

Let the Numbers Do the Talking
This article provides software cost and productivity benchmarks that you can use to
determine how your organization ranks compared with industry averages, and whether
your software estimates are reasonable.
by Donald J. Reifer

How CMM Impacts Quality, Productivity, Rework, and the Bottom Line
General Dynamics Decision Systems shares cost/benefit performance results that indicate
productivity and quality improve with increased software process maturity.
by Michael Diaz and Jeff King

Statistical Process Control of Project Performance
This article discusses how to best use statistical process control as a powerful management
tool when applied to the earned value management indicators and cost and schedule
performance indexes.
by Walt Lipke

Are You Prepared for CMMI?
Are you making the transition to CMMI from another model? Read how applying technology
adoption concepts to the move can smooth the process considerably.
by Suzanne Garcia

Correctness by Construction: Better Can Also be Cheaper
Here’s how one avionics project reported four-fold productivity and 10-fold quality improvements
by adopting unambiguous programming languages that focus on preventing bugs vs. detecting them
later on.
by Peter Amey

Modeling and Simulation CMMI: A Conceptual View
This article proposes enhancing the Capability Maturity Model Integration to include
guidance for modeling and simulation.
by Frank Richey

CrossTalk

Kent Bingham,
Digital Illustration
and Design, is a

self-taught graphic
artist/designer who

freelances print
and Web design

projects.

3

8

14

18

30

31

DeparDepar tmentstments Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the proper-
ty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Julie B. Jenkins

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 28.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205

SoftwarSoftwaree bbyy NumbersNumbers

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering March 2002

4

9

15

19

24

29

Best Best PracticesPractices

From the Publisher

Web Sites

Coming Events

JOVIAL Services Notice

STC Conference Notice

BackTalk

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

Open Open FForumorum

From the Publisher

March 2002 www.stsc.hill.af.mil 3

Elizabeth Starrett
Associate Publisher

When I was the lead of the Software Technology Support Center’s measurement
domain, numbers were always in high demand. I received numerous requests for

examples of real numbers that other projects were collecting on their processes, quality,
and return on investment. Unfortunately, most organizations consider these numbers to
be extremely sensitive and are not willing to share them.

So, where do you look if you want to know how your organization is doing? First, you
need to know just what it is you are trying to do; establish your organizational goals. Then

ask the questions that will let you know whether or not you are meeting these goals. Finally, decide
what information you need to answer these questions. One of the most important things with this
approach is to start simple; five to 10 attributes (such as size, effort, schedule, cost, and quality) are
a reasonable start. After you begin collecting this information, you can simply look to yourself to
know how you are doing. Once you have some preliminary information, you can start to see how
you are doing by comparing departments within the organization, by comparing the organization
to itself via historical data, or by comparing your organization to the rest of industry. All of which
brings us back to the coveted industry data.

The current lack of data is precisely why I am so excited about the articles featured in this
month’s theme section. Seldom does CrossTalk receive articles that openly share such infor-
mation. Donald J. Reifer’s article, Let the Numbers Do the Talking, shares historical information from
his collection of numerous projects. Reifer also includes some very good advice on how not to
abuse the information.

In How CMM Impacts Quality, Productivity, Rework, and the Bottom Line, Michael Diaz and Jeff King
share information that should prove useful for organizations trying to justify the cost of imple-
menting a process improvement initiative. While actual numbers such as productivity were again
considered sensitive, the actual process improvement numbers are very useful for providing justi-
fication for process improvement and potential return on investment. I am confident many organ-
izations will benefit from this article.

Walt Lipke shares one way his organization uses and benefits from their numbers and passes
this tip to CrossTalk readers in Statistical Process Control of Project Performance.

As Bruce Allgood promised in February’s “From the Publisher,” our supporting articles begin
with Suzanne Garcia’s article, Are You Prepared for CMMI? This is an excellent article discussing
information needed for successful technology transition. Next, Peter Amey shares information on
an annotated subset of the Ada language developed in the United Kingdom that is showing suc-
cess in his article Correctness by Construction: Better Can also Be Cheaper. Finally, Frank Richey shares
ideas for helping the modeling and simulation community in Modeling and Simulation CMMI: A
Conceptual View.

This month’s articles show that measurements collected during software development can be a
big help in predicting software development time, cost, and quality; can help justify funding for a
new project; and can be used to monitor existing projects. Numbers are necessary for developing
software.

When I received this month’s theme articles, I was so excited to share their information that
instead of trying to squeeze them into a planned issue as supporting articles, we created a new issue
with this theme to highlight this information that was so often requested. I hope you find them
useful for your planning and current practice comparisons.

Getting the Numbers Out in the Open

Software by Numbers

4 CROSSTALK The Journal of Defense Software Engineering March 2002

For the past 30 years, I have been play-
ing the numbers game. I have been

developing benchmarks to confirm that
the estimates I was developing were rea-
sonable and achievable. To win the game,
I have had to present the numbers in such
a way that people I deal with would use
them, not abuse them.

Everyone who works in the software
business seems to be looking for num-
bers of one kind or another. I get at least
one call a day asking me questions like,
“What’s the productivity that you’ve seen
across the United States for software
within the telecommunications domain?”
or “What’s the average cost/source line
of code for a military system?”

My initial reaction is to try to avoid
answering these questions. Why? Because
I am afraid that whatever I say will be
misquoted. Worse, I am afraid that the
numbers I supply will be misused. When
pressed for an answer, I express the num-

ber as a range. I qualify my answer by say-
ing: “ The average cost/line for a military
system used for command and control
varies between one and three hours per
source line where an hour is expressed as
directly chargeable labor, and a source
line of code is defined using the Software
Engineering Institute’s counting frame-
work as a logical line. Furthermore, the
effort associated with this estimate is
scoped to include requirements analysis,
architectural design, development, and
software integration and test tasks. It

does not include system or beta testing,
but does include support for require-
ments analysis.”

Sounds like a bunch of double-talk
doesn’t it? Well, it isn’t. Nine out of 10
times, no matter what I say, the number is
still misquoted or used out of context.

Needless to say, I am getting tired of
being misquoted. In response, I have
decided to write this article to put some
of the more important numbers that I
use in the public domain. Why? Well, for
two reasons. First, I believe the commu-
nity could use these numbers as bench-
marks. They could serve as industry
application domain norms against which
organizations could compare their results
to determine how well (or not so well)
they are doing. Second, I want to get the
community thinking about discussing and
sharing “like” numbers. That is where I
believe the real benefits lie.

Think about it. When push comes to
shove, what really matters to manage-
ment are the numbers. Again, let me give
you an example. Suppose you are trying
to get your bosses to invest in a new soft-
ware-engineering environment. They will
want justification. Typically, their decision
whether or not to fund your proposal will
revolve around whether money is avail-
able and the answers to the following
questions: Will this investment save us
money? If so, how much? What are the
tax implications? Can we depreciate the
equipment and software? If so, can we
use either declining balance or straight-
line depreciation schedules? What is the
projected payback period and return on
investment? Is this return higher than
those who propose other alternative uses
for the money?

Unfortunately, most of the engineers
I have worked with during the years
haven’t the foggiest notion how to
answer these questions. The net result is
that their proposals are more often reject-
ed than accepted because they fail to pre-
pare a winning business case. However,
the same engineers could improve their
prospects of winning by using numbers
to justify their proposals in terms of pro-
ductivity improvement, cost reduc-
tion/avoidance, quality improvement,
and/or time-to-market reduction strate-
gies [1]. They could make the numbers
sing to management.

Making Sense of the Data
My firm has been collecting cost, produc-
tivity, and quality data for more than two
decades. These data are provided by
organizations in exchange for bench-
marks that they use for the following
major purposes:
• Determine how the organization is

doing relative to industry averages
within an application domain
(automation, command and control,
telecommunications, etc.).

• Check the reasonableness of compet-
itive bids.

Let the Numbers Do the Talking

Donald J. Reifer
Reifer Consultants, Inc.

This article provides software cost and productivity benchmarks for 12 application domains that readers can use to determine
how well their organization is doing relative to industry averages, and whether their software estimates are reasonable. In addi-
tion to addressing common questions raised relative to the benchmarks, this article summarizes the relative improvement that
firms within the applicable industries are experiencing, which range from 8 percent to 12 percent annually.

“I have used the
numbers to win the
schedule and budget

battles, to acquire
investment dollars, ... and
most importantly to win
management’s trust.”

Acronym List for Tables
IOC Initial Operational Capability
IPT Integrated Product Team
IRR Internal Requirements

Review
KSLOC Thousands Source Lines of

Code
LCA Life Cycle Architecture

(review)
LCO Life Cycle Objectives

(review)
MBASE Model-Based Software

Engineering
PDR Preliminary Design Review
PRR Product Readiness Review
SAR Software Acceptance Review
SDR System Design Review
SETD Systems Engineering and

Technical Direction
SLOC Source Lines of Code
SM Staff Month
SRR Software Requirements

Review
STR Software Test Review
UTC Unit Test Review

• Assess organizational shortfalls rela-
tive to the competition.
Occasionally, we publish snapshots of

these databases [2]. When we do, we get
lots of questions and feedback because
interest is high, and the need for the num-
bers is great. To ensure the validity of the
data submitted to us, we first screen and
then normalize it using definitions that
we have developed for that purpose.
Once the numbers are entered into our
databases, the data are checked for out-
liers and tested for homogeneity.
Standard statistical regression techniques
are then used to analyze the data and test
it for sampling and other types of statis-
tical errors.

The database has evolved to include
data from approximately 1,500 projects.
To maintain currency, none of the data
retained in the database is more than 10
years old. We continuously refresh the
database to purge older projects from it
because they tend to bias the results of
our analyses. We also remove outliers
from the database because they tend to
bias the results.

Over the years, my firm’s databases
have been the source of data for major
software cost and productivity studies.
For example, the U.S. Air Force relied
heavily on the databases to develop a
business case for its move to using Ada
[3]. In addition, other organizations have
used information from these databases to
prepare knowledge bases and to calibrate
their software cost models. Independent
of the points Dr. Randall Jensen raised in
his recent CrossTalk article [4] on the
topic of model calibration, we still believe
and have the data to demonstrate that a
calibrated cost model outperforms one
that has not been calibrated. In addition,
cost models seem much more accurate
than activity-based costing done using
Delphi approaches for large projects [5].
While critics of software cost models
seem to abound [6], none of those
throwing stones at the models have pro-
posed alternative means that have higher
prospects of accuracy.

First Look at Software
Productivity
Software productivity refers to the ability
of an organization to generate outputs
(software systems, documentation, etc.)
using the inputs or resources it has at its
disposal (people, money, equipment,
tools, etc.). Using this definition, an
organization can increase its productivity
by either focusing on the input or output
part of the equation.

An input-based strategy would accen-
tuate increasing workforce productivity
via efficiencies gained by inserting better
methods, tools, processes, facilities, and
equipment and collaboration facilities. In
contrast, an output-based strategy would
place emphasis on reducing the amount
of output required by using component
technology, product lines, and architec-
ture-centric reuse to eliminate a part of
the work involved in developing the
product.

Within many industries, productivity
is commonly expressed as either source
lines of code (SLOC)/staff month (SM)
or function points (FP)/SM. Of course,
the measures SLOC, FP, and SM must be
carefully scoped and defined for these
metrics to convey consistent meaning. In
addition, there are many factors or cost
drivers that cause each of these metrics
to vary widely. These must be normalized
when defining the terms. Because the
Reifer Consultants, Inc. databases are pri-

marily SLOC-based, we use this metric as
the basis for our analysis. For those inter-
ested, we backfire the supplied FP data in
our database using language conversion
factors supplied by the International
Function Point Users Group (IFPUG) to
convert from FP to SLOC (e.g., one FP is
expressed as so many lines of C++ or
Java).

Table 1 summarizes the results of
our analyses for 12 application domains
for which we have collected data that we
feel are of interest to the CrossTalk

community. The numbers in Table 1
were derived by taking a 500-project
subset of our database and performing
statistical analysis using various statisti-
cal tools. In addition, there are no for-
eign projects in the database to distort
conclusions. Because our clients often
challenge our numbers, we pay a great
deal of attention to the tendencies and
purity of our database. We cannot afford
not to do this.

March 2002 www.stsc.hill.af.mil 5

Let the Numbers Do the Talking

Application
Domain

Number
Projects

Size Range
(KSLOC)

Avg. Productivity
(SLOC/SM)

Range
(SLOC/SM)

Example
Applications

Automation 55 25 to 650 245 120 to 440 Factory automation
Command & Control 43 35 to 4,500 225 95 to 330 Command centers
Data Processing 36 20 to 780 330 165 to 500 Business systems
Environment/Tools 75 15 to 1,200 260 143 to 610 CASE tools, compilers, etc.
Military-Airborne 38 20 to 1,350 105 65 to 250 Embedded sensors
Military-Ground 52 25 to 2,125 195 80 to 300 Combat information center
Military-Missile 14 22 to 125 85 52 to 165 Guidance, navigation and

control systems
Military-Spaceborne 18 15 to 465 90 45 to 175 Attitude control systems
Scientific 33 28 to 790 195 130 to 360 Seismic processing systems
Telecommunications 48 15 to 1,800 250 175 to 440 Digital switches and PABX
Trainers/Simulations 24 200 to 900 224 143 to 780 Virtual reality simulators
Web 64 10 to 270 275 190 to 975 Client/server sites

500 10 to 4,500 45 to 975

Table 1: Software Productivity (SLOC/SM) by Application Domains

Table 1 Notes
• The 500 projects taken from our database of more than 1,500 projects were com-

pleted within the last seven years by any of 38 organizations. (Each organizations’
identity is anonymous due to the confidentiality of the data.)

• The scope of all projects starts from software requirements analysis and finishes
with completion of software testing.
• For military systems, the scope extends from software requirements review

until handoff to the system test bench.
• For Web systems, the scope extends from product conception to customer

sell-off.
• This includes all directly chargeable engineering and management labor involved.

• It includes programming, task management, and normal support personnel.
• It does not include quality assurance, system or operational test, and beta test

personnel.
• The average number of hours/staff month assumed was 152.
• SLOC is defined by Florac and Carleton [7] to be a logical source line of code

using the conventions published by the Software Engineering Institute in 1993.
• Function point sizes were converted to SLOC using backfiring factors published

by the International Function Point Users Group (IFPUG) in 2000, as available
on their Web site.

• Different life-cycle models and methodologies are assumed. For example, Web
projects typically followed a Rapid Application Development process and used
lightweight methods, while military projects used more classical processes and
methods.

• Different languages were used. For example, Web projects employed Java and
Visual C while military projects used Ada and C/C++.

What About Software Cost
Numbers?
While cost and productivity of software
are related, they are separate considera-
tions when dealing with numbers. To illus-
trate this point, I have seen several organ-
izations increase their productivity and
costs at the same time. In these cases, the
organizations were very productive at gen-
erating software to the wrong require-
ments, or building and releasing products
with lots of latent defects. That is why we

focus attention on each set of numbers
separately.

When analyzing our database, we find
that software cost tends to be related to
both the labor rates and language level
(i.e., refers to the methods, tools, and lan-
guage technology used by the project). To
develop numbers of interest, we use
$12,000 as the standard cost for a SM of
effort exclusive of profit and general and
administrative charges, as applicable. Table
2 shows the dollar cost per SLOC by

application domains that we have devel-
oped as benchmarks.

How Is the Effort Distributed?
As most of us have learned, distribution
of effort and schedule is a function of the
life-cycle paradigm (i.e., a modeling
method for the software process) selected
for the project. In addition, as Fred
Brooks [8] so nicely has explained, in
many cases, effort and schedule cannot be
interchanged. For the following three pop-
ular life-cycle paradigms, the allocations of
effort and schedule are shown in the
Tables 3, 4, and 5:
• Waterfall [9].
• Rational Unified Process (RUP) [10].
• Model-Based Software Engineering

(MBASE) [11].
Formats in the tables vary because the

numbers are based on slightly modified
public references. In some cases, the allo-
cations of effort (and schedule) are shown
as ranges. In other cases, they are normal-
ized so that they sum to 100 percent. In
yet other cases, the sums are not normal-
ized and therefore equal more than 100
percent.

Tables 3 and 5 clearly show the effort
and duration to perform a particular activ-
ity relative to what is required for what
they consider normal software develop-
ment (e.g., excludes preparing software
requirements and system test tasks). Table
4 reflects the effort and duration to per-
form tasks that are part of the RUP. Do
not infer that MBASE takes 18 percent
longer than RUP using these Tables. That
is not the case because different life cycles
embody different activities that make
comparisons between them difficult and
misleading. In any case, the results are
what is important, not its format. If you
are interested in more detailed compar-
isons between life cycles, see the appen-
dices in [11], which provide the most com-
plete coverage I have seen.

