops.

#i ncl ude <stdio. h>
void dsg3_b (float c[], int n)

int i, j;

float a[100], b[2100], X, V;

init_a(a, n);

init_b(b, n);

#pragma onp parallel for shared(c,n) \
private(i,j,x,y) firstprivate(a,b)

for(i =0; i <n; i++) {
for(j =0; jJ <=1i; j++) {
a[j] = calc_a(i);
b[j] = calc_b(i);
}
for(j =0; j <n; j++) {
x =a[i] - b[i];
y =b[i] + a[i];
c[ji + n*i] = x*y;
} }
printf(“x, y = %f, %f\n", X,y);

}

172

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in C/C++ C/C++ Examples « B

B.16 threadprivate: Copyingin Initialization Values

Similar to “firstprivate: Copying in Initialization Values” on page 172 except using
t hr eadpri vat e variables. Fot hr eadpri vat e, copyi n is used instead of
firstprivate to copy initialization values from the shared (master) copias of

andb to the private copies.

float a[100], b[100];
#pragma onp threadprivate(a,b)

void dsq3_b_tc (float c[], int n) {
int i, j;
float x, v;

init_a(a, n);
init_b(b, n);
#pragma onp parallel for shared(c,n) \ B
private(i,j,x,y) copyin(a,b) 8
for(i =0; i <n; i++) { rel
for(j =0; j <=1i; j++) { %
a[j] = calc_a(i);
blj] = calc b(i); n
11 (i 0;] j++) { i
or()] =0,] <n; |]++
x =a[i] - b[i]; o
y = b[i] + a[i]; @)
cli+n*j] = x*y;
}

}
printf(“x, y = %f, %f\n”, X, y);

kappro-support@kai.com 173

B ¢ C/C++ Examples Examples of OpenMP usage in C/C++

B.17 taskq: Parallelizing across L oop Nests

The OpenMP f or pragmaislimitedin that it can only parallelize on asingle
for loopat atime. Usingt askq, nested loops can be parallelized. Each itera-
tion of the loop is independent and is enqueued as a task.

void multiple doalls(int m int n, int* sump) {
int i, j;
int sum = O;
#pragma onp parallel taskg shared(n,m \
private(i) lastprivate(j) reduction(+:sum
for(i =0; i <n; ++i) {
for(j =0; J <m ++) {
partial _sun{ &sum);
#pragma onp task
do_work(i, j, &sum);
}
}
*sump += sum
foo(&);

174 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

APPENDIX C Fortran Examples

Examples of OpenMP usage in Fortran

The following example programs illustrate the use of OpenMP directives in For-
tran.

C
kd
[eR
&
i
S
g

kappro-support@kai.com 175

C « Fortran Examples Examples of OpenMP usage in Fortran

C.1 do: A SmpleDifference Operator

This example shows a simple parallel 1oop where the amount of work in each
iteration is different. We used dynamic scheduling to get good load balancing.
Theend do hasanowai t becausethereisanimplicitbar ri er at the end of
the parallél region. Alternately, using the option -optimize=1 would have also
eliminated thebarri er.

subroutine do_1 (a,b,n)
real a(n,n), b(n,n)

I $onmp parall el

I $onmp& shared(a, b, n)

' $omp& private(i,j)

I $onmp do schedul e(dynami c, 1)

doi =2, n
do j = ;, i o o
b(j,i)=(C a(j,i) +a(j,i-1)) /[2
enddo
enddo

I $onmp end do nowait
I $onmp end parall el
end

176

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.2 do: Two Difference Operators

Shows two parallel regions fused to reduce fork/join overhead. Thefirst end do
hasanowai t because all the data used in the second loop is different than all the
data used in thefirst loop.

subroutine do_2 (a,b,c,d, mn)
real a(n,n), b(n,n), c(mm, dimm

I $onmp parall el

I $onmp& shared(a, b,c,d, mn)
' $omp& private(i,j)

I $onmp do schedul e(dynani c, 1)

doi =2, n
doj =1, i
b(j,i)=(C a(j,i) +a(j,i-1))/ 2
enddo
enddo

I $omp end do nowai t
I $omp do schedul e(dynam c, 1)

doi =2, m
doj =1, i
d(j,i)=(C c(j,i) +c(j,i-1))/ 2
enddo
enddo

I $omp end do nowai t
I $onmp end parall el
end

C
kd
[eR
&
i
S
g

kappro-support@kai.com 177

C « Fortran Examples Examples of OpenMP usage in Fortran

C.3 do: Reduce Fork/Join Overhead

Routinesdo_3a and do_ 3b perform numerically equivalent computations, but
becausethepar al | el directiveinroutinedo_3b isoutsidethedo j loop,
routinedo_ 3b probably forms teams less often, and thus reduces overhead.

subroutine do_3a (a, b, mn)

real a(n,m, b(n,m

doj =2, m
I $onmp parall el
I $omp& shared(a, b, n,j)
I $omp& private(i)
I $onmp do
doi =1, n
a(i,j) =b(i,j) / a(i,j-1)
enddo
' $onmp end do nowait
I $onmp end parall el
enddo
end

subroutine do_3b (a, b, mn)
real a(n,m, b(n,m

I $onmp parall el
! $omp& shared(a, b, mn)
' $omp& private(i,j)
doj =2, m
I $onmp do
doi =1, n
a(i,j) =b(i,j) / a(i,j-1)
enddo
I $onmp end do nowai t
enddo
I $onmp end parall el
end

178 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.4 sections: Two Difference Operators

Identical to “do: Two Difference Operators” on page 177 but sses i ons
instead ofdo. Here the speedup is limited to 2 because there are only 2 units of
work whereas in “do: Two Difference Operators” on page 177 thene-are m-1
units of work.

subroutine sections_1 (a,b,c,d, mn)
real a(n,n), b(n,n), c(mm, dimm

I $onmp parall el

I $onmp& shared(a, b, c,d, mn)
I'$omp& private(i,j)

I $onp sections

I $onp section

doi =2, n
doj =1, i
b(j,i)=(C a(j,i) +a(j,i-1))/ 2
enddo
enddo
I $onp section
doi =2, m
doj =1, i
d(j,i)=(C c(j,i) +c(j,i-1))/ 2
enddo
enddo

I'$onp end sections nowait
I $onmp end parall el
end

kappro-support@kai.com 179

C
kd
[eR
&
i
S
g

C « Fortran Examples Examples of OpenMP usage in Fortran

C.5 dngle: Updating a Shared Scalar

This example demonstrates how to use asi ngl e construct to update an ele-
ment of the shared array a. The optional nowai t after the first loop is omitted
because we need to wait at the end of the loop before proceeding into the si n-

gl e.
subroutine sp_1a (a, b, n)
real a(n), b(n)
I $onmp parall el

! $omp& shared(a, b, n)
I'$omp& private(i)

I $onmp do
doi =1, n
a(i) =1.0/ a(i)
enddo
I $onmp single

a(l) =mn(a(1), 1.0)
I'$onmp end single
! $onmp do
doi =1, n
b(i) =b(i) / a(i)
enddo
' $onmp end do nowait
I $onmp end parall el
end

180 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.6 sections: Updating a Shared Scalar

Identical to “single: Updating a Shared Scalar” on page 180 but using different
directives.

subroutine psection_sp_1 (a,b,n)
real a(n), b(n)

I $onmp parall el
I $onmp& shared(a, b, n)
I $omp& private(i)
I $onp do
doi =1, n
a(i) =1.0/ a(i)
enddo
I $onmp sections
a(l) = mn(a(1), 1.0)
I $onp end sections
I $onp do
doi =1, n
b(i) =b(i) / a(i)
enddo
I $omp end do nowai t
I $omp end parall el
end

C
kd
[eR
&
i
S
g

kappro-support@kai.com 181

C « Fortran Examples Examples of OpenMP usage in Fortran

C.7 do: Updating a Shared Scalar

Identical to “single: Updating a Shared Scalar” on page 180 but using different

directives.
subroutine do_sp_1 (a,b,n)
real a(n), b(n)
I $omp parall el

I $omp& shared(a, b, n)
' $omp& private(i)

I $onmp do
doi =1, n
a(i) =1.0/ a(i)
enddo
I $onp end do
! $onmp do
doi =1, 1
a(l) =mn(a(1), 1.0)
enddo
I $onp end do
I $onp do
doi =1, n
b(i) =b(i) / a(i)
enddo

I $omp end do nowai t
I $omp end parall el
end

182 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.8 paralld do: A Simple Difference Operator

Identical to “do: A Simple Difference Operator” on page 176 but using different
directives.

subroutine paralleldo_1 (a,b,n)
real a(n,n), b(n,n)

I $onmp parallel do
I $onmp& shared(a, b, n)
I'$onmp& private(i,j)
I $onmp& schedul e(dynani c, 1)
doi =2, n
doj =1, i
b(j,i)=C a(j,i) +a(j,i-1)) / 2
enddo
enddo
end

kappro-support@kai.com 183

C
kd
[eR
&
i
S
g

C « Fortran Examples Examples of OpenMP usage in Fortran

C.9 parallel sections: Two Difference Operators

Identical to “sections: Two Difference Operators” on page 179 but using differ-
ent directives. The maximum performance improvement is limited to the num-
ber of sections run in parallel, so this example has a maximum parallelism of 2.

subroutine sections_2 (a,b,c,d, mn)
real a(n,n), b(n,n), c(mm, dimm

I $onp parall el sections

| $omp& shared(a, b,c,d, mn)
I'$omp& private(i,j)

I $onmp section

doi =2, n
doj =1, i
b(j,i)=(C a(j,i) +a(j,i-1)) / 2
enddo
enddo
I $onmp section
doi =2, m
doj =1, i
d(j,i)=C c(j,i) +c(j,i-1)) / 2
enddo
enddo
I'$onmp end parallel sections
end

184

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.10 barrier: Testing then Modifying a Shared Object

Usingabarri er after thefirst end do instead of synchronizing on array b
everywhere. The end do after thefirst loop is optional but specified in this case.

subroutine barrier_1 (a,b,c,d, mn)

real a(n,n), b(n,n), c(mm, dimm
real div

I'$onmp parallel
I $omp& shared(a, b, c,d, mn)