These allocation tables are very reveal-
ing. They tell us that software people do
much more work than what is considered
by most to be software development. This
workload typically starts with analyzing
the software requirements (i.e., these are
typically developed by some other group
like marketing or systems engineering) and
ends with software integration and test.
From Table 3, we can see that software
people also take part in developing the
requirements, which takes on average 7
percent additional effort and 16 percent to
24 percent more time, and they support
system testing, which takes 12 percent
more effort and 12.5 percent more time.
This makes software cost estimates low by

Software by Numbers

6 CROSSTALK The Journal of Defense Software Engineering March 2002

Application Domain Ada83 Ada95 C/C++ 3GL Norm Notes

Automation * * 30 45 30 Most implement ladder nets
Command & Control 70 * 50 100 75

Data Processing 25 25 20 30 30
Most have moved to using Java and
visual languages

Environment/Tools 25 * 25 30 25
Military-Airborne 150 125 125 225 175
Military-Ground 75 75 50 90 75
Military-Missile 150 * * 250 200
Military-Spaceborne 150 * 150 200 175
Scientific 75 * 65 85 75
Telecommunications 50 35 40 80 55 Most use C/C++ and Unix
Trainers/Simulations 50 * 35 75 50
Web Most use Java and visual languages

* * * * *
* Not enough data

Table 2: Software Cost ($/SLOC) by Language by Application Domain

Phase (end points) Effort % Duration %

Inception (IRR to LCO) 6 (2 to 15) 12.5 (2 to 30)

Elaboration (LCO to LCA) 24 (20 to 28) 37.5 (33 to 42)

Construction (LCA to IOC) 76 (72 to 80) 62.5 (58 to 67)

Transition (IOC to PRR) 12 (0 to 20) 12.5 (0 to 20)

Total 118 125

Note: Percentage allocations of effort and duration are shown as ranges and are not normalized per the reference [11].

Table 5: MBASE Paradigm Effort and Schedule Allocations

Table 2 Notes
• Dollars used to determine cost are assumed to be constant year 2000 dollars.
• The cost assumed per staff month of $12,000 assumes a labor mix and includes

direct labor costs plus allowable overhead. This mix assumed that the average staff
experience across the team in the domain was three years based on the average
staff experience with the application and languages, methods, and tools employed
to engineer it.

• Many languages were used in these applications; most projects used more than
one language. For example, C/C++ was used heavily in the telecommunication
domain, while Java was used extensively for Web applications.

• In addition, to keep costs down many organizations are trying to exploit com-
mercial off-the-shelf packages and large legacy software systems written in lan-
guages like COBOL, FORTRAN, Jovial, and PL/1.

Phase (end points) Effort % Duration %

Inception (IRR to LCO) 5 10

Elaboration (LCO to LCA) 20 30

Construction (LCA to IOC) 65 50

Transition (IOC to PRR) 10 10

Total 100 100

Note: Percentage allocations of effort and duration are normalized to 100 percent per the reference [10].

Table 4: Rational Unified Process (RUP) Effort and Schedule Allocations

Phase (end points) Effort % Duration %

Plans and Requirements (SDR to SRR) 7 (2 to 15) 16 to 24 (2 to 30)

Product Design (SRR to PDR) 17 24 to 28

Software Development (PDR to UTC) 52 to 64 40 to 56

Software Integration and Test (UTC to STR) 19 to 31 20 to 32

Transition (STR to SAR) 12 (0 to 30) 12.5 (0 to 20)

Note: Percentage allocations for effort and duration are shown as ranges.

Total 107 to 131 116 to 155

Table 3: Waterfall Paradigm Effort and Schedule Allocations

Let the Numbers Do the Talking

March 2002 www.stsc.hill.af.mil 7

at least 19 percent and schedule estimates
short by about 28.5 percent. It is no won-
der that software people feel shorted
when the budgets are allocated.

What About the Other
Support Costs?
Let us look at the typical costs software
organizations spend supporting other
engineering organizations. For example,
they might participate as members of
some integrated product team tasked with
developing requirements for the project.
Because this effort takes time and effort,
funds to perform the work involved need
to be estimated, budgeted, and controlled.

As another example, software people
will be called upon to assist during sys-
tems test and evaluation. They might be
called upon to either conduct software
beta testing or fix software, hardware, or
systems problems during bench, system,
and/or operational testing. That is where
software shines. It is used to make the sys-
tem work.

What is important is that these activi-
ties consume effort and take talent away
from the mainline software development
tasks. That means all of these activities
need to be thoroughly planned, estimated,
budgeted, scheduled, staffed, directed,
controlled, and managed by the software
manager as the project unfolds.

There is a lot of controversy over how
much effort is needed to perform differ-
ent types of support tasks. Based on
experience [12], Table 6 shows examples
of how much effort is expended in pro-
viding needed support expressed as an
average and a range.

Because Independent Verification and
Validation and System Engineering
Technical Direction contractors increase
the development contractor’s workload in
military contracts, they require additional
effort to support such relationships. This
is especially true when military organiza-
tions use a federally funded research and
development contractor to perform sys-
tem integration and task-direction type
tasks.

Have We Made Progress?
It is also interesting to look at the trends
associated with productivity and cost.
Based on the data we analyzed, the nom-
inal improvement firms experience
across industries is from 8 percent to 12
percent a year. Those who invest more,
typically gain more. For example, jump-
ing a single CMM level can reduce soft-

ware development costs from 4 percent
to 11 percent based on a recent Ph.D.
dissertation done by Brad Clark at the
University of California [14].

Because I plan to write a separate
article on this topic in the near future, I
will not clutter this article with addition-
al trend data. However, it is important.
For example, a 10 percent improvement
in productivity can be used to justify a
multi-million dollar software initiative
for firms with 500 or more software
engineers.

Call to Action
I encourage those of you with solid num-
bers to throw stones. One of my goals in
writing this paper is getting the communi-
ty to think about, discuss, and share like
numbers. If you have more concrete num-
bers, I encourage you to put them into the
public domain. Challenge my assumptions
and summarize your experience so the
community can use it. However, if you do,
please tell the community how you derived
the numbers, what their source is, and how
you normalized them. Do not just throw

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

Support Cost Category
Effort (% of software
development costs)

Notes

Requirements synthesis and IPT
participation

10 (6 to 18)
Participation in systems definition and specification
activities.

Systems integration and test 30 (0 to 100)
Supporting problem resolution activities as the system
is integrated and tested.

Repackaging documentation per
customer requirements

10 (0 to 20)
Repackaging documentation to meet some customer
preference instead of that dictated by the approved
organizational process.

Formal configuration management
(CM)

5 (4 to 6)
Support to system level CM activities (version control &
support for the Software Change Control Board are
already included in the software estimate).

Independent software quality
assurance (SQA)

5 (4 to 6) SQA when done by a separate organization.

Independent Verification &
Validation or SETD support contractor

6 (4 to 10)
Development organization support to an independent
contractor hired to perform technical oversight and
provide direction.

Total 66 (18 to 160)

Table 6: Typical Software Support Costs

Table 6 Notes
• Percentage allocations of effort are shown as both an average and a range in

parentheses.
• Version control of software deliverables is included in our other numbers as is

normal quality assurance activities. The additional effort illustrated by Table 6
refers to formal activities like project-level change-control boards that organiza-
tions must support.

• If there are subcontracts involving software, additional effort must be added to
Table 6 to provide for software support in this area.

• If large amounts of commercial off-the-shelf software will be used, additional
effort must be added to Table 6 to support the evaluation, glue code develop-
ment, integration, and other life-cycle tasks that the software organization will
have to support.

• Percentage expressed uses software development costs as its basis. For example,
the chart states that the cost on average quoted for a software job should be 166
percent of the base (the base plus 66 percent) to cover the additional costs asso-
ciated with the support identified in Table 6 when all the categories listed are
applicable.

• These support costs can vary greatly based on the manner in which the firm is
organized and the work allocated. For example, some firms combine their CM
and SQA support in a single Product Assurance organization. In such cases, the
average cost for both is 7 percent (6 percent to 8 percent) because they take
advantage of economies of scale.

• System integration and test support do not include operational test and evalua-
tion for military projects and beta testing for commercial projects. These can
require even more support be applied than that identified. For example, we have
seen aircraft projects that have gone through extensive flight testing burn thou-
sands of hours of software support during two- and three-year time periods. As
another example, we have seen commercial projects also burn thousands of
hours supporting beta testing at remote user sites.

• Many firms have adopted defined processes at the organizational level and are
rated as a Level 3 using the Software Engineering Institute’s Software Capability
Maturity Model® (SW-CMM®) [13]. When this is true, these firms generate doc-
umentation as a normal part of their engineering processes. If the customer
wishes to reformat this documentation, there will be a repackaging cost because
this is not the normal way these firms conduct their business.

stones at my results. That would be count-
er productive. Share your experience with
others and help the community to develop
realistic benchmarks that they can use for
comparison purposes.

I really would encourage those who do
not have numbers to develop them.
Throughout my entire career, I have used
the numbers to win the schedule and
budget battles, to acquire investment dol-
lars, to improve my decision-making abili-
ties, and most importantly to win manage-
ment’s trust. I gained credibility with man-
agement at all levels of the enterprise by
discussing both the technical and business
issues associated with my proposals. I was
successful in getting approvals because I
emphasized business goals and showed
management that what I was proposing
made good business and technical sense. It
is not surprising that I am a strong advo-
cate of managing by the numbers. Try it,
and I think you will like it.◆

References
1. Reifer, D. J. Making the Software

Business Case: Improvement by the
Numbers. Addison-Wesley, 2001.

2. Reifer, D. J., J. Craver, M. Ellis, and D.
Strickland, eds. “Is Ada Dead or Alive
Within the Weapons System World?”
CrossTalk Dec. 2000: 22-24.

3. Ada and C++: A Business Case
Analysis. U. S. Air Force, 1991.

4. Jensen, R. “Software Estimating Model
Calibration.” CrossTalk July 2001:
13-18.

5. Reifer, D. J. “Comparative Accuracy
Analysis of Cost Models to Activity-
Based Costing for Large Scale Software
Projects.” Reifer Consultants, Inc.,
1996.

6. Ferens, E., and D. Christensen, eds.
Calibrating Software Cost Models to
Department of Defense Databases – A
Review of Ten Studies. Air Force
Research Laboratories, Feb. 1998.

7. Florac, W. A., and A. D. Carleton, eds.
Measuring the Software Process.
Addison-Wesley, 1999.

8. Brooks, F. The Mythical Man-Month,
Anniversary Edition. Addison Wesley,
1995.

9. Boehm, B. W., C. Abts, A. W. Brown, S.
Chulani, B. K. Clark, E. Horowitz, R.
Madachy, D. Reifer, and B. Steece, eds.
Software Cost Estimation with COCO-
MO II. Prentice-Hall, 2000.

10. Kruchten, P. The Rational Unified
Process. Addison-Wesley, 1998.

11. Royce, W. Software Project Manage-
ment: A Unified Framework. Addison-
Wesley, 1998.

12. Reifer, D. J. A Poor Man’s Guide to
Estimating Software Costs. 8th ed.,
Reifer Consultants, Inc., 2000.

13. Paulk, M. C., C. V. Weber, B. Curtis, and
M. B. Chrissis, eds. The Capability
Maturity Model: Guidelines for
Improving the Software Process.
Addison-Wesley, 1995.

14. Clark, B. “Quantifying the Effects on
Effort of Process Improvement.”
IEEE Software Nov./Dec. 2000: 65-70.

About the Author
Donald J. Reifer is one
of the leading figures in
the fields of software
engineering and man-
agement, with more
than 30 years of pro-

gressive experience in government and
industry. In that time, he has served as
chief of the Ada Joint Program Office
and the director of the Department of
Defense Software Reuse Initiative. He
is currently the president of Reifer
Consultants, Inc., which specializes in
helping clients improve the way they do
business. Reifer’s many honors include
the American Institute of Aeronautics
and Astronautics Software Engineering
Award, the Secretary of Defense’s
Medal for Outstanding Public Service,
the NASA Distinguished Service
Medal, the Frieman Award, and the
Hughes Aircraft Fellowship. Reifer has
more than 100 publications, including
Software Management Tutorial (6th edi-
tion) and Making the Software Business
Case: Improvement by the Numbers.

P.O. Box 4046
Torrance, CA 90505
Phone: (310) 530-4493
Fax: (310) 530-4297
E-mail: d.reifer@ieee.org

Software by Numbers

8 CROSSTALK The Journal of Defense Software Engineering March 2002

WEB SITES

Earned Value Management
www.acq.osd.mil/pm
Sponsored by the Office of the Under Secretary of Defense
(Acquisition, Technology, and Logistics) Acquisition Resources
and Analysis/Acquisition Management, the Earned Value
Management Web site provides information on earned value
project management (EVM) for government, industry, and
academic users. Find current editions of policy documents,
information on government EVM contacts and International
Performance Management Council members, speeches, train-
ing material, EVM software, supplier links, frequently asked
questions, and more.

Project Management Institute
www.pmi.org
The Project Management Institute (PMI) claims to be the
world’s leading not-for-profit project management professional
association, with more than 86,000 members worldwide. PMI
establishes project management standards, provides seminars,
educational programs, and professional certification for project
leaders.

Defense Contract Management Agency
www.dcma.mil
The Defense Contract Management Agency is the
Department of Defense contract manager, responsible for
ensuring federal acquisition programs, supplies, and services
are delivered on time, within cost, and meet performance
requirements. The agency is currently conducting in-plant
observations using the Capability Maturity Model® to deploy
a standard methodology via continuous process evaluations of
contractors. Details concerning the process, responsibilities,
and outcomes are captured in the “Method Description
Document” available on the Web site.

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center (STSC) is an Air
Force organization established to help other U.S. government
organizations identify, evaluate, and adopt technologies to
improve the quality of their software products, efficiency in
producing them, and their ability to accurately predict the
cost and schedule of their delivery.

March 2002 www.stsc.hill.af.mil 9

General Dynamics Decision Systems
supplies communications and

information technology for military and
government customers and employs
approximately 1,500 engineers that
design and build a wide variety of gov-
ernment electronic systems. Approxi-
mately 360 engineers are directly
involved in software development.

The question of cost/benefit has
come up frequently in organizations
contemplating software process
improvement (SPI) activities. This arti-
cle will explore various cost/benefit
issues and examine performance results
of various General Dynamics Decision
Systems’ projects with relation to its
software process maturity. It also dis-
cusses the implementation strategies
put in place to achieve process improve-
ment and other organizational goals;
some “lessons learned” about process
improvement are also presented.

CMM Overview
The Software Engineering Institute’s
(SEI) Capability Maturity Model®

(CMM®) [1] plays a major role in defin-
ing SPI in many companies. The CMM
consists of five levels of process matu-
rity where each level has an associated
set of key process areas (KPAs). At the
initial Level 1 maturity, software proj-
ects rely on the skills and heroic efforts
of individual engineers. There are no
KPAs associated with Level 1.
Firefighting is prevalent and projects
tend to leap from one emergency to the
next.

CMM Level 2, the Repeatable matu-
rity level, has six KPAs associated with
it. These KPAs relate to requirements
management, project planning, project
tracking and oversight, subcontract
management, quality assurance, and
configuration management. Projects
under a Level 2 organization are repeat-
able and under basic management con-
trol.

At the Defined Level 3 maturity
level, the software development organi-
zation now defines common processes,
develops training programs, focuses on
intergroup coordination, and performs
peer reviews. The result is the develop-
ment of tailorable software processes
and other organizational assets so that
there is a certain level of consistency
across projects.

At the Managed Level 4 maturity
level, the software development organi-
zation implements a quality and metric
management program and monitors
both project and organizational per-
formance (i.e., establishes software
process capability and variance meas-
ures using statistical process control
charts).

At the Optimizing Level 5 maturity
level, quantitative data are used for
process improvement and defect pre-
vention. In addition, technology
changes are introduced and evaluated in
an organized, systematic process.

Summary Results
General Dynamics Decision Systems
has three software-engineering organi-
zations: Integrated Systems, Infor-
mation Security Systems, and Commu-

nication Systems. As of Nov. 16, 2001,
all three had been externally assessed at
CMM Level 5 using the CMM-Based
Appraisal for Internal Process
Improvement (CBA IPI). Our metrics
and historical repository contain data
from past Level 2, 3 and 4 programs
within the Information Security
Systems engineering organization, as
well as our current Level 4 and 5 pro-
grams.

Rework, phase containment, quality,
and productivity metrics are based upon
history as well as the current measures
of approximately 20 programs, each at
various stages of the software life cycle.

At General Dynamics Decision
Systems, every project performs a quar-
terly SEI self-assessment. The project
evaluates each KPA activity with a score
between one and 10, which is rolled up
into an average score for each KPA.
Any KPA average score falling below
seven is determined to be a weakness.
The SEI level for the project is defined
as the level in which all associated KPAs
are considered strengths, i.e., all KPA
average scores are seven or above.

Table 1 summarizes the General
Dynamics Decision Systems’ improve-
ment trends for rework, phase contain-
ment, predicted quality, and productivi-
ty by CMM level. Percent rework is a
measure of the percentage of the proj-
ect development time that was expend-
ed due to rework. Phase containment

How CMM Impacts Quality,
Productivity, Rework, and the Bottom Line

Michael Diaz and Jeff King
General Dynamics Decision Systems

The Software Engineering Institute’s Capability Maturity Model® (CMM®) plays a major role in defining software process
improvement (SPI) in many companies. The question of cost/benefit has come up frequently in organizations contemplating
SPI activities. This article will explore various cost/benefit issues and examine performance results of various General
Dynamics Decision Systems’ projects with relation to its software process maturity. The quantitative data presented indicates
CMM-based improvement yields dividends in terms of higher productivity and software quality. Each level of improvement
significantly cuts defect density, improves productivity, and reduces rework.