I $omp& | ocal (i,j,div)
I'$onp do al ways dynamic trapezoi da
doi =1, n-1
doj =1, i
b(j,i) =a(j,i) + a(j,i+l)
enddo
enddo
I'$onp end do
if (b(1,1) .gt. 100.0) then
div =20
el se
div =40
endi f

I'$omp barrier
I'$omp do al ways dynam ¢ gui ded

doi =1, n
doj =1, i
b(j,i) =b(j,i) / div
enddo
enddo

I'$omp end do nowait
I'$omp end parallel
end

C
kd
[eR
&
i
S
g

kappro-support@kai.com 185

C « Fortran Examples Examples of OpenMP usage in Fortran

C.11 Simple Reduction

This demonstrates how to perform areduction using partial sumswhile avoiding
synchronization in the loop body.

subroutine reduction_1 (a, mn, sum
real a(mn)

I $omp parall el
I $omp& shared(a, mn, sum
' $omp& private(i,j,local _sum
|l ocal _sum= 0.0
I $onmp do
doi =1, n
doj =1, m
| ocal _sum = |l ocal _sum + a(j,i)
enddo
enddo

' $onmp end do nowait
I'$onmp critical
sum = sum + | ocal _sum
I'$omp end critica
I $onmp end parall el
end

The above reduction could also use the REDUCTI ON () clause as follows:

subroutine reduction_2 (a, mn, sum
real a(mn)

I $onp parall el do

I $onmp& shared(a, mn)
I'$onmp& private(i,j)
I'$onmp& reduction(+:sum

doi =1, n
doj =1, m
sum = sum + a(j,i)
enddo
enddo
end

186

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.12 threadprivate: Private Common

This example demonstrates the use of t hr eadpr i vat e privatizable conmon
blocks.

subroutine tc_1 (n)
common /shared/ a
real a(100, 100)
conmon /private/ work
real work(10000)
I'$onp threadprivate (/private/) ! this privatizes
I comon /private/
I $onmp parall el
I $onmp& shared(n)
' $omp& private(i)

! $onmp do
doi =1, n
call construct_data() ! fills array work()
call use_data() I uses array work()
enddo

' $onmp end do nowait
I $onmp end parall el
end

C
kd
[eR
&
i
S
g

kappro-support@kai.com 187

C « Fortran Examples Examples of OpenMP usage in Fortran

C.13 threadprivate: Private Common and M aster
Thread

In this example, the value 2 is printed since the master thread’s copy of a vari-
ableinat hr eadpri vat e privatizable common block is accessed within a
mast er sectionor in serial code sections. If asi ngl e wasused in place of the
mast er section, some single thread, but not necessarily the master thread,
would setj to 2 and the printed result would be indeterminate.

subroutine tc_2
common /bl k/ j
I $onp threadprivate (/blk/)

j =1
I $onmp parall el
I $onp mast er

j =2

I $omp end mast er
I $onmp end parall el

print *, j
end

188

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.14 Avoiding External Routines: reduction

This example demonstrates two coding styles for reductions, one using the external
routinesonp_get _nmax_t hreads() andonp_get _t hread_nun() andthe
other using only OpenMP directives.

subroutine reduction_3a (n)

real gx(0:7) I assume 8 processors
doi =0, onp_get _max_threads()-1
gx(i) =0
enddo
I $omp parall el

I $onmp& shared(a)
' $omp& private(i,lx)

Ix =0
I $onp do
doi =1, n
Ix =1Ix + a(i)
enddo

' $onmp end do nowait
gx(onp_get _thread num()) = Ix
I $omp end parall el

x =0

doi =0, onp_get _max_threads()-1
X = x + gx(i)

enddo

print *, x
end

As shown below, this example can be written without the external routines.

subroutine reduction_3b (n)

x =0

I $onmp parall el

I $onmp& shared(a, x)

' $omp& private(i,lx)
Ix =0

kappro-support@kai.com 189

C
kd
[eR
&
i
S
g

C « Fortran Examples Examples of OpenMP usage in Fortran

enddo
' $onmp end do nowait
I'$onmp critical

X =X +1x
I'$omp end critica
I $omp end parall el

print *, X
end

This example can also be written more simply using ther educt i on () clause

asfollows:
subroutine reduction_3c (n)
x =0
I $onmp parall el

I $onmp& shared(a)

I $omp& private(i)

' $onmp do reduction(+:x)
doi =1, n

x =x + a(i)

enddo

' $onmp end do nowait

I $onmp end parall el

print *, x
end

190 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.15 Avoiding External Routines: Temporary Storage

This example demonstrates three coding styles for temporary storage, one using the
external routineand onrp_get _t hr ead_nun() and the other two using only
directives.

subroutine | ocal _la (n)

di mensi on a(100)

conmmon /cm/ t(100,0:7) ! assune 8 procs nax
I $onp parallel do
I $omp& shared(a,t)
I $onmp& private(i)

doi =1, n
doj =1, n
t(j, onp_get thread nun()) = a(i) ** 2
enddo
call work(t(1,onp_get thread num()))
enddo
end

If t isnot global, then the above can be accomplished by puttingt inthe
privat e clause

subroutine local _1b (n)
di mensi on t (100)

I $onmp parallel do
I $onp& shared(a)
' $onmp& private(i,t)

doi =1, n
doj =1, n
t(j) =a(i) ** 2
enddo
call work(t)
enddo
end

If t isglobal, thenthet hr eadpr i vat e directive can be used instead.

subroutine local _1c (n)
di mensi on t (100)
comon /cm/ t

I $onp threadprivate (/cmm/)

I $onp parall el do

kappro-support@kai.com 191

C
kd
[eR
&
i
S
g

C « Fortran Examples

Examples of OpenMP usage in Fortran

I $onmp& shared(a)
I $omp& private(i)
doi =1, n
doj =1, n
t(j) =
enddo
call work !
enddo
end

a(i) ** 2

access t fromcomon /cmm/

192

http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.16 firstprivate: Copyingin Initialization Values

Not all of the values of a and b are initialized in the loop before they are used (the
rest of thevaluesare producedby i nit _aandi ni t _b).Usingfirstprivate
for a and b causes theinitiaization valuesproduced by i nit _a andi nit_b to

be copied into private copies of a and b for usein the loops.

subroutine dsq3_b (c,n)

i nteger n
real a(100), b(100), c(n,n), X, y
call init_a(a, n)

call init_b(b, n)
| $onmp parallel do shared(c,n) private(i,j,X,Yy)
' $onpé& firstprivate(a,b)

doi =1, n
doj =1, i
a(j) = calc_a(i)
b(j) = calc_b(i)
enddo
doj =1, n
x = a(i) - b(i)
y = b(i) + a(i)
c(j,i) =x*y
enddo
enddo

I $omp end parallel do
print *, X, vy
end

C
kd
[eR
&
i
S
g

kappro-support@kai.com 193

C « Fortran Examples Examples of OpenMP usage in Fortran

C.17 threadprivate: Copyingin Initialization Values

Similar to “firstprivate: Copying in Initialization Values” on page 193 except
usingt hr eadpr i vat e common blocks. Farhr eadpri vat e, copyi nis
used instead dfi r st pri vat e to copy initialization values from the shared
(master) copy of bl k/ to the private copies.

subroutine dsq3_b tc (c,n)
i nteger n
real a(100), b(100), c(n,n), X, Yy
common /blk/ a,b
I $onp threadprivate (/blk/)

call init_a(a, n)

call init_b(b, n)
I'$onp parallel do shared(c,n) private(i,j,x,y)
! $onp& copyi n(a, b)

doi =1, n
doj =1, i
a(j) = calc_a(i)
b(j) = calc_b(i)
enddo
doj =1, n
x = a(i) - b(i)
y = b(i) + a(i)
c(j,i) =x*y
enddo
enddo

I $onmp end parallel do
print *, X, vy
end

194 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.18 Manual loop collapsing

Consider the following FORTRAN 77 code segment which performs the addition
of two arrays:

integer i, j, k, n, m |
paraneter (n=1000, m=100, |=10)
real a(n,ml), b(n,ml), c(n,ml)

do k =1, |

doj =1,

doi =1, n
a(i,j,k) =b(i,j,k) +c(i,j,k)

end do

end do

end do

Since most current implementations of OpenMP do not support multiple levels of
nested parallelism, only the outermost loop is parallelizable without loop restruc-
turing:

integer i, j, k, n, m |
par aneter (n=1000, m=100, |=10)
real a(n,ml), b(n,ml), c(n,ml)

c Only the outernost loop is parallelized. C
! $onmp parallel do private(i,j,k) shared(a,b,c,n,ml) 8
do k =1, | =

doj =1, m
doi =1, n %
a(i,j,k) =b(i,j,k) +c(i,j,k) ~
end do L
end do %
end do =
I'$onmp end parallel do L?

Thisis not necessarily the most efficient parallelization possible, because even
though the k iterations are distributed among threads, theinner i andj loops still
executein serial. Parallel performance and scalability are likely to be poor if the
value of k issmall compared to the number of processors and/or thevaluesof i and

kappro-support@kai.com 195

C « Fortran Examples Examples of OpenMP usage in Fortran

j . One possible parallelization strategy is to manually collapse two or more of
the loops as follows:

integer i, j, k, n, m |, Kkj
paraneter (n=1000, m=100, |=10)
real a(n,n,n), b(n,n,n), c(n,n,n)

¢ Now all of the “k” and “j” iterations are
c distributed among threads; the inner loop is
c still executed in serial.
I$omp parallel do private(i,j,k,kj)
I$omp& shared(a,b,c,n,m,l)
dokj=0,I* m-1
k=1+kjm
j =1+ mod(kj, m)
doi=1,n
a(i,j,k) = b(i,j,k) + c(i,j,k)
end do
end do
I$Somp end parallel do

Instead of distributing | iterations among threads, now I*m iterations are dis-
tributed. However, calculating the loop indices involves an additional computa-
tional expense. GuideView can be used to determine whether this parallelization
strategy is appropriate for any particular loop (performance and scalability will
likely depend on the actual values of the loop indices and the amount of work
performed within the loop). See the example called “workshare” on page 197
for another possible parallelization strategy.