“Peer reviews have been
widely recognized in
the industry for being

the single most
important factor in

detecting and preventing
defects in

software products.”

CMM
Level

Percent
Rework

Phase
Containment
Effectiveness

CRUD
Density

 per
KSLOC

Productivity
(X Factor
Relative)

2 23.2% 25.5% 3.20 1 x

3 14.3% 41.5% 0.90 2 x

4 9.5% 62.3% 0.22 1.9 x

5 6.8% 87.3% 0.19 2.9 x

Table 1: General Dynamics Decision Systems
Project Performance Versus CMM Level

Software by Numbers

10 CROSSTALK The Journal of Defense Software Engineering March 2002

effectiveness is a measure of defect
containment within the phase in which
it was created. Higher phase contain-
ment is equivalent to early detection of
defects within the same phase in which
it was created. Predicted quality is
defined as the number of latent defects
or Customer Reported Unique Defects
(CRUD) per thousand source lines of
code (KSLOC). Productivity is dis-
played in X factor terms that are
defined as the productivity average of
all programs within a certain CMM level
divided by the productivity average of
all Level 2 programs. The quality,
rework, and productivity performance
for each program is obtained from

General Dynamics Decision Systems’
internal metrics and categorized by
CMM level as determined by each pro-
ject’s internal self-assessment.

Detailed Metric/Results
Analysis
This section will discuss each General
Dynamics Decision Systems’ metric
collected (i.e., percent rework, phase
containment, quality, and productivity)
and discuss the improvement results
with relation to CMM maturity level. As
will be discussed later, specific improve-
ment results are not entirely attributable
to increasing CMM maturity levels since
the organization has put into place ini-

tiatives in cycle time and quality
improvement above and beyond the
SEI CMM.

1. Quality Metric
At General Dynamics Decision
Systems, post release software quality is
defined as the number of predicted
latent defects per thousands of deliv-
ered source instructions. Latent defects
are predicted based upon the rate of
new problems discovered during devel-
opment. The total number of problems
introduced in a software product is the
sum of problems detected during devel-
opment and the latent defects remain-
ing at product release.

The total number of software prob-
lems introduced in a software product
can be estimated by using historical
defect density data from similar projects
and tracking problems found early in
the development cycle. A method to
predict problems throughout the devel-
opment cycle is given by Arkell and
Sligo in “Software Problem Prediction
and Quality Management [2].” Latent
defects or CRUD are defects in the
delivered product. CRUD is not experi-
enced during software product develop-
ment but it can be estimated.

Future problems can be predicted
from the pattern of problems already
detected by examination (peer review or
inspection), by testing, and by using
work products already examined or test-
ed. The cumulative number of prob-
lems detected over time tends to follow
an S-shaped curve.

The number of problems remaining
to be discovered (CRUD) is depicted in
Figure 1 as the difference between the
asymptote (total problems injected) and
the regression line at the point of deliv-
ery (the dashed vertical line after TRR).

CRUD is an indicator of software
quality. Since it is reasonable for small
products to have less CRUD than large
products, General Dynamics Decision
Systems uses CRUD density (CRUD
per KSLOC) as one of the software
quality indicators.

Quality Results
Figure 2 examines the predicted quali-
ty improvement as projects progress
up the various SEI CMM levels. This
chart shows that predicted quality
improves (which is synonymous with
decreasing latent defect [CRUD] pre-
dictions) with increasing SEI CMM
levels.

Figure 1: Customer Reported Unique Defects (CRUD) Prediction Chart

CRUD Density Improvement vs. CMM Level
(Based on Latent Defect Predictions)

0

1

2
3

4

5

6

7

8
9

10

11

12

13

14
15

16

17

18

2 3 4 5

CMM Level

C
R

U
D

 D
en

si
ty

X
 F

ac
to

r

Figure 2: Quality Versus CMM Level

How CMM Impacts Quality, Productivity, Rework, and the Bottom Line

March 2002 www.stsc.hill.af.mil 11

Quality Analysis
The metric data show that compared
with an average Level 2 program, Level
3 programs have 3.6 times fewer latent
defects, Level 4 programs have 14.5
times fewer latent defects, and Level 5
programs have 16.8 times fewer latent
defects.

The improvement in quality is
expected for projects that transition
from Level 2 to 3 due to the Peer
Review KPA found in Level 3. Peer
reviews are widely recognized in the
industry for being the single most
important factor in detecting and pre-
venting defects in software products.
Quality is also expected to improve for
projects transitioning from Level 3 to 4
due to the Quantitative Process
Management and Software Quality
Management KPAs. Using quality met-
ric data such as peer review effective-
ness and phase containment effective-
ness will allow the project to modify its
processes when the observed metric
falls below the organizational and proj-
ect control limits.

The improvement from Level 4 to
Level 5 is attributable to the Defect
Prevention and Process Change
Management KPAs. Projects operating
at this level perform Pareto analysis on
the root cause of their problems and
perform causal analysis to determine
the process changes needed to prevent
similar problems from occurring in the
future.

It should be noted that large
improvements in defect density are
more readily obtained when the num-
ber of defects is large, as would be
expected in lower maturity level proj-
ects. At higher maturity levels, it
becomes more and more difficult to
dramatically reduce the defect density.

2. Phase Containment Metric
Phase containment is defined as the
ratio of problems detected divided by
the number of problems inserted
within a phase. For example, if 100
problems were introduced in detailed
design but only 75 problems were
detected by the peer-review process,
then the phase containment effective-
ness would be 75 percent. The General
Dynamics Decision Systems’ goal is at
85 percent phase containment effec-
tiveness. Projects below this threshold
perform causal analysis to improve
their peer review and testing processes.
The focus in improving phase contain-
ment is to catch problems as early as

possible. The cost of fixing problems
escalates dramatically the longer the
problem remains undetected in the
software life cycle.

Phase Containment Results
Figure 3 illustrates the Phase Contain-
ment Effectiveness improvements with
respect to CMM level.

Phase Containment Analysis
Analysis of the data shows that com-
pared with an average Level 2 program,
Level 3 programs have 1.6 times better
phase containment effectiveness, Level
4 programs have 2.4 times better phase

containment effectiveness, and Level 5
programs have 3.4 times better phase
containment effectiveness.

The improvement in phase contain-
ment effectiveness from Level 2 to 3 is
primarily due to the Peer-Review KPA.
Improvements from Level 3 to 4 are
due to increased attention on peer
review effectiveness using statistical
process control charts and monitoring
and removing assignable causes of vari-
ation, e.g., variation not inherent in the
peer-review process. Improvements
from Level 4 to Level 5 are attributable
to the increased focus on the Defect

Phase Containment X Factor Improvement
vs. CMM Levels

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5

CMM Level

P
h

as
e

C
o

n
ta

in
m

en
t

X
 F

ac
to

r

Figure 3: Phase Containment Effectiveness Versus CMM Level

Productivity SLOC/Day
vs. CMM Level

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5

CMM Level

P
ro

d
u

ct
iv

it
y

X
 F

ac
to

r

Figure 4: Productivity Versus CMM Level

Software by Numbers

12 CROSSTALK The Journal of Defense Software Engineering March 2002

Prevention and Process Change
Management KPAs.

3. Productivity Metric
Productivity is defined as the amount of
work produced divided by the time to
produce that work. This may be meas-
ured in SLOC per hour, or some similar
measure. Each project at General
Dynamics Decision Systems tracks its
productivity by measuring SLOC pro-
duced and the number of hours to pro-
duce that code.

Productivity Results
For proprietary reasons, the actual num-
ber of lines of code per hour is not
shown; however, the relative productivi-
ty between projects at different levels of
maturity can be seen in Figure 4 (see
page 11). The data are normalized to the
productivity of an average Level 2 proj-
ect. The X factor is defined as the rela-
tive improvement as compared with a
Level 2 program. For example, if a Level
2 program has an average productivity
of eight SLOC per day and a Level 3
program has an average productivity of
16 SLOC per day, one could say that the
Level 3 programs have a 2 X factor as
compared with Level 2 programs.

Productivity Analysis
Project data show that compared with
an average Level 2 program, Level 3
programs show a 2 X factor improve-
ment in productivity, Level 4 programs
show a 1.9 X factor improvement in
productivity and Level 5 programs
show a 2.9 X factor improvement in
productivity.

Productivity is affected by factors
other than process maturity, most
importantly technology changes. For
example, the data shown include proj-
ects that may have started before some
form of automated code generation
became available. In addition, the
amount of code reuse on a project can
greatly affect the productivity of that
project. As projects increase their level
of maturity, the ability to effectively
reuse software source code is
enhanced. Likewise, software code that
is reused from a high maturity level
project requires less rework and is
more easily understood. These factors
act as multipliers in the productivity of
high maturity level projects.

It is interesting to note that in the
transition from Level 3 to Level 4,
projects do not experience a statistical-
ly significant change in productivity.
This appears to be a side effect of

Level 4 being a transitionary state in
which projects quickly progress to
Level 5 practices once making Level 4.
Level 4 programs can monitor their
critical processes using statistical
process control techniques. However,
the skills needed to perform causal
analysis and process change are
obtained at Level 5.

It is also possible that the effective
utilization of statistical process control
and software quality management
introduced at Level 4 becomes more
effective over time and that benefits
are not realized in the short term in
this transitionary state. As with any
new technology, it is expected that a
cycle of absorption is needed before
the full benefits can be observed.

4. Rework Metric
At General Dynamics Decision
Systems, each software engineer enters
his or her time card on a daily basis to
include hours expended, charge num-
ber, and burden code. Burden codes
measure major process activities and
are subdivided into the following cate-
gories:

G - Generate
V - eValuate
K - reworK
S - Support

We measured the percentage of
rework on a project as defined by
“total hours for rework divided by total
hours on the project.” We then evaluat-
ed project results based upon CMM
levels. Note that post-release rework
due to maintenance is not included in
this analysis.

Rework Results
The amount of rework is normalized
to a Level 2 program where rework
reduction is shown as an improvement
in Figure 5. The X factor rework
reduction is calculated by taking the
percentage of rework for Level 2 pro-
grams and dividing the percentage of
rework for all projects with a given
CMM level.

As compared with an average Level
2 program, Level 3 programs show a 1.6
X factor reduction in rework, Level 4
programs show a 2.4 X factor reduction
in rework, and Level 5 programs show a
3.4 X factor reduction in rework. It is
interesting to note that the rework X
factor improvements match the phase
containment X factor improvements.
This is not surprising due to the corre-
lation of early in-process fault detection

In Process Rework vs. CMM Level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5

CMM Level

In
 P

ro
ce

ss
 R

ew
o

rk
 X

 F
ac

to
r

Figure 5: In Process Rework Versus CMM Level

CMM Level CRUD for 100 KSLOC Post Release Rework (hrs) Pre Release Rework (hrs)

Level 5 19.11567615 306 2,397
Level 4 22.0952381 354 3,358

 Level 3 88.25757576 1,412 5,043
Level 2 315.8653846 5,054 8,208

Table 2: Model of Rework Costs per CMM Level for 100 KSLOC Program

How CMM Impacts Quality, Productivity, Rework, and the Bottom Line

March 2002 www.stsc.hill.af.mil 13

to the amount of reduced rework, i.e.,
better phase containment directly re-
lates to lower rework.

Process Improvement
Implementation Strategies
The following strategies are a result of
several lessons learned from the soft-
ware process improvements made at
General Dynamics Decision Systems:
• Plan for organizational software

process focus and definition impacts
during reorganization planning.

• Statistical process control training
and training on assignable causes of
variation.

• Focus on new projects. It is extreme-
ly difficult to change projects, espe-
cially at a low maturity level, once
they have started.

• A top down focus is essential before
getting buried in the details of the
CMM; start with the intent of each
KPA and determine how it fits into
your environment.

• Emphasize productivity, quality, and
cycle time. Avoid process for the
sake of process.

• Management commitment is needed
from all levels; commitment from
upper management won’t be enough
unless individual project lead-
ers/managers are also determined to
succeed.

• Practitioners and task leaders, not
outside process experts, should be
used to define processes.

• Managers need to be convinced of
the value of process improvement;
it’s not free, but in the long run it
certainly pays for itself.

• Copying process documents from
other organizations usually does not
work well; the process must match
your organization.

• Overcoming resistance to change is
probably the most difficult hurdle
when climbing the CMM ladder.

• There are no silver bullets! Process
change takes time, talent, and a com-
mitment with which many organiza-
tions are uncomfortable. If it was
easy, everyone would have already
done it.

Return on Investment
The process improvement efforts to
support 360 software engineers include
the following:
• Full-time chief software engineer

and metrics champion.
• Weekly software improvement

meetings by software task leaders.
• Project kickoffs, phase-end reviews,

and post mortems.
• Focused process improvement

working groups by project person-
nel.
The above process improvement

efforts were approximately 2.5 percent
of the base staffing of 360 software
engineers. Given the following assump-
tions for a single project:
• 100 KSLOC size project for two

years.
• Sixteen hours to fix a defect found

after software release.
The post and pre-release rework cal-

culated from our return-on-investment
(ROI) model is shown in Table 2.

Assuming 2.5 percent investment
for process improvement on a project
to progress one level of CMM maturity
within one year, the ROI per CMM
level is depicted in Table 3.

The ROI calculations do not take
into account the added benefit of being
able to apply existing resources for pur-
suit/execution of new business oppor-
tunities due to improved cycle times
and earlier completion dates.

Conclusion
Similar to the earlier 1997 results pub-
lished regarding General Dynamics
Decision Systems’ Software Process
Improvement [3], each level of software
maturity results in improved quality and
productivity. Each level of CMM matu-
rity reduces defect density by a factor of

almost four on the average until Level 4
is reached, where a 16 percent improve-
ment is seen from Level 4 to 5. Phase
containment effectiveness and rework
improve on the average by 50 percent
with each maturity level. Productivity
improves 100 percent for Level 2 to 3
transitions and by 50 percent for Level
4 to 5 transitions.

Comparing the General Dynamics
Decision Systems’ 2001 study with the
published 1997 results shows some sim-
ilarities and some differences as shown
in Figure 6. The productivity improve-
ment from Level 2 to 5 is about the
same for both studies, around a 2.8 X
factor improvement. The quality
improvements, however, are more pro-
nounced, 16.5 X factor improvement
between Levels 2 and 5, than the
General Dynamics Decision Systems’
1997 study that documented a 7 X fac-
tor improvement between Levels 2 and
5 [3]. This suggests that the quality ben-
efits increase the longer an organization
is able to maintain a Level 5 maturity
capability.

The ROI analysis shows the largest
benefit is going from Level 2 to 3 with
167 percent ROI. Level 3 to 4 advance-
ment also shows a significant 109 per-
cent ROI. Although the Level 4 to 5 ROI
of 14 percent is not as significant as the
other level transitions, subjective experi-
ence from these authors indicates that
Level 4 projects are transitionary and
short lived, quickly obtaining Level 5
much earlier than the one year per level

Table 3: Return on Investment (ROI) by Level Transitions

CMM Level
Transition

Cost for SPI in hrs
(2.5% of Base)

Cost Savings on Rework (hrs) Return on Investment

Level 4 to 5 884 1,009 14%

Level 3 to 4 1,310 2,744 109%

Level 2 to 3 2,544 6,806 167%

Quality and Productivity Comparison
with 1997 Published Data

0

2

4

6

8

10

12

14

16

18

 1997 Quality 2001 Quality 1997 Productivity 2001 ProductivityX
 F

a
c
to

r
Im

p
ro

v
e
m

e
n

t
fr

o
m

L

e
v

e
l

2
 t

o
 5

Figure 6: Quality and Productivity Comparison with 1997 Published Data

Software by Numbers

14 CROSSTALK The Journal of Defense Software Engineering March 2002

transition assumption used by the analy-
sis model.

These data suggest that Level 5 is
the most desirable state an organization
would strive for in order to maximize
the quality and productivity perform-
ance of a project.

Process improvement takes time to
institutionalize and requires a commit-
ment from management in order to suc-
ceed. Achieving higher levels of process
maturity requires an investment of time
and money in process improvements,
including tool integration to aid in the
collection and interpretation of quanti-
tative data.

In conclusion, process improvement
activities must be undertaken with a
look at return on investment. Higher
maturity organizations take this into
account when initiating SPI activities.
The CMM by itself does not assure
improved performance results. Perfor-

mance improvement must be specifical-
ly identified as the goal for SPI to avoid
process for process sake. Tailoring of
processes and a focus on cycle time are
needed in addition to the traditional
CMM emphasis.◆

References
1. Paulk, Mark, et al. “Capability

Maturity Model Version 1.1.” IEEE
Software July 1993: 18-27.

2. Arkell, Frank, and Joseph Sligo, eds.
“Software Problem Prediction and
Quality Management.” Conference
Proceedings of the Seventh
International Conference on Appli-
cations of Software Measure-ment,
Oct. 1996.

3. Diaz, Michael, and Joseph Sligo,
eds. “How Software Process
Improve-ment Helped Motorola.”
IEEE Software Sept. 1997: 75-81.

About the Authors

Jeff King is a senior
recruiter for General
Dynamics Decision Sys-
tems in Scottsdale, Ariz.
He has worked for
General Dynamics Dec-

ision Systems for six years and has 15
years total experience in technical
recruiting. During his career, King has
supported information technology,
telecommunications, aerospace, and
defense industries. He received a
bachelor’s degree in economics from
Northern Arizona University in
Flagstaff, Ariz. in 1979 and earned 60
hours post graduate at Arizona State
University.

General Dynamics Decision Systems
8220 E. Roosevelt St.
Scottsdale,AZ 85252
Phone: (480) 675-2995
E-mail: jeff.king@gd-decision

systems.com

COMING EVENTS

March 25-28
Software Test

Automation Conference
San Jose, CA

www.sqe.com/testautomation

April 8-10
Secure E-Business Executive Summit

Arlington, VA
www.secure-biz.net

April 9-10
Southeastern Software

Engineering Conference
Huntsville, AL

www.ndia-tvc.org/SESEC2002/

April 29–May 2
Software Technology Conference 2002

“Forging the Future of Defense
Through Technology”

Salt Lake City, UT
www.stc-online.org

May 13-17
Software Testing

Analysis and Review
(STAREAST 2002)

Orlando, FL
www.sqe.com/stareast

June 3-6
Combat Identification Systems

Conference

Colorado Springs, CO
www.usasymposium.com

July 22-25
Joint Advanced Weapons Systems Sensors,

Simulation, and Support Symposium
(JAWS S3)

Colorado Springs, CO
www.jawswg.hill.af.mil

Mike Diaz is a chief
software engineer for
the General Dynamics
Decision Systems and
is responsible for all
aspects of software

development in an organization of
360 software engineers. Diaz was a key
contributor leading to General
Dynamics Decision Systems’ second
Capability Maturity Model® Level 5
rating. Diaz’s experience includes 19
years of software technical leadership
in requirements management, systems
engineering, security architectures,
and secure key management systems
while at General Dynamics Decision
Systems. Diaz has been awarded mem-
bership in General Dynamics Deci-
sion Systems’ Scientific Advisory
Board Association, the highest techni-
cal association within General
Dynamics Decision Systems. Diaz
received a bachelor’s of science degree
in electrical engineering and a master’s
degree in computer engineering from
Boston University.

General Dynamics Decision Systems
8220 E. Roosevelt St.
Scottsdale,AZ 85252
Fax: (480) 675-2398
E-mail: michaeldiaz@gd-decision

systems.com

March 2002 www.stsc.hill.af.mil 15

The software division at the Oklahoma
City Air Logistics Center was assessed

as Software Engineering Institute (SEI)
Capability Maturity Model® (CMM®) Level
4 in 1996, and became registered under the
ISO 9001 standard for Quality Systems in
1998. The ISO registration was under the
software implementation of the ISO stan-
dard known as “TickIT.” For these accom-
plishments and several others, the software
division was the recipient of the Institute
of Electrical and Electronics Engineers’
Software Process Achievement Award for
1999, a truly significant award for the divi-
sion’s efforts.

A large portion of the division’s suc-
cess has been due to embracing the
Earned Value Management (EVM)
methodology. EVM provided the needed
structure to achieve many of the CMM
Level 2 and 3 Key Process Areas (KPA) of
the SEI’s CMM. And, due to its numerical
basis, EVM facilitated the achievement of
the CMM Level 4 KPA, Quantitative
Process Management (QPM), at that time.

However, today the updated QPM
KPA strongly urges using control charts
for statistical process control (SPC) with
the new goal: “Statistically Manage the
Sub-Processes [1].” CMM evaluators are
now looking for SPC control charts as evi-
dence of satisfying this KPA. Along with
the rest of the software industry, we have
struggled to meaningfully apply SPC con-
trol charts.

Although there is growing evidence of
organizations following the CMM goal by
implementing SPC with the defect data
obtained from peer reviews, only a handful
of organizations are employing the tech-
nique for controlling and improving soft-
ware development process performance.
The performance application is more diffi-
cult, but we believe it has more far-reach-
ing results [2, 3].

Furthermore, we believe the applica-
tion to performance management is more

in line with the intent of SPC, i.e., SPC is
intended to optimize the performance of a
system, not a component subsystem. The
quality guru of the 1980s, Dr. Edward
Deming, warned against applying SPC to
sub-processes by themselves; he believed
these actions could lead to optimizing the
sub-process, possibly at the expense of the
system. Thus, the following discussion
concerns the application of SPC to man-
aging the performance of software proj-
ects.

Statistical Process Control
There are several methods for performing
SPC: scatter diagrams, run charts, cause
and effect diagrams, histograms, bar
charts, Pareto charts, and control charts [4,
5]. Although all of these methods are use-
ful, we will focus this article on control
charts.

SPC control charts, if successfully
applied, can be a significant impetus for
software process improvement. The
method provides distinction between nor-
mal and anomalous process data; it is, in
effect, a filter [6]. By knowing our normal
process, we can reengineer it to obtain
improvement in some performance
aspect. And, by identifying anomalous
behavior, we can seek the special cause (an
influence from outside the system) and
take action to prevent it from affecting
future performance.

The fundamental idea of process

improvement is that as the system is
observed over time, the process decreases
its variation and, increasingly, gets closer
to achieving its planned performance
objective because of the introduction of
improvements. SPC control charts facili-
tate this process improvement concept.
Thus, you have the reason why the recent-
ly issued Software CMM IntegrationSM

(CMMISM) [1] has specifically used the
words “statistically manage” in its CMM
Level 4 Process Area, “Quantitative
Project Management.”

There are seven SPC control chart
types, each having a specific application
[4, 5]. The control chart required for our
application is termed “Individuals and
Moving Range.” Symbolically, it is shown
as XmR, where X represents the individ-
ual observations, and mR represents the
moving range, the difference between suc-
cessive observations. The XmR control
chart is used when there is only one meas-
urement of the variable in an observation
period.

For all types of control charts, the
control limits establish the filtering
mentioned earlier. The high limit is plus
three sigma from the average of the
observations, whereas the low limit is
the average minus three sigma. Sigma is
a standard statistical measure of the
variation in the process. An estimate of
sigma is determined from the moving
range. Measured values outside of the
control limits have an extremely low
probability of occurrence, only 0.27
percent if the process follows a normal
distribution. Thus, any measured value
beyond the control limits is deemed an
anomaly, or in SPC terminology, a “sig-
nal,” and should be investigated by man-
agement.

SPC is a much more involved subject
than has been discussed here.
Significantly more complete informa-
tion is available in the references [4, 5,
6].

Statistical Process Control
of Project Performance

Walt Lipke
Oklahoma City Air Logistics Center

With today’s increased emphasis on statistical process control (SPC) as a management technique for software development,
software organizations are attempting to employ the method for quality and project control. The focus of these efforts has pri-
marily been with organizations having a Software Engineering Institute Capability Maturity Model® (CMM®) Level 4 or
5 rating. A few CMM Level 4 and 5 organizations have experimented with applying SPC control charts to another man-
agement technique – Earned Value Management (EVM). This article discusses the application of SPC control charts to
the EVM indicators, schedule, and cost performance indexes.

SM CMMI and CMM Integration are service marks of
Carnegie Mellon University.

“Statistical
process control charts,
if successfully applied,
can be a significant

impetus for
software process
improvements.”

Software by Numbers

16 CROSSTALK The Journal of Defense Software Engineering March 2002

Earned Value Management
An excellent reference for EVM is a book
by Quentin Fleming, Cost/Schedule Control
Systems Criteria, The Management Guide to
C/SCSC [7]. Just as with SPC, EVM is
much more involved than the discussion
in this paper. Here, we will only introduce
the EVM indicators “cost performance
index” (CPI) and “schedule performance
index” (SPI).

EVM is based upon establishing a
project baseline to achieve the “budget at
completion” (BAC); BAC identifies the
cost and completion points for the project
manager. The baseline performance is a S-
curve termed Budgeted Cost for Work
Scheduled (BCWS); it is a graph of
expected cost versus time. The in-process
performance tracking is facilitated by two
other curves, Actual Cost for Work
Performed (ACWP) and Budgeted Cost
for Work Performed (BCWP). BCWP is
the earned value; it represents the comple-
tion of project tasks and is traceable to the
values of cost and time duration allocated
to those tasks during the project planning.

During project execution, the CPI and
SPI indexes provide information about
performance efficiency. The indexes are

ratios. SPI is the efficiency of achieving
earned value with respect to the perform-
ance baseline (SPI=BCWP/BCWS).
Similarly, CPI is the efficiency of achiev-
ing earned value with respect to the actual
costs (CPI=BCWP/ACWP).

Application/Data Analysis
Approximately three years ago, we began
applying SPC to the EVM indicators SPI
and CPI. We believed the merging of the
two powerful management techniques
held a considerable amount of promise.
Our concept was that the application of
SPC control charts to the monthly SPI and
CPI values could be used in the following
ways:
1. As a predictor of performance for the

remainder of a project in work.
2. To improve the planning of new proj-

ects by using historical data from com-
pleted projects.

3. To effect process improvement, i.e.,
improve both execution and planning
by using the measures of variation
(sigma) in monthly performance and
variance from the project plan
(planned cost and completion date).
As stated, we have been using the

method for some time. We have shared the
ideas and results in two previous articles
[2, 3]. Our results thus far indicate the
method will fulfill its promise. However,
its employment does require some addi-
tional understanding.

When we began preparing the control
charts, we observed that the representation
of the data affected the analysis and calcu-
lated results. To illustrate, we will use a
small sample of actual data represented as
both SPI and inverse SPI. Control charts
for each data representation are shown in
Figures 1 and 2. For the SPI chart, a signal
is indicated at data point six. By removing
the statistically anomalous data point six,
the true process performance can be
obtained. The control chart for SPI with
data point six omitted from the calcula-
tions is shown in Figure 3. The true
process has an average value of SPI (sym-
bolically, <SPI>) and an estimate of sigma
(σ) equal to 1.029 and 0.277, respectively.
The inverse SPI chart (Figure 2), however,
indicates there are no signals. Therefore,
the true process for this data representa-
tion has an average value of SPI-1 equal to
1.001, while sigma is estimated to be 0.304.
As you can clearly see, the analysis results
for SPI and SPI-1 are not equivalent.

Problem/Proposed Solution
Of course, we should not expect the aver-
age values to be equal for the SPI and SPI-1

analysis. However, if the signals found and

the estimates of sigma are not identical for
the two data representations, then we
must ask the question, “Which result is
correct, or is neither?” If we do not have
a basis for choosing a way to represent the
data and perform the analysis, then none
of the three desired outcomes expressed
in the Application/Data Analysis section
are achievable.

Another problem can be seen from the
histograms of CPI and CPI-1 shown in
Figure 4. The histograms were created
from nearly six years of monthly data
from one of our software development
projects. By visual inspection, these his-
tograms indicate that the data distribu-
tions are probably not “normal.” Thus,
predictions made by applying a normal
distribution to the population would likely
be inaccurate [5]. Therefore, similarly to
the discussion in the preceding paragraph,
unless there is a way to correct the behav-
ior of the data, we cannot use the SPC
information derived from the CPI and SPI
data for the performance prediction, proj-
ect planning, and process improvement
applications cited earlier.

There are several recognized correc-
tion methods that can be used when the
distribution of the data is not normal [5].
However, the most appealing is to trans-
form the data in a mathematical way to
approximate a normal curve. This is the
solution approach discussed in the
remainder of the article.

As we became more curious about the
differences in the results from the control
charts of SPI versus SPI-1 and CPI versus
CPI-1, we noticed a general bias. The aver-
age of the monthly values for either rep-
resentation is generally larger than its cor-
responding cumulative value (e.g., <SPI>
> SPIcum) and the signals found using
XmR control charts are predominantly the
observations having values greater than
1.0. Our analysis indicates the problem
occurs because the performance indicator
(PI) values below 1.0 cannot be less than
zero. It is impossible to have a negative
value for the PI because it is, simply, a ratio
of two positive numbers. However, the
values of the PI above 1.0 are unlimited1.

This behavior of the PI was deduced
to be incongruent with the three sigma
process limits computed for the individual
control chart. The process limits them-
selves are unbounded; conceivably, they
can have values ranging from plus to
minus infinity. The process limits are
equally spaced above and below the PI
average value. However, equivalent good
and poor observed values for the PI are
not spaced equally above and below the
nominal value of 1.0. The PI values less

-1

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2.9813σ =+

-0.6723σ =-

0.609σ =

1.154SPI >=<
SPI

Months

Figure 2: SPI-1 Control Chart

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.9143σ =+

0.0893σ =-
0.304σ =

1.001SPI-1 >=<SPI-1

Months

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.8593σ =+

0.1793σ =-

0.277σ =

1.029SPI >=<

SPI

Months

Figure 3: SPI Control Chart (n=6 Removed)

Figure 1: SPI Control Chart

Statistical Process Control of Project Performance

March 2002 www.stsc.hill.af.mil 17

than 1.0 are virtually ignored; observed
performance values below the lower
process limit are rare occurrences. For
example, signals identified as values high-
er than the upper process limit for non-
inverted data are not detected when the
data is inverted. Both Figures 1 and 2 illus-
trate this inconsistency. Data point six is
identified as a signal by the SPI control
chart (Figure 1). However, when the data
are inverted, the control chart for SPI-1

(Figure 2) indicates data point six as noth-
ing unusual; it is within the lower process
limit, and thus, is considered to be part of
the process. Another significant observa-
tion from Figure 1 is that the lower
process limit value is below zero; there-
fore, any SPI value less than 1.0 cannot be
detected as a signal.

To make this point a little clearer, let us
use SPI (BCWP divided by BCWS).
Suppose BCWP is five units and BCWS is
one unit. Now suppose the performance is
reversed; BCWP is one unit, and BCWS is
five units. For the first instance, SPIa=5.0,
and for the second, SPIb=0.2. The two
instances are, numerically, the reciprocal of
the other and represent equivalent anom-
alous performance. SPIa=5.0 is excessive-
ly good schedule efficiency, whereas
SPIb=0.2 is excessively poor schedule effi-
ciency. The two values are not equidistant
from 1.0, the nominal value; SPIa is four
units away from 1.0, whereas SPIb has a
separation of only 0.8 units.

If we constructed a control chart with
these data points included, SPIa would
likely be detected as a signal. And if the
lower process limit happened to be a neg-
ative number, SPIb would be seen as part
of the process. However, for the inverse
data representation the signal detected
becomes SPIb

-1=5.0, while SPIa
-1=0.2 is

ignored. The signals identified are
switched with the change in data represen-
tation. Thus, it should now be understood
that the SPC control limits generally
detect EVM performance index indicator
signals greater than 1.0 and ignore poor
performance values less than 1.0, regard-
less of whether the data are represented as
inverted or non-inverted.

Due to the incongruence between the
PI data and the XmR process limits, a
method was sought to transform those PI
(or PI-1) values less than 1.0 from being
bounded by zero to unbounded. It was
hoped that if the data values less than 1.0
could be made to resemble the character-
istics of those values greater than one,
then consistent results could be obtained
from data represented as either inverted or
non-inverted.

The method for representing all of the
data as unbounded is extremely simple.
The PI data are transformed for the SPC
analysis by using the natural logarithm
function. Applying the natural logarithm
function causes PI values less than 1.0 to
be represented by negative numbers. The
transformed values are a data set that is
congruent with its corresponding three
sigma process limits. Thus, when the
transformed data are used for creating the
SPC control chart, a negative value lower
process limit will not necessarily mean that
a signal whose value is less than 1.0 will be
ignored. The transformed data provides
the possibility of identifying signals for
both high and low PI values.

Solution Criteria/Testing/
Results
With the mathematical method defined for
transforming the data, tests can be per-
formed to determine whether or not the
application of the logarithm function
meets a set of desirable behavior charac-
teristics. Fundamentally, if the solution is
the correct one, it should not matter which
data representation is used for the SPC
analysis, inverted or non-inverted.

Specifically, the un-transformed aver-
age value of the inverted data should be
the reciprocal of the un-transformed aver-
age value of the non-inverted data2. The
value of sigma representing the process
variation for the non-inverted data should
equal the value of sigma determined from
the inverted data. The same data points
should be identified as signals in either
data representation. Lastly, the trans-
formed data should show improved agree-
ment to the normal distribution. If the
solution meets all of the criteria, we can
feel confident in its use.

To test the transformation, it is applied
to the SPI data previously analyzed (see
Figures 1 and 2). The transformed SPI
data, both the non-inverted and inverted
representations, are shown in the SPC
control charts, Figures 5 and 6, respective-
ly. Reviewing and comparing these control
charts, it can be said that the results satisfy
three of the four solution criteria:
1. The un-transformed average values,

i.e., <SPI>u and <SPI-1>u, are 0.994
and 1.006, respectively; <SPI-1>u is the
reciprocal of <SPI>u.

2. The signal identified in Figure 5 is
identical to the signal found in Figure
6, i.e., data point six. Figure 6 is the
mirror image of Figure 5 with respect
to the ordinate value 0.0.