196 http://mww.kai .conVparallel/kappro/

Examples of OpenMP usage in Fortran Fortran Examples ¢« C

C.19 workshare

Consider the following FORTRAN 77 code segment which performs the addition
of two arrays:

integer i, j, k, n, m |
paraneter (n=1000, m=100, k=10)
real a(n,ml), b(n,ml), c(n,ml)

do k
do j
do i

o
LN
a(i,j, k) =b(i,j,k) +c(i,j.,k)

(Il
e

end do
end do
end do

This computation can be expressed more succintly using Fortran 90 array syntax as
follows:

integer i, j, k, n, m |
paraneter (n=1000, m=100, |=10)
real a(n,ml), b(n,ml), c(n,ml)

a=b+c

Satisfactory parallelization of this computation is difficult without the wor k-

shar e directive. Since most current implementations of OpenM P do not support
multiple levels of nested parallelism, only the outermost loop in the FORTRAN 77
example is parallelizable without code restructuring (see the example called “
ual loop collapsing” on page 195):

integer i, j, k, n, m |
paraneter (n=1000, m=100, |=10)
real a(n,ml), b(n,ml), c(n,ml)

C
kd
[eR
&
i
S
g

c Only the outernmost loop is parallelized.
I'$onmp parallel do private(i,j,k)
I $onmp& shared(a, b,c,n,ml)

do k =1, |

kappro-support@kai.com 197

C « Fortran Examples Examples of OpenMP usage in Fortran

doj =1, m
doi =1, n
a(i,j,k) =b(i,j,k) +c(i,j,k)
end do
end do
end do

I'$onmp end parallel do

The Fortran 90 example cannot be parallelized at al without thewor kshar e
directive; placing the array assignment inside of a parallel region merely causes
each thread to duplicate the computation:

integer i, j, k, n, m |
paraneter (n=1000, m=100, [|=10)
real a(n,ml), b(nml), c(n,ml)

c Placing the array assignnent inside a parallel
c region produces NO performance gain; all threads
c performthe entire conputation
I $onmp parall el
a=b+c
I $omp end parall el

Finally, here is how this computation can be efficiently parallelized using the
wor kshar e directive:

integer i, j, k, n, m |
par aneter (n=1000, m=100, |=10)
real a(n,ml), b(n,ml), c(n,ml)

c Placing the array assignnent inside a workshare
c directive causes the work to be divided anpong

c threads
I $onp parallel workshare
a=b+c

I $onp end parallel workshare

Evaluation of each element of the array expression is a unit of work, and these
units of work are assigned to threads in an such away that each unit is executed
exactly once.

198 http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options ¢ D

APPENDIX D Addltl Ona.l KAP/PI'O
Options

Additional KAP/Pro Options: Alphabetic Listing

This section lists the additional Assure and Guide options that can be specified

using the -WG,... driver option. To make these options easy to find, they are listed
alphabetically rather than by functional category. The headingsin the following
sections list the full and short names for each option (short names are given in
parentheses). Note that each of these options is preceded bpaacter. A sum-
mary of these options in the form of a table is given in the following section, “A
tional KAP/Pro Options: Table” on page 211

c*$*optionsline (Fortran only)

Pro Options

When a Fortran source file should always be run with the same command line
options, the first line of the file may be used to specify those options. The formg
this line is:

[an
<
X
©
c
2
=
©
<

c*$*options option[=value] [option[=value]]...

Thec*$*options (or *$*options) must appear in columnsll (or $10) with a
character space between this command and the options that follow.

kappro-support@kai.com 199

D « Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

Only thefirst line may be used for c*$* options. Short or long option names
may be used on thisline.

Options of the form -option=<name> (e.g., -cmp) cannot be specified on the
c*$* optionsline of the source file. These options may be specified on the com-
mand line only.

If conflicting options are specified on the command line and on the c* $* options
line, the c*$* options line takes precedence. If additional options are specified
on the c*$*options line, these are used in addition to those specified on the
command line.

If the command line option -ignoreoptionsis set (see page 204), any
c*$*optionslinein the source file is treated as a comment.

-alignmax=<integer>

Thisis an expert option that you would normally not use. The -alignmax option
tells Assure or Guide the size of the largest data type the native compiler will
pad in acommon block or VAX structure in order to achieve natural alignment.
The default value is platform-specific, and the driver provides an appropriate
value based on the command line switches passed to the native compiler.

-assume=<string> (-a=<string>)

-noassume (-nas)

The -assume option instructs Assure or Guide to make certain global assump-
tions about the program being processed. The -assume option switch values are
the following:

a Different subroutine or function parameters may refer to the same object.

b Array subscripts may go outside the declared bounds.

¢ Constants used in subroutine or function calls will be placed in temporary
variables.

e EQUI VALENCE statements may cause different names to refer to the same
memory location.

f The 1’ value applies only to parallel loops generated automatically from
array syntax by Assure or Guide, wheancurrent is specified. When *

is specified, Assure or Guide ensures the shared copy of each private vari-
able is updated after a parallel loop, using the value assigned in the loop’s

200

http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options ¢ D

final iteration. Thisbehavior is analogousto using thel ast pri vat e()
instead of pri vat e() for all private variables. Ifl * is omitted, Assure or
Guide will assume private variables do not need their final values stored in the

shared copy.

The default value isassume=cel. To disable all the above assumptions, specify
-noassume on the command line.

-blank_padding (-bp)
(-noblank_padding) (-nbp)

The-blank_padding option instructs Assure or Guide to pad input lines with trail-
ing blanks. The default value of this option varies by platform and is chosen to
match the behavior of the native compiler.

-case
-nocase (-ncase)

The-case option instructs Assure or Guide to distinguish between upper and lower-
case in identifier names. The defawlbcase instructs Assure or Guide to ignore
case in variable names.

When Assure or Guide inserts or modifies lines in a program, it usually creates the
new code in capital letters. Thease option requires Assure or Guide to preserve

the original case of variables in the new code. Making Assure or Guide case-
tive can be important. If, for example, there is a variable naareed a variable
namedN in the original source code, Assure or Guide will change tioeN, caus-
ing a conflict between two different variables which now have the same name)
Using-WG,-case would preserve the case-sensitive variable names and avoid
contention.

-chunk=<integer > (-chk=<integer>) (Guide only)

This option specifies a parameter for parallel loop scheduling, and is to be usg
conjunction with thescheduling option. Together, thescheduling and the.chunk
options establish default scheduling for parallel loops within the source files bé
compiled. Individual loops can override this default scheduling mechanism by
using explicit scheduling options on thar al | el do ordo directive. The

default chunk size is 1. See “Scheduling Options” on page 139 for descriptions of
the-chunk options.

Additional KAP/ O
Pro Options

kappro-support@kai.com 201

D « Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

-cmp[=<file>]

The -cmp option instructs Assure or Guide to place the optimized Fortran pro-
gram in a specified file. The default name of thisfileis derived from the input
filename by adding A (Assure) or G_ (Guide) to the beginning of the input file-
name. If -cmp=<file> is specified, the Fortran output file is written to the speci-
fied file. If -cmp is specified with no argument, then the output is written to
standard output.

-concur rentize (-conc) (Guide only)
-noconcurrentize (-noconc) (Guide only)

Guide uses the -concur rentize switch to enable parallelization of loops derived
from array syntax only. This option can be used to generate parallel 1oops from
Fortran 90 array syntax. Guide will only run aloop in paralléel if it determines
there is sufficient work available to benefit from parallelism. You can adjust
Guide’s idea of sufficient work via theninconcurrent option. The-concur -
rentize option also impliesscalaropt=1.

-datasave (-ds) (Fortran only)
-nodatasave (-nds) (Fortran only)

The-datasave option instructs Assure or Guide to treat local variables in a sub-
routine or function which appear DATA statements as if they were also in

SAVE statements. That is, values will be retained between invocations of the
subroutine or function. This is the practice of many commercial Fortran compil-
ers, anddatasave is on by default. This choice affects certain optimizations
performed by Assure or Guide.

The negative optiornodatasave, complies with the Fortran standard. See also
the description of thesave command line option.

-directives=p (-dr=p)
-nodirectives (-ndr)

The-directives=p option enables parallel programming directives. This option
is on by default. To disable parallel programming directives;nssir ectives.

202

http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options ¢ D

-dlines (-dl) (Fortran only)
-nodlines (-ndl) (Fortran only)

The-dlinesoption instructs Assure or Guideto treat aDor d in column 1 of Fortran
source as a space character. The rest of that line will then be parsed as anormal For-
tran statement. By default, Assure or Guide treats these lines as comments. This
option is useful for the inclusion or exclusion of debugging lines.

In the following example, the first (default) case shows that the D line isignored:

Fortran synt ax:

do 10 i = 1,n
a (i) =b (i)
d wite (*,*) a (i)
10 conti nue
becomes
do 10 i=1,n
a(i) = b(i)

10 conti nue
But when -dlines is specified, Assure or Guide sees a\WRI TE statement:

Fortran synt ax:

do 10 i=1,n
a(i) = b(i)
wite (*, *) a(i)

10 conti nue

-heaplimit=<integer > (-heap=<integer>)

Assure and Guide may require large amounts of memory in order to process the
source code. The -heaplimit option specifies the maximum size in megabytes that
Assure or Guide can use for aheap. If thislimit is breached, Assure or Guide will
stop processing the source code and try to exit gracefully with an “out of mem
error message. The default size is system-dependent.

Pro Options

[y
<
X
o]
=
=)
h=
©
<

If i nt eger is greater than the amount of available memory, Assure or Guide may
run out of memory before it reaches the heaplimit. Assure and Guide rely upon the
operating system to tell it that the OS has run out of memory before that problem
occurs. Some operating systems kill Assure and Guide without first saying that
there is insufficient memory. In that case, Assure or Guide may stop processing the

kappro-support@kai.com 203

D « Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

code and exit in an undefined manner. Using -heaplimit makes a graceful exit
more likely.

-ignoreoptions (-ig) (Fortran only)
-noignor eoptions (-nig) (Fortran only)

The -ignoreoptions option directs Assure or Guide to ignore any c*$*options
or *$*options line that may appear at the top of a Fortran input file. Normally,
Assure and Guide read the c* $* options or *$* options instruction for further
command line options, as explained in the description of the c*$* optionsline
on page 199.

Setting -noignor eoptions directs Assure or Guide to acknowledge and accept
the c*$* optionsline in the source program. This is the default.

-include=<path> (-inc=<path>)

By default, Assure and Guide look only in the current directory to locate files
specified in | NCLUDE statements. The -include option allows an alternate
directory to be specified for locating those files. An | NCLUDE file whose name
does not begin with adlash (/) is sought first in the directory containing the file
being processed, then in the directory named in the -include option. Multiple
-include options may be used to specify multiple include directories. It is rec-
ommended that you use the native compiler’s include option, dfterstead.

-input=<file> (-i=<file>)

When running Assure or Guide in stand-alone mode, simply enter the source
filename on the command line. This option is available for special circum-
stances and for compatibility with other operating systems.

On UNIX systems, if theinput option is specified without a filename, Assure

or Guide will read its source from standard input and write the transformed code
to standard output. In this case, no listing file will be generated unless a filename
is explicitly provided with thelist option.

http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options ¢ D

-integer =<integer > (-int=<integer>)

This option specifiesasize in bytes, i nt eger, for the default size of | NTEGER
variables. Wheni nt eger =2 or 4, take | NTEGER* <integer > as the default

I NTEGER type. When -integer =0 is specified, Assure and Guide use the ordinary
default length for | NTEGER variables. The default is -integer =4.

-lines=<integer> (-In=<integer>)

The -lines option enables the listing from Assure or Guide to be paginated for print-
ing in different formats. The number of lines per page on the listing may be
changed using the -lines option. The setting -lines=0 instructs Assure or Guide to
paginate only at subroutine boundaries. The default setting is -lines=55.

-list[=<file>]
-nolist

The -list option informs Assure or Guide where to place the listing file. When no
filename is specified, Assure and Guide derive the default name of the listing file
from the input filename by adding A_ (Assure) or G_ (Guide) to the beginning of
the filename and changing the extensionto . out . If afilename is specified, then
thelisting file is written to that file. To disable generation of the listing file, enter
-nalist on the command line. The default is-nolist.

-listoptions=<string> (-lo=<string>)

The -listoptions option tells Assure or Guide what optional information to include
in the listing, transformed code, and error files, if such files are to be generated.

Any of the following information can be selected:

Value Prints
k Additional Assure and Guide command line options used,
printed at the end of each program unit
o] Original source program annotated listing
t Transformed program annotated listing

The -listoptions=k command line option can be used to determine what your
default settings are. The default listing file name is derived from the input filename
by adding A (Assure) or G_ (Guide) to the beginning of the filename and chang-
ing the extension to . out .

kappro-support@kai.com 205

[y
<
X
o]
=
=)
h=
©
<

Pro Options

D « Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

To produce no listing file, enter -nolist on the command line. The default value
is-listoptions=ko.

-logical=<integer > (-log=<integer >)

This option specifiesasize in bytes, i nt eger , for the default size of LOG -
CAL variables. Wheni nt eger =1, 2, or 4, take LOd CAL* <integer> as the
default LOG CAL type. The value assigned to -logical should be equal to the
value assigned to -integer. The default is -logical=4.

-minconcurrent=<integer> (-mc=<integer>) (Guide only)

The -minconcurrent option only appliesto parallel loops created by Guide
from array syntax. The -minconcurrent option implies the -concurrentize
switch.

Executing aloop in paralel incurs overhead which varies with different sys-
tems. If aloop has little work, parallel execution may be slower than serial exe-
cution because of the overhead. However, beyond a certain level, performance
gain may be obtained through parallel execution. Thislevel is passed to Guide
with the -minconcurrent option.

The argument value must be a positive integer or 0. The higher the -minconcur -
rent value, the larger the loop body must be (have more iterations, more state-
ments, or both) to run concurrently.

At compilation time, Guide estimates the amount of computation inside aloop
by multiplying the loop iteration count by the sum of the non-index operands/
results and the non-assignment operators and compares this value with the -min-
concurrent value. If the estimated amount of work is greater than the -mincon-
current value, Guide generates concurrent code for the loop. Otherwise, it
leaves the loop serial. If the DOloop bounds are known at compilation time, the
exact iteration count can be computed. However, if the DOloop bounds are
unknown, Guide generates an | F expression in the directive. Thisisinterpreted
by the compiler as arequest to generate two loops, one concurrentized and one
left serial, and an | F-THEN-EL SE to make arun time check to decide whether
or not to execute the loop in parallel. (This caseis called atwo-version loop.)

To disable the generation of two-version loops throughout the program, use the
command line option -minconcur rent=0. This setting might affect performance
if branch prediction is an issue.

206

http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options ¢ D

-onetrip (-1)
-noonetrip (-nl)

The -onetrip option alows one-trip DOloops to be specified. Many pre-FOR-
TRAN 77 compilers implemented DOloops which would always have at least one
iteration, even if theinitial value of the loop control variable was higher than the
final value. This option informs Assure or Guide that the program being processed
contains loops which need the one-trip feature. This option is off by defaullt.

-optimize=<integer> (-o=<integer>)

The -optimize option sets the base optimization and analysis level. The allowed
optimization levels and their meanings are:

0 Assure and Guide perform no optimizations on parallel directives.
1 Assure and Guide optimize parallel directives.

The default is -optimize=1.

-real=<integer> (-rl=<integer>)

This option specifies asize in bytes, for the default size of REAL variables. When
the -real option is present, Assure and Guide use REAL* <integer > as the default
REAL type.

The default value is -real=4.

NOTE: This option merely informs Assure and Guide about the default REAL size;
it does NOT ask Assure or Guide to convert from REAL* 4 to REAL* 8.

-recursion (-rc) (Fortran only)
-norecursion (-nrc) (Fortran only)

Pro Options

The -recursion option informs Assure and Guide that subroutines and functionsin
the source program may be called recursively (that is, a subroutine or function calls
itself, or it calls another routine which callsit). Recursion affects storage allocation
decisions and the interpretation of the -save option. This option is off by default.

[y
<
X
o]
=
=)
h=
©
<

The -recursion option must be in force in each recursive routine that Assure or
Guide processes or unsafe transformations could result.

kappro-support@kai.com 207

D « Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

-roundoff=<string> (-r=<string>) (Guide only)

The -roundoff option specifies the amount of change from serial roundoff error
that is tolerable in the program. If an arithmetic reduction is accumulated in a
different order in the processed program than it was in the original program,
then the roundoff error is accumulated differently, and the final result may differ
from that of the original program. In most cases, the difference isinsignificant.
However, if the source program is numerically unstable or if it requires extreme
precision, certain restructuring transformations performed by Guide must be dis-
abled in order to obtain exactly the same results as those obtained in the original
program.

The allowed -roundoff levels and their meanings are:

0 Guide allows no roundoff-changing transformations. When -roundoff=0, the
transformed code isin strict conformance to the Fortran standard. Thisisthe
default. When -roundoff>0, the standards are rel axed.

1 Guide enables expression simplification and code floating.

-save=<string> (-sv=<string>)

The -save option instructs Assure or Guide on how to handle the storage class of
local scalar variables. In particular, Assure and Guide can be instructed to per-
form live variable analysis to help decide whether to save the value of alocal
scalar variable between invocations of afunction or aroutine by generating a
SAVE statement. Assure and Guide can also be instructed to treat the default
storage class of al local scalar variables as either AUTOVATI Cor STATI C. In
any case, neither Assure nor Guide will delete or ignore a hand coded SAVE
statement.

There are four possible settings for the -save option:

Specifying -save=all (-save=a) tells Assure or Guide not to perform live vari-
able analysis. However, all variableslocal to afunction or aroutine and COv
MON blocks will be treated as if they are saved. The -save=all option is not
affected by the -[no]recur sion option.

The default -save=manual (-save=m) tells Assure or Guide not to perform live
variable analysis. Assure and Guide assume that the necessary SAVE statements
have been inserted into the code, and will perform no corresponding analysis of
its own. Hand coded SAVE statements are assumed to be correct and sufficient.

The -save=manual setting is not affected by the -[no]recursion option.

208

http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Alphabetic Listing Additional KAP/Pro Options ¢ D

Specifying -save=manual_adjust (-save=ma) instructs Assure or Guide to per-
form live variable analysis. The effect of -save=manual_adjust depends on the
-[no]recursion setting:

With -norecursion, SAVE statements will be added for variables that are
used before being defined on at least one path from one entry point to the
routine.

With -recursion, SAVE statements will be added for variables that are
used before being defined on all paths from all entry points to the routine.

Specifying -save=all_adjust (-save=aa) instructs Assure or Guide to perform live
variable analysis. The effect of -save=all_adjust depends on the -[no]recursion
setting:

With -norecursion, treat all local variables as saved, except those that are
defined before use in al paths from all entry points and that are not in
hand coded SAVE statements.

With -recursion, thisis the same as -save=all.

Saving local variables may be required for correct execution, but can restrict
Assure and Guide optimizations. Accordingly, -save=ma should be used with cau-
tion.

-scalaropt=<integer > (-so=<integer>) (Guide only)

The -scalaropt option sets the level of scalar transformations performed. The
allowed values and their meanings are:

0 No scalar optimizations are performed. Thisis the defaullt.
1 Forward substitution and backward elimination are performed.

Pro Options

-scan=<integer> (-scan=<integer>)

[y
<
X
o]
=
=)
h=
©
<

The -scan option alows the length of Fortran input lines to be set. Assure and
Guide will ignore (by treating as a comment) characters on columns beyond the
value of the -scan option. The value must be one of 72, 120, or 132. The default is
-scan=72.

kappro-support@kai.com 209

D « Additional KAP/Pro Options Additional KAP/Pro Options: Alphabetic

-scheduling=<char acter > (-schd=<char acter >) (Guide only)

The -scheduling option tells Guide what kind of scheduling to use for loop iter-
ations on a multiprocessor machine. This option is used in conjunction with the
-chunk option. See “Scheduling Options” on page 139 for a description of the
-scheduling options.