3. The estimate of sigma is the same
value for both the inverted and non-
inverted representations of PI; i.e., the
value of σ is 0.259.
One test using a small data sample cer-

tainly is not proof that the transformation
meets the criteria in every instance.
However, we have run the analysis using
the natural logarithm transformation on
data from several projects (more than 400
data points) and have seen consistent
results. Furthermore, although it is beyond
the scope of this paper, through mathe-

5.958

0.404 σ
1.119 x

2 =

=

=

χ

C
ou

nt

3σ- 1.8σ- 0.6σ- 0.6σ+ 1.8σ+ 3σ+

CPI-1

7.448

0..365 σ
1.013 x

2 =

=

=

χ

C
ou

nt

CPI

Legend:
Solid Line () - actual
Dashed line () - expected

Legend:
Solid Line () - actual
Dashed line () - expected

3σ- 1.8σ- 0.6σ- 0.6σ+ 1.8σ+ 3σ+

Figure 4: Histograms - CPI and CPI-1

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.7713σ =+

-0.7823σ =-

0.259σ =

0.994SPI >=<

ln(SPI)

Months

-0.0056lnSPI >=<

Figure 5: ln(SPI) Control Chart

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.7833σ =+

-0.7723σ =-
0.259σ =

1.006SPI-1 >=<

ln(SPI-1)

Months

0.0057lnSPI-1 >=<

Figure 6: ln(SPI-1) Control Chart

Software by Numbers

18 CROSSTALK The Journal of Defense Software Engineering March 2002

matical analysis it can be shown that each
of these three criteria for data representa-
tion equivalence is achieved by applying
the natural logarithm function.

To illustrate that the transformation
improves the normality, visually compare
the histogram shown in Figure 7 to its
counterpart in Figure 4. The same data are
used for both histograms; however, Figure
7 uses the transformed values. The his-
togram of the logarithm values has a more
normal appearance. To further explain the
improvement, the “goodness of fit” Chi-
Square (χ2) statistical test [5, 8] is applied
to the histograms3. Smaller values of Chi-
Square indicate more conformity to a nor-
mal distribution. The Chi-Square value for
the raw CPI-1 data is 5.958 (see Figure 4),
whereas the value for the transformed data
is 3.066 (see Figure 7). Thus, there is 48.5
percent improvement in Chi-Square by the
use of the natural logarithm function.

In addition to high and low signals
being detected equally, another significant
outcome from using the natural logarithms
of the data is that the resulting average
value of the performance indicator
(<PI>u) is unbiased. It is not generally
greater than the cumulative value of PI
(PIcum). Thus, the average performance
indicator values, <SPI>u and <CPI>u,
and their reciprocals can be used with con-
fidence in EVM calculations.

Summary
SPC applied to the EVM indicators, CPI
and SPI indexes, can be a very powerful
management tool. It has immense poten-
tial to improve both the planning and exe-
cution of software development projects

and to provide a measure of that improve-
ment. We have shown, however, that the
application has inconsistencies that detract
from its employment. A solution is pro-
posed for resolving the problem. A test for
the solution is described and performed
using a small set of SPI data. The results
of more extensive testing and further
mathematical analysis indicate the recom-
mended solution has merit. Employing the
data transform technique significantly
reduces the SPC-EVM application incon-
sistencies, thereby yielding much improved
results.◆

References
1. CMMI-SE/SW, Version 1.02, CMU/

SEI-TR-018, CMMI Product Devel-
opment Team, Nov. 2000.

2. Lipke, Walt, and Jeff Vaughn, eds.
“Statistical Process Control Meets
Earned Value.” CrossTalk June
2000: 16-20.

3. Lipke, Walt, and Mike Jennings, eds.
“Software Project Planning, Statistics,
and Earned Value.” CrossTalk

Dec. 2000: 10-14.
4. Florac, William A., and Anita D.

Carleton, eds. Measuring the Software
Process. Reading, Mass.: Addison-
Wesley, 1999.

5. Pitt, Hy. SPC for the Rest of Us.
Reading, Mass.: Addison-Wesley, 1995.

6. Wheeler, Donald J. Understanding
Variation, The Key to Managing
Chaos. Knoxville, Tenn.: SPC Press,
2000.

7. Fleming, Quentin. Cost/Schedule
Control Systems Criteria, The Man-
agement Guide to C/SCSC. Chicago:
Probus, 1988.

8. Crow, Edwin L., Francis A. Davis,
and Margaret W. Maxfield, eds.
Statistics Manual. New York: Dover
Publications, 1960.

Notes
1. The observations discussed in this

paragraph are made for the non-invert-
ed data representation. The statements
apply equally as well for the inverted
data representation (PI-1).

2. The reciprocal relationship of the un-
transformed average values is also
needed for EVM calculations. The
cumulative values of the EVM per-
formance indicators, represented as
inverted and non-inverted data, pos-
sess this characteristic, i.e., (PIcum)-1 =
(PI-1)cum. Thus, to be confident using
the numbers from the SPC analysis in
EVM calculations, they must behave
in accordance with the cumulative val-
ues.

3. The definition of Chi-Square for this
application is: χ2 =Σi [(expected counti –
observed counti)

2 / expected counti],
where “i” designates one of the five his-
togram areas (e.g., 0.6σ to 1.8σ).

3.066

0.355 σ
1.051 x

2 =

=

=

χ

3σ-

C
ou

nt

1.8σ- 0.6σ- 0.6σ+ 1.8σ+ 3σ+

Legend:
Solid Line () - actual
Dashed line () - expected

Figure 7: Histogram - InCPl-1

About the Author
Walt Lipke is the
deputy chief of the
software division at the
Oklahoma City Air
Logistics Center. He
has 30 years of experi-

ence in the development, maintenance,
and management of software for
avionics automated testing. In 1993
with his guidance, the Test Program
Set and Industrial Automation (TPS
and IA) functions of the division
became the first Air Force activity to
achieve the Software Engineering
Institute’s Capability Maturity Model®

(CMM®) Level 2. In 1996, these func-
tions became the first software activity
in federal service to achieve CMM
Level 4 distinction. The TPS and IA
functions, under his direction, became
ISO 9001/TickIT registered in 1998.
Lipke is a professional engineer with a
master’s degree in physics.

OC-ALC/LAS
Tinker AFB, OK 73145-9144
Phone: (405) 736-3341
Fax: (405) 736-3345
E-mail: walter.lipke@tinker.af.mil

STSC JOVIAL Services Can Help You Put the Pieces Together With:
 ● SPARC Hosted-MIPS R4000 Targeted JOVIAL Compiler ● SPARC Hosted-PowerPC Targeted JOVIAL Compiler
● Windows 95/98/ME/NT (WinX) Compiler ● 1750A JOVIAL ITS Products
 ● Computer Based Training ● On-Line Support
 ● Use of Licensed Software for Qualified Users

Our Services Are Free to Members of the Department of the Defense and All Supporting Contractors.
Just Give Us a Call.
 If you have any questions, or require more information, please contact the Software Technology Support Center.

JOVIAL Program Office
Kasey Thompson, Program Manager ● 801 775 5732 ● DSN 775 5732

Dave Berg, Deputy Program Manager ● 801 777 4396 ● DSN 777 4396
Fax ● 801 777 8069 ● DSN 777 8069 ● Web Site ● www.jovial.hill.af.mil

JOVIAL
 GOT YOU

PUZZLED?

Best Practices

March 2002 www.stsc.hill.af.mil 19

This article focuses on applying tech-
nology adoption concepts in moving

toward using the Software Engineering
Institute’s (SEI) Capability Maturity
Model® (CMM®) IntegrationSM (CMMISM)
framework. It is assumed that the reader
has a basic understanding of the CMMI
concepts and the project that formulated
it. If not, please see the CMMI area
within the SEI’s Web site at <www.sei.
cmu.edu>. For more in-depth informa-
tion, see CMMI Distilled [1] for basic
information on the model and the proj-
ect written by some of the CMMI proj-
ect team members.

CMMI Adoption as
Technology Adoption
What is technology adoption? Generally,
it is the set of practices and factors relat-
ed to organizations selecting, deploying,
and sustaining the use of a technology.
Why look at CMMI adoption as “tech-
nology” adoption? First, CMMI “is” a
technology (a tool or tool system by
which we transform parts of our envi-
ronment, derived from human knowl-
edge, to be used for human purposes [2])
– a “process technology” – and what is
more, it is “radical.”

“Radical innovation is the process of
introducing something that is new to the
organization and that requires the devel-
opment of completely new routines, usu-
ally with modifications in the normative
beliefs and value systems of organization
members [3].” Treating CMMI as a tech-
nology adoption first mobilizes a differ-
ent mindset than the one we typically
apply to process improvement, and sec-
ond may make us more inclined to use
some of the useful tools of technology
adoption for our CMMI adoption.

Technology Adoption
Concepts
Given that the factors involved in tech-
nology adoptions are complex, it stands
to reason that each adoption is highly sit-

uational; its strategy will be unique to
that situation and context. Some basic
concepts can, however, be applied in
generating that unique strategy, including
the following:
1. Multiple dimensions have to be

addressed simultaneously to achieve
success, not just the technology (in
this case, CMMI) content.

2. Different audiences with different
roles and responsibilities in an organ-
ization respond differently as they are
introduced to the technology.

3. Acceptance of a new technology
does not happen in a linear, pre-
dictable fashion no matter how pret-
ty the charts look!

4. There are both different “levels of
diffusion” (breadth of technology
acceptance) and “levels of use”
(degree to which the technology
becomes embedded in the organiza-
tion’s governing and social practices).
One does not imply the other.

5. Different “mechanisms” are useful at
different points in the transition to
address different implementation
issues with different audiences.

6. Most organizations are very poor at
transferring what they’ve learned
from one technology adoption effort
to another. Communities of practice
are one strategy for addressing this.
The rest of the article will focus in

turn on each of these dimensions.

Dealing With Multiple
Dimensions Simultaneously
In talking to individuals and groups con-
templating CMMI adoption, I have
sometimes run into this mindset: “We’ve
been successful at implementing
Software CMM (SW-CMM); what’s the
big deal about implementing CMMI?”

From one viewpoint, this is an attrac-
tive mindset – it indicates that the indi-
viduals speaking see strong similarities
between SW-CMM version 1.1 and the
CMMI framework. Indeed there are
many similarities, although there are
more between SW-CMM version 2 draft
C and CMMI since version 2 draft C was
one of the seed documents for CMMI,
rather than version 1.1.

However, the CMMI framework also
provides an opportunity to expand the
scope of application of CMM concepts
beyond just the software organization
into the other parts of the organization
involved in product or service develop-
ment. This means involving new players
in the CMM adoption and expanding the
scope of effect of CMMs on the subsys-
tems of the organization.

Consider this: Which subsystem ele-
ments in Figure 1(see page 20) are “the
same” in context, roles, or resources
between different disciplines such as
software engineering and systems engi-
neering in your organization? Creating
alignment among these elements is not a
sequential process. For example, chang-
ing the technical practices of the organi-
zation could have a strategic effect if
those practice changes enable the organ-
ization to compete in a marketplace that
was previously closed to them.

The managerial and structural sub-
systems almost always have to be dealt
with in parallel. The social/cultural sub-
system provides an underpinning for all
the other subsystems, and the negative
effects of neglecting the social design
when redesigning other elements is well-
established [1]. However, if these subsys-

Are You Prepared for CMMI?

Suzanne Garcia
Software Engineering Institute

For those making the transition to the Capability Maturity Model® IntegrationSM (CMMISM) from another process improve-
ment model or methodology, understanding the transition as a technology adoption and applying technology adoption concepts
can smooth the process considerably. In this article, technology adoption concepts are described and then exemplified in a
CMMI context. Some of these are already well known within the software process improvement industry, others are not.

“Acceptance
of a new technology

does not happen
in a linear, predictable

fashion no matter
how pretty the
charts look!”

Best Practices

20 CROSSTALK The Journal of Defense Software Engineering March 2002

tem elements are aligned in the same
direction, perhaps via use of a similar
improvement model like CMMI, then
not only is technology adoption
smoother, but operations are also often
smoothed as well. The elements that fol-
low, in many cases, cross more than one
of these subsystem elements.

Understanding Your Audience
Who in your organization has to change
something in their behavior, attitudes, or
values to adopt CMMI: executives, man-
agers, technology users, support groups?
What things make these groups more or
less likely to change? Edgar Schein’s
work in organizational subcultures cites
distinct differences, for example,
between the executive and engineering
cultures.

“Executives and engineers are task
focused and assume that people are the
problem. Executives band together and
depersonalize their employees. Execu-
tives and engineers can’t agree on how to
make organizations work better while
keeping costs down. Enough mutual
understanding must be created among
the cultures to evolve solutions that all
groups can commit to [3].”

Within subculture groups, “individu-
als” also differ in their response to a
technology adoption. Different “adopter
types” move through adoption at differ-
ent speeds. These groups are distin-
guished from each other by their charac-
teristic response to an innovation (either
process or technology) that requires a

change in their behavior. Figure 2 illus-
trates where each adopter category falls
in the technology adoption life cycle.
Geoffrey Moore’s Crossing the Chasm [4]
and Inside the Tornado [5] popularized the
description and use of these characteris-
tics in great detail, based on ongoing
work in the diffusion of innovations
research area by Everett Rogers [6]. A
brief summary of each adopter type is
provided in the sidebar for those who are
not familiar with this work.

Adoption populations are used exten-
sively in planning technology adoption
strategies. Understanding the adoption
category of intended early users is
extremely important. For example, if an
intended pilot for new practices turns
out to be a group composed primarily of
late majority or laggard participants in
relation to that set of practices, then I
could easily predict the following: Any
adoption that (1) does not provide a
completely packaged solution and (2) is
not mandated by the organization,
including sanctions for not adopting, is
highly likely to fail. In addition to plan-
ning who will get the technology when,
adopter categories can be used to catego-
rize what kinds of adoption support
mechanisms (see “Transition Mech-
anisms” section) are likely to be needed
to ensure that each category of interest is
more likely to successfully adopt the
technology.

Adoption: Not a Linear
Process
Work done in the educational innova-
tions area has provided valuable insight
in understanding the patterns that are
often operating as a technology adoption
such as CMMI adoption occurs. The
original chart used by Patterson and
Conner [7], reproduced as Figure 3,
shows several milestones of increasing
commitment to an adoption as time pro-
gresses.

The SEI has found that the path

through these milestones is rarely linear,
and there are a plethora of approaches
for successfully navigating this progres-
sion, depending on the individual situa-
tion. However, a couple of points in
Figure 3 are worthy of note:
• There are clear signs if the organiza-

tion has “dropped out” of the adop-
tion process. Looking at the behav-
iors of the organization in relation to
the technology can provide a clue as
to the point in adoption where trans-
lation to the next milestone was not
made successfully.

• “Understanding” – the point at which
decision makers in the organization
have sufficient knowledge and con-
text information to make a relevant
decision about the technology – does
not typically happen on first, or even
second contact. This has always
helped me to be tolerant of organiza-
tional members who “aren’t getting
it.” I ask myself, “Have I given them
enough contact and depth to have the
right to ‘expect’ understanding?”

Diffusion vs. Infusion
In considering a particular process tech-
nology adoption like the CMMI, some
time should be spent determining the
adoption goals. Some of the other con-
cepts previously described such as what
kinds of adopters the adoption is target-
ing, what elements of the organization
need to be realigned, etc., can be used to
help set some of these goals.

Another area related to setting goals
that should be considered is the relative
emphasis that will be placed on CMMI
“diffusion” (how widespread the use of
CMMI has become) vs. CMMI “infu-
sion” (how deeply embedded into the
organizational infrastructure the CMMI
has become). This latter area, technology
infusion, focuses on the extent to which
the work system and social system of the
organization are affected by the technol-
ogy. To measure infusion, one can meas-
ure “levels of use” of a technology. For
example, the evolution of the infusion of
CMMI use in an organization might look
something like this:
1. CMMI adoption has occurred in a

few projects whose local procedures
and processes have been changed to
reflect the new practices.

2. One of the divisions of the organiza-
tion has changed its policies to reflect
the practices recommended in CMMI
and has formulated and published a
set of standard process assets that are
used as the basis for initiating and
managing new product development

Social/CulturalManagerial

TechnicalStructural

Strategic
TECHNOLOGY

Figure 1: Organizational Subsystems

Innovators Laggards

Late Majority

Early Majority

Early Adopters

InnovatorsInnovatorsInnovators LaggardsLaggardsLaggards

Late Majority

Early Majority

Early AdoptersEarly Adopters

Figure 2: The Technology Adoption Life Cycle

Are You Prepared for CMMI?

March 2002 www.stsc.hill.af.mil 21

projects.
3. Reward and incentive systems in the

new projects adopting CMMI prac-
tices have been examined and
changed where necessary to encour-
age productive use of the new
processes. Existing projects within
the division have been evaluated to
determine which parts of the set of
standard process assets might benefi-
cially be applied to the projects at
their current point in the life cycle.
Projects are being provided the train-
ing and other support needed to make
it feasible for them to adopt new
practices in mid-project.

4. Members of projects in the division
adopting the CMMI are being recruit-
ed for projects in other parts of the
organization due to the projects’ rep-
utation for meeting customer expec-
tations. However, many of them
choose to stay within the division
rather than move to the other parts of
the organization that are less disci-
plined in their management and engi-
neering practices.
Each of these scenarios could be con-

sidered a level-of-use measure for the
infusion of CMMI adoption within the
organization. With increasing levels of
use, the degree of workflow intercon-
nectedness related to the CMMI use
increases, and the degree of visibility of
the technology within the social subsys-
tem is increased, as exemplified in the
example of the fourth scenario.

Zmud and Apple, the authors of var-
ious articles in this area [8], recommend
that an organization that wants to under-
stand the infusion of a technology into
the organization identify different config-
urations that reflect the levels of use that
are the goals for the adoption as time
continues. Like the CMMI itself, this is a
cumulative approach since each configu-
ration builds on the prior configuration’s
functionality.

This viewpoint has particular applica-
bility to a technology like the CMMI,
which in a sense has several embedded
configurations enabled by the capability
levels or maturity levels. For those using
the staged view of CMMI, the maturity
levels provide a priori configurations that
translate to certain functionality related
to the model being present. For those
organizations for whom the staged-view
functionality is not compatible with their
business drivers, thinking of groups of
process areas to be adopted as a “config-
uration” for measuring levels of use is
one way to provide measurable anchor
points to the improvement effort.

Diffusion – how broadly the technol-
ogy has penetrated – is also an important
measure. One of the most useful ways of
approaching this that I have encountered
is found in Kim Caputo’s book CMM
Implementation Guide: Choreographing
Software Process Improvement [9]. She sug-
gests that the organization “operational-
ize” the stages of the Patterson-Conner
commitment curve (“What does it mean
for us to achieve awareness, understand-
ing, etc.?”) in terms of events and symp-
toms of behavior change; then use a his-
togram to show the organization’s popu-
lation against those events and behaviors.

At the beginning, one might expect
that the organization might have a profile
like Figure 4 (see page 22). As time goes
on, the profile should shift to something
like that shown in Figure 5 (see page 22)
as more and more members of the
organization participate in the activities
of CMMI adoption. One use of this
measure is to help senior managers
understand the time needed to see tangi-
ble return on investment of a CMMI
implementation. When they understand
how many people have to go through

several events before one can expect their
behavior, and therefore their results, to
change, it can help them tolerate some of
the time lag that is typical between start-
ing an adoption effort and seeing busi-
ness results.

Transition Mechanisms
Transition mechanisms are products,
events, and methods for translating from
one commitment milestone to another.

Adopter Types
• Innovators are gatekeepers for any new technology. They appreciate technology for

its own sake from its architecture to its application. They will spend hours trying to
get technology to work and are very forgiving of poor documentation, slow per-
formance, and incomplete functionality. Innovators are helpful critics to technology
producers who are willing to fine-tune their products.

• Early adopters are dominated by a dream or vision, focusing on business goals. They
usually have close ties with “techie” innovators, so as to be ready to match emerging
technologies to strategic opportunities. They thrive on high visibility, high-risk proj-
ects, and have the charisma to generate buy-in for them. They do not, however, have
credibility with early majority types, so they have limited influence over that group.

• Early majority adopters do not want to be pioneers (prudent souls). They control the
majority of the budget, so they want to be assured of percentage improvement
(incremental, measurable, predictable progress). They are not risk averse, but do want
to manage change carefully. They are hard to win over, but are loyal once won and
will often be the people who will carry a new initiative through into institutionaliza-
tion.

• Late majority adopters avoid discontinuous change (change that requires them to
change their behavior) whenever possible: They adopt only to stay on par with the
rest of the world. Somewhat fearful of new technologies, they prefer pre-assembled
packages with everything bundled. In comparison with early adopters or early major-
ity populations, they are much less willing to invest in a technology that requires visi-
ble change to their practices, unless mandated.

• Laggards are the “naysayers” in the crowd. They adopt only after the technology is
not recognizable as a separate entity, after it has become part of “the way things are
done around here.” They do, however, constantly point at discrepancies between what
was promised and what is delivered. When contemplating a technology adoption, they
are often very useful for identifying risks (both technology-based and culturally-based)
to the adoption.

VI. Institutionalization

VI. Adoption

V. Installation

IV. Positive Perception

III. Understand the Change

II. Awareness of
Change

I. Contact

Commitment
Threshold

Disposition
Threshold

D
eg

re
e

of
 S

up
po

rt
fo

r t
he

 C
ha

ng
e

C
om

m
itm

en
t

P
ha

se
A

cc
ep

ta
nc

e
P

ha
se

P
re

pa
ra

tio
n

P
ha

se

Unawareness

Confusion

Negative
Perception

Decision Not

to Install

Change Aborted

After Initial Utilization

Change Aborted After

Extensive Utilization

Figure 3: Patterson-Conner Commitment Curve

Best Practices

22 CROSSTALK The Journal of Defense Software Engineering March 2002

Many transition mechanisms are typically
developed by the technology provider. By
translation, we mean the process of com-
municating about the CMMI adoption in
terms and language that are likely to be
understood and usable by the individu-

als/groups we are working with. As we
proceed in the adoption, the mechanisms
move in character from communication
and education more toward implementa-
tion support and incentives management.

See the “Adoption Mechanisms” side-
bar for an example set of mechanisms
that could be used in your organization
for each CMMI adoption stage. Which
ones are right for you depends on your
organization’s context and culture, and
the list is certainly not exhaustive.
However, it is based on the list elicited
from the May 2001 “The Road to
CMMI” technology transition workshop
hosted by SEI’s Accelerating Software
Technology Adoption (ASTA) for organ-
izations that are already using CMMI to
support their improvement efforts.

A resource that is available to the
community to help understand how early
adopters of CMMI have approached
their adoption is a presentation of “The
Road to CMMI: What Works, What’s
Needed” [10] from the CMMI
Technology Conference and User Group
held in Denver in November 2001. Also
keep an eye on the SEI publications page
for the full technical report that will be
published from the workshop results.
The reader can access the SEI publica-
tion page at <www.sei.cmu.edu/publica
tions>.

Integrating Transition
Mechanisms and
Commitment Milestones
Figure 6 shows an SEI adaptation of the
Patterson-Conner commitment curve
with commonly used adoption mecha-
nisms embedded with each stage. Note
that rather than a straight line, it shows a
more curved progress. This is intended
to reflect the observation that organiza-
tional investment increases significantly
once “understanding” has been achieved
and the organization is trying to achieve
“trial use” and then “adoption.”

Innovators and Early Adopters will
tend to create their own transition mech-
anisms and make do with what is avail-
able from the technology producer. Early
and Late Majority adopters expect many
of these mechanisms to be readily avail-
able for them to acquire without devel-
opment.

Technology producers (in this case,
the CMMI Product Team) and SEI tran-
sition partners [11] often have many of
the mechanisms in “contact, awareness,
and understanding” available in their
marketing kits. Technology adopters usu-
ally have to adapt these to help “sell” the
technology to the intended users.
Transition mechanisms can include
events and activities as well as “products.”

Building a Community of
Practice
One of the exciting areas of research at
the SEI within its ASTA initiative is
exploratory work that is being done in
seeding and helping to sustain “commu-
nities of practice.” This concept is one
of the underpinnings of much of the
work in knowledge management, but is
particularly useful when looking at
adopting a technology like the CMMI.
The SEI is incorporating this concept
into a larger research project called
KNiTT (Knowledge Networks in
Technology Transition), which looks at
concepts from the communities of prac-
tice literature as well as systems engi-
neering techniques, case-based learning,
and knowledge repositories to formulate
environments and approaches to sup-
porting a technology adoption context.

Even before this work matures, some
of the early ideas are worth considering
in your CMMI adoption. One of the cru-
cial ideas in this arena is the notion that
deep learning about a new technology
tends to be problem-centric, that is, the
technology will be evaluated by potential
users when there is a problem they are
trying to solve that appears to be a match

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

O
rg

an
iz

at
io

n

Contact

Awareness

Understanding

Trial Use

Adoption

Institutionalization
Commitment Curve Categories

Percent of Organization

Figure 5: Notional Profile Later in Adoption

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

O
rg

an
iz

at
io

n

Contact

Awareness

Understanding

Trial Use

Adoption

Institutionalization
Commitment Curve Categories

Percent of Organization

Adoption Mechanisms From the
Road to CMMI Workshop

Contact and Awareness
• Identification of Capability Maturity

Model® IntegrationSM (CMMISM) com-
munication channels.

• CMMI awareness briefings and
forums.

• Organization’s history and context.
• Translations of SEI materials into the

organization’s language/context.
• CMMI reference cards, other pro-

motional materials.

Trial Use
• Integrating quality assurance (QA) to

measure process improvement (PI)
progress.

• Link QA process to CMMI.
• Transition strategy from SW-CMM to

CMMI.
• Pilot/trials in non-software-develop-

ment areas.
• Example CMMI PI budget.

Institutionalization
• CMMI best practice-based tem-

plates/checklists/assets.
• Integrating process review into project

management review.

Understanding
• CMMI communications repository.
• Self-assessment/gap analysis/class B

and C assessments that relate gaps to the
organization’s processes.

• CMMI poster.
• Process improvement information data-

base (use of data).
• Mapping of various models to CMMI.
• Chart on how processes are the respon-

sibility of different roles/across organi-
zational boundaries.

• Think CMMI program.
• Transition roadmap.
• Birds-of-a-feather sessions on focused

topics.

Adoption
• Role-based training.
• Tailoring guidance/strategies for dif-

ferent organizational contexts.
• Transition steering group.
• Return-on-investment trend data.
• Integrating all disciplines into the

process group.

Figure 4: Notional Profile Early in Adoption

for the technology. Until that time, many
of the mechanisms that could be used to
support adoption of the technology will
help build knowledge and positive
impressions of the technology, but will
not be able to achieve trial use or adop-
tion.

Once problems are being solved with
a technology, the possibility exists to
seed a community of practice, which
contains members of the organization
who are motivated to continue learning
about the technology. They might build
“translations” of the technology for
other users who may not be as far along
in their adoption of the technology, and
communicate and problem-solve with
each other to improve their use of the
technology. At this point, a community
of practice may be considered to be ini-
tiated.

In CMM adoption history, many of
the Software Process Improvement
Networks (SPINs) exhibit characteristics
of communities of practice. We believe
that bringing the ideas of continued
learning and involvement by the practi-
tioners and change agents inside the
organization can accelerate the adoption
of a technology like the CMMI, since
this approach tends to access the infor-
mal networks of influence that exist
within the organization outside the nor-
mal organizational structure. Stay tuned
to the ASTA section of the SEI Web site
for information on these and other
ASTA research areas as they evolve.

Summary
The CMMI is early in its own matura-
tion/transition life cycle. This means that
there are little hard data on successful
(and unsuccessful) strategies for its use,
and there are no return-on-investment
data that a chief financial officer would
find credible. There are many approach-
es from the technology adoption arena
that can be useful in making effective use
of the CMMI as it matures. A few of
these have been highlighted in this arti-
cle. As an early adopter of CMMI, you
need to be prepared to invest in creating
the transition mechanisms your organi-
zation will need to be successful and to
apply creative approaches to making
progress. Understanding and applying
technology adoption concepts can help
you maximize your return on your
investment.◆

References
1. Tornatzy, Louis G., and Mitchell

Fleischer, eds. The Process of
Technological Innovation. Lexington,

Mass.: Lexington Books, 1990.
2. Nord, W. R., and S. Tucker, eds.

Implementing Routine and Radical
Innovations. Lexington, Mass.: Lex-
ington Books, 1987, p. 41, as quoted in
[1].

3. Schein, Edgar. “The Three Cultures of
Management: Implications for Organ-
izational Learning.” Sloan Manage-
ment Review 38: 9-20.

4. Moore, Geoffrey A. Crossing the
Chasm. New York: HarperCollins
Publishers, 1991.

5. Moore, Geoffrey A. Inside the Torna-
do: Marketing Strategies from Silicon
Valley’s Cutting Edge. New York:
HarperCollins Publishers, 1995.

6. Rogers, E. M. Diffusion of Innova-
tions. New York: Free Press, 1995.

7. Patterson, Robert W., and Darryl R.
Conner, eds. “Building Commitment
to Organizational Change.” Training
and Development Journal Apr. 1982:
18-30.

8. Zmud, Robert W,. and L. Eugene
Apple, eds. “Measuring Technology
Incorporation/Infusion.” Journal of
Product Innovation Management
1992: 9: 148-155.

9. Caputo, Kim. CMM Implementation
Guide: Choreographing Software
Process Improvement. Reading, Mass.:
Addison-Wesley, 1998.

10. Wemyss, Gian. “Results from the Road
to CMMI: What Works, What’s
Needed.” Proceedings of the 1st
CMMI Technology Conference and
User Group, Nov. 2001.

11. Software Engineering Institute. “Tran-
sition Partner Program.” <www.sei.
cmu.edu/collaborating/partners/
trans.partners.html>.

Additional Information
1. See the CMMI Web site <www.sei.

cmu.edu/cmmi>, or the ASTA Web
site <www.sei.cmu.edu/asta>.

2. Contact Software Engineering
Institute Customer Relations:
Software Engineering Institute,
Carnegie Mellon University, Pitts-
burgh, PA 15213-3890; Fax: (412) 268-
5800; Web site: <customer-relations@
sei.cmu.edu>.

Are You Prepared for CMMI?

March 2002 www.stsc.hill.af.mil 23

Contact

Awareness

Understanding

Trial Use

Adoption

Institutionalization

Patterson-Connor Change Adoption Model
and the Enabling Mechanisms Needed to Support Transition
Between Its Stages

Longer tutorials for different roles in the organization
Quick appraisal to understand baseline

Process implementation approach
Detailed course for change agents in the model

Measurement system
Piloting plan
Customized training for adopters

Leading and reinforcing change
Periodic organizational re-appraisal

Policies & support structures
New employee orientation
Tailored model

Presentations/PR on how it worked - examples

Adoption of a CMM
By an Organization

Figure 6: Notional Commitment Curve for Adopting CMMI, with Possible Transition Mechanisms

About the Author
Suzanne Garcia is a
returning senior mem-
ber of the technical
staff at the Software
Engineering Institute
(SEI) of Carnegie

Mellon University, working in the
Accelerating Software Technology
Adoption initiative. From November
1997 to May 2001, she worked with
aimware, Inc.’s U.S. customers, focus-
ing on technology-supported organiza-
tional improvement. She spent the pre-
vious five years at the SEI working in
various capacities in the Capability
Maturity Models initiative. Twelve years
prior to that Garcia worked in multiple
improvement-related roles at Lockheed
Missile and Space Co.

Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213
Phone: (412) 268-9143
Fax: (412) 268-5758
E-mail: smg@sei.cmu.edu

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering March 2002

In December 1999 CrossTalk [3],
David Cook provided a well-reasoned

historical analysis of programming lan-
guage development and considered the
role languages play in the software devel-
opment process. The article was valuable
because it showed that programming lan-
guage developments are not sufficient to
ensure success; however, it would be dan-
gerous to conclude from this that they are
not necessary for success. Cook rightly iden-
tifies other issues such as requirements
capture, specifications, and verification
and validation (V&V) that need to be
addressed.

Perhaps we need to look at program-
ming languages not just in terms of their
ability to code some particular design but
in the influence the language has on some
of these other vital aspects of the devel-
opment process. The key notion is that of
the benefit of a precise language or lan-
guage subset. If the term subset has set
anyone thinking “oh no, not another cod-
ing standard,” then read on, the topic is
much more interesting and useful than
that!

Language Issues
Programming languages have evolved in
three main ways. First came improvements
in structure; then attempts at improving
compile-time error detection through
such things as strong typing; and, most sig-
nificantly, facilities to improve our ability
to express abstractions. All of these have
shaped the way we think about problem
solving.

However, programming languages
have not evolved in their precision of
expression. In fact, they may have actually
gotten worse since the meaning of a sam-
ple of machine code is exact and unequiv-
ocal, whereas the meaning of the con-
structs of typical modern high-order lan-
guages are substantially less certain. The
evolution of C into C++ certainly

improved its ability to express design
abstractions but, if anything, the pre-
dictability of the compiled code de-
creased. These ambiguities arise either
from deficiencies in the original language
definition or from implementation free-
doms given to the compiler writer for ease
of implementation or efficiency reasons.

None of this may look like a very seri-
ous problem. We can still do code walk-
throughs and reviews and, after all, we still
have to do dynamic testing that should
flush out any remaining ambiguities. In
fact the evidence is quite strong that it does
matter because it creates an environment
where we are encouraged to make little
attempt to reason about the software we
are producing at each stage of its develop-
ment. Since we typically do not have for-
mal mathematical specifications and we
use imprecise programming languages, the
first artifact we have with formal seman-
tics is object code (object code is formal in
the sense that the execution machine pro-
vides operational semantics for it). So our
first opportunity to explore the behavior
of the software in any rigorous fashion
occurs very late in the development cycle
with malign consequences.

Where this trend is most harmful is in
high-integrity systems where reliability is
the pre-eminent property required. The

most common form of high-integrity sys-
tem is the safety-critical system. Such sys-
tems are characterized by the proportion-
ally very high overall effort that goes into
showing that the system is fit for service:
the V&V effort. We are seeking to demon-
strate before there is any service experience that
a system will be fit for use.

Claimed failure rates of 10-9 per flying
hour are not uncommon in aviation: 109

hours is more than 114,000 years! Leaving
aside for now the question of whether we
can ever hope to demonstrate such levels
of integrity by dynamic testing alone [4, 5,
6], what is certain is that any such attempt
will be expensive. For high-integrity sys-
tems where typically more than half – and
sometimes as much as 80 percent – of the
time is spent in the integration and valida-
tion phases, we are locked into a vicious
circle: We are spending most of our time
at the most expensive point in the life
cycle. Worse, it is the point at which any
delay will inevitably affect the overall pro-
gram schedule.