-suppress=<string> (-su=<string>)

The-suppress option disables the printing of individual classes of Assure or
Guide messages. These message classes range from syntax warning and error
messages to messages about the optimizations performed. The allowed values of
the-suppress option are as follows:

Value Disables

d Data Dependence messages
Syntax Error messages
Informational messages
Not Optimized messages
Questions
Standardized messages
Syntax Warning messages

S wa s —o

Any number of these options can be combined in a single string, for example
-WG,-suppress=eq. The default instructs Assure and Guide to report all mes-
sage types listed above.

-syntax=<string> (-sy=<string>)

The-syntax option directs Assure and Guide to check for compliance with cer-
tain syntactic rules. If you are familiar with a different implementation of For-
tran, then using a dialect switch can prevent a construct from being translated
differently than expected.

With -syntax=a, Assure and Guide check for strict compliance with the ANSI
Fortran 77/90 standard. Warning and error messages are issued for syntax which
does not conform to the standard.

Note: With-syntax=a, syntax errors are issued for array references without sub-
scripts.

210

http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Table Additional KAP/Pro Options ¢« D

With -syntax=v, Assure and Guide accept the extensions and interpretations of
Digital or DEC Fortran 77/90.

The default, nosyntax, instructs Assure and Guide to accept a superset FORTRAN
77 and Fortran 90.

-tablesize=<integer> (-ts=<integer>)

The tablesize value is compared to the mathematical product of the number of state-
ments and the number of variables referenced in a given program unit. When the
tablesize value is less than this product, a "program-too-large” message will be
issued stating the required tablesize.

For Unix-based platforms, please note that you should also carefully review your
process resource limitswith thel i m t command before adjusting the tablesize
command-line switch. Use the commands

unlimt
or e.g.

limt stacksize 32768

toincrease al, or specific resource limits.

-type (-ty)

-notype (-nty)

The -type option instructs Assure and Guide to issue error messages for variables
not explicitly typed. The -notype default suppresses this checking.

Additional KAP/Pro Options: Table

The -W G driver option specifies additional argumentsfor Assure or Guide. To state
an Assure or Guide option, the long (full) name, short name, or any portion of the
long name, starting from the beginning, that uniquely identifies the option may be
used. Multiple options must be separated by a comma. For example, to change the
default size of | NTEGER, LOG CAL, and REAL variables, use

-WG,-integer =8,-logical=8,-real=8. As another example, to change the scheduling
designator and the chunk size, use -W G,scheduling=d,chunk=4.

Pro Options

[y
<
X
o]
=
=)
h=
©
<

kappro-support@kai.com 211

D « Additional KAP/Pro Options Additional KAP/Pro Options: Table

Table D-1 lists the additional KAP/Pro options, grouped into the following func-
tional categories:

General Optimization

These options control large classes of optimizations.

[nput-Output

These options affect the input file selection and output file naming, placement,
and characteristics.

Listing
Assure and Guide can generate listing files that contain information about the

transformations and optimizations it performs. The optionsin this category con-
trol the information Assure or Guide includesin itslisting file.

Advanced Optimization

These options customize and fine-tune Guide or Assure for maximum perfor-
mance.

Fortran Dialect

These options specify the dia ect of Fortran in use.

Limits
These options inform Assure or Guide about hardware or software limitations
imposed by your target architecture. The default settings have been chosen to

take advantage of the architecture of the target machine. In most cases, you will
not need to change the default settings.

Directive Recognition

These options enable or disable recognition and processing of directives present
in the code.

212

http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Table Additional KAP/Pro Options ¢« D

Scheduling

These options inform Assure or Guide about scheduling options for parallel work-
sharing loops.

Pro Options

[y
<
X
o]
=
=)
h=
©
<

kappro-support@kai.com 213

D « Additional KAP/Pro Options

Additional KAP/Pro Options: Table

Table D-1: Additional ““-WG,...” KAP/Pro Options

Long Name

General Optimization:
-optimize=<integer>
-roundoff=<integer> (Guide
only)

-scal aropt=<integer> (Guide
only)

I nput-Output:
-cmp[=<file>]

-input=<file>
-[no]list=<file>
-project_name=<file>
(Assure only)
Listing:
-lines=<integer>
-listoptions=<string>
-suppress=<string>

Advanced Optimization:
-[no]assume
-[no]concurrentize (Guide
only)

-minconcurrent=<integer>
(Guide only)

Short Name

-0=<integer>
-r=<integer>

-so=<integer>

-cmp[=<file>]

-i=<file>
-[no]list=<file>
-pname=<file>

-In=<integer>
-lo=<string>
-su=<string>

-[n]as=<string>
-[no]conc

-mc=<integer>

Default Setting

A_<file> (Assure) or
G_<file> (Guide)

<file>
nolist

assure.prj

55
ko

nosuppress

cel
noconcurrentize

1000

http://mww.kai .conVparallel/kappro/

Additional KAP/Pro Options: Table

Additional KAP/Pro Options ¢« D

Table D-1: Additional “-WG,...” KAP/Pro Options

Long Name

Fortran Dialect:
-alignmax=<integer>
-[no]blank_padding
-[no]case
-[no]datasave
-[no]dlines
-include=<path>
-integer=<integer>
-logical=<integer>
-[nojonetrip
-real=<integer>
-[nojrecursion
-save=<string>
-scan=<integer>
-syntax=<string>
-[nojtype

Directive Recognition:
-[no]directives=<string>
-[no]ignoreoptions
-[noJopenmpcc_lines
-default=<string>

Limits:
-heaplimit=<integer>
-tablesize=<integer>

Scheduling:
-chunk=<integer>
-scheduling=<character>

Short Name

-alignmax=<integer>
-[n]bp

-[n]case

-[n]ds

-[ndi
-inc=<path>
-int=<integer>
-log=<integer>
-[n)1
-rl=<integer>
-[n]rc
-sv=<string>
-scan=<integer>
-sy=<string>
-[njty

-[n]dr=<string>
-[nlig
-[noJopenmpcc_lines
-default=<string>

-heap=<integer>
-ts=<integer>

-chk=<integer>
-schd=<character>

Default Setting

platform dependent
platform dependent
nocase

datasave

nodlines

noinclude

4

4

noonetrip

4

norecursion

manual

72

nosyntax

notype

p
noignoreoptions

openmpcc_lines
shared

system-specific
24000000

Pro Options

[y
<
X
o]
=
=)
h=
©
<

kappro-support@kai.com

215

D « Additional KAP/Pro Options Additional KAP/Pro Options: Table

216 http://mww.kai .conVparallel/kappro/

Fortran Directive Translation « E

APPENDIX E Fortran Directive
Trandation

Many Fortran programs written with older directive-based parallel programming
models can be easily moved to equivalent OpenM P implementations. While the
translation is often simple, it can also be tedious. Guide includes a number of trans-
lator scripts designed to automate much of the work involved in updating codesto
OpenMP.

All of the translation scripts require Perl to operate. Perl is generally available on
Unix systems, but is less frequently installed on Windows systems. Linksto UNIX
Perl source and Windows binaries are available from http://mww.kai.com/parallel/
kappro/helpers.

c
9
©
1)

S
=

Most Unix systems can run the Perl-based trandators as if they were executable
files, for example:

sgi 2onmp. pl pgmf > pgm onmp. f

o
=
4+
o
5
S
ot
o
LL

On Windows systems, however, you may need to call the translator scripts directly
from Perl, for example:

perl c:\KAI\gui de40\ bi n\ sgi 2onp. pl pgmf > pgmonp. f

kappro-support@kai.com 217

E « Fortran Directive Translation KAP/Pro Parallel Directive to OpenMP Directive

KAP/Pro Parallel Directive to OpenMP
Directive Tranglator

Fortran programs which have been parallelized with KAP/Pro Toolset directives
can be used as the basis for a port to the new OpenMP version of Assure and
Guide. Thekpt s2onp. pl program will help trandate KAP/Pro Parallel direc-
tivesinto OpenMP directives that Assure and Guide accept.

Thekpt s2onp. pl program accepts as an argument the name of a Fortran file
with KAP/Pro Toolset directives. The translated fileis written to st dout with
OpenMP directives added. The st dout can be redirected to capture the trans-
lated file. Any directives or constructs that cannot be handled automatically
cause diagnostics to be added inline in the translated output. The st der r out-
put contains a synopsis of the diagnostics.

Thekpt s2onp. pl transationisatotally automatic process because all of the
functionality provided by KAP/Pro Toolset directivesis available in the KAP/
Pro Toolset implementation of OpenMP directives.

Table 9-6, “kpts2omp.pl Translator Options,” below lists the options that are
available when runningpt s2onp. pl .

Table 9-6 kpts2omp.pl Trandator Options

Option Description
-[hH?] print usageinfo

-1 i f def mode, generate#i f def _OPENMP/ #endi f ' around
directives

-1 disables f def mode (default setting)

-0 original directives included in output
-0 original directives not included in output (default setting)
-t number of spaces for continuation directiv@s<e€ num <=8,
<nune default =4)
-V verbose mode, give messages about likely errors (default setting)
-V disables verbose messages

NOTE: Per| must be installed on the system to kpé s2onp. pl .

218

http://mww.kai .conVparallel/kappro/

Cray Directive to OpenMP Directive Translator Fortran Directive Translation « E

Cray Directive to OpenMP Directive Translator

Fortran programs which have been parallelized with Cray directives can be used as
the basis for a port to Assure or Guide. Thecr ay2onp. pl program will help
translate Cray Autotasking directives into OpenMP directives that Assure and
Guide accept. It is assumed that the Cray program with Autotasking directives has
been ported to work on the target machine and compiler in serial mode.

Thecray2onp. pl program accepts as an argument the name of a Fortran file
with Cray Autotasking directives. The translated file iswritten to st dout with
OpenMP directives added. The st dout can be redirected to capture the translated
file. Any directives or constructs that cannot be handled automatically cause diag-
nostics to be added inlinein the translated output. The st der r output contains a
synopsis of the diagnostics.

Thecray2onp. pl trandation isnot atotally automatic process because of some
semantic differences between the two directive sets. However, this trandlation per-
forms amgjority of the work required for migration, and most programs will not
require manual intervention. If manual intervention is required, searching for
“cray2onp” in the output will lead to places whete ay2onp. pl had trouble
performing translations automatically.

Table 9-7, “cray2omp.pl Translator Options,” below lists the options that are avail-
able when runningr ay2onp. pl .

Table 9-7 cray2omp.pl Transator Options

Option Description 2
- [hH?] print usage info '§ 8
- i f def mode, generategi f def _OPENWP/ #endi f ' around = %
directives O
-1 disables f def mode (default setting) % %
S
-0 original directives included in output (default setting) "g —
-0 original directives not included in output LL
-t number of spaces for continuation directiv@s¢ num <=8,
<nune defaul t =4)
-V verbose mode, give messages about likely errors (default setting)
-V disables verbose messages

kappro-support@kai.com 219

E ¢ Fortran Directive Translation Cray Directive to OpenMP Directive Translator

Table 9-8, “Cray to OpenMP Translations,” below lists¢hay2onp. pl
translations that are performed. Many of the directives in the table have optional
clauses that are translateddayay2onp. pl when possible. A diagnostic is
produced when there is not an equivalent OpenMP directive.

Table 9-8 Cray to OpenM P Trandations

Cray OpenMP
cm c$ taskcommon tcb c$onp threadprivate (/tcb/)
cdir$ taskcommmon tchb c$onp threadprivate (/tcb/)

cdir$ ivdep *$* assert no recurrence
cdir$ no recurrence *$* assert no recurrence
cmi c$ guard c$onp critica

cmc$ end guard c$onp end critica

cmc$ parallel c$onp parallel

First cmc$ case c$onp sections

c$onp section
Subsequent cmic$ case c$onp section

cm c$ endcase c$onp end sections
cmic$ do parallel c$onp do

cnic$ enddo c$onp barrier

cm c$ doal | c$onp parallel do
singl e schedul e(dynani c)
gui ded schedul e(gui ded, 64)
vect or schedul e(gui ded, 64)
gui ded(n) schedul e(gui ded, n)
chunksi ze(n) schedul e(dynanmi c, n)

220 http://mww.kai .conVparallel/kappro/

Cray Directive to OpenMP Directive Translator Fortran Directive Translation « E

Table 9-8 Cray to OpenM P Trandations (Continued)

Cray OpenMP
The following directives are not directly trans atable into OpenMP syntax:

cmc$ process
cmic$ al so process
cmic$ end process
cmic$ stop all pro-
cess

cmic$ do gl obal
cnmic$ continue

cmi c$ getcpus

cm c$ nunctpus
cmc$ rel cpus
cmic$ soft exit
cmc$ mcro

Cray TASKCOMMON asopposed to OpenMP THREADPRIVATE

The tools provided with Assure and Guide perform a semi-automatic translation of
Cray Fortran parallel directivesinto OpenMP directives. However, some hand edit-
ing of the resulting program may be necessary.

With Cray t askcomon, the individual elements of at askconmon can be
placed in the privatelist of apar al | el do. Thisisnot supported in OpenMP.

In the following example, the scalar elements of t askcommon / t cb1/ , which
arex andy, are on the private list but the large array z is not. With OpenMP, one
could usethe copyi n clause to achieve this effect. Since all the elements of
taskconmon/t cb2/ areontheprivatelist, theentire/ t cb2/ canbe placed on
the copyi n clause.

For example, this Cray version

c
9
©
1)

S
=

Fortran synt ax:
cm c$ taskcomon tcbl, tch2
conmon /tcbl/ x,y, z(10000)
common /tcbh2/ a,b,c

o
=
4+
o
.5
S
ot
o
LL

x =1
y =2

cmic$ do parallel private(i,x,y,a,b,c) shared(n)
doi =1, n

kappro-support@kai.com 221

E « Fortran Directive Translation SGI Directive to OpenMP Directive Translator

endda
should be trand ated into:

Fortran synt ax:
c$onp threadprivate tchl, tcb2
conmon /tcbl/ x,y, z(10000)
common /tcb2/ a,b,c

x =1
y =2
c$onp parallel do private(i) shared(n)
c$onp& copyin(x,y,/tcbh2/)

doi =1, n

endd'o.

Gl Directive to OpenMP Directive Translator

Fortran programs which have been parallelized with SGI ¢$ directives can be
used as the basis for a port to Assure and Guide. The sgi 2onp. pl program
will help tranglate SGI directives into OpenM P directives.

Thesgi 2onmp. pl program accepts as an argument the name of a Fortran file
with SGI directives. The trandated file is written to st dout with OpenMP
directives added. The st dout can be redirected to capture the tranglated file.
Any directives or constructs that cannot be handled automatically cause diag-
nostics to be added inline in the translated output. The st der r output contains
the synopsis of the diagnostics.

Most of the common SGI directives are handled automatically by this program.
Whenever manual intervention is required, searchingsfgr 2onp. pl ” in the
output will lead to places whesgi 2onp. pl had trouble performing transla-
tions.

Table 9-9, “SGI to OpenMP Translations,” below lists the SGI directives and
their translations that are performed. Many of the directives in the table have
optional clauses that are translatedslgy 2onp. pl when possible. A diagnos-

tic is produced when there is not an equivalent OpenMP directive.

222 http://mww.kai .conVparallel/kappro/

KAP Directive to OpenMP Directive Translator Fortran Directive Translation « E

None of the SGI scheduling keywords are automatically translated by
sgi 2onp. pl . Sgi 2onp. pl produces adiagnostic to assist in manually insert-
ing scheduling keywords into the program.

Table 9-9 SGI to OpenM P Tranglations

SGI directive or clauseor library routine KAP/Pro Trandation

c$doacr oss c$onp parallel do

c$ call mp_barrier c$onp barrier

c$ call np_setlock c$onp critical

c$ call np_unsetlock c$onmp end critical

np_ny_t hreadnum Not translated automatically, but can be trans-
lated usingonp_get _t hr ead_num()

np_nunt hr eads Not translated automatically, but can be trans-

latedusingonp_get _num t hr eads()
andonp_get _max_t hreads()

c$copyin Not translated automatically, but can be trans-
lated manually

c$ np_schedtype cl ause Not translated automatically, but can be trans-
lated manually

c$np_schedtype directive No trandation, have to propagate scheduling

typeto rest of file manually

NOTE: Per | must beinstalled on your systemto usesgi 2onp. pl .

KAP Directive to OpenMP Directive Trans ator

Fortran programs which contain the older PCF directives of the form * KAP* can be
used as the basis for aport to OpenMP. Thekap2onp. pl program will help trans-
late KAP directives into OpenMP directives.

c
9
©
1)

S
=

o
=
4+
o
.5
S
ot
o
LL

Thekap2onp. pl program accepts the name of a Fortran file with KAP direc-
tives. Thetrandated fileiswrittento st dout with OpenMP directives added. The
st dout can be redirected to capture the trandated file. Any directives or con-
structs that cannot be handled automatically cause diagnostics to be added inlinein
the translated output. The st der r output contains the synopsis of the diagnostics.

kappro-support@kai.com 223

E « Fortran Directive Translation KAP Directive to OpenMP Directive Translator

All cray2onp. pl translator options given in Table 9-7, “cray2omp.pl Trans-
lator Options,” on page 219, are also available fokdng2onp. pl program.

224 http://mww.kai .conVparallel/kappro/

| ndex

A
advanced optimization 212, 214
command line options 212, 214
alignmax 200, 215
al
save option 208
al_adjust
save option 209
as 200, 214
assume 200, 214
ATOMIC 131
atomic 131

B

BARRIER 132

barrier 132, 185
blank_padding 201, 215
bold typeface 4

bp 201, 215

branch prediction 206

C

c*$*options 199, 204

case 215

chk 201, 215

chunk 142,201, 215

cmp 202,214

command line options 208, 214
1 207,215
advanced optimization 212, 214
alignmax 200, 215
alphabetic listing 199-200
as 200,214
assume 200, 214
blank_padding 201, 215
bp 201, 215
case 215
chk 201, 215
chunk 201, 215
cmp 202, 214
conc 202, 214
concurrentize 202, 214
datasave 202, 215

kappro-support@kai.com

225

Index

directives 202, 215
d 203,215

dlines 203, 215

dr 202, 215

ds 202, 215

heap 203, 215
heaplimit 203, 215
i 204,214

ig 204, 215
ignoreoptions 204, 215
inc 204, 215
include 204, 215
input 204, 214

int 205, 215
integer 205, 215

| 205, 214

lines 205, 214

list 205, 214
listoptions 205, 214
In 205, 214

lo 205, 214

log 206, 215
logical 206, 215
mc 214
minconcurrent 214
0 207,214

onetrip 207, 215
optimize 207,214
rc 207,215

real 207,215
recursion 207,215
rl 207,215
roundoff 208, 214
save 208, 215
scalaropt 209, 214
scan 209, 215
schd 210, 215
scheduling 210, 215
so 209, 214
specifying 199, 204
su 210, 214
suppress 210, 214
sv 208, 215

sy 210,215
syntax 210, 215

ty 211,215
type 211, 215
common blocks
declaring private 137
privatizing 20
common privatization
declaring private commons 137
common privatization directives
THREADPRIVATE 137
threadprivate 137
conc 202, 214
concurrentize 202, 214
control directives
DO 113
PARALLEL DO 122
control pragmas
paralel for 122
COPYIN 136
copyin 136
courier font 4
CRITICAL 129
critical 129