The consequences of these difficulties
are well recognized. It is often stated that
developing software to a standard such as
DO-178B1 [7] at level A raises the cost by
a factor of five over non-critical develop-
ments. Much of this extra cost comes
from meeting the specific test coverage
criterion of the standard.

Reliable Programming in
Standard Languages
If we want to avoid the vicious circle of
late error detection and costly repair we
must start to reason logically about our
software at an earlier stage in its develop-
ment. We can do this by using a program-
ming language whose source code has a
precise meaning; this makes it possible to
provide tool support in the form of static
analyzers2 that can be applied very early in
the coding process, before dynamic testing
begins.

Correctness by Construction:
Better Can Also Be Cheaper

Peter Amey
Praxis Critical Systems

For safety and mission critical systems, verification and validation activities frequently dominate development costs, accounting
for as much as 80 percent in some cases [1]. There is now compelling evidence that development methods that focus on bug
prevention rather than bug detection can both raise quality and save time and money. A recent, large avionics project report-
ed a four-fold productivity and 10-fold quality improvement by adopting such methods [2]. A key ingredient of correctness
by construction is the use of unambiguous programming languages that allow rigorous analysis very early in the development
process.

“Programming
languages have not

evolved in their
‘precision’ of expression.

In fact, they may
have actually

gotten worse ...”

March 2002 www.stsc.hill.af.mil 25

Correctness by Construction: Better Can Also Be Cheaper

This kind of early analysis, at the engi-
neer’s terminal, is an amplification of the
static analysis (such as type checking) per-
formed by compilers. The aim is to pre-
vent errors ever making it to test. These
gains are only possible if the language
rules are precise and the semantics are well
defined.

Given the imprecision of program-
ming languages in general we have three
ways of gaining the properties we seek:
• Work with particular, compiler-defined

dialects of programming languages.
• Design new languages with the prop-

erties we require.
• Use subsets of mainstream languages

designed to have the required proper-
ties.
Using dialects is quite a respectable

approach but not without its drawbacks.
First, vendors may be reluctant to reveal
the dialect. Also, there is no guarantee that
the compiler’s behavior won’t change
from version to version and without your
knowledge. Finally, there is no guarantee
that the compiler will even be consistent
in its behavior.

Purpose-designed languages with for-
mally defined semantics are a fascinating
research topic but are unlikely ever to
achieve the kind of critical mass required
to make them suitable for widespread
industrial use. My favorite example is
Newspeak [8]. It is named after the lan-
guage in George Orwell’s novel 1984.
Newspeak is elegant, precise and has all
the required properties. It also has several
major flaws: you can neither buy a com-
piler for it, nor a textbook, nor get train-
ing, nor hire staff! This is the fundamental
drawback of the custom-language
approach.

That leaves using coherent subsets of
mainstream languages. Done properly this
can provide the best of both worlds: pre-
cise semantics together with access to
tools, training, and staff. However, typical-
ly these subsets are informally defined.
Some language features may be omitted.
There is no attempt to construct a logical-
ly coherent sublanguage that makes the
qualitative shift to having no ambiguous
or insecure behavior. For example,
MISRA-C is a C-language subset defined
by the United Kingdom (UK) automotive
industry. MISRA-C [9] prohibits some of
the more problematic constructs of C,
such as unrestricted pointer arithmetic,
which is frequently the cause of coding
problems [10]. However, MISRA-C is not,
and does not claim to be, a logically sound
sublanguage.

Other subsets such as SPARK3 [11,
12, 13] are more ambitious since they seek

to define a language whose source code
wholly defines the eventual compiled
behavior. The language is intended to be
completely free from ambiguity, compiler-
dependent behavior, and other barriers to
precise reasoning. Before going on to
describe SPARK in more detail it is worth
looking further at the practical advantages
of correctness-by-construction approach.

The Lockheed C130J
The Lockheed C130J or Hercules II
Airlifter was a major updating of one of
the world’s most long-lived and successful
aircraft. The work was done at Lockheed’s
own risk. Much of the planned aircraft
improvement was to come from the com-
pletely new avionics fit and the new soft-
ware that lay at its heart. The project is
particularly instructive because it has some
unusual properties that provide some
interesting comparisons:

• Software subsystems developed by a
variety of subcontractors using a vari-
ety of methods and languages.

• Civil certification to DO-178B.
• Military certification to UK Def-Stan

00-55 involving an extensive, retro-
spective independent V&V (IV&V)
activity.
For the main mission computer soft-

ware, Lockheed adopted a well-document-
ed correctness-by-construction approach
[14, 15, 16]. The approach was based on:
• Semi-formal specifications using

Consortium Requirements Engineering
(CoRE) [17] and Parnas tables [18].

• “Thin-slice” prototyping of high-risk
areas.

• Template-driven approach to the pro-
duction of similar and repetitive code
portions.

• Coding in SPARK with tool-supported
static analysis carried out as part of the
coding process and certainly prior to

formal certification testing; this com-
bination was sufficient to eliminate
large numbers of errors at the coding
stage – before any formal review or
testing began.
This logical approach brought

Lockheed significant dividends. Perhaps
most striking was in the reduced cost of
the formal testing required for DO-178B
Level A certification: “Very few errors
have been found in the software during
even the most rigorous levels of FAA
[Federal Aviation Administration] testing,
which is being successfully conducted for
less than a fifth of the normal cost in
industry.” At a later presentation [2]
Lockheed was even more precise on the
benefits claimed for their development
approach:
• Code quality improved by a factor of

10 over industry norms for DO 178B
Level A software.

• Productivity improved by a factor of
four over previous comparable pro-
grams.

• Development costs were half that typi-
cal for non safety-critical code.

• With re-use and process maturity,
there was a further productivity
improvement of four on the C27J air-
lifter program.
These claims are impressive but they

are justified by the results of the UK
Ministry of Defense’s own retrospective
IV&V program that was carried out by
Aerosystems International at Yeovil in the
UK. It should be remembered that the
code examined by Aerosystems had
already been cleared to DO-178B Level A
standards, which should indicate that it
was suitable for safety-critical flight pur-
poses. Key conclusions of this study fol-
low:
• Significant, potentially safety-critical

errors were found by static analysis in
code developed to DO-178B Level A.

• Properties of the SPARK code
(including proof of exception free-
dom) could readily be proved against
Lockheed’s semi-formal specification;
this proof was shown to be cheaper
than weaker forms of semantic analy-
sis performed on non-SPARK code.

• SPARK code was found to have only
10 percent of the residual errors of
full Ada; Ada was found to have only
10 percent of the residual errors of
code written in C. This is an interesting
counter to those who maintain that
choice of programming language does
not matter, and that critical code can
be written correctly in any language:
The claim may be true in principle but
clearly is not commonly achieved in

“The exact semantics
of SPARK require

software writers to think
carefully and express
themselves clearly;

any lack of precision is
ruthlessly exposed by ...

its support tool, the
SPARK Examiner.”

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering March 2002

practice.
• No statistically significant difference in

residual error rate could be found
between DO-178B Level A and Level
B code, which raises interesting ques-
tions on the efficacy of the MC/DC
test coverage criterion.
Lockheed succeeded because they had

a strong process with an emphasis on
requirements capture and accurate specifi-
cations; furthermore, they made their
process repeatable by using templates. All
these are wise things recommended by
David Cook [3] in his article.

SPARK’s role in this process was cru-
cial. Its precision helped expose any lack
of clarity in the specifications to be imple-
mented. The exact semantics of SPARK
require software writers to think carefully
and express themselves clearly; any lack of
precision is ruthlessly exposed by the rig-
orous analysis performed by its support
tool, the SPARK Examiner4.

One of the first effects of the adop-
tion of SPARK on the project was to
make the CoRE specification much more
of a central and “live” document than
before. Instead of “interpreting” unclear
requirements on their own, developers
were nagged by the Examiner into getting
the required behavior agreed upon and the
specification updated to match; everyone
gained from this.

The second SPARK contribution
came with the UK military certification
process. Here the fact that SPARK facili-
tates formal verification or “proof ” came
into play. As Lockheed put it: “The tech-
nology for generating and discharging
proof obligations, based on SPARK ... was
crucial in binding the code to the initial
requirements.”

The Lockheed process might be
termed “verification-driven development”
since it is a process that recognizes that
showing the system to be correct is usual-
ly harder than making it correct in the first
place. Therefore the process is optimized
to produce the evidence of correctness as
a by-product of the method of develop-
ment.

The SPARK Language
SPARK is an annotated subset of Ada
with security obtained by two complemen-
tary approaches. First, the more problem-
atic parts of Ada, e.g., unrestricted tasking,
are eliminated. Second, remaining ambigu-
ities are removed by providing additional
information in the form of annotations.
Annotations are special comments that
make clear the programmer’s intentions.
Since they are comments, the compiler
ignores them, but they are read and cross-

checked against the code by the SPARK
Examiner. Annotations also serve an
important purpose by providing stronger
descriptions of the abstractions used; this
means that it is possible to analyze a part
of the system without needing to access
all the package bodies. Again this facili-
tates early analysis.

SPARK is introduced here to illustrate
how a precise, unambiguous program-
ming language is constructed and the ben-
efits it brings. The goals set out for the
original authors, more than 10 years ago,
were as follows.

Logical Soundness
This covers the elimination of language
ambiguities as mentioned earlier. The
behavior of a SPARK program is wholly
defined by and predictable from its source
code.

Simplicity of Formal Language
Definition
In order to demonstrate SPARK’s logical
soundness, it was felt desirable to write a
formal definition of its static and dynam-
ic semantics. This challenging task was
completed in 1994, fortunately without
producing any nasty surprises.

Expressive Power
The aim here was to produce a language
that was rich and expressive enough for
real industrial use. You can of course pro-
duce a safe subset of any language if you
make it so small that it is impossible to
write real programs in it: If you cannot
write anything, you certainly cannot write
dangerous code!

SPARK retains all the important Ada
features required for writing well-engi-
neered object-based code. It has packages,
private types, functions returning struc-
tured types, and all of Ada’s control struc-
tures. This leaves a clean, easy-to-learn
language that, while smaller than Ada, is
still rich and expressive.

Security
SPARK has no unenforceable language
rules. The static semantic rules of SPARK
are 100 percent machine-checkable using
efficient analysis algorithms. It is this fea-
ture that makes it feasible to consider stat-
ic analysis to be part of the design and
coding process rather than seeing it as a
retrospective V&V activity.

Verifiability
This is a consequence of the exact seman-
tics of SPARK. Since the source code has
a precise meaning, it is possible to reason
about in a rigorous mathematical manner.

The SPARK Examiner can be used to
facilitate proof that SPARK code con-
forms to some suitable specifications, or
that it has certain properties. A very
straightforward and useful facility is the
ability to construct a proof that the code
will be completely free from run-time
errors (such as the predefined exceptions).

Bounded Space and Time
Requirements
A very important property of many criti-
cal systems is that they should operate for
long periods; this means, for example, that
they should not suffer from such things as
memory leaks. SPARK programs are
inherently bounded in space – there is no
recursion or heap allocation for example –
and can be made bounded in time. The
end result is that the required machine
resources can be calculated statically.

Correspondence With Ada
This is how the “Newspeak” trap is avoid-
ed. All SPARK programs are legal Ada pro-
grams and can be compiled with any stan-
dard compiler. More usefully, the meaning
of a SPARK program cannot be affected
by the implementation freedoms that the
Ada standard allows the compiler writer.
For example, it does not matter whether
the compiler passes parameters by refer-
ence or by copying, or in which order it
evaluates expression; the compiled SPARK
code will have the same behavior. In effect,
to use the terminology of the Ada LRM, it
is not possible to write erroneous Ada pro-
grams in SPARK.

Verifiability of Compiled Code
Since we are taking advantage of the pre-
cision of the language to reason about
source code, we need to consider the
accuracy with which the compiler will gen-
erate object code. Clearly SPARK cannot
change the behavior of compilers but
there is some evidence that the simplifica-
tions of Ada provided by SPARK tend to
exercise the well-trodden paths of a com-
piler rather than its obscure back alleys.
The resulting machine code seems to be
easier to relate to the source than might
otherwise be the case.

Minimal Run-Time System
Requirements
This is an extremely important area.
Complex languages that provide facilities
for concurrency, exception handling, etc.,
require large run-time library (RTL) sup-
port. Since the RTL forms part of the
overall system, we need to demonstrate its
correctness just as we must the application

Correctness by Construction: Better Can Also Be Cheaper

March 2002 www.stsc.hill.af.mil 27

code itself. As the RTL is likely to be pro-
prietary and opaque, this can be very diffi-
cult.

SPARK inherently requires very little
run-time support; for example, the SHO-
LIS [19] system developed by Praxis
Critical Systems made only one call to a
small routine in a fixed-point math
library. Many Ada compiler vendors sup-
ply small RTLs for certification purposes,
and SPARK is compatible with all of
these. The smallest of all is GNAT Pro
High-Integrity Edition from ACT
because this has no RTL at all. As a
demonstration, the SHOLIS code was
ported to this system [20].

As an aside, it is quite interesting to
compare the language subsets supported
by the compiler vendors with SPARK.
The former are all produced by removing
the complex and difficult-to-understand
parts of their run-time systems and seeing
how much of the language can still be
supported. Reasoning about the semantics
of the language itself and eliminating
problematic areas makes the latter. Both
approaches produce almost identical sub-
sets.

Cost Saving Example
So how did SPARK help Lockheed reduce
its formal FAA test costs by 80 percent?
The savings arose from avoiding testing
repetition by eliminating most errors
before testing even began. During the
early stages of the project, before SPARK
was fully adopted, an illustrative incident
occurred. This is described in [15], which
states: “In one case, a code error in a stan-
dard Ada module had resisted diagnosis
for one week using normal testing meth-
ods. The module was converted to
SPARK ... and the error was then identi-
fied in 20 minutes through SPARK analy-
sis. Efficiencies of this type were obtained
repeatedly.”

Later in the project, when SPARK was
fully established, the savings were even
greater because errors of this kind never
got to the test stage at all. They were elim-
inated as part of the coding process.

The case in question took the form of
a Boolean function with a significant num-
ber of possible execution paths. On one
of these paths there was a data flow error
resulting in a random value being returned
for the function. Finding this by test was
extremely difficult because it was not
enough simply to traverse the faulty
branch. It was also necessary to be lucky
with the random value returned. Since
most random bytes of memory are non-
zero, and non-zero values are typically
regarded as being Boolean “true” by the

compiler, the function usually returned
true when the incorrect branch was exe-
cuted; unfortunately, this was the right
answer for this test condition! So the func-
tion nearly always behaved correctly but,
apparently inexplicably, returned the
wrong answer under seemingly random
conditions. Simplified, the example was as
follows:
• Specification Table. Table 1 repre-

sents the required behavior of an air-
crew alert system. The mon column
shows the input value of a “moni-
tored” variable, in this case showing
the severity of an alert message. The
con column shows the required output
of a “controlled” variable, in this case
a Boolean value saying whether an
alarm bell should sound in the cockpit.

• Flawed Implementation. A flawed
implementation of the function might
be:
type Alert is (Warning, Caution,
Advisory);
function RingBell (Event : Alert)
return Boolean
is

Result : Boolean;
begin

if Event = Warning then
Result := True;

elsif Event = Advisory then
Result := False;

end if;
return Result;

end RingBell
• SPARK Examination. The analysis

performed by the SPARK Examiner
includes a mathematically rigorous
data and information flow analysis [21]
that uncovers all uses of undefined
data values thus:
13 function RingBell (Event : Alert)

return Boolean
14 is
15 Result : Boolean;
16 begin
17 if Event = Warning then
18 Result := True;
19 elsif Event = Advisory then
20 Result := False;
21 end if;
22 return Result;

^1
??? (1) Warning : Expression contains

reference(s) to variable Result,
which may be undefined.

23 end RingBell;
??? (2) Warning : The undefined initial

value of Result may be used in the
derivation of the function value.

This clear indication is obtained at the
engineer’s terminal before compilation,
before test, before the code is even
checked back into configuration manage-

ment. The error never enters the system
so it never has to be found and eliminated.

Conclusion
Most high-integrity and safety-critical
developments make use of language sub-
sets. Unfortunately, these subsets are usu-
ally informally designed and consist, in
practice, of simply leaving out parts of the
language thought to be likely to cause
problems. Although this shortens the
length of rope with which the program-
mers may hang themselves, it does not
bring about any qualitative shift in what is
possible.

The use of coherent subsets free from
ambiguities and insecurities does bring
such a shift. Crucially it allows analysis to
be performed on source code before the
expensive test phase is entered. This analy-
sis is both more effective and cheaper than
manual methods such as inspections.
Inspections should still take place but can
focus on more profitable things like “does
this code meet its specification” rather
than “is there a possible data-flow error.”

Eliminating all these “noise” errors at
the engineer’s terminal greatly improves
the efficiency of the test process because
the testing can focus on showing that
requirements have been met rather than
becoming a “bug hunt.” In my 10-plus
years of using SPARK, I have never need-
ed to use a debugger. I have become so
used to things working the first time that
my debugging skills have almost complete-
ly atrophied. The only price I pay for this
is the SPARK Examiner pointing at the
source code on my terminal and displaying
messages telling me I have been stupid
again; I find I am grateful for those mes-
sages!

The SPARK language definition [11,
12] is both free and freely available (see
<www.sparkada.com> or e-mail sparkin
fo@praxis-cs.co.uk). Alternatively, John
Barnes’ textbook [13] provides an informal
and approachable description of the lan-
guage together with demonstration
tools.◆

References
1. Private communication arising from a

productivity study at a major aerospace
company.

2. Sutton, James. “Cost-Effective Ap-
proaches to Satisfy Safety-critical
Regulatory Requirements.” Workshop

mon_Event con_Bell

Warning True

Caution True

Advisory False

Table 1: Specification Table

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering March 2002

Session, SIGAda 2000.
3. Cook, David. “Evolution of

Programming Language and Why a
Language is not Enough.”
CrossTalk Dec. 1999: 7-12.

4. Littlewood, Bev, and Lorenzo Strigini,
eds. “Validation of Ultrahigh
Dependability for Software-Based
Systems.” CACM 1993, 36(11): 69-80.

5. Butler, Ricky W., and George B. Finelli,
eds. “The Infeasibility of Quantifying
the Reliability of Life-Critical Real-
Time Software.” IEEE Transactions
on Software Engineering 19(1): 3-12.

6. Littlewood, B. “Limits to Evaluation of
Software Dependability.” In Software
Reliability and Metrics. Proceedings of
Seventh Annual CSR Conference,
Garmisch-Partenkirchen.

7. RTCA-EUROCAE. Software Con-
siderations in Airborne Systems and
Equipment Certification. DO-
178B/ED-12B. 1992.

8. Quoted in Andrew Hodges. Alan
Turing: The Enigma. Walker & Co.,
ISBN 0-802-77580-2.

9. Motor Industry Research Association.
Guidance for the Use of the C
Language in Vehicle-Based Software.
Apr. 1998, <www.misra.org.uk>.

10. Yu, Weider D. “A Software Fault
Prevention Approach in Coding and
Root Cause Analysis.” Bell Labs
Technical Journal Apr.-June 1998.

11. Finnie, Gavin, et al. “SPARK - The
SPADE Ada Kernel.” 3.3 ed. Praxis
Critical Systems, 1997, <www.spark
ada.com>.

12. Finnie, Gavin, et al. “SPARK 95 - The
SPADE Ada 95 Kernel.” Praxis Critical
Systems, 1999, <www.sparkada. com>.

13. Barnes, John. High Integrity Ada - the
SPARK Approach. Addison Wesley
Longman, ISBN 0-201-17517-7.

14. Sutton, James, and Bernard Carré, eds.
“Ada, the Cheapest Way to Build a
Line of Business.” 1994.

15. Sutton, James and Bernard Carré, eds.
“Achieving High Integrity at Low
Cost: A Constructive Approach.”
1995.

16. Croxford, Martin, and James Sutton,
eds. “Breaking through the V&V
Bottleneck.” Lecture Notes in
Computer Science Volume 1031.
Springer-Verlag 1996.

17. Software Productivity Consortium
<www.software.org>.

18. Parnas, David L. “Inspection of
Safety-Critical Software Using
Program-Function Tables.” IFIP
Congress Vol. 3:270-277, 1994.

19. King, Hammond, Chapman, and
Pryor, eds. “Is Proof More Cost-

Effective than Testing?” IEEE
Transaction on Software Engineering
Vol. 26 No. 8:675-686.

20. Chapman and Dewar. “Reengineering
a Safety-Critical Application Using
SPARK 95 and GNORT.” Lecture
Notes in Computer Science Vol. 1622,
Gonzales, Puente, eds. Springer-Verlag,
Ada Europe 1999.

21. Bergeretti and Carré. “Information-
Flow and Data-Flow Analysis of
While-Programs.” ACM Transactions
on Programming Languages and
Systems, 1985.

Notes
1. DO-178B (ED-12B in Europe) is the

prevalent standard against which civil
avionics software is certified. Level A
software is defined as software whose
failure would prevent continued safe
flight or landing.

2. Static analyzers are tools that deter-
mine various properties of a program
by inspecting its source code; unlike
dynamic testing the program is not
compiled and run.

3. The SPARK programming language is
not sponsored by or affiliated with
SPARC International Inc. and is not
based on SPARC™ architecture.

4. SPARK is a programming language;
the SPARK Examiner is the static
analysis tool used to analyze SPARK
programs.

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:___@_________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

FEB2000 � RISK MANAGEMENT

MAY2000 � THE F-22

JUN2000 � PSP & TSP

APR2001 � WEB-BASED APPS

JUL2001 � TESTING & CM

AUG2001 � SW AROUND THE WORLD

SEP2001 � AVIONICS MODERNIZATION

DEC2001 � SW LEGACY SYSTEMS

JAN2002 � TOP 5 PROJECTS

FEB2002 � CMMI

About the Author
Peter Amey is a princi-
pal consultant with
Praxis Critical Systems.
An aeronautical engi-
neer, he migrated to
the software world
when most of the

interesting parts of aircraft started
hiding in black boxes. Before joining
Praxis, Amey served in the Royal Air
Force and worked at DERA
Boscombe Down on the certification
of aircraft systems. He is a principal
author of the SPARK Examiner tool
and has wide experience applying
SPARK to critical system develop-
ment. Praxis Critical Systems will be
exhibiting and presenting at the STC
2002.

Praxis Critical Systems
20, Manvers Street
Bath, BA1 1PX, UK
Phone: +44 (0) 1225 466991
Fax: +44 (0) 1225 469006
E-mail: peter.amey@praxis-cs.co.uk

Where can you find official acknowl-
edgements or certifications that dis-

tinguish modeling and simulation (M&S)
organizations as mature, capable, rep-
utable, or accomplished? Development of
both the modeling and simulation profes-
sion and the industry is inhibited by the
fact that there is no generally accepted set
of inherent qualifications or functional
competencies. The lack of guidelines for
determining M&S professional competen-
cy makes it difficult to establish and deliver
educational programs. Furthermore, the
lack of M&S metrics and standards for
functional competency makes labor market
transactions inefficient for both buyers and
sellers of M&S professional services.

How can acquirers ensure their success
by identifying contractor(s) who can pro-
vide M&S intensive systems that are deliv-
ered and maintained with predictable and
improved cost, schedule, and quality? We
are aware that M&S systems are software
driven. However, can acquisition profes-
sionals be assured that any accomplished
software development organization is
capable of providing a quality M&S prod-
uct within the projected cost and schedule?
If not, then perhaps some consideration
should be given to ways in which an M&S
development organization can be recog-
nized for its M&S capability.

The Software Engineering Institute’s
(SEI) Capability Maturity Model®

IntegrationSM (CMMISM) can serve as a
means for identifying a company’s process
maturity level in software, systems engi-
neering, and acquisition. It could be of
greater use to the members of the
Department of Defense (DoD) M&S
community and to the M&S community at
large if M&S were included (see Figure 1).
Also, it would be helpful to be able to rec-
ognize, among the high maturity level soft-
ware development organizations, which
ones are proficient as M&S developers and
in which area of M&S their expertise
resides.

M&S Industry Standards and
Best Practices
An industry standard provides an accepted
technical approach for the design and devel-
opment of communication systems, system
architectures, and information systems.
Industry standards for the life-cycle develop-
ment of M&S systems do not yet exist. By
conforming to an international standard for
M&S design and development, organizations
are confident that their M&S system modifi-
cations for enhancements, interface defini-
tions, and interoperability can be realized
more easily, cohesively, and cost effectively.

SEI has a large DoD and commercial
audience, and its’ CMMI model provides a
product suite that offers an infrastructure
that can be used to champion an industry
standard for the design and development of
M&S products and services. The designated
standard should be cohesive and conform to
its’ associate disciplines, software, and system
engineering (ISO/IEC 15504). The CMMI
model’s “Expected” and “Informative” com-
ponent areas offer generic and specific prac-
tices, sub-practices, notes, and discipline-spe-
cific amplifications that are an existing struc-
ture that can be extremely beneficial for
specifying industry standards and best prac-
tices for building M&S products.

Standards are important and beneficial
because they refer to the formal mandatory
requirements developed and used to pre-
scribe consistent approaches for design and
development of products (e.g., ISO/IEC
standards, Institute of Electrical and
Electronic Engineers standards, etc.). M&S
supported by an international discipline stan-
dard would be equipped with the technical
means to foster collaborative environments
among different organizations or nations.
These collaborative environments could
address the interoperability of M&S systems
between and among the military services,
DoD government, non-DoD government,
commercial, and international organizations.

SEI states that its “Product Suite repre-
sents a consensus-based approach to identi-
fying and describing best practices in a vari-
ety of disciplines.” We cannot think of a
more convenient and appropriate vehicle to
house and provide reference material for
M&S industry best practices and standards.

M&S CMMI Activities
The Defense Modeling and Simulation Office
(DMSO) has established an XMSO M&S
CMMI Steering Group whose charter is to
represent the M&S community in determin-
ing the feasibility of adding M&S as a disci-
pline to the CMMI. It will also establish the

Open Forum

Modeling and Simulation CMMI:
A Conceptual View

Frank Richey
Illinois Institute of Technology Research Institute

There is a lack of guidelines for determining an organization’s modeling and simulation (M&S) competency level such as
maturity or capability. This makes it difficult for a customer to identify innovative companies who successfully deliver M&S-
intensive products better, faster, and cheaper than the competition. This article advocates inclusion of M&S as a discipline
into the Software Engineering Institute’s Capability Maturity Model® IntegrationSM. This enhancement should provide the
most efficient and cost effective means to identify and or improve a company’s capability to manage the development, acquisi-
tion, and maintenance of M&S products and services.

March 2002 www.stsc.hill.af.mil 29

Should Modeling and Simulation be an Integrated Component?

SW-CMM SE-CMM SA-CMM

SEI
CMMI

Platform

SW SE IPPD

M&S

The Capability Maturity Model Integration provides:
An ordered collection of best practices.
A description of "WHAT" is required, not "WHO" or "HOW."
A road map for the technical discipline and management process improvement.

A

Figure 1: Integrated Product and Process Development (IPPD)

strategic direction and plan for the evolution
and development of M&S process areas,
practices, and amplifications for the CMMI
Product Suite. The steering group will review
and propose industry standards for M&S
development, maintain the M&S CMMI
requirements baseline (A-Specification) and
Concept of Operations (ConOps), and
ensure satisfaction of these requirements.

The plan is to extend the M&S CMMI
Steering Group beyond the Defense Services
Modeling and Simulation Offices (Defense
Modeling and Simulation Office, Army
Model and Simulation Office, Marine Corps
Modeling and Simulation Management
Office, Navy Modeling and Simulation
Management Office, and Air Force Agency
for Modeling and Simulation) to include the
M&S DoD government, non-DoD govern-
ment, and commercial communities. Any
organizations with comments, ideas, or inter-
est in participating in the steering group meet-
ings may contact the author directly.◆

About the Author
Frank Richey is a
senior software engi-
neer for Illinois
Institute of Technol-
ogy (IIT) Research
Institute, Alexandria,

Va., providing a broad spectrum of
experiences at the senior Systems and
Software Engineering level.
Currently, he is exploring the feasibil-
ity of defining an industry bench-
mark for assessing the credentials,
capabilities, and organizational matu-
rity of companies that provide mod-
eling and simulation products and
services for the Defense Modeling
and Simulation Office. He is a mem-
ber of the Institute of Electrical and
Electronics Engineers and the

Washington, D.C., area Software
Process Improvement Network. He
recently presented his white paper,
“Modeling and Simulation Capability
Maturity Model Exploration,” at the
fall 2001 Simulation Interoperability
Workshop. Richey’s experience
includes the Internal Revenue Service
modernization and 13 years of con-
tinuous Department of Defense
experience. He has a bachelor’s
degree in computer and information
science from Temple University.

IIT Research Institute
1701 N. Beauregard Street
Alexandria,VA 22311
Phone: (703) 575-3296
E-mail: frichey@iitri.org

30 CROSSTALK The Journal of Defense Software Engineering March 2002

NOW OPEN!
Conference Registration

Housing Registration
Exhibit Registration

REGISTER TODAY!

The Premier
Software Technology

Conference of the
Department of Defense

The Fourteenth Annual
Software Technology Conference
Forging the Future of Defense Through Technology

29 April – 2 May 2002
Salt Palace Convention Center
Salt Lake City, Utah
800.538.2663

Source Code: CT7

Visit www.stc-online.org for
complete conference agenda

Open Forum

Late last summer, my lovely and charming wife gave me the
OK to go out and buy a digital camera. After considerable

searching, I bought the camera in October, and my wife and I
really enjoy using it. The problem was that my old black-and-
white laser printer (circa 1994) was now totally inadequate. So for
Christmas, we bought ourselves a color printer. The printer was
labeled “plug and play,” and had a Universal Serial Bus (USB)
connection. “How hard could it be to install?” I asked. Well,
turns out it was a “plug-and-play-around-with-it” device.

The printer came with no manuals (they were on an included
CD) and had a single installation sheet. Basically, the sheet said to
install the drivers, and then plug in the printer. Early one after-
noon after Christmas, I started the installation. Attempt No. 1 –
system locked up when I plugged in the printer. Reboot, watch
ScanDisk. Attempt No. 2 – system locked up before I plugged in
the printer. Reboot, watch ScanDisk again, and load the manuals
from the CD. Find obscure footnote saying, “For initial software
installation, the printer cannot be plugged into a USB Hub
device.” Attempt No. 3 – Plug printer directly into USB outlet.
Results? Same as attempts No. 1 and No. 2, but a much more
spectacular lockup. Reboot, (again watch ScanDisk) and reload
CD manuals. Find even more obscure footnote saying, “Software
may not install correctly if virus detection software is enabled.”
Attempt No. 4 – disable virus detection software. SUCCESS!!
Time spent – two hours.

You know, shortly before Christmas, I had updated my oper-
ating system (OS). The OS installed easily enough but many of
my drivers were incompatible. I now
know all about searching for
and downloading USB driv-
ers and updates for all sorts
of devices (Smart Media card
reader, Compact Flash card
reader, CD burner, camera, old
laser printer, virus detection
software, PDA synchro-
nization device, and very
old scanner). I guess
two hours in-
stalling a printer
was actually pret-
ty quick.

As I was lying in
bed late last night, the
words to a very old
country song kept run-
ning through my
mind. Remembering
that the theme for this
issue of CrossTalk

was “Software by the
Numbers,” I now offer my
version of “Heartache by the
Numbers,” originally sung by
Ray Price and written by
Harlan Howard back in
1959.

Software by the Numbers
Verse 1

Problem number one was when I installed you.
I thought Win 3.1 would be easy (– so they all say).

And problem number two was moving up to 95,
With DOS 6.22 I should have stayed.

Chorus (Version 1.0)
Now I’ve got software by the numbers, updates by the score.

I’ve got so many peripherals on my USB,
I just can’t plug in any more.

They all should load and coexist,
so their documentation does agree.

Yet every time I update one, three others crash on me.

Verse 2
Problems after number two came so quickly,

Installing 98, ME, 2000 and XP.
With hopeful heart I search for compliant drivers.

The misery of locating and
updating drivers will be the death of me.

Chorus (Version 1.1 with rhythm backward compatible with chorus
Version 1.0)

Now I’ve got software by the numbers, drivers by the score.
For each security flaw that I patch, hackers find 10 more.

Well I’ve got software by the numbers,
updating drivers never stops.

‘Cause just as soon as I think I’m done
– my gosh-darn PC locks.

Verse 3
Upgrading and patching software just taxes my brain.

Constant version changes and
new releases just seem to be the rule.

You’d think that all the vendors would end our misery.
Why don’t USB drivers have a configuration management tool?

Chorus (Version 2.0 incompatible with any previous chorus; please uninstall
older version of chorus before singing this version of chorus.)

Now I’ve got drivers by the numbers, updates by the score.
I can’t think of a task that I love less, or a task that I hate more.

Suffering from documentation that doesn’t exist,
and manuals that I lack.

I’m going to dump my PC box and return to my old Mac.

This has the potential to be a great country song – it mentions
misery, love, hate, hardship, death, and suffering. If I could just
work in a reference to my dogs (see my January 2002 Backtalk

column) and a pickup truck, I am sure it would top the charts!
See you at Software Technology Conference 2002!

—David A. Cook, Software Technology Support Center
david.cook@hill.af.mil

BACKTALK

March 2002 www.stsc.hill.af.mil 31

Software by the Numbers,
Updates by the Score!

® Heartache by the Numbers, copyright Tree Publishing Company (BMI).

CrossTalk / TISE

7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Cover
	Index
	From the Publisher
	Let the Numbers Do the Talking
	How CMM Impacts Quality, Productivity, Rework, and the Bottom Line
	Statistical Process Control of Project Performance
	JOVIAL Services
	Are You Prepared for CMMI?
	Correctness by Construction: Better Can Also Be Cheaper
	Modeling and Simulation CMMI: A Conceptual View
	STC 2002 Conference Notice
	BackTalk
	Back Cover
	Web Sites
	Coming Events