D

data scope attribute clauses
COPYIN 136
default 133
FIRSTPRIVATE 134
LASTPRIVATE 134
private 133
REDUCTION 134
shared 133

datasave 202, 215

debugging code 203

DEC
FORTRAN extensions 211
Fortran extensions 211

default 133

Digita
FORTRAN extensions 211
Fortran extensions 211

directives 202, 215
ATOMIC 131
BARRIER 132
DO 113

226

http://mwww.kai .conVparallel/kappro/

Index

FLUSH 132
MASTER 131
ORDERED 129
paralel 112
PARALLEL DO 122
PARALLEL SECTIONS 125
recognition 202
SECTIONS 115
SINGLE 116, 117
THREADPRIVATE 137

d 203, 215

dlines 203, 215

DO 113

do 113

dr 202,215

driver options
w 63
WA 63
WACpp 65
WAkeepcpp 68
WAlibpath 68
WAnorc 69
WAonly 70
WAPprefix 71
WAsrcdir 72
WGcpp 65
WGkeepcpp 68
WGlibpath 68
WGnorc 69
WGprefix 71
WGsrcdir 72

ds 202, 215

E

end critical 129

end do 113

end master 131

end ordered 129

end parallel 112

end parallel do 122

end parallel sections 125
end sections 115

end single 116, 117

environment variables 75, 77, 140, 149

kmp_blocktime 77

kmp_library 75
kmp_statsfile 75
Id_library_path 77
omp_dynamic 149
omp_num_threads 149
omp_schedule 149
omp_scheduling 140
scheculing options 140

error messages 210, 211
suppressing 210

example 185

external routines 25
kmp_get_blocktime 25
kmp_get_library 26
kmp_get_stacksize 26
kmp_set_blocktime 26
kmp_set_library 26
kmp_set _library serial 26
kmp_set_library_throughput 27
kmp_set_library turnaround 27
kmp_set_stacksize 27
mppbeg() 28
mppend() 28
omp_destroy_lock() 150
omp_get max_threads() 150
omp_get_num_procs() 150
omp_get_num_threads() 150
omp_get_thread num() 151
omp_init_lock() 151
omp_test lock() 152
omp_unset_lock() 153

F
FIRSTPRIVATE 134
firstprivate 134
FLUSH 132
flush 132
for 113
FORTRAN
dialects 211

G
GuideView 81

kappro-support@kai.com

227

Index

H
heap 203,215
heaplimit 203, 215

I

i 204,214

ig 204, 215
ignoreoptions 204, 215
inc 204, 215

include 204, 215

input 204, 214
installation 3

int 205, 215

integer 205, 215

K

kmp_blocktime 77
kmp_get_blocktime 25
kmp_get_library 26
kmp_get_stacksize 26
kmp_library 75
kmp_set_blocktime 26
kmp_set_library 26
kmp_set_library serial 26
kmp_set_library_throughput 27
kmp_set_library turnaround 27
kmp_set_stacksize 27
kmp_statsfile 75

L

| 205,214

LASTPRIVATE 134

lastprivate 134

Id library_path 77

libraries 21
selecting 21

lines 205, 214

list 205, 214

listoptions 205, 214

In 205, 214

lo 205, 214

log 206, 215

logical 206, 215

M
manual
save option 208
manual_adjust
save option 209
MASTER 131
master 131
mc 214
messages
suppressing 210
minconcurrent 214
mppbeg() 28
mppend() 28

O
0 207,214
omp_destroy lock() 150
omp_dynamic 149
omp_get max_threads() 150
omp_get_num_procs() 150
omp_get num_threads() 150
omp_get thread num() 151
omp_init_lock() 151
omp_num_threads 149
omp_schedule 149
omp_scheduling 140
omp_test lock() 152
omp_unset_|lock() 153
onetrip 207, 215
openmp common privatization
directives

threadprivate 137
openmp control directives

copyin 136

do 113

end do 113

end parallel 112

end paralel do 122

end parallel sections 125

end sections 115

end single 116, 117

firstprivate 134

lastprivate 134

paralel 112

parallel do 122

http://mwww.kai .conVparallel/kappro/

Index

parallel sections 125

reduction 134

sections 115

single 116, 117
openmp directives

atomic 131

barrier 132

copyin 136

critical 129

do 113

end critical 129

end do 113

end master 131

end ordered 129

end paralel 112

end parallel do 122

end parallel sections 125

end sections 115

end single 116, 117

firstprivate 134

flush 132

lastprivate 134

master 131

ordered 129

paralel 112

paralel do 122

parallel sections 125

reduction 134

sections 115

single 116, 117

threadprivate 137
openmp environment variables 148-

149

Id_library _path 77

omp_dynamic 149

omp_num_threads 149

omp_schedule 149
openmp synchronization directives

atomic 131

barrier 132

critical 129

end critical 129

end master 131

end ordered 129

flush 132

master 131
ordered 129
optimize 207,214
options 199, 204
ORDERED 129

ordered 129

P
paralel 112
paralel directives
paralel 112
PARALLEL DO 122
paralel do 122
PARALLEL FOR 122
paralel for 122
paralel pragmas
paralel 112
PARALLEL SECTIONS 125
parallel sections 125
parallel taskq 128
Perview 101-110
pragmas
ATOMIC 131
BARRIER 132
CRITICAL 129
FLUSH 132
for 113
MASTER 131
ORDERED 129
paralel 112
PARALLEL FOR 122
parallel for 122
PARALLEL SECTIONS 125
parallel taskq 128
SECTIONS 115
SINGLE 116, 117
task 119
taskg 118
private 133
private commons
declaring 137
Privatization 136
privatization
directives 20

kappro-support@kai.com

229

Index

R

r 208, 214

rc 207, 215

rea 207,215
recursion 207, 215
REDUCTION 134
reduction 134
Reprivatizion 133
roundoff 208, 214

S
save 208, 215
al 208
al_adjust 209
manual 208
manual_adjust 209
scalaropt 209, 214
scan 209, 215
schd 210, 215
scheduling 210, 215
scheduling options 139
chunk size 142
environment variables 140
SECTIONS 115
sections 115
setting the number of processors
omp_num_threads 149
shared 133
Signal 29
SINGLE 116, 117
single 116, 117
so 209, 214
su 210,214
suppress 210, 214
sv 208, 215
sy 210,215
synchronization directives 129, 131
ATOMIC 131
atomic 131
BARRIER 132
barrier 132
critical 129
FLUSH 132
flush 132
MASTER 131

master 131
ORDERED 129
ordered 129
synchronization pragmas 129, 131
ATOMIC 131
BARRIER 132
CRITICAL 129
FLUSH 132
MASTER 131
ORDERED 129
syntax 210, 215

T
task 119

taskq 118
THREADPRIVATE 137
threadprivate 137

ty 211,215

type 211, 215

W
WA 63
WACpp 65
WAkeepcpp 68
WAlibpath 68
WAnorc 69
WAonly 70
WAprefix 71
warnings
suppressing 210
WASsrcdir 72
WGcpp 65
WGkeepcpp 68
WGlibpath 68
WGnorc 69
WGprefix 71
WGsrcdir 72
workqueuing pragmas
task 119
taskq 118
worksharing directives
parallel sections 125
sections 115
single 116, 117
worksharing pragmas

http://mwww.kai .conVparallel/kappro/

Index

for 113

parallel for 122
parallel sections 125
paralel taskq 128
sections 115

single 116, 117

kappro-support@kai.com 231

	CHAPTER 1 Introduction
	About KAP/Pro
	Requirements
	Installing KAP/Pro
	Using this Reference Manual
	Reference Manual Contents
	Reference Manual Conventions

	KAP/Pro On-line
	Technical Support
	Comments

	CHAPTER 2 Parallel Processing and OpenMP
	Parallel Processing Model
	Increasing Efficiency
	Data Sharing
	Orphaned Directives
	A Few Rules about Orphaned Directives

	CHAPTER 3 Using Guide
	Introduction
	Using Guide to Develop Parallel Programs
	Prepare
	Analyze
	Restructure
	Tune

	CHAPTER 4 Libraries and External Routines
	Selecting a Library
	Serial
	Turnaround
	Throughput

	The guide_stats Library
	The guide_perview Library
	External Routines
	int kmp_get_blocktime(void), integer function kmp_get_blocktime()
	int kmp_get_library(void), integer function kmp_get_library()
	int kmp_get_stacksize(void), integer function kmp_get_stacksize()
	void kmp_set_blocktime(int), subroutine kmp_set_blocktime(<integer>)
	void kmp_set_library(int), subroutine kmp_set_library(<integer>)
	void kmp_set_library_serial(void), subroutine kmp_set_library_serial()
	void kmp_set_library_throughput(void), subroutine kmp_set_library_throughput()
	void kmp_set_library_turnaround(void), subroutine kmp_set_library_turnaround()
	void kmp_set_stacksize(int), subroutine kmp_set_stacksize(<integer>)
	void kmp_set_parallel_name(char *), subroutine kmp_set_parallel_name(<string>)
	void mppbeg(void), subroutine mppbeg() void mppend(void), subroutine mppend()

	Signal Handling (Unix only)

	CHAPTER 5 Using Assure
	Introduction
	How to Verify an Application
	An Example
	Storage Conflicts
	Correcting Errors
	Example: Parallelizing Reduction Loops
	Example: Privatizing to Resolve Storage Conflicts
	Example: Using private variables outside of parallel regions
	Example: Using firstprivate()

	CHAPTER 6 The KAP/Pro Drivers
	About the KAP/Pro drivers
	Overview of the C/C++ Guide and Assure drivers
	Using the C/C++ drivers

	Overview of the Fortran Guide and Assure drivers
	Using the Fortran drivers

	KAP/Pro driver options
	Displaying all Command Lines
	Disabling automatic linking of object files
	Suppressing warnings (Fortran only)
	Additional KAP/Pro driver options

	Alphabetical listing of Driver Options
	 WGcatch=<class> (Unix C/C++ only)
	 WGcheck=<string> (Assure only)
	 WGcompiler=<path> �WGcc=<path> (C/C++ only) �WGftn=<path> (Fortran only) �WGfortran=<path> (Fort...
	 WG[no]cpp
	 WGcpp=<file>
	 WGcritname=<pattern>
	 WG[no]debug (Fortran only)
	 WGdefault=<class>
	 WGdefault_library
	 WGdynamic_library
	 WGfullpath
	 WGhelp
	 WGimplylang (Windows C only)
	 WGincpath
	 WG[no]keep
	 WGkeepcpp
	 WG[no]keeperr
	 WG[no]keepobjects
	 WGlibpath=<path>
	 WGlink=<file> �WGld=<file>
	 WGlocation=<string> (Assure only)
	 WGnoimply=<kwd>[,<kwd>...] (not C/C++ Unix)
	 WGnorc
	 WGnorpath (Unix only)
	 WGnowork
	 WGonly
	 WG[no]openmp (Guide only)
	 WGopt=<integer>
	 WGpath=<path>
	 WG[no]perview (Guide only)
	 WGprefix=<string>
	 WG[no]process
	 WG[no]prof
	 WGprof_leafprune=<integer>
	 WGproject_name=<file> (Assure only) �WGpname=<file> (Assure only) �WGprj=<file> (Assure only)
	 WGsched=<type>[,<integer>]
	 WGsrcdir
	 WGstatic_library
	 WG[no]stats (Guide only)
	 WG[no]strict
	 WGuser=<string>
	 WGversion

	Environment Variables for Guide
	KMP_BLOCKTIME=<integer>[<character>]
	KMP_IGNORE_MPPBEG <integer>
	KMP_IGNORE_MPPEND <integer>
	KMP_INTERVAL <integer>[{s,m,h,d}]
	KMP_LIBRARY=<string>
	KMP_STACKOFFSET=<integer>[<character>]
	KMP_STACKSIZE=<integer>[<character>]
	KMP_STATSCOLS <integer>
	KMP_STATSFILE=<file>
	LD_LIBRARY_PATH=<path>

	Environment Variables for Assure
	KDD_OUTPUT <file>
	KDD_INTERVAL <integer>[{s,m,h,d}] KDD_DELAY <integer>[{s,m,h,d}]
	KDD_MALLOC

	Preprocessor Macros
	_OPENMP
	_GUIDE
	_ASSURE

	CHAPTER 7 GuideView
	Introduction
	Using GuideView
	Using Named Parallel Regions
	GuideView Options
	 mhz=<integer>
	 ovh=<file>
	 jpath=<file>
	 WJ,[java_option]

	Java Options
	 ms<integer>[{k,m}]
	 mx<integer>[{k,m}]
	 nojit �Djava.compiler=none

	Measuring OpenMP Overhead

	CHAPTER 8 AssureView
	Introduction
	Using AssureView
	AssureView GUI Elements
	How to Use the GUI
	AssureView Options
	 ? or �h
	 agi=<file>
	 [no]gui
	 prefix=<remove>:<add>
	 project_name=<file> �prj=<file>
	 run_data=<file> �kdd=<file>
	 [no]suppress
	 txt
	 WJ,[java_option]

	JAVA Options
	 ms<integer>[{k,m}]
	 mx<integer>[{k,m}]
	 nojit �Djava.compiler=none

	CHAPTER 9 PerView
	Introduction
	Enabling the PerView Server
	PerView Environment Variables
	KMP_HTTP_PORT=<port>
	KMP_HTTP_HOME=<path>
	KMP_HTTP_ACCESS=<password>

	Security
	Running with PerView
	Starting the Server
	Starting the Client

	Using PerView
	Performance
	Controls
	Status Bar
	Minimal Monitor

	Progress Data
	Progress Bar
	Progress Graph
	Progress String
	Extending PerView

	APPENDIX A OpenMP Directives
	Introduction
	Parallel Directive
	Worksharing Directives
	Workqueuing Pragmas in C/C++
	The Taskq Model in C/C++
	Data Privatization in Workqueues
	Examples

	Combined Parallel Worksharing and Workqueuing Directives
	Synchronization Directives
	Data Scope Attribute Clauses
	Privatization of Fortran Variables, Common Blocks and Use-Associated Variables
	threadprivate
	Declaring Private Variables or Commons

	Privatization of Global Variables in C/C++
	Initializing Threadprivate Variables
	Persistence of Threadprivate Variables

	Scheduling Options
	Scheduling Options Using OpenMP Directives
	Scheduling Options Using Environment Variables
	Scheduling Options using Command Line Switches
	Scheduling Options Table

	OpenMP Environment Variables
	OMP_DYNAMIC=<boolean>
	OMP_NUM_THREADS=<integer>
	OMP_SCHEDULE=<string>[,<integer>]
	OMP_NESTED=<boolean>

	OpenMP Routines
	void omp_destroy_lock(omp_lock_t *lock), subroutine omp_destroy_lock(<var>)
	int omp_get_max_threads(void), integer function omp_get_max_threads()
	int omp_get_num_procs(void), integer function omp_get_num_procs()
	int omp_get_num_threads(void), integer function omp_get_num_threads()
	int omp_get_thread_num(void), integer function omp_get_thread_num()
	double omp_get_wtime(void), double precision function omp_get_wtime()
	double omp_get_wtick(void), double precision function omp_get_wtick()
	void omp_init_lock(omp_lock_t *lock), subroutine omp_init_lock(<var>)
	void omp_init_nest_lock(omp_nest_lock_t *lock), subroutine omp_init_nest_lock(<var>)
	int omp_in_parallel(void), logical function omp_in_parallel()
	void omp_set_lock(omp_lock_t *lock), subroutine omp_set_lock(<var>)
	void omp_set_nest_lock(omp_nest_lock_t *lock), subroutine omp_set_nest_lock(<var>)
	int omp_test_lock(omp_lock_t *lock), logical function omp_test_lock(<var>)
	int omp_test_nest_lock(omp_nest_lock_t *lock), logical function omp_test_nest_lock(<var>)
	void omp_unset_lock(omp_lock_t *lock), subroutine omp_unset_lock(<var>)
	void omp_unset_nest_lock(omp_nest_lock_t *lock), subroutine omp_unset_nest_lock(<var>)
	void omp_set_num_threads(int), subroutine omp_set_num_threads(<integer>)
	void omp_set_dynamic(int), subroutine omp_set_dynamic(<logical>)
	int omp_get_dynamic(void), logical function omp_get_dynamic()
	void omp_set_nested(int), subroutine omp_set_nested(<logical>)
	int omp_get_nested(void), logical function omp_get_nested()

	APPENDIX B C/C++ Examples
	Examples of OpenMP usage in C/C++
	B.1 for: A Simple Difference Operator
	B.2 for: Two Difference Operators
	B.3 for: Reduce Fork/Join Overhead
	B.4 sections: Two Difference Operators
	B.5 single: Updating a Shared Scalar
	B.6 sections: Updating a Shared Scalar
	B.7 for: Updating a Shared Scalar
	B.8 parallel for: A Simple Difference Operator
	B.9 parallel sections: Two Difference Operators
	B.10 Simple Reduction
	B.11 threadprivate: Private File-Scope Variable
	B.12 threadprivate: Private File-Scope Variable and Master Thread
	B.13 Avoiding External Routines: reduction
	B.14 Avoiding External Routines: Temporary Storage
	B.15 firstprivate: Copying in Initialization Values
	B.16 threadprivate: Copying in Initialization Values
	B.17 taskq: Parallelizing across Loop Nests

	APPENDIX C Fortran Examples
	Examples of OpenMP usage in Fortran
	C.1 do: A Simple Difference Operator
	C.2 do: Two Difference Operators
	C.3 do: Reduce Fork/Join Overhead
	C.4 sections: Two Difference Operators
	C.5 single: Updating a Shared Scalar
	C.6 sections: Updating a Shared Scalar
	C.7 do: Updating a Shared Scalar
	C.8 parallel do: A Simple Difference Operator
	C.9 parallel sections: Two Difference Operators
	C.10 barrier: Testing then Modifying a Shared Object
	C.11 Simple Reduction
	C.12 threadprivate: Private Common
	C.13 threadprivate: Private Common and Master Thread
	C.14 Avoiding External Routines: reduction
	C.15 Avoiding External Routines: Temporary Storage
	C.16 firstprivate: Copying in Initialization Values
	C.17 threadprivate: Copying in Initialization Values
	C.18 Manual loop collapsing
	C.19 workshare

	APPENDIX D Additional KAP/Pro Options
	Additional KAP/Pro Options: Alphabetic Listing
	c*$*options line (Fortran only)
	 alignmax=<integer>
	 assume=<string> (�a=<string>) �noassume (�nas)
	 blank_padding (�bp) (�noblank_padding) (�nbp)
	 case �nocase (�ncase)
	 chunk=<integer> (�chk=<integer>) (Guide only)
	 cmp[=<file>]
	 concurrentize (�conc) (Guide only) �noconcurrentize (�noconc) (Guide only)
	 datasave (�ds) (Fortran only) �nodatasave (�nds) (Fortran only)
	 directives=p (�dr=p) �nodirectives (�ndr)
	 dlines (�dl) (Fortran only) �nodlines (�ndl) (Fortran only)
	 heaplimit=<integer> (�heap=<integer>)
	 ignoreoptions (�ig) (Fortran only) �noignoreoptions (�nig) (Fortran only)
	 include=<path> (�inc=<path>)
	 input=<file> (�i=<file>)
	 integer=<integer> (�int=<integer>)
	 lines=<integer> (�ln=<integer>)
	 list[=<file>] �nolist
	 listoptions=<string> (�lo=<string>)
	 logical=<integer> (�log=<integer>)
	 minconcurrent=<integer> (�mc=<integer>) (Guide only)
	 onetrip (�1) �noonetrip (�n1)
	 optimize=<integer> (�o=<integer>)
	 real=<integer> (�rl=<integer>)
	 recursion (�rc) (Fortran only) �norecursion (�nrc) (Fortran only)
	 roundoff=<string> (�r=<string>) (Guide only)
	 save=<string> (�sv=<string>)
	 scalaropt=<integer> (�so=<integer>) (Guide only)
	 scan=<integer> (�scan=<integer>)
	 scheduling=<character> (�schd=<character>) (Guide only)
	 suppress=<string> (�su=<string>)
	 syntax=<string> (�sy=<string>)
	 tablesize=<integer> (�ts=<integer>)
	 type (�ty) �notype (�nty)

	Additional KAP/Pro Options: Table
	General Optimization
	Input-Output
	Listing
	Advanced Optimization
	Fortran Dialect
	Limits
	Directive Recognition
	Scheduling

	APPENDIX E Fortran Directive Translation
	KAP/Pro Parallel Directive to OpenMP Directive Translator
	Cray Directive to OpenMP Directive Translator
	Cray TASKCOMMON as opposed to OpenMP THREADPRIVATE

	SGI Directive to OpenMP Directive Translator
	KAP Directive to OpenMP Directive Translator

